Remove old cl-assert calls in 'newline'
[emacs.git] / src / alloc.c
blob87e9ef0059baf981b5b5767995bf8b6d43beb31d
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
84 #endif
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
88 marked objects. */
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
93 #endif
95 #include <unistd.h>
96 #include <fcntl.h>
98 #ifdef USE_GTK
99 # include "gtkutil.h"
100 #endif
101 #ifdef WINDOWSNT
102 #include "w32.h"
103 #include "w32heap.h" /* for sbrk */
104 #endif
106 #ifdef GNU_LINUX
107 /* The address where the heap starts. */
108 void *
109 my_heap_start (void)
111 static void *start;
112 if (! start)
113 start = sbrk (0);
114 return start;
116 #endif
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
132 static void
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking;
137 if (! initialized)
139 #ifdef GNU_LINUX
140 my_heap_start ();
141 #endif
142 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 else
146 if (!malloc_using_checking)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
151 char **p = environ;
152 if (p)
153 for (; *p; p++)
154 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
157 *p = p[1];
158 while (*++p);
160 break;
164 if (malloc_set_state (malloc_state_ptr) != 0)
165 emacs_abort ();
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
176 # endif
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook;
180 #endif
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
186 void
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr = malloc_get_state ();
191 if (!malloc_state_ptr)
192 fatal ("malloc_get_state: %s", strerror (errno));
193 # endif
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec = true;
196 # endif
199 void
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr);
204 # endif
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec = false;
207 # endif
209 #endif
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold;
242 /* True during GC. */
244 bool gc_in_progress;
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
249 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
250 static EMACS_INT total_free_floats, total_floats;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg;
275 static ptrdiff_t pure_size;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp;
290 /* If nonzero, this is a warning delivered by malloc and not yet
291 displayed. */
293 const char *pending_malloc_warning;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
298 #endif
299 #endif
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object;
309 void *backtrace[128];
311 static void *suspicious_objects[32];
312 static int suspicious_object_index;
313 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
314 static int suspicious_free_history_index;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin, void *end);
318 static void detect_suspicious_free (void *ptr);
319 #else
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
322 #endif
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
328 #endif
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy;
334 static ptrdiff_t stack_copy_size;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest, void const *src, size_t size)
342 if (! ADDRESS_SANITIZER)
343 return memcpy (dest, src, size);
344 else
346 size_t i;
347 char *d = dest;
348 char const *s = src;
349 for (i = 0; i < size; i++)
350 d[i] = s[i];
351 return dest;
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer *);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
364 #endif
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
373 enum mem_type
375 MEM_TYPE_NON_LISP,
376 MEM_TYPE_BUFFER,
377 MEM_TYPE_CONS,
378 MEM_TYPE_STRING,
379 MEM_TYPE_MISC,
380 MEM_TYPE_SYMBOL,
381 MEM_TYPE_FLOAT,
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
385 MEM_TYPE_VECTORLIKE,
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK,
388 /* Special type to denote reserved memory. */
389 MEM_TYPE_SPARE
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
407 is freed.
409 A red-black tree is a balanced binary tree with the following
410 properties:
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
426 describe them. */
428 struct mem_node
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node *left, *right;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node *parent;
437 /* Start and end of allocated region. */
438 void *start, *end;
440 /* Node color. */
441 enum {MEM_BLACK, MEM_RED} color;
443 /* Memory type. */
444 enum mem_type type;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node *mem_root;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address, *max_heap_address;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z;
458 #define MEM_NIL &mem_z
460 static struct mem_node *mem_insert (void *, void *, enum mem_type);
461 static void mem_insert_fixup (struct mem_node *);
462 static void mem_rotate_left (struct mem_node *);
463 static void mem_rotate_right (struct mem_node *);
464 static void mem_delete (struct mem_node *);
465 static void mem_delete_fixup (struct mem_node *);
466 static struct mem_node *mem_find (void *);
468 #ifndef DEADP
469 # define DEADP(x) 0
470 #endif
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS = 2048 };
476 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
491 power of 2. */
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
499 static void *
500 pointer_align (void *ptr, int alignment)
502 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
529 static ATTRIBUTE_UNUSED void *
530 XPNTR (Lisp_Object a)
532 return macro_XPNTR (a);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
538 #endif
540 static void
541 XFLOAT_INIT (Lisp_Object f, double n)
543 XFLOAT (f)->u.data = n;
546 #ifdef DOUG_LEA_MALLOC
547 static bool
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
553 static bool
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
560 regions. */
561 return pointers_fit_in_lispobj_p () && !might_dump;
563 #endif
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers;
575 /************************************************************************
576 Malloc
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
583 void
584 malloc_warning (const char *str)
586 pending_malloc_warning = str;
589 #endif
591 /* Display an already-pending malloc warning. */
593 void
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
597 intern ("alloc"),
598 build_string (pending_malloc_warning),
599 intern ("emergency"));
600 pending_malloc_warning = 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
605 void
606 buffer_memory_full (ptrdiff_t nbytes)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
613 malloc. */
615 #ifndef REL_ALLOC
616 memory_full (nbytes);
617 #else
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil, Vmemory_signal_data);
621 #endif
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
632 #else
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
635 around each block.
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
678 static void
679 xmalloc_put_size (unsigned char *ptr, size_t size)
681 int i;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
684 *--ptr = size & ((1 << CHAR_BIT) - 1);
685 size >>= CHAR_BIT;
689 static size_t
690 xmalloc_get_size (unsigned char *ptr)
692 size_t size = 0;
693 int i;
694 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
695 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
697 size <<= CHAR_BIT;
698 size += *ptr++;
700 return size;
704 /* Like malloc, but wraps allocated block with header and trailer. */
706 static void *
707 overrun_check_malloc (size_t size)
709 register unsigned char *val;
710 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
711 emacs_abort ();
713 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
714 if (val)
716 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
717 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
718 xmalloc_put_size (val, size);
719 memcpy (val + size, xmalloc_overrun_check_trailer,
720 XMALLOC_OVERRUN_CHECK_SIZE);
722 return val;
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
729 static void *
730 overrun_check_realloc (void *block, size_t size)
732 register unsigned char *val = (unsigned char *) block;
733 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
734 emacs_abort ();
736 if (val
737 && memcmp (xmalloc_overrun_check_header,
738 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
739 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
741 size_t osize = xmalloc_get_size (val);
742 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
743 XMALLOC_OVERRUN_CHECK_SIZE))
744 emacs_abort ();
745 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
746 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
750 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 if (val)
754 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
755 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 xmalloc_put_size (val, size);
757 memcpy (val + size, xmalloc_overrun_check_trailer,
758 XMALLOC_OVERRUN_CHECK_SIZE);
760 return val;
763 /* Like free, but checks block for overrun. */
765 static void
766 overrun_check_free (void *block)
768 unsigned char *val = (unsigned char *) block;
770 if (val
771 && memcmp (xmalloc_overrun_check_header,
772 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
773 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
775 size_t osize = xmalloc_get_size (val);
776 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
777 XMALLOC_OVERRUN_CHECK_SIZE))
778 emacs_abort ();
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
781 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
782 #else
783 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
784 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
785 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
786 #endif
789 free (val);
792 #undef malloc
793 #undef realloc
794 #undef free
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
798 #endif
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
807 ugly head again. */
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
810 static void
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators)
814 block_input ();
816 static void
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators)
820 unblock_input ();
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
824 #else
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
827 #endif
829 #define MALLOC_PROBE(size) \
830 do { \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
833 } while (0)
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
840 void *
841 xmalloc (size_t size)
843 void *val;
845 MALLOC_BLOCK_INPUT;
846 val = lmalloc (size);
847 MALLOC_UNBLOCK_INPUT;
849 if (!val && size)
850 memory_full (size);
851 MALLOC_PROBE (size);
852 return val;
855 /* Like the above, but zeroes out the memory just allocated. */
857 void *
858 xzalloc (size_t size)
860 void *val;
862 MALLOC_BLOCK_INPUT;
863 val = lmalloc (size);
864 MALLOC_UNBLOCK_INPUT;
866 if (!val && size)
867 memory_full (size);
868 memset (val, 0, size);
869 MALLOC_PROBE (size);
870 return val;
873 /* Like realloc but check for no memory and block interrupt input.. */
875 void *
876 xrealloc (void *block, size_t size)
878 void *val;
880 MALLOC_BLOCK_INPUT;
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
883 if (! block)
884 val = lmalloc (size);
885 else
886 val = lrealloc (block, size);
887 MALLOC_UNBLOCK_INPUT;
889 if (!val && size)
890 memory_full (size);
891 MALLOC_PROBE (size);
892 return val;
896 /* Like free but block interrupt input. */
898 void
899 xfree (void *block)
901 if (!block)
902 return;
903 MALLOC_BLOCK_INPUT;
904 free (block);
905 MALLOC_UNBLOCK_INPUT;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
913 be safe. */
914 verify (INT_MAX <= PTRDIFF_MAX);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
920 void *
921 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
923 eassert (0 <= nitems && 0 < item_size);
924 ptrdiff_t nbytes;
925 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
926 memory_full (SIZE_MAX);
927 return xmalloc (nbytes);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
934 void *
935 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
937 eassert (0 <= nitems && 0 < item_size);
938 ptrdiff_t nbytes;
939 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
940 memory_full (SIZE_MAX);
941 return xrealloc (pa, nbytes);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
953 infinity.
955 If PA is null, then allocate a new array instead of reallocating
956 the old one.
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
960 return).
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
968 void *
969 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
970 ptrdiff_t nitems_max, ptrdiff_t item_size)
972 ptrdiff_t n0 = *nitems;
973 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
977 library malloc. */
978 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
985 ptrdiff_t n, nbytes;
986 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
987 n = PTRDIFF_MAX;
988 if (0 <= nitems_max && nitems_max < n)
989 n = nitems_max;
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
993 ? min (PTRDIFF_MAX, SIZE_MAX)
994 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
995 if (adjusted_nbytes)
997 n = adjusted_nbytes / item_size;
998 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
1001 if (! pa)
1002 *nitems = 0;
1003 if (n - n0 < nitems_incr_min
1004 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
1005 || (0 <= nitems_max && nitems_max < n)
1006 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1007 memory_full (SIZE_MAX);
1008 pa = xrealloc (pa, nbytes);
1009 *nitems = n;
1010 return pa;
1014 /* Like strdup, but uses xmalloc. */
1016 char *
1017 xstrdup (const char *s)
1019 ptrdiff_t size;
1020 eassert (s);
1021 size = strlen (s) + 1;
1022 return memcpy (xmalloc (size), s, size);
1025 /* Like above, but duplicates Lisp string to C string. */
1027 char *
1028 xlispstrdup (Lisp_Object string)
1030 ptrdiff_t size = SBYTES (string) + 1;
1031 return memcpy (xmalloc (size), SSDATA (string), size);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1037 fails. */
1039 void
1040 dupstring (char **ptr, char const *string)
1042 char *old = *ptr;
1043 *ptr = string ? xstrdup (string) : 0;
1044 xfree (old);
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1051 void
1052 xputenv (char const *string)
1054 if (putenv ((char *) string) != 0)
1055 memory_full (0);
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1060 void *
1061 record_xmalloc (size_t size)
1063 void *p = xmalloc (size);
1064 record_unwind_protect_ptr (xfree, p);
1065 return p;
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1073 #if ! USE_LSB_TAG
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1075 #endif
1077 static void *
1078 lisp_malloc (size_t nbytes, enum mem_type type)
1080 register void *val;
1082 MALLOC_BLOCK_INPUT;
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type = type;
1086 #endif
1088 val = lmalloc (nbytes);
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val && type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 XSETCONS (tem, (char *) val + nbytes - 1);
1098 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1100 lisp_malloc_loser = val;
1101 free (val);
1102 val = 0;
1105 #endif
1107 #ifndef GC_MALLOC_CHECK
1108 if (val && type != MEM_TYPE_NON_LISP)
1109 mem_insert (val, (char *) val + nbytes, type);
1110 #endif
1112 MALLOC_UNBLOCK_INPUT;
1113 if (!val && nbytes)
1114 memory_full (nbytes);
1115 MALLOC_PROBE (nbytes);
1116 return val;
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1122 static void
1123 lisp_free (void *block)
1125 MALLOC_BLOCK_INPUT;
1126 free (block);
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block));
1129 #endif
1130 MALLOC_UNBLOCK_INPUT;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1156 static void *
1157 aligned_alloc (size_t alignment, size_t size)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN % sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1163 verify (GCALIGNMENT % sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1165 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1167 void *p;
1168 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1170 # endif
1171 #endif
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1182 nothing else. */
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1192 struct ablock
1194 union
1196 char payload[BLOCK_BYTES];
1197 struct ablock *next_free;
1198 } x;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks *abase;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1213 #if BLOCK_PADDING
1214 char padding[BLOCK_PADDING];
1215 #endif
1218 /* A bunch of consecutive aligned blocks. */
1219 struct ablocks
1221 struct ablock blocks[ABLOCKS_SIZE];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1230 : (block)->abase)
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1238 #else
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1241 #endif
1243 /* The list of free ablock. */
1244 static struct ablock *free_ablock;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1249 static void *
1250 lisp_align_malloc (size_t nbytes, enum mem_type type)
1252 void *base, *val;
1253 struct ablocks *abase;
1255 eassert (nbytes <= BLOCK_BYTES);
1257 MALLOC_BLOCK_INPUT;
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type = type;
1261 #endif
1263 if (!free_ablock)
1265 int i;
1266 bool aligned;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX, 0);
1271 #endif
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1275 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1276 #else
1277 base = malloc (ABLOCKS_BYTES);
1278 abase = pointer_align (base, BLOCK_ALIGN);
1279 #endif
1281 if (base == 0)
1283 MALLOC_UNBLOCK_INPUT;
1284 memory_full (ABLOCKS_BYTES);
1287 aligned = (base == abase);
1288 if (!aligned)
1289 ((void **) abase)[-1] = base;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1294 #endif
1296 #if ! USE_LSB_TAG
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type != MEM_TYPE_NON_LISP)
1302 Lisp_Object tem;
1303 char *end = (char *) base + ABLOCKS_BYTES - 1;
1304 XSETCONS (tem, end);
1305 if ((char *) XCONS (tem) != end)
1307 lisp_malloc_loser = base;
1308 free (base);
1309 MALLOC_UNBLOCK_INPUT;
1310 memory_full (SIZE_MAX);
1313 #endif
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1319 abase->blocks[i].abase = abase;
1320 abase->blocks[i].x.next_free = free_ablock;
1321 free_ablock = &abase->blocks[i];
1323 intptr_t ialigned = aligned;
1324 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1326 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1327 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1329 eassert (ABLOCKS_BASE (abase) == base);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1333 abase = ABLOCK_ABASE (free_ablock);
1334 ABLOCKS_BUSY (abase)
1335 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1336 val = free_ablock;
1337 free_ablock = free_ablock->x.next_free;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type != MEM_TYPE_NON_LISP)
1341 mem_insert (val, (char *) val + nbytes, type);
1342 #endif
1344 MALLOC_UNBLOCK_INPUT;
1346 MALLOC_PROBE (nbytes);
1348 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1349 return val;
1352 static void
1353 lisp_align_free (void *block)
1355 struct ablock *ablock = block;
1356 struct ablocks *abase = ABLOCK_ABASE (ablock);
1358 MALLOC_BLOCK_INPUT;
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block));
1361 #endif
1362 /* Put on free list. */
1363 ablock->x.next_free = free_ablock;
1364 free_ablock = ablock;
1365 /* Update busy count. */
1366 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1367 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1368 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1370 if (busy < 2)
1371 { /* All the blocks are free. */
1372 int i = 0;
1373 bool aligned = busy;
1374 struct ablock **tem = &free_ablock;
1375 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1377 while (*tem)
1379 if (*tem >= (struct ablock *) abase && *tem < atop)
1381 i++;
1382 *tem = (*tem)->x.next_free;
1384 else
1385 tem = &(*tem)->x.next_free;
1387 eassert ((aligned & 1) == aligned);
1388 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1391 #endif
1392 free (ABLOCKS_BASE (abase));
1394 MALLOC_UNBLOCK_INPUT;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1399 #endif
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1417 static bool
1418 laligned (void *p, size_t size)
1420 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1421 || size % GCALIGNMENT != 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1440 static void *
1441 lmalloc (size_t size)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1445 return aligned_alloc (GCALIGNMENT, size);
1446 #endif
1448 while (true)
1450 void *p = malloc (size);
1451 if (laligned (p, size))
1452 return p;
1453 free (p);
1454 size_t bigger = size + GCALIGNMENT;
1455 if (size < bigger)
1456 size = bigger;
1460 static void *
1461 lrealloc (void *p, size_t size)
1463 while (true)
1465 p = realloc (p, size);
1466 if (laligned (p, size))
1467 return p;
1468 size_t bigger = size + GCALIGNMENT;
1469 if (size < bigger)
1470 size = bigger;
1475 /***********************************************************************
1476 Interval Allocation
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1486 structure. */
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals[INTERVAL_BLOCK_SIZE];
1492 struct interval_block *next;
1495 /* Current interval block. Its `next' pointer points to older
1496 blocks. */
1498 static struct interval_block *interval_block;
1500 /* Index in interval_block above of the next unused interval
1501 structure. */
1503 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals, total_intervals;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list;
1513 /* Return a new interval. */
1515 INTERVAL
1516 make_interval (void)
1518 INTERVAL val;
1520 MALLOC_BLOCK_INPUT;
1522 if (interval_free_list)
1524 val = interval_free_list;
1525 interval_free_list = INTERVAL_PARENT (interval_free_list);
1527 else
1529 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1531 struct interval_block *newi
1532 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1534 newi->next = interval_block;
1535 interval_block = newi;
1536 interval_block_index = 0;
1537 total_free_intervals += INTERVAL_BLOCK_SIZE;
1539 val = &interval_block->intervals[interval_block_index++];
1542 MALLOC_UNBLOCK_INPUT;
1544 consing_since_gc += sizeof (struct interval);
1545 intervals_consed++;
1546 total_free_intervals--;
1547 RESET_INTERVAL (val);
1548 val->gcmarkbit = 0;
1549 return val;
1553 /* Mark Lisp objects in interval I. */
1555 static void
1556 mark_interval (INTERVAL i, void *dummy)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i->gcmarkbit);
1561 i->gcmarkbit = 1;
1562 mark_object (i->plist);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1568 do { \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1571 } while (0)
1573 /***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The SDATA typedef is a struct or union describing string memory
1611 sub-allocated from an sblock. This is where the contents of Lisp
1612 strings are stored. */
1614 struct sdata
1616 /* Back-pointer to the string this sdata belongs to. If null, this
1617 structure is free, and NBYTES (in this structure or in the union below)
1618 contains the string's byte size (the same value that STRING_BYTES
1619 would return if STRING were non-null). If non-null, STRING_BYTES
1620 (STRING) is the size of the data, and DATA contains the string's
1621 contents. */
1622 struct Lisp_String *string;
1624 #ifdef GC_CHECK_STRING_BYTES
1625 ptrdiff_t nbytes;
1626 #endif
1628 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1631 #ifdef GC_CHECK_STRING_BYTES
1633 typedef struct sdata sdata;
1634 #define SDATA_NBYTES(S) (S)->nbytes
1635 #define SDATA_DATA(S) (S)->data
1637 #else
1639 typedef union
1641 struct Lisp_String *string;
1643 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1644 which has a flexible array member. However, if implemented by
1645 giving this union a member of type 'struct sdata', the union
1646 could not be the last (flexible) member of 'struct sblock',
1647 because C99 prohibits a flexible array member from having a type
1648 that is itself a flexible array. So, comment this member out here,
1649 but remember that the option's there when using this union. */
1650 #if 0
1651 struct sdata u;
1652 #endif
1654 /* When STRING is null. */
1655 struct
1657 struct Lisp_String *string;
1658 ptrdiff_t nbytes;
1659 } n;
1660 } sdata;
1662 #define SDATA_NBYTES(S) (S)->n.nbytes
1663 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1665 #endif /* not GC_CHECK_STRING_BYTES */
1667 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1669 /* Structure describing a block of memory which is sub-allocated to
1670 obtain string data memory for strings. Blocks for small strings
1671 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1672 as large as needed. */
1674 struct sblock
1676 /* Next in list. */
1677 struct sblock *next;
1679 /* Pointer to the next free sdata block. This points past the end
1680 of the sblock if there isn't any space left in this block. */
1681 sdata *next_free;
1683 /* String data. */
1684 sdata data[FLEXIBLE_ARRAY_MEMBER];
1687 /* Number of Lisp strings in a string_block structure. The 1020 is
1688 1024 minus malloc overhead. */
1690 #define STRING_BLOCK_SIZE \
1691 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1693 /* Structure describing a block from which Lisp_String structures
1694 are allocated. */
1696 struct string_block
1698 /* Place `strings' first, to preserve alignment. */
1699 struct Lisp_String strings[STRING_BLOCK_SIZE];
1700 struct string_block *next;
1703 /* Head and tail of the list of sblock structures holding Lisp string
1704 data. We always allocate from current_sblock. The NEXT pointers
1705 in the sblock structures go from oldest_sblock to current_sblock. */
1707 static struct sblock *oldest_sblock, *current_sblock;
1709 /* List of sblocks for large strings. */
1711 static struct sblock *large_sblocks;
1713 /* List of string_block structures. */
1715 static struct string_block *string_blocks;
1717 /* Free-list of Lisp_Strings. */
1719 static struct Lisp_String *string_free_list;
1721 /* Number of live and free Lisp_Strings. */
1723 static EMACS_INT total_strings, total_free_strings;
1725 /* Number of bytes used by live strings. */
1727 static EMACS_INT total_string_bytes;
1729 /* Given a pointer to a Lisp_String S which is on the free-list
1730 string_free_list, return a pointer to its successor in the
1731 free-list. */
1733 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1735 /* Return a pointer to the sdata structure belonging to Lisp string S.
1736 S must be live, i.e. S->data must not be null. S->data is actually
1737 a pointer to the `u.data' member of its sdata structure; the
1738 structure starts at a constant offset in front of that. */
1740 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1743 #ifdef GC_CHECK_STRING_OVERRUN
1745 /* We check for overrun in string data blocks by appending a small
1746 "cookie" after each allocated string data block, and check for the
1747 presence of this cookie during GC. */
1749 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1750 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1751 { '\xde', '\xad', '\xbe', '\xef' };
1753 #else
1754 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1755 #endif
1757 /* Value is the size of an sdata structure large enough to hold NBYTES
1758 bytes of string data. The value returned includes a terminating
1759 NUL byte, the size of the sdata structure, and padding. */
1761 #ifdef GC_CHECK_STRING_BYTES
1763 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, NBYTES)
1765 #else /* not GC_CHECK_STRING_BYTES */
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1770 because then the alignment code reserves enough space. */
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1777 + 1 \
1778 + FLEXALIGNOF (struct sdata) - 1) \
1779 & ~(FLEXALIGNOF (struct sdata) - 1))
1781 #endif /* not GC_CHECK_STRING_BYTES */
1783 /* Extra bytes to allocate for each string. */
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 static ptrdiff_t const STRING_BYTES_MAX =
1793 min (STRING_BYTES_BOUND,
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1795 - GC_STRING_EXTRA
1796 - offsetof (struct sblock, data)
1797 - SDATA_DATA_OFFSET)
1798 & ~(sizeof (EMACS_INT) - 1)));
1800 /* Initialize string allocation. Called from init_alloc_once. */
1802 static void
1803 init_strings (void)
1805 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1806 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1810 #ifdef GC_CHECK_STRING_BYTES
1812 static int check_string_bytes_count;
1814 /* Like STRING_BYTES, but with debugging check. Can be
1815 called during GC, so pay attention to the mark bit. */
1817 ptrdiff_t
1818 string_bytes (struct Lisp_String *s)
1820 ptrdiff_t nbytes =
1821 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1823 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1824 emacs_abort ();
1825 return nbytes;
1828 /* Check validity of Lisp strings' string_bytes member in B. */
1830 static void
1831 check_sblock (struct sblock *b)
1833 sdata *from, *end, *from_end;
1835 end = b->next_free;
1837 for (from = b->data; from < end; from = from_end)
1839 /* Compute the next FROM here because copying below may
1840 overwrite data we need to compute it. */
1841 ptrdiff_t nbytes;
1843 /* Check that the string size recorded in the string is the
1844 same as the one recorded in the sdata structure. */
1845 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1846 : SDATA_NBYTES (from));
1847 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1852 /* Check validity of Lisp strings' string_bytes member. ALL_P
1853 means check all strings, otherwise check only most
1854 recently allocated strings. Used for hunting a bug. */
1856 static void
1857 check_string_bytes (bool all_p)
1859 if (all_p)
1861 struct sblock *b;
1863 for (b = large_sblocks; b; b = b->next)
1865 struct Lisp_String *s = b->data[0].string;
1866 if (s)
1867 string_bytes (s);
1870 for (b = oldest_sblock; b; b = b->next)
1871 check_sblock (b);
1873 else if (current_sblock)
1874 check_sblock (current_sblock);
1877 #else /* not GC_CHECK_STRING_BYTES */
1879 #define check_string_bytes(all) ((void) 0)
1881 #endif /* GC_CHECK_STRING_BYTES */
1883 #ifdef GC_CHECK_STRING_FREE_LIST
1885 /* Walk through the string free list looking for bogus next pointers.
1886 This may catch buffer overrun from a previous string. */
1888 static void
1889 check_string_free_list (void)
1891 struct Lisp_String *s;
1893 /* Pop a Lisp_String off the free-list. */
1894 s = string_free_list;
1895 while (s != NULL)
1897 if ((uintptr_t) s < 1024)
1898 emacs_abort ();
1899 s = NEXT_FREE_LISP_STRING (s);
1902 #else
1903 #define check_string_free_list()
1904 #endif
1906 /* Return a new Lisp_String. */
1908 static struct Lisp_String *
1909 allocate_string (void)
1911 struct Lisp_String *s;
1913 MALLOC_BLOCK_INPUT;
1915 /* If the free-list is empty, allocate a new string_block, and
1916 add all the Lisp_Strings in it to the free-list. */
1917 if (string_free_list == NULL)
1919 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1920 int i;
1922 b->next = string_blocks;
1923 string_blocks = b;
1925 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1927 s = b->strings + i;
1928 /* Every string on a free list should have NULL data pointer. */
1929 s->data = NULL;
1930 NEXT_FREE_LISP_STRING (s) = string_free_list;
1931 string_free_list = s;
1934 total_free_strings += STRING_BLOCK_SIZE;
1937 check_string_free_list ();
1939 /* Pop a Lisp_String off the free-list. */
1940 s = string_free_list;
1941 string_free_list = NEXT_FREE_LISP_STRING (s);
1943 MALLOC_UNBLOCK_INPUT;
1945 --total_free_strings;
1946 ++total_strings;
1947 ++strings_consed;
1948 consing_since_gc += sizeof *s;
1950 #ifdef GC_CHECK_STRING_BYTES
1951 if (!noninteractive)
1953 if (++check_string_bytes_count == 200)
1955 check_string_bytes_count = 0;
1956 check_string_bytes (1);
1958 else
1959 check_string_bytes (0);
1961 #endif /* GC_CHECK_STRING_BYTES */
1963 return s;
1967 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1968 plus a NUL byte at the end. Allocate an sdata structure for S, and
1969 set S->data to its `u.data' member. Store a NUL byte at the end of
1970 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1971 S->data if it was initially non-null. */
1973 void
1974 allocate_string_data (struct Lisp_String *s,
1975 EMACS_INT nchars, EMACS_INT nbytes)
1977 sdata *data, *old_data;
1978 struct sblock *b;
1979 ptrdiff_t needed, old_nbytes;
1981 if (STRING_BYTES_MAX < nbytes)
1982 string_overflow ();
1984 /* Determine the number of bytes needed to store NBYTES bytes
1985 of string data. */
1986 needed = SDATA_SIZE (nbytes);
1987 if (s->data)
1989 old_data = SDATA_OF_STRING (s);
1990 old_nbytes = STRING_BYTES (s);
1992 else
1993 old_data = NULL;
1995 MALLOC_BLOCK_INPUT;
1997 if (nbytes > LARGE_STRING_BYTES)
1999 size_t size = FLEXSIZEOF (struct sblock, data, needed);
2001 #ifdef DOUG_LEA_MALLOC
2002 if (!mmap_lisp_allowed_p ())
2003 mallopt (M_MMAP_MAX, 0);
2004 #endif
2006 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2008 #ifdef DOUG_LEA_MALLOC
2009 if (!mmap_lisp_allowed_p ())
2010 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2011 #endif
2013 data = b->data;
2014 b->next = large_sblocks;
2015 b->next_free = data;
2016 large_sblocks = b;
2018 else if (current_sblock == NULL
2019 || (((char *) current_sblock + SBLOCK_SIZE
2020 - (char *) current_sblock->next_free)
2021 < (needed + GC_STRING_EXTRA)))
2023 /* Not enough room in the current sblock. */
2024 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2025 data = b->data;
2026 b->next = NULL;
2027 b->next_free = data;
2029 if (current_sblock)
2030 current_sblock->next = b;
2031 else
2032 oldest_sblock = b;
2033 current_sblock = b;
2035 else
2037 b = current_sblock;
2038 data = b->next_free;
2041 data->string = s;
2042 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2044 MALLOC_UNBLOCK_INPUT;
2046 s->data = SDATA_DATA (data);
2047 #ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data) = nbytes;
2049 #endif
2050 s->size = nchars;
2051 s->size_byte = nbytes;
2052 s->data[nbytes] = '\0';
2053 #ifdef GC_CHECK_STRING_OVERRUN
2054 memcpy ((char *) data + needed, string_overrun_cookie,
2055 GC_STRING_OVERRUN_COOKIE_SIZE);
2056 #endif
2058 /* Note that Faset may call to this function when S has already data
2059 assigned. In this case, mark data as free by setting it's string
2060 back-pointer to null, and record the size of the data in it. */
2061 if (old_data)
2063 SDATA_NBYTES (old_data) = old_nbytes;
2064 old_data->string = NULL;
2067 consing_since_gc += needed;
2071 /* Sweep and compact strings. */
2073 NO_INLINE /* For better stack traces */
2074 static void
2075 sweep_strings (void)
2077 struct string_block *b, *next;
2078 struct string_block *live_blocks = NULL;
2080 string_free_list = NULL;
2081 total_strings = total_free_strings = 0;
2082 total_string_bytes = 0;
2084 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2085 for (b = string_blocks; b; b = next)
2087 int i, nfree = 0;
2088 struct Lisp_String *free_list_before = string_free_list;
2090 next = b->next;
2092 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2094 struct Lisp_String *s = b->strings + i;
2096 if (s->data)
2098 /* String was not on free-list before. */
2099 if (STRING_MARKED_P (s))
2101 /* String is live; unmark it and its intervals. */
2102 UNMARK_STRING (s);
2104 /* Do not use string_(set|get)_intervals here. */
2105 s->intervals = balance_intervals (s->intervals);
2107 ++total_strings;
2108 total_string_bytes += STRING_BYTES (s);
2110 else
2112 /* String is dead. Put it on the free-list. */
2113 sdata *data = SDATA_OF_STRING (s);
2115 /* Save the size of S in its sdata so that we know
2116 how large that is. Reset the sdata's string
2117 back-pointer so that we know it's free. */
2118 #ifdef GC_CHECK_STRING_BYTES
2119 if (string_bytes (s) != SDATA_NBYTES (data))
2120 emacs_abort ();
2121 #else
2122 data->n.nbytes = STRING_BYTES (s);
2123 #endif
2124 data->string = NULL;
2126 /* Reset the strings's `data' member so that we
2127 know it's free. */
2128 s->data = NULL;
2130 /* Put the string on the free-list. */
2131 NEXT_FREE_LISP_STRING (s) = string_free_list;
2132 string_free_list = s;
2133 ++nfree;
2136 else
2138 /* S was on the free-list before. Put it there again. */
2139 NEXT_FREE_LISP_STRING (s) = string_free_list;
2140 string_free_list = s;
2141 ++nfree;
2145 /* Free blocks that contain free Lisp_Strings only, except
2146 the first two of them. */
2147 if (nfree == STRING_BLOCK_SIZE
2148 && total_free_strings > STRING_BLOCK_SIZE)
2150 lisp_free (b);
2151 string_free_list = free_list_before;
2153 else
2155 total_free_strings += nfree;
2156 b->next = live_blocks;
2157 live_blocks = b;
2161 check_string_free_list ();
2163 string_blocks = live_blocks;
2164 free_large_strings ();
2165 compact_small_strings ();
2167 check_string_free_list ();
2171 /* Free dead large strings. */
2173 static void
2174 free_large_strings (void)
2176 struct sblock *b, *next;
2177 struct sblock *live_blocks = NULL;
2179 for (b = large_sblocks; b; b = next)
2181 next = b->next;
2183 if (b->data[0].string == NULL)
2184 lisp_free (b);
2185 else
2187 b->next = live_blocks;
2188 live_blocks = b;
2192 large_sblocks = live_blocks;
2196 /* Compact data of small strings. Free sblocks that don't contain
2197 data of live strings after compaction. */
2199 static void
2200 compact_small_strings (void)
2202 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2203 to, and TB_END is the end of TB. */
2204 struct sblock *tb = oldest_sblock;
2205 if (tb)
2207 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2208 sdata *to = tb->data;
2210 /* Step through the blocks from the oldest to the youngest. We
2211 expect that old blocks will stabilize over time, so that less
2212 copying will happen this way. */
2213 struct sblock *b = tb;
2216 sdata *end = b->next_free;
2217 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2219 for (sdata *from = b->data; from < end; )
2221 /* Compute the next FROM here because copying below may
2222 overwrite data we need to compute it. */
2223 ptrdiff_t nbytes;
2224 struct Lisp_String *s = from->string;
2226 #ifdef GC_CHECK_STRING_BYTES
2227 /* Check that the string size recorded in the string is the
2228 same as the one recorded in the sdata structure. */
2229 if (s && string_bytes (s) != SDATA_NBYTES (from))
2230 emacs_abort ();
2231 #endif /* GC_CHECK_STRING_BYTES */
2233 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2234 eassert (nbytes <= LARGE_STRING_BYTES);
2236 nbytes = SDATA_SIZE (nbytes);
2237 sdata *from_end = (sdata *) ((char *) from
2238 + nbytes + GC_STRING_EXTRA);
2240 #ifdef GC_CHECK_STRING_OVERRUN
2241 if (memcmp (string_overrun_cookie,
2242 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2243 GC_STRING_OVERRUN_COOKIE_SIZE))
2244 emacs_abort ();
2245 #endif
2247 /* Non-NULL S means it's alive. Copy its data. */
2248 if (s)
2250 /* If TB is full, proceed with the next sblock. */
2251 sdata *to_end = (sdata *) ((char *) to
2252 + nbytes + GC_STRING_EXTRA);
2253 if (to_end > tb_end)
2255 tb->next_free = to;
2256 tb = tb->next;
2257 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = tb->data;
2259 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2262 /* Copy, and update the string's `data' pointer. */
2263 if (from != to)
2265 eassert (tb != b || to < from);
2266 memmove (to, from, nbytes + GC_STRING_EXTRA);
2267 to->string->data = SDATA_DATA (to);
2270 /* Advance past the sdata we copied to. */
2271 to = to_end;
2273 from = from_end;
2275 b = b->next;
2277 while (b);
2279 /* The rest of the sblocks following TB don't contain live data, so
2280 we can free them. */
2281 for (b = tb->next; b; )
2283 struct sblock *next = b->next;
2284 lisp_free (b);
2285 b = next;
2288 tb->next_free = to;
2289 tb->next = NULL;
2292 current_sblock = tb;
2295 void
2296 string_overflow (void)
2298 error ("Maximum string size exceeded");
2301 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length, Lisp_Object init)
2307 register Lisp_Object val;
2308 int c;
2309 EMACS_INT nbytes;
2311 CHECK_NATNUM (length);
2312 CHECK_CHARACTER (init);
2314 c = XFASTINT (init);
2315 if (ASCII_CHAR_P (c))
2317 nbytes = XINT (length);
2318 val = make_uninit_string (nbytes);
2319 if (nbytes)
2321 memset (SDATA (val), c, nbytes);
2322 SDATA (val)[nbytes] = 0;
2325 else
2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2328 ptrdiff_t len = CHAR_STRING (c, str);
2329 EMACS_INT string_len = XINT (length);
2330 unsigned char *p, *beg, *end;
2332 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2333 string_overflow ();
2334 val = make_uninit_multibyte_string (string_len, nbytes);
2335 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2337 /* First time we just copy `str' to the data of `val'. */
2338 if (p == beg)
2339 memcpy (p, str, len);
2340 else
2342 /* Next time we copy largest possible chunk from
2343 initialized to uninitialized part of `val'. */
2344 len = min (p - beg, end - p);
2345 memcpy (p, beg, len);
2348 if (nbytes)
2349 *p = 0;
2352 return val;
2355 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2356 Return A. */
2358 Lisp_Object
2359 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2361 EMACS_INT nbits = bool_vector_size (a);
2362 if (0 < nbits)
2364 unsigned char *data = bool_vector_uchar_data (a);
2365 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2366 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2367 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2368 memset (data, pattern, nbytes - 1);
2369 data[nbytes - 1] = pattern & last_mask;
2371 return a;
2374 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2376 Lisp_Object
2377 make_uninit_bool_vector (EMACS_INT nbits)
2379 Lisp_Object val;
2380 EMACS_INT words = bool_vector_words (nbits);
2381 EMACS_INT word_bytes = words * sizeof (bits_word);
2382 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2383 + word_size - 1)
2384 / word_size);
2385 struct Lisp_Bool_Vector *p
2386 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2387 XSETVECTOR (val, p);
2388 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2389 p->size = nbits;
2391 /* Clear padding at the end. */
2392 if (words)
2393 p->data[words - 1] = 0;
2395 return val;
2398 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2399 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2400 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2401 (Lisp_Object length, Lisp_Object init)
2403 Lisp_Object val;
2405 CHECK_NATNUM (length);
2406 val = make_uninit_bool_vector (XFASTINT (length));
2407 return bool_vector_fill (val, init);
2410 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2411 doc: /* Return a new bool-vector with specified arguments as elements.
2412 Any number of arguments, even zero arguments, are allowed.
2413 usage: (bool-vector &rest OBJECTS) */)
2414 (ptrdiff_t nargs, Lisp_Object *args)
2416 ptrdiff_t i;
2417 Lisp_Object vector;
2419 vector = make_uninit_bool_vector (nargs);
2420 for (i = 0; i < nargs; i++)
2421 bool_vector_set (vector, i, !NILP (args[i]));
2423 return vector;
2426 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2427 of characters from the contents. This string may be unibyte or
2428 multibyte, depending on the contents. */
2430 Lisp_Object
2431 make_string (const char *contents, ptrdiff_t nbytes)
2433 register Lisp_Object val;
2434 ptrdiff_t nchars, multibyte_nbytes;
2436 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2437 &nchars, &multibyte_nbytes);
2438 if (nbytes == nchars || nbytes != multibyte_nbytes)
2439 /* CONTENTS contains no multibyte sequences or contains an invalid
2440 multibyte sequence. We must make unibyte string. */
2441 val = make_unibyte_string (contents, nbytes);
2442 else
2443 val = make_multibyte_string (contents, nchars, nbytes);
2444 return val;
2447 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2449 Lisp_Object
2450 make_unibyte_string (const char *contents, ptrdiff_t length)
2452 register Lisp_Object val;
2453 val = make_uninit_string (length);
2454 memcpy (SDATA (val), contents, length);
2455 return val;
2459 /* Make a multibyte string from NCHARS characters occupying NBYTES
2460 bytes at CONTENTS. */
2462 Lisp_Object
2463 make_multibyte_string (const char *contents,
2464 ptrdiff_t nchars, ptrdiff_t nbytes)
2466 register Lisp_Object val;
2467 val = make_uninit_multibyte_string (nchars, nbytes);
2468 memcpy (SDATA (val), contents, nbytes);
2469 return val;
2473 /* Make a string from NCHARS characters occupying NBYTES bytes at
2474 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2476 Lisp_Object
2477 make_string_from_bytes (const char *contents,
2478 ptrdiff_t nchars, ptrdiff_t nbytes)
2480 register Lisp_Object val;
2481 val = make_uninit_multibyte_string (nchars, nbytes);
2482 memcpy (SDATA (val), contents, nbytes);
2483 if (SBYTES (val) == SCHARS (val))
2484 STRING_SET_UNIBYTE (val);
2485 return val;
2489 /* Make a string from NCHARS characters occupying NBYTES bytes at
2490 CONTENTS. The argument MULTIBYTE controls whether to label the
2491 string as multibyte. If NCHARS is negative, it counts the number of
2492 characters by itself. */
2494 Lisp_Object
2495 make_specified_string (const char *contents,
2496 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2498 Lisp_Object val;
2500 if (nchars < 0)
2502 if (multibyte)
2503 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2504 nbytes);
2505 else
2506 nchars = nbytes;
2508 val = make_uninit_multibyte_string (nchars, nbytes);
2509 memcpy (SDATA (val), contents, nbytes);
2510 if (!multibyte)
2511 STRING_SET_UNIBYTE (val);
2512 return val;
2516 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2517 occupying LENGTH bytes. */
2519 Lisp_Object
2520 make_uninit_string (EMACS_INT length)
2522 Lisp_Object val;
2524 if (!length)
2525 return empty_unibyte_string;
2526 val = make_uninit_multibyte_string (length, length);
2527 STRING_SET_UNIBYTE (val);
2528 return val;
2532 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2533 which occupy NBYTES bytes. */
2535 Lisp_Object
2536 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2538 Lisp_Object string;
2539 struct Lisp_String *s;
2541 if (nchars < 0)
2542 emacs_abort ();
2543 if (!nbytes)
2544 return empty_multibyte_string;
2546 s = allocate_string ();
2547 s->intervals = NULL;
2548 allocate_string_data (s, nchars, nbytes);
2549 XSETSTRING (string, s);
2550 string_chars_consed += nbytes;
2551 return string;
2554 /* Print arguments to BUF according to a FORMAT, then return
2555 a Lisp_String initialized with the data from BUF. */
2557 Lisp_Object
2558 make_formatted_string (char *buf, const char *format, ...)
2560 va_list ap;
2561 int length;
2563 va_start (ap, format);
2564 length = vsprintf (buf, format, ap);
2565 va_end (ap);
2566 return make_string (buf, length);
2570 /***********************************************************************
2571 Float Allocation
2572 ***********************************************************************/
2574 /* We store float cells inside of float_blocks, allocating a new
2575 float_block with malloc whenever necessary. Float cells reclaimed
2576 by GC are put on a free list to be reallocated before allocating
2577 any new float cells from the latest float_block. */
2579 #define FLOAT_BLOCK_SIZE \
2580 (((BLOCK_BYTES - sizeof (struct float_block *) \
2581 /* The compiler might add padding at the end. */ \
2582 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2583 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2585 #define GETMARKBIT(block,n) \
2586 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2587 >> ((n) % BITS_PER_BITS_WORD)) \
2588 & 1)
2590 #define SETMARKBIT(block,n) \
2591 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2592 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2594 #define UNSETMARKBIT(block,n) \
2595 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2596 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2598 #define FLOAT_BLOCK(fptr) \
2599 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2601 #define FLOAT_INDEX(fptr) \
2602 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2604 struct float_block
2606 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2607 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2608 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2609 struct float_block *next;
2612 #define FLOAT_MARKED_P(fptr) \
2613 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 #define FLOAT_MARK(fptr) \
2616 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2618 #define FLOAT_UNMARK(fptr) \
2619 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621 /* Current float_block. */
2623 static struct float_block *float_block;
2625 /* Index of first unused Lisp_Float in the current float_block. */
2627 static int float_block_index = FLOAT_BLOCK_SIZE;
2629 /* Free-list of Lisp_Floats. */
2631 static struct Lisp_Float *float_free_list;
2633 /* Return a new float object with value FLOAT_VALUE. */
2635 Lisp_Object
2636 make_float (double float_value)
2638 register Lisp_Object val;
2640 MALLOC_BLOCK_INPUT;
2642 if (float_free_list)
2644 /* We use the data field for chaining the free list
2645 so that we won't use the same field that has the mark bit. */
2646 XSETFLOAT (val, float_free_list);
2647 float_free_list = float_free_list->u.chain;
2649 else
2651 if (float_block_index == FLOAT_BLOCK_SIZE)
2653 struct float_block *new
2654 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2655 new->next = float_block;
2656 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2657 float_block = new;
2658 float_block_index = 0;
2659 total_free_floats += FLOAT_BLOCK_SIZE;
2661 XSETFLOAT (val, &float_block->floats[float_block_index]);
2662 float_block_index++;
2665 MALLOC_UNBLOCK_INPUT;
2667 XFLOAT_INIT (val, float_value);
2668 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2669 consing_since_gc += sizeof (struct Lisp_Float);
2670 floats_consed++;
2671 total_free_floats--;
2672 return val;
2677 /***********************************************************************
2678 Cons Allocation
2679 ***********************************************************************/
2681 /* We store cons cells inside of cons_blocks, allocating a new
2682 cons_block with malloc whenever necessary. Cons cells reclaimed by
2683 GC are put on a free list to be reallocated before allocating
2684 any new cons cells from the latest cons_block. */
2686 #define CONS_BLOCK_SIZE \
2687 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2688 /* The compiler might add padding at the end. */ \
2689 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2690 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2692 #define CONS_BLOCK(fptr) \
2693 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2695 #define CONS_INDEX(fptr) \
2696 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2698 struct cons_block
2700 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2701 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2702 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2703 struct cons_block *next;
2706 #define CONS_MARKED_P(fptr) \
2707 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 #define CONS_MARK(fptr) \
2710 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2712 #define CONS_UNMARK(fptr) \
2713 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2715 /* Current cons_block. */
2717 static struct cons_block *cons_block;
2719 /* Index of first unused Lisp_Cons in the current block. */
2721 static int cons_block_index = CONS_BLOCK_SIZE;
2723 /* Free-list of Lisp_Cons structures. */
2725 static struct Lisp_Cons *cons_free_list;
2727 /* Explicitly free a cons cell by putting it on the free-list. */
2729 void
2730 free_cons (struct Lisp_Cons *ptr)
2732 ptr->u.chain = cons_free_list;
2733 ptr->car = Vdead;
2734 cons_free_list = ptr;
2735 consing_since_gc -= sizeof *ptr;
2736 total_free_conses++;
2739 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2740 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2741 (Lisp_Object car, Lisp_Object cdr)
2743 register Lisp_Object val;
2745 MALLOC_BLOCK_INPUT;
2747 if (cons_free_list)
2749 /* We use the cdr for chaining the free list
2750 so that we won't use the same field that has the mark bit. */
2751 XSETCONS (val, cons_free_list);
2752 cons_free_list = cons_free_list->u.chain;
2754 else
2756 if (cons_block_index == CONS_BLOCK_SIZE)
2758 struct cons_block *new
2759 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2760 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2761 new->next = cons_block;
2762 cons_block = new;
2763 cons_block_index = 0;
2764 total_free_conses += CONS_BLOCK_SIZE;
2766 XSETCONS (val, &cons_block->conses[cons_block_index]);
2767 cons_block_index++;
2770 MALLOC_UNBLOCK_INPUT;
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 total_free_conses--;
2777 cons_cells_consed++;
2778 return val;
2781 #ifdef GC_CHECK_CONS_LIST
2782 /* Get an error now if there's any junk in the cons free list. */
2783 void
2784 check_cons_list (void)
2786 struct Lisp_Cons *tail = cons_free_list;
2788 while (tail)
2789 tail = tail->u.chain;
2791 #endif
2793 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2795 Lisp_Object
2796 list1 (Lisp_Object arg1)
2798 return Fcons (arg1, Qnil);
2801 Lisp_Object
2802 list2 (Lisp_Object arg1, Lisp_Object arg2)
2804 return Fcons (arg1, Fcons (arg2, Qnil));
2808 Lisp_Object
2809 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2815 Lisp_Object
2816 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822 Lisp_Object
2823 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2825 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2826 Fcons (arg5, Qnil)))));
2829 /* Make a list of COUNT Lisp_Objects, where ARG is the
2830 first one. Allocate conses from pure space if TYPE
2831 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2833 Lisp_Object
2834 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2836 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2837 switch (type)
2839 case CONSTYPE_PURE: cons = pure_cons; break;
2840 case CONSTYPE_HEAP: cons = Fcons; break;
2841 default: emacs_abort ();
2844 eassume (0 < count);
2845 Lisp_Object val = cons (arg, Qnil);
2846 Lisp_Object tail = val;
2848 va_list ap;
2849 va_start (ap, arg);
2850 for (ptrdiff_t i = 1; i < count; i++)
2852 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2853 XSETCDR (tail, elem);
2854 tail = elem;
2856 va_end (ap);
2858 return val;
2861 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2862 doc: /* Return a newly created list with specified arguments as elements.
2863 Any number of arguments, even zero arguments, are allowed.
2864 usage: (list &rest OBJECTS) */)
2865 (ptrdiff_t nargs, Lisp_Object *args)
2867 register Lisp_Object val;
2868 val = Qnil;
2870 while (nargs > 0)
2872 nargs--;
2873 val = Fcons (args[nargs], val);
2875 return val;
2879 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2880 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2881 (Lisp_Object length, Lisp_Object init)
2883 Lisp_Object val = Qnil;
2884 CHECK_NATNUM (length);
2886 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2888 val = Fcons (init, val);
2889 rarely_quit (size);
2892 return val;
2897 /***********************************************************************
2898 Vector Allocation
2899 ***********************************************************************/
2901 /* Sometimes a vector's contents are merely a pointer internally used
2902 in vector allocation code. On the rare platforms where a null
2903 pointer cannot be tagged, represent it with a Lisp 0.
2904 Usually you don't want to touch this. */
2906 static struct Lisp_Vector *
2907 next_vector (struct Lisp_Vector *v)
2909 return XUNTAG (v->contents[0], Lisp_Int0);
2912 static void
2913 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2915 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2918 /* This value is balanced well enough to avoid too much internal overhead
2919 for the most common cases; it's not required to be a power of two, but
2920 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2922 #define VECTOR_BLOCK_SIZE 4096
2924 enum
2926 /* Alignment of struct Lisp_Vector objects. */
2927 vector_alignment = COMMON_MULTIPLE (FLEXALIGNOF (struct Lisp_Vector),
2928 GCALIGNMENT),
2930 /* Vector size requests are a multiple of this. */
2931 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2934 /* Verify assumptions described above. */
2935 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2936 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2938 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2939 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2940 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2941 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2943 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2945 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2947 /* Size of the minimal vector allocated from block. */
2949 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2951 /* Size of the largest vector allocated from block. */
2953 #define VBLOCK_BYTES_MAX \
2954 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2956 /* We maintain one free list for each possible block-allocated
2957 vector size, and this is the number of free lists we have. */
2959 #define VECTOR_MAX_FREE_LIST_INDEX \
2960 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2962 /* Common shortcut to advance vector pointer over a block data. */
2964 static struct Lisp_Vector *
2965 ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
2967 void *vv = v;
2968 char *cv = vv;
2969 void *p = cv + nbytes;
2970 return p;
2973 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2975 static ptrdiff_t
2976 VINDEX (ptrdiff_t nbytes)
2978 eassume (VBLOCK_BYTES_MIN <= nbytes);
2979 return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
2982 /* This internal type is used to maintain the list of large vectors
2983 which are allocated at their own, e.g. outside of vector blocks.
2985 struct large_vector itself cannot contain a struct Lisp_Vector, as
2986 the latter contains a flexible array member and C99 does not allow
2987 such structs to be nested. Instead, each struct large_vector
2988 object LV is followed by a struct Lisp_Vector, which is at offset
2989 large_vector_offset from LV, and whose address is therefore
2990 large_vector_vec (&LV). */
2992 struct large_vector
2994 struct large_vector *next;
2997 enum
2999 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3002 static struct Lisp_Vector *
3003 large_vector_vec (struct large_vector *p)
3005 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3008 /* This internal type is used to maintain an underlying storage
3009 for small vectors. */
3011 struct vector_block
3013 char data[VECTOR_BLOCK_BYTES];
3014 struct vector_block *next;
3017 /* Chain of vector blocks. */
3019 static struct vector_block *vector_blocks;
3021 /* Vector free lists, where NTH item points to a chain of free
3022 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3024 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3026 /* Singly-linked list of large vectors. */
3028 static struct large_vector *large_vectors;
3030 /* The only vector with 0 slots, allocated from pure space. */
3032 Lisp_Object zero_vector;
3034 /* Number of live vectors. */
3036 static EMACS_INT total_vectors;
3038 /* Total size of live and free vectors, in Lisp_Object units. */
3040 static EMACS_INT total_vector_slots, total_free_vector_slots;
3042 /* Common shortcut to setup vector on a free list. */
3044 static void
3045 setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
3047 eassume (header_size <= nbytes);
3048 ptrdiff_t nwords = (nbytes - header_size) / word_size;
3049 XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
3050 eassert (nbytes % roundup_size == 0);
3051 ptrdiff_t vindex = VINDEX (nbytes);
3052 eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
3053 set_next_vector (v, vector_free_lists[vindex]);
3054 vector_free_lists[vindex] = v;
3055 total_free_vector_slots += nbytes / word_size;
3058 /* Get a new vector block. */
3060 static struct vector_block *
3061 allocate_vector_block (void)
3063 struct vector_block *block = xmalloc (sizeof *block);
3065 #ifndef GC_MALLOC_CHECK
3066 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3067 MEM_TYPE_VECTOR_BLOCK);
3068 #endif
3070 block->next = vector_blocks;
3071 vector_blocks = block;
3072 return block;
3075 /* Called once to initialize vector allocation. */
3077 static void
3078 init_vectors (void)
3080 zero_vector = make_pure_vector (0);
3083 /* Allocate vector from a vector block. */
3085 static struct Lisp_Vector *
3086 allocate_vector_from_block (size_t nbytes)
3088 struct Lisp_Vector *vector;
3089 struct vector_block *block;
3090 size_t index, restbytes;
3092 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3093 eassert (nbytes % roundup_size == 0);
3095 /* First, try to allocate from a free list
3096 containing vectors of the requested size. */
3097 index = VINDEX (nbytes);
3098 if (vector_free_lists[index])
3100 vector = vector_free_lists[index];
3101 vector_free_lists[index] = next_vector (vector);
3102 total_free_vector_slots -= nbytes / word_size;
3103 return vector;
3106 /* Next, check free lists containing larger vectors. Since
3107 we will split the result, we should have remaining space
3108 large enough to use for one-slot vector at least. */
3109 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3110 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3111 if (vector_free_lists[index])
3113 /* This vector is larger than requested. */
3114 vector = vector_free_lists[index];
3115 vector_free_lists[index] = next_vector (vector);
3116 total_free_vector_slots -= nbytes / word_size;
3118 /* Excess bytes are used for the smaller vector,
3119 which should be set on an appropriate free list. */
3120 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3121 eassert (restbytes % roundup_size == 0);
3122 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3123 return vector;
3126 /* Finally, need a new vector block. */
3127 block = allocate_vector_block ();
3129 /* New vector will be at the beginning of this block. */
3130 vector = (struct Lisp_Vector *) block->data;
3132 /* If the rest of space from this block is large enough
3133 for one-slot vector at least, set up it on a free list. */
3134 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3135 if (restbytes >= VBLOCK_BYTES_MIN)
3137 eassert (restbytes % roundup_size == 0);
3138 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3140 return vector;
3143 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3145 #define VECTOR_IN_BLOCK(vector, block) \
3146 ((char *) (vector) <= (block)->data \
3147 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3149 /* Return the memory footprint of V in bytes. */
3151 static ptrdiff_t
3152 vector_nbytes (struct Lisp_Vector *v)
3154 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3155 ptrdiff_t nwords;
3157 if (size & PSEUDOVECTOR_FLAG)
3159 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3161 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3162 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3163 * sizeof (bits_word));
3164 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3165 verify (header_size <= bool_header_size);
3166 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3168 else
3169 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3170 + ((size & PSEUDOVECTOR_REST_MASK)
3171 >> PSEUDOVECTOR_SIZE_BITS));
3173 else
3174 nwords = size;
3175 return vroundup (header_size + word_size * nwords);
3178 /* Release extra resources still in use by VECTOR, which may be any
3179 vector-like object. */
3181 static void
3182 cleanup_vector (struct Lisp_Vector *vector)
3184 detect_suspicious_free (vector);
3185 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3186 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3187 == FONT_OBJECT_MAX))
3189 struct font_driver const *drv = ((struct font *) vector)->driver;
3191 /* The font driver might sometimes be NULL, e.g. if Emacs was
3192 interrupted before it had time to set it up. */
3193 if (drv)
3195 /* Attempt to catch subtle bugs like Bug#16140. */
3196 eassert (valid_font_driver (drv));
3197 drv->close ((struct font *) vector);
3201 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3202 finalize_one_thread ((struct thread_state *) vector);
3203 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3204 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3205 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3206 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3209 /* Reclaim space used by unmarked vectors. */
3211 NO_INLINE /* For better stack traces */
3212 static void
3213 sweep_vectors (void)
3215 struct vector_block *block, **bprev = &vector_blocks;
3216 struct large_vector *lv, **lvprev = &large_vectors;
3217 struct Lisp_Vector *vector, *next;
3219 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3220 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3222 /* Looking through vector blocks. */
3224 for (block = vector_blocks; block; block = *bprev)
3226 bool free_this_block = 0;
3227 ptrdiff_t nbytes;
3229 for (vector = (struct Lisp_Vector *) block->data;
3230 VECTOR_IN_BLOCK (vector, block); vector = next)
3232 if (VECTOR_MARKED_P (vector))
3234 VECTOR_UNMARK (vector);
3235 total_vectors++;
3236 nbytes = vector_nbytes (vector);
3237 total_vector_slots += nbytes / word_size;
3238 next = ADVANCE (vector, nbytes);
3240 else
3242 ptrdiff_t total_bytes;
3244 cleanup_vector (vector);
3245 nbytes = vector_nbytes (vector);
3246 total_bytes = nbytes;
3247 next = ADVANCE (vector, nbytes);
3249 /* While NEXT is not marked, try to coalesce with VECTOR,
3250 thus making VECTOR of the largest possible size. */
3252 while (VECTOR_IN_BLOCK (next, block))
3254 if (VECTOR_MARKED_P (next))
3255 break;
3256 cleanup_vector (next);
3257 nbytes = vector_nbytes (next);
3258 total_bytes += nbytes;
3259 next = ADVANCE (next, nbytes);
3262 eassert (total_bytes % roundup_size == 0);
3264 if (vector == (struct Lisp_Vector *) block->data
3265 && !VECTOR_IN_BLOCK (next, block))
3266 /* This block should be freed because all of its
3267 space was coalesced into the only free vector. */
3268 free_this_block = 1;
3269 else
3270 setup_on_free_list (vector, total_bytes);
3274 if (free_this_block)
3276 *bprev = block->next;
3277 #ifndef GC_MALLOC_CHECK
3278 mem_delete (mem_find (block->data));
3279 #endif
3280 xfree (block);
3282 else
3283 bprev = &block->next;
3286 /* Sweep large vectors. */
3288 for (lv = large_vectors; lv; lv = *lvprev)
3290 vector = large_vector_vec (lv);
3291 if (VECTOR_MARKED_P (vector))
3293 VECTOR_UNMARK (vector);
3294 total_vectors++;
3295 if (vector->header.size & PSEUDOVECTOR_FLAG)
3296 total_vector_slots += vector_nbytes (vector) / word_size;
3297 else
3298 total_vector_slots
3299 += header_size / word_size + vector->header.size;
3300 lvprev = &lv->next;
3302 else
3304 *lvprev = lv->next;
3305 lisp_free (lv);
3310 /* Value is a pointer to a newly allocated Lisp_Vector structure
3311 with room for LEN Lisp_Objects. */
3313 static struct Lisp_Vector *
3314 allocate_vectorlike (ptrdiff_t len)
3316 struct Lisp_Vector *p;
3318 MALLOC_BLOCK_INPUT;
3320 if (len == 0)
3321 p = XVECTOR (zero_vector);
3322 else
3324 size_t nbytes = header_size + len * word_size;
3326 #ifdef DOUG_LEA_MALLOC
3327 if (!mmap_lisp_allowed_p ())
3328 mallopt (M_MMAP_MAX, 0);
3329 #endif
3331 if (nbytes <= VBLOCK_BYTES_MAX)
3332 p = allocate_vector_from_block (vroundup (nbytes));
3333 else
3335 struct large_vector *lv
3336 = lisp_malloc ((large_vector_offset + header_size
3337 + len * word_size),
3338 MEM_TYPE_VECTORLIKE);
3339 lv->next = large_vectors;
3340 large_vectors = lv;
3341 p = large_vector_vec (lv);
3344 #ifdef DOUG_LEA_MALLOC
3345 if (!mmap_lisp_allowed_p ())
3346 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3347 #endif
3349 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3350 emacs_abort ();
3352 consing_since_gc += nbytes;
3353 vector_cells_consed += len;
3356 MALLOC_UNBLOCK_INPUT;
3358 return p;
3362 /* Allocate a vector with LEN slots. */
3364 struct Lisp_Vector *
3365 allocate_vector (EMACS_INT len)
3367 struct Lisp_Vector *v;
3368 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3370 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3371 memory_full (SIZE_MAX);
3372 v = allocate_vectorlike (len);
3373 if (len)
3374 v->header.size = len;
3375 return v;
3379 /* Allocate other vector-like structures. */
3381 struct Lisp_Vector *
3382 allocate_pseudovector (int memlen, int lisplen,
3383 int zerolen, enum pvec_type tag)
3385 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3387 /* Catch bogus values. */
3388 eassert (0 <= tag && tag <= PVEC_FONT);
3389 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3390 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3391 eassert (lisplen <= PSEUDOVECTOR_SIZE_MASK);
3393 /* Only the first LISPLEN slots will be traced normally by the GC. */
3394 memclear (v->contents, zerolen * word_size);
3395 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3396 return v;
3399 struct buffer *
3400 allocate_buffer (void)
3402 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3404 BUFFER_PVEC_INIT (b);
3405 /* Put B on the chain of all buffers including killed ones. */
3406 b->next = all_buffers;
3407 all_buffers = b;
3408 /* Note that the rest fields of B are not initialized. */
3409 return b;
3413 /* Allocate a record with COUNT slots. COUNT must be positive, and
3414 includes the type slot. */
3416 static struct Lisp_Vector *
3417 allocate_record (EMACS_INT count)
3419 if (count > PSEUDOVECTOR_SIZE_MASK)
3420 error ("Attempt to allocate a record of %"pI"d slots; max is %d",
3421 count, PSEUDOVECTOR_SIZE_MASK);
3422 struct Lisp_Vector *p = allocate_vectorlike (count);
3423 p->header.size = count;
3424 XSETPVECTYPE (p, PVEC_RECORD);
3425 return p;
3429 DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
3430 doc: /* Create a new record.
3431 TYPE is its type as returned by `type-of'; it should be either a
3432 symbol or a type descriptor. SLOTS is the number of non-type slots,
3433 each initialized to INIT. */)
3434 (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
3436 CHECK_NATNUM (slots);
3437 EMACS_INT size = XFASTINT (slots) + 1;
3438 struct Lisp_Vector *p = allocate_record (size);
3439 p->contents[0] = type;
3440 for (ptrdiff_t i = 1; i < size; i++)
3441 p->contents[i] = init;
3442 return make_lisp_ptr (p, Lisp_Vectorlike);
3446 DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
3447 doc: /* Create a new record.
3448 TYPE is its type as returned by `type-of'; it should be either a
3449 symbol or a type descriptor. SLOTS is used to initialize the record
3450 slots with shallow copies of the arguments.
3451 usage: (record TYPE &rest SLOTS) */)
3452 (ptrdiff_t nargs, Lisp_Object *args)
3454 struct Lisp_Vector *p = allocate_record (nargs);
3455 memcpy (p->contents, args, nargs * sizeof *args);
3456 return make_lisp_ptr (p, Lisp_Vectorlike);
3460 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3461 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3462 See also the function `vector'. */)
3463 (Lisp_Object length, Lisp_Object init)
3465 CHECK_NATNUM (length);
3466 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3467 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3468 p->contents[i] = init;
3469 return make_lisp_ptr (p, Lisp_Vectorlike);
3472 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3473 doc: /* Return a newly created vector with specified arguments as elements.
3474 Any number of arguments, even zero arguments, are allowed.
3475 usage: (vector &rest OBJECTS) */)
3476 (ptrdiff_t nargs, Lisp_Object *args)
3478 Lisp_Object val = make_uninit_vector (nargs);
3479 struct Lisp_Vector *p = XVECTOR (val);
3480 memcpy (p->contents, args, nargs * sizeof *args);
3481 return val;
3484 void
3485 make_byte_code (struct Lisp_Vector *v)
3487 /* Don't allow the global zero_vector to become a byte code object. */
3488 eassert (0 < v->header.size);
3490 if (v->header.size > 1 && STRINGP (v->contents[1])
3491 && STRING_MULTIBYTE (v->contents[1]))
3492 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3493 earlier because they produced a raw 8-bit string for byte-code
3494 and now such a byte-code string is loaded as multibyte while
3495 raw 8-bit characters converted to multibyte form. Thus, now we
3496 must convert them back to the original unibyte form. */
3497 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3498 XSETPVECTYPE (v, PVEC_COMPILED);
3501 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3502 doc: /* Create a byte-code object with specified arguments as elements.
3503 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3504 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3505 and (optional) INTERACTIVE-SPEC.
3506 The first four arguments are required; at most six have any
3507 significance.
3508 The ARGLIST can be either like the one of `lambda', in which case the arguments
3509 will be dynamically bound before executing the byte code, or it can be an
3510 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3511 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3512 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3513 argument to catch the left-over arguments. If such an integer is used, the
3514 arguments will not be dynamically bound but will be instead pushed on the
3515 stack before executing the byte-code.
3516 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3517 (ptrdiff_t nargs, Lisp_Object *args)
3519 Lisp_Object val = make_uninit_vector (nargs);
3520 struct Lisp_Vector *p = XVECTOR (val);
3522 /* We used to purecopy everything here, if purify-flag was set. This worked
3523 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3524 dangerous, since make-byte-code is used during execution to build
3525 closures, so any closure built during the preload phase would end up
3526 copied into pure space, including its free variables, which is sometimes
3527 just wasteful and other times plainly wrong (e.g. those free vars may want
3528 to be setcar'd). */
3530 memcpy (p->contents, args, nargs * sizeof *args);
3531 make_byte_code (p);
3532 XSETCOMPILED (val, p);
3533 return val;
3538 /***********************************************************************
3539 Symbol Allocation
3540 ***********************************************************************/
3542 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3543 of the required alignment. */
3545 union aligned_Lisp_Symbol
3547 struct Lisp_Symbol s;
3548 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3549 & -GCALIGNMENT];
3552 /* Each symbol_block is just under 1020 bytes long, since malloc
3553 really allocates in units of powers of two and uses 4 bytes for its
3554 own overhead. */
3556 #define SYMBOL_BLOCK_SIZE \
3557 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3559 struct symbol_block
3561 /* Place `symbols' first, to preserve alignment. */
3562 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3563 struct symbol_block *next;
3566 /* Current symbol block and index of first unused Lisp_Symbol
3567 structure in it. */
3569 static struct symbol_block *symbol_block;
3570 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3571 /* Pointer to the first symbol_block that contains pinned symbols.
3572 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3573 10K of which are pinned (and all but 250 of them are interned in obarray),
3574 whereas a "typical session" has in the order of 30K symbols.
3575 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3576 than 30K to find the 10K symbols we need to mark. */
3577 static struct symbol_block *symbol_block_pinned;
3579 /* List of free symbols. */
3581 static struct Lisp_Symbol *symbol_free_list;
3583 static void
3584 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3586 XSYMBOL (sym)->name = name;
3589 void
3590 init_symbol (Lisp_Object val, Lisp_Object name)
3592 struct Lisp_Symbol *p = XSYMBOL (val);
3593 set_symbol_name (val, name);
3594 set_symbol_plist (val, Qnil);
3595 p->redirect = SYMBOL_PLAINVAL;
3596 SET_SYMBOL_VAL (p, Qunbound);
3597 set_symbol_function (val, Qnil);
3598 set_symbol_next (val, NULL);
3599 p->gcmarkbit = false;
3600 p->interned = SYMBOL_UNINTERNED;
3601 p->trapped_write = SYMBOL_UNTRAPPED_WRITE;
3602 p->declared_special = false;
3603 p->pinned = false;
3606 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3607 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3608 Its value is void, and its function definition and property list are nil. */)
3609 (Lisp_Object name)
3611 Lisp_Object val;
3613 CHECK_STRING (name);
3615 MALLOC_BLOCK_INPUT;
3617 if (symbol_free_list)
3619 XSETSYMBOL (val, symbol_free_list);
3620 symbol_free_list = symbol_free_list->next;
3622 else
3624 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3626 struct symbol_block *new
3627 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3628 new->next = symbol_block;
3629 symbol_block = new;
3630 symbol_block_index = 0;
3631 total_free_symbols += SYMBOL_BLOCK_SIZE;
3633 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3634 symbol_block_index++;
3637 MALLOC_UNBLOCK_INPUT;
3639 init_symbol (val, name);
3640 consing_since_gc += sizeof (struct Lisp_Symbol);
3641 symbols_consed++;
3642 total_free_symbols--;
3643 return val;
3648 /***********************************************************************
3649 Marker (Misc) Allocation
3650 ***********************************************************************/
3652 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3653 the required alignment. */
3655 union aligned_Lisp_Misc
3657 union Lisp_Misc m;
3658 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3659 & -GCALIGNMENT];
3662 /* Allocation of markers and other objects that share that structure.
3663 Works like allocation of conses. */
3665 #define MARKER_BLOCK_SIZE \
3666 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3668 struct marker_block
3670 /* Place `markers' first, to preserve alignment. */
3671 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3672 struct marker_block *next;
3675 static struct marker_block *marker_block;
3676 static int marker_block_index = MARKER_BLOCK_SIZE;
3678 static union Lisp_Misc *marker_free_list;
3680 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3682 static Lisp_Object
3683 allocate_misc (enum Lisp_Misc_Type type)
3685 Lisp_Object val;
3687 MALLOC_BLOCK_INPUT;
3689 if (marker_free_list)
3691 XSETMISC (val, marker_free_list);
3692 marker_free_list = marker_free_list->u_free.chain;
3694 else
3696 if (marker_block_index == MARKER_BLOCK_SIZE)
3698 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3699 new->next = marker_block;
3700 marker_block = new;
3701 marker_block_index = 0;
3702 total_free_markers += MARKER_BLOCK_SIZE;
3704 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3705 marker_block_index++;
3708 MALLOC_UNBLOCK_INPUT;
3710 --total_free_markers;
3711 consing_since_gc += sizeof (union Lisp_Misc);
3712 misc_objects_consed++;
3713 XMISCANY (val)->type = type;
3714 XMISCANY (val)->gcmarkbit = 0;
3715 return val;
3718 /* Free a Lisp_Misc object. */
3720 void
3721 free_misc (Lisp_Object misc)
3723 XMISCANY (misc)->type = Lisp_Misc_Free;
3724 XMISC (misc)->u_free.chain = marker_free_list;
3725 marker_free_list = XMISC (misc);
3726 consing_since_gc -= sizeof (union Lisp_Misc);
3727 total_free_markers++;
3730 /* Verify properties of Lisp_Save_Value's representation
3731 that are assumed here and elsewhere. */
3733 verify (SAVE_UNUSED == 0);
3734 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3735 >> SAVE_SLOT_BITS)
3736 == 0);
3738 /* Return Lisp_Save_Value objects for the various combinations
3739 that callers need. */
3741 Lisp_Object
3742 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3744 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3745 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3746 p->save_type = SAVE_TYPE_INT_INT_INT;
3747 p->data[0].integer = a;
3748 p->data[1].integer = b;
3749 p->data[2].integer = c;
3750 return val;
3753 Lisp_Object
3754 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3755 Lisp_Object d)
3757 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3758 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3759 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3760 p->data[0].object = a;
3761 p->data[1].object = b;
3762 p->data[2].object = c;
3763 p->data[3].object = d;
3764 return val;
3767 Lisp_Object
3768 make_save_ptr (void *a)
3770 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3771 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3772 p->save_type = SAVE_POINTER;
3773 p->data[0].pointer = a;
3774 return val;
3777 Lisp_Object
3778 make_save_ptr_int (void *a, ptrdiff_t b)
3780 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3781 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3782 p->save_type = SAVE_TYPE_PTR_INT;
3783 p->data[0].pointer = a;
3784 p->data[1].integer = b;
3785 return val;
3788 Lisp_Object
3789 make_save_ptr_ptr (void *a, void *b)
3791 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3792 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3793 p->save_type = SAVE_TYPE_PTR_PTR;
3794 p->data[0].pointer = a;
3795 p->data[1].pointer = b;
3796 return val;
3799 Lisp_Object
3800 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3802 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3803 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3804 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3805 p->data[0].funcpointer = a;
3806 p->data[1].pointer = b;
3807 p->data[2].object = c;
3808 return val;
3811 /* Return a Lisp_Save_Value object that represents an array A
3812 of N Lisp objects. */
3814 Lisp_Object
3815 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3817 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3818 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3819 p->save_type = SAVE_TYPE_MEMORY;
3820 p->data[0].pointer = a;
3821 p->data[1].integer = n;
3822 return val;
3825 /* Free a Lisp_Save_Value object. Do not use this function
3826 if SAVE contains pointer other than returned by xmalloc. */
3828 void
3829 free_save_value (Lisp_Object save)
3831 xfree (XSAVE_POINTER (save, 0));
3832 free_misc (save);
3835 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3837 Lisp_Object
3838 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3840 register Lisp_Object overlay;
3842 overlay = allocate_misc (Lisp_Misc_Overlay);
3843 OVERLAY_START (overlay) = start;
3844 OVERLAY_END (overlay) = end;
3845 set_overlay_plist (overlay, plist);
3846 XOVERLAY (overlay)->next = NULL;
3847 return overlay;
3850 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3851 doc: /* Return a newly allocated marker which does not point at any place. */)
3852 (void)
3854 register Lisp_Object val;
3855 register struct Lisp_Marker *p;
3857 val = allocate_misc (Lisp_Misc_Marker);
3858 p = XMARKER (val);
3859 p->buffer = 0;
3860 p->bytepos = 0;
3861 p->charpos = 0;
3862 p->next = NULL;
3863 p->insertion_type = 0;
3864 p->need_adjustment = 0;
3865 return val;
3868 /* Return a newly allocated marker which points into BUF
3869 at character position CHARPOS and byte position BYTEPOS. */
3871 Lisp_Object
3872 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3874 Lisp_Object obj;
3875 struct Lisp_Marker *m;
3877 /* No dead buffers here. */
3878 eassert (BUFFER_LIVE_P (buf));
3880 /* Every character is at least one byte. */
3881 eassert (charpos <= bytepos);
3883 obj = allocate_misc (Lisp_Misc_Marker);
3884 m = XMARKER (obj);
3885 m->buffer = buf;
3886 m->charpos = charpos;
3887 m->bytepos = bytepos;
3888 m->insertion_type = 0;
3889 m->need_adjustment = 0;
3890 m->next = BUF_MARKERS (buf);
3891 BUF_MARKERS (buf) = m;
3892 return obj;
3895 /* Put MARKER back on the free list after using it temporarily. */
3897 void
3898 free_marker (Lisp_Object marker)
3900 unchain_marker (XMARKER (marker));
3901 free_misc (marker);
3905 /* Return a newly created vector or string with specified arguments as
3906 elements. If all the arguments are characters that can fit
3907 in a string of events, make a string; otherwise, make a vector.
3909 Any number of arguments, even zero arguments, are allowed. */
3911 Lisp_Object
3912 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3914 ptrdiff_t i;
3916 for (i = 0; i < nargs; i++)
3917 /* The things that fit in a string
3918 are characters that are in 0...127,
3919 after discarding the meta bit and all the bits above it. */
3920 if (!INTEGERP (args[i])
3921 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3922 return Fvector (nargs, args);
3924 /* Since the loop exited, we know that all the things in it are
3925 characters, so we can make a string. */
3927 Lisp_Object result;
3929 result = Fmake_string (make_number (nargs), make_number (0));
3930 for (i = 0; i < nargs; i++)
3932 SSET (result, i, XINT (args[i]));
3933 /* Move the meta bit to the right place for a string char. */
3934 if (XINT (args[i]) & CHAR_META)
3935 SSET (result, i, SREF (result, i) | 0x80);
3938 return result;
3942 #ifdef HAVE_MODULES
3943 /* Create a new module user ptr object. */
3944 Lisp_Object
3945 make_user_ptr (void (*finalizer) (void *), void *p)
3947 Lisp_Object obj;
3948 struct Lisp_User_Ptr *uptr;
3950 obj = allocate_misc (Lisp_Misc_User_Ptr);
3951 uptr = XUSER_PTR (obj);
3952 uptr->finalizer = finalizer;
3953 uptr->p = p;
3954 return obj;
3956 #endif
3958 static void
3959 init_finalizer_list (struct Lisp_Finalizer *head)
3961 head->prev = head->next = head;
3964 /* Insert FINALIZER before ELEMENT. */
3966 static void
3967 finalizer_insert (struct Lisp_Finalizer *element,
3968 struct Lisp_Finalizer *finalizer)
3970 eassert (finalizer->prev == NULL);
3971 eassert (finalizer->next == NULL);
3972 finalizer->next = element;
3973 finalizer->prev = element->prev;
3974 finalizer->prev->next = finalizer;
3975 element->prev = finalizer;
3978 static void
3979 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3981 if (finalizer->prev != NULL)
3983 eassert (finalizer->next != NULL);
3984 finalizer->prev->next = finalizer->next;
3985 finalizer->next->prev = finalizer->prev;
3986 finalizer->prev = finalizer->next = NULL;
3990 static void
3991 mark_finalizer_list (struct Lisp_Finalizer *head)
3993 for (struct Lisp_Finalizer *finalizer = head->next;
3994 finalizer != head;
3995 finalizer = finalizer->next)
3997 finalizer->base.gcmarkbit = true;
3998 mark_object (finalizer->function);
4002 /* Move doomed finalizers to list DEST from list SRC. A doomed
4003 finalizer is one that is not GC-reachable and whose
4004 finalizer->function is non-nil. */
4006 static void
4007 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
4008 struct Lisp_Finalizer *src)
4010 struct Lisp_Finalizer *finalizer = src->next;
4011 while (finalizer != src)
4013 struct Lisp_Finalizer *next = finalizer->next;
4014 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
4016 unchain_finalizer (finalizer);
4017 finalizer_insert (dest, finalizer);
4020 finalizer = next;
4024 static Lisp_Object
4025 run_finalizer_handler (Lisp_Object args)
4027 add_to_log ("finalizer failed: %S", args);
4028 return Qnil;
4031 static void
4032 run_finalizer_function (Lisp_Object function)
4034 ptrdiff_t count = SPECPDL_INDEX ();
4036 specbind (Qinhibit_quit, Qt);
4037 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
4038 unbind_to (count, Qnil);
4041 static void
4042 run_finalizers (struct Lisp_Finalizer *finalizers)
4044 struct Lisp_Finalizer *finalizer;
4045 Lisp_Object function;
4047 while (finalizers->next != finalizers)
4049 finalizer = finalizers->next;
4050 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4051 unchain_finalizer (finalizer);
4052 function = finalizer->function;
4053 if (!NILP (function))
4055 finalizer->function = Qnil;
4056 run_finalizer_function (function);
4061 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4062 doc: /* Make a finalizer that will run FUNCTION.
4063 FUNCTION will be called after garbage collection when the returned
4064 finalizer object becomes unreachable. If the finalizer object is
4065 reachable only through references from finalizer objects, it does not
4066 count as reachable for the purpose of deciding whether to run
4067 FUNCTION. FUNCTION will be run once per finalizer object. */)
4068 (Lisp_Object function)
4070 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4071 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4072 finalizer->function = function;
4073 finalizer->prev = finalizer->next = NULL;
4074 finalizer_insert (&finalizers, finalizer);
4075 return val;
4079 /************************************************************************
4080 Memory Full Handling
4081 ************************************************************************/
4084 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4085 there may have been size_t overflow so that malloc was never
4086 called, or perhaps malloc was invoked successfully but the
4087 resulting pointer had problems fitting into a tagged EMACS_INT. In
4088 either case this counts as memory being full even though malloc did
4089 not fail. */
4091 void
4092 memory_full (size_t nbytes)
4094 /* Do not go into hysterics merely because a large request failed. */
4095 bool enough_free_memory = 0;
4096 if (SPARE_MEMORY < nbytes)
4098 void *p;
4100 MALLOC_BLOCK_INPUT;
4101 p = malloc (SPARE_MEMORY);
4102 if (p)
4104 free (p);
4105 enough_free_memory = 1;
4107 MALLOC_UNBLOCK_INPUT;
4110 if (! enough_free_memory)
4112 int i;
4114 Vmemory_full = Qt;
4116 memory_full_cons_threshold = sizeof (struct cons_block);
4118 /* The first time we get here, free the spare memory. */
4119 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4120 if (spare_memory[i])
4122 if (i == 0)
4123 free (spare_memory[i]);
4124 else if (i >= 1 && i <= 4)
4125 lisp_align_free (spare_memory[i]);
4126 else
4127 lisp_free (spare_memory[i]);
4128 spare_memory[i] = 0;
4132 /* This used to call error, but if we've run out of memory, we could
4133 get infinite recursion trying to build the string. */
4134 xsignal (Qnil, Vmemory_signal_data);
4137 /* If we released our reserve (due to running out of memory),
4138 and we have a fair amount free once again,
4139 try to set aside another reserve in case we run out once more.
4141 This is called when a relocatable block is freed in ralloc.c,
4142 and also directly from this file, in case we're not using ralloc.c. */
4144 void
4145 refill_memory_reserve (void)
4147 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4148 if (spare_memory[0] == 0)
4149 spare_memory[0] = malloc (SPARE_MEMORY);
4150 if (spare_memory[1] == 0)
4151 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4152 MEM_TYPE_SPARE);
4153 if (spare_memory[2] == 0)
4154 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4155 MEM_TYPE_SPARE);
4156 if (spare_memory[3] == 0)
4157 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4158 MEM_TYPE_SPARE);
4159 if (spare_memory[4] == 0)
4160 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4161 MEM_TYPE_SPARE);
4162 if (spare_memory[5] == 0)
4163 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4164 MEM_TYPE_SPARE);
4165 if (spare_memory[6] == 0)
4166 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4167 MEM_TYPE_SPARE);
4168 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4169 Vmemory_full = Qnil;
4170 #endif
4173 /************************************************************************
4174 C Stack Marking
4175 ************************************************************************/
4177 /* Conservative C stack marking requires a method to identify possibly
4178 live Lisp objects given a pointer value. We do this by keeping
4179 track of blocks of Lisp data that are allocated in a red-black tree
4180 (see also the comment of mem_node which is the type of nodes in
4181 that tree). Function lisp_malloc adds information for an allocated
4182 block to the red-black tree with calls to mem_insert, and function
4183 lisp_free removes it with mem_delete. Functions live_string_p etc
4184 call mem_find to lookup information about a given pointer in the
4185 tree, and use that to determine if the pointer points into a Lisp
4186 object or not. */
4188 /* Initialize this part of alloc.c. */
4190 static void
4191 mem_init (void)
4193 mem_z.left = mem_z.right = MEM_NIL;
4194 mem_z.parent = NULL;
4195 mem_z.color = MEM_BLACK;
4196 mem_z.start = mem_z.end = NULL;
4197 mem_root = MEM_NIL;
4201 /* Value is a pointer to the mem_node containing START. Value is
4202 MEM_NIL if there is no node in the tree containing START. */
4204 static struct mem_node *
4205 mem_find (void *start)
4207 struct mem_node *p;
4209 if (start < min_heap_address || start > max_heap_address)
4210 return MEM_NIL;
4212 /* Make the search always successful to speed up the loop below. */
4213 mem_z.start = start;
4214 mem_z.end = (char *) start + 1;
4216 p = mem_root;
4217 while (start < p->start || start >= p->end)
4218 p = start < p->start ? p->left : p->right;
4219 return p;
4223 /* Insert a new node into the tree for a block of memory with start
4224 address START, end address END, and type TYPE. Value is a
4225 pointer to the node that was inserted. */
4227 static struct mem_node *
4228 mem_insert (void *start, void *end, enum mem_type type)
4230 struct mem_node *c, *parent, *x;
4232 if (min_heap_address == NULL || start < min_heap_address)
4233 min_heap_address = start;
4234 if (max_heap_address == NULL || end > max_heap_address)
4235 max_heap_address = end;
4237 /* See where in the tree a node for START belongs. In this
4238 particular application, it shouldn't happen that a node is already
4239 present. For debugging purposes, let's check that. */
4240 c = mem_root;
4241 parent = NULL;
4243 while (c != MEM_NIL)
4245 parent = c;
4246 c = start < c->start ? c->left : c->right;
4249 /* Create a new node. */
4250 #ifdef GC_MALLOC_CHECK
4251 x = malloc (sizeof *x);
4252 if (x == NULL)
4253 emacs_abort ();
4254 #else
4255 x = xmalloc (sizeof *x);
4256 #endif
4257 x->start = start;
4258 x->end = end;
4259 x->type = type;
4260 x->parent = parent;
4261 x->left = x->right = MEM_NIL;
4262 x->color = MEM_RED;
4264 /* Insert it as child of PARENT or install it as root. */
4265 if (parent)
4267 if (start < parent->start)
4268 parent->left = x;
4269 else
4270 parent->right = x;
4272 else
4273 mem_root = x;
4275 /* Re-establish red-black tree properties. */
4276 mem_insert_fixup (x);
4278 return x;
4282 /* Re-establish the red-black properties of the tree, and thereby
4283 balance the tree, after node X has been inserted; X is always red. */
4285 static void
4286 mem_insert_fixup (struct mem_node *x)
4288 while (x != mem_root && x->parent->color == MEM_RED)
4290 /* X is red and its parent is red. This is a violation of
4291 red-black tree property #3. */
4293 if (x->parent == x->parent->parent->left)
4295 /* We're on the left side of our grandparent, and Y is our
4296 "uncle". */
4297 struct mem_node *y = x->parent->parent->right;
4299 if (y->color == MEM_RED)
4301 /* Uncle and parent are red but should be black because
4302 X is red. Change the colors accordingly and proceed
4303 with the grandparent. */
4304 x->parent->color = MEM_BLACK;
4305 y->color = MEM_BLACK;
4306 x->parent->parent->color = MEM_RED;
4307 x = x->parent->parent;
4309 else
4311 /* Parent and uncle have different colors; parent is
4312 red, uncle is black. */
4313 if (x == x->parent->right)
4315 x = x->parent;
4316 mem_rotate_left (x);
4319 x->parent->color = MEM_BLACK;
4320 x->parent->parent->color = MEM_RED;
4321 mem_rotate_right (x->parent->parent);
4324 else
4326 /* This is the symmetrical case of above. */
4327 struct mem_node *y = x->parent->parent->left;
4329 if (y->color == MEM_RED)
4331 x->parent->color = MEM_BLACK;
4332 y->color = MEM_BLACK;
4333 x->parent->parent->color = MEM_RED;
4334 x = x->parent->parent;
4336 else
4338 if (x == x->parent->left)
4340 x = x->parent;
4341 mem_rotate_right (x);
4344 x->parent->color = MEM_BLACK;
4345 x->parent->parent->color = MEM_RED;
4346 mem_rotate_left (x->parent->parent);
4351 /* The root may have been changed to red due to the algorithm. Set
4352 it to black so that property #5 is satisfied. */
4353 mem_root->color = MEM_BLACK;
4357 /* (x) (y)
4358 / \ / \
4359 a (y) ===> (x) c
4360 / \ / \
4361 b c a b */
4363 static void
4364 mem_rotate_left (struct mem_node *x)
4366 struct mem_node *y;
4368 /* Turn y's left sub-tree into x's right sub-tree. */
4369 y = x->right;
4370 x->right = y->left;
4371 if (y->left != MEM_NIL)
4372 y->left->parent = x;
4374 /* Y's parent was x's parent. */
4375 if (y != MEM_NIL)
4376 y->parent = x->parent;
4378 /* Get the parent to point to y instead of x. */
4379 if (x->parent)
4381 if (x == x->parent->left)
4382 x->parent->left = y;
4383 else
4384 x->parent->right = y;
4386 else
4387 mem_root = y;
4389 /* Put x on y's left. */
4390 y->left = x;
4391 if (x != MEM_NIL)
4392 x->parent = y;
4396 /* (x) (Y)
4397 / \ / \
4398 (y) c ===> a (x)
4399 / \ / \
4400 a b b c */
4402 static void
4403 mem_rotate_right (struct mem_node *x)
4405 struct mem_node *y = x->left;
4407 x->left = y->right;
4408 if (y->right != MEM_NIL)
4409 y->right->parent = x;
4411 if (y != MEM_NIL)
4412 y->parent = x->parent;
4413 if (x->parent)
4415 if (x == x->parent->right)
4416 x->parent->right = y;
4417 else
4418 x->parent->left = y;
4420 else
4421 mem_root = y;
4423 y->right = x;
4424 if (x != MEM_NIL)
4425 x->parent = y;
4429 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4431 static void
4432 mem_delete (struct mem_node *z)
4434 struct mem_node *x, *y;
4436 if (!z || z == MEM_NIL)
4437 return;
4439 if (z->left == MEM_NIL || z->right == MEM_NIL)
4440 y = z;
4441 else
4443 y = z->right;
4444 while (y->left != MEM_NIL)
4445 y = y->left;
4448 if (y->left != MEM_NIL)
4449 x = y->left;
4450 else
4451 x = y->right;
4453 x->parent = y->parent;
4454 if (y->parent)
4456 if (y == y->parent->left)
4457 y->parent->left = x;
4458 else
4459 y->parent->right = x;
4461 else
4462 mem_root = x;
4464 if (y != z)
4466 z->start = y->start;
4467 z->end = y->end;
4468 z->type = y->type;
4471 if (y->color == MEM_BLACK)
4472 mem_delete_fixup (x);
4474 #ifdef GC_MALLOC_CHECK
4475 free (y);
4476 #else
4477 xfree (y);
4478 #endif
4482 /* Re-establish the red-black properties of the tree, after a
4483 deletion. */
4485 static void
4486 mem_delete_fixup (struct mem_node *x)
4488 while (x != mem_root && x->color == MEM_BLACK)
4490 if (x == x->parent->left)
4492 struct mem_node *w = x->parent->right;
4494 if (w->color == MEM_RED)
4496 w->color = MEM_BLACK;
4497 x->parent->color = MEM_RED;
4498 mem_rotate_left (x->parent);
4499 w = x->parent->right;
4502 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4504 w->color = MEM_RED;
4505 x = x->parent;
4507 else
4509 if (w->right->color == MEM_BLACK)
4511 w->left->color = MEM_BLACK;
4512 w->color = MEM_RED;
4513 mem_rotate_right (w);
4514 w = x->parent->right;
4516 w->color = x->parent->color;
4517 x->parent->color = MEM_BLACK;
4518 w->right->color = MEM_BLACK;
4519 mem_rotate_left (x->parent);
4520 x = mem_root;
4523 else
4525 struct mem_node *w = x->parent->left;
4527 if (w->color == MEM_RED)
4529 w->color = MEM_BLACK;
4530 x->parent->color = MEM_RED;
4531 mem_rotate_right (x->parent);
4532 w = x->parent->left;
4535 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4537 w->color = MEM_RED;
4538 x = x->parent;
4540 else
4542 if (w->left->color == MEM_BLACK)
4544 w->right->color = MEM_BLACK;
4545 w->color = MEM_RED;
4546 mem_rotate_left (w);
4547 w = x->parent->left;
4550 w->color = x->parent->color;
4551 x->parent->color = MEM_BLACK;
4552 w->left->color = MEM_BLACK;
4553 mem_rotate_right (x->parent);
4554 x = mem_root;
4559 x->color = MEM_BLACK;
4563 /* If P is a pointer into a live Lisp string object on the heap,
4564 return the object. Otherwise, return nil. M is a pointer to the
4565 mem_block for P.
4567 This and other *_holding functions look for a pointer anywhere into
4568 the object, not merely for a pointer to the start of the object,
4569 because some compilers sometimes optimize away the latter. See
4570 Bug#28213. */
4572 static Lisp_Object
4573 live_string_holding (struct mem_node *m, void *p)
4575 if (m->type == MEM_TYPE_STRING)
4577 struct string_block *b = m->start;
4578 char *cp = p;
4579 ptrdiff_t offset = cp - (char *) &b->strings[0];
4581 /* P must point into a Lisp_String structure, and it
4582 must not be on the free-list. */
4583 if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
4585 struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
4586 if (s->data)
4587 return make_lisp_ptr (s, Lisp_String);
4590 return Qnil;
4593 static bool
4594 live_string_p (struct mem_node *m, void *p)
4596 return !NILP (live_string_holding (m, p));
4599 /* If P is a pointer into a live Lisp cons object on the heap, return
4600 the object. Otherwise, return nil. M is a pointer to the
4601 mem_block for P. */
4603 static Lisp_Object
4604 live_cons_holding (struct mem_node *m, void *p)
4606 if (m->type == MEM_TYPE_CONS)
4608 struct cons_block *b = m->start;
4609 char *cp = p;
4610 ptrdiff_t offset = cp - (char *) &b->conses[0];
4612 /* P must point into a Lisp_Cons, not be
4613 one of the unused cells in the current cons block,
4614 and not be on the free-list. */
4615 if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
4616 && (b != cons_block
4617 || offset / sizeof b->conses[0] < cons_block_index))
4619 struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
4620 if (!EQ (s->car, Vdead))
4621 return make_lisp_ptr (s, Lisp_Cons);
4624 return Qnil;
4627 static bool
4628 live_cons_p (struct mem_node *m, void *p)
4630 return !NILP (live_cons_holding (m, p));
4634 /* If P is a pointer into a live Lisp symbol object on the heap,
4635 return the object. Otherwise, return nil. M is a pointer to the
4636 mem_block for P. */
4638 static Lisp_Object
4639 live_symbol_holding (struct mem_node *m, void *p)
4641 if (m->type == MEM_TYPE_SYMBOL)
4643 struct symbol_block *b = m->start;
4644 char *cp = p;
4645 ptrdiff_t offset = cp - (char *) &b->symbols[0];
4647 /* P must point into the Lisp_Symbol, not be
4648 one of the unused cells in the current symbol block,
4649 and not be on the free-list. */
4650 if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
4651 && (b != symbol_block
4652 || offset / sizeof b->symbols[0] < symbol_block_index))
4654 struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
4655 if (!EQ (s->function, Vdead))
4656 return make_lisp_symbol (s);
4659 return Qnil;
4662 static bool
4663 live_symbol_p (struct mem_node *m, void *p)
4665 return !NILP (live_symbol_holding (m, p));
4669 /* Return true if P is a pointer to a live Lisp float on
4670 the heap. M is a pointer to the mem_block for P. */
4672 static bool
4673 live_float_p (struct mem_node *m, void *p)
4675 if (m->type == MEM_TYPE_FLOAT)
4677 struct float_block *b = m->start;
4678 char *cp = p;
4679 ptrdiff_t offset = cp - (char *) &b->floats[0];
4681 /* P must point to the start of a Lisp_Float and not be
4682 one of the unused cells in the current float block. */
4683 return (offset >= 0
4684 && offset % sizeof b->floats[0] == 0
4685 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4686 && (b != float_block
4687 || offset / sizeof b->floats[0] < float_block_index));
4689 else
4690 return 0;
4694 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4695 Otherwise, return nil. M is a pointer to the mem_block for P. */
4697 static Lisp_Object
4698 live_misc_holding (struct mem_node *m, void *p)
4700 if (m->type == MEM_TYPE_MISC)
4702 struct marker_block *b = m->start;
4703 char *cp = p;
4704 ptrdiff_t offset = cp - (char *) &b->markers[0];
4706 /* P must point into a Lisp_Misc, not be
4707 one of the unused cells in the current misc block,
4708 and not be on the free-list. */
4709 if (0 <= offset && offset < MARKER_BLOCK_SIZE * sizeof b->markers[0]
4710 && (b != marker_block
4711 || offset / sizeof b->markers[0] < marker_block_index))
4713 union Lisp_Misc *s = p = cp -= offset % sizeof b->markers[0];
4714 if (s->u_any.type != Lisp_Misc_Free)
4715 return make_lisp_ptr (s, Lisp_Misc);
4718 return Qnil;
4721 static bool
4722 live_misc_p (struct mem_node *m, void *p)
4724 return !NILP (live_misc_holding (m, p));
4727 /* If P is a pointer to a live vector-like object, return the object.
4728 Otherwise, return nil.
4729 M is a pointer to the mem_block for P. */
4731 static Lisp_Object
4732 live_vector_holding (struct mem_node *m, void *p)
4734 struct Lisp_Vector *vp = p;
4736 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4738 /* This memory node corresponds to a vector block. */
4739 struct vector_block *block = m->start;
4740 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4742 /* P is in the block's allocation range. Scan the block
4743 up to P and see whether P points to the start of some
4744 vector which is not on a free list. FIXME: check whether
4745 some allocation patterns (probably a lot of short vectors)
4746 may cause a substantial overhead of this loop. */
4747 while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
4749 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4750 if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4751 return make_lisp_ptr (vector, Lisp_Vectorlike);
4752 vector = next;
4755 else if (m->type == MEM_TYPE_VECTORLIKE)
4757 /* This memory node corresponds to a large vector. */
4758 struct Lisp_Vector *vector = large_vector_vec (m->start);
4759 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4760 if (vector <= vp && vp < next)
4761 return make_lisp_ptr (vector, Lisp_Vectorlike);
4763 return Qnil;
4766 static bool
4767 live_vector_p (struct mem_node *m, void *p)
4769 return !NILP (live_vector_holding (m, p));
4772 /* If P is a pointer into a live buffer, return the buffer.
4773 Otherwise, return nil. M is a pointer to the mem_block for P. */
4775 static Lisp_Object
4776 live_buffer_holding (struct mem_node *m, void *p)
4778 /* P must point into the block, and the buffer
4779 must not have been killed. */
4780 if (m->type == MEM_TYPE_BUFFER)
4782 struct buffer *b = m->start;
4783 char *cb = m->start;
4784 char *cp = p;
4785 ptrdiff_t offset = cp - cb;
4786 if (0 <= offset && offset < sizeof *b && !NILP (b->name_))
4788 Lisp_Object obj;
4789 XSETBUFFER (obj, b);
4790 return obj;
4793 return Qnil;
4796 static bool
4797 live_buffer_p (struct mem_node *m, void *p)
4799 return !NILP (live_buffer_holding (m, p));
4802 /* Mark OBJ if we can prove it's a Lisp_Object. */
4804 static void
4805 mark_maybe_object (Lisp_Object obj)
4807 #if USE_VALGRIND
4808 if (valgrind_p)
4809 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4810 #endif
4812 if (INTEGERP (obj))
4813 return;
4815 void *po = XPNTR (obj);
4816 struct mem_node *m = mem_find (po);
4818 if (m != MEM_NIL)
4820 bool mark_p = false;
4822 switch (XTYPE (obj))
4824 case Lisp_String:
4825 mark_p = EQ (obj, live_string_holding (m, po));
4826 break;
4828 case Lisp_Cons:
4829 mark_p = EQ (obj, live_cons_holding (m, po));
4830 break;
4832 case Lisp_Symbol:
4833 mark_p = EQ (obj, live_symbol_holding (m, po));
4834 break;
4836 case Lisp_Float:
4837 mark_p = live_float_p (m, po);
4838 break;
4840 case Lisp_Vectorlike:
4841 mark_p = (EQ (obj, live_vector_holding (m, po))
4842 || EQ (obj, live_buffer_holding (m, po)));
4843 break;
4845 case Lisp_Misc:
4846 mark_p = EQ (obj, live_misc_holding (m, po));
4847 break;
4849 default:
4850 break;
4853 if (mark_p)
4854 mark_object (obj);
4858 /* Return true if P can point to Lisp data, and false otherwise.
4859 Symbols are implemented via offsets not pointers, but the offsets
4860 are also multiples of GCALIGNMENT. */
4862 static bool
4863 maybe_lisp_pointer (void *p)
4865 return (uintptr_t) p % GCALIGNMENT == 0;
4868 #ifndef HAVE_MODULES
4869 enum { HAVE_MODULES = false };
4870 #endif
4872 /* If P points to Lisp data, mark that as live if it isn't already
4873 marked. */
4875 static void
4876 mark_maybe_pointer (void *p)
4878 struct mem_node *m;
4880 #if USE_VALGRIND
4881 if (valgrind_p)
4882 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4883 #endif
4885 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4887 if (!maybe_lisp_pointer (p))
4888 return;
4890 else
4892 /* For the wide-int case, also mark emacs_value tagged pointers,
4893 which can be generated by emacs-module.c's value_to_lisp. */
4894 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4897 m = mem_find (p);
4898 if (m != MEM_NIL)
4900 Lisp_Object obj = Qnil;
4902 switch (m->type)
4904 case MEM_TYPE_NON_LISP:
4905 case MEM_TYPE_SPARE:
4906 /* Nothing to do; not a pointer to Lisp memory. */
4907 break;
4909 case MEM_TYPE_BUFFER:
4910 obj = live_buffer_holding (m, p);
4911 break;
4913 case MEM_TYPE_CONS:
4914 obj = live_cons_holding (m, p);
4915 break;
4917 case MEM_TYPE_STRING:
4918 obj = live_string_holding (m, p);
4919 break;
4921 case MEM_TYPE_MISC:
4922 obj = live_misc_holding (m, p);
4923 break;
4925 case MEM_TYPE_SYMBOL:
4926 obj = live_symbol_holding (m, p);
4927 break;
4929 case MEM_TYPE_FLOAT:
4930 if (live_float_p (m, p))
4931 obj = make_lisp_ptr (p, Lisp_Float);
4932 break;
4934 case MEM_TYPE_VECTORLIKE:
4935 case MEM_TYPE_VECTOR_BLOCK:
4936 obj = live_vector_holding (m, p);
4937 break;
4939 default:
4940 emacs_abort ();
4943 if (!NILP (obj))
4944 mark_object (obj);
4949 /* Alignment of pointer values. Use alignof, as it sometimes returns
4950 a smaller alignment than GCC's __alignof__ and mark_memory might
4951 miss objects if __alignof__ were used. */
4952 #define GC_POINTER_ALIGNMENT alignof (void *)
4954 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4955 or END+OFFSET..START. */
4957 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4958 mark_memory (void *start, void *end)
4960 char *pp;
4962 /* Make START the pointer to the start of the memory region,
4963 if it isn't already. */
4964 if (end < start)
4966 void *tem = start;
4967 start = end;
4968 end = tem;
4971 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4973 /* Mark Lisp data pointed to. This is necessary because, in some
4974 situations, the C compiler optimizes Lisp objects away, so that
4975 only a pointer to them remains. Example:
4977 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4980 Lisp_Object obj = build_string ("test");
4981 struct Lisp_String *s = XSTRING (obj);
4982 Fgarbage_collect ();
4983 fprintf (stderr, "test '%s'\n", s->data);
4984 return Qnil;
4987 Here, `obj' isn't really used, and the compiler optimizes it
4988 away. The only reference to the life string is through the
4989 pointer `s'. */
4991 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4993 mark_maybe_pointer (*(void **) pp);
4994 mark_maybe_object (*(Lisp_Object *) pp);
4998 #ifndef HAVE___BUILTIN_UNWIND_INIT
5000 # ifdef GC_SETJMP_WORKS
5001 static void
5002 test_setjmp (void)
5005 # else
5007 static bool setjmp_tested_p;
5008 static int longjmps_done;
5010 # define SETJMP_WILL_LIKELY_WORK "\
5012 Emacs garbage collector has been changed to use conservative stack\n\
5013 marking. Emacs has determined that the method it uses to do the\n\
5014 marking will likely work on your system, but this isn't sure.\n\
5016 If you are a system-programmer, or can get the help of a local wizard\n\
5017 who is, please take a look at the function mark_stack in alloc.c, and\n\
5018 verify that the methods used are appropriate for your system.\n\
5020 Please mail the result to <emacs-devel@gnu.org>.\n\
5023 # define SETJMP_WILL_NOT_WORK "\
5025 Emacs garbage collector has been changed to use conservative stack\n\
5026 marking. Emacs has determined that the default method it uses to do the\n\
5027 marking will not work on your system. We will need a system-dependent\n\
5028 solution for your system.\n\
5030 Please take a look at the function mark_stack in alloc.c, and\n\
5031 try to find a way to make it work on your system.\n\
5033 Note that you may get false negatives, depending on the compiler.\n\
5034 In particular, you need to use -O with GCC for this test.\n\
5036 Please mail the result to <emacs-devel@gnu.org>.\n\
5040 /* Perform a quick check if it looks like setjmp saves registers in a
5041 jmp_buf. Print a message to stderr saying so. When this test
5042 succeeds, this is _not_ a proof that setjmp is sufficient for
5043 conservative stack marking. Only the sources or a disassembly
5044 can prove that. */
5046 static void
5047 test_setjmp (void)
5049 if (setjmp_tested_p)
5050 return;
5051 setjmp_tested_p = true;
5052 char buf[10];
5053 register int x;
5054 sys_jmp_buf jbuf;
5056 /* Arrange for X to be put in a register. */
5057 sprintf (buf, "1");
5058 x = strlen (buf);
5059 x = 2 * x - 1;
5061 sys_setjmp (jbuf);
5062 if (longjmps_done == 1)
5064 /* Came here after the longjmp at the end of the function.
5066 If x == 1, the longjmp has restored the register to its
5067 value before the setjmp, and we can hope that setjmp
5068 saves all such registers in the jmp_buf, although that
5069 isn't sure.
5071 For other values of X, either something really strange is
5072 taking place, or the setjmp just didn't save the register. */
5074 if (x == 1)
5075 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
5076 else
5078 fprintf (stderr, SETJMP_WILL_NOT_WORK);
5079 exit (1);
5083 ++longjmps_done;
5084 x = 2;
5085 if (longjmps_done == 1)
5086 sys_longjmp (jbuf, 1);
5088 # endif /* ! GC_SETJMP_WORKS */
5089 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5091 /* The type of an object near the stack top, whose address can be used
5092 as a stack scan limit. */
5093 typedef union
5095 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5096 jmp_buf may not be aligned enough on darwin-ppc64. */
5097 max_align_t o;
5098 #ifndef HAVE___BUILTIN_UNWIND_INIT
5099 sys_jmp_buf j;
5100 char c;
5101 #endif
5102 } stacktop_sentry;
5104 /* Force callee-saved registers and register windows onto the stack.
5105 Use the platform-defined __builtin_unwind_init if available,
5106 obviating the need for machine dependent methods. */
5107 #ifndef HAVE___BUILTIN_UNWIND_INIT
5108 # ifdef __sparc__
5109 /* This trick flushes the register windows so that all the state of
5110 the process is contained in the stack.
5111 FreeBSD does not have a ta 3 handler, so handle it specially.
5112 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5113 needed on ia64 too. See mach_dep.c, where it also says inline
5114 assembler doesn't work with relevant proprietary compilers. */
5115 # if defined __sparc64__ && defined __FreeBSD__
5116 # define __builtin_unwind_init() asm ("flushw")
5117 # else
5118 # define __builtin_unwind_init() asm ("ta 3")
5119 # endif
5120 # else
5121 # define __builtin_unwind_init() ((void) 0)
5122 # endif
5123 #endif
5125 /* Yield an address close enough to the top of the stack that the
5126 garbage collector need not scan above it. Callers should be
5127 declared NO_INLINE. */
5128 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5129 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5130 #else
5131 # define NEAR_STACK_TOP(addr) (addr)
5132 #endif
5134 /* Set *P to the address of the top of the stack. This must be a
5135 macro, not a function, so that it is executed in the caller’s
5136 environment. It is not inside a do-while so that its storage
5137 survives the macro. Callers should be declared NO_INLINE. */
5138 #ifdef HAVE___BUILTIN_UNWIND_INIT
5139 # define SET_STACK_TOP_ADDRESS(p) \
5140 stacktop_sentry sentry; \
5141 __builtin_unwind_init (); \
5142 *(p) = NEAR_STACK_TOP (&sentry)
5143 #else
5144 # define SET_STACK_TOP_ADDRESS(p) \
5145 stacktop_sentry sentry; \
5146 __builtin_unwind_init (); \
5147 test_setjmp (); \
5148 sys_setjmp (sentry.j); \
5149 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5150 #endif
5152 /* Mark live Lisp objects on the C stack.
5154 There are several system-dependent problems to consider when
5155 porting this to new architectures:
5157 Processor Registers
5159 We have to mark Lisp objects in CPU registers that can hold local
5160 variables or are used to pass parameters.
5162 This code assumes that calling setjmp saves registers we need
5163 to see in a jmp_buf which itself lies on the stack. This doesn't
5164 have to be true! It must be verified for each system, possibly
5165 by taking a look at the source code of setjmp.
5167 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5168 can use it as a machine independent method to store all registers
5169 to the stack. In this case the macros described in the previous
5170 two paragraphs are not used.
5172 Stack Layout
5174 Architectures differ in the way their processor stack is organized.
5175 For example, the stack might look like this
5177 +----------------+
5178 | Lisp_Object | size = 4
5179 +----------------+
5180 | something else | size = 2
5181 +----------------+
5182 | Lisp_Object | size = 4
5183 +----------------+
5184 | ... |
5186 In such a case, not every Lisp_Object will be aligned equally. To
5187 find all Lisp_Object on the stack it won't be sufficient to walk
5188 the stack in steps of 4 bytes. Instead, two passes will be
5189 necessary, one starting at the start of the stack, and a second
5190 pass starting at the start of the stack + 2. Likewise, if the
5191 minimal alignment of Lisp_Objects on the stack is 1, four passes
5192 would be necessary, each one starting with one byte more offset
5193 from the stack start. */
5195 void
5196 mark_stack (char *bottom, char *end)
5198 /* This assumes that the stack is a contiguous region in memory. If
5199 that's not the case, something has to be done here to iterate
5200 over the stack segments. */
5201 mark_memory (bottom, end);
5203 /* Allow for marking a secondary stack, like the register stack on the
5204 ia64. */
5205 #ifdef GC_MARK_SECONDARY_STACK
5206 GC_MARK_SECONDARY_STACK ();
5207 #endif
5210 /* This is a trampoline function that flushes registers to the stack,
5211 and then calls FUNC. ARG is passed through to FUNC verbatim.
5213 This function must be called whenever Emacs is about to release the
5214 global interpreter lock. This lets the garbage collector easily
5215 find roots in registers on threads that are not actively running
5216 Lisp.
5218 It is invalid to run any Lisp code or to allocate any GC memory
5219 from FUNC. */
5221 NO_INLINE void
5222 flush_stack_call_func (void (*func) (void *arg), void *arg)
5224 void *end;
5225 struct thread_state *self = current_thread;
5226 SET_STACK_TOP_ADDRESS (&end);
5227 self->stack_top = end;
5228 func (arg);
5229 eassert (current_thread == self);
5232 static bool
5233 c_symbol_p (struct Lisp_Symbol *sym)
5235 char *lispsym_ptr = (char *) lispsym;
5236 char *sym_ptr = (char *) sym;
5237 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5238 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5241 /* Determine whether it is safe to access memory at address P. */
5242 static int
5243 valid_pointer_p (void *p)
5245 #ifdef WINDOWSNT
5246 return w32_valid_pointer_p (p, 16);
5247 #else
5249 if (ADDRESS_SANITIZER)
5250 return p ? -1 : 0;
5252 int fd[2];
5254 /* Obviously, we cannot just access it (we would SEGV trying), so we
5255 trick the o/s to tell us whether p is a valid pointer.
5256 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5257 not validate p in that case. */
5259 if (emacs_pipe (fd) == 0)
5261 bool valid = emacs_write (fd[1], p, 16) == 16;
5262 emacs_close (fd[1]);
5263 emacs_close (fd[0]);
5264 return valid;
5267 return -1;
5268 #endif
5271 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5272 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5273 cannot validate OBJ. This function can be quite slow, so its primary
5274 use is the manual debugging. The only exception is print_object, where
5275 we use it to check whether the memory referenced by the pointer of
5276 Lisp_Save_Value object contains valid objects. */
5279 valid_lisp_object_p (Lisp_Object obj)
5281 if (INTEGERP (obj))
5282 return 1;
5284 void *p = XPNTR (obj);
5285 if (PURE_P (p))
5286 return 1;
5288 if (SYMBOLP (obj) && c_symbol_p (p))
5289 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5291 if (p == &buffer_defaults || p == &buffer_local_symbols)
5292 return 2;
5294 struct mem_node *m = mem_find (p);
5296 if (m == MEM_NIL)
5298 int valid = valid_pointer_p (p);
5299 if (valid <= 0)
5300 return valid;
5302 if (SUBRP (obj))
5303 return 1;
5305 return 0;
5308 switch (m->type)
5310 case MEM_TYPE_NON_LISP:
5311 case MEM_TYPE_SPARE:
5312 return 0;
5314 case MEM_TYPE_BUFFER:
5315 return live_buffer_p (m, p) ? 1 : 2;
5317 case MEM_TYPE_CONS:
5318 return live_cons_p (m, p);
5320 case MEM_TYPE_STRING:
5321 return live_string_p (m, p);
5323 case MEM_TYPE_MISC:
5324 return live_misc_p (m, p);
5326 case MEM_TYPE_SYMBOL:
5327 return live_symbol_p (m, p);
5329 case MEM_TYPE_FLOAT:
5330 return live_float_p (m, p);
5332 case MEM_TYPE_VECTORLIKE:
5333 case MEM_TYPE_VECTOR_BLOCK:
5334 return live_vector_p (m, p);
5336 default:
5337 break;
5340 return 0;
5343 /***********************************************************************
5344 Pure Storage Management
5345 ***********************************************************************/
5347 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5348 pointer to it. TYPE is the Lisp type for which the memory is
5349 allocated. TYPE < 0 means it's not used for a Lisp object. */
5351 static void *
5352 pure_alloc (size_t size, int type)
5354 void *result;
5356 again:
5357 if (type >= 0)
5359 /* Allocate space for a Lisp object from the beginning of the free
5360 space with taking account of alignment. */
5361 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5362 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5364 else
5366 /* Allocate space for a non-Lisp object from the end of the free
5367 space. */
5368 pure_bytes_used_non_lisp += size;
5369 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5371 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5373 if (pure_bytes_used <= pure_size)
5374 return result;
5376 /* Don't allocate a large amount here,
5377 because it might get mmap'd and then its address
5378 might not be usable. */
5379 purebeg = xmalloc (10000);
5380 pure_size = 10000;
5381 pure_bytes_used_before_overflow += pure_bytes_used - size;
5382 pure_bytes_used = 0;
5383 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5384 goto again;
5388 #ifndef CANNOT_DUMP
5390 /* Print a warning if PURESIZE is too small. */
5392 void
5393 check_pure_size (void)
5395 if (pure_bytes_used_before_overflow)
5396 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5397 " bytes needed)"),
5398 pure_bytes_used + pure_bytes_used_before_overflow);
5400 #endif
5403 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5404 the non-Lisp data pool of the pure storage, and return its start
5405 address. Return NULL if not found. */
5407 static char *
5408 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5410 int i;
5411 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5412 const unsigned char *p;
5413 char *non_lisp_beg;
5415 if (pure_bytes_used_non_lisp <= nbytes)
5416 return NULL;
5418 /* Set up the Boyer-Moore table. */
5419 skip = nbytes + 1;
5420 for (i = 0; i < 256; i++)
5421 bm_skip[i] = skip;
5423 p = (const unsigned char *) data;
5424 while (--skip > 0)
5425 bm_skip[*p++] = skip;
5427 last_char_skip = bm_skip['\0'];
5429 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5430 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5432 /* See the comments in the function `boyer_moore' (search.c) for the
5433 use of `infinity'. */
5434 infinity = pure_bytes_used_non_lisp + 1;
5435 bm_skip['\0'] = infinity;
5437 p = (const unsigned char *) non_lisp_beg + nbytes;
5438 start = 0;
5441 /* Check the last character (== '\0'). */
5444 start += bm_skip[*(p + start)];
5446 while (start <= start_max);
5448 if (start < infinity)
5449 /* Couldn't find the last character. */
5450 return NULL;
5452 /* No less than `infinity' means we could find the last
5453 character at `p[start - infinity]'. */
5454 start -= infinity;
5456 /* Check the remaining characters. */
5457 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5458 /* Found. */
5459 return non_lisp_beg + start;
5461 start += last_char_skip;
5463 while (start <= start_max);
5465 return NULL;
5469 /* Return a string allocated in pure space. DATA is a buffer holding
5470 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5471 means make the result string multibyte.
5473 Must get an error if pure storage is full, since if it cannot hold
5474 a large string it may be able to hold conses that point to that
5475 string; then the string is not protected from gc. */
5477 Lisp_Object
5478 make_pure_string (const char *data,
5479 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5481 Lisp_Object string;
5482 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5483 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5484 if (s->data == NULL)
5486 s->data = pure_alloc (nbytes + 1, -1);
5487 memcpy (s->data, data, nbytes);
5488 s->data[nbytes] = '\0';
5490 s->size = nchars;
5491 s->size_byte = multibyte ? nbytes : -1;
5492 s->intervals = NULL;
5493 XSETSTRING (string, s);
5494 return string;
5497 /* Return a string allocated in pure space. Do not
5498 allocate the string data, just point to DATA. */
5500 Lisp_Object
5501 make_pure_c_string (const char *data, ptrdiff_t nchars)
5503 Lisp_Object string;
5504 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5505 s->size = nchars;
5506 s->size_byte = -1;
5507 s->data = (unsigned char *) data;
5508 s->intervals = NULL;
5509 XSETSTRING (string, s);
5510 return string;
5513 static Lisp_Object purecopy (Lisp_Object obj);
5515 /* Return a cons allocated from pure space. Give it pure copies
5516 of CAR as car and CDR as cdr. */
5518 Lisp_Object
5519 pure_cons (Lisp_Object car, Lisp_Object cdr)
5521 Lisp_Object new;
5522 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5523 XSETCONS (new, p);
5524 XSETCAR (new, purecopy (car));
5525 XSETCDR (new, purecopy (cdr));
5526 return new;
5530 /* Value is a float object with value NUM allocated from pure space. */
5532 static Lisp_Object
5533 make_pure_float (double num)
5535 Lisp_Object new;
5536 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5537 XSETFLOAT (new, p);
5538 XFLOAT_INIT (new, num);
5539 return new;
5543 /* Return a vector with room for LEN Lisp_Objects allocated from
5544 pure space. */
5546 static Lisp_Object
5547 make_pure_vector (ptrdiff_t len)
5549 Lisp_Object new;
5550 size_t size = header_size + len * word_size;
5551 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5552 XSETVECTOR (new, p);
5553 XVECTOR (new)->header.size = len;
5554 return new;
5557 /* Copy all contents and parameters of TABLE to a new table allocated
5558 from pure space, return the purified table. */
5559 static struct Lisp_Hash_Table *
5560 purecopy_hash_table (struct Lisp_Hash_Table *table)
5562 eassert (NILP (table->weak));
5563 eassert (table->pure);
5565 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5566 struct hash_table_test pure_test = table->test;
5568 /* Purecopy the hash table test. */
5569 pure_test.name = purecopy (table->test.name);
5570 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5571 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5573 pure->header = table->header;
5574 pure->weak = purecopy (Qnil);
5575 pure->hash = purecopy (table->hash);
5576 pure->next = purecopy (table->next);
5577 pure->index = purecopy (table->index);
5578 pure->count = table->count;
5579 pure->next_free = table->next_free;
5580 pure->pure = table->pure;
5581 pure->rehash_threshold = table->rehash_threshold;
5582 pure->rehash_size = table->rehash_size;
5583 pure->key_and_value = purecopy (table->key_and_value);
5584 pure->test = pure_test;
5586 return pure;
5589 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5590 doc: /* Make a copy of object OBJ in pure storage.
5591 Recursively copies contents of vectors and cons cells.
5592 Does not copy symbols. Copies strings without text properties. */)
5593 (register Lisp_Object obj)
5595 if (NILP (Vpurify_flag))
5596 return obj;
5597 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5598 /* Can't purify those. */
5599 return obj;
5600 else
5601 return purecopy (obj);
5604 /* Pinned objects are marked before every GC cycle. */
5605 static struct pinned_object
5607 Lisp_Object object;
5608 struct pinned_object *next;
5609 } *pinned_objects;
5611 static Lisp_Object
5612 purecopy (Lisp_Object obj)
5614 if (INTEGERP (obj)
5615 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5616 || SUBRP (obj))
5617 return obj; /* Already pure. */
5619 if (STRINGP (obj) && XSTRING (obj)->intervals)
5620 message_with_string ("Dropping text-properties while making string `%s' pure",
5621 obj, true);
5623 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5625 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5626 if (!NILP (tmp))
5627 return tmp;
5630 if (CONSP (obj))
5631 obj = pure_cons (XCAR (obj), XCDR (obj));
5632 else if (FLOATP (obj))
5633 obj = make_pure_float (XFLOAT_DATA (obj));
5634 else if (STRINGP (obj))
5635 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5636 SBYTES (obj),
5637 STRING_MULTIBYTE (obj));
5638 else if (HASH_TABLE_P (obj))
5640 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5641 /* Do not purify hash tables which haven't been defined with
5642 :purecopy as non-nil or are weak - they aren't guaranteed to
5643 not change. */
5644 if (!NILP (table->weak) || !table->pure)
5646 /* Instead, add the hash table to the list of pinned objects,
5647 so that it will be marked during GC. */
5648 struct pinned_object *o = xmalloc (sizeof *o);
5649 o->object = obj;
5650 o->next = pinned_objects;
5651 pinned_objects = o;
5652 return obj; /* Don't hash cons it. */
5655 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5656 XSET_HASH_TABLE (obj, h);
5658 else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
5660 struct Lisp_Vector *objp = XVECTOR (obj);
5661 ptrdiff_t nbytes = vector_nbytes (objp);
5662 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5663 register ptrdiff_t i;
5664 ptrdiff_t size = ASIZE (obj);
5665 if (size & PSEUDOVECTOR_FLAG)
5666 size &= PSEUDOVECTOR_SIZE_MASK;
5667 memcpy (vec, objp, nbytes);
5668 for (i = 0; i < size; i++)
5669 vec->contents[i] = purecopy (vec->contents[i]);
5670 XSETVECTOR (obj, vec);
5672 else if (SYMBOLP (obj))
5674 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5675 { /* We can't purify them, but they appear in many pure objects.
5676 Mark them as `pinned' so we know to mark them at every GC cycle. */
5677 XSYMBOL (obj)->pinned = true;
5678 symbol_block_pinned = symbol_block;
5680 /* Don't hash-cons it. */
5681 return obj;
5683 else
5685 AUTO_STRING (fmt, "Don't know how to purify: %S");
5686 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5689 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5690 Fputhash (obj, obj, Vpurify_flag);
5692 return obj;
5697 /***********************************************************************
5698 Protection from GC
5699 ***********************************************************************/
5701 /* Put an entry in staticvec, pointing at the variable with address
5702 VARADDRESS. */
5704 void
5705 staticpro (Lisp_Object *varaddress)
5707 if (staticidx >= NSTATICS)
5708 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5709 staticvec[staticidx++] = varaddress;
5713 /***********************************************************************
5714 Protection from GC
5715 ***********************************************************************/
5717 /* Temporarily prevent garbage collection. */
5719 ptrdiff_t
5720 inhibit_garbage_collection (void)
5722 ptrdiff_t count = SPECPDL_INDEX ();
5724 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5725 return count;
5728 /* Used to avoid possible overflows when
5729 converting from C to Lisp integers. */
5731 static Lisp_Object
5732 bounded_number (EMACS_INT number)
5734 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5737 /* Calculate total bytes of live objects. */
5739 static size_t
5740 total_bytes_of_live_objects (void)
5742 size_t tot = 0;
5743 tot += total_conses * sizeof (struct Lisp_Cons);
5744 tot += total_symbols * sizeof (struct Lisp_Symbol);
5745 tot += total_markers * sizeof (union Lisp_Misc);
5746 tot += total_string_bytes;
5747 tot += total_vector_slots * word_size;
5748 tot += total_floats * sizeof (struct Lisp_Float);
5749 tot += total_intervals * sizeof (struct interval);
5750 tot += total_strings * sizeof (struct Lisp_String);
5751 return tot;
5754 #ifdef HAVE_WINDOW_SYSTEM
5756 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5757 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5759 static Lisp_Object
5760 compact_font_cache_entry (Lisp_Object entry)
5762 Lisp_Object tail, *prev = &entry;
5764 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5766 bool drop = 0;
5767 Lisp_Object obj = XCAR (tail);
5769 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5770 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5771 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5772 /* Don't use VECTORP here, as that calls ASIZE, which could
5773 hit assertion violation during GC. */
5774 && (VECTORLIKEP (XCDR (obj))
5775 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5777 ptrdiff_t i, size = gc_asize (XCDR (obj));
5778 Lisp_Object obj_cdr = XCDR (obj);
5780 /* If font-spec is not marked, most likely all font-entities
5781 are not marked too. But we must be sure that nothing is
5782 marked within OBJ before we really drop it. */
5783 for (i = 0; i < size; i++)
5785 Lisp_Object objlist;
5787 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5788 break;
5790 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5791 for (; CONSP (objlist); objlist = XCDR (objlist))
5793 Lisp_Object val = XCAR (objlist);
5794 struct font *font = GC_XFONT_OBJECT (val);
5796 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5797 && VECTOR_MARKED_P(font))
5798 break;
5800 if (CONSP (objlist))
5802 /* Found a marked font, bail out. */
5803 break;
5807 if (i == size)
5809 /* No marked fonts were found, so this entire font
5810 entity can be dropped. */
5811 drop = 1;
5814 if (drop)
5815 *prev = XCDR (tail);
5816 else
5817 prev = xcdr_addr (tail);
5819 return entry;
5822 /* Compact font caches on all terminals and mark
5823 everything which is still here after compaction. */
5825 static void
5826 compact_font_caches (void)
5828 struct terminal *t;
5830 for (t = terminal_list; t; t = t->next_terminal)
5832 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5833 /* Inhibit compacting the caches if the user so wishes. Some of
5834 the users don't mind a larger memory footprint, but do mind
5835 slower redisplay. */
5836 if (!inhibit_compacting_font_caches
5837 && CONSP (cache))
5839 Lisp_Object entry;
5841 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5842 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5844 mark_object (cache);
5848 #else /* not HAVE_WINDOW_SYSTEM */
5850 #define compact_font_caches() (void)(0)
5852 #endif /* HAVE_WINDOW_SYSTEM */
5854 /* Remove (MARKER . DATA) entries with unmarked MARKER
5855 from buffer undo LIST and return changed list. */
5857 static Lisp_Object
5858 compact_undo_list (Lisp_Object list)
5860 Lisp_Object tail, *prev = &list;
5862 for (tail = list; CONSP (tail); tail = XCDR (tail))
5864 if (CONSP (XCAR (tail))
5865 && MARKERP (XCAR (XCAR (tail)))
5866 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5867 *prev = XCDR (tail);
5868 else
5869 prev = xcdr_addr (tail);
5871 return list;
5874 static void
5875 mark_pinned_objects (void)
5877 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5878 mark_object (pobj->object);
5881 static void
5882 mark_pinned_symbols (void)
5884 struct symbol_block *sblk;
5885 int lim = (symbol_block_pinned == symbol_block
5886 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5888 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5890 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5891 for (; sym < end; ++sym)
5892 if (sym->s.pinned)
5893 mark_object (make_lisp_symbol (&sym->s));
5895 lim = SYMBOL_BLOCK_SIZE;
5899 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5900 separate function so that we could limit mark_stack in searching
5901 the stack frames below this function, thus avoiding the rare cases
5902 where mark_stack finds values that look like live Lisp objects on
5903 portions of stack that couldn't possibly contain such live objects.
5904 For more details of this, see the discussion at
5905 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5906 static Lisp_Object
5907 garbage_collect_1 (void *end)
5909 struct buffer *nextb;
5910 char stack_top_variable;
5911 ptrdiff_t i;
5912 bool message_p;
5913 ptrdiff_t count = SPECPDL_INDEX ();
5914 struct timespec start;
5915 Lisp_Object retval = Qnil;
5916 size_t tot_before = 0;
5918 /* Can't GC if pure storage overflowed because we can't determine
5919 if something is a pure object or not. */
5920 if (pure_bytes_used_before_overflow)
5921 return Qnil;
5923 /* Record this function, so it appears on the profiler's backtraces. */
5924 record_in_backtrace (QAutomatic_GC, 0, 0);
5926 check_cons_list ();
5928 /* Don't keep undo information around forever.
5929 Do this early on, so it is no problem if the user quits. */
5930 FOR_EACH_BUFFER (nextb)
5931 compact_buffer (nextb);
5933 if (profiler_memory_running)
5934 tot_before = total_bytes_of_live_objects ();
5936 start = current_timespec ();
5938 /* In case user calls debug_print during GC,
5939 don't let that cause a recursive GC. */
5940 consing_since_gc = 0;
5942 /* Save what's currently displayed in the echo area. Don't do that
5943 if we are GC'ing because we've run out of memory, since
5944 push_message will cons, and we might have no memory for that. */
5945 if (NILP (Vmemory_full))
5947 message_p = push_message ();
5948 record_unwind_protect_void (pop_message_unwind);
5950 else
5951 message_p = false;
5953 /* Save a copy of the contents of the stack, for debugging. */
5954 #if MAX_SAVE_STACK > 0
5955 if (NILP (Vpurify_flag))
5957 char *stack;
5958 ptrdiff_t stack_size;
5959 if (&stack_top_variable < stack_bottom)
5961 stack = &stack_top_variable;
5962 stack_size = stack_bottom - &stack_top_variable;
5964 else
5966 stack = stack_bottom;
5967 stack_size = &stack_top_variable - stack_bottom;
5969 if (stack_size <= MAX_SAVE_STACK)
5971 if (stack_copy_size < stack_size)
5973 stack_copy = xrealloc (stack_copy, stack_size);
5974 stack_copy_size = stack_size;
5976 no_sanitize_memcpy (stack_copy, stack, stack_size);
5979 #endif /* MAX_SAVE_STACK > 0 */
5981 if (garbage_collection_messages)
5982 message1_nolog ("Garbage collecting...");
5984 block_input ();
5986 shrink_regexp_cache ();
5988 gc_in_progress = 1;
5990 /* Mark all the special slots that serve as the roots of accessibility. */
5992 mark_buffer (&buffer_defaults);
5993 mark_buffer (&buffer_local_symbols);
5995 for (i = 0; i < ARRAYELTS (lispsym); i++)
5996 mark_object (builtin_lisp_symbol (i));
5998 for (i = 0; i < staticidx; i++)
5999 mark_object (*staticvec[i]);
6001 mark_pinned_objects ();
6002 mark_pinned_symbols ();
6003 mark_terminals ();
6004 mark_kboards ();
6005 mark_threads ();
6007 #ifdef USE_GTK
6008 xg_mark_data ();
6009 #endif
6011 #ifdef HAVE_WINDOW_SYSTEM
6012 mark_fringe_data ();
6013 #endif
6015 #ifdef HAVE_MODULES
6016 mark_modules ();
6017 #endif
6019 /* Everything is now marked, except for the data in font caches,
6020 undo lists, and finalizers. The first two are compacted by
6021 removing an items which aren't reachable otherwise. */
6023 compact_font_caches ();
6025 FOR_EACH_BUFFER (nextb)
6027 if (!EQ (BVAR (nextb, undo_list), Qt))
6028 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
6029 /* Now that we have stripped the elements that need not be
6030 in the undo_list any more, we can finally mark the list. */
6031 mark_object (BVAR (nextb, undo_list));
6034 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
6035 to doomed_finalizers so we can run their associated functions
6036 after GC. It's important to scan finalizers at this stage so
6037 that we can be sure that unmarked finalizers are really
6038 unreachable except for references from their associated functions
6039 and from other finalizers. */
6041 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
6042 mark_finalizer_list (&doomed_finalizers);
6044 gc_sweep ();
6046 /* Clear the mark bits that we set in certain root slots. */
6047 VECTOR_UNMARK (&buffer_defaults);
6048 VECTOR_UNMARK (&buffer_local_symbols);
6050 check_cons_list ();
6052 gc_in_progress = 0;
6054 unblock_input ();
6056 consing_since_gc = 0;
6057 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
6058 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
6060 gc_relative_threshold = 0;
6061 if (FLOATP (Vgc_cons_percentage))
6062 { /* Set gc_cons_combined_threshold. */
6063 double tot = total_bytes_of_live_objects ();
6065 tot *= XFLOAT_DATA (Vgc_cons_percentage);
6066 if (0 < tot)
6068 if (tot < TYPE_MAXIMUM (EMACS_INT))
6069 gc_relative_threshold = tot;
6070 else
6071 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
6075 if (garbage_collection_messages && NILP (Vmemory_full))
6077 if (message_p || minibuf_level > 0)
6078 restore_message ();
6079 else
6080 message1_nolog ("Garbage collecting...done");
6083 unbind_to (count, Qnil);
6085 Lisp_Object total[] = {
6086 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
6087 bounded_number (total_conses),
6088 bounded_number (total_free_conses)),
6089 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
6090 bounded_number (total_symbols),
6091 bounded_number (total_free_symbols)),
6092 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
6093 bounded_number (total_markers),
6094 bounded_number (total_free_markers)),
6095 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
6096 bounded_number (total_strings),
6097 bounded_number (total_free_strings)),
6098 list3 (Qstring_bytes, make_number (1),
6099 bounded_number (total_string_bytes)),
6100 list3 (Qvectors,
6101 make_number (header_size + sizeof (Lisp_Object)),
6102 bounded_number (total_vectors)),
6103 list4 (Qvector_slots, make_number (word_size),
6104 bounded_number (total_vector_slots),
6105 bounded_number (total_free_vector_slots)),
6106 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
6107 bounded_number (total_floats),
6108 bounded_number (total_free_floats)),
6109 list4 (Qintervals, make_number (sizeof (struct interval)),
6110 bounded_number (total_intervals),
6111 bounded_number (total_free_intervals)),
6112 list3 (Qbuffers, make_number (sizeof (struct buffer)),
6113 bounded_number (total_buffers)),
6115 #ifdef DOUG_LEA_MALLOC
6116 list4 (Qheap, make_number (1024),
6117 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
6118 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
6119 #endif
6121 retval = CALLMANY (Flist, total);
6123 /* GC is complete: now we can run our finalizer callbacks. */
6124 run_finalizers (&doomed_finalizers);
6126 if (!NILP (Vpost_gc_hook))
6128 ptrdiff_t gc_count = inhibit_garbage_collection ();
6129 safe_run_hooks (Qpost_gc_hook);
6130 unbind_to (gc_count, Qnil);
6133 /* Accumulate statistics. */
6134 if (FLOATP (Vgc_elapsed))
6136 struct timespec since_start = timespec_sub (current_timespec (), start);
6137 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6138 + timespectod (since_start));
6141 gcs_done++;
6143 /* Collect profiling data. */
6144 if (profiler_memory_running)
6146 size_t swept = 0;
6147 size_t tot_after = total_bytes_of_live_objects ();
6148 if (tot_before > tot_after)
6149 swept = tot_before - tot_after;
6150 malloc_probe (swept);
6153 return retval;
6156 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6157 doc: /* Reclaim storage for Lisp objects no longer needed.
6158 Garbage collection happens automatically if you cons more than
6159 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6160 `garbage-collect' normally returns a list with info on amount of space in use,
6161 where each entry has the form (NAME SIZE USED FREE), where:
6162 - NAME is a symbol describing the kind of objects this entry represents,
6163 - SIZE is the number of bytes used by each one,
6164 - USED is the number of those objects that were found live in the heap,
6165 - FREE is the number of those objects that are not live but that Emacs
6166 keeps around for future allocations (maybe because it does not know how
6167 to return them to the OS).
6168 However, if there was overflow in pure space, `garbage-collect'
6169 returns nil, because real GC can't be done.
6170 See Info node `(elisp)Garbage Collection'. */
6171 attributes: noinline)
6172 (void)
6174 void *end;
6175 SET_STACK_TOP_ADDRESS (&end);
6176 return garbage_collect_1 (end);
6179 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6180 only interesting objects referenced from glyphs are strings. */
6182 static void
6183 mark_glyph_matrix (struct glyph_matrix *matrix)
6185 struct glyph_row *row = matrix->rows;
6186 struct glyph_row *end = row + matrix->nrows;
6188 for (; row < end; ++row)
6189 if (row->enabled_p)
6191 int area;
6192 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6194 struct glyph *glyph = row->glyphs[area];
6195 struct glyph *end_glyph = glyph + row->used[area];
6197 for (; glyph < end_glyph; ++glyph)
6198 if (STRINGP (glyph->object)
6199 && !STRING_MARKED_P (XSTRING (glyph->object)))
6200 mark_object (glyph->object);
6205 /* Mark reference to a Lisp_Object.
6206 If the object referred to has not been seen yet, recursively mark
6207 all the references contained in it. */
6209 #define LAST_MARKED_SIZE 500
6210 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6211 static int last_marked_index;
6213 /* For debugging--call abort when we cdr down this many
6214 links of a list, in mark_object. In debugging,
6215 the call to abort will hit a breakpoint.
6216 Normally this is zero and the check never goes off. */
6217 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6219 static void
6220 mark_vectorlike (struct Lisp_Vector *ptr)
6222 ptrdiff_t size = ptr->header.size;
6223 ptrdiff_t i;
6225 eassert (!VECTOR_MARKED_P (ptr));
6226 VECTOR_MARK (ptr); /* Else mark it. */
6227 if (size & PSEUDOVECTOR_FLAG)
6228 size &= PSEUDOVECTOR_SIZE_MASK;
6230 /* Note that this size is not the memory-footprint size, but only
6231 the number of Lisp_Object fields that we should trace.
6232 The distinction is used e.g. by Lisp_Process which places extra
6233 non-Lisp_Object fields at the end of the structure... */
6234 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6235 mark_object (ptr->contents[i]);
6238 /* Like mark_vectorlike but optimized for char-tables (and
6239 sub-char-tables) assuming that the contents are mostly integers or
6240 symbols. */
6242 static void
6243 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6245 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6246 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6247 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6249 eassert (!VECTOR_MARKED_P (ptr));
6250 VECTOR_MARK (ptr);
6251 for (i = idx; i < size; i++)
6253 Lisp_Object val = ptr->contents[i];
6255 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6256 continue;
6257 if (SUB_CHAR_TABLE_P (val))
6259 if (! VECTOR_MARKED_P (XVECTOR (val)))
6260 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6262 else
6263 mark_object (val);
6267 NO_INLINE /* To reduce stack depth in mark_object. */
6268 static Lisp_Object
6269 mark_compiled (struct Lisp_Vector *ptr)
6271 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6273 VECTOR_MARK (ptr);
6274 for (i = 0; i < size; i++)
6275 if (i != COMPILED_CONSTANTS)
6276 mark_object (ptr->contents[i]);
6277 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6280 /* Mark the chain of overlays starting at PTR. */
6282 static void
6283 mark_overlay (struct Lisp_Overlay *ptr)
6285 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6287 ptr->gcmarkbit = 1;
6288 /* These two are always markers and can be marked fast. */
6289 XMARKER (ptr->start)->gcmarkbit = 1;
6290 XMARKER (ptr->end)->gcmarkbit = 1;
6291 mark_object (ptr->plist);
6295 /* Mark Lisp_Objects and special pointers in BUFFER. */
6297 static void
6298 mark_buffer (struct buffer *buffer)
6300 /* This is handled much like other pseudovectors... */
6301 mark_vectorlike ((struct Lisp_Vector *) buffer);
6303 /* ...but there are some buffer-specific things. */
6305 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6307 /* For now, we just don't mark the undo_list. It's done later in
6308 a special way just before the sweep phase, and after stripping
6309 some of its elements that are not needed any more. */
6311 mark_overlay (buffer->overlays_before);
6312 mark_overlay (buffer->overlays_after);
6314 /* If this is an indirect buffer, mark its base buffer. */
6315 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6316 mark_buffer (buffer->base_buffer);
6319 /* Mark Lisp faces in the face cache C. */
6321 NO_INLINE /* To reduce stack depth in mark_object. */
6322 static void
6323 mark_face_cache (struct face_cache *c)
6325 if (c)
6327 int i, j;
6328 for (i = 0; i < c->used; ++i)
6330 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6332 if (face)
6334 if (face->font && !VECTOR_MARKED_P (face->font))
6335 mark_vectorlike ((struct Lisp_Vector *) face->font);
6337 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6338 mark_object (face->lface[j]);
6344 NO_INLINE /* To reduce stack depth in mark_object. */
6345 static void
6346 mark_localized_symbol (struct Lisp_Symbol *ptr)
6348 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6349 Lisp_Object where = blv->where;
6350 /* If the value is set up for a killed buffer or deleted
6351 frame, restore its global binding. If the value is
6352 forwarded to a C variable, either it's not a Lisp_Object
6353 var, or it's staticpro'd already. */
6354 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6355 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6356 swap_in_global_binding (ptr);
6357 mark_object (blv->where);
6358 mark_object (blv->valcell);
6359 mark_object (blv->defcell);
6362 NO_INLINE /* To reduce stack depth in mark_object. */
6363 static void
6364 mark_save_value (struct Lisp_Save_Value *ptr)
6366 /* If `save_type' is zero, `data[0].pointer' is the address
6367 of a memory area containing `data[1].integer' potential
6368 Lisp_Objects. */
6369 if (ptr->save_type == SAVE_TYPE_MEMORY)
6371 Lisp_Object *p = ptr->data[0].pointer;
6372 ptrdiff_t nelt;
6373 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6374 mark_maybe_object (*p);
6376 else
6378 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6379 int i;
6380 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6381 if (save_type (ptr, i) == SAVE_OBJECT)
6382 mark_object (ptr->data[i].object);
6386 /* Remove killed buffers or items whose car is a killed buffer from
6387 LIST, and mark other items. Return changed LIST, which is marked. */
6389 static Lisp_Object
6390 mark_discard_killed_buffers (Lisp_Object list)
6392 Lisp_Object tail, *prev = &list;
6394 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6395 tail = XCDR (tail))
6397 Lisp_Object tem = XCAR (tail);
6398 if (CONSP (tem))
6399 tem = XCAR (tem);
6400 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6401 *prev = XCDR (tail);
6402 else
6404 CONS_MARK (XCONS (tail));
6405 mark_object (XCAR (tail));
6406 prev = xcdr_addr (tail);
6409 mark_object (tail);
6410 return list;
6413 /* Determine type of generic Lisp_Object and mark it accordingly.
6415 This function implements a straightforward depth-first marking
6416 algorithm and so the recursion depth may be very high (a few
6417 tens of thousands is not uncommon). To minimize stack usage,
6418 a few cold paths are moved out to NO_INLINE functions above.
6419 In general, inlining them doesn't help you to gain more speed. */
6421 void
6422 mark_object (Lisp_Object arg)
6424 register Lisp_Object obj;
6425 void *po;
6426 #if GC_CHECK_MARKED_OBJECTS
6427 struct mem_node *m;
6428 #endif
6429 ptrdiff_t cdr_count = 0;
6431 obj = arg;
6432 loop:
6434 po = XPNTR (obj);
6435 if (PURE_P (po))
6436 return;
6438 last_marked[last_marked_index++] = obj;
6439 if (last_marked_index == LAST_MARKED_SIZE)
6440 last_marked_index = 0;
6442 /* Perform some sanity checks on the objects marked here. Abort if
6443 we encounter an object we know is bogus. This increases GC time
6444 by ~80%. */
6445 #if GC_CHECK_MARKED_OBJECTS
6447 /* Check that the object pointed to by PO is known to be a Lisp
6448 structure allocated from the heap. */
6449 #define CHECK_ALLOCATED() \
6450 do { \
6451 m = mem_find (po); \
6452 if (m == MEM_NIL) \
6453 emacs_abort (); \
6454 } while (0)
6456 /* Check that the object pointed to by PO is live, using predicate
6457 function LIVEP. */
6458 #define CHECK_LIVE(LIVEP) \
6459 do { \
6460 if (!LIVEP (m, po)) \
6461 emacs_abort (); \
6462 } while (0)
6464 /* Check both of the above conditions, for non-symbols. */
6465 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6466 do { \
6467 CHECK_ALLOCATED (); \
6468 CHECK_LIVE (LIVEP); \
6469 } while (0) \
6471 /* Check both of the above conditions, for symbols. */
6472 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6473 do { \
6474 if (!c_symbol_p (ptr)) \
6476 CHECK_ALLOCATED (); \
6477 CHECK_LIVE (live_symbol_p); \
6479 } while (0) \
6481 #else /* not GC_CHECK_MARKED_OBJECTS */
6483 #define CHECK_LIVE(LIVEP) ((void) 0)
6484 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6485 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6487 #endif /* not GC_CHECK_MARKED_OBJECTS */
6489 switch (XTYPE (obj))
6491 case Lisp_String:
6493 register struct Lisp_String *ptr = XSTRING (obj);
6494 if (STRING_MARKED_P (ptr))
6495 break;
6496 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6497 MARK_STRING (ptr);
6498 MARK_INTERVAL_TREE (ptr->intervals);
6499 #ifdef GC_CHECK_STRING_BYTES
6500 /* Check that the string size recorded in the string is the
6501 same as the one recorded in the sdata structure. */
6502 string_bytes (ptr);
6503 #endif /* GC_CHECK_STRING_BYTES */
6505 break;
6507 case Lisp_Vectorlike:
6509 register struct Lisp_Vector *ptr = XVECTOR (obj);
6511 if (VECTOR_MARKED_P (ptr))
6512 break;
6514 #if GC_CHECK_MARKED_OBJECTS
6515 m = mem_find (po);
6516 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6517 emacs_abort ();
6518 #endif /* GC_CHECK_MARKED_OBJECTS */
6520 enum pvec_type pvectype
6521 = PSEUDOVECTOR_TYPE (ptr);
6523 if (pvectype != PVEC_SUBR
6524 && pvectype != PVEC_BUFFER
6525 && !main_thread_p (po))
6526 CHECK_LIVE (live_vector_p);
6528 switch (pvectype)
6530 case PVEC_BUFFER:
6531 #if GC_CHECK_MARKED_OBJECTS
6533 struct buffer *b;
6534 FOR_EACH_BUFFER (b)
6535 if (b == po)
6536 break;
6537 if (b == NULL)
6538 emacs_abort ();
6540 #endif /* GC_CHECK_MARKED_OBJECTS */
6541 mark_buffer ((struct buffer *) ptr);
6542 break;
6544 case PVEC_COMPILED:
6545 /* Although we could treat this just like a vector, mark_compiled
6546 returns the COMPILED_CONSTANTS element, which is marked at the
6547 next iteration of goto-loop here. This is done to avoid a few
6548 recursive calls to mark_object. */
6549 obj = mark_compiled (ptr);
6550 if (!NILP (obj))
6551 goto loop;
6552 break;
6554 case PVEC_FRAME:
6556 struct frame *f = (struct frame *) ptr;
6558 mark_vectorlike (ptr);
6559 mark_face_cache (f->face_cache);
6560 #ifdef HAVE_WINDOW_SYSTEM
6561 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6563 struct font *font = FRAME_FONT (f);
6565 if (font && !VECTOR_MARKED_P (font))
6566 mark_vectorlike ((struct Lisp_Vector *) font);
6568 #endif
6570 break;
6572 case PVEC_WINDOW:
6574 struct window *w = (struct window *) ptr;
6576 mark_vectorlike (ptr);
6578 /* Mark glyph matrices, if any. Marking window
6579 matrices is sufficient because frame matrices
6580 use the same glyph memory. */
6581 if (w->current_matrix)
6583 mark_glyph_matrix (w->current_matrix);
6584 mark_glyph_matrix (w->desired_matrix);
6587 /* Filter out killed buffers from both buffer lists
6588 in attempt to help GC to reclaim killed buffers faster.
6589 We can do it elsewhere for live windows, but this is the
6590 best place to do it for dead windows. */
6591 wset_prev_buffers
6592 (w, mark_discard_killed_buffers (w->prev_buffers));
6593 wset_next_buffers
6594 (w, mark_discard_killed_buffers (w->next_buffers));
6596 break;
6598 case PVEC_HASH_TABLE:
6600 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6602 mark_vectorlike (ptr);
6603 mark_object (h->test.name);
6604 mark_object (h->test.user_hash_function);
6605 mark_object (h->test.user_cmp_function);
6606 /* If hash table is not weak, mark all keys and values.
6607 For weak tables, mark only the vector. */
6608 if (NILP (h->weak))
6609 mark_object (h->key_and_value);
6610 else
6611 VECTOR_MARK (XVECTOR (h->key_and_value));
6613 break;
6615 case PVEC_CHAR_TABLE:
6616 case PVEC_SUB_CHAR_TABLE:
6617 mark_char_table (ptr, (enum pvec_type) pvectype);
6618 break;
6620 case PVEC_BOOL_VECTOR:
6621 /* No Lisp_Objects to mark in a bool vector. */
6622 VECTOR_MARK (ptr);
6623 break;
6625 case PVEC_SUBR:
6626 break;
6628 case PVEC_FREE:
6629 emacs_abort ();
6631 default:
6632 mark_vectorlike (ptr);
6635 break;
6637 case Lisp_Symbol:
6639 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6640 nextsym:
6641 if (ptr->gcmarkbit)
6642 break;
6643 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6644 ptr->gcmarkbit = 1;
6645 /* Attempt to catch bogus objects. */
6646 eassert (valid_lisp_object_p (ptr->function));
6647 mark_object (ptr->function);
6648 mark_object (ptr->plist);
6649 switch (ptr->redirect)
6651 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6652 case SYMBOL_VARALIAS:
6654 Lisp_Object tem;
6655 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6656 mark_object (tem);
6657 break;
6659 case SYMBOL_LOCALIZED:
6660 mark_localized_symbol (ptr);
6661 break;
6662 case SYMBOL_FORWARDED:
6663 /* If the value is forwarded to a buffer or keyboard field,
6664 these are marked when we see the corresponding object.
6665 And if it's forwarded to a C variable, either it's not
6666 a Lisp_Object var, or it's staticpro'd already. */
6667 break;
6668 default: emacs_abort ();
6670 if (!PURE_P (XSTRING (ptr->name)))
6671 MARK_STRING (XSTRING (ptr->name));
6672 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6673 /* Inner loop to mark next symbol in this bucket, if any. */
6674 po = ptr = ptr->next;
6675 if (ptr)
6676 goto nextsym;
6678 break;
6680 case Lisp_Misc:
6681 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6683 if (XMISCANY (obj)->gcmarkbit)
6684 break;
6686 switch (XMISCTYPE (obj))
6688 case Lisp_Misc_Marker:
6689 /* DO NOT mark thru the marker's chain.
6690 The buffer's markers chain does not preserve markers from gc;
6691 instead, markers are removed from the chain when freed by gc. */
6692 XMISCANY (obj)->gcmarkbit = 1;
6693 break;
6695 case Lisp_Misc_Save_Value:
6696 XMISCANY (obj)->gcmarkbit = 1;
6697 mark_save_value (XSAVE_VALUE (obj));
6698 break;
6700 case Lisp_Misc_Overlay:
6701 mark_overlay (XOVERLAY (obj));
6702 break;
6704 case Lisp_Misc_Finalizer:
6705 XMISCANY (obj)->gcmarkbit = true;
6706 mark_object (XFINALIZER (obj)->function);
6707 break;
6709 #ifdef HAVE_MODULES
6710 case Lisp_Misc_User_Ptr:
6711 XMISCANY (obj)->gcmarkbit = true;
6712 break;
6713 #endif
6715 default:
6716 emacs_abort ();
6718 break;
6720 case Lisp_Cons:
6722 register struct Lisp_Cons *ptr = XCONS (obj);
6723 if (CONS_MARKED_P (ptr))
6724 break;
6725 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6726 CONS_MARK (ptr);
6727 /* If the cdr is nil, avoid recursion for the car. */
6728 if (EQ (ptr->u.cdr, Qnil))
6730 obj = ptr->car;
6731 cdr_count = 0;
6732 goto loop;
6734 mark_object (ptr->car);
6735 obj = ptr->u.cdr;
6736 cdr_count++;
6737 if (cdr_count == mark_object_loop_halt)
6738 emacs_abort ();
6739 goto loop;
6742 case Lisp_Float:
6743 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6744 FLOAT_MARK (XFLOAT (obj));
6745 break;
6747 case_Lisp_Int:
6748 break;
6750 default:
6751 emacs_abort ();
6754 #undef CHECK_LIVE
6755 #undef CHECK_ALLOCATED
6756 #undef CHECK_ALLOCATED_AND_LIVE
6758 /* Mark the Lisp pointers in the terminal objects.
6759 Called by Fgarbage_collect. */
6761 static void
6762 mark_terminals (void)
6764 struct terminal *t;
6765 for (t = terminal_list; t; t = t->next_terminal)
6767 eassert (t->name != NULL);
6768 #ifdef HAVE_WINDOW_SYSTEM
6769 /* If a terminal object is reachable from a stacpro'ed object,
6770 it might have been marked already. Make sure the image cache
6771 gets marked. */
6772 mark_image_cache (t->image_cache);
6773 #endif /* HAVE_WINDOW_SYSTEM */
6774 if (!VECTOR_MARKED_P (t))
6775 mark_vectorlike ((struct Lisp_Vector *)t);
6781 /* Value is non-zero if OBJ will survive the current GC because it's
6782 either marked or does not need to be marked to survive. */
6784 bool
6785 survives_gc_p (Lisp_Object obj)
6787 bool survives_p;
6789 switch (XTYPE (obj))
6791 case_Lisp_Int:
6792 survives_p = 1;
6793 break;
6795 case Lisp_Symbol:
6796 survives_p = XSYMBOL (obj)->gcmarkbit;
6797 break;
6799 case Lisp_Misc:
6800 survives_p = XMISCANY (obj)->gcmarkbit;
6801 break;
6803 case Lisp_String:
6804 survives_p = STRING_MARKED_P (XSTRING (obj));
6805 break;
6807 case Lisp_Vectorlike:
6808 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6809 break;
6811 case Lisp_Cons:
6812 survives_p = CONS_MARKED_P (XCONS (obj));
6813 break;
6815 case Lisp_Float:
6816 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6817 break;
6819 default:
6820 emacs_abort ();
6823 return survives_p || PURE_P (XPNTR (obj));
6829 NO_INLINE /* For better stack traces */
6830 static void
6831 sweep_conses (void)
6833 struct cons_block *cblk;
6834 struct cons_block **cprev = &cons_block;
6835 int lim = cons_block_index;
6836 EMACS_INT num_free = 0, num_used = 0;
6838 cons_free_list = 0;
6840 for (cblk = cons_block; cblk; cblk = *cprev)
6842 int i = 0;
6843 int this_free = 0;
6844 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6846 /* Scan the mark bits an int at a time. */
6847 for (i = 0; i < ilim; i++)
6849 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6851 /* Fast path - all cons cells for this int are marked. */
6852 cblk->gcmarkbits[i] = 0;
6853 num_used += BITS_PER_BITS_WORD;
6855 else
6857 /* Some cons cells for this int are not marked.
6858 Find which ones, and free them. */
6859 int start, pos, stop;
6861 start = i * BITS_PER_BITS_WORD;
6862 stop = lim - start;
6863 if (stop > BITS_PER_BITS_WORD)
6864 stop = BITS_PER_BITS_WORD;
6865 stop += start;
6867 for (pos = start; pos < stop; pos++)
6869 if (!CONS_MARKED_P (&cblk->conses[pos]))
6871 this_free++;
6872 cblk->conses[pos].u.chain = cons_free_list;
6873 cons_free_list = &cblk->conses[pos];
6874 cons_free_list->car = Vdead;
6876 else
6878 num_used++;
6879 CONS_UNMARK (&cblk->conses[pos]);
6885 lim = CONS_BLOCK_SIZE;
6886 /* If this block contains only free conses and we have already
6887 seen more than two blocks worth of free conses then deallocate
6888 this block. */
6889 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6891 *cprev = cblk->next;
6892 /* Unhook from the free list. */
6893 cons_free_list = cblk->conses[0].u.chain;
6894 lisp_align_free (cblk);
6896 else
6898 num_free += this_free;
6899 cprev = &cblk->next;
6902 total_conses = num_used;
6903 total_free_conses = num_free;
6906 NO_INLINE /* For better stack traces */
6907 static void
6908 sweep_floats (void)
6910 register struct float_block *fblk;
6911 struct float_block **fprev = &float_block;
6912 register int lim = float_block_index;
6913 EMACS_INT num_free = 0, num_used = 0;
6915 float_free_list = 0;
6917 for (fblk = float_block; fblk; fblk = *fprev)
6919 register int i;
6920 int this_free = 0;
6921 for (i = 0; i < lim; i++)
6922 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6924 this_free++;
6925 fblk->floats[i].u.chain = float_free_list;
6926 float_free_list = &fblk->floats[i];
6928 else
6930 num_used++;
6931 FLOAT_UNMARK (&fblk->floats[i]);
6933 lim = FLOAT_BLOCK_SIZE;
6934 /* If this block contains only free floats and we have already
6935 seen more than two blocks worth of free floats then deallocate
6936 this block. */
6937 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6939 *fprev = fblk->next;
6940 /* Unhook from the free list. */
6941 float_free_list = fblk->floats[0].u.chain;
6942 lisp_align_free (fblk);
6944 else
6946 num_free += this_free;
6947 fprev = &fblk->next;
6950 total_floats = num_used;
6951 total_free_floats = num_free;
6954 NO_INLINE /* For better stack traces */
6955 static void
6956 sweep_intervals (void)
6958 register struct interval_block *iblk;
6959 struct interval_block **iprev = &interval_block;
6960 register int lim = interval_block_index;
6961 EMACS_INT num_free = 0, num_used = 0;
6963 interval_free_list = 0;
6965 for (iblk = interval_block; iblk; iblk = *iprev)
6967 register int i;
6968 int this_free = 0;
6970 for (i = 0; i < lim; i++)
6972 if (!iblk->intervals[i].gcmarkbit)
6974 set_interval_parent (&iblk->intervals[i], interval_free_list);
6975 interval_free_list = &iblk->intervals[i];
6976 this_free++;
6978 else
6980 num_used++;
6981 iblk->intervals[i].gcmarkbit = 0;
6984 lim = INTERVAL_BLOCK_SIZE;
6985 /* If this block contains only free intervals and we have already
6986 seen more than two blocks worth of free intervals then
6987 deallocate this block. */
6988 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6990 *iprev = iblk->next;
6991 /* Unhook from the free list. */
6992 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6993 lisp_free (iblk);
6995 else
6997 num_free += this_free;
6998 iprev = &iblk->next;
7001 total_intervals = num_used;
7002 total_free_intervals = num_free;
7005 NO_INLINE /* For better stack traces */
7006 static void
7007 sweep_symbols (void)
7009 struct symbol_block *sblk;
7010 struct symbol_block **sprev = &symbol_block;
7011 int lim = symbol_block_index;
7012 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
7014 symbol_free_list = NULL;
7016 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7017 lispsym[i].s.gcmarkbit = 0;
7019 for (sblk = symbol_block; sblk; sblk = *sprev)
7021 int this_free = 0;
7022 union aligned_Lisp_Symbol *sym = sblk->symbols;
7023 union aligned_Lisp_Symbol *end = sym + lim;
7025 for (; sym < end; ++sym)
7027 if (!sym->s.gcmarkbit)
7029 if (sym->s.redirect == SYMBOL_LOCALIZED)
7030 xfree (SYMBOL_BLV (&sym->s));
7031 sym->s.next = symbol_free_list;
7032 symbol_free_list = &sym->s;
7033 symbol_free_list->function = Vdead;
7034 ++this_free;
7036 else
7038 ++num_used;
7039 sym->s.gcmarkbit = 0;
7040 /* Attempt to catch bogus objects. */
7041 eassert (valid_lisp_object_p (sym->s.function));
7045 lim = SYMBOL_BLOCK_SIZE;
7046 /* If this block contains only free symbols and we have already
7047 seen more than two blocks worth of free symbols then deallocate
7048 this block. */
7049 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
7051 *sprev = sblk->next;
7052 /* Unhook from the free list. */
7053 symbol_free_list = sblk->symbols[0].s.next;
7054 lisp_free (sblk);
7056 else
7058 num_free += this_free;
7059 sprev = &sblk->next;
7062 total_symbols = num_used;
7063 total_free_symbols = num_free;
7066 NO_INLINE /* For better stack traces. */
7067 static void
7068 sweep_misc (void)
7070 register struct marker_block *mblk;
7071 struct marker_block **mprev = &marker_block;
7072 register int lim = marker_block_index;
7073 EMACS_INT num_free = 0, num_used = 0;
7075 /* Put all unmarked misc's on free list. For a marker, first
7076 unchain it from the buffer it points into. */
7078 marker_free_list = 0;
7080 for (mblk = marker_block; mblk; mblk = *mprev)
7082 register int i;
7083 int this_free = 0;
7085 for (i = 0; i < lim; i++)
7087 if (!mblk->markers[i].m.u_any.gcmarkbit)
7089 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7090 unchain_marker (&mblk->markers[i].m.u_marker);
7091 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7092 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7093 #ifdef HAVE_MODULES
7094 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7096 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7097 if (uptr->finalizer)
7098 uptr->finalizer (uptr->p);
7100 #endif
7101 /* Set the type of the freed object to Lisp_Misc_Free.
7102 We could leave the type alone, since nobody checks it,
7103 but this might catch bugs faster. */
7104 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7105 mblk->markers[i].m.u_free.chain = marker_free_list;
7106 marker_free_list = &mblk->markers[i].m;
7107 this_free++;
7109 else
7111 num_used++;
7112 mblk->markers[i].m.u_any.gcmarkbit = 0;
7115 lim = MARKER_BLOCK_SIZE;
7116 /* If this block contains only free markers and we have already
7117 seen more than two blocks worth of free markers then deallocate
7118 this block. */
7119 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7121 *mprev = mblk->next;
7122 /* Unhook from the free list. */
7123 marker_free_list = mblk->markers[0].m.u_free.chain;
7124 lisp_free (mblk);
7126 else
7128 num_free += this_free;
7129 mprev = &mblk->next;
7133 total_markers = num_used;
7134 total_free_markers = num_free;
7137 NO_INLINE /* For better stack traces */
7138 static void
7139 sweep_buffers (void)
7141 register struct buffer *buffer, **bprev = &all_buffers;
7143 total_buffers = 0;
7144 for (buffer = all_buffers; buffer; buffer = *bprev)
7145 if (!VECTOR_MARKED_P (buffer))
7147 *bprev = buffer->next;
7148 lisp_free (buffer);
7150 else
7152 VECTOR_UNMARK (buffer);
7153 /* Do not use buffer_(set|get)_intervals here. */
7154 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7155 total_buffers++;
7156 bprev = &buffer->next;
7160 /* Sweep: find all structures not marked, and free them. */
7161 static void
7162 gc_sweep (void)
7164 /* Remove or mark entries in weak hash tables.
7165 This must be done before any object is unmarked. */
7166 sweep_weak_hash_tables ();
7168 sweep_strings ();
7169 check_string_bytes (!noninteractive);
7170 sweep_conses ();
7171 sweep_floats ();
7172 sweep_intervals ();
7173 sweep_symbols ();
7174 sweep_misc ();
7175 sweep_buffers ();
7176 sweep_vectors ();
7177 check_string_bytes (!noninteractive);
7180 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7181 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7182 All values are in Kbytes. If there is no swap space,
7183 last two values are zero. If the system is not supported
7184 or memory information can't be obtained, return nil. */)
7185 (void)
7187 #if defined HAVE_LINUX_SYSINFO
7188 struct sysinfo si;
7189 uintmax_t units;
7191 if (sysinfo (&si))
7192 return Qnil;
7193 #ifdef LINUX_SYSINFO_UNIT
7194 units = si.mem_unit;
7195 #else
7196 units = 1;
7197 #endif
7198 return list4i ((uintmax_t) si.totalram * units / 1024,
7199 (uintmax_t) si.freeram * units / 1024,
7200 (uintmax_t) si.totalswap * units / 1024,
7201 (uintmax_t) si.freeswap * units / 1024);
7202 #elif defined WINDOWSNT
7203 unsigned long long totalram, freeram, totalswap, freeswap;
7205 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7206 return list4i ((uintmax_t) totalram / 1024,
7207 (uintmax_t) freeram / 1024,
7208 (uintmax_t) totalswap / 1024,
7209 (uintmax_t) freeswap / 1024);
7210 else
7211 return Qnil;
7212 #elif defined MSDOS
7213 unsigned long totalram, freeram, totalswap, freeswap;
7215 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7216 return list4i ((uintmax_t) totalram / 1024,
7217 (uintmax_t) freeram / 1024,
7218 (uintmax_t) totalswap / 1024,
7219 (uintmax_t) freeswap / 1024);
7220 else
7221 return Qnil;
7222 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7223 /* FIXME: add more systems. */
7224 return Qnil;
7225 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7228 /* Debugging aids. */
7230 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7231 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7232 This may be helpful in debugging Emacs's memory usage.
7233 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7234 (void)
7236 Lisp_Object end;
7238 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7239 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7240 XSETINT (end, 0);
7241 #else
7242 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7243 #endif
7245 return end;
7248 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7249 doc: /* Return a list of counters that measure how much consing there has been.
7250 Each of these counters increments for a certain kind of object.
7251 The counters wrap around from the largest positive integer to zero.
7252 Garbage collection does not decrease them.
7253 The elements of the value are as follows:
7254 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7255 All are in units of 1 = one object consed
7256 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7257 objects consed.
7258 MISCS include overlays, markers, and some internal types.
7259 Frames, windows, buffers, and subprocesses count as vectors
7260 (but the contents of a buffer's text do not count here). */)
7261 (void)
7263 return listn (CONSTYPE_HEAP, 8,
7264 bounded_number (cons_cells_consed),
7265 bounded_number (floats_consed),
7266 bounded_number (vector_cells_consed),
7267 bounded_number (symbols_consed),
7268 bounded_number (string_chars_consed),
7269 bounded_number (misc_objects_consed),
7270 bounded_number (intervals_consed),
7271 bounded_number (strings_consed));
7274 static bool
7275 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7277 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7278 Lisp_Object val = find_symbol_value (symbol);
7279 return (EQ (val, obj)
7280 || EQ (sym->function, obj)
7281 || (!NILP (sym->function)
7282 && COMPILEDP (sym->function)
7283 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7284 || (!NILP (val)
7285 && COMPILEDP (val)
7286 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7289 /* Find at most FIND_MAX symbols which have OBJ as their value or
7290 function. This is used in gdbinit's `xwhichsymbols' command. */
7292 Lisp_Object
7293 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7295 struct symbol_block *sblk;
7296 ptrdiff_t gc_count = inhibit_garbage_collection ();
7297 Lisp_Object found = Qnil;
7299 if (! DEADP (obj))
7301 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7303 Lisp_Object sym = builtin_lisp_symbol (i);
7304 if (symbol_uses_obj (sym, obj))
7306 found = Fcons (sym, found);
7307 if (--find_max == 0)
7308 goto out;
7312 for (sblk = symbol_block; sblk; sblk = sblk->next)
7314 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7315 int bn;
7317 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7319 if (sblk == symbol_block && bn >= symbol_block_index)
7320 break;
7322 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7323 if (symbol_uses_obj (sym, obj))
7325 found = Fcons (sym, found);
7326 if (--find_max == 0)
7327 goto out;
7333 out:
7334 unbind_to (gc_count, Qnil);
7335 return found;
7338 #ifdef SUSPICIOUS_OBJECT_CHECKING
7340 static void *
7341 find_suspicious_object_in_range (void *begin, void *end)
7343 char *begin_a = begin;
7344 char *end_a = end;
7345 int i;
7347 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7349 char *suspicious_object = suspicious_objects[i];
7350 if (begin_a <= suspicious_object && suspicious_object < end_a)
7351 return suspicious_object;
7354 return NULL;
7357 static void
7358 note_suspicious_free (void *ptr)
7360 struct suspicious_free_record *rec;
7362 rec = &suspicious_free_history[suspicious_free_history_index++];
7363 if (suspicious_free_history_index ==
7364 ARRAYELTS (suspicious_free_history))
7366 suspicious_free_history_index = 0;
7369 memset (rec, 0, sizeof (*rec));
7370 rec->suspicious_object = ptr;
7371 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7374 static void
7375 detect_suspicious_free (void *ptr)
7377 int i;
7379 eassert (ptr != NULL);
7381 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7382 if (suspicious_objects[i] == ptr)
7384 note_suspicious_free (ptr);
7385 suspicious_objects[i] = NULL;
7389 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7391 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7392 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7393 If Emacs is compiled with suspicious object checking, capture
7394 a stack trace when OBJ is freed in order to help track down
7395 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7396 (Lisp_Object obj)
7398 #ifdef SUSPICIOUS_OBJECT_CHECKING
7399 /* Right now, we care only about vectors. */
7400 if (VECTORLIKEP (obj))
7402 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7403 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7404 suspicious_object_index = 0;
7406 #endif
7407 return obj;
7410 #ifdef ENABLE_CHECKING
7412 bool suppress_checking;
7414 void
7415 die (const char *msg, const char *file, int line)
7417 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7418 file, line, msg);
7419 terminate_due_to_signal (SIGABRT, INT_MAX);
7422 #endif /* ENABLE_CHECKING */
7424 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7426 /* Stress alloca with inconveniently sized requests and check
7427 whether all allocated areas may be used for Lisp_Object. */
7429 NO_INLINE static void
7430 verify_alloca (void)
7432 int i;
7433 enum { ALLOCA_CHECK_MAX = 256 };
7434 /* Start from size of the smallest Lisp object. */
7435 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7437 void *ptr = alloca (i);
7438 make_lisp_ptr (ptr, Lisp_Cons);
7442 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7444 #define verify_alloca() ((void) 0)
7446 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7448 /* Initialization. */
7450 void
7451 init_alloc_once (void)
7453 /* Even though Qt's contents are not set up, its address is known. */
7454 Vpurify_flag = Qt;
7456 purebeg = PUREBEG;
7457 pure_size = PURESIZE;
7459 verify_alloca ();
7460 init_finalizer_list (&finalizers);
7461 init_finalizer_list (&doomed_finalizers);
7463 mem_init ();
7464 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7466 #ifdef DOUG_LEA_MALLOC
7467 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7468 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7469 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7470 #endif
7471 init_strings ();
7472 init_vectors ();
7474 refill_memory_reserve ();
7475 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7478 void
7479 init_alloc (void)
7481 Vgc_elapsed = make_float (0.0);
7482 gcs_done = 0;
7484 #if USE_VALGRIND
7485 valgrind_p = RUNNING_ON_VALGRIND != 0;
7486 #endif
7489 void
7490 syms_of_alloc (void)
7492 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7493 doc: /* Number of bytes of consing between garbage collections.
7494 Garbage collection can happen automatically once this many bytes have been
7495 allocated since the last garbage collection. All data types count.
7497 Garbage collection happens automatically only when `eval' is called.
7499 By binding this temporarily to a large number, you can effectively
7500 prevent garbage collection during a part of the program.
7501 See also `gc-cons-percentage'. */);
7503 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7504 doc: /* Portion of the heap used for allocation.
7505 Garbage collection can happen automatically once this portion of the heap
7506 has been allocated since the last garbage collection.
7507 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7508 Vgc_cons_percentage = make_float (0.1);
7510 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7511 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7513 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7514 doc: /* Number of cons cells that have been consed so far. */);
7516 DEFVAR_INT ("floats-consed", floats_consed,
7517 doc: /* Number of floats that have been consed so far. */);
7519 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7520 doc: /* Number of vector cells that have been consed so far. */);
7522 DEFVAR_INT ("symbols-consed", symbols_consed,
7523 doc: /* Number of symbols that have been consed so far. */);
7524 symbols_consed += ARRAYELTS (lispsym);
7526 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7527 doc: /* Number of string characters that have been consed so far. */);
7529 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7530 doc: /* Number of miscellaneous objects that have been consed so far.
7531 These include markers and overlays, plus certain objects not visible
7532 to users. */);
7534 DEFVAR_INT ("intervals-consed", intervals_consed,
7535 doc: /* Number of intervals that have been consed so far. */);
7537 DEFVAR_INT ("strings-consed", strings_consed,
7538 doc: /* Number of strings that have been consed so far. */);
7540 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7541 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7542 This means that certain objects should be allocated in shared (pure) space.
7543 It can also be set to a hash-table, in which case this table is used to
7544 do hash-consing of the objects allocated to pure space. */);
7546 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7547 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7548 garbage_collection_messages = 0;
7550 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7551 doc: /* Hook run after garbage collection has finished. */);
7552 Vpost_gc_hook = Qnil;
7553 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7555 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7556 doc: /* Precomputed `signal' argument for memory-full error. */);
7557 /* We build this in advance because if we wait until we need it, we might
7558 not be able to allocate the memory to hold it. */
7559 Vmemory_signal_data
7560 = listn (CONSTYPE_PURE, 2, Qerror,
7561 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7563 DEFVAR_LISP ("memory-full", Vmemory_full,
7564 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7565 Vmemory_full = Qnil;
7567 DEFSYM (Qconses, "conses");
7568 DEFSYM (Qsymbols, "symbols");
7569 DEFSYM (Qmiscs, "miscs");
7570 DEFSYM (Qstrings, "strings");
7571 DEFSYM (Qvectors, "vectors");
7572 DEFSYM (Qfloats, "floats");
7573 DEFSYM (Qintervals, "intervals");
7574 DEFSYM (Qbuffers, "buffers");
7575 DEFSYM (Qstring_bytes, "string-bytes");
7576 DEFSYM (Qvector_slots, "vector-slots");
7577 DEFSYM (Qheap, "heap");
7578 DEFSYM (QAutomatic_GC, "Automatic GC");
7580 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7581 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7583 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7584 doc: /* Accumulated time elapsed in garbage collections.
7585 The time is in seconds as a floating point value. */);
7586 DEFVAR_INT ("gcs-done", gcs_done,
7587 doc: /* Accumulated number of garbage collections done. */);
7589 defsubr (&Scons);
7590 defsubr (&Slist);
7591 defsubr (&Svector);
7592 defsubr (&Srecord);
7593 defsubr (&Sbool_vector);
7594 defsubr (&Smake_byte_code);
7595 defsubr (&Smake_list);
7596 defsubr (&Smake_vector);
7597 defsubr (&Smake_record);
7598 defsubr (&Smake_string);
7599 defsubr (&Smake_bool_vector);
7600 defsubr (&Smake_symbol);
7601 defsubr (&Smake_marker);
7602 defsubr (&Smake_finalizer);
7603 defsubr (&Spurecopy);
7604 defsubr (&Sgarbage_collect);
7605 defsubr (&Smemory_limit);
7606 defsubr (&Smemory_info);
7607 defsubr (&Smemory_use_counts);
7608 defsubr (&Ssuspicious_object);
7611 /* When compiled with GCC, GDB might say "No enum type named
7612 pvec_type" if we don't have at least one symbol with that type, and
7613 then xbacktrace could fail. Similarly for the other enums and
7614 their values. Some non-GCC compilers don't like these constructs. */
7615 #ifdef __GNUC__
7616 union
7618 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7619 enum char_table_specials char_table_specials;
7620 enum char_bits char_bits;
7621 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7622 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7623 enum Lisp_Bits Lisp_Bits;
7624 enum Lisp_Compiled Lisp_Compiled;
7625 enum maxargs maxargs;
7626 enum MAX_ALLOCA MAX_ALLOCA;
7627 enum More_Lisp_Bits More_Lisp_Bits;
7628 enum pvec_type pvec_type;
7629 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7630 #endif /* __GNUC__ */