(tags-query-replace): Set arg `map' of `perform-replace'
[emacs.git] / src / alloc.c
blobac28a32164938d604a7eb0942aa6e95741c47638
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
25 #ifdef STDC_HEADERS
26 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
27 #endif
29 #ifdef ALLOC_DEBUG
30 #undef INLINE
31 #endif
33 /* Note that this declares bzero on OSF/1. How dumb. */
35 #include <signal.h>
37 #ifdef HAVE_GTK_AND_PTHREAD
38 #include <pthread.h>
39 #endif
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "character.h"
56 #include "syssignal.h"
57 #include "termhooks.h" /* For struct terminal. */
58 #include <setjmp.h>
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
86 #ifdef DOUG_LEA_MALLOC
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
97 #define MMAP_MAX_AREAS 100000000
99 #else /* not DOUG_LEA_MALLOC */
101 /* The following come from gmalloc.c. */
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
107 #endif /* not DOUG_LEA_MALLOC */
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128 static pthread_mutex_t alloc_mutex;
130 #define BLOCK_INPUT_ALLOC \
131 do \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 UNBLOCK_INPUT; \
145 while (0)
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154 /* Value of _bytes_used, when spare_memory was freed. */
156 static __malloc_size_t bytes_used_when_full;
158 static __malloc_size_t bytes_used_when_reconsidered;
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179 /* Number of bytes of consing done since the last gc. */
181 int consing_since_gc;
183 /* Count the amount of consing of various sorts of space. */
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
194 /* Minimum number of bytes of consing since GC before next GC. */
196 EMACS_INT gc_cons_threshold;
198 /* Similar minimum, computed from Vgc_cons_percentage. */
200 EMACS_INT gc_relative_threshold;
202 static Lisp_Object Vgc_cons_percentage;
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
207 EMACS_INT memory_full_cons_threshold;
209 /* Nonzero during GC. */
211 int gc_in_progress;
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
217 int abort_on_gc;
219 /* Nonzero means display messages at beginning and end of GC. */
221 int garbage_collection_messages;
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
233 /* Number of live and free conses etc. */
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
243 static char *spare_memory[7];
245 /* Amount of spare memory to keep in large reserve block. */
247 #define SPARE_MEMORY (1 << 14)
249 /* Number of extra blocks malloc should get when it needs more core. */
251 static int malloc_hysteresis;
253 /* Non-nil means defun should do purecopy on the function definition. */
255 Lisp_Object Vpurify_flag;
257 /* Non-nil means we are handling a memory-full error. */
259 Lisp_Object Vmemory_full;
261 #ifndef HAVE_SHM
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 #else /* HAVE_SHM */
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
277 #endif /* HAVE_SHM */
279 /* Pointer to the pure area, and its size. */
281 static char *purebeg;
282 static size_t pure_size;
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
287 static size_t pure_bytes_used_before_overflow;
289 /* Value is non-zero if P points into pure space. */
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
297 /* Total number of bytes allocated in pure storage. */
299 EMACS_INT pure_bytes_used;
301 /* Index in pure at which next pure Lisp object will be allocated.. */
303 static EMACS_INT pure_bytes_used_lisp;
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307 static EMACS_INT pure_bytes_used_non_lisp;
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
312 char *pending_malloc_warning;
314 /* Pre-computed signal argument for use when memory is exhausted. */
316 Lisp_Object Vmemory_signal_data;
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 static char *stack_copy;
327 static int stack_copy_size;
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
332 static int ignore_warnings;
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336 /* Hook run after GC has finished. */
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
343 static void mark_buffer P_ ((Lisp_Object));
344 static void mark_terminals P_ ((void));
345 extern void mark_kboards P_ ((void));
346 extern void mark_ttys P_ ((void));
347 extern void mark_backtrace P_ ((void));
348 static void gc_sweep P_ ((void));
349 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
350 static void mark_face_cache P_ ((struct face_cache *));
352 #ifdef HAVE_WINDOW_SYSTEM
353 extern void mark_fringe_data P_ ((void));
354 #endif /* HAVE_WINDOW_SYSTEM */
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
361 extern int message_enable_multibyte;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* We used to keep separate mem_types for subtypes of vectors such as
377 process, hash_table, frame, terminal, and window, but we never made
378 use of the distinction, so it only caused source-code complexity
379 and runtime slowdown. Minor but pointless. */
380 MEM_TYPE_VECTORLIKE
383 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
384 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
385 void refill_memory_reserve ();
388 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
390 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
391 #include <stdio.h> /* For fprintf. */
392 #endif
394 /* A unique object in pure space used to make some Lisp objects
395 on free lists recognizable in O(1). */
397 static Lisp_Object Vdead;
399 #ifdef GC_MALLOC_CHECK
401 enum mem_type allocated_mem_type;
402 static int dont_register_blocks;
404 #endif /* GC_MALLOC_CHECK */
406 /* A node in the red-black tree describing allocated memory containing
407 Lisp data. Each such block is recorded with its start and end
408 address when it is allocated, and removed from the tree when it
409 is freed.
411 A red-black tree is a balanced binary tree with the following
412 properties:
414 1. Every node is either red or black.
415 2. Every leaf is black.
416 3. If a node is red, then both of its children are black.
417 4. Every simple path from a node to a descendant leaf contains
418 the same number of black nodes.
419 5. The root is always black.
421 When nodes are inserted into the tree, or deleted from the tree,
422 the tree is "fixed" so that these properties are always true.
424 A red-black tree with N internal nodes has height at most 2
425 log(N+1). Searches, insertions and deletions are done in O(log N).
426 Please see a text book about data structures for a detailed
427 description of red-black trees. Any book worth its salt should
428 describe them. */
430 struct mem_node
432 /* Children of this node. These pointers are never NULL. When there
433 is no child, the value is MEM_NIL, which points to a dummy node. */
434 struct mem_node *left, *right;
436 /* The parent of this node. In the root node, this is NULL. */
437 struct mem_node *parent;
439 /* Start and end of allocated region. */
440 void *start, *end;
442 /* Node color. */
443 enum {MEM_BLACK, MEM_RED} color;
445 /* Memory type. */
446 enum mem_type type;
449 /* Base address of stack. Set in main. */
451 Lisp_Object *stack_base;
453 /* Root of the tree describing allocated Lisp memory. */
455 static struct mem_node *mem_root;
457 /* Lowest and highest known address in the heap. */
459 static void *min_heap_address, *max_heap_address;
461 /* Sentinel node of the tree. */
463 static struct mem_node mem_z;
464 #define MEM_NIL &mem_z
466 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
467 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
468 static void lisp_free P_ ((POINTER_TYPE *));
469 static void mark_stack P_ ((void));
470 static int live_vector_p P_ ((struct mem_node *, void *));
471 static int live_buffer_p P_ ((struct mem_node *, void *));
472 static int live_string_p P_ ((struct mem_node *, void *));
473 static int live_cons_p P_ ((struct mem_node *, void *));
474 static int live_symbol_p P_ ((struct mem_node *, void *));
475 static int live_float_p P_ ((struct mem_node *, void *));
476 static int live_misc_p P_ ((struct mem_node *, void *));
477 static void mark_maybe_object P_ ((Lisp_Object));
478 static void mark_memory P_ ((void *, void *, int));
479 static void mem_init P_ ((void));
480 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
481 static void mem_insert_fixup P_ ((struct mem_node *));
482 static void mem_rotate_left P_ ((struct mem_node *));
483 static void mem_rotate_right P_ ((struct mem_node *));
484 static void mem_delete P_ ((struct mem_node *));
485 static void mem_delete_fixup P_ ((struct mem_node *));
486 static INLINE struct mem_node *mem_find P_ ((void *));
489 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
490 static void check_gcpros P_ ((void));
491 #endif
493 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
495 /* Recording what needs to be marked for gc. */
497 struct gcpro *gcprolist;
499 /* Addresses of staticpro'd variables. Initialize it to a nonzero
500 value; otherwise some compilers put it into BSS. */
502 #define NSTATICS 0x600
503 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
505 /* Index of next unused slot in staticvec. */
507 static int staticidx = 0;
509 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
512 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
513 ALIGNMENT must be a power of 2. */
515 #define ALIGN(ptr, ALIGNMENT) \
516 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
517 & ~((ALIGNMENT) - 1)))
521 /************************************************************************
522 Malloc
523 ************************************************************************/
525 /* Function malloc calls this if it finds we are near exhausting storage. */
527 void
528 malloc_warning (str)
529 char *str;
531 pending_malloc_warning = str;
535 /* Display an already-pending malloc warning. */
537 void
538 display_malloc_warning ()
540 call3 (intern ("display-warning"),
541 intern ("alloc"),
542 build_string (pending_malloc_warning),
543 intern ("emergency"));
544 pending_malloc_warning = 0;
548 #ifdef DOUG_LEA_MALLOC
549 # define BYTES_USED (mallinfo ().uordblks)
550 #else
551 # define BYTES_USED _bytes_used
552 #endif
554 /* Called if we can't allocate relocatable space for a buffer. */
556 void
557 buffer_memory_full ()
559 /* If buffers use the relocating allocator, no need to free
560 spare_memory, because we may have plenty of malloc space left
561 that we could get, and if we don't, the malloc that fails will
562 itself cause spare_memory to be freed. If buffers don't use the
563 relocating allocator, treat this like any other failing
564 malloc. */
566 #ifndef REL_ALLOC
567 memory_full ();
568 #endif
570 /* This used to call error, but if we've run out of memory, we could
571 get infinite recursion trying to build the string. */
572 xsignal (Qnil, Vmemory_signal_data);
576 #ifdef XMALLOC_OVERRUN_CHECK
578 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
579 and a 16 byte trailer around each block.
581 The header consists of 12 fixed bytes + a 4 byte integer contaning the
582 original block size, while the trailer consists of 16 fixed bytes.
584 The header is used to detect whether this block has been allocated
585 through these functions -- as it seems that some low-level libc
586 functions may bypass the malloc hooks.
590 #define XMALLOC_OVERRUN_CHECK_SIZE 16
592 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
593 { 0x9a, 0x9b, 0xae, 0xaf,
594 0xbf, 0xbe, 0xce, 0xcf,
595 0xea, 0xeb, 0xec, 0xed };
597 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
598 { 0xaa, 0xab, 0xac, 0xad,
599 0xba, 0xbb, 0xbc, 0xbd,
600 0xca, 0xcb, 0xcc, 0xcd,
601 0xda, 0xdb, 0xdc, 0xdd };
603 /* Macros to insert and extract the block size in the header. */
605 #define XMALLOC_PUT_SIZE(ptr, size) \
606 (ptr[-1] = (size & 0xff), \
607 ptr[-2] = ((size >> 8) & 0xff), \
608 ptr[-3] = ((size >> 16) & 0xff), \
609 ptr[-4] = ((size >> 24) & 0xff))
611 #define XMALLOC_GET_SIZE(ptr) \
612 (size_t)((unsigned)(ptr[-1]) | \
613 ((unsigned)(ptr[-2]) << 8) | \
614 ((unsigned)(ptr[-3]) << 16) | \
615 ((unsigned)(ptr[-4]) << 24))
618 /* The call depth in overrun_check functions. For example, this might happen:
619 xmalloc()
620 overrun_check_malloc()
621 -> malloc -> (via hook)_-> emacs_blocked_malloc
622 -> overrun_check_malloc
623 call malloc (hooks are NULL, so real malloc is called).
624 malloc returns 10000.
625 add overhead, return 10016.
626 <- (back in overrun_check_malloc)
627 add overhead again, return 10032
628 xmalloc returns 10032.
630 (time passes).
632 xfree(10032)
633 overrun_check_free(10032)
634 decrease overhed
635 free(10016) <- crash, because 10000 is the original pointer. */
637 static int check_depth;
639 /* Like malloc, but wraps allocated block with header and trailer. */
641 POINTER_TYPE *
642 overrun_check_malloc (size)
643 size_t size;
645 register unsigned char *val;
646 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
648 val = (unsigned char *) malloc (size + overhead);
649 if (val && check_depth == 1)
651 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
652 val += XMALLOC_OVERRUN_CHECK_SIZE;
653 XMALLOC_PUT_SIZE(val, size);
654 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
656 --check_depth;
657 return (POINTER_TYPE *)val;
661 /* Like realloc, but checks old block for overrun, and wraps new block
662 with header and trailer. */
664 POINTER_TYPE *
665 overrun_check_realloc (block, size)
666 POINTER_TYPE *block;
667 size_t size;
669 register unsigned char *val = (unsigned char *)block;
670 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
672 if (val
673 && check_depth == 1
674 && bcmp (xmalloc_overrun_check_header,
675 val - XMALLOC_OVERRUN_CHECK_SIZE,
676 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
678 size_t osize = XMALLOC_GET_SIZE (val);
679 if (bcmp (xmalloc_overrun_check_trailer,
680 val + osize,
681 XMALLOC_OVERRUN_CHECK_SIZE))
682 abort ();
683 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
684 val -= XMALLOC_OVERRUN_CHECK_SIZE;
685 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
688 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
690 if (val && check_depth == 1)
692 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
693 val += XMALLOC_OVERRUN_CHECK_SIZE;
694 XMALLOC_PUT_SIZE(val, size);
695 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
697 --check_depth;
698 return (POINTER_TYPE *)val;
701 /* Like free, but checks block for overrun. */
703 void
704 overrun_check_free (block)
705 POINTER_TYPE *block;
707 unsigned char *val = (unsigned char *)block;
709 ++check_depth;
710 if (val
711 && check_depth == 1
712 && bcmp (xmalloc_overrun_check_header,
713 val - XMALLOC_OVERRUN_CHECK_SIZE,
714 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
716 size_t osize = XMALLOC_GET_SIZE (val);
717 if (bcmp (xmalloc_overrun_check_trailer,
718 val + osize,
719 XMALLOC_OVERRUN_CHECK_SIZE))
720 abort ();
721 #ifdef XMALLOC_CLEAR_FREE_MEMORY
722 val -= XMALLOC_OVERRUN_CHECK_SIZE;
723 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
724 #else
725 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
726 val -= XMALLOC_OVERRUN_CHECK_SIZE;
727 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
728 #endif
731 free (val);
732 --check_depth;
735 #undef malloc
736 #undef realloc
737 #undef free
738 #define malloc overrun_check_malloc
739 #define realloc overrun_check_realloc
740 #define free overrun_check_free
741 #endif
743 #ifdef SYNC_INPUT
744 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
745 there's no need to block input around malloc. */
746 #define MALLOC_BLOCK_INPUT ((void)0)
747 #define MALLOC_UNBLOCK_INPUT ((void)0)
748 #else
749 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
750 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
751 #endif
753 /* Like malloc but check for no memory and block interrupt input.. */
755 POINTER_TYPE *
756 xmalloc (size)
757 size_t size;
759 register POINTER_TYPE *val;
761 MALLOC_BLOCK_INPUT;
762 val = (POINTER_TYPE *) malloc (size);
763 MALLOC_UNBLOCK_INPUT;
765 if (!val && size)
766 memory_full ();
767 return val;
771 /* Like realloc but check for no memory and block interrupt input.. */
773 POINTER_TYPE *
774 xrealloc (block, size)
775 POINTER_TYPE *block;
776 size_t size;
778 register POINTER_TYPE *val;
780 MALLOC_BLOCK_INPUT;
781 /* We must call malloc explicitly when BLOCK is 0, since some
782 reallocs don't do this. */
783 if (! block)
784 val = (POINTER_TYPE *) malloc (size);
785 else
786 val = (POINTER_TYPE *) realloc (block, size);
787 MALLOC_UNBLOCK_INPUT;
789 if (!val && size) memory_full ();
790 return val;
794 /* Like free but block interrupt input. */
796 void
797 xfree (block)
798 POINTER_TYPE *block;
800 if (!block)
801 return;
802 MALLOC_BLOCK_INPUT;
803 free (block);
804 MALLOC_UNBLOCK_INPUT;
805 /* We don't call refill_memory_reserve here
806 because that duplicates doing so in emacs_blocked_free
807 and the criterion should go there. */
811 /* Like strdup, but uses xmalloc. */
813 char *
814 xstrdup (s)
815 const char *s;
817 size_t len = strlen (s) + 1;
818 char *p = (char *) xmalloc (len);
819 bcopy (s, p, len);
820 return p;
824 /* Unwind for SAFE_ALLOCA */
826 Lisp_Object
827 safe_alloca_unwind (arg)
828 Lisp_Object arg;
830 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
832 p->dogc = 0;
833 xfree (p->pointer);
834 p->pointer = 0;
835 free_misc (arg);
836 return Qnil;
840 /* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allcated memory block (for strings, for conses, ...). */
844 #ifndef USE_LSB_TAG
845 static void *lisp_malloc_loser;
846 #endif
848 static POINTER_TYPE *
849 lisp_malloc (nbytes, type)
850 size_t nbytes;
851 enum mem_type type;
853 register void *val;
855 MALLOC_BLOCK_INPUT;
857 #ifdef GC_MALLOC_CHECK
858 allocated_mem_type = type;
859 #endif
861 val = (void *) malloc (nbytes);
863 #ifndef USE_LSB_TAG
864 /* If the memory just allocated cannot be addressed thru a Lisp
865 object's pointer, and it needs to be,
866 that's equivalent to running out of memory. */
867 if (val && type != MEM_TYPE_NON_LISP)
869 Lisp_Object tem;
870 XSETCONS (tem, (char *) val + nbytes - 1);
871 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 lisp_malloc_loser = val;
874 free (val);
875 val = 0;
878 #endif
880 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
881 if (val && type != MEM_TYPE_NON_LISP)
882 mem_insert (val, (char *) val + nbytes, type);
883 #endif
885 MALLOC_UNBLOCK_INPUT;
886 if (!val && nbytes)
887 memory_full ();
888 return val;
891 /* Free BLOCK. This must be called to free memory allocated with a
892 call to lisp_malloc. */
894 static void
895 lisp_free (block)
896 POINTER_TYPE *block;
898 MALLOC_BLOCK_INPUT;
899 free (block);
900 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
901 mem_delete (mem_find (block));
902 #endif
903 MALLOC_UNBLOCK_INPUT;
906 /* Allocation of aligned blocks of memory to store Lisp data. */
907 /* The entry point is lisp_align_malloc which returns blocks of at most */
908 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
910 /* Use posix_memalloc if the system has it and we're using the system's
911 malloc (because our gmalloc.c routines don't have posix_memalign although
912 its memalloc could be used). */
913 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914 #define USE_POSIX_MEMALIGN 1
915 #endif
917 /* BLOCK_ALIGN has to be a power of 2. */
918 #define BLOCK_ALIGN (1 << 10)
920 /* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
930 #define BLOCK_PADDING 0
931 #define BLOCK_BYTES \
932 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
934 /* Internal data structures and constants. */
936 #define ABLOCKS_SIZE 16
938 /* An aligned block of memory. */
939 struct ablock
941 union
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
958 #if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
960 #endif
963 /* A bunch of consecutive aligned blocks. */
964 struct ablocks
966 struct ablock blocks[ABLOCKS_SIZE];
969 /* Size of the block requested from malloc or memalign. */
970 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
972 #define ABLOCK_ABASE(block) \
973 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
977 /* Virtual `busy' field. */
978 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
980 /* Pointer to the (not necessarily aligned) malloc block. */
981 #ifdef USE_POSIX_MEMALIGN
982 #define ABLOCKS_BASE(abase) (abase)
983 #else
984 #define ABLOCKS_BASE(abase) \
985 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
986 #endif
988 /* The list of free ablock. */
989 static struct ablock *free_ablock;
991 /* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
994 static POINTER_TYPE *
995 lisp_align_malloc (nbytes, type)
996 size_t nbytes;
997 enum mem_type type;
999 void *base, *val;
1000 struct ablocks *abase;
1002 eassert (nbytes <= BLOCK_BYTES);
1004 MALLOC_BLOCK_INPUT;
1006 #ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008 #endif
1010 if (!free_ablock)
1012 int i;
1013 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1015 #ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020 #endif
1022 #ifdef USE_POSIX_MEMALIGN
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1025 if (err)
1026 base = NULL;
1027 abase = base;
1029 #else
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
1032 #endif
1034 if (base == 0)
1036 MALLOC_UNBLOCK_INPUT;
1037 memory_full ();
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void**)abase)[-1] = base;
1044 #ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047 #endif
1049 #ifndef USE_LSB_TAG
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1060 lisp_malloc_loser = base;
1061 free (base);
1062 MALLOC_UNBLOCK_INPUT;
1063 memory_full ();
1066 #endif
1068 /* Initialize the blocks and put them on the free list.
1069 Is `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1078 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
1082 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1085 abase = ABLOCK_ABASE (free_ablock);
1086 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1087 val = free_ablock;
1088 free_ablock = free_ablock->x.next_free;
1090 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 if (val && type != MEM_TYPE_NON_LISP)
1092 mem_insert (val, (char *) val + nbytes, type);
1093 #endif
1095 MALLOC_UNBLOCK_INPUT;
1096 if (!val && nbytes)
1097 memory_full ();
1099 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1100 return val;
1103 static void
1104 lisp_align_free (block)
1105 POINTER_TYPE *block;
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1110 MALLOC_BLOCK_INPUT;
1111 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113 #endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
1118 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1120 if (2 > (long) ABLOCKS_BUSY (abase))
1121 { /* All the blocks are free. */
1122 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1123 struct ablock **tem = &free_ablock;
1124 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1126 while (*tem)
1128 if (*tem >= (struct ablock *) abase && *tem < atop)
1130 i++;
1131 *tem = (*tem)->x.next_free;
1133 else
1134 tem = &(*tem)->x.next_free;
1136 eassert ((aligned & 1) == aligned);
1137 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1138 #ifdef USE_POSIX_MEMALIGN
1139 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1140 #endif
1141 free (ABLOCKS_BASE (abase));
1143 MALLOC_UNBLOCK_INPUT;
1146 /* Return a new buffer structure allocated from the heap with
1147 a call to lisp_malloc. */
1149 struct buffer *
1150 allocate_buffer ()
1152 struct buffer *b
1153 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1154 MEM_TYPE_BUFFER);
1155 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1156 XSETPVECTYPE (b, PVEC_BUFFER);
1157 return b;
1161 #ifndef SYSTEM_MALLOC
1163 /* Arranging to disable input signals while we're in malloc.
1165 This only works with GNU malloc. To help out systems which can't
1166 use GNU malloc, all the calls to malloc, realloc, and free
1167 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1168 pair; unfortunately, we have no idea what C library functions
1169 might call malloc, so we can't really protect them unless you're
1170 using GNU malloc. Fortunately, most of the major operating systems
1171 can use GNU malloc. */
1173 #ifndef SYNC_INPUT
1174 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1175 there's no need to block input around malloc. */
1177 #ifndef DOUG_LEA_MALLOC
1178 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1179 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1180 extern void (*__free_hook) P_ ((void *, const void *));
1181 /* Else declared in malloc.h, perhaps with an extra arg. */
1182 #endif /* DOUG_LEA_MALLOC */
1183 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1184 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1185 static void (*old_free_hook) P_ ((void*, const void*));
1187 /* This function is used as the hook for free to call. */
1189 static void
1190 emacs_blocked_free (ptr, ptr2)
1191 void *ptr;
1192 const void *ptr2;
1194 BLOCK_INPUT_ALLOC;
1196 #ifdef GC_MALLOC_CHECK
1197 if (ptr)
1199 struct mem_node *m;
1201 m = mem_find (ptr);
1202 if (m == MEM_NIL || m->start != ptr)
1204 fprintf (stderr,
1205 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1206 abort ();
1208 else
1210 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1211 mem_delete (m);
1214 #endif /* GC_MALLOC_CHECK */
1216 __free_hook = old_free_hook;
1217 free (ptr);
1219 /* If we released our reserve (due to running out of memory),
1220 and we have a fair amount free once again,
1221 try to set aside another reserve in case we run out once more. */
1222 if (! NILP (Vmemory_full)
1223 /* Verify there is enough space that even with the malloc
1224 hysteresis this call won't run out again.
1225 The code here is correct as long as SPARE_MEMORY
1226 is substantially larger than the block size malloc uses. */
1227 && (bytes_used_when_full
1228 > ((bytes_used_when_reconsidered = BYTES_USED)
1229 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1230 refill_memory_reserve ();
1232 __free_hook = emacs_blocked_free;
1233 UNBLOCK_INPUT_ALLOC;
1237 /* This function is the malloc hook that Emacs uses. */
1239 static void *
1240 emacs_blocked_malloc (size, ptr)
1241 size_t size;
1242 const void *ptr;
1244 void *value;
1246 BLOCK_INPUT_ALLOC;
1247 __malloc_hook = old_malloc_hook;
1248 #ifdef DOUG_LEA_MALLOC
1249 /* Segfaults on my system. --lorentey */
1250 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1251 #else
1252 __malloc_extra_blocks = malloc_hysteresis;
1253 #endif
1255 value = (void *) malloc (size);
1257 #ifdef GC_MALLOC_CHECK
1259 struct mem_node *m = mem_find (value);
1260 if (m != MEM_NIL)
1262 fprintf (stderr, "Malloc returned %p which is already in use\n",
1263 value);
1264 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1265 m->start, m->end, (char *) m->end - (char *) m->start,
1266 m->type);
1267 abort ();
1270 if (!dont_register_blocks)
1272 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1273 allocated_mem_type = MEM_TYPE_NON_LISP;
1276 #endif /* GC_MALLOC_CHECK */
1278 __malloc_hook = emacs_blocked_malloc;
1279 UNBLOCK_INPUT_ALLOC;
1281 /* fprintf (stderr, "%p malloc\n", value); */
1282 return value;
1286 /* This function is the realloc hook that Emacs uses. */
1288 static void *
1289 emacs_blocked_realloc (ptr, size, ptr2)
1290 void *ptr;
1291 size_t size;
1292 const void *ptr2;
1294 void *value;
1296 BLOCK_INPUT_ALLOC;
1297 __realloc_hook = old_realloc_hook;
1299 #ifdef GC_MALLOC_CHECK
1300 if (ptr)
1302 struct mem_node *m = mem_find (ptr);
1303 if (m == MEM_NIL || m->start != ptr)
1305 fprintf (stderr,
1306 "Realloc of %p which wasn't allocated with malloc\n",
1307 ptr);
1308 abort ();
1311 mem_delete (m);
1314 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316 /* Prevent malloc from registering blocks. */
1317 dont_register_blocks = 1;
1318 #endif /* GC_MALLOC_CHECK */
1320 value = (void *) realloc (ptr, size);
1322 #ifdef GC_MALLOC_CHECK
1323 dont_register_blocks = 0;
1326 struct mem_node *m = mem_find (value);
1327 if (m != MEM_NIL)
1329 fprintf (stderr, "Realloc returns memory that is already in use\n");
1330 abort ();
1333 /* Can't handle zero size regions in the red-black tree. */
1334 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1337 /* fprintf (stderr, "%p <- realloc\n", value); */
1338 #endif /* GC_MALLOC_CHECK */
1340 __realloc_hook = emacs_blocked_realloc;
1341 UNBLOCK_INPUT_ALLOC;
1343 return value;
1347 #ifdef HAVE_GTK_AND_PTHREAD
1348 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1349 normal malloc. Some thread implementations need this as they call
1350 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1351 calls malloc because it is the first call, and we have an endless loop. */
1353 void
1354 reset_malloc_hooks ()
1356 __free_hook = old_free_hook;
1357 __malloc_hook = old_malloc_hook;
1358 __realloc_hook = old_realloc_hook;
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1363 /* Called from main to set up malloc to use our hooks. */
1365 void
1366 uninterrupt_malloc ()
1368 #ifdef HAVE_GTK_AND_PTHREAD
1369 #ifdef DOUG_LEA_MALLOC
1370 pthread_mutexattr_t attr;
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #else /* !DOUG_LEA_MALLOC */
1378 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1379 and the bundled gmalloc.c doesn't require it. */
1380 pthread_mutex_init (&alloc_mutex, NULL);
1381 #endif /* !DOUG_LEA_MALLOC */
1382 #endif /* HAVE_GTK_AND_PTHREAD */
1384 if (__free_hook != emacs_blocked_free)
1385 old_free_hook = __free_hook;
1386 __free_hook = emacs_blocked_free;
1388 if (__malloc_hook != emacs_blocked_malloc)
1389 old_malloc_hook = __malloc_hook;
1390 __malloc_hook = emacs_blocked_malloc;
1392 if (__realloc_hook != emacs_blocked_realloc)
1393 old_realloc_hook = __realloc_hook;
1394 __realloc_hook = emacs_blocked_realloc;
1397 #endif /* not SYNC_INPUT */
1398 #endif /* not SYSTEM_MALLOC */
1402 /***********************************************************************
1403 Interval Allocation
1404 ***********************************************************************/
1406 /* Number of intervals allocated in an interval_block structure.
1407 The 1020 is 1024 minus malloc overhead. */
1409 #define INTERVAL_BLOCK_SIZE \
1410 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1412 /* Intervals are allocated in chunks in form of an interval_block
1413 structure. */
1415 struct interval_block
1417 /* Place `intervals' first, to preserve alignment. */
1418 struct interval intervals[INTERVAL_BLOCK_SIZE];
1419 struct interval_block *next;
1422 /* Current interval block. Its `next' pointer points to older
1423 blocks. */
1425 static struct interval_block *interval_block;
1427 /* Index in interval_block above of the next unused interval
1428 structure. */
1430 static int interval_block_index;
1432 /* Number of free and live intervals. */
1434 static int total_free_intervals, total_intervals;
1436 /* List of free intervals. */
1438 INTERVAL interval_free_list;
1440 /* Total number of interval blocks now in use. */
1442 static int n_interval_blocks;
1445 /* Initialize interval allocation. */
1447 static void
1448 init_intervals ()
1450 interval_block = NULL;
1451 interval_block_index = INTERVAL_BLOCK_SIZE;
1452 interval_free_list = 0;
1453 n_interval_blocks = 0;
1457 /* Return a new interval. */
1459 INTERVAL
1460 make_interval ()
1462 INTERVAL val;
1464 /* eassert (!handling_signal); */
1466 MALLOC_BLOCK_INPUT;
1468 if (interval_free_list)
1470 val = interval_free_list;
1471 interval_free_list = INTERVAL_PARENT (interval_free_list);
1473 else
1475 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1477 register struct interval_block *newi;
1479 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1480 MEM_TYPE_NON_LISP);
1482 newi->next = interval_block;
1483 interval_block = newi;
1484 interval_block_index = 0;
1485 n_interval_blocks++;
1487 val = &interval_block->intervals[interval_block_index++];
1490 MALLOC_UNBLOCK_INPUT;
1492 consing_since_gc += sizeof (struct interval);
1493 intervals_consed++;
1494 RESET_INTERVAL (val);
1495 val->gcmarkbit = 0;
1496 return val;
1500 /* Mark Lisp objects in interval I. */
1502 static void
1503 mark_interval (i, dummy)
1504 register INTERVAL i;
1505 Lisp_Object dummy;
1507 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1508 i->gcmarkbit = 1;
1509 mark_object (i->plist);
1513 /* Mark the interval tree rooted in TREE. Don't call this directly;
1514 use the macro MARK_INTERVAL_TREE instead. */
1516 static void
1517 mark_interval_tree (tree)
1518 register INTERVAL tree;
1520 /* No need to test if this tree has been marked already; this
1521 function is always called through the MARK_INTERVAL_TREE macro,
1522 which takes care of that. */
1524 traverse_intervals_noorder (tree, mark_interval, Qnil);
1528 /* Mark the interval tree rooted in I. */
1530 #define MARK_INTERVAL_TREE(i) \
1531 do { \
1532 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1533 mark_interval_tree (i); \
1534 } while (0)
1537 #define UNMARK_BALANCE_INTERVALS(i) \
1538 do { \
1539 if (! NULL_INTERVAL_P (i)) \
1540 (i) = balance_intervals (i); \
1541 } while (0)
1544 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1545 can't create number objects in macros. */
1546 #ifndef make_number
1547 Lisp_Object
1548 make_number (n)
1549 EMACS_INT n;
1551 Lisp_Object obj;
1552 obj.s.val = n;
1553 obj.s.type = Lisp_Int;
1554 return obj;
1556 #endif
1558 /***********************************************************************
1559 String Allocation
1560 ***********************************************************************/
1562 /* Lisp_Strings are allocated in string_block structures. When a new
1563 string_block is allocated, all the Lisp_Strings it contains are
1564 added to a free-list string_free_list. When a new Lisp_String is
1565 needed, it is taken from that list. During the sweep phase of GC,
1566 string_blocks that are entirely free are freed, except two which
1567 we keep.
1569 String data is allocated from sblock structures. Strings larger
1570 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1571 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1573 Sblocks consist internally of sdata structures, one for each
1574 Lisp_String. The sdata structure points to the Lisp_String it
1575 belongs to. The Lisp_String points back to the `u.data' member of
1576 its sdata structure.
1578 When a Lisp_String is freed during GC, it is put back on
1579 string_free_list, and its `data' member and its sdata's `string'
1580 pointer is set to null. The size of the string is recorded in the
1581 `u.nbytes' member of the sdata. So, sdata structures that are no
1582 longer used, can be easily recognized, and it's easy to compact the
1583 sblocks of small strings which we do in compact_small_strings. */
1585 /* Size in bytes of an sblock structure used for small strings. This
1586 is 8192 minus malloc overhead. */
1588 #define SBLOCK_SIZE 8188
1590 /* Strings larger than this are considered large strings. String data
1591 for large strings is allocated from individual sblocks. */
1593 #define LARGE_STRING_BYTES 1024
1595 /* Structure describing string memory sub-allocated from an sblock.
1596 This is where the contents of Lisp strings are stored. */
1598 struct sdata
1600 /* Back-pointer to the string this sdata belongs to. If null, this
1601 structure is free, and the NBYTES member of the union below
1602 contains the string's byte size (the same value that STRING_BYTES
1603 would return if STRING were non-null). If non-null, STRING_BYTES
1604 (STRING) is the size of the data, and DATA contains the string's
1605 contents. */
1606 struct Lisp_String *string;
1608 #ifdef GC_CHECK_STRING_BYTES
1610 EMACS_INT nbytes;
1611 unsigned char data[1];
1613 #define SDATA_NBYTES(S) (S)->nbytes
1614 #define SDATA_DATA(S) (S)->data
1616 #else /* not GC_CHECK_STRING_BYTES */
1618 union
1620 /* When STRING in non-null. */
1621 unsigned char data[1];
1623 /* When STRING is null. */
1624 EMACS_INT nbytes;
1625 } u;
1628 #define SDATA_NBYTES(S) (S)->u.nbytes
1629 #define SDATA_DATA(S) (S)->u.data
1631 #endif /* not GC_CHECK_STRING_BYTES */
1635 /* Structure describing a block of memory which is sub-allocated to
1636 obtain string data memory for strings. Blocks for small strings
1637 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1638 as large as needed. */
1640 struct sblock
1642 /* Next in list. */
1643 struct sblock *next;
1645 /* Pointer to the next free sdata block. This points past the end
1646 of the sblock if there isn't any space left in this block. */
1647 struct sdata *next_free;
1649 /* Start of data. */
1650 struct sdata first_data;
1653 /* Number of Lisp strings in a string_block structure. The 1020 is
1654 1024 minus malloc overhead. */
1656 #define STRING_BLOCK_SIZE \
1657 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1659 /* Structure describing a block from which Lisp_String structures
1660 are allocated. */
1662 struct string_block
1664 /* Place `strings' first, to preserve alignment. */
1665 struct Lisp_String strings[STRING_BLOCK_SIZE];
1666 struct string_block *next;
1669 /* Head and tail of the list of sblock structures holding Lisp string
1670 data. We always allocate from current_sblock. The NEXT pointers
1671 in the sblock structures go from oldest_sblock to current_sblock. */
1673 static struct sblock *oldest_sblock, *current_sblock;
1675 /* List of sblocks for large strings. */
1677 static struct sblock *large_sblocks;
1679 /* List of string_block structures, and how many there are. */
1681 static struct string_block *string_blocks;
1682 static int n_string_blocks;
1684 /* Free-list of Lisp_Strings. */
1686 static struct Lisp_String *string_free_list;
1688 /* Number of live and free Lisp_Strings. */
1690 static int total_strings, total_free_strings;
1692 /* Number of bytes used by live strings. */
1694 static int total_string_size;
1696 /* Given a pointer to a Lisp_String S which is on the free-list
1697 string_free_list, return a pointer to its successor in the
1698 free-list. */
1700 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1702 /* Return a pointer to the sdata structure belonging to Lisp string S.
1703 S must be live, i.e. S->data must not be null. S->data is actually
1704 a pointer to the `u.data' member of its sdata structure; the
1705 structure starts at a constant offset in front of that. */
1707 #ifdef GC_CHECK_STRING_BYTES
1709 #define SDATA_OF_STRING(S) \
1710 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1711 - sizeof (EMACS_INT)))
1713 #else /* not GC_CHECK_STRING_BYTES */
1715 #define SDATA_OF_STRING(S) \
1716 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1718 #endif /* not GC_CHECK_STRING_BYTES */
1721 #ifdef GC_CHECK_STRING_OVERRUN
1723 /* We check for overrun in string data blocks by appending a small
1724 "cookie" after each allocated string data block, and check for the
1725 presence of this cookie during GC. */
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1728 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1729 { 0xde, 0xad, 0xbe, 0xef };
1731 #else
1732 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1733 #endif
1735 /* Value is the size of an sdata structure large enough to hold NBYTES
1736 bytes of string data. The value returned includes a terminating
1737 NUL byte, the size of the sdata structure, and padding. */
1739 #ifdef GC_CHECK_STRING_BYTES
1741 #define SDATA_SIZE(NBYTES) \
1742 ((sizeof (struct Lisp_String *) \
1743 + (NBYTES) + 1 \
1744 + sizeof (EMACS_INT) \
1745 + sizeof (EMACS_INT) - 1) \
1746 & ~(sizeof (EMACS_INT) - 1))
1748 #else /* not GC_CHECK_STRING_BYTES */
1750 #define SDATA_SIZE(NBYTES) \
1751 ((sizeof (struct Lisp_String *) \
1752 + (NBYTES) + 1 \
1753 + sizeof (EMACS_INT) - 1) \
1754 & ~(sizeof (EMACS_INT) - 1))
1756 #endif /* not GC_CHECK_STRING_BYTES */
1758 /* Extra bytes to allocate for each string. */
1760 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1762 /* Initialize string allocation. Called from init_alloc_once. */
1764 static void
1765 init_strings ()
1767 total_strings = total_free_strings = total_string_size = 0;
1768 oldest_sblock = current_sblock = large_sblocks = NULL;
1769 string_blocks = NULL;
1770 n_string_blocks = 0;
1771 string_free_list = NULL;
1772 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1773 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1777 #ifdef GC_CHECK_STRING_BYTES
1779 static int check_string_bytes_count;
1781 static void check_string_bytes P_ ((int));
1782 static void check_sblock P_ ((struct sblock *));
1784 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1787 /* Like GC_STRING_BYTES, but with debugging check. */
1790 string_bytes (s)
1791 struct Lisp_String *s;
1793 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1794 if (!PURE_POINTER_P (s)
1795 && s->data
1796 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1797 abort ();
1798 return nbytes;
1801 /* Check validity of Lisp strings' string_bytes member in B. */
1803 static void
1804 check_sblock (b)
1805 struct sblock *b;
1807 struct sdata *from, *end, *from_end;
1809 end = b->next_free;
1811 for (from = &b->first_data; from < end; from = from_end)
1813 /* Compute the next FROM here because copying below may
1814 overwrite data we need to compute it. */
1815 int nbytes;
1817 /* Check that the string size recorded in the string is the
1818 same as the one recorded in the sdata structure. */
1819 if (from->string)
1820 CHECK_STRING_BYTES (from->string);
1822 if (from->string)
1823 nbytes = GC_STRING_BYTES (from->string);
1824 else
1825 nbytes = SDATA_NBYTES (from);
1827 nbytes = SDATA_SIZE (nbytes);
1828 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1833 /* Check validity of Lisp strings' string_bytes member. ALL_P
1834 non-zero means check all strings, otherwise check only most
1835 recently allocated strings. Used for hunting a bug. */
1837 static void
1838 check_string_bytes (all_p)
1839 int all_p;
1841 if (all_p)
1843 struct sblock *b;
1845 for (b = large_sblocks; b; b = b->next)
1847 struct Lisp_String *s = b->first_data.string;
1848 if (s)
1849 CHECK_STRING_BYTES (s);
1852 for (b = oldest_sblock; b; b = b->next)
1853 check_sblock (b);
1855 else
1856 check_sblock (current_sblock);
1859 #endif /* GC_CHECK_STRING_BYTES */
1861 #ifdef GC_CHECK_STRING_FREE_LIST
1863 /* Walk through the string free list looking for bogus next pointers.
1864 This may catch buffer overrun from a previous string. */
1866 static void
1867 check_string_free_list ()
1869 struct Lisp_String *s;
1871 /* Pop a Lisp_String off the free-list. */
1872 s = string_free_list;
1873 while (s != NULL)
1875 if ((unsigned)s < 1024)
1876 abort();
1877 s = NEXT_FREE_LISP_STRING (s);
1880 #else
1881 #define check_string_free_list()
1882 #endif
1884 /* Return a new Lisp_String. */
1886 static struct Lisp_String *
1887 allocate_string ()
1889 struct Lisp_String *s;
1891 /* eassert (!handling_signal); */
1893 MALLOC_BLOCK_INPUT;
1895 /* If the free-list is empty, allocate a new string_block, and
1896 add all the Lisp_Strings in it to the free-list. */
1897 if (string_free_list == NULL)
1899 struct string_block *b;
1900 int i;
1902 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1903 bzero (b, sizeof *b);
1904 b->next = string_blocks;
1905 string_blocks = b;
1906 ++n_string_blocks;
1908 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1910 s = b->strings + i;
1911 NEXT_FREE_LISP_STRING (s) = string_free_list;
1912 string_free_list = s;
1915 total_free_strings += STRING_BLOCK_SIZE;
1918 check_string_free_list ();
1920 /* Pop a Lisp_String off the free-list. */
1921 s = string_free_list;
1922 string_free_list = NEXT_FREE_LISP_STRING (s);
1924 MALLOC_UNBLOCK_INPUT;
1926 /* Probably not strictly necessary, but play it safe. */
1927 bzero (s, sizeof *s);
1929 --total_free_strings;
1930 ++total_strings;
1931 ++strings_consed;
1932 consing_since_gc += sizeof *s;
1934 #ifdef GC_CHECK_STRING_BYTES
1935 if (!noninteractive)
1937 if (++check_string_bytes_count == 200)
1939 check_string_bytes_count = 0;
1940 check_string_bytes (1);
1942 else
1943 check_string_bytes (0);
1945 #endif /* GC_CHECK_STRING_BYTES */
1947 return s;
1951 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1952 plus a NUL byte at the end. Allocate an sdata structure for S, and
1953 set S->data to its `u.data' member. Store a NUL byte at the end of
1954 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1955 S->data if it was initially non-null. */
1957 void
1958 allocate_string_data (s, nchars, nbytes)
1959 struct Lisp_String *s;
1960 int nchars, nbytes;
1962 struct sdata *data, *old_data;
1963 struct sblock *b;
1964 int needed, old_nbytes;
1966 /* Determine the number of bytes needed to store NBYTES bytes
1967 of string data. */
1968 needed = SDATA_SIZE (nbytes);
1969 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1970 old_nbytes = GC_STRING_BYTES (s);
1972 MALLOC_BLOCK_INPUT;
1974 if (nbytes > LARGE_STRING_BYTES)
1976 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1978 #ifdef DOUG_LEA_MALLOC
1979 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1980 because mapped region contents are not preserved in
1981 a dumped Emacs.
1983 In case you think of allowing it in a dumped Emacs at the
1984 cost of not being able to re-dump, there's another reason:
1985 mmap'ed data typically have an address towards the top of the
1986 address space, which won't fit into an EMACS_INT (at least on
1987 32-bit systems with the current tagging scheme). --fx */
1988 mallopt (M_MMAP_MAX, 0);
1989 #endif
1991 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1993 #ifdef DOUG_LEA_MALLOC
1994 /* Back to a reasonable maximum of mmap'ed areas. */
1995 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1996 #endif
1998 b->next_free = &b->first_data;
1999 b->first_data.string = NULL;
2000 b->next = large_sblocks;
2001 large_sblocks = b;
2003 else if (current_sblock == NULL
2004 || (((char *) current_sblock + SBLOCK_SIZE
2005 - (char *) current_sblock->next_free)
2006 < (needed + GC_STRING_EXTRA)))
2008 /* Not enough room in the current sblock. */
2009 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2010 b->next_free = &b->first_data;
2011 b->first_data.string = NULL;
2012 b->next = NULL;
2014 if (current_sblock)
2015 current_sblock->next = b;
2016 else
2017 oldest_sblock = b;
2018 current_sblock = b;
2020 else
2021 b = current_sblock;
2023 data = b->next_free;
2024 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2026 MALLOC_UNBLOCK_INPUT;
2028 data->string = s;
2029 s->data = SDATA_DATA (data);
2030 #ifdef GC_CHECK_STRING_BYTES
2031 SDATA_NBYTES (data) = nbytes;
2032 #endif
2033 s->size = nchars;
2034 s->size_byte = nbytes;
2035 s->data[nbytes] = '\0';
2036 #ifdef GC_CHECK_STRING_OVERRUN
2037 bcopy (string_overrun_cookie, (char *) data + needed,
2038 GC_STRING_OVERRUN_COOKIE_SIZE);
2039 #endif
2041 /* If S had already data assigned, mark that as free by setting its
2042 string back-pointer to null, and recording the size of the data
2043 in it. */
2044 if (old_data)
2046 SDATA_NBYTES (old_data) = old_nbytes;
2047 old_data->string = NULL;
2050 consing_since_gc += needed;
2054 /* Sweep and compact strings. */
2056 static void
2057 sweep_strings ()
2059 struct string_block *b, *next;
2060 struct string_block *live_blocks = NULL;
2062 string_free_list = NULL;
2063 total_strings = total_free_strings = 0;
2064 total_string_size = 0;
2066 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2067 for (b = string_blocks; b; b = next)
2069 int i, nfree = 0;
2070 struct Lisp_String *free_list_before = string_free_list;
2072 next = b->next;
2074 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076 struct Lisp_String *s = b->strings + i;
2078 if (s->data)
2080 /* String was not on free-list before. */
2081 if (STRING_MARKED_P (s))
2083 /* String is live; unmark it and its intervals. */
2084 UNMARK_STRING (s);
2086 if (!NULL_INTERVAL_P (s->intervals))
2087 UNMARK_BALANCE_INTERVALS (s->intervals);
2089 ++total_strings;
2090 total_string_size += STRING_BYTES (s);
2092 else
2094 /* String is dead. Put it on the free-list. */
2095 struct sdata *data = SDATA_OF_STRING (s);
2097 /* Save the size of S in its sdata so that we know
2098 how large that is. Reset the sdata's string
2099 back-pointer so that we know it's free. */
2100 #ifdef GC_CHECK_STRING_BYTES
2101 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2102 abort ();
2103 #else
2104 data->u.nbytes = GC_STRING_BYTES (s);
2105 #endif
2106 data->string = NULL;
2108 /* Reset the strings's `data' member so that we
2109 know it's free. */
2110 s->data = NULL;
2112 /* Put the string on the free-list. */
2113 NEXT_FREE_LISP_STRING (s) = string_free_list;
2114 string_free_list = s;
2115 ++nfree;
2118 else
2120 /* S was on the free-list before. Put it there again. */
2121 NEXT_FREE_LISP_STRING (s) = string_free_list;
2122 string_free_list = s;
2123 ++nfree;
2127 /* Free blocks that contain free Lisp_Strings only, except
2128 the first two of them. */
2129 if (nfree == STRING_BLOCK_SIZE
2130 && total_free_strings > STRING_BLOCK_SIZE)
2132 lisp_free (b);
2133 --n_string_blocks;
2134 string_free_list = free_list_before;
2136 else
2138 total_free_strings += nfree;
2139 b->next = live_blocks;
2140 live_blocks = b;
2144 check_string_free_list ();
2146 string_blocks = live_blocks;
2147 free_large_strings ();
2148 compact_small_strings ();
2150 check_string_free_list ();
2154 /* Free dead large strings. */
2156 static void
2157 free_large_strings ()
2159 struct sblock *b, *next;
2160 struct sblock *live_blocks = NULL;
2162 for (b = large_sblocks; b; b = next)
2164 next = b->next;
2166 if (b->first_data.string == NULL)
2167 lisp_free (b);
2168 else
2170 b->next = live_blocks;
2171 live_blocks = b;
2175 large_sblocks = live_blocks;
2179 /* Compact data of small strings. Free sblocks that don't contain
2180 data of live strings after compaction. */
2182 static void
2183 compact_small_strings ()
2185 struct sblock *b, *tb, *next;
2186 struct sdata *from, *to, *end, *tb_end;
2187 struct sdata *to_end, *from_end;
2189 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2190 to, and TB_END is the end of TB. */
2191 tb = oldest_sblock;
2192 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2193 to = &tb->first_data;
2195 /* Step through the blocks from the oldest to the youngest. We
2196 expect that old blocks will stabilize over time, so that less
2197 copying will happen this way. */
2198 for (b = oldest_sblock; b; b = b->next)
2200 end = b->next_free;
2201 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203 for (from = &b->first_data; from < end; from = from_end)
2205 /* Compute the next FROM here because copying below may
2206 overwrite data we need to compute it. */
2207 int nbytes;
2209 #ifdef GC_CHECK_STRING_BYTES
2210 /* Check that the string size recorded in the string is the
2211 same as the one recorded in the sdata structure. */
2212 if (from->string
2213 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2214 abort ();
2215 #endif /* GC_CHECK_STRING_BYTES */
2217 if (from->string)
2218 nbytes = GC_STRING_BYTES (from->string);
2219 else
2220 nbytes = SDATA_NBYTES (from);
2222 if (nbytes > LARGE_STRING_BYTES)
2223 abort ();
2225 nbytes = SDATA_SIZE (nbytes);
2226 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228 #ifdef GC_CHECK_STRING_OVERRUN
2229 if (bcmp (string_overrun_cookie,
2230 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2231 GC_STRING_OVERRUN_COOKIE_SIZE))
2232 abort ();
2233 #endif
2235 /* FROM->string non-null means it's alive. Copy its data. */
2236 if (from->string)
2238 /* If TB is full, proceed with the next sblock. */
2239 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2240 if (to_end > tb_end)
2242 tb->next_free = to;
2243 tb = tb->next;
2244 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2245 to = &tb->first_data;
2246 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2249 /* Copy, and update the string's `data' pointer. */
2250 if (from != to)
2252 xassert (tb != b || to <= from);
2253 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2254 to->string->data = SDATA_DATA (to);
2257 /* Advance past the sdata we copied to. */
2258 to = to_end;
2263 /* The rest of the sblocks following TB don't contain live data, so
2264 we can free them. */
2265 for (b = tb->next; b; b = next)
2267 next = b->next;
2268 lisp_free (b);
2271 tb->next_free = to;
2272 tb->next = NULL;
2273 current_sblock = tb;
2277 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2278 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2279 LENGTH must be an integer.
2280 INIT must be an integer that represents a character. */)
2281 (length, init)
2282 Lisp_Object length, init;
2284 register Lisp_Object val;
2285 register unsigned char *p, *end;
2286 int c, nbytes;
2288 CHECK_NATNUM (length);
2289 CHECK_NUMBER (init);
2291 c = XINT (init);
2292 if (ASCII_CHAR_P (c))
2294 nbytes = XINT (length);
2295 val = make_uninit_string (nbytes);
2296 p = SDATA (val);
2297 end = p + SCHARS (val);
2298 while (p != end)
2299 *p++ = c;
2301 else
2303 unsigned char str[MAX_MULTIBYTE_LENGTH];
2304 int len = CHAR_STRING (c, str);
2306 nbytes = len * XINT (length);
2307 val = make_uninit_multibyte_string (XINT (length), nbytes);
2308 p = SDATA (val);
2309 end = p + nbytes;
2310 while (p != end)
2312 bcopy (str, p, len);
2313 p += len;
2317 *p = 0;
2318 return val;
2322 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2323 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2324 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2325 (length, init)
2326 Lisp_Object length, init;
2328 register Lisp_Object val;
2329 struct Lisp_Bool_Vector *p;
2330 int real_init, i;
2331 int length_in_chars, length_in_elts, bits_per_value;
2333 CHECK_NATNUM (length);
2335 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2338 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2341 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2342 slot `size' of the struct Lisp_Bool_Vector. */
2343 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 /* Get rid of any bits that would cause confusion. */
2346 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2347 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2348 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2350 p = XBOOL_VECTOR (val);
2351 p->size = XFASTINT (length);
2353 real_init = (NILP (init) ? 0 : -1);
2354 for (i = 0; i < length_in_chars ; i++)
2355 p->data[i] = real_init;
2357 /* Clear the extraneous bits in the last byte. */
2358 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2359 p->data[length_in_chars - 1]
2360 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2362 return val;
2366 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2367 of characters from the contents. This string may be unibyte or
2368 multibyte, depending on the contents. */
2370 Lisp_Object
2371 make_string (contents, nbytes)
2372 const char *contents;
2373 int nbytes;
2375 register Lisp_Object val;
2376 int nchars, multibyte_nbytes;
2378 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2379 if (nbytes == nchars || nbytes != multibyte_nbytes)
2380 /* CONTENTS contains no multibyte sequences or contains an invalid
2381 multibyte sequence. We must make unibyte string. */
2382 val = make_unibyte_string (contents, nbytes);
2383 else
2384 val = make_multibyte_string (contents, nchars, nbytes);
2385 return val;
2389 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2391 Lisp_Object
2392 make_unibyte_string (contents, length)
2393 const char *contents;
2394 int length;
2396 register Lisp_Object val;
2397 val = make_uninit_string (length);
2398 bcopy (contents, SDATA (val), length);
2399 STRING_SET_UNIBYTE (val);
2400 return val;
2404 /* Make a multibyte string from NCHARS characters occupying NBYTES
2405 bytes at CONTENTS. */
2407 Lisp_Object
2408 make_multibyte_string (contents, nchars, nbytes)
2409 const char *contents;
2410 int nchars, nbytes;
2412 register Lisp_Object val;
2413 val = make_uninit_multibyte_string (nchars, nbytes);
2414 bcopy (contents, SDATA (val), nbytes);
2415 return val;
2419 /* Make a string from NCHARS characters occupying NBYTES bytes at
2420 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2422 Lisp_Object
2423 make_string_from_bytes (contents, nchars, nbytes)
2424 const char *contents;
2425 int nchars, nbytes;
2427 register Lisp_Object val;
2428 val = make_uninit_multibyte_string (nchars, nbytes);
2429 bcopy (contents, SDATA (val), nbytes);
2430 if (SBYTES (val) == SCHARS (val))
2431 STRING_SET_UNIBYTE (val);
2432 return val;
2436 /* Make a string from NCHARS characters occupying NBYTES bytes at
2437 CONTENTS. The argument MULTIBYTE controls whether to label the
2438 string as multibyte. If NCHARS is negative, it counts the number of
2439 characters by itself. */
2441 Lisp_Object
2442 make_specified_string (contents, nchars, nbytes, multibyte)
2443 const char *contents;
2444 int nchars, nbytes;
2445 int multibyte;
2447 register Lisp_Object val;
2449 if (nchars < 0)
2451 if (multibyte)
2452 nchars = multibyte_chars_in_text (contents, nbytes);
2453 else
2454 nchars = nbytes;
2456 val = make_uninit_multibyte_string (nchars, nbytes);
2457 bcopy (contents, SDATA (val), nbytes);
2458 if (!multibyte)
2459 STRING_SET_UNIBYTE (val);
2460 return val;
2464 /* Make a string from the data at STR, treating it as multibyte if the
2465 data warrants. */
2467 Lisp_Object
2468 build_string (str)
2469 const char *str;
2471 return make_string (str, strlen (str));
2475 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2476 occupying LENGTH bytes. */
2478 Lisp_Object
2479 make_uninit_string (length)
2480 int length;
2482 Lisp_Object val;
2484 if (!length)
2485 return empty_unibyte_string;
2486 val = make_uninit_multibyte_string (length, length);
2487 STRING_SET_UNIBYTE (val);
2488 return val;
2492 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2493 which occupy NBYTES bytes. */
2495 Lisp_Object
2496 make_uninit_multibyte_string (nchars, nbytes)
2497 int nchars, nbytes;
2499 Lisp_Object string;
2500 struct Lisp_String *s;
2502 if (nchars < 0)
2503 abort ();
2504 if (!nbytes)
2505 return empty_multibyte_string;
2507 s = allocate_string ();
2508 allocate_string_data (s, nchars, nbytes);
2509 XSETSTRING (string, s);
2510 string_chars_consed += nbytes;
2511 return string;
2516 /***********************************************************************
2517 Float Allocation
2518 ***********************************************************************/
2520 /* We store float cells inside of float_blocks, allocating a new
2521 float_block with malloc whenever necessary. Float cells reclaimed
2522 by GC are put on a free list to be reallocated before allocating
2523 any new float cells from the latest float_block. */
2525 #define FLOAT_BLOCK_SIZE \
2526 (((BLOCK_BYTES - sizeof (struct float_block *) \
2527 /* The compiler might add padding at the end. */ \
2528 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2529 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2531 #define GETMARKBIT(block,n) \
2532 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2533 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2534 & 1)
2536 #define SETMARKBIT(block,n) \
2537 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2538 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2540 #define UNSETMARKBIT(block,n) \
2541 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2542 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2544 #define FLOAT_BLOCK(fptr) \
2545 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2547 #define FLOAT_INDEX(fptr) \
2548 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2550 struct float_block
2552 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2553 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2554 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2555 struct float_block *next;
2558 #define FLOAT_MARKED_P(fptr) \
2559 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2561 #define FLOAT_MARK(fptr) \
2562 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2564 #define FLOAT_UNMARK(fptr) \
2565 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2567 /* Current float_block. */
2569 struct float_block *float_block;
2571 /* Index of first unused Lisp_Float in the current float_block. */
2573 int float_block_index;
2575 /* Total number of float blocks now in use. */
2577 int n_float_blocks;
2579 /* Free-list of Lisp_Floats. */
2581 struct Lisp_Float *float_free_list;
2584 /* Initialize float allocation. */
2586 static void
2587 init_float ()
2589 float_block = NULL;
2590 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2591 float_free_list = 0;
2592 n_float_blocks = 0;
2596 /* Explicitly free a float cell by putting it on the free-list. */
2598 static void
2599 free_float (ptr)
2600 struct Lisp_Float *ptr;
2602 ptr->u.chain = float_free_list;
2603 float_free_list = ptr;
2607 /* Return a new float object with value FLOAT_VALUE. */
2609 Lisp_Object
2610 make_float (float_value)
2611 double float_value;
2613 register Lisp_Object val;
2615 /* eassert (!handling_signal); */
2617 MALLOC_BLOCK_INPUT;
2619 if (float_free_list)
2621 /* We use the data field for chaining the free list
2622 so that we won't use the same field that has the mark bit. */
2623 XSETFLOAT (val, float_free_list);
2624 float_free_list = float_free_list->u.chain;
2626 else
2628 if (float_block_index == FLOAT_BLOCK_SIZE)
2630 register struct float_block *new;
2632 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2633 MEM_TYPE_FLOAT);
2634 new->next = float_block;
2635 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2636 float_block = new;
2637 float_block_index = 0;
2638 n_float_blocks++;
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2644 MALLOC_UNBLOCK_INPUT;
2646 XFLOAT_DATA (val) = float_value;
2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2655 /***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2659 /* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
2662 any new cons cells from the latest cons_block. */
2664 #define CONS_BLOCK_SIZE \
2665 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2666 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2668 #define CONS_BLOCK(fptr) \
2669 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2671 #define CONS_INDEX(fptr) \
2672 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2674 struct cons_block
2676 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2677 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2678 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2679 struct cons_block *next;
2682 #define CONS_MARKED_P(fptr) \
2683 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685 #define CONS_MARK(fptr) \
2686 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688 #define CONS_UNMARK(fptr) \
2689 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2691 /* Current cons_block. */
2693 struct cons_block *cons_block;
2695 /* Index of first unused Lisp_Cons in the current block. */
2697 int cons_block_index;
2699 /* Free-list of Lisp_Cons structures. */
2701 struct Lisp_Cons *cons_free_list;
2703 /* Total number of cons blocks now in use. */
2705 static int n_cons_blocks;
2708 /* Initialize cons allocation. */
2710 static void
2711 init_cons ()
2713 cons_block = NULL;
2714 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2715 cons_free_list = 0;
2716 n_cons_blocks = 0;
2720 /* Explicitly free a cons cell by putting it on the free-list. */
2722 void
2723 free_cons (ptr)
2724 struct Lisp_Cons *ptr;
2726 ptr->u.chain = cons_free_list;
2727 #if GC_MARK_STACK
2728 ptr->car = Vdead;
2729 #endif
2730 cons_free_list = ptr;
2733 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2735 (car, cdr)
2736 Lisp_Object car, cdr;
2738 register Lisp_Object val;
2740 /* eassert (!handling_signal); */
2742 MALLOC_BLOCK_INPUT;
2744 if (cons_free_list)
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2751 else
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2768 MALLOC_UNBLOCK_INPUT;
2770 XSETCAR (val, car);
2771 XSETCDR (val, cdr);
2772 eassert (!CONS_MARKED_P (XCONS (val)));
2773 consing_since_gc += sizeof (struct Lisp_Cons);
2774 cons_cells_consed++;
2775 return val;
2778 /* Get an error now if there's any junk in the cons free list. */
2779 void
2780 check_cons_list ()
2782 #ifdef GC_CHECK_CONS_LIST
2783 struct Lisp_Cons *tail = cons_free_list;
2785 while (tail)
2786 tail = tail->u.chain;
2787 #endif
2790 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2792 Lisp_Object
2793 list1 (arg1)
2794 Lisp_Object arg1;
2796 return Fcons (arg1, Qnil);
2799 Lisp_Object
2800 list2 (arg1, arg2)
2801 Lisp_Object arg1, arg2;
2803 return Fcons (arg1, Fcons (arg2, Qnil));
2807 Lisp_Object
2808 list3 (arg1, arg2, arg3)
2809 Lisp_Object arg1, arg2, arg3;
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2815 Lisp_Object
2816 list4 (arg1, arg2, arg3, arg4)
2817 Lisp_Object arg1, arg2, arg3, arg4;
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2823 Lisp_Object
2824 list5 (arg1, arg2, arg3, arg4, arg5)
2825 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2827 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2828 Fcons (arg5, Qnil)))));
2832 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2833 doc: /* Return a newly created list with specified arguments as elements.
2834 Any number of arguments, even zero arguments, are allowed.
2835 usage: (list &rest OBJECTS) */)
2836 (nargs, args)
2837 int nargs;
2838 register Lisp_Object *args;
2840 register Lisp_Object val;
2841 val = Qnil;
2843 while (nargs > 0)
2845 nargs--;
2846 val = Fcons (args[nargs], val);
2848 return val;
2852 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2853 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2854 (length, init)
2855 register Lisp_Object length, init;
2857 register Lisp_Object val;
2858 register int size;
2860 CHECK_NATNUM (length);
2861 size = XFASTINT (length);
2863 val = Qnil;
2864 while (size > 0)
2866 val = Fcons (init, val);
2867 --size;
2869 if (size > 0)
2871 val = Fcons (init, val);
2872 --size;
2874 if (size > 0)
2876 val = Fcons (init, val);
2877 --size;
2879 if (size > 0)
2881 val = Fcons (init, val);
2882 --size;
2884 if (size > 0)
2886 val = Fcons (init, val);
2887 --size;
2893 QUIT;
2896 return val;
2901 /***********************************************************************
2902 Vector Allocation
2903 ***********************************************************************/
2905 /* Singly-linked list of all vectors. */
2907 static struct Lisp_Vector *all_vectors;
2909 /* Total number of vector-like objects now in use. */
2911 static int n_vectors;
2914 /* Value is a pointer to a newly allocated Lisp_Vector structure
2915 with room for LEN Lisp_Objects. */
2917 static struct Lisp_Vector *
2918 allocate_vectorlike (len)
2919 EMACS_INT len;
2921 struct Lisp_Vector *p;
2922 size_t nbytes;
2924 MALLOC_BLOCK_INPUT;
2926 #ifdef DOUG_LEA_MALLOC
2927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2928 because mapped region contents are not preserved in
2929 a dumped Emacs. */
2930 mallopt (M_MMAP_MAX, 0);
2931 #endif
2933 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2934 /* eassert (!handling_signal); */
2936 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2937 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2939 #ifdef DOUG_LEA_MALLOC
2940 /* Back to a reasonable maximum of mmap'ed areas. */
2941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2942 #endif
2944 consing_since_gc += nbytes;
2945 vector_cells_consed += len;
2947 p->next = all_vectors;
2948 all_vectors = p;
2950 MALLOC_UNBLOCK_INPUT;
2952 ++n_vectors;
2953 return p;
2957 /* Allocate a vector with NSLOTS slots. */
2959 struct Lisp_Vector *
2960 allocate_vector (nslots)
2961 EMACS_INT nslots;
2963 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2964 v->size = nslots;
2965 return v;
2969 /* Allocate other vector-like structures. */
2971 struct Lisp_Vector *
2972 allocate_pseudovector (memlen, lisplen, tag)
2973 int memlen, lisplen;
2974 EMACS_INT tag;
2976 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2977 EMACS_INT i;
2979 /* Only the first lisplen slots will be traced normally by the GC. */
2980 v->size = lisplen;
2981 for (i = 0; i < lisplen; ++i)
2982 v->contents[i] = Qnil;
2984 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2985 return v;
2988 struct Lisp_Hash_Table *
2989 allocate_hash_table (void)
2991 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2995 struct window *
2996 allocate_window ()
2998 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3002 struct terminal *
3003 allocate_terminal ()
3005 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3006 next_terminal, PVEC_TERMINAL);
3007 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3008 bzero (&(t->next_terminal),
3009 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3011 return t;
3014 struct frame *
3015 allocate_frame ()
3017 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3018 face_cache, PVEC_FRAME);
3019 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3020 bzero (&(f->face_cache),
3021 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3022 return f;
3026 struct Lisp_Process *
3027 allocate_process ()
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3033 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3034 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3035 See also the function `vector'. */)
3036 (length, init)
3037 register Lisp_Object length, init;
3039 Lisp_Object vector;
3040 register EMACS_INT sizei;
3041 register int index;
3042 register struct Lisp_Vector *p;
3044 CHECK_NATNUM (length);
3045 sizei = XFASTINT (length);
3047 p = allocate_vector (sizei);
3048 for (index = 0; index < sizei; index++)
3049 p->contents[index] = init;
3051 XSETVECTOR (vector, p);
3052 return vector;
3056 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3057 doc: /* Return a newly created vector with specified arguments as elements.
3058 Any number of arguments, even zero arguments, are allowed.
3059 usage: (vector &rest OBJECTS) */)
3060 (nargs, args)
3061 register int nargs;
3062 Lisp_Object *args;
3064 register Lisp_Object len, val;
3065 register int index;
3066 register struct Lisp_Vector *p;
3068 XSETFASTINT (len, nargs);
3069 val = Fmake_vector (len, Qnil);
3070 p = XVECTOR (val);
3071 for (index = 0; index < nargs; index++)
3072 p->contents[index] = args[index];
3073 return val;
3077 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3078 doc: /* Create a byte-code object with specified arguments as elements.
3079 The arguments should be the arglist, bytecode-string, constant vector,
3080 stack size, (optional) doc string, and (optional) interactive spec.
3081 The first four arguments are required; at most six have any
3082 significance.
3083 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3084 (nargs, args)
3085 register int nargs;
3086 Lisp_Object *args;
3088 register Lisp_Object len, val;
3089 register int index;
3090 register struct Lisp_Vector *p;
3092 XSETFASTINT (len, nargs);
3093 if (!NILP (Vpurify_flag))
3094 val = make_pure_vector ((EMACS_INT) nargs);
3095 else
3096 val = Fmake_vector (len, Qnil);
3098 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3099 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3100 earlier because they produced a raw 8-bit string for byte-code
3101 and now such a byte-code string is loaded as multibyte while
3102 raw 8-bit characters converted to multibyte form. Thus, now we
3103 must convert them back to the original unibyte form. */
3104 args[1] = Fstring_as_unibyte (args[1]);
3106 p = XVECTOR (val);
3107 for (index = 0; index < nargs; index++)
3109 if (!NILP (Vpurify_flag))
3110 args[index] = Fpurecopy (args[index]);
3111 p->contents[index] = args[index];
3113 XSETPVECTYPE (p, PVEC_COMPILED);
3114 XSETCOMPILED (val, p);
3115 return val;
3120 /***********************************************************************
3121 Symbol Allocation
3122 ***********************************************************************/
3124 /* Each symbol_block is just under 1020 bytes long, since malloc
3125 really allocates in units of powers of two and uses 4 bytes for its
3126 own overhead. */
3128 #define SYMBOL_BLOCK_SIZE \
3129 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3131 struct symbol_block
3133 /* Place `symbols' first, to preserve alignment. */
3134 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3135 struct symbol_block *next;
3138 /* Current symbol block and index of first unused Lisp_Symbol
3139 structure in it. */
3141 static struct symbol_block *symbol_block;
3142 static int symbol_block_index;
3144 /* List of free symbols. */
3146 static struct Lisp_Symbol *symbol_free_list;
3148 /* Total number of symbol blocks now in use. */
3150 static int n_symbol_blocks;
3153 /* Initialize symbol allocation. */
3155 static void
3156 init_symbol ()
3158 symbol_block = NULL;
3159 symbol_block_index = SYMBOL_BLOCK_SIZE;
3160 symbol_free_list = 0;
3161 n_symbol_blocks = 0;
3165 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3166 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3167 Its value and function definition are void, and its property list is nil. */)
3168 (name)
3169 Lisp_Object name;
3171 register Lisp_Object val;
3172 register struct Lisp_Symbol *p;
3174 CHECK_STRING (name);
3176 /* eassert (!handling_signal); */
3178 MALLOC_BLOCK_INPUT;
3180 if (symbol_free_list)
3182 XSETSYMBOL (val, symbol_free_list);
3183 symbol_free_list = symbol_free_list->next;
3185 else
3187 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3189 struct symbol_block *new;
3190 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3191 MEM_TYPE_SYMBOL);
3192 new->next = symbol_block;
3193 symbol_block = new;
3194 symbol_block_index = 0;
3195 n_symbol_blocks++;
3197 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3198 symbol_block_index++;
3201 MALLOC_UNBLOCK_INPUT;
3203 p = XSYMBOL (val);
3204 p->xname = name;
3205 p->plist = Qnil;
3206 p->value = Qunbound;
3207 p->function = Qunbound;
3208 p->next = NULL;
3209 p->gcmarkbit = 0;
3210 p->interned = SYMBOL_UNINTERNED;
3211 p->constant = 0;
3212 p->indirect_variable = 0;
3213 consing_since_gc += sizeof (struct Lisp_Symbol);
3214 symbols_consed++;
3215 return val;
3220 /***********************************************************************
3221 Marker (Misc) Allocation
3222 ***********************************************************************/
3224 /* Allocation of markers and other objects that share that structure.
3225 Works like allocation of conses. */
3227 #define MARKER_BLOCK_SIZE \
3228 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3230 struct marker_block
3232 /* Place `markers' first, to preserve alignment. */
3233 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3234 struct marker_block *next;
3237 static struct marker_block *marker_block;
3238 static int marker_block_index;
3240 static union Lisp_Misc *marker_free_list;
3242 /* Total number of marker blocks now in use. */
3244 static int n_marker_blocks;
3246 static void
3247 init_marker ()
3249 marker_block = NULL;
3250 marker_block_index = MARKER_BLOCK_SIZE;
3251 marker_free_list = 0;
3252 n_marker_blocks = 0;
3255 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3257 Lisp_Object
3258 allocate_misc ()
3260 Lisp_Object val;
3262 /* eassert (!handling_signal); */
3264 MALLOC_BLOCK_INPUT;
3266 if (marker_free_list)
3268 XSETMISC (val, marker_free_list);
3269 marker_free_list = marker_free_list->u_free.chain;
3271 else
3273 if (marker_block_index == MARKER_BLOCK_SIZE)
3275 struct marker_block *new;
3276 new = (struct marker_block *) lisp_malloc (sizeof *new,
3277 MEM_TYPE_MISC);
3278 new->next = marker_block;
3279 marker_block = new;
3280 marker_block_index = 0;
3281 n_marker_blocks++;
3282 total_free_markers += MARKER_BLOCK_SIZE;
3284 XSETMISC (val, &marker_block->markers[marker_block_index]);
3285 marker_block_index++;
3288 MALLOC_UNBLOCK_INPUT;
3290 --total_free_markers;
3291 consing_since_gc += sizeof (union Lisp_Misc);
3292 misc_objects_consed++;
3293 XMISCANY (val)->gcmarkbit = 0;
3294 return val;
3297 /* Free a Lisp_Misc object */
3299 void
3300 free_misc (misc)
3301 Lisp_Object misc;
3303 XMISCTYPE (misc) = Lisp_Misc_Free;
3304 XMISC (misc)->u_free.chain = marker_free_list;
3305 marker_free_list = XMISC (misc);
3307 total_free_markers++;
3310 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3311 INTEGER. This is used to package C values to call record_unwind_protect.
3312 The unwind function can get the C values back using XSAVE_VALUE. */
3314 Lisp_Object
3315 make_save_value (pointer, integer)
3316 void *pointer;
3317 int integer;
3319 register Lisp_Object val;
3320 register struct Lisp_Save_Value *p;
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3324 p = XSAVE_VALUE (val);
3325 p->pointer = pointer;
3326 p->integer = integer;
3327 p->dogc = 0;
3328 return val;
3331 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3332 doc: /* Return a newly allocated marker which does not point at any place. */)
3335 register Lisp_Object val;
3336 register struct Lisp_Marker *p;
3338 val = allocate_misc ();
3339 XMISCTYPE (val) = Lisp_Misc_Marker;
3340 p = XMARKER (val);
3341 p->buffer = 0;
3342 p->bytepos = 0;
3343 p->charpos = 0;
3344 p->next = NULL;
3345 p->insertion_type = 0;
3346 return val;
3349 /* Put MARKER back on the free list after using it temporarily. */
3351 void
3352 free_marker (marker)
3353 Lisp_Object marker;
3355 unchain_marker (XMARKER (marker));
3356 free_misc (marker);
3360 /* Return a newly created vector or string with specified arguments as
3361 elements. If all the arguments are characters that can fit
3362 in a string of events, make a string; otherwise, make a vector.
3364 Any number of arguments, even zero arguments, are allowed. */
3366 Lisp_Object
3367 make_event_array (nargs, args)
3368 register int nargs;
3369 Lisp_Object *args;
3371 int i;
3373 for (i = 0; i < nargs; i++)
3374 /* The things that fit in a string
3375 are characters that are in 0...127,
3376 after discarding the meta bit and all the bits above it. */
3377 if (!INTEGERP (args[i])
3378 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3379 return Fvector (nargs, args);
3381 /* Since the loop exited, we know that all the things in it are
3382 characters, so we can make a string. */
3384 Lisp_Object result;
3386 result = Fmake_string (make_number (nargs), make_number (0));
3387 for (i = 0; i < nargs; i++)
3389 SSET (result, i, XINT (args[i]));
3390 /* Move the meta bit to the right place for a string char. */
3391 if (XINT (args[i]) & CHAR_META)
3392 SSET (result, i, SREF (result, i) | 0x80);
3395 return result;
3401 /************************************************************************
3402 Memory Full Handling
3403 ************************************************************************/
3406 /* Called if malloc returns zero. */
3408 void
3409 memory_full ()
3411 int i;
3413 Vmemory_full = Qt;
3415 memory_full_cons_threshold = sizeof (struct cons_block);
3417 /* The first time we get here, free the spare memory. */
3418 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3419 if (spare_memory[i])
3421 if (i == 0)
3422 free (spare_memory[i]);
3423 else if (i >= 1 && i <= 4)
3424 lisp_align_free (spare_memory[i]);
3425 else
3426 lisp_free (spare_memory[i]);
3427 spare_memory[i] = 0;
3430 /* Record the space now used. When it decreases substantially,
3431 we can refill the memory reserve. */
3432 #ifndef SYSTEM_MALLOC
3433 bytes_used_when_full = BYTES_USED;
3434 #endif
3436 /* This used to call error, but if we've run out of memory, we could
3437 get infinite recursion trying to build the string. */
3438 xsignal (Qnil, Vmemory_signal_data);
3441 /* If we released our reserve (due to running out of memory),
3442 and we have a fair amount free once again,
3443 try to set aside another reserve in case we run out once more.
3445 This is called when a relocatable block is freed in ralloc.c,
3446 and also directly from this file, in case we're not using ralloc.c. */
3448 void
3449 refill_memory_reserve ()
3451 #ifndef SYSTEM_MALLOC
3452 if (spare_memory[0] == 0)
3453 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3454 if (spare_memory[1] == 0)
3455 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3456 MEM_TYPE_CONS);
3457 if (spare_memory[2] == 0)
3458 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3459 MEM_TYPE_CONS);
3460 if (spare_memory[3] == 0)
3461 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3462 MEM_TYPE_CONS);
3463 if (spare_memory[4] == 0)
3464 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3465 MEM_TYPE_CONS);
3466 if (spare_memory[5] == 0)
3467 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3468 MEM_TYPE_STRING);
3469 if (spare_memory[6] == 0)
3470 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3471 MEM_TYPE_STRING);
3472 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3473 Vmemory_full = Qnil;
3474 #endif
3477 /************************************************************************
3478 C Stack Marking
3479 ************************************************************************/
3481 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3483 /* Conservative C stack marking requires a method to identify possibly
3484 live Lisp objects given a pointer value. We do this by keeping
3485 track of blocks of Lisp data that are allocated in a red-black tree
3486 (see also the comment of mem_node which is the type of nodes in
3487 that tree). Function lisp_malloc adds information for an allocated
3488 block to the red-black tree with calls to mem_insert, and function
3489 lisp_free removes it with mem_delete. Functions live_string_p etc
3490 call mem_find to lookup information about a given pointer in the
3491 tree, and use that to determine if the pointer points to a Lisp
3492 object or not. */
3494 /* Initialize this part of alloc.c. */
3496 static void
3497 mem_init ()
3499 mem_z.left = mem_z.right = MEM_NIL;
3500 mem_z.parent = NULL;
3501 mem_z.color = MEM_BLACK;
3502 mem_z.start = mem_z.end = NULL;
3503 mem_root = MEM_NIL;
3507 /* Value is a pointer to the mem_node containing START. Value is
3508 MEM_NIL if there is no node in the tree containing START. */
3510 static INLINE struct mem_node *
3511 mem_find (start)
3512 void *start;
3514 struct mem_node *p;
3516 if (start < min_heap_address || start > max_heap_address)
3517 return MEM_NIL;
3519 /* Make the search always successful to speed up the loop below. */
3520 mem_z.start = start;
3521 mem_z.end = (char *) start + 1;
3523 p = mem_root;
3524 while (start < p->start || start >= p->end)
3525 p = start < p->start ? p->left : p->right;
3526 return p;
3530 /* Insert a new node into the tree for a block of memory with start
3531 address START, end address END, and type TYPE. Value is a
3532 pointer to the node that was inserted. */
3534 static struct mem_node *
3535 mem_insert (start, end, type)
3536 void *start, *end;
3537 enum mem_type type;
3539 struct mem_node *c, *parent, *x;
3541 if (min_heap_address == NULL || start < min_heap_address)
3542 min_heap_address = start;
3543 if (max_heap_address == NULL || end > max_heap_address)
3544 max_heap_address = end;
3546 /* See where in the tree a node for START belongs. In this
3547 particular application, it shouldn't happen that a node is already
3548 present. For debugging purposes, let's check that. */
3549 c = mem_root;
3550 parent = NULL;
3552 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3554 while (c != MEM_NIL)
3556 if (start >= c->start && start < c->end)
3557 abort ();
3558 parent = c;
3559 c = start < c->start ? c->left : c->right;
3562 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3564 while (c != MEM_NIL)
3566 parent = c;
3567 c = start < c->start ? c->left : c->right;
3570 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3572 /* Create a new node. */
3573 #ifdef GC_MALLOC_CHECK
3574 x = (struct mem_node *) _malloc_internal (sizeof *x);
3575 if (x == NULL)
3576 abort ();
3577 #else
3578 x = (struct mem_node *) xmalloc (sizeof *x);
3579 #endif
3580 x->start = start;
3581 x->end = end;
3582 x->type = type;
3583 x->parent = parent;
3584 x->left = x->right = MEM_NIL;
3585 x->color = MEM_RED;
3587 /* Insert it as child of PARENT or install it as root. */
3588 if (parent)
3590 if (start < parent->start)
3591 parent->left = x;
3592 else
3593 parent->right = x;
3595 else
3596 mem_root = x;
3598 /* Re-establish red-black tree properties. */
3599 mem_insert_fixup (x);
3601 return x;
3605 /* Re-establish the red-black properties of the tree, and thereby
3606 balance the tree, after node X has been inserted; X is always red. */
3608 static void
3609 mem_insert_fixup (x)
3610 struct mem_node *x;
3612 while (x != mem_root && x->parent->color == MEM_RED)
3614 /* X is red and its parent is red. This is a violation of
3615 red-black tree property #3. */
3617 if (x->parent == x->parent->parent->left)
3619 /* We're on the left side of our grandparent, and Y is our
3620 "uncle". */
3621 struct mem_node *y = x->parent->parent->right;
3623 if (y->color == MEM_RED)
3625 /* Uncle and parent are red but should be black because
3626 X is red. Change the colors accordingly and proceed
3627 with the grandparent. */
3628 x->parent->color = MEM_BLACK;
3629 y->color = MEM_BLACK;
3630 x->parent->parent->color = MEM_RED;
3631 x = x->parent->parent;
3633 else
3635 /* Parent and uncle have different colors; parent is
3636 red, uncle is black. */
3637 if (x == x->parent->right)
3639 x = x->parent;
3640 mem_rotate_left (x);
3643 x->parent->color = MEM_BLACK;
3644 x->parent->parent->color = MEM_RED;
3645 mem_rotate_right (x->parent->parent);
3648 else
3650 /* This is the symmetrical case of above. */
3651 struct mem_node *y = x->parent->parent->left;
3653 if (y->color == MEM_RED)
3655 x->parent->color = MEM_BLACK;
3656 y->color = MEM_BLACK;
3657 x->parent->parent->color = MEM_RED;
3658 x = x->parent->parent;
3660 else
3662 if (x == x->parent->left)
3664 x = x->parent;
3665 mem_rotate_right (x);
3668 x->parent->color = MEM_BLACK;
3669 x->parent->parent->color = MEM_RED;
3670 mem_rotate_left (x->parent->parent);
3675 /* The root may have been changed to red due to the algorithm. Set
3676 it to black so that property #5 is satisfied. */
3677 mem_root->color = MEM_BLACK;
3681 /* (x) (y)
3682 / \ / \
3683 a (y) ===> (x) c
3684 / \ / \
3685 b c a b */
3687 static void
3688 mem_rotate_left (x)
3689 struct mem_node *x;
3691 struct mem_node *y;
3693 /* Turn y's left sub-tree into x's right sub-tree. */
3694 y = x->right;
3695 x->right = y->left;
3696 if (y->left != MEM_NIL)
3697 y->left->parent = x;
3699 /* Y's parent was x's parent. */
3700 if (y != MEM_NIL)
3701 y->parent = x->parent;
3703 /* Get the parent to point to y instead of x. */
3704 if (x->parent)
3706 if (x == x->parent->left)
3707 x->parent->left = y;
3708 else
3709 x->parent->right = y;
3711 else
3712 mem_root = y;
3714 /* Put x on y's left. */
3715 y->left = x;
3716 if (x != MEM_NIL)
3717 x->parent = y;
3721 /* (x) (Y)
3722 / \ / \
3723 (y) c ===> a (x)
3724 / \ / \
3725 a b b c */
3727 static void
3728 mem_rotate_right (x)
3729 struct mem_node *x;
3731 struct mem_node *y = x->left;
3733 x->left = y->right;
3734 if (y->right != MEM_NIL)
3735 y->right->parent = x;
3737 if (y != MEM_NIL)
3738 y->parent = x->parent;
3739 if (x->parent)
3741 if (x == x->parent->right)
3742 x->parent->right = y;
3743 else
3744 x->parent->left = y;
3746 else
3747 mem_root = y;
3749 y->right = x;
3750 if (x != MEM_NIL)
3751 x->parent = y;
3755 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3757 static void
3758 mem_delete (z)
3759 struct mem_node *z;
3761 struct mem_node *x, *y;
3763 if (!z || z == MEM_NIL)
3764 return;
3766 if (z->left == MEM_NIL || z->right == MEM_NIL)
3767 y = z;
3768 else
3770 y = z->right;
3771 while (y->left != MEM_NIL)
3772 y = y->left;
3775 if (y->left != MEM_NIL)
3776 x = y->left;
3777 else
3778 x = y->right;
3780 x->parent = y->parent;
3781 if (y->parent)
3783 if (y == y->parent->left)
3784 y->parent->left = x;
3785 else
3786 y->parent->right = x;
3788 else
3789 mem_root = x;
3791 if (y != z)
3793 z->start = y->start;
3794 z->end = y->end;
3795 z->type = y->type;
3798 if (y->color == MEM_BLACK)
3799 mem_delete_fixup (x);
3801 #ifdef GC_MALLOC_CHECK
3802 _free_internal (y);
3803 #else
3804 xfree (y);
3805 #endif
3809 /* Re-establish the red-black properties of the tree, after a
3810 deletion. */
3812 static void
3813 mem_delete_fixup (x)
3814 struct mem_node *x;
3816 while (x != mem_root && x->color == MEM_BLACK)
3818 if (x == x->parent->left)
3820 struct mem_node *w = x->parent->right;
3822 if (w->color == MEM_RED)
3824 w->color = MEM_BLACK;
3825 x->parent->color = MEM_RED;
3826 mem_rotate_left (x->parent);
3827 w = x->parent->right;
3830 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3832 w->color = MEM_RED;
3833 x = x->parent;
3835 else
3837 if (w->right->color == MEM_BLACK)
3839 w->left->color = MEM_BLACK;
3840 w->color = MEM_RED;
3841 mem_rotate_right (w);
3842 w = x->parent->right;
3844 w->color = x->parent->color;
3845 x->parent->color = MEM_BLACK;
3846 w->right->color = MEM_BLACK;
3847 mem_rotate_left (x->parent);
3848 x = mem_root;
3851 else
3853 struct mem_node *w = x->parent->left;
3855 if (w->color == MEM_RED)
3857 w->color = MEM_BLACK;
3858 x->parent->color = MEM_RED;
3859 mem_rotate_right (x->parent);
3860 w = x->parent->left;
3863 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3865 w->color = MEM_RED;
3866 x = x->parent;
3868 else
3870 if (w->left->color == MEM_BLACK)
3872 w->right->color = MEM_BLACK;
3873 w->color = MEM_RED;
3874 mem_rotate_left (w);
3875 w = x->parent->left;
3878 w->color = x->parent->color;
3879 x->parent->color = MEM_BLACK;
3880 w->left->color = MEM_BLACK;
3881 mem_rotate_right (x->parent);
3882 x = mem_root;
3887 x->color = MEM_BLACK;
3891 /* Value is non-zero if P is a pointer to a live Lisp string on
3892 the heap. M is a pointer to the mem_block for P. */
3894 static INLINE int
3895 live_string_p (m, p)
3896 struct mem_node *m;
3897 void *p;
3899 if (m->type == MEM_TYPE_STRING)
3901 struct string_block *b = (struct string_block *) m->start;
3902 int offset = (char *) p - (char *) &b->strings[0];
3904 /* P must point to the start of a Lisp_String structure, and it
3905 must not be on the free-list. */
3906 return (offset >= 0
3907 && offset % sizeof b->strings[0] == 0
3908 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3909 && ((struct Lisp_String *) p)->data != NULL);
3911 else
3912 return 0;
3916 /* Value is non-zero if P is a pointer to a live Lisp cons on
3917 the heap. M is a pointer to the mem_block for P. */
3919 static INLINE int
3920 live_cons_p (m, p)
3921 struct mem_node *m;
3922 void *p;
3924 if (m->type == MEM_TYPE_CONS)
3926 struct cons_block *b = (struct cons_block *) m->start;
3927 int offset = (char *) p - (char *) &b->conses[0];
3929 /* P must point to the start of a Lisp_Cons, not be
3930 one of the unused cells in the current cons block,
3931 and not be on the free-list. */
3932 return (offset >= 0
3933 && offset % sizeof b->conses[0] == 0
3934 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3935 && (b != cons_block
3936 || offset / sizeof b->conses[0] < cons_block_index)
3937 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3939 else
3940 return 0;
3944 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3945 the heap. M is a pointer to the mem_block for P. */
3947 static INLINE int
3948 live_symbol_p (m, p)
3949 struct mem_node *m;
3950 void *p;
3952 if (m->type == MEM_TYPE_SYMBOL)
3954 struct symbol_block *b = (struct symbol_block *) m->start;
3955 int offset = (char *) p - (char *) &b->symbols[0];
3957 /* P must point to the start of a Lisp_Symbol, not be
3958 one of the unused cells in the current symbol block,
3959 and not be on the free-list. */
3960 return (offset >= 0
3961 && offset % sizeof b->symbols[0] == 0
3962 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3963 && (b != symbol_block
3964 || offset / sizeof b->symbols[0] < symbol_block_index)
3965 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3967 else
3968 return 0;
3972 /* Value is non-zero if P is a pointer to a live Lisp float on
3973 the heap. M is a pointer to the mem_block for P. */
3975 static INLINE int
3976 live_float_p (m, p)
3977 struct mem_node *m;
3978 void *p;
3980 if (m->type == MEM_TYPE_FLOAT)
3982 struct float_block *b = (struct float_block *) m->start;
3983 int offset = (char *) p - (char *) &b->floats[0];
3985 /* P must point to the start of a Lisp_Float and not be
3986 one of the unused cells in the current float block. */
3987 return (offset >= 0
3988 && offset % sizeof b->floats[0] == 0
3989 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3990 && (b != float_block
3991 || offset / sizeof b->floats[0] < float_block_index));
3993 else
3994 return 0;
3998 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3999 the heap. M is a pointer to the mem_block for P. */
4001 static INLINE int
4002 live_misc_p (m, p)
4003 struct mem_node *m;
4004 void *p;
4006 if (m->type == MEM_TYPE_MISC)
4008 struct marker_block *b = (struct marker_block *) m->start;
4009 int offset = (char *) p - (char *) &b->markers[0];
4011 /* P must point to the start of a Lisp_Misc, not be
4012 one of the unused cells in the current misc block,
4013 and not be on the free-list. */
4014 return (offset >= 0
4015 && offset % sizeof b->markers[0] == 0
4016 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4017 && (b != marker_block
4018 || offset / sizeof b->markers[0] < marker_block_index)
4019 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4021 else
4022 return 0;
4026 /* Value is non-zero if P is a pointer to a live vector-like object.
4027 M is a pointer to the mem_block for P. */
4029 static INLINE int
4030 live_vector_p (m, p)
4031 struct mem_node *m;
4032 void *p;
4034 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4038 /* Value is non-zero if P is a pointer to a live buffer. M is a
4039 pointer to the mem_block for P. */
4041 static INLINE int
4042 live_buffer_p (m, p)
4043 struct mem_node *m;
4044 void *p;
4046 /* P must point to the start of the block, and the buffer
4047 must not have been killed. */
4048 return (m->type == MEM_TYPE_BUFFER
4049 && p == m->start
4050 && !NILP (((struct buffer *) p)->name));
4053 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4055 #if GC_MARK_STACK
4057 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4059 /* Array of objects that are kept alive because the C stack contains
4060 a pattern that looks like a reference to them . */
4062 #define MAX_ZOMBIES 10
4063 static Lisp_Object zombies[MAX_ZOMBIES];
4065 /* Number of zombie objects. */
4067 static int nzombies;
4069 /* Number of garbage collections. */
4071 static int ngcs;
4073 /* Average percentage of zombies per collection. */
4075 static double avg_zombies;
4077 /* Max. number of live and zombie objects. */
4079 static int max_live, max_zombies;
4081 /* Average number of live objects per GC. */
4083 static double avg_live;
4085 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4086 doc: /* Show information about live and zombie objects. */)
4089 Lisp_Object args[8], zombie_list = Qnil;
4090 int i;
4091 for (i = 0; i < nzombies; i++)
4092 zombie_list = Fcons (zombies[i], zombie_list);
4093 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4094 args[1] = make_number (ngcs);
4095 args[2] = make_float (avg_live);
4096 args[3] = make_float (avg_zombies);
4097 args[4] = make_float (avg_zombies / avg_live / 100);
4098 args[5] = make_number (max_live);
4099 args[6] = make_number (max_zombies);
4100 args[7] = zombie_list;
4101 return Fmessage (8, args);
4104 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4107 /* Mark OBJ if we can prove it's a Lisp_Object. */
4109 static INLINE void
4110 mark_maybe_object (obj)
4111 Lisp_Object obj;
4113 void *po = (void *) XPNTR (obj);
4114 struct mem_node *m = mem_find (po);
4116 if (m != MEM_NIL)
4118 int mark_p = 0;
4120 switch (XTYPE (obj))
4122 case Lisp_String:
4123 mark_p = (live_string_p (m, po)
4124 && !STRING_MARKED_P ((struct Lisp_String *) po));
4125 break;
4127 case Lisp_Cons:
4128 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4129 break;
4131 case Lisp_Symbol:
4132 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4133 break;
4135 case Lisp_Float:
4136 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4137 break;
4139 case Lisp_Vectorlike:
4140 /* Note: can't check BUFFERP before we know it's a
4141 buffer because checking that dereferences the pointer
4142 PO which might point anywhere. */
4143 if (live_vector_p (m, po))
4144 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4145 else if (live_buffer_p (m, po))
4146 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4147 break;
4149 case Lisp_Misc:
4150 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4151 break;
4153 case Lisp_Int:
4154 case Lisp_Type_Limit:
4155 break;
4158 if (mark_p)
4160 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4161 if (nzombies < MAX_ZOMBIES)
4162 zombies[nzombies] = obj;
4163 ++nzombies;
4164 #endif
4165 mark_object (obj);
4171 /* If P points to Lisp data, mark that as live if it isn't already
4172 marked. */
4174 static INLINE void
4175 mark_maybe_pointer (p)
4176 void *p;
4178 struct mem_node *m;
4180 /* Quickly rule out some values which can't point to Lisp data. */
4181 if ((EMACS_INT) p %
4182 #ifdef USE_LSB_TAG
4183 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4184 #else
4185 2 /* We assume that Lisp data is aligned on even addresses. */
4186 #endif
4188 return;
4190 m = mem_find (p);
4191 if (m != MEM_NIL)
4193 Lisp_Object obj = Qnil;
4195 switch (m->type)
4197 case MEM_TYPE_NON_LISP:
4198 /* Nothing to do; not a pointer to Lisp memory. */
4199 break;
4201 case MEM_TYPE_BUFFER:
4202 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4203 XSETVECTOR (obj, p);
4204 break;
4206 case MEM_TYPE_CONS:
4207 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4208 XSETCONS (obj, p);
4209 break;
4211 case MEM_TYPE_STRING:
4212 if (live_string_p (m, p)
4213 && !STRING_MARKED_P ((struct Lisp_String *) p))
4214 XSETSTRING (obj, p);
4215 break;
4217 case MEM_TYPE_MISC:
4218 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4219 XSETMISC (obj, p);
4220 break;
4222 case MEM_TYPE_SYMBOL:
4223 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4224 XSETSYMBOL (obj, p);
4225 break;
4227 case MEM_TYPE_FLOAT:
4228 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4229 XSETFLOAT (obj, p);
4230 break;
4232 case MEM_TYPE_VECTORLIKE:
4233 if (live_vector_p (m, p))
4235 Lisp_Object tem;
4236 XSETVECTOR (tem, p);
4237 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4238 obj = tem;
4240 break;
4242 default:
4243 abort ();
4246 if (!NILP (obj))
4247 mark_object (obj);
4252 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4253 or END+OFFSET..START. */
4255 static void
4256 mark_memory (start, end, offset)
4257 void *start, *end;
4258 int offset;
4260 Lisp_Object *p;
4261 void **pp;
4263 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4264 nzombies = 0;
4265 #endif
4267 /* Make START the pointer to the start of the memory region,
4268 if it isn't already. */
4269 if (end < start)
4271 void *tem = start;
4272 start = end;
4273 end = tem;
4276 /* Mark Lisp_Objects. */
4277 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4278 mark_maybe_object (*p);
4280 /* Mark Lisp data pointed to. This is necessary because, in some
4281 situations, the C compiler optimizes Lisp objects away, so that
4282 only a pointer to them remains. Example:
4284 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4287 Lisp_Object obj = build_string ("test");
4288 struct Lisp_String *s = XSTRING (obj);
4289 Fgarbage_collect ();
4290 fprintf (stderr, "test `%s'\n", s->data);
4291 return Qnil;
4294 Here, `obj' isn't really used, and the compiler optimizes it
4295 away. The only reference to the life string is through the
4296 pointer `s'. */
4298 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4299 mark_maybe_pointer (*pp);
4302 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4303 the GCC system configuration. In gcc 3.2, the only systems for
4304 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4305 by others?) and ns32k-pc532-min. */
4307 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4309 static int setjmp_tested_p, longjmps_done;
4311 #define SETJMP_WILL_LIKELY_WORK "\
4313 Emacs garbage collector has been changed to use conservative stack\n\
4314 marking. Emacs has determined that the method it uses to do the\n\
4315 marking will likely work on your system, but this isn't sure.\n\
4317 If you are a system-programmer, or can get the help of a local wizard\n\
4318 who is, please take a look at the function mark_stack in alloc.c, and\n\
4319 verify that the methods used are appropriate for your system.\n\
4321 Please mail the result to <emacs-devel@gnu.org>.\n\
4324 #define SETJMP_WILL_NOT_WORK "\
4326 Emacs garbage collector has been changed to use conservative stack\n\
4327 marking. Emacs has determined that the default method it uses to do the\n\
4328 marking will not work on your system. We will need a system-dependent\n\
4329 solution for your system.\n\
4331 Please take a look at the function mark_stack in alloc.c, and\n\
4332 try to find a way to make it work on your system.\n\
4334 Note that you may get false negatives, depending on the compiler.\n\
4335 In particular, you need to use -O with GCC for this test.\n\
4337 Please mail the result to <emacs-devel@gnu.org>.\n\
4341 /* Perform a quick check if it looks like setjmp saves registers in a
4342 jmp_buf. Print a message to stderr saying so. When this test
4343 succeeds, this is _not_ a proof that setjmp is sufficient for
4344 conservative stack marking. Only the sources or a disassembly
4345 can prove that. */
4347 static void
4348 test_setjmp ()
4350 char buf[10];
4351 register int x;
4352 jmp_buf jbuf;
4353 int result = 0;
4355 /* Arrange for X to be put in a register. */
4356 sprintf (buf, "1");
4357 x = strlen (buf);
4358 x = 2 * x - 1;
4360 setjmp (jbuf);
4361 if (longjmps_done == 1)
4363 /* Came here after the longjmp at the end of the function.
4365 If x == 1, the longjmp has restored the register to its
4366 value before the setjmp, and we can hope that setjmp
4367 saves all such registers in the jmp_buf, although that
4368 isn't sure.
4370 For other values of X, either something really strange is
4371 taking place, or the setjmp just didn't save the register. */
4373 if (x == 1)
4374 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4375 else
4377 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4378 exit (1);
4382 ++longjmps_done;
4383 x = 2;
4384 if (longjmps_done == 1)
4385 longjmp (jbuf, 1);
4388 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4391 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4393 /* Abort if anything GCPRO'd doesn't survive the GC. */
4395 static void
4396 check_gcpros ()
4398 struct gcpro *p;
4399 int i;
4401 for (p = gcprolist; p; p = p->next)
4402 for (i = 0; i < p->nvars; ++i)
4403 if (!survives_gc_p (p->var[i]))
4404 /* FIXME: It's not necessarily a bug. It might just be that the
4405 GCPRO is unnecessary or should release the object sooner. */
4406 abort ();
4409 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4411 static void
4412 dump_zombies ()
4414 int i;
4416 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4417 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4419 fprintf (stderr, " %d = ", i);
4420 debug_print (zombies[i]);
4424 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4427 /* Mark live Lisp objects on the C stack.
4429 There are several system-dependent problems to consider when
4430 porting this to new architectures:
4432 Processor Registers
4434 We have to mark Lisp objects in CPU registers that can hold local
4435 variables or are used to pass parameters.
4437 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4438 something that either saves relevant registers on the stack, or
4439 calls mark_maybe_object passing it each register's contents.
4441 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4442 implementation assumes that calling setjmp saves registers we need
4443 to see in a jmp_buf which itself lies on the stack. This doesn't
4444 have to be true! It must be verified for each system, possibly
4445 by taking a look at the source code of setjmp.
4447 Stack Layout
4449 Architectures differ in the way their processor stack is organized.
4450 For example, the stack might look like this
4452 +----------------+
4453 | Lisp_Object | size = 4
4454 +----------------+
4455 | something else | size = 2
4456 +----------------+
4457 | Lisp_Object | size = 4
4458 +----------------+
4459 | ... |
4461 In such a case, not every Lisp_Object will be aligned equally. To
4462 find all Lisp_Object on the stack it won't be sufficient to walk
4463 the stack in steps of 4 bytes. Instead, two passes will be
4464 necessary, one starting at the start of the stack, and a second
4465 pass starting at the start of the stack + 2. Likewise, if the
4466 minimal alignment of Lisp_Objects on the stack is 1, four passes
4467 would be necessary, each one starting with one byte more offset
4468 from the stack start.
4470 The current code assumes by default that Lisp_Objects are aligned
4471 equally on the stack. */
4473 static void
4474 mark_stack ()
4476 int i;
4477 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4478 union aligned_jmpbuf {
4479 Lisp_Object o;
4480 jmp_buf j;
4481 } j;
4482 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4483 void *end;
4485 /* This trick flushes the register windows so that all the state of
4486 the process is contained in the stack. */
4487 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4488 needed on ia64 too. See mach_dep.c, where it also says inline
4489 assembler doesn't work with relevant proprietary compilers. */
4490 #ifdef __sparc__
4491 asm ("ta 3");
4492 #endif
4494 /* Save registers that we need to see on the stack. We need to see
4495 registers used to hold register variables and registers used to
4496 pass parameters. */
4497 #ifdef GC_SAVE_REGISTERS_ON_STACK
4498 GC_SAVE_REGISTERS_ON_STACK (end);
4499 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4501 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4502 setjmp will definitely work, test it
4503 and print a message with the result
4504 of the test. */
4505 if (!setjmp_tested_p)
4507 setjmp_tested_p = 1;
4508 test_setjmp ();
4510 #endif /* GC_SETJMP_WORKS */
4512 setjmp (j.j);
4513 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4514 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4516 /* This assumes that the stack is a contiguous region in memory. If
4517 that's not the case, something has to be done here to iterate
4518 over the stack segments. */
4519 #ifndef GC_LISP_OBJECT_ALIGNMENT
4520 #ifdef __GNUC__
4521 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4522 #else
4523 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4524 #endif
4525 #endif
4526 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4527 mark_memory (stack_base, end, i);
4528 /* Allow for marking a secondary stack, like the register stack on the
4529 ia64. */
4530 #ifdef GC_MARK_SECONDARY_STACK
4531 GC_MARK_SECONDARY_STACK ();
4532 #endif
4534 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4535 check_gcpros ();
4536 #endif
4539 #endif /* GC_MARK_STACK != 0 */
4542 /* Determine whether it is safe to access memory at address P. */
4543 static int
4544 valid_pointer_p (p)
4545 void *p;
4547 #ifdef WINDOWSNT
4548 return w32_valid_pointer_p (p, 16);
4549 #else
4550 int fd;
4552 /* Obviously, we cannot just access it (we would SEGV trying), so we
4553 trick the o/s to tell us whether p is a valid pointer.
4554 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4555 not validate p in that case. */
4557 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4559 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4560 emacs_close (fd);
4561 unlink ("__Valid__Lisp__Object__");
4562 return valid;
4565 return -1;
4566 #endif
4569 /* Return 1 if OBJ is a valid lisp object.
4570 Return 0 if OBJ is NOT a valid lisp object.
4571 Return -1 if we cannot validate OBJ.
4572 This function can be quite slow,
4573 so it should only be used in code for manual debugging. */
4576 valid_lisp_object_p (obj)
4577 Lisp_Object obj;
4579 void *p;
4580 #if GC_MARK_STACK
4581 struct mem_node *m;
4582 #endif
4584 if (INTEGERP (obj))
4585 return 1;
4587 p = (void *) XPNTR (obj);
4588 if (PURE_POINTER_P (p))
4589 return 1;
4591 #if !GC_MARK_STACK
4592 return valid_pointer_p (p);
4593 #else
4595 m = mem_find (p);
4597 if (m == MEM_NIL)
4599 int valid = valid_pointer_p (p);
4600 if (valid <= 0)
4601 return valid;
4603 if (SUBRP (obj))
4604 return 1;
4606 return 0;
4609 switch (m->type)
4611 case MEM_TYPE_NON_LISP:
4612 return 0;
4614 case MEM_TYPE_BUFFER:
4615 return live_buffer_p (m, p);
4617 case MEM_TYPE_CONS:
4618 return live_cons_p (m, p);
4620 case MEM_TYPE_STRING:
4621 return live_string_p (m, p);
4623 case MEM_TYPE_MISC:
4624 return live_misc_p (m, p);
4626 case MEM_TYPE_SYMBOL:
4627 return live_symbol_p (m, p);
4629 case MEM_TYPE_FLOAT:
4630 return live_float_p (m, p);
4632 case MEM_TYPE_VECTORLIKE:
4633 return live_vector_p (m, p);
4635 default:
4636 break;
4639 return 0;
4640 #endif
4646 /***********************************************************************
4647 Pure Storage Management
4648 ***********************************************************************/
4650 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4651 pointer to it. TYPE is the Lisp type for which the memory is
4652 allocated. TYPE < 0 means it's not used for a Lisp object. */
4654 static POINTER_TYPE *
4655 pure_alloc (size, type)
4656 size_t size;
4657 int type;
4659 POINTER_TYPE *result;
4660 #ifdef USE_LSB_TAG
4661 size_t alignment = (1 << GCTYPEBITS);
4662 #else
4663 size_t alignment = sizeof (EMACS_INT);
4665 /* Give Lisp_Floats an extra alignment. */
4666 if (type == Lisp_Float)
4668 #if defined __GNUC__ && __GNUC__ >= 2
4669 alignment = __alignof (struct Lisp_Float);
4670 #else
4671 alignment = sizeof (struct Lisp_Float);
4672 #endif
4674 #endif
4676 again:
4677 if (type >= 0)
4679 /* Allocate space for a Lisp object from the beginning of the free
4680 space with taking account of alignment. */
4681 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4682 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4684 else
4686 /* Allocate space for a non-Lisp object from the end of the free
4687 space. */
4688 pure_bytes_used_non_lisp += size;
4689 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4691 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4693 if (pure_bytes_used <= pure_size)
4694 return result;
4696 /* Don't allocate a large amount here,
4697 because it might get mmap'd and then its address
4698 might not be usable. */
4699 purebeg = (char *) xmalloc (10000);
4700 pure_size = 10000;
4701 pure_bytes_used_before_overflow += pure_bytes_used - size;
4702 pure_bytes_used = 0;
4703 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4704 goto again;
4708 /* Print a warning if PURESIZE is too small. */
4710 void
4711 check_pure_size ()
4713 if (pure_bytes_used_before_overflow)
4714 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4715 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4719 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4720 the non-Lisp data pool of the pure storage, and return its start
4721 address. Return NULL if not found. */
4723 static char *
4724 find_string_data_in_pure (data, nbytes)
4725 char *data;
4726 int nbytes;
4728 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4729 unsigned char *p;
4730 char *non_lisp_beg;
4732 if (pure_bytes_used_non_lisp < nbytes + 1)
4733 return NULL;
4735 /* Set up the Boyer-Moore table. */
4736 skip = nbytes + 1;
4737 for (i = 0; i < 256; i++)
4738 bm_skip[i] = skip;
4740 p = (unsigned char *) data;
4741 while (--skip > 0)
4742 bm_skip[*p++] = skip;
4744 last_char_skip = bm_skip['\0'];
4746 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4747 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4749 /* See the comments in the function `boyer_moore' (search.c) for the
4750 use of `infinity'. */
4751 infinity = pure_bytes_used_non_lisp + 1;
4752 bm_skip['\0'] = infinity;
4754 p = (unsigned char *) non_lisp_beg + nbytes;
4755 start = 0;
4758 /* Check the last character (== '\0'). */
4761 start += bm_skip[*(p + start)];
4763 while (start <= start_max);
4765 if (start < infinity)
4766 /* Couldn't find the last character. */
4767 return NULL;
4769 /* No less than `infinity' means we could find the last
4770 character at `p[start - infinity]'. */
4771 start -= infinity;
4773 /* Check the remaining characters. */
4774 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4775 /* Found. */
4776 return non_lisp_beg + start;
4778 start += last_char_skip;
4780 while (start <= start_max);
4782 return NULL;
4786 /* Return a string allocated in pure space. DATA is a buffer holding
4787 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4788 non-zero means make the result string multibyte.
4790 Must get an error if pure storage is full, since if it cannot hold
4791 a large string it may be able to hold conses that point to that
4792 string; then the string is not protected from gc. */
4794 Lisp_Object
4795 make_pure_string (data, nchars, nbytes, multibyte)
4796 char *data;
4797 int nchars, nbytes;
4798 int multibyte;
4800 Lisp_Object string;
4801 struct Lisp_String *s;
4803 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4804 s->data = find_string_data_in_pure (data, nbytes);
4805 if (s->data == NULL)
4807 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4808 bcopy (data, s->data, nbytes);
4809 s->data[nbytes] = '\0';
4811 s->size = nchars;
4812 s->size_byte = multibyte ? nbytes : -1;
4813 s->intervals = NULL_INTERVAL;
4814 XSETSTRING (string, s);
4815 return string;
4819 /* Return a cons allocated from pure space. Give it pure copies
4820 of CAR as car and CDR as cdr. */
4822 Lisp_Object
4823 pure_cons (car, cdr)
4824 Lisp_Object car, cdr;
4826 register Lisp_Object new;
4827 struct Lisp_Cons *p;
4829 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4830 XSETCONS (new, p);
4831 XSETCAR (new, Fpurecopy (car));
4832 XSETCDR (new, Fpurecopy (cdr));
4833 return new;
4837 /* Value is a float object with value NUM allocated from pure space. */
4839 static Lisp_Object
4840 make_pure_float (num)
4841 double num;
4843 register Lisp_Object new;
4844 struct Lisp_Float *p;
4846 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4847 XSETFLOAT (new, p);
4848 XFLOAT_DATA (new) = num;
4849 return new;
4853 /* Return a vector with room for LEN Lisp_Objects allocated from
4854 pure space. */
4856 Lisp_Object
4857 make_pure_vector (len)
4858 EMACS_INT len;
4860 Lisp_Object new;
4861 struct Lisp_Vector *p;
4862 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4864 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4865 XSETVECTOR (new, p);
4866 XVECTOR (new)->size = len;
4867 return new;
4871 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4872 doc: /* Make a copy of object OBJ in pure storage.
4873 Recursively copies contents of vectors and cons cells.
4874 Does not copy symbols. Copies strings without text properties. */)
4875 (obj)
4876 register Lisp_Object obj;
4878 if (NILP (Vpurify_flag))
4879 return obj;
4881 if (PURE_POINTER_P (XPNTR (obj)))
4882 return obj;
4884 if (CONSP (obj))
4885 return pure_cons (XCAR (obj), XCDR (obj));
4886 else if (FLOATP (obj))
4887 return make_pure_float (XFLOAT_DATA (obj));
4888 else if (STRINGP (obj))
4889 return make_pure_string (SDATA (obj), SCHARS (obj),
4890 SBYTES (obj),
4891 STRING_MULTIBYTE (obj));
4892 else if (COMPILEDP (obj) || VECTORP (obj))
4894 register struct Lisp_Vector *vec;
4895 register int i;
4896 EMACS_INT size;
4898 size = XVECTOR (obj)->size;
4899 if (size & PSEUDOVECTOR_FLAG)
4900 size &= PSEUDOVECTOR_SIZE_MASK;
4901 vec = XVECTOR (make_pure_vector (size));
4902 for (i = 0; i < size; i++)
4903 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4904 if (COMPILEDP (obj))
4906 XSETPVECTYPE (vec, PVEC_COMPILED);
4907 XSETCOMPILED (obj, vec);
4909 else
4910 XSETVECTOR (obj, vec);
4911 return obj;
4913 else if (MARKERP (obj))
4914 error ("Attempt to copy a marker to pure storage");
4916 return obj;
4921 /***********************************************************************
4922 Protection from GC
4923 ***********************************************************************/
4925 /* Put an entry in staticvec, pointing at the variable with address
4926 VARADDRESS. */
4928 void
4929 staticpro (varaddress)
4930 Lisp_Object *varaddress;
4932 staticvec[staticidx++] = varaddress;
4933 if (staticidx >= NSTATICS)
4934 abort ();
4937 struct catchtag
4939 Lisp_Object tag;
4940 Lisp_Object val;
4941 struct catchtag *next;
4945 /***********************************************************************
4946 Protection from GC
4947 ***********************************************************************/
4949 /* Temporarily prevent garbage collection. */
4952 inhibit_garbage_collection ()
4954 int count = SPECPDL_INDEX ();
4955 int nbits = min (VALBITS, BITS_PER_INT);
4957 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4958 return count;
4962 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4963 doc: /* Reclaim storage for Lisp objects no longer needed.
4964 Garbage collection happens automatically if you cons more than
4965 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4966 `garbage-collect' normally returns a list with info on amount of space in use:
4967 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4968 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4969 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4970 (USED-STRINGS . FREE-STRINGS))
4971 However, if there was overflow in pure space, `garbage-collect'
4972 returns nil, because real GC can't be done. */)
4975 register struct specbinding *bind;
4976 struct catchtag *catch;
4977 struct handler *handler;
4978 char stack_top_variable;
4979 register int i;
4980 int message_p;
4981 Lisp_Object total[8];
4982 int count = SPECPDL_INDEX ();
4983 EMACS_TIME t1, t2, t3;
4985 if (abort_on_gc)
4986 abort ();
4988 /* Can't GC if pure storage overflowed because we can't determine
4989 if something is a pure object or not. */
4990 if (pure_bytes_used_before_overflow)
4991 return Qnil;
4993 CHECK_CONS_LIST ();
4995 /* Don't keep undo information around forever.
4996 Do this early on, so it is no problem if the user quits. */
4998 register struct buffer *nextb = all_buffers;
5000 while (nextb)
5002 /* If a buffer's undo list is Qt, that means that undo is
5003 turned off in that buffer. Calling truncate_undo_list on
5004 Qt tends to return NULL, which effectively turns undo back on.
5005 So don't call truncate_undo_list if undo_list is Qt. */
5006 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5007 truncate_undo_list (nextb);
5009 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5010 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5011 && ! nextb->text->inhibit_shrinking)
5013 /* If a buffer's gap size is more than 10% of the buffer
5014 size, or larger than 2000 bytes, then shrink it
5015 accordingly. Keep a minimum size of 20 bytes. */
5016 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5018 if (nextb->text->gap_size > size)
5020 struct buffer *save_current = current_buffer;
5021 current_buffer = nextb;
5022 make_gap (-(nextb->text->gap_size - size));
5023 current_buffer = save_current;
5027 nextb = nextb->next;
5031 EMACS_GET_TIME (t1);
5033 /* In case user calls debug_print during GC,
5034 don't let that cause a recursive GC. */
5035 consing_since_gc = 0;
5037 /* Save what's currently displayed in the echo area. */
5038 message_p = push_message ();
5039 record_unwind_protect (pop_message_unwind, Qnil);
5041 /* Save a copy of the contents of the stack, for debugging. */
5042 #if MAX_SAVE_STACK > 0
5043 if (NILP (Vpurify_flag))
5045 i = &stack_top_variable - stack_bottom;
5046 if (i < 0) i = -i;
5047 if (i < MAX_SAVE_STACK)
5049 if (stack_copy == 0)
5050 stack_copy = (char *) xmalloc (stack_copy_size = i);
5051 else if (stack_copy_size < i)
5052 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5053 if (stack_copy)
5055 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5056 bcopy (stack_bottom, stack_copy, i);
5057 else
5058 bcopy (&stack_top_variable, stack_copy, i);
5062 #endif /* MAX_SAVE_STACK > 0 */
5064 if (garbage_collection_messages)
5065 message1_nolog ("Garbage collecting...");
5067 BLOCK_INPUT;
5069 shrink_regexp_cache ();
5071 gc_in_progress = 1;
5073 /* clear_marks (); */
5075 /* Mark all the special slots that serve as the roots of accessibility. */
5077 for (i = 0; i < staticidx; i++)
5078 mark_object (*staticvec[i]);
5080 for (bind = specpdl; bind != specpdl_ptr; bind++)
5082 mark_object (bind->symbol);
5083 mark_object (bind->old_value);
5085 mark_terminals ();
5086 mark_kboards ();
5087 mark_ttys ();
5089 #ifdef USE_GTK
5091 extern void xg_mark_data ();
5092 xg_mark_data ();
5094 #endif
5096 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5097 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5098 mark_stack ();
5099 #else
5101 register struct gcpro *tail;
5102 for (tail = gcprolist; tail; tail = tail->next)
5103 for (i = 0; i < tail->nvars; i++)
5104 mark_object (tail->var[i]);
5106 #endif
5108 mark_byte_stack ();
5109 for (catch = catchlist; catch; catch = catch->next)
5111 mark_object (catch->tag);
5112 mark_object (catch->val);
5114 for (handler = handlerlist; handler; handler = handler->next)
5116 mark_object (handler->handler);
5117 mark_object (handler->var);
5119 mark_backtrace ();
5121 #ifdef HAVE_WINDOW_SYSTEM
5122 mark_fringe_data ();
5123 #endif
5125 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5126 mark_stack ();
5127 #endif
5129 /* Everything is now marked, except for the things that require special
5130 finalization, i.e. the undo_list.
5131 Look thru every buffer's undo list
5132 for elements that update markers that were not marked,
5133 and delete them. */
5135 register struct buffer *nextb = all_buffers;
5137 while (nextb)
5139 /* If a buffer's undo list is Qt, that means that undo is
5140 turned off in that buffer. Calling truncate_undo_list on
5141 Qt tends to return NULL, which effectively turns undo back on.
5142 So don't call truncate_undo_list if undo_list is Qt. */
5143 if (! EQ (nextb->undo_list, Qt))
5145 Lisp_Object tail, prev;
5146 tail = nextb->undo_list;
5147 prev = Qnil;
5148 while (CONSP (tail))
5150 if (CONSP (XCAR (tail))
5151 && MARKERP (XCAR (XCAR (tail)))
5152 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5154 if (NILP (prev))
5155 nextb->undo_list = tail = XCDR (tail);
5156 else
5158 tail = XCDR (tail);
5159 XSETCDR (prev, tail);
5162 else
5164 prev = tail;
5165 tail = XCDR (tail);
5169 /* Now that we have stripped the elements that need not be in the
5170 undo_list any more, we can finally mark the list. */
5171 mark_object (nextb->undo_list);
5173 nextb = nextb->next;
5177 gc_sweep ();
5179 /* Clear the mark bits that we set in certain root slots. */
5181 unmark_byte_stack ();
5182 VECTOR_UNMARK (&buffer_defaults);
5183 VECTOR_UNMARK (&buffer_local_symbols);
5185 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5186 dump_zombies ();
5187 #endif
5189 UNBLOCK_INPUT;
5191 CHECK_CONS_LIST ();
5193 /* clear_marks (); */
5194 gc_in_progress = 0;
5196 consing_since_gc = 0;
5197 if (gc_cons_threshold < 10000)
5198 gc_cons_threshold = 10000;
5200 if (FLOATP (Vgc_cons_percentage))
5201 { /* Set gc_cons_combined_threshold. */
5202 EMACS_INT total = 0;
5204 total += total_conses * sizeof (struct Lisp_Cons);
5205 total += total_symbols * sizeof (struct Lisp_Symbol);
5206 total += total_markers * sizeof (union Lisp_Misc);
5207 total += total_string_size;
5208 total += total_vector_size * sizeof (Lisp_Object);
5209 total += total_floats * sizeof (struct Lisp_Float);
5210 total += total_intervals * sizeof (struct interval);
5211 total += total_strings * sizeof (struct Lisp_String);
5213 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5215 else
5216 gc_relative_threshold = 0;
5218 if (garbage_collection_messages)
5220 if (message_p || minibuf_level > 0)
5221 restore_message ();
5222 else
5223 message1_nolog ("Garbage collecting...done");
5226 unbind_to (count, Qnil);
5228 total[0] = Fcons (make_number (total_conses),
5229 make_number (total_free_conses));
5230 total[1] = Fcons (make_number (total_symbols),
5231 make_number (total_free_symbols));
5232 total[2] = Fcons (make_number (total_markers),
5233 make_number (total_free_markers));
5234 total[3] = make_number (total_string_size);
5235 total[4] = make_number (total_vector_size);
5236 total[5] = Fcons (make_number (total_floats),
5237 make_number (total_free_floats));
5238 total[6] = Fcons (make_number (total_intervals),
5239 make_number (total_free_intervals));
5240 total[7] = Fcons (make_number (total_strings),
5241 make_number (total_free_strings));
5243 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5245 /* Compute average percentage of zombies. */
5246 double nlive = 0;
5248 for (i = 0; i < 7; ++i)
5249 if (CONSP (total[i]))
5250 nlive += XFASTINT (XCAR (total[i]));
5252 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5253 max_live = max (nlive, max_live);
5254 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5255 max_zombies = max (nzombies, max_zombies);
5256 ++ngcs;
5258 #endif
5260 if (!NILP (Vpost_gc_hook))
5262 int count = inhibit_garbage_collection ();
5263 safe_run_hooks (Qpost_gc_hook);
5264 unbind_to (count, Qnil);
5267 /* Accumulate statistics. */
5268 EMACS_GET_TIME (t2);
5269 EMACS_SUB_TIME (t3, t2, t1);
5270 if (FLOATP (Vgc_elapsed))
5271 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5272 EMACS_SECS (t3) +
5273 EMACS_USECS (t3) * 1.0e-6);
5274 gcs_done++;
5276 return Flist (sizeof total / sizeof *total, total);
5280 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5281 only interesting objects referenced from glyphs are strings. */
5283 static void
5284 mark_glyph_matrix (matrix)
5285 struct glyph_matrix *matrix;
5287 struct glyph_row *row = matrix->rows;
5288 struct glyph_row *end = row + matrix->nrows;
5290 for (; row < end; ++row)
5291 if (row->enabled_p)
5293 int area;
5294 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5296 struct glyph *glyph = row->glyphs[area];
5297 struct glyph *end_glyph = glyph + row->used[area];
5299 for (; glyph < end_glyph; ++glyph)
5300 if (STRINGP (glyph->object)
5301 && !STRING_MARKED_P (XSTRING (glyph->object)))
5302 mark_object (glyph->object);
5308 /* Mark Lisp faces in the face cache C. */
5310 static void
5311 mark_face_cache (c)
5312 struct face_cache *c;
5314 if (c)
5316 int i, j;
5317 for (i = 0; i < c->used; ++i)
5319 struct face *face = FACE_FROM_ID (c->f, i);
5321 if (face)
5323 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5324 mark_object (face->lface[j]);
5332 /* Mark reference to a Lisp_Object.
5333 If the object referred to has not been seen yet, recursively mark
5334 all the references contained in it. */
5336 #define LAST_MARKED_SIZE 500
5337 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5338 int last_marked_index;
5340 /* For debugging--call abort when we cdr down this many
5341 links of a list, in mark_object. In debugging,
5342 the call to abort will hit a breakpoint.
5343 Normally this is zero and the check never goes off. */
5344 static int mark_object_loop_halt;
5346 /* Return non-zero if the object was not yet marked. */
5347 static int
5348 mark_vectorlike (ptr)
5349 struct Lisp_Vector *ptr;
5351 register EMACS_INT size = ptr->size;
5352 register int i;
5354 if (VECTOR_MARKED_P (ptr))
5355 return 0; /* Already marked */
5356 VECTOR_MARK (ptr); /* Else mark it */
5357 if (size & PSEUDOVECTOR_FLAG)
5358 size &= PSEUDOVECTOR_SIZE_MASK;
5360 /* Note that this size is not the memory-footprint size, but only
5361 the number of Lisp_Object fields that we should trace.
5362 The distinction is used e.g. by Lisp_Process which places extra
5363 non-Lisp_Object fields at the end of the structure. */
5364 for (i = 0; i < size; i++) /* and then mark its elements */
5365 mark_object (ptr->contents[i]);
5366 return 1;
5369 void
5370 mark_object (arg)
5371 Lisp_Object arg;
5373 register Lisp_Object obj = arg;
5374 #ifdef GC_CHECK_MARKED_OBJECTS
5375 void *po;
5376 struct mem_node *m;
5377 #endif
5378 int cdr_count = 0;
5380 loop:
5382 if (PURE_POINTER_P (XPNTR (obj)))
5383 return;
5385 last_marked[last_marked_index++] = obj;
5386 if (last_marked_index == LAST_MARKED_SIZE)
5387 last_marked_index = 0;
5389 /* Perform some sanity checks on the objects marked here. Abort if
5390 we encounter an object we know is bogus. This increases GC time
5391 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5392 #ifdef GC_CHECK_MARKED_OBJECTS
5394 po = (void *) XPNTR (obj);
5396 /* Check that the object pointed to by PO is known to be a Lisp
5397 structure allocated from the heap. */
5398 #define CHECK_ALLOCATED() \
5399 do { \
5400 m = mem_find (po); \
5401 if (m == MEM_NIL) \
5402 abort (); \
5403 } while (0)
5405 /* Check that the object pointed to by PO is live, using predicate
5406 function LIVEP. */
5407 #define CHECK_LIVE(LIVEP) \
5408 do { \
5409 if (!LIVEP (m, po)) \
5410 abort (); \
5411 } while (0)
5413 /* Check both of the above conditions. */
5414 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5415 do { \
5416 CHECK_ALLOCATED (); \
5417 CHECK_LIVE (LIVEP); \
5418 } while (0) \
5420 #else /* not GC_CHECK_MARKED_OBJECTS */
5422 #define CHECK_ALLOCATED() (void) 0
5423 #define CHECK_LIVE(LIVEP) (void) 0
5424 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5426 #endif /* not GC_CHECK_MARKED_OBJECTS */
5428 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5430 case Lisp_String:
5432 register struct Lisp_String *ptr = XSTRING (obj);
5433 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5434 MARK_INTERVAL_TREE (ptr->intervals);
5435 MARK_STRING (ptr);
5436 #ifdef GC_CHECK_STRING_BYTES
5437 /* Check that the string size recorded in the string is the
5438 same as the one recorded in the sdata structure. */
5439 CHECK_STRING_BYTES (ptr);
5440 #endif /* GC_CHECK_STRING_BYTES */
5442 break;
5444 case Lisp_Vectorlike:
5445 #ifdef GC_CHECK_MARKED_OBJECTS
5446 m = mem_find (po);
5447 if (m == MEM_NIL && !SUBRP (obj)
5448 && po != &buffer_defaults
5449 && po != &buffer_local_symbols)
5450 abort ();
5451 #endif /* GC_CHECK_MARKED_OBJECTS */
5453 if (BUFFERP (obj))
5455 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5457 #ifdef GC_CHECK_MARKED_OBJECTS
5458 if (po != &buffer_defaults && po != &buffer_local_symbols)
5460 struct buffer *b;
5461 for (b = all_buffers; b && b != po; b = b->next)
5463 if (b == NULL)
5464 abort ();
5466 #endif /* GC_CHECK_MARKED_OBJECTS */
5467 mark_buffer (obj);
5470 else if (SUBRP (obj))
5471 break;
5472 else if (COMPILEDP (obj))
5473 /* We could treat this just like a vector, but it is better to
5474 save the COMPILED_CONSTANTS element for last and avoid
5475 recursion there. */
5477 register struct Lisp_Vector *ptr = XVECTOR (obj);
5478 register EMACS_INT size = ptr->size;
5479 register int i;
5481 if (VECTOR_MARKED_P (ptr))
5482 break; /* Already marked */
5484 CHECK_LIVE (live_vector_p);
5485 VECTOR_MARK (ptr); /* Else mark it */
5486 size &= PSEUDOVECTOR_SIZE_MASK;
5487 for (i = 0; i < size; i++) /* and then mark its elements */
5489 if (i != COMPILED_CONSTANTS)
5490 mark_object (ptr->contents[i]);
5492 obj = ptr->contents[COMPILED_CONSTANTS];
5493 goto loop;
5495 else if (FRAMEP (obj))
5497 register struct frame *ptr = XFRAME (obj);
5498 if (mark_vectorlike (XVECTOR (obj)))
5499 mark_face_cache (ptr->face_cache);
5501 else if (WINDOWP (obj))
5503 register struct Lisp_Vector *ptr = XVECTOR (obj);
5504 struct window *w = XWINDOW (obj);
5505 if (mark_vectorlike (ptr))
5507 /* Mark glyphs for leaf windows. Marking window matrices is
5508 sufficient because frame matrices use the same glyph
5509 memory. */
5510 if (NILP (w->hchild)
5511 && NILP (w->vchild)
5512 && w->current_matrix)
5514 mark_glyph_matrix (w->current_matrix);
5515 mark_glyph_matrix (w->desired_matrix);
5519 else if (HASH_TABLE_P (obj))
5521 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5522 if (mark_vectorlike ((struct Lisp_Vector *)h))
5523 { /* If hash table is not weak, mark all keys and values.
5524 For weak tables, mark only the vector. */
5525 if (NILP (h->weak))
5526 mark_object (h->key_and_value);
5527 else
5528 VECTOR_MARK (XVECTOR (h->key_and_value));
5531 else
5532 mark_vectorlike (XVECTOR (obj));
5533 break;
5535 case Lisp_Symbol:
5537 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5538 struct Lisp_Symbol *ptrx;
5540 if (ptr->gcmarkbit) break;
5541 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5542 ptr->gcmarkbit = 1;
5543 mark_object (ptr->value);
5544 mark_object (ptr->function);
5545 mark_object (ptr->plist);
5547 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5548 MARK_STRING (XSTRING (ptr->xname));
5549 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5551 /* Note that we do not mark the obarray of the symbol.
5552 It is safe not to do so because nothing accesses that
5553 slot except to check whether it is nil. */
5554 ptr = ptr->next;
5555 if (ptr)
5557 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5558 XSETSYMBOL (obj, ptrx);
5559 goto loop;
5562 break;
5564 case Lisp_Misc:
5565 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5566 if (XMISCANY (obj)->gcmarkbit)
5567 break;
5568 XMISCANY (obj)->gcmarkbit = 1;
5570 switch (XMISCTYPE (obj))
5572 case Lisp_Misc_Buffer_Local_Value:
5574 register struct Lisp_Buffer_Local_Value *ptr
5575 = XBUFFER_LOCAL_VALUE (obj);
5576 /* If the cdr is nil, avoid recursion for the car. */
5577 if (EQ (ptr->cdr, Qnil))
5579 obj = ptr->realvalue;
5580 goto loop;
5582 mark_object (ptr->realvalue);
5583 mark_object (ptr->buffer);
5584 mark_object (ptr->frame);
5585 obj = ptr->cdr;
5586 goto loop;
5589 case Lisp_Misc_Marker:
5590 /* DO NOT mark thru the marker's chain.
5591 The buffer's markers chain does not preserve markers from gc;
5592 instead, markers are removed from the chain when freed by gc. */
5593 break;
5595 case Lisp_Misc_Intfwd:
5596 case Lisp_Misc_Boolfwd:
5597 case Lisp_Misc_Objfwd:
5598 case Lisp_Misc_Buffer_Objfwd:
5599 case Lisp_Misc_Kboard_Objfwd:
5600 /* Don't bother with Lisp_Buffer_Objfwd,
5601 since all markable slots in current buffer marked anyway. */
5602 /* Don't need to do Lisp_Objfwd, since the places they point
5603 are protected with staticpro. */
5604 break;
5606 case Lisp_Misc_Save_Value:
5607 #if GC_MARK_STACK
5609 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5610 /* If DOGC is set, POINTER is the address of a memory
5611 area containing INTEGER potential Lisp_Objects. */
5612 if (ptr->dogc)
5614 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5615 int nelt;
5616 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5617 mark_maybe_object (*p);
5620 #endif
5621 break;
5623 case Lisp_Misc_Overlay:
5625 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5626 mark_object (ptr->start);
5627 mark_object (ptr->end);
5628 mark_object (ptr->plist);
5629 if (ptr->next)
5631 XSETMISC (obj, ptr->next);
5632 goto loop;
5635 break;
5637 default:
5638 abort ();
5640 break;
5642 case Lisp_Cons:
5644 register struct Lisp_Cons *ptr = XCONS (obj);
5645 if (CONS_MARKED_P (ptr)) break;
5646 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5647 CONS_MARK (ptr);
5648 /* If the cdr is nil, avoid recursion for the car. */
5649 if (EQ (ptr->u.cdr, Qnil))
5651 obj = ptr->car;
5652 cdr_count = 0;
5653 goto loop;
5655 mark_object (ptr->car);
5656 obj = ptr->u.cdr;
5657 cdr_count++;
5658 if (cdr_count == mark_object_loop_halt)
5659 abort ();
5660 goto loop;
5663 case Lisp_Float:
5664 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5665 FLOAT_MARK (XFLOAT (obj));
5666 break;
5668 case Lisp_Int:
5669 break;
5671 default:
5672 abort ();
5675 #undef CHECK_LIVE
5676 #undef CHECK_ALLOCATED
5677 #undef CHECK_ALLOCATED_AND_LIVE
5680 /* Mark the pointers in a buffer structure. */
5682 static void
5683 mark_buffer (buf)
5684 Lisp_Object buf;
5686 register struct buffer *buffer = XBUFFER (buf);
5687 register Lisp_Object *ptr, tmp;
5688 Lisp_Object base_buffer;
5690 VECTOR_MARK (buffer);
5692 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5694 /* For now, we just don't mark the undo_list. It's done later in
5695 a special way just before the sweep phase, and after stripping
5696 some of its elements that are not needed any more. */
5698 if (buffer->overlays_before)
5700 XSETMISC (tmp, buffer->overlays_before);
5701 mark_object (tmp);
5703 if (buffer->overlays_after)
5705 XSETMISC (tmp, buffer->overlays_after);
5706 mark_object (tmp);
5709 /* buffer-local Lisp variables start at `undo_list',
5710 tho only the ones from `name' on are GC'd normally. */
5711 for (ptr = &buffer->name;
5712 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5713 ptr++)
5714 mark_object (*ptr);
5716 /* If this is an indirect buffer, mark its base buffer. */
5717 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5719 XSETBUFFER (base_buffer, buffer->base_buffer);
5720 mark_buffer (base_buffer);
5724 /* Mark the Lisp pointers in the terminal objects.
5725 Called by the Fgarbage_collector. */
5727 static void
5728 mark_terminals (void)
5730 struct terminal *t;
5731 for (t = terminal_list; t; t = t->next_terminal)
5733 eassert (t->name != NULL);
5734 #ifdef HAVE_WINDOW_SYSTEM
5735 mark_image_cache (t->image_cache);
5736 #endif /* HAVE_WINDOW_SYSTEM */
5737 mark_vectorlike ((struct Lisp_Vector *)t);
5743 /* Value is non-zero if OBJ will survive the current GC because it's
5744 either marked or does not need to be marked to survive. */
5747 survives_gc_p (obj)
5748 Lisp_Object obj;
5750 int survives_p;
5752 switch (XTYPE (obj))
5754 case Lisp_Int:
5755 survives_p = 1;
5756 break;
5758 case Lisp_Symbol:
5759 survives_p = XSYMBOL (obj)->gcmarkbit;
5760 break;
5762 case Lisp_Misc:
5763 survives_p = XMISCANY (obj)->gcmarkbit;
5764 break;
5766 case Lisp_String:
5767 survives_p = STRING_MARKED_P (XSTRING (obj));
5768 break;
5770 case Lisp_Vectorlike:
5771 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5772 break;
5774 case Lisp_Cons:
5775 survives_p = CONS_MARKED_P (XCONS (obj));
5776 break;
5778 case Lisp_Float:
5779 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5780 break;
5782 default:
5783 abort ();
5786 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5791 /* Sweep: find all structures not marked, and free them. */
5793 static void
5794 gc_sweep ()
5796 /* Remove or mark entries in weak hash tables.
5797 This must be done before any object is unmarked. */
5798 sweep_weak_hash_tables ();
5800 sweep_strings ();
5801 #ifdef GC_CHECK_STRING_BYTES
5802 if (!noninteractive)
5803 check_string_bytes (1);
5804 #endif
5806 /* Put all unmarked conses on free list */
5808 register struct cons_block *cblk;
5809 struct cons_block **cprev = &cons_block;
5810 register int lim = cons_block_index;
5811 register int num_free = 0, num_used = 0;
5813 cons_free_list = 0;
5815 for (cblk = cons_block; cblk; cblk = *cprev)
5817 register int i = 0;
5818 int this_free = 0;
5819 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5821 /* Scan the mark bits an int at a time. */
5822 for (i = 0; i <= ilim; i++)
5824 if (cblk->gcmarkbits[i] == -1)
5826 /* Fast path - all cons cells for this int are marked. */
5827 cblk->gcmarkbits[i] = 0;
5828 num_used += BITS_PER_INT;
5830 else
5832 /* Some cons cells for this int are not marked.
5833 Find which ones, and free them. */
5834 int start, pos, stop;
5836 start = i * BITS_PER_INT;
5837 stop = lim - start;
5838 if (stop > BITS_PER_INT)
5839 stop = BITS_PER_INT;
5840 stop += start;
5842 for (pos = start; pos < stop; pos++)
5844 if (!CONS_MARKED_P (&cblk->conses[pos]))
5846 this_free++;
5847 cblk->conses[pos].u.chain = cons_free_list;
5848 cons_free_list = &cblk->conses[pos];
5849 #if GC_MARK_STACK
5850 cons_free_list->car = Vdead;
5851 #endif
5853 else
5855 num_used++;
5856 CONS_UNMARK (&cblk->conses[pos]);
5862 lim = CONS_BLOCK_SIZE;
5863 /* If this block contains only free conses and we have already
5864 seen more than two blocks worth of free conses then deallocate
5865 this block. */
5866 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5868 *cprev = cblk->next;
5869 /* Unhook from the free list. */
5870 cons_free_list = cblk->conses[0].u.chain;
5871 lisp_align_free (cblk);
5872 n_cons_blocks--;
5874 else
5876 num_free += this_free;
5877 cprev = &cblk->next;
5880 total_conses = num_used;
5881 total_free_conses = num_free;
5884 /* Put all unmarked floats on free list */
5886 register struct float_block *fblk;
5887 struct float_block **fprev = &float_block;
5888 register int lim = float_block_index;
5889 register int num_free = 0, num_used = 0;
5891 float_free_list = 0;
5893 for (fblk = float_block; fblk; fblk = *fprev)
5895 register int i;
5896 int this_free = 0;
5897 for (i = 0; i < lim; i++)
5898 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5900 this_free++;
5901 fblk->floats[i].u.chain = float_free_list;
5902 float_free_list = &fblk->floats[i];
5904 else
5906 num_used++;
5907 FLOAT_UNMARK (&fblk->floats[i]);
5909 lim = FLOAT_BLOCK_SIZE;
5910 /* If this block contains only free floats and we have already
5911 seen more than two blocks worth of free floats then deallocate
5912 this block. */
5913 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5915 *fprev = fblk->next;
5916 /* Unhook from the free list. */
5917 float_free_list = fblk->floats[0].u.chain;
5918 lisp_align_free (fblk);
5919 n_float_blocks--;
5921 else
5923 num_free += this_free;
5924 fprev = &fblk->next;
5927 total_floats = num_used;
5928 total_free_floats = num_free;
5931 /* Put all unmarked intervals on free list */
5933 register struct interval_block *iblk;
5934 struct interval_block **iprev = &interval_block;
5935 register int lim = interval_block_index;
5936 register int num_free = 0, num_used = 0;
5938 interval_free_list = 0;
5940 for (iblk = interval_block; iblk; iblk = *iprev)
5942 register int i;
5943 int this_free = 0;
5945 for (i = 0; i < lim; i++)
5947 if (!iblk->intervals[i].gcmarkbit)
5949 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5950 interval_free_list = &iblk->intervals[i];
5951 this_free++;
5953 else
5955 num_used++;
5956 iblk->intervals[i].gcmarkbit = 0;
5959 lim = INTERVAL_BLOCK_SIZE;
5960 /* If this block contains only free intervals and we have already
5961 seen more than two blocks worth of free intervals then
5962 deallocate this block. */
5963 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5965 *iprev = iblk->next;
5966 /* Unhook from the free list. */
5967 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5968 lisp_free (iblk);
5969 n_interval_blocks--;
5971 else
5973 num_free += this_free;
5974 iprev = &iblk->next;
5977 total_intervals = num_used;
5978 total_free_intervals = num_free;
5981 /* Put all unmarked symbols on free list */
5983 register struct symbol_block *sblk;
5984 struct symbol_block **sprev = &symbol_block;
5985 register int lim = symbol_block_index;
5986 register int num_free = 0, num_used = 0;
5988 symbol_free_list = NULL;
5990 for (sblk = symbol_block; sblk; sblk = *sprev)
5992 int this_free = 0;
5993 struct Lisp_Symbol *sym = sblk->symbols;
5994 struct Lisp_Symbol *end = sym + lim;
5996 for (; sym < end; ++sym)
5998 /* Check if the symbol was created during loadup. In such a case
5999 it might be pointed to by pure bytecode which we don't trace,
6000 so we conservatively assume that it is live. */
6001 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6003 if (!sym->gcmarkbit && !pure_p)
6005 sym->next = symbol_free_list;
6006 symbol_free_list = sym;
6007 #if GC_MARK_STACK
6008 symbol_free_list->function = Vdead;
6009 #endif
6010 ++this_free;
6012 else
6014 ++num_used;
6015 if (!pure_p)
6016 UNMARK_STRING (XSTRING (sym->xname));
6017 sym->gcmarkbit = 0;
6021 lim = SYMBOL_BLOCK_SIZE;
6022 /* If this block contains only free symbols and we have already
6023 seen more than two blocks worth of free symbols then deallocate
6024 this block. */
6025 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6027 *sprev = sblk->next;
6028 /* Unhook from the free list. */
6029 symbol_free_list = sblk->symbols[0].next;
6030 lisp_free (sblk);
6031 n_symbol_blocks--;
6033 else
6035 num_free += this_free;
6036 sprev = &sblk->next;
6039 total_symbols = num_used;
6040 total_free_symbols = num_free;
6043 /* Put all unmarked misc's on free list.
6044 For a marker, first unchain it from the buffer it points into. */
6046 register struct marker_block *mblk;
6047 struct marker_block **mprev = &marker_block;
6048 register int lim = marker_block_index;
6049 register int num_free = 0, num_used = 0;
6051 marker_free_list = 0;
6053 for (mblk = marker_block; mblk; mblk = *mprev)
6055 register int i;
6056 int this_free = 0;
6058 for (i = 0; i < lim; i++)
6060 if (!mblk->markers[i].u_any.gcmarkbit)
6062 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6063 unchain_marker (&mblk->markers[i].u_marker);
6064 /* Set the type of the freed object to Lisp_Misc_Free.
6065 We could leave the type alone, since nobody checks it,
6066 but this might catch bugs faster. */
6067 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6068 mblk->markers[i].u_free.chain = marker_free_list;
6069 marker_free_list = &mblk->markers[i];
6070 this_free++;
6072 else
6074 num_used++;
6075 mblk->markers[i].u_any.gcmarkbit = 0;
6078 lim = MARKER_BLOCK_SIZE;
6079 /* If this block contains only free markers and we have already
6080 seen more than two blocks worth of free markers then deallocate
6081 this block. */
6082 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6084 *mprev = mblk->next;
6085 /* Unhook from the free list. */
6086 marker_free_list = mblk->markers[0].u_free.chain;
6087 lisp_free (mblk);
6088 n_marker_blocks--;
6090 else
6092 num_free += this_free;
6093 mprev = &mblk->next;
6097 total_markers = num_used;
6098 total_free_markers = num_free;
6101 /* Free all unmarked buffers */
6103 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6105 while (buffer)
6106 if (!VECTOR_MARKED_P (buffer))
6108 if (prev)
6109 prev->next = buffer->next;
6110 else
6111 all_buffers = buffer->next;
6112 next = buffer->next;
6113 lisp_free (buffer);
6114 buffer = next;
6116 else
6118 VECTOR_UNMARK (buffer);
6119 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6120 prev = buffer, buffer = buffer->next;
6124 /* Free all unmarked vectors */
6126 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6127 total_vector_size = 0;
6129 while (vector)
6130 if (!VECTOR_MARKED_P (vector))
6132 if (prev)
6133 prev->next = vector->next;
6134 else
6135 all_vectors = vector->next;
6136 next = vector->next;
6137 lisp_free (vector);
6138 n_vectors--;
6139 vector = next;
6142 else
6144 VECTOR_UNMARK (vector);
6145 if (vector->size & PSEUDOVECTOR_FLAG)
6146 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6147 else
6148 total_vector_size += vector->size;
6149 prev = vector, vector = vector->next;
6153 #ifdef GC_CHECK_STRING_BYTES
6154 if (!noninteractive)
6155 check_string_bytes (1);
6156 #endif
6162 /* Debugging aids. */
6164 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6165 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6166 This may be helpful in debugging Emacs's memory usage.
6167 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6170 Lisp_Object end;
6172 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6174 return end;
6177 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6178 doc: /* Return a list of counters that measure how much consing there has been.
6179 Each of these counters increments for a certain kind of object.
6180 The counters wrap around from the largest positive integer to zero.
6181 Garbage collection does not decrease them.
6182 The elements of the value are as follows:
6183 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6184 All are in units of 1 = one object consed
6185 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6186 objects consed.
6187 MISCS include overlays, markers, and some internal types.
6188 Frames, windows, buffers, and subprocesses count as vectors
6189 (but the contents of a buffer's text do not count here). */)
6192 Lisp_Object consed[8];
6194 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6195 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6196 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6197 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6198 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6199 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6200 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6201 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6203 return Flist (8, consed);
6206 int suppress_checking;
6208 void
6209 die (msg, file, line)
6210 const char *msg;
6211 const char *file;
6212 int line;
6214 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6215 file, line, msg);
6216 abort ();
6219 /* Initialization */
6221 void
6222 init_alloc_once ()
6224 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6225 purebeg = PUREBEG;
6226 pure_size = PURESIZE;
6227 pure_bytes_used = 0;
6228 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6229 pure_bytes_used_before_overflow = 0;
6231 /* Initialize the list of free aligned blocks. */
6232 free_ablock = NULL;
6234 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6235 mem_init ();
6236 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6237 #endif
6239 all_vectors = 0;
6240 ignore_warnings = 1;
6241 #ifdef DOUG_LEA_MALLOC
6242 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6243 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6244 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6245 #endif
6246 init_strings ();
6247 init_cons ();
6248 init_symbol ();
6249 init_marker ();
6250 init_float ();
6251 init_intervals ();
6252 init_weak_hash_tables ();
6254 #ifdef REL_ALLOC
6255 malloc_hysteresis = 32;
6256 #else
6257 malloc_hysteresis = 0;
6258 #endif
6260 refill_memory_reserve ();
6262 ignore_warnings = 0;
6263 gcprolist = 0;
6264 byte_stack_list = 0;
6265 staticidx = 0;
6266 consing_since_gc = 0;
6267 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6268 gc_relative_threshold = 0;
6270 #ifdef VIRT_ADDR_VARIES
6271 malloc_sbrk_unused = 1<<22; /* A large number */
6272 malloc_sbrk_used = 100000; /* as reasonable as any number */
6273 #endif /* VIRT_ADDR_VARIES */
6276 void
6277 init_alloc ()
6279 gcprolist = 0;
6280 byte_stack_list = 0;
6281 #if GC_MARK_STACK
6282 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6283 setjmp_tested_p = longjmps_done = 0;
6284 #endif
6285 #endif
6286 Vgc_elapsed = make_float (0.0);
6287 gcs_done = 0;
6290 void
6291 syms_of_alloc ()
6293 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6294 doc: /* *Number of bytes of consing between garbage collections.
6295 Garbage collection can happen automatically once this many bytes have been
6296 allocated since the last garbage collection. All data types count.
6298 Garbage collection happens automatically only when `eval' is called.
6300 By binding this temporarily to a large number, you can effectively
6301 prevent garbage collection during a part of the program.
6302 See also `gc-cons-percentage'. */);
6304 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6305 doc: /* *Portion of the heap used for allocation.
6306 Garbage collection can happen automatically once this portion of the heap
6307 has been allocated since the last garbage collection.
6308 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6309 Vgc_cons_percentage = make_float (0.1);
6311 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6312 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6314 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6315 doc: /* Number of cons cells that have been consed so far. */);
6317 DEFVAR_INT ("floats-consed", &floats_consed,
6318 doc: /* Number of floats that have been consed so far. */);
6320 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6321 doc: /* Number of vector cells that have been consed so far. */);
6323 DEFVAR_INT ("symbols-consed", &symbols_consed,
6324 doc: /* Number of symbols that have been consed so far. */);
6326 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6327 doc: /* Number of string characters that have been consed so far. */);
6329 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6330 doc: /* Number of miscellaneous objects that have been consed so far. */);
6332 DEFVAR_INT ("intervals-consed", &intervals_consed,
6333 doc: /* Number of intervals that have been consed so far. */);
6335 DEFVAR_INT ("strings-consed", &strings_consed,
6336 doc: /* Number of strings that have been consed so far. */);
6338 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6339 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6340 This means that certain objects should be allocated in shared (pure) space. */);
6342 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6343 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6344 garbage_collection_messages = 0;
6346 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6347 doc: /* Hook run after garbage collection has finished. */);
6348 Vpost_gc_hook = Qnil;
6349 Qpost_gc_hook = intern ("post-gc-hook");
6350 staticpro (&Qpost_gc_hook);
6352 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6353 doc: /* Precomputed `signal' argument for memory-full error. */);
6354 /* We build this in advance because if we wait until we need it, we might
6355 not be able to allocate the memory to hold it. */
6356 Vmemory_signal_data
6357 = list2 (Qerror,
6358 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6360 DEFVAR_LISP ("memory-full", &Vmemory_full,
6361 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6362 Vmemory_full = Qnil;
6364 staticpro (&Qgc_cons_threshold);
6365 Qgc_cons_threshold = intern ("gc-cons-threshold");
6367 staticpro (&Qchar_table_extra_slots);
6368 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6370 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6371 doc: /* Accumulated time elapsed in garbage collections.
6372 The time is in seconds as a floating point value. */);
6373 DEFVAR_INT ("gcs-done", &gcs_done,
6374 doc: /* Accumulated number of garbage collections done. */);
6376 defsubr (&Scons);
6377 defsubr (&Slist);
6378 defsubr (&Svector);
6379 defsubr (&Smake_byte_code);
6380 defsubr (&Smake_list);
6381 defsubr (&Smake_vector);
6382 defsubr (&Smake_string);
6383 defsubr (&Smake_bool_vector);
6384 defsubr (&Smake_symbol);
6385 defsubr (&Smake_marker);
6386 defsubr (&Spurecopy);
6387 defsubr (&Sgarbage_collect);
6388 defsubr (&Smemory_limit);
6389 defsubr (&Smemory_use_counts);
6391 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6392 defsubr (&Sgc_status);
6393 #endif
6396 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6397 (do not change this comment) */