1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
52 #define WIDE_CHAR_SUPPORT 1
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
128 # include "character.h"
129 # include "category.h"
134 # define malloc xmalloc
138 # define realloc xrealloc
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
150 # define RE_STRING_CHAR(p, multibyte) \
151 (multibyte ? (STRING_CHAR (p)) : (*(p)))
152 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
153 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
155 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
157 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
159 /* Set C a (possibly converted to multibyte) character before P. P
160 points into a string which is the virtual concatenation of STR1
161 (which ends at END1) or STR2 (which ends at END2). */
162 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
164 if (target_multibyte) \
166 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
167 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
168 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
169 c = STRING_CHAR (dtemp); \
173 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
174 (c) = RE_CHAR_TO_MULTIBYTE (c); \
178 /* Set C a (possibly converted to multibyte) character at P, and set
179 LEN to the byte length of that character. */
180 # define GET_CHAR_AFTER(c, p, len) \
182 if (target_multibyte) \
183 (c) = STRING_CHAR_AND_LENGTH (p, len); \
188 (c) = RE_CHAR_TO_MULTIBYTE (c); \
192 #else /* not emacs */
194 /* If we are not linking with Emacs proper,
195 we can't use the relocating allocator
196 even if config.h says that we can. */
199 # if defined STDC_HEADERS || defined _LIBC
206 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213 val
= (void *) malloc (size
);
216 write (2, "virtual memory exhausted\n", 25);
223 xrealloc (block
, size
)
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
231 val
= (void *) malloc (size
);
233 val
= (void *) realloc (block
, size
);
236 write (2, "virtual memory exhausted\n", 25);
245 # define malloc xmalloc
249 # define realloc xrealloc
251 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
252 If nothing else has been done, use the method below. */
253 # ifdef INHIBIT_STRING_HEADER
254 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
255 # if !defined bzero && !defined bcopy
256 # undef INHIBIT_STRING_HEADER
261 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
262 This is used in most programs--a few other programs avoid this
263 by defining INHIBIT_STRING_HEADER. */
264 # ifndef INHIBIT_STRING_HEADER
265 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
269 # define bzero(s, n) (memset (s, '\0', n), (s))
271 # define bzero(s, n) __bzero (s, n)
275 # include <strings.h>
277 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
280 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
285 /* Define the syntax stuff for \<, \>, etc. */
287 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
288 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
290 # define SWITCH_ENUM_CAST(x) (x)
292 /* Dummy macros for non-Emacs environments. */
293 # define BASE_LEADING_CODE_P(c) (0)
294 # define CHAR_CHARSET(c) 0
295 # define CHARSET_LEADING_CODE_BASE(c) 0
296 # define MAX_MULTIBYTE_LENGTH 1
297 # define RE_MULTIBYTE_P(x) 0
298 # define RE_TARGET_MULTIBYTE_P(x) 0
299 # define WORD_BOUNDARY_P(c1, c2) (0)
300 # define CHAR_HEAD_P(p) (1)
301 # define SINGLE_BYTE_CHAR_P(c) (1)
302 # define SAME_CHARSET_P(c1, c2) (1)
303 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
304 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
305 # define STRING_CHAR(p) (*(p))
306 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
307 # define CHAR_STRING(c, s) (*(s) = (c), 1)
308 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
309 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
310 # define RE_CHAR_TO_MULTIBYTE(c) (c)
311 # define RE_CHAR_TO_UNIBYTE(c) (c)
312 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
313 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
314 # define GET_CHAR_AFTER(c, p, len) \
316 # define MAKE_CHAR(charset, c1, c2) (c1)
317 # define BYTE8_TO_CHAR(c) (c)
318 # define CHAR_BYTE8_P(c) (0)
319 # define CHAR_LEADING_CODE(c) (c)
321 #endif /* not emacs */
324 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
325 # define RE_TRANSLATE_P(TBL) (TBL)
328 /* Get the interface, including the syntax bits. */
331 /* isalpha etc. are used for the character classes. */
336 /* 1 if C is an ASCII character. */
337 # define IS_REAL_ASCII(c) ((c) < 0200)
339 /* 1 if C is a unibyte character. */
340 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
342 /* The Emacs definitions should not be directly affected by locales. */
344 /* In Emacs, these are only used for single-byte characters. */
345 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
346 # define ISCNTRL(c) ((c) < ' ')
347 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
348 || ((c) >= 'a' && (c) <= 'f') \
349 || ((c) >= 'A' && (c) <= 'F'))
351 /* This is only used for single-byte characters. */
352 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
354 /* The rest must handle multibyte characters. */
356 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
357 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
360 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
361 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
364 # define ISALNUM(c) (IS_REAL_ASCII (c) \
365 ? (((c) >= 'a' && (c) <= 'z') \
366 || ((c) >= 'A' && (c) <= 'Z') \
367 || ((c) >= '0' && (c) <= '9')) \
368 : SYNTAX (c) == Sword)
370 # define ISALPHA(c) (IS_REAL_ASCII (c) \
371 ? (((c) >= 'a' && (c) <= 'z') \
372 || ((c) >= 'A' && (c) <= 'Z')) \
373 : SYNTAX (c) == Sword)
375 # define ISLOWER(c) (LOWERCASEP (c))
377 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
378 ? ((c) > ' ' && (c) < 0177 \
379 && !(((c) >= 'a' && (c) <= 'z') \
380 || ((c) >= 'A' && (c) <= 'Z') \
381 || ((c) >= '0' && (c) <= '9'))) \
382 : SYNTAX (c) != Sword)
384 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
386 # define ISUPPER(c) (UPPERCASEP (c))
388 # define ISWORD(c) (SYNTAX (c) == Sword)
390 #else /* not emacs */
392 /* Jim Meyering writes:
394 "... Some ctype macros are valid only for character codes that
395 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
396 using /bin/cc or gcc but without giving an ansi option). So, all
397 ctype uses should be through macros like ISPRINT... If
398 STDC_HEADERS is defined, then autoconf has verified that the ctype
399 macros don't need to be guarded with references to isascii. ...
400 Defining isascii to 1 should let any compiler worth its salt
401 eliminate the && through constant folding."
402 Solaris defines some of these symbols so we must undefine them first. */
405 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
406 # define ISASCII(c) 1
408 # define ISASCII(c) isascii(c)
411 /* 1 if C is an ASCII character. */
412 # define IS_REAL_ASCII(c) ((c) < 0200)
414 /* This distinction is not meaningful, except in Emacs. */
415 # define ISUNIBYTE(c) 1
418 # define ISBLANK(c) (ISASCII (c) && isblank (c))
420 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
423 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
425 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
429 # define ISPRINT(c) (ISASCII (c) && isprint (c))
430 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
431 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
432 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
433 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
434 # define ISLOWER(c) (ISASCII (c) && islower (c))
435 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
436 # define ISSPACE(c) (ISASCII (c) && isspace (c))
437 # define ISUPPER(c) (ISASCII (c) && isupper (c))
438 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
440 # define ISWORD(c) ISALPHA(c)
443 # define TOLOWER(c) _tolower(c)
445 # define TOLOWER(c) tolower(c)
448 /* How many characters in the character set. */
449 # define CHAR_SET_SIZE 256
453 extern char *re_syntax_table
;
455 # else /* not SYNTAX_TABLE */
457 static char re_syntax_table
[CHAR_SET_SIZE
];
468 bzero (re_syntax_table
, sizeof re_syntax_table
);
470 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
472 re_syntax_table
[c
] = Sword
;
474 re_syntax_table
['_'] = Ssymbol
;
479 # endif /* not SYNTAX_TABLE */
481 # define SYNTAX(c) re_syntax_table[(c)]
483 #endif /* not emacs */
486 # define NULL (void *)0
489 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
490 since ours (we hope) works properly with all combinations of
491 machines, compilers, `char' and `unsigned char' argument types.
492 (Per Bothner suggested the basic approach.) */
493 #undef SIGN_EXTEND_CHAR
495 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
496 #else /* not __STDC__ */
497 /* As in Harbison and Steele. */
498 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
501 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
502 use `alloca' instead of `malloc'. This is because using malloc in
503 re_search* or re_match* could cause memory leaks when C-g is used in
504 Emacs; also, malloc is slower and causes storage fragmentation. On
505 the other hand, malloc is more portable, and easier to debug.
507 Because we sometimes use alloca, some routines have to be macros,
508 not functions -- `alloca'-allocated space disappears at the end of the
509 function it is called in. */
513 # define REGEX_ALLOCATE malloc
514 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
515 # define REGEX_FREE free
517 #else /* not REGEX_MALLOC */
519 /* Emacs already defines alloca, sometimes. */
522 /* Make alloca work the best possible way. */
524 # define alloca __builtin_alloca
525 # else /* not __GNUC__ */
526 # ifdef HAVE_ALLOCA_H
528 # endif /* HAVE_ALLOCA_H */
529 # endif /* not __GNUC__ */
531 # endif /* not alloca */
533 # define REGEX_ALLOCATE alloca
535 /* Assumes a `char *destination' variable. */
536 # define REGEX_REALLOCATE(source, osize, nsize) \
537 (destination = (char *) alloca (nsize), \
538 memcpy (destination, source, osize))
540 /* No need to do anything to free, after alloca. */
541 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
543 #endif /* not REGEX_MALLOC */
545 /* Define how to allocate the failure stack. */
547 #if defined REL_ALLOC && defined REGEX_MALLOC
549 # define REGEX_ALLOCATE_STACK(size) \
550 r_alloc (&failure_stack_ptr, (size))
551 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
552 r_re_alloc (&failure_stack_ptr, (nsize))
553 # define REGEX_FREE_STACK(ptr) \
554 r_alloc_free (&failure_stack_ptr)
556 #else /* not using relocating allocator */
560 # define REGEX_ALLOCATE_STACK malloc
561 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
562 # define REGEX_FREE_STACK free
564 # else /* not REGEX_MALLOC */
566 # define REGEX_ALLOCATE_STACK alloca
568 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
569 REGEX_REALLOCATE (source, osize, nsize)
570 /* No need to explicitly free anything. */
571 # define REGEX_FREE_STACK(arg) ((void)0)
573 # endif /* not REGEX_MALLOC */
574 #endif /* not using relocating allocator */
577 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
578 `string1' or just past its end. This works if PTR is NULL, which is
580 #define FIRST_STRING_P(ptr) \
581 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
583 /* (Re)Allocate N items of type T using malloc, or fail. */
584 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
585 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
586 #define RETALLOC_IF(addr, n, t) \
587 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
588 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
590 #define BYTEWIDTH 8 /* In bits. */
592 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
596 #define MAX(a, b) ((a) > (b) ? (a) : (b))
597 #define MIN(a, b) ((a) < (b) ? (a) : (b))
599 /* Type of source-pattern and string chars. */
600 typedef const unsigned char re_char
;
602 typedef char boolean
;
606 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
607 re_char
*string1
, int size1
,
608 re_char
*string2
, int size2
,
610 struct re_registers
*regs
,
613 /* These are the command codes that appear in compiled regular
614 expressions. Some opcodes are followed by argument bytes. A
615 command code can specify any interpretation whatsoever for its
616 arguments. Zero bytes may appear in the compiled regular expression. */
622 /* Succeed right away--no more backtracking. */
625 /* Followed by one byte giving n, then by n literal bytes. */
628 /* Matches any (more or less) character. */
631 /* Matches any one char belonging to specified set. First
632 following byte is number of bitmap bytes. Then come bytes
633 for a bitmap saying which chars are in. Bits in each byte
634 are ordered low-bit-first. A character is in the set if its
635 bit is 1. A character too large to have a bit in the map is
636 automatically not in the set.
638 If the length byte has the 0x80 bit set, then that stuff
639 is followed by a range table:
640 2 bytes of flags for character sets (low 8 bits, high 8 bits)
641 See RANGE_TABLE_WORK_BITS below.
642 2 bytes, the number of pairs that follow (upto 32767)
643 pairs, each 2 multibyte characters,
644 each multibyte character represented as 3 bytes. */
647 /* Same parameters as charset, but match any character that is
648 not one of those specified. */
651 /* Start remembering the text that is matched, for storing in a
652 register. Followed by one byte with the register number, in
653 the range 0 to one less than the pattern buffer's re_nsub
657 /* Stop remembering the text that is matched and store it in a
658 memory register. Followed by one byte with the register
659 number, in the range 0 to one less than `re_nsub' in the
663 /* Match a duplicate of something remembered. Followed by one
664 byte containing the register number. */
667 /* Fail unless at beginning of line. */
670 /* Fail unless at end of line. */
673 /* Succeeds if at beginning of buffer (if emacs) or at beginning
674 of string to be matched (if not). */
677 /* Analogously, for end of buffer/string. */
680 /* Followed by two byte relative address to which to jump. */
683 /* Followed by two-byte relative address of place to resume at
684 in case of failure. */
687 /* Like on_failure_jump, but pushes a placeholder instead of the
688 current string position when executed. */
689 on_failure_keep_string_jump
,
691 /* Just like `on_failure_jump', except that it checks that we
692 don't get stuck in an infinite loop (matching an empty string
694 on_failure_jump_loop
,
696 /* Just like `on_failure_jump_loop', except that it checks for
697 a different kind of loop (the kind that shows up with non-greedy
698 operators). This operation has to be immediately preceded
700 on_failure_jump_nastyloop
,
702 /* A smart `on_failure_jump' used for greedy * and + operators.
703 It analyses the loop before which it is put and if the
704 loop does not require backtracking, it changes itself to
705 `on_failure_keep_string_jump' and short-circuits the loop,
706 else it just defaults to changing itself into `on_failure_jump'.
707 It assumes that it is pointing to just past a `jump'. */
708 on_failure_jump_smart
,
710 /* Followed by two-byte relative address and two-byte number n.
711 After matching N times, jump to the address upon failure.
712 Does not work if N starts at 0: use on_failure_jump_loop
716 /* Followed by two-byte relative address, and two-byte number n.
717 Jump to the address N times, then fail. */
720 /* Set the following two-byte relative address to the
721 subsequent two-byte number. The address *includes* the two
725 wordbeg
, /* Succeeds if at word beginning. */
726 wordend
, /* Succeeds if at word end. */
728 wordbound
, /* Succeeds if at a word boundary. */
729 notwordbound
, /* Succeeds if not at a word boundary. */
731 symbeg
, /* Succeeds if at symbol beginning. */
732 symend
, /* Succeeds if at symbol end. */
734 /* Matches any character whose syntax is specified. Followed by
735 a byte which contains a syntax code, e.g., Sword. */
738 /* Matches any character whose syntax is not that specified. */
742 ,before_dot
, /* Succeeds if before point. */
743 at_dot
, /* Succeeds if at point. */
744 after_dot
, /* Succeeds if after point. */
746 /* Matches any character whose category-set contains the specified
747 category. The operator is followed by a byte which contains a
748 category code (mnemonic ASCII character). */
751 /* Matches any character whose category-set does not contain the
752 specified category. The operator is followed by a byte which
753 contains the category code (mnemonic ASCII character). */
758 /* Common operations on the compiled pattern. */
760 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
762 #define STORE_NUMBER(destination, number) \
764 (destination)[0] = (number) & 0377; \
765 (destination)[1] = (number) >> 8; \
768 /* Same as STORE_NUMBER, except increment DESTINATION to
769 the byte after where the number is stored. Therefore, DESTINATION
770 must be an lvalue. */
772 #define STORE_NUMBER_AND_INCR(destination, number) \
774 STORE_NUMBER (destination, number); \
775 (destination) += 2; \
778 /* Put into DESTINATION a number stored in two contiguous bytes starting
781 #define EXTRACT_NUMBER(destination, source) \
783 (destination) = *(source) & 0377; \
784 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
788 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
790 extract_number (dest
, source
)
794 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
795 *dest
= *source
& 0377;
799 # ifndef EXTRACT_MACROS /* To debug the macros. */
800 # undef EXTRACT_NUMBER
801 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
802 # endif /* not EXTRACT_MACROS */
806 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
807 SOURCE must be an lvalue. */
809 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
811 EXTRACT_NUMBER (destination, source); \
816 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
819 extract_number_and_incr (destination
, source
)
823 extract_number (destination
, *source
);
827 # ifndef EXTRACT_MACROS
828 # undef EXTRACT_NUMBER_AND_INCR
829 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
830 extract_number_and_incr (&dest, &src)
831 # endif /* not EXTRACT_MACROS */
835 /* Store a multibyte character in three contiguous bytes starting
836 DESTINATION, and increment DESTINATION to the byte after where the
837 character is stored. Therefore, DESTINATION must be an lvalue. */
839 #define STORE_CHARACTER_AND_INCR(destination, character) \
841 (destination)[0] = (character) & 0377; \
842 (destination)[1] = ((character) >> 8) & 0377; \
843 (destination)[2] = (character) >> 16; \
844 (destination) += 3; \
847 /* Put into DESTINATION a character stored in three contiguous bytes
848 starting at SOURCE. */
850 #define EXTRACT_CHARACTER(destination, source) \
852 (destination) = ((source)[0] \
853 | ((source)[1] << 8) \
854 | ((source)[2] << 16)); \
858 /* Macros for charset. */
860 /* Size of bitmap of charset P in bytes. P is a start of charset,
861 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
862 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
864 /* Nonzero if charset P has range table. */
865 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
867 /* Return the address of range table of charset P. But not the start
868 of table itself, but the before where the number of ranges is
869 stored. `2 +' means to skip re_opcode_t and size of bitmap,
870 and the 2 bytes of flags at the start of the range table. */
871 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
873 /* Extract the bit flags that start a range table. */
874 #define CHARSET_RANGE_TABLE_BITS(p) \
875 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
876 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
878 /* Test if C is listed in the bitmap of charset P. */
879 #define CHARSET_LOOKUP_BITMAP(p, c) \
880 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
881 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
883 /* Return the address of end of RANGE_TABLE. COUNT is number of
884 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
885 is start of range and end of range. `* 3' is size of each start
887 #define CHARSET_RANGE_TABLE_END(range_table, count) \
888 ((range_table) + (count) * 2 * 3)
890 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
891 COUNT is number of ranges in RANGE_TABLE. */
892 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
895 re_wchar_t range_start, range_end; \
897 re_char *range_table_end \
898 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
900 for (p = (range_table); p < range_table_end; p += 2 * 3) \
902 EXTRACT_CHARACTER (range_start, p); \
903 EXTRACT_CHARACTER (range_end, p + 3); \
905 if (range_start <= (c) && (c) <= range_end) \
914 /* Test if C is in range table of CHARSET. The flag NOT is negated if
915 C is listed in it. */
916 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
919 /* Number of ranges in range table. */ \
921 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
923 EXTRACT_NUMBER_AND_INCR (count, range_table); \
924 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
928 /* If DEBUG is defined, Regex prints many voluminous messages about what
929 it is doing (if the variable `debug' is nonzero). If linked with the
930 main program in `iregex.c', you can enter patterns and strings
931 interactively. And if linked with the main program in `main.c' and
932 the other test files, you can run the already-written tests. */
936 /* We use standard I/O for debugging. */
939 /* It is useful to test things that ``must'' be true when debugging. */
942 static int debug
= -100000;
944 # define DEBUG_STATEMENT(e) e
945 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
946 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
947 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
948 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
949 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
950 if (debug > 0) print_partial_compiled_pattern (s, e)
951 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
952 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
955 /* Print the fastmap in human-readable form. */
958 print_fastmap (fastmap
)
961 unsigned was_a_range
= 0;
964 while (i
< (1 << BYTEWIDTH
))
970 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
986 /* Print a compiled pattern string in human-readable form, starting at
987 the START pointer into it and ending just before the pointer END. */
990 print_partial_compiled_pattern (start
, end
)
1000 fprintf (stderr
, "(null)\n");
1004 /* Loop over pattern commands. */
1007 fprintf (stderr
, "%d:\t", p
- start
);
1009 switch ((re_opcode_t
) *p
++)
1012 fprintf (stderr
, "/no_op");
1016 fprintf (stderr
, "/succeed");
1021 fprintf (stderr
, "/exactn/%d", mcnt
);
1024 fprintf (stderr
, "/%c", *p
++);
1030 fprintf (stderr
, "/start_memory/%d", *p
++);
1034 fprintf (stderr
, "/stop_memory/%d", *p
++);
1038 fprintf (stderr
, "/duplicate/%d", *p
++);
1042 fprintf (stderr
, "/anychar");
1048 register int c
, last
= -100;
1049 register int in_range
= 0;
1050 int length
= CHARSET_BITMAP_SIZE (p
- 1);
1051 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
1053 fprintf (stderr
, "/charset [%s",
1054 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
1057 fprintf (stderr
, " !extends past end of pattern! ");
1059 for (c
= 0; c
< 256; c
++)
1061 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
1063 /* Are we starting a range? */
1064 if (last
+ 1 == c
&& ! in_range
)
1066 fprintf (stderr
, "-");
1069 /* Have we broken a range? */
1070 else if (last
+ 1 != c
&& in_range
)
1072 fprintf (stderr
, "%c", last
);
1077 fprintf (stderr
, "%c", c
);
1083 fprintf (stderr
, "%c", last
);
1085 fprintf (stderr
, "]");
1089 if (has_range_table
)
1092 fprintf (stderr
, "has-range-table");
1094 /* ??? Should print the range table; for now, just skip it. */
1095 p
+= 2; /* skip range table bits */
1096 EXTRACT_NUMBER_AND_INCR (count
, p
);
1097 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1103 fprintf (stderr
, "/begline");
1107 fprintf (stderr
, "/endline");
1110 case on_failure_jump
:
1111 extract_number_and_incr (&mcnt
, &p
);
1112 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1115 case on_failure_keep_string_jump
:
1116 extract_number_and_incr (&mcnt
, &p
);
1117 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1120 case on_failure_jump_nastyloop
:
1121 extract_number_and_incr (&mcnt
, &p
);
1122 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1125 case on_failure_jump_loop
:
1126 extract_number_and_incr (&mcnt
, &p
);
1127 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1130 case on_failure_jump_smart
:
1131 extract_number_and_incr (&mcnt
, &p
);
1132 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1136 extract_number_and_incr (&mcnt
, &p
);
1137 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1141 extract_number_and_incr (&mcnt
, &p
);
1142 extract_number_and_incr (&mcnt2
, &p
);
1143 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1147 extract_number_and_incr (&mcnt
, &p
);
1148 extract_number_and_incr (&mcnt2
, &p
);
1149 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1153 extract_number_and_incr (&mcnt
, &p
);
1154 extract_number_and_incr (&mcnt2
, &p
);
1155 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1159 fprintf (stderr
, "/wordbound");
1163 fprintf (stderr
, "/notwordbound");
1167 fprintf (stderr
, "/wordbeg");
1171 fprintf (stderr
, "/wordend");
1175 fprintf (stderr
, "/symbeg");
1179 fprintf (stderr
, "/symend");
1183 fprintf (stderr
, "/syntaxspec");
1185 fprintf (stderr
, "/%d", mcnt
);
1189 fprintf (stderr
, "/notsyntaxspec");
1191 fprintf (stderr
, "/%d", mcnt
);
1196 fprintf (stderr
, "/before_dot");
1200 fprintf (stderr
, "/at_dot");
1204 fprintf (stderr
, "/after_dot");
1208 fprintf (stderr
, "/categoryspec");
1210 fprintf (stderr
, "/%d", mcnt
);
1213 case notcategoryspec
:
1214 fprintf (stderr
, "/notcategoryspec");
1216 fprintf (stderr
, "/%d", mcnt
);
1221 fprintf (stderr
, "/begbuf");
1225 fprintf (stderr
, "/endbuf");
1229 fprintf (stderr
, "?%d", *(p
-1));
1232 fprintf (stderr
, "\n");
1235 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1240 print_compiled_pattern (bufp
)
1241 struct re_pattern_buffer
*bufp
;
1243 re_char
*buffer
= bufp
->buffer
;
1245 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1246 printf ("%ld bytes used/%ld bytes allocated.\n",
1247 bufp
->used
, bufp
->allocated
);
1249 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1251 printf ("fastmap: ");
1252 print_fastmap (bufp
->fastmap
);
1255 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1256 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1257 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1258 printf ("no_sub: %d\t", bufp
->no_sub
);
1259 printf ("not_bol: %d\t", bufp
->not_bol
);
1260 printf ("not_eol: %d\t", bufp
->not_eol
);
1261 printf ("syntax: %lx\n", bufp
->syntax
);
1263 /* Perhaps we should print the translate table? */
1268 print_double_string (where
, string1
, size1
, string2
, size2
)
1281 if (FIRST_STRING_P (where
))
1283 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1284 putchar (string1
[this_char
]);
1289 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1290 putchar (string2
[this_char
]);
1294 #else /* not DEBUG */
1299 # define DEBUG_STATEMENT(e)
1300 # define DEBUG_PRINT1(x)
1301 # define DEBUG_PRINT2(x1, x2)
1302 # define DEBUG_PRINT3(x1, x2, x3)
1303 # define DEBUG_PRINT4(x1, x2, x3, x4)
1304 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1305 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1307 #endif /* not DEBUG */
1309 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1310 also be assigned to arbitrarily: each pattern buffer stores its own
1311 syntax, so it can be changed between regex compilations. */
1312 /* This has no initializer because initialized variables in Emacs
1313 become read-only after dumping. */
1314 reg_syntax_t re_syntax_options
;
1317 /* Specify the precise syntax of regexps for compilation. This provides
1318 for compatibility for various utilities which historically have
1319 different, incompatible syntaxes.
1321 The argument SYNTAX is a bit mask comprised of the various bits
1322 defined in regex.h. We return the old syntax. */
1325 re_set_syntax (syntax
)
1326 reg_syntax_t syntax
;
1328 reg_syntax_t ret
= re_syntax_options
;
1330 re_syntax_options
= syntax
;
1333 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1335 /* Regexp to use to replace spaces, or NULL meaning don't. */
1336 static re_char
*whitespace_regexp
;
1339 re_set_whitespace_regexp (regexp
)
1342 whitespace_regexp
= (re_char
*) regexp
;
1344 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1346 /* This table gives an error message for each of the error codes listed
1347 in regex.h. Obviously the order here has to be same as there.
1348 POSIX doesn't require that we do anything for REG_NOERROR,
1349 but why not be nice? */
1351 static const char *re_error_msgid
[] =
1353 gettext_noop ("Success"), /* REG_NOERROR */
1354 gettext_noop ("No match"), /* REG_NOMATCH */
1355 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1356 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1357 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1358 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1359 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1360 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1361 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1362 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1363 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1364 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1365 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1366 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1367 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1368 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1369 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1370 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1373 /* Avoiding alloca during matching, to placate r_alloc. */
1375 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1376 searching and matching functions should not call alloca. On some
1377 systems, alloca is implemented in terms of malloc, and if we're
1378 using the relocating allocator routines, then malloc could cause a
1379 relocation, which might (if the strings being searched are in the
1380 ralloc heap) shift the data out from underneath the regexp
1383 Here's another reason to avoid allocation: Emacs
1384 processes input from X in a signal handler; processing X input may
1385 call malloc; if input arrives while a matching routine is calling
1386 malloc, then we're scrod. But Emacs can't just block input while
1387 calling matching routines; then we don't notice interrupts when
1388 they come in. So, Emacs blocks input around all regexp calls
1389 except the matching calls, which it leaves unprotected, in the
1390 faith that they will not malloc. */
1392 /* Normally, this is fine. */
1393 #define MATCH_MAY_ALLOCATE
1395 /* The match routines may not allocate if (1) they would do it with malloc
1396 and (2) it's not safe for them to use malloc.
1397 Note that if REL_ALLOC is defined, matching would not use malloc for the
1398 failure stack, but we would still use it for the register vectors;
1399 so REL_ALLOC should not affect this. */
1400 #if defined REGEX_MALLOC && defined emacs
1401 # undef MATCH_MAY_ALLOCATE
1405 /* Failure stack declarations and macros; both re_compile_fastmap and
1406 re_match_2 use a failure stack. These have to be macros because of
1407 REGEX_ALLOCATE_STACK. */
1410 /* Approximate number of failure points for which to initially allocate space
1411 when matching. If this number is exceeded, we allocate more
1412 space, so it is not a hard limit. */
1413 #ifndef INIT_FAILURE_ALLOC
1414 # define INIT_FAILURE_ALLOC 20
1417 /* Roughly the maximum number of failure points on the stack. Would be
1418 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1419 This is a variable only so users of regex can assign to it; we never
1420 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1421 before using it, so it should probably be a byte-count instead. */
1422 # if defined MATCH_MAY_ALLOCATE
1423 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1424 whose default stack limit is 2mb. In order for a larger
1425 value to work reliably, you have to try to make it accord
1426 with the process stack limit. */
1427 size_t re_max_failures
= 40000;
1429 size_t re_max_failures
= 4000;
1432 union fail_stack_elt
1435 /* This should be the biggest `int' that's no bigger than a pointer. */
1439 typedef union fail_stack_elt fail_stack_elt_t
;
1443 fail_stack_elt_t
*stack
;
1445 size_t avail
; /* Offset of next open position. */
1446 size_t frame
; /* Offset of the cur constructed frame. */
1449 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1450 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1453 /* Define macros to initialize and free the failure stack.
1454 Do `return -2' if the alloc fails. */
1456 #ifdef MATCH_MAY_ALLOCATE
1457 # define INIT_FAIL_STACK() \
1459 fail_stack.stack = (fail_stack_elt_t *) \
1460 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1461 * sizeof (fail_stack_elt_t)); \
1463 if (fail_stack.stack == NULL) \
1466 fail_stack.size = INIT_FAILURE_ALLOC; \
1467 fail_stack.avail = 0; \
1468 fail_stack.frame = 0; \
1471 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1473 # define INIT_FAIL_STACK() \
1475 fail_stack.avail = 0; \
1476 fail_stack.frame = 0; \
1479 # define RESET_FAIL_STACK() ((void)0)
1483 /* Double the size of FAIL_STACK, up to a limit
1484 which allows approximately `re_max_failures' items.
1486 Return 1 if succeeds, and 0 if either ran out of memory
1487 allocating space for it or it was already too large.
1489 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1491 /* Factor to increase the failure stack size by
1492 when we increase it.
1493 This used to be 2, but 2 was too wasteful
1494 because the old discarded stacks added up to as much space
1495 were as ultimate, maximum-size stack. */
1496 #define FAIL_STACK_GROWTH_FACTOR 4
1498 #define GROW_FAIL_STACK(fail_stack) \
1499 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1500 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1502 : ((fail_stack).stack \
1503 = (fail_stack_elt_t *) \
1504 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1505 (fail_stack).size * sizeof (fail_stack_elt_t), \
1506 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1507 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1508 * FAIL_STACK_GROWTH_FACTOR))), \
1510 (fail_stack).stack == NULL \
1512 : ((fail_stack).size \
1513 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1514 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1515 * FAIL_STACK_GROWTH_FACTOR)) \
1516 / sizeof (fail_stack_elt_t)), \
1520 /* Push a pointer value onto the failure stack.
1521 Assumes the variable `fail_stack'. Probably should only
1522 be called from within `PUSH_FAILURE_POINT'. */
1523 #define PUSH_FAILURE_POINTER(item) \
1524 fail_stack.stack[fail_stack.avail++].pointer = (item)
1526 /* This pushes an integer-valued item onto the failure stack.
1527 Assumes the variable `fail_stack'. Probably should only
1528 be called from within `PUSH_FAILURE_POINT'. */
1529 #define PUSH_FAILURE_INT(item) \
1530 fail_stack.stack[fail_stack.avail++].integer = (item)
1532 /* Push a fail_stack_elt_t value onto the failure stack.
1533 Assumes the variable `fail_stack'. Probably should only
1534 be called from within `PUSH_FAILURE_POINT'. */
1535 #define PUSH_FAILURE_ELT(item) \
1536 fail_stack.stack[fail_stack.avail++] = (item)
1538 /* These three POP... operations complement the three PUSH... operations.
1539 All assume that `fail_stack' is nonempty. */
1540 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1541 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1542 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1544 /* Individual items aside from the registers. */
1545 #define NUM_NONREG_ITEMS 3
1547 /* Used to examine the stack (to detect infinite loops). */
1548 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1549 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1550 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1551 #define TOP_FAILURE_HANDLE() fail_stack.frame
1554 #define ENSURE_FAIL_STACK(space) \
1555 while (REMAINING_AVAIL_SLOTS <= space) { \
1556 if (!GROW_FAIL_STACK (fail_stack)) \
1558 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1559 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1562 /* Push register NUM onto the stack. */
1563 #define PUSH_FAILURE_REG(num) \
1565 char *destination; \
1566 ENSURE_FAIL_STACK(3); \
1567 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1568 num, regstart[num], regend[num]); \
1569 PUSH_FAILURE_POINTER (regstart[num]); \
1570 PUSH_FAILURE_POINTER (regend[num]); \
1571 PUSH_FAILURE_INT (num); \
1574 /* Change the counter's value to VAL, but make sure that it will
1575 be reset when backtracking. */
1576 #define PUSH_NUMBER(ptr,val) \
1578 char *destination; \
1580 ENSURE_FAIL_STACK(3); \
1581 EXTRACT_NUMBER (c, ptr); \
1582 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1583 PUSH_FAILURE_INT (c); \
1584 PUSH_FAILURE_POINTER (ptr); \
1585 PUSH_FAILURE_INT (-1); \
1586 STORE_NUMBER (ptr, val); \
1589 /* Pop a saved register off the stack. */
1590 #define POP_FAILURE_REG_OR_COUNT() \
1592 int reg = POP_FAILURE_INT (); \
1595 /* It's a counter. */ \
1596 /* Here, we discard `const', making re_match non-reentrant. */ \
1597 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1598 reg = POP_FAILURE_INT (); \
1599 STORE_NUMBER (ptr, reg); \
1600 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1604 regend[reg] = POP_FAILURE_POINTER (); \
1605 regstart[reg] = POP_FAILURE_POINTER (); \
1606 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1607 reg, regstart[reg], regend[reg]); \
1611 /* Check that we are not stuck in an infinite loop. */
1612 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1614 int failure = TOP_FAILURE_HANDLE (); \
1615 /* Check for infinite matching loops */ \
1616 while (failure > 0 \
1617 && (FAILURE_STR (failure) == string_place \
1618 || FAILURE_STR (failure) == NULL)) \
1620 assert (FAILURE_PAT (failure) >= bufp->buffer \
1621 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1622 if (FAILURE_PAT (failure) == pat_cur) \
1627 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1628 failure = NEXT_FAILURE_HANDLE(failure); \
1630 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1633 /* Push the information about the state we will need
1634 if we ever fail back to it.
1636 Requires variables fail_stack, regstart, regend and
1637 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1640 Does `return FAILURE_CODE' if runs out of memory. */
1642 #define PUSH_FAILURE_POINT(pattern, string_place) \
1644 char *destination; \
1645 /* Must be int, so when we don't save any registers, the arithmetic \
1646 of 0 + -1 isn't done as unsigned. */ \
1648 DEBUG_STATEMENT (nfailure_points_pushed++); \
1649 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1650 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1651 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1653 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1655 DEBUG_PRINT1 ("\n"); \
1657 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1658 PUSH_FAILURE_INT (fail_stack.frame); \
1660 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1661 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1665 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1666 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1667 PUSH_FAILURE_POINTER (pattern); \
1669 /* Close the frame by moving the frame pointer past it. */ \
1670 fail_stack.frame = fail_stack.avail; \
1673 /* Estimate the size of data pushed by a typical failure stack entry.
1674 An estimate is all we need, because all we use this for
1675 is to choose a limit for how big to make the failure stack. */
1676 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1677 #define TYPICAL_FAILURE_SIZE 20
1679 /* How many items can still be added to the stack without overflowing it. */
1680 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1683 /* Pops what PUSH_FAIL_STACK pushes.
1685 We restore into the parameters, all of which should be lvalues:
1686 STR -- the saved data position.
1687 PAT -- the saved pattern position.
1688 REGSTART, REGEND -- arrays of string positions.
1690 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1691 `pend', `string1', `size1', `string2', and `size2'. */
1693 #define POP_FAILURE_POINT(str, pat) \
1695 assert (!FAIL_STACK_EMPTY ()); \
1697 /* Remove failure points and point to how many regs pushed. */ \
1698 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1699 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1700 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1702 /* Pop the saved registers. */ \
1703 while (fail_stack.frame < fail_stack.avail) \
1704 POP_FAILURE_REG_OR_COUNT (); \
1706 pat = POP_FAILURE_POINTER (); \
1707 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1708 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1710 /* If the saved string location is NULL, it came from an \
1711 on_failure_keep_string_jump opcode, and we want to throw away the \
1712 saved NULL, thus retaining our current position in the string. */ \
1713 str = POP_FAILURE_POINTER (); \
1714 DEBUG_PRINT2 (" Popping string %p: `", str); \
1715 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1716 DEBUG_PRINT1 ("'\n"); \
1718 fail_stack.frame = POP_FAILURE_INT (); \
1719 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1721 assert (fail_stack.avail >= 0); \
1722 assert (fail_stack.frame <= fail_stack.avail); \
1724 DEBUG_STATEMENT (nfailure_points_popped++); \
1725 } while (0) /* POP_FAILURE_POINT */
1729 /* Registers are set to a sentinel when they haven't yet matched. */
1730 #define REG_UNSET(e) ((e) == NULL)
1732 /* Subroutine declarations and macros for regex_compile. */
1734 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1735 reg_syntax_t syntax
,
1736 struct re_pattern_buffer
*bufp
));
1737 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1738 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1739 int arg1
, int arg2
));
1740 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1741 int arg
, unsigned char *end
));
1742 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1743 int arg1
, int arg2
, unsigned char *end
));
1744 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1746 reg_syntax_t syntax
));
1747 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1749 reg_syntax_t syntax
));
1750 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1751 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1752 char *fastmap
, const int multibyte
));
1754 /* Fetch the next character in the uncompiled pattern, with no
1756 #define PATFETCH(c) \
1759 if (p == pend) return REG_EEND; \
1760 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1765 /* If `translate' is non-null, return translate[D], else just D. We
1766 cast the subscript to translate because some data is declared as
1767 `char *', to avoid warnings when a string constant is passed. But
1768 when we use a character as a subscript we must make it unsigned. */
1770 # define TRANSLATE(d) \
1771 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1775 /* Macros for outputting the compiled pattern into `buffer'. */
1777 /* If the buffer isn't allocated when it comes in, use this. */
1778 #define INIT_BUF_SIZE 32
1780 /* Make sure we have at least N more bytes of space in buffer. */
1781 #define GET_BUFFER_SPACE(n) \
1782 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1785 /* Make sure we have one more byte of buffer space and then add C to it. */
1786 #define BUF_PUSH(c) \
1788 GET_BUFFER_SPACE (1); \
1789 *b++ = (unsigned char) (c); \
1793 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1794 #define BUF_PUSH_2(c1, c2) \
1796 GET_BUFFER_SPACE (2); \
1797 *b++ = (unsigned char) (c1); \
1798 *b++ = (unsigned char) (c2); \
1802 /* As with BUF_PUSH_2, except for three bytes. */
1803 #define BUF_PUSH_3(c1, c2, c3) \
1805 GET_BUFFER_SPACE (3); \
1806 *b++ = (unsigned char) (c1); \
1807 *b++ = (unsigned char) (c2); \
1808 *b++ = (unsigned char) (c3); \
1812 /* Store a jump with opcode OP at LOC to location TO. We store a
1813 relative address offset by the three bytes the jump itself occupies. */
1814 #define STORE_JUMP(op, loc, to) \
1815 store_op1 (op, loc, (to) - (loc) - 3)
1817 /* Likewise, for a two-argument jump. */
1818 #define STORE_JUMP2(op, loc, to, arg) \
1819 store_op2 (op, loc, (to) - (loc) - 3, arg)
1821 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1822 #define INSERT_JUMP(op, loc, to) \
1823 insert_op1 (op, loc, (to) - (loc) - 3, b)
1825 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1826 #define INSERT_JUMP2(op, loc, to, arg) \
1827 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1830 /* This is not an arbitrary limit: the arguments which represent offsets
1831 into the pattern are two bytes long. So if 2^15 bytes turns out to
1832 be too small, many things would have to change. */
1833 # define MAX_BUF_SIZE (1L << 15)
1835 #if 0 /* This is when we thought it could be 2^16 bytes. */
1836 /* Any other compiler which, like MSC, has allocation limit below 2^16
1837 bytes will have to use approach similar to what was done below for
1838 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1839 reallocating to 0 bytes. Such thing is not going to work too well.
1840 You have been warned!! */
1841 #if defined _MSC_VER && !defined WIN32
1842 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1843 # define MAX_BUF_SIZE 65500L
1845 # define MAX_BUF_SIZE (1L << 16)
1849 /* Extend the buffer by twice its current size via realloc and
1850 reset the pointers that pointed into the old block to point to the
1851 correct places in the new one. If extending the buffer results in it
1852 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1853 #if __BOUNDED_POINTERS__
1854 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1855 # define MOVE_BUFFER_POINTER(P) \
1856 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1857 SET_HIGH_BOUND (P), \
1858 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1859 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1862 SET_HIGH_BOUND (b); \
1863 SET_HIGH_BOUND (begalt); \
1864 if (fixup_alt_jump) \
1865 SET_HIGH_BOUND (fixup_alt_jump); \
1867 SET_HIGH_BOUND (laststart); \
1868 if (pending_exact) \
1869 SET_HIGH_BOUND (pending_exact); \
1872 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1873 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1875 #define EXTEND_BUFFER() \
1877 unsigned char *old_buffer = bufp->buffer; \
1878 if (bufp->allocated == MAX_BUF_SIZE) \
1880 bufp->allocated <<= 1; \
1881 if (bufp->allocated > MAX_BUF_SIZE) \
1882 bufp->allocated = MAX_BUF_SIZE; \
1883 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1884 if (bufp->buffer == NULL) \
1885 return REG_ESPACE; \
1886 /* If the buffer moved, move all the pointers into it. */ \
1887 if (old_buffer != bufp->buffer) \
1889 unsigned char *new_buffer = bufp->buffer; \
1890 MOVE_BUFFER_POINTER (b); \
1891 MOVE_BUFFER_POINTER (begalt); \
1892 if (fixup_alt_jump) \
1893 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1895 MOVE_BUFFER_POINTER (laststart); \
1896 if (pending_exact) \
1897 MOVE_BUFFER_POINTER (pending_exact); \
1899 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1903 /* Since we have one byte reserved for the register number argument to
1904 {start,stop}_memory, the maximum number of groups we can report
1905 things about is what fits in that byte. */
1906 #define MAX_REGNUM 255
1908 /* But patterns can have more than `MAX_REGNUM' registers. We just
1909 ignore the excess. */
1910 typedef int regnum_t
;
1913 /* Macros for the compile stack. */
1915 /* Since offsets can go either forwards or backwards, this type needs to
1916 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1917 /* int may be not enough when sizeof(int) == 2. */
1918 typedef long pattern_offset_t
;
1922 pattern_offset_t begalt_offset
;
1923 pattern_offset_t fixup_alt_jump
;
1924 pattern_offset_t laststart_offset
;
1926 } compile_stack_elt_t
;
1931 compile_stack_elt_t
*stack
;
1933 unsigned avail
; /* Offset of next open position. */
1934 } compile_stack_type
;
1937 #define INIT_COMPILE_STACK_SIZE 32
1939 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1940 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1942 /* The next available element. */
1943 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1945 /* Explicit quit checking is only used on NTemacs and whenever we
1946 use polling to process input events. */
1947 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1948 extern int immediate_quit
;
1949 # define IMMEDIATE_QUIT_CHECK \
1951 if (immediate_quit) QUIT; \
1954 # define IMMEDIATE_QUIT_CHECK ((void)0)
1957 /* Structure to manage work area for range table. */
1958 struct range_table_work_area
1960 int *table
; /* actual work area. */
1961 int allocated
; /* allocated size for work area in bytes. */
1962 int used
; /* actually used size in words. */
1963 int bits
; /* flag to record character classes */
1966 /* Make sure that WORK_AREA can hold more N multibyte characters.
1967 This is used only in set_image_of_range and set_image_of_range_1.
1968 It expects WORK_AREA to be a pointer.
1969 If it can't get the space, it returns from the surrounding function. */
1971 #define EXTEND_RANGE_TABLE(work_area, n) \
1973 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1975 extend_range_table_work_area (&work_area); \
1976 if ((work_area).table == 0) \
1977 return (REG_ESPACE); \
1981 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1982 (work_area).bits |= (bit)
1984 /* Bits used to implement the multibyte-part of the various character classes
1985 such as [:alnum:] in a charset's range table. */
1986 #define BIT_WORD 0x1
1987 #define BIT_LOWER 0x2
1988 #define BIT_PUNCT 0x4
1989 #define BIT_SPACE 0x8
1990 #define BIT_UPPER 0x10
1991 #define BIT_MULTIBYTE 0x20
1993 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1994 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1996 EXTEND_RANGE_TABLE ((work_area), 2); \
1997 (work_area).table[(work_area).used++] = (range_start); \
1998 (work_area).table[(work_area).used++] = (range_end); \
2001 /* Free allocated memory for WORK_AREA. */
2002 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2004 if ((work_area).table) \
2005 free ((work_area).table); \
2008 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
2009 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
2010 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
2011 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
2014 /* Set the bit for character C in a list. */
2015 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
2020 /* Store characters in the range FROM to TO in the bitmap at B (for
2021 ASCII and unibyte characters) and WORK_AREA (for multibyte
2022 characters) while translating them and paying attention to the
2023 continuity of translated characters.
2025 Implementation note: It is better to implement these fairly big
2026 macros by a function, but it's not that easy because macros called
2027 in this macro assume various local variables already declared. */
2029 /* Both FROM and TO are ASCII characters. */
2031 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2035 for (C0 = (FROM); C0 <= (TO); C0++) \
2037 C1 = TRANSLATE (C0); \
2038 if (! ASCII_CHAR_P (C1)) \
2040 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2041 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2044 SET_LIST_BIT (C1); \
2049 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
2051 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2053 int C0, C1, C2, I; \
2054 int USED = RANGE_TABLE_WORK_USED (work_area); \
2056 for (C0 = (FROM); C0 <= (TO); C0++) \
2058 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2059 if (CHAR_BYTE8_P (C1)) \
2060 SET_LIST_BIT (C0); \
2063 C2 = TRANSLATE (C1); \
2065 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2067 SET_LIST_BIT (C1); \
2068 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2070 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2071 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2073 if (C2 >= from - 1 && C2 <= to + 1) \
2075 if (C2 == from - 1) \
2076 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2077 else if (C2 == to + 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2083 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2089 /* Both FROM and TO are mulitbyte characters. */
2091 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2093 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2095 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2096 for (C0 = (FROM); C0 <= (TO); C0++) \
2098 C1 = TRANSLATE (C0); \
2099 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2100 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2101 SET_LIST_BIT (C2); \
2102 if (C1 >= (FROM) && C1 <= (TO)) \
2104 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2106 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2107 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2109 if (C1 >= from - 1 && C1 <= to + 1) \
2111 if (C1 == from - 1) \
2112 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2113 else if (C1 == to + 1) \
2114 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2119 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2125 /* Get the next unsigned number in the uncompiled pattern. */
2126 #define GET_UNSIGNED_NUMBER(num) \
2129 FREE_STACK_RETURN (REG_EBRACE); \
2133 while ('0' <= c && c <= '9') \
2139 num = num * 10 + c - '0'; \
2140 if (num / 10 != prev) \
2141 FREE_STACK_RETURN (REG_BADBR); \
2143 FREE_STACK_RETURN (REG_EBRACE); \
2149 #if ! WIDE_CHAR_SUPPORT
2151 /* Map a string to the char class it names (if any). */
2156 const char *string
= str
;
2157 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2158 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2159 else if (STREQ (string
, "word")) return RECC_WORD
;
2160 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2161 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2162 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2163 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2164 else if (STREQ (string
, "print")) return RECC_PRINT
;
2165 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2166 else if (STREQ (string
, "space")) return RECC_SPACE
;
2167 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2168 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2169 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2170 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2171 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2172 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2173 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2177 /* True if CH is in the char class CC. */
2179 re_iswctype (ch
, cc
)
2185 case RECC_ALNUM
: return ISALNUM (ch
);
2186 case RECC_ALPHA
: return ISALPHA (ch
);
2187 case RECC_BLANK
: return ISBLANK (ch
);
2188 case RECC_CNTRL
: return ISCNTRL (ch
);
2189 case RECC_DIGIT
: return ISDIGIT (ch
);
2190 case RECC_GRAPH
: return ISGRAPH (ch
);
2191 case RECC_LOWER
: return ISLOWER (ch
);
2192 case RECC_PRINT
: return ISPRINT (ch
);
2193 case RECC_PUNCT
: return ISPUNCT (ch
);
2194 case RECC_SPACE
: return ISSPACE (ch
);
2195 case RECC_UPPER
: return ISUPPER (ch
);
2196 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2197 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2198 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2199 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2200 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2201 case RECC_WORD
: return ISWORD (ch
);
2202 case RECC_ERROR
: return false;
2208 /* Return a bit-pattern to use in the range-table bits to match multibyte
2209 chars of class CC. */
2211 re_wctype_to_bit (cc
)
2216 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2217 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2218 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2219 case RECC_LOWER
: return BIT_LOWER
;
2220 case RECC_UPPER
: return BIT_UPPER
;
2221 case RECC_PUNCT
: return BIT_PUNCT
;
2222 case RECC_SPACE
: return BIT_SPACE
;
2223 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2224 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2231 /* Filling in the work area of a range. */
2233 /* Actually extend the space in WORK_AREA. */
2236 extend_range_table_work_area (work_area
)
2237 struct range_table_work_area
*work_area
;
2239 work_area
->allocated
+= 16 * sizeof (int);
2240 if (work_area
->table
)
2242 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2245 = (int *) malloc (work_area
->allocated
);
2251 /* Carefully find the ranges of codes that are equivalent
2252 under case conversion to the range start..end when passed through
2253 TRANSLATE. Handle the case where non-letters can come in between
2254 two upper-case letters (which happens in Latin-1).
2255 Also handle the case of groups of more than 2 case-equivalent chars.
2257 The basic method is to look at consecutive characters and see
2258 if they can form a run that can be handled as one.
2260 Returns -1 if successful, REG_ESPACE if ran out of space. */
2263 set_image_of_range_1 (work_area
, start
, end
, translate
)
2264 RE_TRANSLATE_TYPE translate
;
2265 struct range_table_work_area
*work_area
;
2266 re_wchar_t start
, end
;
2268 /* `one_case' indicates a character, or a run of characters,
2269 each of which is an isolate (no case-equivalents).
2270 This includes all ASCII non-letters.
2272 `two_case' indicates a character, or a run of characters,
2273 each of which has two case-equivalent forms.
2274 This includes all ASCII letters.
2276 `strange' indicates a character that has more than one
2279 enum case_type
{one_case
, two_case
, strange
};
2281 /* Describe the run that is in progress,
2282 which the next character can try to extend.
2283 If run_type is strange, that means there really is no run.
2284 If run_type is one_case, then run_start...run_end is the run.
2285 If run_type is two_case, then the run is run_start...run_end,
2286 and the case-equivalents end at run_eqv_end. */
2288 enum case_type run_type
= strange
;
2289 int run_start
, run_end
, run_eqv_end
;
2291 Lisp_Object eqv_table
;
2293 if (!RE_TRANSLATE_P (translate
))
2295 EXTEND_RANGE_TABLE (work_area
, 2);
2296 work_area
->table
[work_area
->used
++] = (start
);
2297 work_area
->table
[work_area
->used
++] = (end
);
2301 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2303 for (; start
<= end
; start
++)
2305 enum case_type this_type
;
2306 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2307 int minchar
, maxchar
;
2309 /* Classify this character */
2311 this_type
= one_case
;
2312 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2313 this_type
= two_case
;
2315 this_type
= strange
;
2318 minchar
= start
, maxchar
= eqv
;
2320 minchar
= eqv
, maxchar
= start
;
2322 /* Can this character extend the run in progress? */
2323 if (this_type
== strange
|| this_type
!= run_type
2324 || !(minchar
== run_end
+ 1
2325 && (run_type
== two_case
2326 ? maxchar
== run_eqv_end
+ 1 : 1)))
2329 Record each of its equivalent ranges. */
2330 if (run_type
== one_case
)
2332 EXTEND_RANGE_TABLE (work_area
, 2);
2333 work_area
->table
[work_area
->used
++] = run_start
;
2334 work_area
->table
[work_area
->used
++] = run_end
;
2336 else if (run_type
== two_case
)
2338 EXTEND_RANGE_TABLE (work_area
, 4);
2339 work_area
->table
[work_area
->used
++] = run_start
;
2340 work_area
->table
[work_area
->used
++] = run_end
;
2341 work_area
->table
[work_area
->used
++]
2342 = RE_TRANSLATE (eqv_table
, run_start
);
2343 work_area
->table
[work_area
->used
++]
2344 = RE_TRANSLATE (eqv_table
, run_end
);
2349 if (this_type
== strange
)
2351 /* For a strange character, add each of its equivalents, one
2352 by one. Don't start a range. */
2355 EXTEND_RANGE_TABLE (work_area
, 2);
2356 work_area
->table
[work_area
->used
++] = eqv
;
2357 work_area
->table
[work_area
->used
++] = eqv
;
2358 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2360 while (eqv
!= start
);
2363 /* Add this char to the run, or start a new run. */
2364 else if (run_type
== strange
)
2366 /* Initialize a new range. */
2367 run_type
= this_type
;
2370 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2374 /* Extend a running range. */
2376 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2380 /* If a run is still in progress at the end, finish it now
2381 by recording its equivalent ranges. */
2382 if (run_type
== one_case
)
2384 EXTEND_RANGE_TABLE (work_area
, 2);
2385 work_area
->table
[work_area
->used
++] = run_start
;
2386 work_area
->table
[work_area
->used
++] = run_end
;
2388 else if (run_type
== two_case
)
2390 EXTEND_RANGE_TABLE (work_area
, 4);
2391 work_area
->table
[work_area
->used
++] = run_start
;
2392 work_area
->table
[work_area
->used
++] = run_end
;
2393 work_area
->table
[work_area
->used
++]
2394 = RE_TRANSLATE (eqv_table
, run_start
);
2395 work_area
->table
[work_area
->used
++]
2396 = RE_TRANSLATE (eqv_table
, run_end
);
2404 /* Record the image of the range start..end when passed through
2405 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2406 and is not even necessarily contiguous.
2407 Normally we approximate it with the smallest contiguous range that contains
2408 all the chars we need. However, for Latin-1 we go to extra effort
2411 This function is not called for ASCII ranges.
2413 Returns -1 if successful, REG_ESPACE if ran out of space. */
2416 set_image_of_range (work_area
, start
, end
, translate
)
2417 RE_TRANSLATE_TYPE translate
;
2418 struct range_table_work_area
*work_area
;
2419 re_wchar_t start
, end
;
2421 re_wchar_t cmin
, cmax
;
2424 /* For Latin-1 ranges, use set_image_of_range_1
2425 to get proper handling of ranges that include letters and nonletters.
2426 For a range that includes the whole of Latin-1, this is not necessary.
2427 For other character sets, we don't bother to get this right. */
2428 if (RE_TRANSLATE_P (translate
) && start
< 04400
2429 && !(start
< 04200 && end
>= 04377))
2436 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2446 EXTEND_RANGE_TABLE (work_area
, 2);
2447 work_area
->table
[work_area
->used
++] = (start
);
2448 work_area
->table
[work_area
->used
++] = (end
);
2450 cmin
= -1, cmax
= -1;
2452 if (RE_TRANSLATE_P (translate
))
2456 for (ch
= start
; ch
<= end
; ch
++)
2458 re_wchar_t c
= TRANSLATE (ch
);
2459 if (! (start
<= c
&& c
<= end
))
2465 cmin
= MIN (cmin
, c
);
2466 cmax
= MAX (cmax
, c
);
2473 EXTEND_RANGE_TABLE (work_area
, 2);
2474 work_area
->table
[work_area
->used
++] = (cmin
);
2475 work_area
->table
[work_area
->used
++] = (cmax
);
2483 #ifndef MATCH_MAY_ALLOCATE
2485 /* If we cannot allocate large objects within re_match_2_internal,
2486 we make the fail stack and register vectors global.
2487 The fail stack, we grow to the maximum size when a regexp
2489 The register vectors, we adjust in size each time we
2490 compile a regexp, according to the number of registers it needs. */
2492 static fail_stack_type fail_stack
;
2494 /* Size with which the following vectors are currently allocated.
2495 That is so we can make them bigger as needed,
2496 but never make them smaller. */
2497 static int regs_allocated_size
;
2499 static re_char
** regstart
, ** regend
;
2500 static re_char
**best_regstart
, **best_regend
;
2502 /* Make the register vectors big enough for NUM_REGS registers,
2503 but don't make them smaller. */
2506 regex_grow_registers (num_regs
)
2509 if (num_regs
> regs_allocated_size
)
2511 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2512 RETALLOC_IF (regend
, num_regs
, re_char
*);
2513 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2514 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2516 regs_allocated_size
= num_regs
;
2520 #endif /* not MATCH_MAY_ALLOCATE */
2522 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2526 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2527 Returns one of error codes defined in `regex.h', or zero for success.
2529 Assumes the `allocated' (and perhaps `buffer') and `translate'
2530 fields are set in BUFP on entry.
2532 If it succeeds, results are put in BUFP (if it returns an error, the
2533 contents of BUFP are undefined):
2534 `buffer' is the compiled pattern;
2535 `syntax' is set to SYNTAX;
2536 `used' is set to the length of the compiled pattern;
2537 `fastmap_accurate' is zero;
2538 `re_nsub' is the number of subexpressions in PATTERN;
2539 `not_bol' and `not_eol' are zero;
2541 The `fastmap' field is neither examined nor set. */
2543 /* Insert the `jump' from the end of last alternative to "here".
2544 The space for the jump has already been allocated. */
2545 #define FIXUP_ALT_JUMP() \
2547 if (fixup_alt_jump) \
2548 STORE_JUMP (jump, fixup_alt_jump, b); \
2552 /* Return, freeing storage we allocated. */
2553 #define FREE_STACK_RETURN(value) \
2555 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2556 free (compile_stack.stack); \
2560 static reg_errcode_t
2561 regex_compile (pattern
, size
, syntax
, bufp
)
2564 reg_syntax_t syntax
;
2565 struct re_pattern_buffer
*bufp
;
2567 /* We fetch characters from PATTERN here. */
2568 register re_wchar_t c
, c1
;
2570 /* A random temporary spot in PATTERN. */
2573 /* Points to the end of the buffer, where we should append. */
2574 register unsigned char *b
;
2576 /* Keeps track of unclosed groups. */
2577 compile_stack_type compile_stack
;
2579 /* Points to the current (ending) position in the pattern. */
2581 /* `const' makes AIX compiler fail. */
2582 unsigned char *p
= pattern
;
2584 re_char
*p
= pattern
;
2586 re_char
*pend
= pattern
+ size
;
2588 /* How to translate the characters in the pattern. */
2589 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2591 /* Address of the count-byte of the most recently inserted `exactn'
2592 command. This makes it possible to tell if a new exact-match
2593 character can be added to that command or if the character requires
2594 a new `exactn' command. */
2595 unsigned char *pending_exact
= 0;
2597 /* Address of start of the most recently finished expression.
2598 This tells, e.g., postfix * where to find the start of its
2599 operand. Reset at the beginning of groups and alternatives. */
2600 unsigned char *laststart
= 0;
2602 /* Address of beginning of regexp, or inside of last group. */
2603 unsigned char *begalt
;
2605 /* Place in the uncompiled pattern (i.e., the {) to
2606 which to go back if the interval is invalid. */
2607 re_char
*beg_interval
;
2609 /* Address of the place where a forward jump should go to the end of
2610 the containing expression. Each alternative of an `or' -- except the
2611 last -- ends with a forward jump of this sort. */
2612 unsigned char *fixup_alt_jump
= 0;
2614 /* Work area for range table of charset. */
2615 struct range_table_work_area range_table_work
;
2617 /* If the object matched can contain multibyte characters. */
2618 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2620 /* If a target of matching can contain multibyte characters. */
2621 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
2623 /* Nonzero if we have pushed down into a subpattern. */
2624 int in_subpattern
= 0;
2626 /* These hold the values of p, pattern, and pend from the main
2627 pattern when we have pushed into a subpattern. */
2629 re_char
*main_pattern
;
2634 DEBUG_PRINT1 ("\nCompiling pattern: ");
2637 unsigned debug_count
;
2639 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2640 putchar (pattern
[debug_count
]);
2645 /* Initialize the compile stack. */
2646 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2647 if (compile_stack
.stack
== NULL
)
2650 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2651 compile_stack
.avail
= 0;
2653 range_table_work
.table
= 0;
2654 range_table_work
.allocated
= 0;
2656 /* Initialize the pattern buffer. */
2657 bufp
->syntax
= syntax
;
2658 bufp
->fastmap_accurate
= 0;
2659 bufp
->not_bol
= bufp
->not_eol
= 0;
2660 bufp
->used_syntax
= 0;
2662 /* Set `used' to zero, so that if we return an error, the pattern
2663 printer (for debugging) will think there's no pattern. We reset it
2667 /* Always count groups, whether or not bufp->no_sub is set. */
2670 #if !defined emacs && !defined SYNTAX_TABLE
2671 /* Initialize the syntax table. */
2672 init_syntax_once ();
2675 if (bufp
->allocated
== 0)
2678 { /* If zero allocated, but buffer is non-null, try to realloc
2679 enough space. This loses if buffer's address is bogus, but
2680 that is the user's responsibility. */
2681 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2684 { /* Caller did not allocate a buffer. Do it for them. */
2685 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2687 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2689 bufp
->allocated
= INIT_BUF_SIZE
;
2692 begalt
= b
= bufp
->buffer
;
2694 /* Loop through the uncompiled pattern until we're at the end. */
2699 /* If this is the end of an included regexp,
2700 pop back to the main regexp and try again. */
2704 pattern
= main_pattern
;
2709 /* If this is the end of the main regexp, we are done. */
2721 /* If there's no special whitespace regexp, treat
2722 spaces normally. And don't try to do this recursively. */
2723 if (!whitespace_regexp
|| in_subpattern
)
2726 /* Peek past following spaces. */
2733 /* If the spaces are followed by a repetition op,
2734 treat them normally. */
2736 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2737 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2740 /* Replace the spaces with the whitespace regexp. */
2744 main_pattern
= pattern
;
2745 p
= pattern
= whitespace_regexp
;
2746 pend
= p
+ strlen (p
);
2752 if ( /* If at start of pattern, it's an operator. */
2754 /* If context independent, it's an operator. */
2755 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2756 /* Otherwise, depends on what's come before. */
2757 || at_begline_loc_p (pattern
, p
, syntax
))
2758 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2767 if ( /* If at end of pattern, it's an operator. */
2769 /* If context independent, it's an operator. */
2770 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2771 /* Otherwise, depends on what's next. */
2772 || at_endline_loc_p (p
, pend
, syntax
))
2773 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2782 if ((syntax
& RE_BK_PLUS_QM
)
2783 || (syntax
& RE_LIMITED_OPS
))
2787 /* If there is no previous pattern... */
2790 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2791 FREE_STACK_RETURN (REG_BADRPT
);
2792 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2797 /* 1 means zero (many) matches is allowed. */
2798 boolean zero_times_ok
= 0, many_times_ok
= 0;
2801 /* If there is a sequence of repetition chars, collapse it
2802 down to just one (the right one). We can't combine
2803 interval operators with these because of, e.g., `a{2}*',
2804 which should only match an even number of `a's. */
2808 if ((syntax
& RE_FRUGAL
)
2809 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2813 zero_times_ok
|= c
!= '+';
2814 many_times_ok
|= c
!= '?';
2820 || (!(syntax
& RE_BK_PLUS_QM
)
2821 && (*p
== '+' || *p
== '?')))
2823 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2826 FREE_STACK_RETURN (REG_EESCAPE
);
2827 if (p
[1] == '+' || p
[1] == '?')
2828 PATFETCH (c
); /* Gobble up the backslash. */
2834 /* If we get here, we found another repeat character. */
2838 /* Star, etc. applied to an empty pattern is equivalent
2839 to an empty pattern. */
2840 if (!laststart
|| laststart
== b
)
2843 /* Now we know whether or not zero matches is allowed
2844 and also whether or not two or more matches is allowed. */
2849 boolean simple
= skip_one_char (laststart
) == b
;
2850 unsigned int startoffset
= 0;
2852 /* Check if the loop can match the empty string. */
2853 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2854 ? on_failure_jump
: on_failure_jump_loop
;
2855 assert (skip_one_char (laststart
) <= b
);
2857 if (!zero_times_ok
&& simple
)
2858 { /* Since simple * loops can be made faster by using
2859 on_failure_keep_string_jump, we turn simple P+
2860 into PP* if P is simple. */
2861 unsigned char *p1
, *p2
;
2862 startoffset
= b
- laststart
;
2863 GET_BUFFER_SPACE (startoffset
);
2864 p1
= b
; p2
= laststart
;
2870 GET_BUFFER_SPACE (6);
2873 STORE_JUMP (ofj
, b
, b
+ 6);
2875 /* Simple * loops can use on_failure_keep_string_jump
2876 depending on what follows. But since we don't know
2877 that yet, we leave the decision up to
2878 on_failure_jump_smart. */
2879 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2880 laststart
+ startoffset
, b
+ 6);
2882 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2887 /* A simple ? pattern. */
2888 assert (zero_times_ok
);
2889 GET_BUFFER_SPACE (3);
2890 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2894 else /* not greedy */
2895 { /* I wish the greedy and non-greedy cases could be merged. */
2897 GET_BUFFER_SPACE (7); /* We might use less. */
2900 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2902 /* The non-greedy multiple match looks like
2903 a repeat..until: we only need a conditional jump
2904 at the end of the loop. */
2905 if (emptyp
) BUF_PUSH (no_op
);
2906 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2907 : on_failure_jump
, b
, laststart
);
2911 /* The repeat...until naturally matches one or more.
2912 To also match zero times, we need to first jump to
2913 the end of the loop (its conditional jump). */
2914 INSERT_JUMP (jump
, laststart
, b
);
2920 /* non-greedy a?? */
2921 INSERT_JUMP (jump
, laststart
, b
+ 3);
2923 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2940 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2942 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2944 /* Ensure that we have enough space to push a charset: the
2945 opcode, the length count, and the bitset; 34 bytes in all. */
2946 GET_BUFFER_SPACE (34);
2950 /* We test `*p == '^' twice, instead of using an if
2951 statement, so we only need one BUF_PUSH. */
2952 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2956 /* Remember the first position in the bracket expression. */
2959 /* Push the number of bytes in the bitmap. */
2960 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2962 /* Clear the whole map. */
2963 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2965 /* charset_not matches newline according to a syntax bit. */
2966 if ((re_opcode_t
) b
[-2] == charset_not
2967 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2968 SET_LIST_BIT ('\n');
2970 /* Read in characters and ranges, setting map bits. */
2973 boolean escaped_char
= false;
2974 const unsigned char *p2
= p
;
2977 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2979 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2980 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2981 So the translation is done later in a loop. Example:
2982 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2985 /* \ might escape characters inside [...] and [^...]. */
2986 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2988 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2991 escaped_char
= true;
2995 /* Could be the end of the bracket expression. If it's
2996 not (i.e., when the bracket expression is `[]' so
2997 far), the ']' character bit gets set way below. */
2998 if (c
== ']' && p2
!= p1
)
3002 /* See if we're at the beginning of a possible character
3005 if (!escaped_char
&&
3006 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3008 /* Leave room for the null. */
3009 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3010 const unsigned char *class_beg
;
3016 /* If pattern is `[[:'. */
3017 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3022 if ((c
== ':' && *p
== ']') || p
== pend
)
3024 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3027 /* This is in any case an invalid class name. */
3032 /* If isn't a word bracketed by `[:' and `:]':
3033 undo the ending character, the letters, and
3034 leave the leading `:' and `[' (but set bits for
3036 if (c
== ':' && *p
== ']')
3041 cc
= re_wctype (str
);
3044 FREE_STACK_RETURN (REG_ECTYPE
);
3046 /* Throw away the ] at the end of the character
3050 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3053 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
3054 if (re_iswctype (btowc (ch
), cc
))
3057 if (c
< (1 << BYTEWIDTH
))
3061 /* Most character classes in a multibyte match
3062 just set a flag. Exceptions are is_blank,
3063 is_digit, is_cntrl, and is_xdigit, since
3064 they can only match ASCII characters. We
3065 don't need to handle them for multibyte.
3066 They are distinguished by a negative wctype. */
3068 for (ch
= 0; ch
< 256; ++ch
)
3070 c
= RE_CHAR_TO_MULTIBYTE (ch
);
3071 if (! CHAR_BYTE8_P (c
)
3072 && re_iswctype (c
, cc
))
3078 if (ASCII_CHAR_P (c1
))
3080 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
3084 SET_RANGE_TABLE_WORK_AREA_BIT
3085 (range_table_work
, re_wctype_to_bit (cc
));
3087 /* In most cases the matching rule for char classes
3088 only uses the syntax table for multibyte chars,
3089 so that the content of the syntax-table it is not
3090 hardcoded in the range_table. SPACE and WORD are
3091 the two exceptions. */
3092 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
3093 bufp
->used_syntax
= 1;
3095 /* Repeat the loop. */
3100 /* Go back to right after the "[:". */
3104 /* Because the `:' may starts the range, we
3105 can't simply set bit and repeat the loop.
3106 Instead, just set it to C and handle below. */
3111 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
3114 /* Discard the `-'. */
3117 /* Fetch the character which ends the range. */
3120 if (CHAR_BYTE8_P (c1
)
3121 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
3122 /* Treat the range from a multibyte character to
3123 raw-byte character as empty. */
3128 /* Range from C to C. */
3133 if (syntax
& RE_NO_EMPTY_RANGES
)
3134 FREE_STACK_RETURN (REG_ERANGEX
);
3135 /* Else, repeat the loop. */
3140 /* Set the range into bitmap */
3141 for (; c
<= c1
; c
++)
3144 if (ch
< (1 << BYTEWIDTH
))
3151 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3153 if (CHAR_BYTE8_P (c1
))
3154 c
= BYTE8_TO_CHAR (128);
3158 if (CHAR_BYTE8_P (c
))
3160 c
= CHAR_TO_BYTE8 (c
);
3161 c1
= CHAR_TO_BYTE8 (c1
);
3162 for (; c
<= c1
; c
++)
3167 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3171 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3178 /* Discard any (non)matching list bytes that are all 0 at the
3179 end of the map. Decrease the map-length byte too. */
3180 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3184 /* Build real range table from work area. */
3185 if (RANGE_TABLE_WORK_USED (range_table_work
)
3186 || RANGE_TABLE_WORK_BITS (range_table_work
))
3189 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3191 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3192 bytes for flags, two for COUNT, and three bytes for
3194 GET_BUFFER_SPACE (4 + used
* 3);
3196 /* Indicate the existence of range table. */
3197 laststart
[1] |= 0x80;
3199 /* Store the character class flag bits into the range table.
3200 If not in emacs, these flag bits are always 0. */
3201 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3202 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3204 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3205 for (i
= 0; i
< used
; i
++)
3206 STORE_CHARACTER_AND_INCR
3207 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3214 if (syntax
& RE_NO_BK_PARENS
)
3221 if (syntax
& RE_NO_BK_PARENS
)
3228 if (syntax
& RE_NEWLINE_ALT
)
3235 if (syntax
& RE_NO_BK_VBAR
)
3242 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3243 goto handle_interval
;
3249 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3251 /* Do not translate the character after the \, so that we can
3252 distinguish, e.g., \B from \b, even if we normally would
3253 translate, e.g., B to b. */
3259 if (syntax
& RE_NO_BK_PARENS
)
3260 goto normal_backslash
;
3265 regnum_t regnum
= 0;
3268 /* Look for a special (?...) construct */
3269 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3271 PATFETCH (c
); /* Gobble up the '?'. */
3277 case ':': shy
= 1; break;
3279 /* An explicitly specified regnum must start
3282 FREE_STACK_RETURN (REG_BADPAT
);
3283 case '1': case '2': case '3': case '4':
3284 case '5': case '6': case '7': case '8': case '9':
3285 regnum
= 10*regnum
+ (c
- '0'); break;
3287 /* Only (?:...) is supported right now. */
3288 FREE_STACK_RETURN (REG_BADPAT
);
3295 regnum
= ++bufp
->re_nsub
;
3297 { /* It's actually not shy, but explicitly numbered. */
3299 if (regnum
> bufp
->re_nsub
)
3300 bufp
->re_nsub
= regnum
;
3301 else if (regnum
> bufp
->re_nsub
3302 /* Ideally, we'd want to check that the specified
3303 group can't have matched (i.e. all subgroups
3304 using the same regnum are in other branches of
3305 OR patterns), but we don't currently keep track
3306 of enough info to do that easily. */
3307 || group_in_compile_stack (compile_stack
, regnum
))
3308 FREE_STACK_RETURN (REG_BADPAT
);
3311 /* It's really shy. */
3312 regnum
= - bufp
->re_nsub
;
3314 if (COMPILE_STACK_FULL
)
3316 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3317 compile_stack_elt_t
);
3318 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3320 compile_stack
.size
<<= 1;
3323 /* These are the values to restore when we hit end of this
3324 group. They are all relative offsets, so that if the
3325 whole pattern moves because of realloc, they will still
3327 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3328 COMPILE_STACK_TOP
.fixup_alt_jump
3329 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3330 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3331 COMPILE_STACK_TOP
.regnum
= regnum
;
3333 /* Do not push a start_memory for groups beyond the last one
3334 we can represent in the compiled pattern. */
3335 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3336 BUF_PUSH_2 (start_memory
, regnum
);
3338 compile_stack
.avail
++;
3343 /* If we've reached MAX_REGNUM groups, then this open
3344 won't actually generate any code, so we'll have to
3345 clear pending_exact explicitly. */
3351 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3353 if (COMPILE_STACK_EMPTY
)
3355 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3356 goto normal_backslash
;
3358 FREE_STACK_RETURN (REG_ERPAREN
);
3364 /* See similar code for backslashed left paren above. */
3365 if (COMPILE_STACK_EMPTY
)
3367 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3370 FREE_STACK_RETURN (REG_ERPAREN
);
3373 /* Since we just checked for an empty stack above, this
3374 ``can't happen''. */
3375 assert (compile_stack
.avail
!= 0);
3377 /* We don't just want to restore into `regnum', because
3378 later groups should continue to be numbered higher,
3379 as in `(ab)c(de)' -- the second group is #2. */
3382 compile_stack
.avail
--;
3383 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3385 = COMPILE_STACK_TOP
.fixup_alt_jump
3386 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3388 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3389 regnum
= COMPILE_STACK_TOP
.regnum
;
3390 /* If we've reached MAX_REGNUM groups, then this open
3391 won't actually generate any code, so we'll have to
3392 clear pending_exact explicitly. */
3395 /* We're at the end of the group, so now we know how many
3396 groups were inside this one. */
3397 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3398 BUF_PUSH_2 (stop_memory
, regnum
);
3403 case '|': /* `\|'. */
3404 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3405 goto normal_backslash
;
3407 if (syntax
& RE_LIMITED_OPS
)
3410 /* Insert before the previous alternative a jump which
3411 jumps to this alternative if the former fails. */
3412 GET_BUFFER_SPACE (3);
3413 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3417 /* The alternative before this one has a jump after it
3418 which gets executed if it gets matched. Adjust that
3419 jump so it will jump to this alternative's analogous
3420 jump (put in below, which in turn will jump to the next
3421 (if any) alternative's such jump, etc.). The last such
3422 jump jumps to the correct final destination. A picture:
3428 If we are at `b', then fixup_alt_jump right now points to a
3429 three-byte space after `a'. We'll put in the jump, set
3430 fixup_alt_jump to right after `b', and leave behind three
3431 bytes which we'll fill in when we get to after `c'. */
3435 /* Mark and leave space for a jump after this alternative,
3436 to be filled in later either by next alternative or
3437 when know we're at the end of a series of alternatives. */
3439 GET_BUFFER_SPACE (3);
3448 /* If \{ is a literal. */
3449 if (!(syntax
& RE_INTERVALS
)
3450 /* If we're at `\{' and it's not the open-interval
3452 || (syntax
& RE_NO_BK_BRACES
))
3453 goto normal_backslash
;
3457 /* If got here, then the syntax allows intervals. */
3459 /* At least (most) this many matches must be made. */
3460 int lower_bound
= 0, upper_bound
= -1;
3464 GET_UNSIGNED_NUMBER (lower_bound
);
3467 GET_UNSIGNED_NUMBER (upper_bound
);
3469 /* Interval such as `{1}' => match exactly once. */
3470 upper_bound
= lower_bound
;
3472 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3473 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3474 FREE_STACK_RETURN (REG_BADBR
);
3476 if (!(syntax
& RE_NO_BK_BRACES
))
3479 FREE_STACK_RETURN (REG_BADBR
);
3481 FREE_STACK_RETURN (REG_EESCAPE
);
3486 FREE_STACK_RETURN (REG_BADBR
);
3488 /* We just parsed a valid interval. */
3490 /* If it's invalid to have no preceding re. */
3493 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3494 FREE_STACK_RETURN (REG_BADRPT
);
3495 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3498 goto unfetch_interval
;
3501 if (upper_bound
== 0)
3502 /* If the upper bound is zero, just drop the sub pattern
3505 else if (lower_bound
== 1 && upper_bound
== 1)
3506 /* Just match it once: nothing to do here. */
3509 /* Otherwise, we have a nontrivial interval. When
3510 we're all done, the pattern will look like:
3511 set_number_at <jump count> <upper bound>
3512 set_number_at <succeed_n count> <lower bound>
3513 succeed_n <after jump addr> <succeed_n count>
3515 jump_n <succeed_n addr> <jump count>
3516 (The upper bound and `jump_n' are omitted if
3517 `upper_bound' is 1, though.) */
3519 { /* If the upper bound is > 1, we need to insert
3520 more at the end of the loop. */
3521 unsigned int nbytes
= (upper_bound
< 0 ? 3
3522 : upper_bound
> 1 ? 5 : 0);
3523 unsigned int startoffset
= 0;
3525 GET_BUFFER_SPACE (20); /* We might use less. */
3527 if (lower_bound
== 0)
3529 /* A succeed_n that starts with 0 is really a
3530 a simple on_failure_jump_loop. */
3531 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3537 /* Initialize lower bound of the `succeed_n', even
3538 though it will be set during matching by its
3539 attendant `set_number_at' (inserted next),
3540 because `re_compile_fastmap' needs to know.
3541 Jump to the `jump_n' we might insert below. */
3542 INSERT_JUMP2 (succeed_n
, laststart
,
3547 /* Code to initialize the lower bound. Insert
3548 before the `succeed_n'. The `5' is the last two
3549 bytes of this `set_number_at', plus 3 bytes of
3550 the following `succeed_n'. */
3551 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3556 if (upper_bound
< 0)
3558 /* A negative upper bound stands for infinity,
3559 in which case it degenerates to a plain jump. */
3560 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3563 else if (upper_bound
> 1)
3564 { /* More than one repetition is allowed, so
3565 append a backward jump to the `succeed_n'
3566 that starts this interval.
3568 When we've reached this during matching,
3569 we'll have matched the interval once, so
3570 jump back only `upper_bound - 1' times. */
3571 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3575 /* The location we want to set is the second
3576 parameter of the `jump_n'; that is `b-2' as
3577 an absolute address. `laststart' will be
3578 the `set_number_at' we're about to insert;
3579 `laststart+3' the number to set, the source
3580 for the relative address. But we are
3581 inserting into the middle of the pattern --
3582 so everything is getting moved up by 5.
3583 Conclusion: (b - 2) - (laststart + 3) + 5,
3584 i.e., b - laststart.
3586 We insert this at the beginning of the loop
3587 so that if we fail during matching, we'll
3588 reinitialize the bounds. */
3589 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3590 upper_bound
- 1, b
);
3595 beg_interval
= NULL
;
3600 /* If an invalid interval, match the characters as literals. */
3601 assert (beg_interval
);
3603 beg_interval
= NULL
;
3605 /* normal_char and normal_backslash need `c'. */
3608 if (!(syntax
& RE_NO_BK_BRACES
))
3610 assert (p
> pattern
&& p
[-1] == '\\');
3611 goto normal_backslash
;
3617 /* There is no way to specify the before_dot and after_dot
3618 operators. rms says this is ok. --karl */
3626 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3632 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3638 BUF_PUSH_2 (categoryspec
, c
);
3644 BUF_PUSH_2 (notcategoryspec
, c
);
3650 if (syntax
& RE_NO_GNU_OPS
)
3653 BUF_PUSH_2 (syntaxspec
, Sword
);
3658 if (syntax
& RE_NO_GNU_OPS
)
3661 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3666 if (syntax
& RE_NO_GNU_OPS
)
3672 if (syntax
& RE_NO_GNU_OPS
)
3678 if (syntax
& RE_NO_GNU_OPS
)
3687 FREE_STACK_RETURN (REG_BADPAT
);
3691 if (syntax
& RE_NO_GNU_OPS
)
3693 BUF_PUSH (wordbound
);
3697 if (syntax
& RE_NO_GNU_OPS
)
3699 BUF_PUSH (notwordbound
);
3703 if (syntax
& RE_NO_GNU_OPS
)
3709 if (syntax
& RE_NO_GNU_OPS
)
3714 case '1': case '2': case '3': case '4': case '5':
3715 case '6': case '7': case '8': case '9':
3719 if (syntax
& RE_NO_BK_REFS
)
3720 goto normal_backslash
;
3724 if (reg
> bufp
->re_nsub
|| reg
< 1
3725 /* Can't back reference to a subexp before its end. */
3726 || group_in_compile_stack (compile_stack
, reg
))
3727 FREE_STACK_RETURN (REG_ESUBREG
);
3730 BUF_PUSH_2 (duplicate
, reg
);
3737 if (syntax
& RE_BK_PLUS_QM
)
3740 goto normal_backslash
;
3744 /* You might think it would be useful for \ to mean
3745 not to translate; but if we don't translate it
3746 it will never match anything. */
3753 /* Expects the character in `c'. */
3755 /* If no exactn currently being built. */
3758 /* If last exactn not at current position. */
3759 || pending_exact
+ *pending_exact
+ 1 != b
3761 /* We have only one byte following the exactn for the count. */
3762 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3764 /* If followed by a repetition operator. */
3765 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3766 || ((syntax
& RE_BK_PLUS_QM
)
3767 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3768 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3769 || ((syntax
& RE_INTERVALS
)
3770 && ((syntax
& RE_NO_BK_BRACES
)
3771 ? p
!= pend
&& *p
== '{'
3772 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3774 /* Start building a new exactn. */
3778 BUF_PUSH_2 (exactn
, 0);
3779 pending_exact
= b
- 1;
3782 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3789 len
= CHAR_STRING (c
, b
);
3794 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3795 if (! CHAR_BYTE8_P (c1
))
3797 re_wchar_t c2
= TRANSLATE (c1
);
3799 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3805 (*pending_exact
) += len
;
3810 } /* while p != pend */
3813 /* Through the pattern now. */
3817 if (!COMPILE_STACK_EMPTY
)
3818 FREE_STACK_RETURN (REG_EPAREN
);
3820 /* If we don't want backtracking, force success
3821 the first time we reach the end of the compiled pattern. */
3822 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3825 /* We have succeeded; set the length of the buffer. */
3826 bufp
->used
= b
- bufp
->buffer
;
3831 re_compile_fastmap (bufp
);
3832 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3833 print_compiled_pattern (bufp
);
3838 #ifndef MATCH_MAY_ALLOCATE
3839 /* Initialize the failure stack to the largest possible stack. This
3840 isn't necessary unless we're trying to avoid calling alloca in
3841 the search and match routines. */
3843 int num_regs
= bufp
->re_nsub
+ 1;
3845 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3847 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3849 if (! fail_stack
.stack
)
3851 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3852 * sizeof (fail_stack_elt_t
));
3855 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3857 * sizeof (fail_stack_elt_t
)));
3860 regex_grow_registers (num_regs
);
3862 #endif /* not MATCH_MAY_ALLOCATE */
3864 FREE_STACK_RETURN (REG_NOERROR
);
3865 } /* regex_compile */
3867 /* Subroutines for `regex_compile'. */
3869 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3872 store_op1 (op
, loc
, arg
)
3877 *loc
= (unsigned char) op
;
3878 STORE_NUMBER (loc
+ 1, arg
);
3882 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3885 store_op2 (op
, loc
, arg1
, arg2
)
3890 *loc
= (unsigned char) op
;
3891 STORE_NUMBER (loc
+ 1, arg1
);
3892 STORE_NUMBER (loc
+ 3, arg2
);
3896 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3897 for OP followed by two-byte integer parameter ARG. */
3900 insert_op1 (op
, loc
, arg
, end
)
3906 register unsigned char *pfrom
= end
;
3907 register unsigned char *pto
= end
+ 3;
3909 while (pfrom
!= loc
)
3912 store_op1 (op
, loc
, arg
);
3916 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3919 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3925 register unsigned char *pfrom
= end
;
3926 register unsigned char *pto
= end
+ 5;
3928 while (pfrom
!= loc
)
3931 store_op2 (op
, loc
, arg1
, arg2
);
3935 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3936 after an alternative or a begin-subexpression. We assume there is at
3937 least one character before the ^. */
3940 at_begline_loc_p (pattern
, p
, syntax
)
3941 re_char
*pattern
, *p
;
3942 reg_syntax_t syntax
;
3944 re_char
*prev
= p
- 2;
3945 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3948 /* After a subexpression? */
3949 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3950 /* After an alternative? */
3951 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3952 /* After a shy subexpression? */
3953 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3954 && prev
[-1] == '?' && prev
[-2] == '('
3955 && (syntax
& RE_NO_BK_PARENS
3956 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3960 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3961 at least one character after the $, i.e., `P < PEND'. */
3964 at_endline_loc_p (p
, pend
, syntax
)
3966 reg_syntax_t syntax
;
3969 boolean next_backslash
= *next
== '\\';
3970 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3973 /* Before a subexpression? */
3974 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3975 : next_backslash
&& next_next
&& *next_next
== ')')
3976 /* Before an alternative? */
3977 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3978 : next_backslash
&& next_next
&& *next_next
== '|');
3982 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3983 false if it's not. */
3986 group_in_compile_stack (compile_stack
, regnum
)
3987 compile_stack_type compile_stack
;
3992 for (this_element
= compile_stack
.avail
- 1;
3995 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4002 If fastmap is non-NULL, go through the pattern and fill fastmap
4003 with all the possible leading chars. If fastmap is NULL, don't
4004 bother filling it up (obviously) and only return whether the
4005 pattern could potentially match the empty string.
4007 Return 1 if p..pend might match the empty string.
4008 Return 0 if p..pend matches at least one char.
4009 Return -1 if fastmap was not updated accurately. */
4012 analyse_first (p
, pend
, fastmap
, multibyte
)
4015 const int multibyte
;
4020 /* If all elements for base leading-codes in fastmap is set, this
4021 flag is set true. */
4022 boolean match_any_multibyte_characters
= false;
4026 /* The loop below works as follows:
4027 - It has a working-list kept in the PATTERN_STACK and which basically
4028 starts by only containing a pointer to the first operation.
4029 - If the opcode we're looking at is a match against some set of
4030 chars, then we add those chars to the fastmap and go on to the
4031 next work element from the worklist (done via `break').
4032 - If the opcode is a control operator on the other hand, we either
4033 ignore it (if it's meaningless at this point, such as `start_memory')
4034 or execute it (if it's a jump). If the jump has several destinations
4035 (i.e. `on_failure_jump'), then we push the other destination onto the
4037 We guarantee termination by ignoring backward jumps (more or less),
4038 so that `p' is monotonically increasing. More to the point, we
4039 never set `p' (or push) anything `<= p1'. */
4043 /* `p1' is used as a marker of how far back a `on_failure_jump'
4044 can go without being ignored. It is normally equal to `p'
4045 (which prevents any backward `on_failure_jump') except right
4046 after a plain `jump', to allow patterns such as:
4049 10: on_failure_jump 3
4050 as used for the *? operator. */
4053 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4060 /* If the first character has to match a backreference, that means
4061 that the group was empty (since it already matched). Since this
4062 is the only case that interests us here, we can assume that the
4063 backreference must match the empty string. */
4068 /* Following are the cases which match a character. These end
4074 /* If multibyte is nonzero, the first byte of each
4075 character is an ASCII or a leading code. Otherwise,
4076 each byte is a character. Thus, this works in both
4081 /* For the case of matching this unibyte regex
4082 against multibyte, we must set a leading code of
4083 the corresponding multibyte character. */
4084 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
4086 if (! CHAR_BYTE8_P (c
))
4087 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
4094 /* We could put all the chars except for \n (and maybe \0)
4095 but we don't bother since it is generally not worth it. */
4096 if (!fastmap
) break;
4101 if (!fastmap
) break;
4103 /* Chars beyond end of bitmap are possible matches. */
4104 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
4105 j
< (1 << BYTEWIDTH
); j
++)
4111 if (!fastmap
) break;
4112 not = (re_opcode_t
) *(p
- 1) == charset_not
;
4113 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
4115 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
4119 if (/* Any leading code can possibly start a character
4120 which doesn't match the specified set of characters. */
4123 /* If we can match a character class, we can match any
4124 multibyte characters. */
4125 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4126 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
4129 if (match_any_multibyte_characters
== false)
4131 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4132 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4134 match_any_multibyte_characters
= true;
4138 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4139 && match_any_multibyte_characters
== false)
4141 /* Set fastmap[I] to 1 where I is a leading code of each
4142 multibyte characer in the range table. */
4144 unsigned char lc1
, lc2
;
4146 /* Make P points the range table. `+ 2' is to skip flag
4147 bits for a character class. */
4148 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
4150 /* Extract the number of ranges in range table into COUNT. */
4151 EXTRACT_NUMBER_AND_INCR (count
, p
);
4152 for (; count
> 0; count
--, p
+= 3)
4154 /* Extract the start and end of each range. */
4155 EXTRACT_CHARACTER (c
, p
);
4156 lc1
= CHAR_LEADING_CODE (c
);
4158 EXTRACT_CHARACTER (c
, p
);
4159 lc2
= CHAR_LEADING_CODE (c
);
4160 for (j
= lc1
; j
<= lc2
; j
++)
4169 if (!fastmap
) break;
4171 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4173 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4174 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4178 /* This match depends on text properties. These end with
4179 aborting optimizations. */
4183 case notcategoryspec
:
4184 if (!fastmap
) break;
4185 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4187 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4188 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4191 /* Any leading code can possibly start a character which
4192 has or doesn't has the specified category. */
4193 if (match_any_multibyte_characters
== false)
4195 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4196 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4198 match_any_multibyte_characters
= true;
4202 /* All cases after this match the empty string. These end with
4224 EXTRACT_NUMBER_AND_INCR (j
, p
);
4226 /* Backward jumps can only go back to code that we've already
4227 visited. `re_compile' should make sure this is true. */
4230 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4232 case on_failure_jump
:
4233 case on_failure_keep_string_jump
:
4234 case on_failure_jump_loop
:
4235 case on_failure_jump_nastyloop
:
4236 case on_failure_jump_smart
:
4242 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4243 to jump back to "just after here". */
4246 case on_failure_jump
:
4247 case on_failure_keep_string_jump
:
4248 case on_failure_jump_nastyloop
:
4249 case on_failure_jump_loop
:
4250 case on_failure_jump_smart
:
4251 EXTRACT_NUMBER_AND_INCR (j
, p
);
4253 ; /* Backward jump to be ignored. */
4255 { /* We have to look down both arms.
4256 We first go down the "straight" path so as to minimize
4257 stack usage when going through alternatives. */
4258 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4266 /* This code simply does not properly handle forward jump_n. */
4267 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4269 /* jump_n can either jump or fall through. The (backward) jump
4270 case has already been handled, so we only need to look at the
4271 fallthrough case. */
4275 /* If N == 0, it should be an on_failure_jump_loop instead. */
4276 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4278 /* We only care about one iteration of the loop, so we don't
4279 need to consider the case where this behaves like an
4296 abort (); /* We have listed all the cases. */
4299 /* Getting here means we have found the possible starting
4300 characters for one path of the pattern -- and that the empty
4301 string does not match. We need not follow this path further. */
4305 /* We reached the end without matching anything. */
4308 } /* analyse_first */
4310 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4311 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4312 characters can start a string that matches the pattern. This fastmap
4313 is used by re_search to skip quickly over impossible starting points.
4315 Character codes above (1 << BYTEWIDTH) are not represented in the
4316 fastmap, but the leading codes are represented. Thus, the fastmap
4317 indicates which character sets could start a match.
4319 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4320 area as BUFP->fastmap.
4322 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4325 Returns 0 if we succeed, -2 if an internal error. */
4328 re_compile_fastmap (bufp
)
4329 struct re_pattern_buffer
*bufp
;
4331 char *fastmap
= bufp
->fastmap
;
4334 assert (fastmap
&& bufp
->buffer
);
4336 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4337 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4339 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4340 fastmap
, RE_MULTIBYTE_P (bufp
));
4341 bufp
->can_be_null
= (analysis
!= 0);
4343 } /* re_compile_fastmap */
4345 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4346 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4347 this memory for recording register information. STARTS and ENDS
4348 must be allocated using the malloc library routine, and must each
4349 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4351 If NUM_REGS == 0, then subsequent matches should allocate their own
4354 Unless this function is called, the first search or match using
4355 PATTERN_BUFFER will allocate its own register data, without
4356 freeing the old data. */
4359 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4360 struct re_pattern_buffer
*bufp
;
4361 struct re_registers
*regs
;
4363 regoff_t
*starts
, *ends
;
4367 bufp
->regs_allocated
= REGS_REALLOCATE
;
4368 regs
->num_regs
= num_regs
;
4369 regs
->start
= starts
;
4374 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4376 regs
->start
= regs
->end
= (regoff_t
*) 0;
4379 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4381 /* Searching routines. */
4383 /* Like re_search_2, below, but only one string is specified, and
4384 doesn't let you say where to stop matching. */
4387 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4388 struct re_pattern_buffer
*bufp
;
4390 int size
, startpos
, range
;
4391 struct re_registers
*regs
;
4393 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4396 WEAK_ALIAS (__re_search
, re_search
)
4398 /* Head address of virtual concatenation of string. */
4399 #define HEAD_ADDR_VSTRING(P) \
4400 (((P) >= size1 ? string2 : string1))
4402 /* End address of virtual concatenation of string. */
4403 #define STOP_ADDR_VSTRING(P) \
4404 (((P) >= size1 ? string2 + size2 : string1 + size1))
4406 /* Address of POS in the concatenation of virtual string. */
4407 #define POS_ADDR_VSTRING(POS) \
4408 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4410 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4411 virtual concatenation of STRING1 and STRING2, starting first at index
4412 STARTPOS, then at STARTPOS + 1, and so on.
4414 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4416 RANGE is how far to scan while trying to match. RANGE = 0 means try
4417 only at STARTPOS; in general, the last start tried is STARTPOS +
4420 In REGS, return the indices of the virtual concatenation of STRING1
4421 and STRING2 that matched the entire BUFP->buffer and its contained
4424 Do not consider matching one past the index STOP in the virtual
4425 concatenation of STRING1 and STRING2.
4427 We return either the position in the strings at which the match was
4428 found, -1 if no match, or -2 if error (such as failure
4432 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4433 struct re_pattern_buffer
*bufp
;
4434 const char *str1
, *str2
;
4438 struct re_registers
*regs
;
4442 re_char
*string1
= (re_char
*) str1
;
4443 re_char
*string2
= (re_char
*) str2
;
4444 register char *fastmap
= bufp
->fastmap
;
4445 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4446 int total_size
= size1
+ size2
;
4447 int endpos
= startpos
+ range
;
4448 boolean anchored_start
;
4449 /* Nonzero if we are searching multibyte string. */
4450 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4452 /* Check for out-of-range STARTPOS. */
4453 if (startpos
< 0 || startpos
> total_size
)
4456 /* Fix up RANGE if it might eventually take us outside
4457 the virtual concatenation of STRING1 and STRING2.
4458 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4460 range
= 0 - startpos
;
4461 else if (endpos
> total_size
)
4462 range
= total_size
- startpos
;
4464 /* If the search isn't to be a backwards one, don't waste time in a
4465 search for a pattern anchored at beginning of buffer. */
4466 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4475 /* In a forward search for something that starts with \=.
4476 don't keep searching past point. */
4477 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4479 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4485 /* Update the fastmap now if not correct already. */
4486 if (fastmap
&& !bufp
->fastmap_accurate
)
4487 re_compile_fastmap (bufp
);
4489 /* See whether the pattern is anchored. */
4490 anchored_start
= (bufp
->buffer
[0] == begline
);
4493 gl_state
.object
= re_match_object
;
4495 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4497 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4501 /* Loop through the string, looking for a place to start matching. */
4504 /* If the pattern is anchored,
4505 skip quickly past places we cannot match.
4506 We don't bother to treat startpos == 0 specially
4507 because that case doesn't repeat. */
4508 if (anchored_start
&& startpos
> 0)
4510 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4511 : string2
[startpos
- size1
- 1])
4516 /* If a fastmap is supplied, skip quickly over characters that
4517 cannot be the start of a match. If the pattern can match the
4518 null string, however, we don't need to skip characters; we want
4519 the first null string. */
4520 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4522 register re_char
*d
;
4523 register re_wchar_t buf_ch
;
4525 d
= POS_ADDR_VSTRING (startpos
);
4527 if (range
> 0) /* Searching forwards. */
4529 register int lim
= 0;
4532 if (startpos
< size1
&& startpos
+ range
>= size1
)
4533 lim
= range
- (size1
- startpos
);
4535 /* Written out as an if-else to avoid testing `translate'
4537 if (RE_TRANSLATE_P (translate
))
4544 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4545 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4546 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4549 range
-= buf_charlen
;
4555 register re_wchar_t ch
, translated
;
4558 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4559 translated
= RE_TRANSLATE (translate
, ch
);
4560 if (translated
!= ch
4561 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4563 if (fastmap
[buf_ch
])
4576 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4577 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4579 range
-= buf_charlen
;
4583 while (range
> lim
&& !fastmap
[*d
])
4589 startpos
+= irange
- range
;
4591 else /* Searching backwards. */
4595 buf_ch
= STRING_CHAR (d
);
4596 buf_ch
= TRANSLATE (buf_ch
);
4597 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4602 register re_wchar_t ch
, translated
;
4605 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4606 translated
= TRANSLATE (ch
);
4607 if (translated
!= ch
4608 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4610 if (! fastmap
[TRANSLATE (buf_ch
)])
4616 /* If can't match the null string, and that's all we have left, fail. */
4617 if (range
>= 0 && startpos
== total_size
&& fastmap
4618 && !bufp
->can_be_null
)
4621 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4622 startpos
, regs
, stop
);
4635 /* Update STARTPOS to the next character boundary. */
4638 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4639 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4640 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4658 /* Update STARTPOS to the previous character boundary. */
4661 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4663 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4665 /* Find the head of multibyte form. */
4666 PREV_CHAR_BOUNDARY (p
, phead
);
4667 range
+= p0
- 1 - p
;
4671 startpos
-= p0
- 1 - p
;
4677 WEAK_ALIAS (__re_search_2
, re_search_2
)
4679 /* Declarations and macros for re_match_2. */
4681 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4683 RE_TRANSLATE_TYPE translate
,
4684 const int multibyte
));
4686 /* This converts PTR, a pointer into one of the search strings `string1'
4687 and `string2' into an offset from the beginning of that string. */
4688 #define POINTER_TO_OFFSET(ptr) \
4689 (FIRST_STRING_P (ptr) \
4690 ? ((regoff_t) ((ptr) - string1)) \
4691 : ((regoff_t) ((ptr) - string2 + size1)))
4693 /* Call before fetching a character with *d. This switches over to
4694 string2 if necessary.
4695 Check re_match_2_internal for a discussion of why end_match_2 might
4696 not be within string2 (but be equal to end_match_1 instead). */
4697 #define PREFETCH() \
4700 /* End of string2 => fail. */ \
4701 if (dend == end_match_2) \
4703 /* End of string1 => advance to string2. */ \
4705 dend = end_match_2; \
4708 /* Call before fetching a char with *d if you already checked other limits.
4709 This is meant for use in lookahead operations like wordend, etc..
4710 where we might need to look at parts of the string that might be
4711 outside of the LIMITs (i.e past `stop'). */
4712 #define PREFETCH_NOLIMIT() \
4716 dend = end_match_2; \
4719 /* Test if at very beginning or at very end of the virtual concatenation
4720 of `string1' and `string2'. If only one string, it's `string2'. */
4721 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4722 #define AT_STRINGS_END(d) ((d) == end2)
4725 /* Test if D points to a character which is word-constituent. We have
4726 two special cases to check for: if past the end of string1, look at
4727 the first character in string2; and if before the beginning of
4728 string2, look at the last character in string1. */
4729 #define WORDCHAR_P(d) \
4730 (SYNTAX ((d) == end1 ? *string2 \
4731 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4734 /* Disabled due to a compiler bug -- see comment at case wordbound */
4736 /* The comment at case wordbound is following one, but we don't use
4737 AT_WORD_BOUNDARY anymore to support multibyte form.
4739 The DEC Alpha C compiler 3.x generates incorrect code for the
4740 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4741 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4742 macro and introducing temporary variables works around the bug. */
4745 /* Test if the character before D and the one at D differ with respect
4746 to being word-constituent. */
4747 #define AT_WORD_BOUNDARY(d) \
4748 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4749 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4752 /* Free everything we malloc. */
4753 #ifdef MATCH_MAY_ALLOCATE
4754 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4755 # define FREE_VARIABLES() \
4757 REGEX_FREE_STACK (fail_stack.stack); \
4758 FREE_VAR (regstart); \
4759 FREE_VAR (regend); \
4760 FREE_VAR (best_regstart); \
4761 FREE_VAR (best_regend); \
4764 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4765 #endif /* not MATCH_MAY_ALLOCATE */
4768 /* Optimization routines. */
4770 /* If the operation is a match against one or more chars,
4771 return a pointer to the next operation, else return NULL. */
4776 switch (SWITCH_ENUM_CAST (*p
++))
4787 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4790 p
= CHARSET_RANGE_TABLE (p
- 1);
4791 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4792 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4795 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4802 case notcategoryspec
:
4814 /* Jump over non-matching operations. */
4816 skip_noops (p
, pend
)
4822 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4831 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4842 /* Non-zero if "p1 matches something" implies "p2 fails". */
4844 mutually_exclusive_p (bufp
, p1
, p2
)
4845 struct re_pattern_buffer
*bufp
;
4849 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4850 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4852 assert (p1
>= bufp
->buffer
&& p1
< pend
4853 && p2
>= bufp
->buffer
&& p2
<= pend
);
4855 /* Skip over open/close-group commands.
4856 If what follows this loop is a ...+ construct,
4857 look at what begins its body, since we will have to
4858 match at least one of that. */
4859 p2
= skip_noops (p2
, pend
);
4860 /* The same skip can be done for p1, except that this function
4861 is only used in the case where p1 is a simple match operator. */
4862 /* p1 = skip_noops (p1, pend); */
4864 assert (p1
>= bufp
->buffer
&& p1
< pend
4865 && p2
>= bufp
->buffer
&& p2
<= pend
);
4867 op2
= p2
== pend
? succeed
: *p2
;
4869 switch (SWITCH_ENUM_CAST (op2
))
4873 /* If we're at the end of the pattern, we can change. */
4874 if (skip_one_char (p1
))
4876 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4884 register re_wchar_t c
4885 = (re_opcode_t
) *p2
== endline
? '\n'
4886 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4888 if ((re_opcode_t
) *p1
== exactn
)
4890 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4892 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4897 else if ((re_opcode_t
) *p1
== charset
4898 || (re_opcode_t
) *p1
== charset_not
)
4900 int not = (re_opcode_t
) *p1
== charset_not
;
4902 /* Test if C is listed in charset (or charset_not)
4904 if (! multibyte
|| IS_REAL_ASCII (c
))
4906 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4907 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4910 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4911 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4913 /* `not' is equal to 1 if c would match, which means
4914 that we can't change to pop_failure_jump. */
4917 DEBUG_PRINT1 (" No match => fast loop.\n");
4921 else if ((re_opcode_t
) *p1
== anychar
4924 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4932 if ((re_opcode_t
) *p1
== exactn
)
4933 /* Reuse the code above. */
4934 return mutually_exclusive_p (bufp
, p2
, p1
);
4936 /* It is hard to list up all the character in charset
4937 P2 if it includes multibyte character. Give up in
4939 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4941 /* Now, we are sure that P2 has no range table.
4942 So, for the size of bitmap in P2, `p2[1]' is
4943 enough. But P1 may have range table, so the
4944 size of bitmap table of P1 is extracted by
4945 using macro `CHARSET_BITMAP_SIZE'.
4947 In a multibyte case, we know that all the character
4948 listed in P2 is ASCII. In a unibyte case, P1 has only a
4949 bitmap table. So, in both cases, it is enough to test
4950 only the bitmap table of P1. */
4952 if ((re_opcode_t
) *p1
== charset
)
4955 /* We win if the charset inside the loop
4956 has no overlap with the one after the loop. */
4959 && idx
< CHARSET_BITMAP_SIZE (p1
));
4961 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4965 || idx
== CHARSET_BITMAP_SIZE (p1
))
4967 DEBUG_PRINT1 (" No match => fast loop.\n");
4971 else if ((re_opcode_t
) *p1
== charset_not
)
4974 /* We win if the charset_not inside the loop lists
4975 every character listed in the charset after. */
4976 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4977 if (! (p2
[2 + idx
] == 0
4978 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4979 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4984 DEBUG_PRINT1 (" No match => fast loop.\n");
4993 switch (SWITCH_ENUM_CAST (*p1
))
4997 /* Reuse the code above. */
4998 return mutually_exclusive_p (bufp
, p2
, p1
);
5000 /* When we have two charset_not, it's very unlikely that
5001 they don't overlap. The union of the two sets of excluded
5002 chars should cover all possible chars, which, as a matter of
5003 fact, is virtually impossible in multibyte buffers. */
5009 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
5011 return ((re_opcode_t
) *p1
== syntaxspec
5012 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5014 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
5017 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
5019 return ((re_opcode_t
) *p1
== notsyntaxspec
5020 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5022 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
5025 return (((re_opcode_t
) *p1
== notsyntaxspec
5026 || (re_opcode_t
) *p1
== syntaxspec
)
5031 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
5032 case notcategoryspec
:
5033 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
5045 /* Matching routines. */
5047 #ifndef emacs /* Emacs never uses this. */
5048 /* re_match is like re_match_2 except it takes only a single string. */
5051 re_match (bufp
, string
, size
, pos
, regs
)
5052 struct re_pattern_buffer
*bufp
;
5055 struct re_registers
*regs
;
5057 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
5061 WEAK_ALIAS (__re_match
, re_match
)
5062 #endif /* not emacs */
5065 /* In Emacs, this is the string or buffer in which we
5066 are matching. It is used for looking up syntax properties. */
5067 Lisp_Object re_match_object
;
5070 /* re_match_2 matches the compiled pattern in BUFP against the
5071 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5072 and SIZE2, respectively). We start matching at POS, and stop
5075 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5076 store offsets for the substring each group matched in REGS. See the
5077 documentation for exactly how many groups we fill.
5079 We return -1 if no match, -2 if an internal error (such as the
5080 failure stack overflowing). Otherwise, we return the length of the
5081 matched substring. */
5084 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5085 struct re_pattern_buffer
*bufp
;
5086 const char *string1
, *string2
;
5089 struct re_registers
*regs
;
5096 gl_state
.object
= re_match_object
;
5097 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
5098 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
5101 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
5102 (re_char
*) string2
, size2
,
5106 WEAK_ALIAS (__re_match_2
, re_match_2
)
5109 /* This is a separate function so that we can force an alloca cleanup
5112 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5113 struct re_pattern_buffer
*bufp
;
5114 re_char
*string1
, *string2
;
5117 struct re_registers
*regs
;
5120 /* General temporaries. */
5125 /* Just past the end of the corresponding string. */
5126 re_char
*end1
, *end2
;
5128 /* Pointers into string1 and string2, just past the last characters in
5129 each to consider matching. */
5130 re_char
*end_match_1
, *end_match_2
;
5132 /* Where we are in the data, and the end of the current string. */
5135 /* Used sometimes to remember where we were before starting matching
5136 an operator so that we can go back in case of failure. This "atomic"
5137 behavior of matching opcodes is indispensable to the correctness
5138 of the on_failure_keep_string_jump optimization. */
5141 /* Where we are in the pattern, and the end of the pattern. */
5142 re_char
*p
= bufp
->buffer
;
5143 re_char
*pend
= p
+ bufp
->used
;
5145 /* We use this to map every character in the string. */
5146 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5148 /* Nonzero if BUFP is setup from a multibyte regex. */
5149 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
5151 /* Nonzero if STRING1/STRING2 are multibyte. */
5152 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
5154 /* Failure point stack. Each place that can handle a failure further
5155 down the line pushes a failure point on this stack. It consists of
5156 regstart, and regend for all registers corresponding to
5157 the subexpressions we're currently inside, plus the number of such
5158 registers, and, finally, two char *'s. The first char * is where
5159 to resume scanning the pattern; the second one is where to resume
5160 scanning the strings. */
5161 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5162 fail_stack_type fail_stack
;
5165 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5168 #if defined REL_ALLOC && defined REGEX_MALLOC
5169 /* This holds the pointer to the failure stack, when
5170 it is allocated relocatably. */
5171 fail_stack_elt_t
*failure_stack_ptr
;
5174 /* We fill all the registers internally, independent of what we
5175 return, for use in backreferences. The number here includes
5176 an element for register zero. */
5177 size_t num_regs
= bufp
->re_nsub
+ 1;
5179 /* Information on the contents of registers. These are pointers into
5180 the input strings; they record just what was matched (on this
5181 attempt) by a subexpression part of the pattern, that is, the
5182 regnum-th regstart pointer points to where in the pattern we began
5183 matching and the regnum-th regend points to right after where we
5184 stopped matching the regnum-th subexpression. (The zeroth register
5185 keeps track of what the whole pattern matches.) */
5186 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5187 re_char
**regstart
, **regend
;
5190 /* The following record the register info as found in the above
5191 variables when we find a match better than any we've seen before.
5192 This happens as we backtrack through the failure points, which in
5193 turn happens only if we have not yet matched the entire string. */
5194 unsigned best_regs_set
= false;
5195 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5196 re_char
**best_regstart
, **best_regend
;
5199 /* Logically, this is `best_regend[0]'. But we don't want to have to
5200 allocate space for that if we're not allocating space for anything
5201 else (see below). Also, we never need info about register 0 for
5202 any of the other register vectors, and it seems rather a kludge to
5203 treat `best_regend' differently than the rest. So we keep track of
5204 the end of the best match so far in a separate variable. We
5205 initialize this to NULL so that when we backtrack the first time
5206 and need to test it, it's not garbage. */
5207 re_char
*match_end
= NULL
;
5210 /* Counts the total number of registers pushed. */
5211 unsigned num_regs_pushed
= 0;
5214 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5218 #ifdef MATCH_MAY_ALLOCATE
5219 /* Do not bother to initialize all the register variables if there are
5220 no groups in the pattern, as it takes a fair amount of time. If
5221 there are groups, we include space for register 0 (the whole
5222 pattern), even though we never use it, since it simplifies the
5223 array indexing. We should fix this. */
5226 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5227 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5228 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5229 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5231 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5239 /* We must initialize all our variables to NULL, so that
5240 `FREE_VARIABLES' doesn't try to free them. */
5241 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5243 #endif /* MATCH_MAY_ALLOCATE */
5245 /* The starting position is bogus. */
5246 if (pos
< 0 || pos
> size1
+ size2
)
5252 /* Initialize subexpression text positions to -1 to mark ones that no
5253 start_memory/stop_memory has been seen for. Also initialize the
5254 register information struct. */
5255 for (reg
= 1; reg
< num_regs
; reg
++)
5256 regstart
[reg
] = regend
[reg
] = NULL
;
5258 /* We move `string1' into `string2' if the latter's empty -- but not if
5259 `string1' is null. */
5260 if (size2
== 0 && string1
!= NULL
)
5267 end1
= string1
+ size1
;
5268 end2
= string2
+ size2
;
5270 /* `p' scans through the pattern as `d' scans through the data.
5271 `dend' is the end of the input string that `d' points within. `d'
5272 is advanced into the following input string whenever necessary, but
5273 this happens before fetching; therefore, at the beginning of the
5274 loop, `d' can be pointing at the end of a string, but it cannot
5278 /* Only match within string2. */
5279 d
= string2
+ pos
- size1
;
5280 dend
= end_match_2
= string2
+ stop
- size1
;
5281 end_match_1
= end1
; /* Just to give it a value. */
5287 /* Only match within string1. */
5288 end_match_1
= string1
+ stop
;
5290 When we reach end_match_1, PREFETCH normally switches to string2.
5291 But in the present case, this means that just doing a PREFETCH
5292 makes us jump from `stop' to `gap' within the string.
5293 What we really want here is for the search to stop as
5294 soon as we hit end_match_1. That's why we set end_match_2
5295 to end_match_1 (since PREFETCH fails as soon as we hit
5297 end_match_2
= end_match_1
;
5300 { /* It's important to use this code when stop == size so that
5301 moving `d' from end1 to string2 will not prevent the d == dend
5302 check from catching the end of string. */
5304 end_match_2
= string2
+ stop
- size1
;
5310 DEBUG_PRINT1 ("The compiled pattern is: ");
5311 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5312 DEBUG_PRINT1 ("The string to match is: `");
5313 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5314 DEBUG_PRINT1 ("'\n");
5316 /* This loops over pattern commands. It exits by returning from the
5317 function if the match is complete, or it drops through if the match
5318 fails at this starting point in the input data. */
5321 DEBUG_PRINT2 ("\n%p: ", p
);
5324 { /* End of pattern means we might have succeeded. */
5325 DEBUG_PRINT1 ("end of pattern ... ");
5327 /* If we haven't matched the entire string, and we want the
5328 longest match, try backtracking. */
5329 if (d
!= end_match_2
)
5331 /* 1 if this match ends in the same string (string1 or string2)
5332 as the best previous match. */
5333 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5334 == FIRST_STRING_P (d
));
5335 /* 1 if this match is the best seen so far. */
5336 boolean best_match_p
;
5338 /* AIX compiler got confused when this was combined
5339 with the previous declaration. */
5341 best_match_p
= d
> match_end
;
5343 best_match_p
= !FIRST_STRING_P (d
);
5345 DEBUG_PRINT1 ("backtracking.\n");
5347 if (!FAIL_STACK_EMPTY ())
5348 { /* More failure points to try. */
5350 /* If exceeds best match so far, save it. */
5351 if (!best_regs_set
|| best_match_p
)
5353 best_regs_set
= true;
5356 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5358 for (reg
= 1; reg
< num_regs
; reg
++)
5360 best_regstart
[reg
] = regstart
[reg
];
5361 best_regend
[reg
] = regend
[reg
];
5367 /* If no failure points, don't restore garbage. And if
5368 last match is real best match, don't restore second
5370 else if (best_regs_set
&& !best_match_p
)
5373 /* Restore best match. It may happen that `dend ==
5374 end_match_1' while the restored d is in string2.
5375 For example, the pattern `x.*y.*z' against the
5376 strings `x-' and `y-z-', if the two strings are
5377 not consecutive in memory. */
5378 DEBUG_PRINT1 ("Restoring best registers.\n");
5381 dend
= ((d
>= string1
&& d
<= end1
)
5382 ? end_match_1
: end_match_2
);
5384 for (reg
= 1; reg
< num_regs
; reg
++)
5386 regstart
[reg
] = best_regstart
[reg
];
5387 regend
[reg
] = best_regend
[reg
];
5390 } /* d != end_match_2 */
5393 DEBUG_PRINT1 ("Accepting match.\n");
5395 /* If caller wants register contents data back, do it. */
5396 if (regs
&& !bufp
->no_sub
)
5398 /* Have the register data arrays been allocated? */
5399 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5400 { /* No. So allocate them with malloc. We need one
5401 extra element beyond `num_regs' for the `-1' marker
5403 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5404 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5405 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5406 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5411 bufp
->regs_allocated
= REGS_REALLOCATE
;
5413 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5414 { /* Yes. If we need more elements than were already
5415 allocated, reallocate them. If we need fewer, just
5417 if (regs
->num_regs
< num_regs
+ 1)
5419 regs
->num_regs
= num_regs
+ 1;
5420 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5421 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5422 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5431 /* These braces fend off a "empty body in an else-statement"
5432 warning under GCC when assert expands to nothing. */
5433 assert (bufp
->regs_allocated
== REGS_FIXED
);
5436 /* Convert the pointer data in `regstart' and `regend' to
5437 indices. Register zero has to be set differently,
5438 since we haven't kept track of any info for it. */
5439 if (regs
->num_regs
> 0)
5441 regs
->start
[0] = pos
;
5442 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5445 /* Go through the first `min (num_regs, regs->num_regs)'
5446 registers, since that is all we initialized. */
5447 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5449 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5450 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5454 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5456 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5460 /* If the regs structure we return has more elements than
5461 were in the pattern, set the extra elements to -1. If
5462 we (re)allocated the registers, this is the case,
5463 because we always allocate enough to have at least one
5465 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5466 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5467 } /* regs && !bufp->no_sub */
5469 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5470 nfailure_points_pushed
, nfailure_points_popped
,
5471 nfailure_points_pushed
- nfailure_points_popped
);
5472 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5474 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5476 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5482 /* Otherwise match next pattern command. */
5483 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5485 /* Ignore these. Used to ignore the n of succeed_n's which
5486 currently have n == 0. */
5488 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5492 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5495 /* Match the next n pattern characters exactly. The following
5496 byte in the pattern defines n, and the n bytes after that
5497 are the characters to match. */
5500 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5502 /* Remember the start point to rollback upon failure. */
5506 /* This is written out as an if-else so we don't waste time
5507 testing `translate' inside the loop. */
5508 if (RE_TRANSLATE_P (translate
))
5512 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5532 /* The cost of testing `translate' is comparatively small. */
5533 if (target_multibyte
)
5536 int pat_charlen
, buf_charlen
;
5541 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5544 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5547 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5549 if (TRANSLATE (buf_ch
) != pat_ch
)
5557 mcnt
-= pat_charlen
;
5563 int pat_charlen
, buf_charlen
;
5569 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5570 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5577 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5578 if (! CHAR_BYTE8_P (buf_ch
))
5580 buf_ch
= TRANSLATE (buf_ch
);
5581 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5587 if (buf_ch
!= pat_ch
)
5600 /* Match any character except possibly a newline or a null. */
5606 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5609 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5611 buf_ch
= TRANSLATE (buf_ch
);
5613 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5615 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5616 && buf_ch
== '\000'))
5619 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5628 register unsigned int c
;
5629 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5632 /* Start of actual range_table, or end of bitmap if there is no
5634 re_char
*range_table
;
5636 /* Nonzero if there is a range table. */
5637 int range_table_exists
;
5639 /* Number of ranges of range table. This is not included
5640 in the initial byte-length of the command. */
5643 /* Whether matching against a unibyte character. */
5644 boolean unibyte_char
= false;
5646 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5648 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5650 if (range_table_exists
)
5652 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5653 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5657 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5658 if (target_multibyte
)
5663 c1
= RE_CHAR_TO_UNIBYTE (c
);
5666 unibyte_char
= true;
5672 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5674 if (! CHAR_BYTE8_P (c1
))
5676 c1
= TRANSLATE (c1
);
5677 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5680 unibyte_char
= true;
5685 unibyte_char
= true;
5688 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5689 { /* Lookup bitmap. */
5690 /* Cast to `unsigned' instead of `unsigned char' in
5691 case the bit list is a full 32 bytes long. */
5692 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5693 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5697 else if (range_table_exists
)
5699 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5701 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5702 | (class_bits
& BIT_MULTIBYTE
)
5703 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5704 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5705 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5706 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5709 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5713 if (range_table_exists
)
5714 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5716 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5718 if (!not) goto fail
;
5725 /* The beginning of a group is represented by start_memory.
5726 The argument is the register number. The text
5727 matched within the group is recorded (in the internal
5728 registers data structure) under the register number. */
5730 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5732 /* In case we need to undo this operation (via backtracking). */
5733 PUSH_FAILURE_REG ((unsigned int)*p
);
5736 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5737 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5739 /* Move past the register number and inner group count. */
5744 /* The stop_memory opcode represents the end of a group. Its
5745 argument is the same as start_memory's: the register number. */
5747 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5749 assert (!REG_UNSET (regstart
[*p
]));
5750 /* Strictly speaking, there should be code such as:
5752 assert (REG_UNSET (regend[*p]));
5753 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5755 But the only info to be pushed is regend[*p] and it is known to
5756 be UNSET, so there really isn't anything to push.
5757 Not pushing anything, on the other hand deprives us from the
5758 guarantee that regend[*p] is UNSET since undoing this operation
5759 will not reset its value properly. This is not important since
5760 the value will only be read on the next start_memory or at
5761 the very end and both events can only happen if this stop_memory
5765 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5767 /* Move past the register number and the inner group count. */
5772 /* \<digit> has been turned into a `duplicate' command which is
5773 followed by the numeric value of <digit> as the register number. */
5776 register re_char
*d2
, *dend2
;
5777 int regno
= *p
++; /* Get which register to match against. */
5778 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5780 /* Can't back reference a group which we've never matched. */
5781 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5784 /* Where in input to try to start matching. */
5785 d2
= regstart
[regno
];
5787 /* Remember the start point to rollback upon failure. */
5790 /* Where to stop matching; if both the place to start and
5791 the place to stop matching are in the same string, then
5792 set to the place to stop, otherwise, for now have to use
5793 the end of the first string. */
5795 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5796 == FIRST_STRING_P (regend
[regno
]))
5797 ? regend
[regno
] : end_match_1
);
5800 /* If necessary, advance to next segment in register
5804 if (dend2
== end_match_2
) break;
5805 if (dend2
== regend
[regno
]) break;
5807 /* End of string1 => advance to string2. */
5809 dend2
= regend
[regno
];
5811 /* At end of register contents => success */
5812 if (d2
== dend2
) break;
5814 /* If necessary, advance to next segment in data. */
5817 /* How many characters left in this segment to match. */
5820 /* Want how many consecutive characters we can match in
5821 one shot, so, if necessary, adjust the count. */
5822 if (mcnt
> dend2
- d2
)
5825 /* Compare that many; failure if mismatch, else move
5827 if (RE_TRANSLATE_P (translate
)
5828 ? bcmp_translate (d
, d2
, mcnt
, translate
, target_multibyte
)
5829 : memcmp (d
, d2
, mcnt
))
5834 d
+= mcnt
, d2
+= mcnt
;
5840 /* begline matches the empty string at the beginning of the string
5841 (unless `not_bol' is set in `bufp'), and after newlines. */
5843 DEBUG_PRINT1 ("EXECUTING begline.\n");
5845 if (AT_STRINGS_BEG (d
))
5847 if (!bufp
->not_bol
) break;
5852 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5856 /* In all other cases, we fail. */
5860 /* endline is the dual of begline. */
5862 DEBUG_PRINT1 ("EXECUTING endline.\n");
5864 if (AT_STRINGS_END (d
))
5866 if (!bufp
->not_eol
) break;
5870 PREFETCH_NOLIMIT ();
5877 /* Match at the very beginning of the data. */
5879 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5880 if (AT_STRINGS_BEG (d
))
5885 /* Match at the very end of the data. */
5887 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5888 if (AT_STRINGS_END (d
))
5893 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5894 pushes NULL as the value for the string on the stack. Then
5895 `POP_FAILURE_POINT' will keep the current value for the
5896 string, instead of restoring it. To see why, consider
5897 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5898 then the . fails against the \n. But the next thing we want
5899 to do is match the \n against the \n; if we restored the
5900 string value, we would be back at the foo.
5902 Because this is used only in specific cases, we don't need to
5903 check all the things that `on_failure_jump' does, to make
5904 sure the right things get saved on the stack. Hence we don't
5905 share its code. The only reason to push anything on the
5906 stack at all is that otherwise we would have to change
5907 `anychar's code to do something besides goto fail in this
5908 case; that seems worse than this. */
5909 case on_failure_keep_string_jump
:
5910 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5911 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5914 PUSH_FAILURE_POINT (p
- 3, NULL
);
5917 /* A nasty loop is introduced by the non-greedy *? and +?.
5918 With such loops, the stack only ever contains one failure point
5919 at a time, so that a plain on_failure_jump_loop kind of
5920 cycle detection cannot work. Worse yet, such a detection
5921 can not only fail to detect a cycle, but it can also wrongly
5922 detect a cycle (between different instantiations of the same
5924 So the method used for those nasty loops is a little different:
5925 We use a special cycle-detection-stack-frame which is pushed
5926 when the on_failure_jump_nastyloop failure-point is *popped*.
5927 This special frame thus marks the beginning of one iteration
5928 through the loop and we can hence easily check right here
5929 whether something matched between the beginning and the end of
5931 case on_failure_jump_nastyloop
:
5932 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5933 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5936 assert ((re_opcode_t
)p
[-4] == no_op
);
5939 CHECK_INFINITE_LOOP (p
- 4, d
);
5941 /* If there's a cycle, just continue without pushing
5942 this failure point. The failure point is the "try again"
5943 option, which shouldn't be tried.
5944 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5945 PUSH_FAILURE_POINT (p
- 3, d
);
5949 /* Simple loop detecting on_failure_jump: just check on the
5950 failure stack if the same spot was already hit earlier. */
5951 case on_failure_jump_loop
:
5953 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5954 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5958 CHECK_INFINITE_LOOP (p
- 3, d
);
5960 /* If there's a cycle, get out of the loop, as if the matching
5961 had failed. We used to just `goto fail' here, but that was
5962 aborting the search a bit too early: we want to keep the
5963 empty-loop-match and keep matching after the loop.
5964 We want (x?)*y\1z to match both xxyz and xxyxz. */
5967 PUSH_FAILURE_POINT (p
- 3, d
);
5972 /* Uses of on_failure_jump:
5974 Each alternative starts with an on_failure_jump that points
5975 to the beginning of the next alternative. Each alternative
5976 except the last ends with a jump that in effect jumps past
5977 the rest of the alternatives. (They really jump to the
5978 ending jump of the following alternative, because tensioning
5979 these jumps is a hassle.)
5981 Repeats start with an on_failure_jump that points past both
5982 the repetition text and either the following jump or
5983 pop_failure_jump back to this on_failure_jump. */
5984 case on_failure_jump
:
5985 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5986 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5989 PUSH_FAILURE_POINT (p
-3, d
);
5992 /* This operation is used for greedy *.
5993 Compare the beginning of the repeat with what in the
5994 pattern follows its end. If we can establish that there
5995 is nothing that they would both match, i.e., that we
5996 would have to backtrack because of (as in, e.g., `a*a')
5997 then we can use a non-backtracking loop based on
5998 on_failure_keep_string_jump instead of on_failure_jump. */
5999 case on_failure_jump_smart
:
6000 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6001 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6004 re_char
*p1
= p
; /* Next operation. */
6005 /* Here, we discard `const', making re_match non-reentrant. */
6006 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
6007 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
6009 p
-= 3; /* Reset so that we will re-execute the
6010 instruction once it's been changed. */
6012 EXTRACT_NUMBER (mcnt
, p2
- 2);
6014 /* Ensure this is a indeed the trivial kind of loop
6015 we are expecting. */
6016 assert (skip_one_char (p1
) == p2
- 3);
6017 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
6018 DEBUG_STATEMENT (debug
+= 2);
6019 if (mutually_exclusive_p (bufp
, p1
, p2
))
6021 /* Use a fast `on_failure_keep_string_jump' loop. */
6022 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
6023 *p3
= (unsigned char) on_failure_keep_string_jump
;
6024 STORE_NUMBER (p2
- 2, mcnt
+ 3);
6028 /* Default to a safe `on_failure_jump' loop. */
6029 DEBUG_PRINT1 (" smart default => slow loop.\n");
6030 *p3
= (unsigned char) on_failure_jump
;
6032 DEBUG_STATEMENT (debug
-= 2);
6036 /* Unconditionally jump (without popping any failure points). */
6039 IMMEDIATE_QUIT_CHECK
;
6040 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
6041 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
6042 p
+= mcnt
; /* Do the jump. */
6043 DEBUG_PRINT2 ("(to %p).\n", p
);
6047 /* Have to succeed matching what follows at least n times.
6048 After that, handle like `on_failure_jump'. */
6050 /* Signedness doesn't matter since we only compare MCNT to 0. */
6051 EXTRACT_NUMBER (mcnt
, p
+ 2);
6052 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
6054 /* Originally, mcnt is how many times we HAVE to succeed. */
6057 /* Here, we discard `const', making re_match non-reentrant. */
6058 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6061 PUSH_NUMBER (p2
, mcnt
);
6064 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6069 /* Signedness doesn't matter since we only compare MCNT to 0. */
6070 EXTRACT_NUMBER (mcnt
, p
+ 2);
6071 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
6073 /* Originally, this is how many times we CAN jump. */
6076 /* Here, we discard `const', making re_match non-reentrant. */
6077 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6079 PUSH_NUMBER (p2
, mcnt
);
6080 goto unconditional_jump
;
6082 /* If don't have to jump any more, skip over the rest of command. */
6089 unsigned char *p2
; /* Location of the counter. */
6090 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
6092 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6093 /* Here, we discard `const', making re_match non-reentrant. */
6094 p2
= (unsigned char*) p
+ mcnt
;
6095 /* Signedness doesn't matter since we only copy MCNT's bits . */
6096 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6097 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
6098 PUSH_NUMBER (p2
, mcnt
);
6104 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
6105 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
6107 /* We SUCCEED (or FAIL) in one of the following cases: */
6109 /* Case 1: D is at the beginning or the end of string. */
6110 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
6114 /* C1 is the character before D, S1 is the syntax of C1, C2
6115 is the character at D, and S2 is the syntax of C2. */
6120 int offset
= PTR_TO_OFFSET (d
- 1);
6121 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6122 UPDATE_SYNTAX_TABLE (charpos
);
6124 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6127 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6129 PREFETCH_NOLIMIT ();
6130 GET_CHAR_AFTER (c2
, d
, dummy
);
6133 if (/* Case 2: Only one of S1 and S2 is Sword. */
6134 ((s1
== Sword
) != (s2
== Sword
))
6135 /* Case 3: Both of S1 and S2 are Sword, and macro
6136 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6137 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
6146 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6148 /* We FAIL in one of the following cases: */
6150 /* Case 1: D is at the end of string. */
6151 if (AT_STRINGS_END (d
))
6155 /* C1 is the character before D, S1 is the syntax of C1, C2
6156 is the character at D, and S2 is the syntax of C2. */
6161 int offset
= PTR_TO_OFFSET (d
);
6162 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6163 UPDATE_SYNTAX_TABLE (charpos
);
6166 GET_CHAR_AFTER (c2
, d
, dummy
);
6169 /* Case 2: S2 is not Sword. */
6173 /* Case 3: D is not at the beginning of string ... */
6174 if (!AT_STRINGS_BEG (d
))
6176 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6178 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6182 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6184 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6191 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6193 /* We FAIL in one of the following cases: */
6195 /* Case 1: D is at the beginning of string. */
6196 if (AT_STRINGS_BEG (d
))
6200 /* C1 is the character before D, S1 is the syntax of C1, C2
6201 is the character at D, and S2 is the syntax of C2. */
6206 int offset
= PTR_TO_OFFSET (d
) - 1;
6207 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6208 UPDATE_SYNTAX_TABLE (charpos
);
6210 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6213 /* Case 2: S1 is not Sword. */
6217 /* Case 3: D is not at the end of string ... */
6218 if (!AT_STRINGS_END (d
))
6220 PREFETCH_NOLIMIT ();
6221 GET_CHAR_AFTER (c2
, d
, dummy
);
6223 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6227 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6229 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6236 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6238 /* We FAIL in one of the following cases: */
6240 /* Case 1: D is at the end of string. */
6241 if (AT_STRINGS_END (d
))
6245 /* C1 is the character before D, S1 is the syntax of C1, C2
6246 is the character at D, and S2 is the syntax of C2. */
6250 int offset
= PTR_TO_OFFSET (d
);
6251 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6252 UPDATE_SYNTAX_TABLE (charpos
);
6255 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6258 /* Case 2: S2 is neither Sword nor Ssymbol. */
6259 if (s2
!= Sword
&& s2
!= Ssymbol
)
6262 /* Case 3: D is not at the beginning of string ... */
6263 if (!AT_STRINGS_BEG (d
))
6265 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6267 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6271 /* ... and S1 is Sword or Ssymbol. */
6272 if (s1
== Sword
|| s1
== Ssymbol
)
6279 DEBUG_PRINT1 ("EXECUTING symend.\n");
6281 /* We FAIL in one of the following cases: */
6283 /* Case 1: D is at the beginning of string. */
6284 if (AT_STRINGS_BEG (d
))
6288 /* C1 is the character before D, S1 is the syntax of C1, C2
6289 is the character at D, and S2 is the syntax of C2. */
6293 int offset
= PTR_TO_OFFSET (d
) - 1;
6294 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6295 UPDATE_SYNTAX_TABLE (charpos
);
6297 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6300 /* Case 2: S1 is neither Ssymbol nor Sword. */
6301 if (s1
!= Sword
&& s1
!= Ssymbol
)
6304 /* Case 3: D is not at the end of string ... */
6305 if (!AT_STRINGS_END (d
))
6307 PREFETCH_NOLIMIT ();
6308 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6310 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6314 /* ... and S2 is Sword or Ssymbol. */
6315 if (s2
== Sword
|| s2
== Ssymbol
)
6323 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6325 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6329 int offset
= PTR_TO_OFFSET (d
);
6330 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6331 UPDATE_SYNTAX_TABLE (pos1
);
6338 GET_CHAR_AFTER (c
, d
, len
);
6339 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6347 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6348 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6353 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6354 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6359 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6360 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6365 case notcategoryspec
:
6366 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6368 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6374 GET_CHAR_AFTER (c
, d
, len
);
6375 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6386 continue; /* Successfully executed one pattern command; keep going. */
6389 /* We goto here if a matching operation fails. */
6391 IMMEDIATE_QUIT_CHECK
;
6392 if (!FAIL_STACK_EMPTY ())
6395 /* A restart point is known. Restore to that state. */
6396 DEBUG_PRINT1 ("\nFAIL:\n");
6397 POP_FAILURE_POINT (str
, pat
);
6398 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6400 case on_failure_keep_string_jump
:
6401 assert (str
== NULL
);
6402 goto continue_failure_jump
;
6404 case on_failure_jump_nastyloop
:
6405 assert ((re_opcode_t
)pat
[-2] == no_op
);
6406 PUSH_FAILURE_POINT (pat
- 2, str
);
6409 case on_failure_jump_loop
:
6410 case on_failure_jump
:
6413 continue_failure_jump
:
6414 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6419 /* A special frame used for nastyloops. */
6426 assert (p
>= bufp
->buffer
&& p
<= pend
);
6428 if (d
>= string1
&& d
<= end1
)
6432 break; /* Matching at this starting point really fails. */
6436 goto restore_best_regs
;
6440 return -1; /* Failure to match. */
6443 /* Subroutine definitions for re_match_2. */
6445 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6446 bytes; nonzero otherwise. */
6449 bcmp_translate (s1
, s2
, len
, translate
, target_multibyte
)
6452 RE_TRANSLATE_TYPE translate
;
6453 const int target_multibyte
;
6455 register re_char
*p1
= s1
, *p2
= s2
;
6456 re_char
*p1_end
= s1
+ len
;
6457 re_char
*p2_end
= s2
+ len
;
6459 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6460 different lengths, but relying on a single `len' would break this. -sm */
6461 while (p1
< p1_end
&& p2
< p2_end
)
6463 int p1_charlen
, p2_charlen
;
6464 re_wchar_t p1_ch
, p2_ch
;
6466 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6467 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6469 if (RE_TRANSLATE (translate
, p1_ch
)
6470 != RE_TRANSLATE (translate
, p2_ch
))
6473 p1
+= p1_charlen
, p2
+= p2_charlen
;
6476 if (p1
!= p1_end
|| p2
!= p2_end
)
6482 /* Entry points for GNU code. */
6484 /* re_compile_pattern is the GNU regular expression compiler: it
6485 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6486 Returns 0 if the pattern was valid, otherwise an error string.
6488 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6489 are set in BUFP on entry.
6491 We call regex_compile to do the actual compilation. */
6494 re_compile_pattern (pattern
, length
, bufp
)
6495 const char *pattern
;
6497 struct re_pattern_buffer
*bufp
;
6502 gl_state
.current_syntax_table
= current_buffer
->syntax_table
;
6505 /* GNU code is written to assume at least RE_NREGS registers will be set
6506 (and at least one extra will be -1). */
6507 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6509 /* And GNU code determines whether or not to get register information
6510 by passing null for the REGS argument to re_match, etc., not by
6514 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6518 return gettext (re_error_msgid
[(int) ret
]);
6520 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6522 /* Entry points compatible with 4.2 BSD regex library. We don't define
6523 them unless specifically requested. */
6525 #if defined _REGEX_RE_COMP || defined _LIBC
6527 /* BSD has one and only one pattern buffer. */
6528 static struct re_pattern_buffer re_comp_buf
;
6532 /* Make these definitions weak in libc, so POSIX programs can redefine
6533 these names if they don't use our functions, and still use
6534 regcomp/regexec below without link errors. */
6544 if (!re_comp_buf
.buffer
)
6545 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6546 return (char *) gettext ("No previous regular expression");
6550 if (!re_comp_buf
.buffer
)
6552 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6553 if (re_comp_buf
.buffer
== NULL
)
6554 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6555 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6556 re_comp_buf
.allocated
= 200;
6558 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6559 if (re_comp_buf
.fastmap
== NULL
)
6560 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6561 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6564 /* Since `re_exec' always passes NULL for the `regs' argument, we
6565 don't need to initialize the pattern buffer fields which affect it. */
6567 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6572 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6573 return (char *) gettext (re_error_msgid
[(int) ret
]);
6584 const int len
= strlen (s
);
6586 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6588 #endif /* _REGEX_RE_COMP */
6590 /* POSIX.2 functions. Don't define these for Emacs. */
6594 /* regcomp takes a regular expression as a string and compiles it.
6596 PREG is a regex_t *. We do not expect any fields to be initialized,
6597 since POSIX says we shouldn't. Thus, we set
6599 `buffer' to the compiled pattern;
6600 `used' to the length of the compiled pattern;
6601 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6602 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6603 RE_SYNTAX_POSIX_BASIC;
6604 `fastmap' to an allocated space for the fastmap;
6605 `fastmap_accurate' to zero;
6606 `re_nsub' to the number of subexpressions in PATTERN.
6608 PATTERN is the address of the pattern string.
6610 CFLAGS is a series of bits which affect compilation.
6612 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6613 use POSIX basic syntax.
6615 If REG_NEWLINE is set, then . and [^...] don't match newline.
6616 Also, regexec will try a match beginning after every newline.
6618 If REG_ICASE is set, then we considers upper- and lowercase
6619 versions of letters to be equivalent when matching.
6621 If REG_NOSUB is set, then when PREG is passed to regexec, that
6622 routine will report only success or failure, and nothing about the
6625 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6626 the return codes and their meanings.) */
6629 regcomp (preg
, pattern
, cflags
)
6630 regex_t
*__restrict preg
;
6631 const char *__restrict pattern
;
6636 = (cflags
& REG_EXTENDED
) ?
6637 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6639 /* regex_compile will allocate the space for the compiled pattern. */
6641 preg
->allocated
= 0;
6644 /* Try to allocate space for the fastmap. */
6645 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6647 if (cflags
& REG_ICASE
)
6652 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6653 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6654 if (preg
->translate
== NULL
)
6655 return (int) REG_ESPACE
;
6657 /* Map uppercase characters to corresponding lowercase ones. */
6658 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6659 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6662 preg
->translate
= NULL
;
6664 /* If REG_NEWLINE is set, newlines are treated differently. */
6665 if (cflags
& REG_NEWLINE
)
6666 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6667 syntax
&= ~RE_DOT_NEWLINE
;
6668 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6671 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6673 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6675 /* POSIX says a null character in the pattern terminates it, so we
6676 can use strlen here in compiling the pattern. */
6677 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6679 /* POSIX doesn't distinguish between an unmatched open-group and an
6680 unmatched close-group: both are REG_EPAREN. */
6681 if (ret
== REG_ERPAREN
)
6684 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6685 { /* Compute the fastmap now, since regexec cannot modify the pattern
6687 re_compile_fastmap (preg
);
6688 if (preg
->can_be_null
)
6689 { /* The fastmap can't be used anyway. */
6690 free (preg
->fastmap
);
6691 preg
->fastmap
= NULL
;
6696 WEAK_ALIAS (__regcomp
, regcomp
)
6699 /* regexec searches for a given pattern, specified by PREG, in the
6702 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6703 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6704 least NMATCH elements, and we set them to the offsets of the
6705 corresponding matched substrings.
6707 EFLAGS specifies `execution flags' which affect matching: if
6708 REG_NOTBOL is set, then ^ does not match at the beginning of the
6709 string; if REG_NOTEOL is set, then $ does not match at the end.
6711 We return 0 if we find a match and REG_NOMATCH if not. */
6714 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6715 const regex_t
*__restrict preg
;
6716 const char *__restrict string
;
6718 regmatch_t pmatch
[__restrict_arr
];
6722 struct re_registers regs
;
6723 regex_t private_preg
;
6724 int len
= strlen (string
);
6725 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6727 private_preg
= *preg
;
6729 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6730 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6732 /* The user has told us exactly how many registers to return
6733 information about, via `nmatch'. We have to pass that on to the
6734 matching routines. */
6735 private_preg
.regs_allocated
= REGS_FIXED
;
6739 regs
.num_regs
= nmatch
;
6740 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6741 if (regs
.start
== NULL
)
6742 return (int) REG_NOMATCH
;
6743 regs
.end
= regs
.start
+ nmatch
;
6746 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6747 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6748 was a little bit longer but still only matching the real part.
6749 This works because the `endline' will check for a '\n' and will find a
6750 '\0', correctly deciding that this is not the end of a line.
6751 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6752 a convenient '\0' there. For all we know, the string could be preceded
6753 by '\n' which would throw things off. */
6755 /* Perform the searching operation. */
6756 ret
= re_search (&private_preg
, string
, len
,
6757 /* start: */ 0, /* range: */ len
,
6758 want_reg_info
? ®s
: (struct re_registers
*) 0);
6760 /* Copy the register information to the POSIX structure. */
6767 for (r
= 0; r
< nmatch
; r
++)
6769 pmatch
[r
].rm_so
= regs
.start
[r
];
6770 pmatch
[r
].rm_eo
= regs
.end
[r
];
6774 /* If we needed the temporary register info, free the space now. */
6778 /* We want zero return to mean success, unlike `re_search'. */
6779 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6781 WEAK_ALIAS (__regexec
, regexec
)
6784 /* Returns a message corresponding to an error code, ERR_CODE, returned
6785 from either regcomp or regexec. We don't use PREG here.
6787 ERR_CODE was previously called ERRCODE, but that name causes an
6788 error with msvc8 compiler. */
6791 regerror (err_code
, preg
, errbuf
, errbuf_size
)
6793 const regex_t
*preg
;
6801 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6802 /* Only error codes returned by the rest of the code should be passed
6803 to this routine. If we are given anything else, or if other regex
6804 code generates an invalid error code, then the program has a bug.
6805 Dump core so we can fix it. */
6808 msg
= gettext (re_error_msgid
[err_code
]);
6810 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6812 if (errbuf_size
!= 0)
6814 if (msg_size
> errbuf_size
)
6816 strncpy (errbuf
, msg
, errbuf_size
- 1);
6817 errbuf
[errbuf_size
- 1] = 0;
6820 strcpy (errbuf
, msg
);
6825 WEAK_ALIAS (__regerror
, regerror
)
6828 /* Free dynamically allocated space used by PREG. */
6834 free (preg
->buffer
);
6835 preg
->buffer
= NULL
;
6837 preg
->allocated
= 0;
6840 free (preg
->fastmap
);
6841 preg
->fastmap
= NULL
;
6842 preg
->fastmap_accurate
= 0;
6844 free (preg
->translate
);
6845 preg
->translate
= NULL
;
6847 WEAK_ALIAS (__regfree
, regfree
)
6849 #endif /* not emacs */
6851 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6852 (do not change this comment) */