(tramp-drop-volume-letter): Move definition before use.
[emacs.git] / src / floatfns.c
blob30336a6bc9bed2221f7a7e8225ecafb1a7488cc0
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
23 /* ANSI C requires only these float functions:
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
28 Define HAVE_CBRT if you have cbrt.
29 Define HAVE_RINT if you have a working rint.
30 If you don't define these, then the appropriate routines will be simulated.
32 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
33 (This should happen automatically.)
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
36 This has no effect if HAVE_MATHERR is defined.
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
39 (What systems actually do this? Please let us know.)
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
42 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
43 range checking will happen before calling the float routines. This has
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
45 a domain error occurs.)
48 #include <config.h>
49 #include <signal.h>
50 #include "lisp.h"
51 #include "syssignal.h"
53 #if STDC_HEADERS
54 #include <float.h>
55 #endif
57 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58 #ifndef IEEE_FLOATING_POINT
59 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61 #define IEEE_FLOATING_POINT 1
62 #else
63 #define IEEE_FLOATING_POINT 0
64 #endif
65 #endif
67 /* Work around a problem that happens because math.h on hpux 7
68 defines two static variables--which, in Emacs, are not really static,
69 because `static' is defined as nothing. The problem is that they are
70 defined both here and in lread.c.
71 These macros prevent the name conflict. */
72 #if defined (HPUX) && !defined (HPUX8)
73 #define _MAXLDBL floatfns_maxldbl
74 #define _NMAXLDBL floatfns_nmaxldbl
75 #endif
77 #include <math.h>
79 /* This declaration is omitted on some systems, like Ultrix. */
80 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
81 extern double logb ();
82 #endif /* not HPUX and HAVE_LOGB and no logb macro */
84 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
85 /* If those are defined, then this is probably a `matherr' machine. */
86 # ifndef HAVE_MATHERR
87 # define HAVE_MATHERR
88 # endif
89 #endif
91 #ifdef NO_MATHERR
92 #undef HAVE_MATHERR
93 #endif
95 #ifdef HAVE_MATHERR
96 # ifdef FLOAT_CHECK_ERRNO
97 # undef FLOAT_CHECK_ERRNO
98 # endif
99 # ifdef FLOAT_CHECK_DOMAIN
100 # undef FLOAT_CHECK_DOMAIN
101 # endif
102 #endif
104 #ifndef NO_FLOAT_CHECK_ERRNO
105 #define FLOAT_CHECK_ERRNO
106 #endif
108 #ifdef FLOAT_CHECK_ERRNO
109 # include <errno.h>
111 #ifndef USE_CRT_DLL
112 extern int errno;
113 #endif
114 #endif
116 /* Avoid traps on VMS from sinh and cosh.
117 All the other functions set errno instead. */
119 #ifdef VMS
120 #undef cosh
121 #undef sinh
122 #define cosh(x) ((exp(x)+exp(-x))*0.5)
123 #define sinh(x) ((exp(x)-exp(-x))*0.5)
124 #endif /* VMS */
126 #ifdef FLOAT_CATCH_SIGILL
127 static SIGTYPE float_error ();
128 #endif
130 /* Nonzero while executing in floating point.
131 This tells float_error what to do. */
133 static int in_float;
135 /* If an argument is out of range for a mathematical function,
136 here is the actual argument value to use in the error message.
137 These variables are used only across the floating point library call
138 so there is no need to staticpro them. */
140 static Lisp_Object float_error_arg, float_error_arg2;
142 static char *float_error_fn_name;
144 /* Evaluate the floating point expression D, recording NUM
145 as the original argument for error messages.
146 D is normally an assignment expression.
147 Handle errors which may result in signals or may set errno.
149 Note that float_error may be declared to return void, so you can't
150 just cast the zero after the colon to (SIGTYPE) to make the types
151 check properly. */
153 #ifdef FLOAT_CHECK_ERRNO
154 #define IN_FLOAT(d, name, num) \
155 do { \
156 float_error_arg = num; \
157 float_error_fn_name = name; \
158 in_float = 1; errno = 0; (d); in_float = 0; \
159 switch (errno) { \
160 case 0: break; \
161 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
162 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
163 default: arith_error (float_error_fn_name, float_error_arg); \
165 } while (0)
166 #define IN_FLOAT2(d, name, num, num2) \
167 do { \
168 float_error_arg = num; \
169 float_error_arg2 = num2; \
170 float_error_fn_name = name; \
171 in_float = 1; errno = 0; (d); in_float = 0; \
172 switch (errno) { \
173 case 0: break; \
174 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
175 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
176 default: arith_error (float_error_fn_name, float_error_arg); \
178 } while (0)
179 #else
180 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
181 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
182 #endif
184 /* Convert float to Lisp_Int if it fits, else signal a range error
185 using the given arguments. */
186 #define FLOAT_TO_INT(x, i, name, num) \
187 do \
189 if (FIXNUM_OVERFLOW_P (x)) \
190 range_error (name, num); \
191 XSETINT (i, (EMACS_INT)(x)); \
193 while (0)
194 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
195 do \
197 if (FIXNUM_OVERFLOW_P (x)) \
198 range_error2 (name, num1, num2); \
199 XSETINT (i, (EMACS_INT)(x)); \
201 while (0)
203 #define arith_error(op,arg) \
204 xsignal2 (Qarith_error, build_string ((op)), (arg))
205 #define range_error(op,arg) \
206 xsignal2 (Qrange_error, build_string ((op)), (arg))
207 #define range_error2(op,a1,a2) \
208 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
209 #define domain_error(op,arg) \
210 xsignal2 (Qdomain_error, build_string ((op)), (arg))
211 #define domain_error2(op,a1,a2) \
212 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
214 /* Extract a Lisp number as a `double', or signal an error. */
216 double
217 extract_float (num)
218 Lisp_Object num;
220 CHECK_NUMBER_OR_FLOAT (num);
222 if (FLOATP (num))
223 return XFLOAT_DATA (num);
224 return (double) XINT (num);
227 /* Trig functions. */
229 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
230 doc: /* Return the inverse cosine of ARG. */)
231 (arg)
232 register Lisp_Object arg;
234 double d = extract_float (arg);
235 #ifdef FLOAT_CHECK_DOMAIN
236 if (d > 1.0 || d < -1.0)
237 domain_error ("acos", arg);
238 #endif
239 IN_FLOAT (d = acos (d), "acos", arg);
240 return make_float (d);
243 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
244 doc: /* Return the inverse sine of ARG. */)
245 (arg)
246 register Lisp_Object arg;
248 double d = extract_float (arg);
249 #ifdef FLOAT_CHECK_DOMAIN
250 if (d > 1.0 || d < -1.0)
251 domain_error ("asin", arg);
252 #endif
253 IN_FLOAT (d = asin (d), "asin", arg);
254 return make_float (d);
257 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
258 doc: /* Return the inverse tangent of the arguments.
259 If only one argument Y is given, return the inverse tangent of Y.
260 If two arguments Y and X are given, return the inverse tangent of Y
261 divided by X, i.e. the angle in radians between the vector (X, Y)
262 and the x-axis. */)
263 (y, x)
264 register Lisp_Object y, x;
266 double d = extract_float (y);
268 if (NILP (x))
269 IN_FLOAT (d = atan (d), "atan", y);
270 else
272 double d2 = extract_float (x);
274 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
276 return make_float (d);
279 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
280 doc: /* Return the cosine of ARG. */)
281 (arg)
282 register Lisp_Object arg;
284 double d = extract_float (arg);
285 IN_FLOAT (d = cos (d), "cos", arg);
286 return make_float (d);
289 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
290 doc: /* Return the sine of ARG. */)
291 (arg)
292 register Lisp_Object arg;
294 double d = extract_float (arg);
295 IN_FLOAT (d = sin (d), "sin", arg);
296 return make_float (d);
299 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
300 doc: /* Return the tangent of ARG. */)
301 (arg)
302 register Lisp_Object arg;
304 double d = extract_float (arg);
305 double c = cos (d);
306 #ifdef FLOAT_CHECK_DOMAIN
307 if (c == 0.0)
308 domain_error ("tan", arg);
309 #endif
310 IN_FLOAT (d = sin (d) / c, "tan", arg);
311 return make_float (d);
314 #if 0 /* Leave these out unless we find there's a reason for them. */
316 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
317 doc: /* Return the bessel function j0 of ARG. */)
318 (arg)
319 register Lisp_Object arg;
321 double d = extract_float (arg);
322 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
323 return make_float (d);
326 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
327 doc: /* Return the bessel function j1 of ARG. */)
328 (arg)
329 register Lisp_Object arg;
331 double d = extract_float (arg);
332 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
333 return make_float (d);
336 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
337 doc: /* Return the order N bessel function output jn of ARG.
338 The first arg (the order) is truncated to an integer. */)
339 (n, arg)
340 register Lisp_Object n, arg;
342 int i1 = extract_float (n);
343 double f2 = extract_float (arg);
345 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
346 return make_float (f2);
349 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
350 doc: /* Return the bessel function y0 of ARG. */)
351 (arg)
352 register Lisp_Object arg;
354 double d = extract_float (arg);
355 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
356 return make_float (d);
359 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
360 doc: /* Return the bessel function y1 of ARG. */)
361 (arg)
362 register Lisp_Object arg;
364 double d = extract_float (arg);
365 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
366 return make_float (d);
369 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
370 doc: /* Return the order N bessel function output yn of ARG.
371 The first arg (the order) is truncated to an integer. */)
372 (n, arg)
373 register Lisp_Object n, arg;
375 int i1 = extract_float (n);
376 double f2 = extract_float (arg);
378 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
379 return make_float (f2);
382 #endif
384 #if 0 /* Leave these out unless we see they are worth having. */
386 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
387 doc: /* Return the mathematical error function of ARG. */)
388 (arg)
389 register Lisp_Object arg;
391 double d = extract_float (arg);
392 IN_FLOAT (d = erf (d), "erf", arg);
393 return make_float (d);
396 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
397 doc: /* Return the complementary error function of ARG. */)
398 (arg)
399 register Lisp_Object arg;
401 double d = extract_float (arg);
402 IN_FLOAT (d = erfc (d), "erfc", arg);
403 return make_float (d);
406 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
407 doc: /* Return the log gamma of ARG. */)
408 (arg)
409 register Lisp_Object arg;
411 double d = extract_float (arg);
412 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
413 return make_float (d);
416 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
417 doc: /* Return the cube root of ARG. */)
418 (arg)
419 register Lisp_Object arg;
421 double d = extract_float (arg);
422 #ifdef HAVE_CBRT
423 IN_FLOAT (d = cbrt (d), "cube-root", arg);
424 #else
425 if (d >= 0.0)
426 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
427 else
428 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
429 #endif
430 return make_float (d);
433 #endif
435 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
436 doc: /* Return the exponential base e of ARG. */)
437 (arg)
438 register Lisp_Object arg;
440 double d = extract_float (arg);
441 #ifdef FLOAT_CHECK_DOMAIN
442 if (d > 709.7827) /* Assume IEEE doubles here */
443 range_error ("exp", arg);
444 else if (d < -709.0)
445 return make_float (0.0);
446 else
447 #endif
448 IN_FLOAT (d = exp (d), "exp", arg);
449 return make_float (d);
452 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
453 doc: /* Return the exponential ARG1 ** ARG2. */)
454 (arg1, arg2)
455 register Lisp_Object arg1, arg2;
457 double f1, f2, f3;
459 CHECK_NUMBER_OR_FLOAT (arg1);
460 CHECK_NUMBER_OR_FLOAT (arg2);
461 if (INTEGERP (arg1) /* common lisp spec */
462 && INTEGERP (arg2) /* don't promote, if both are ints, and */
463 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
464 { /* this can be improved by pre-calculating */
465 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
466 Lisp_Object val;
468 x = XINT (arg1);
469 y = XINT (arg2);
470 acc = 1;
472 if (y < 0)
474 if (x == 1)
475 acc = 1;
476 else if (x == -1)
477 acc = (y & 1) ? -1 : 1;
478 else
479 acc = 0;
481 else
483 while (y > 0)
485 if (y & 1)
486 acc *= x;
487 x *= x;
488 y = (unsigned)y >> 1;
491 XSETINT (val, acc);
492 return val;
494 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
495 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
496 /* Really should check for overflow, too */
497 if (f1 == 0.0 && f2 == 0.0)
498 f1 = 1.0;
499 #ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
501 domain_error2 ("expt", arg1, arg2);
502 #endif
503 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
504 /* Check for overflow in the result. */
505 if (f1 != 0.0 && f3 == 0.0)
506 range_error ("expt", arg1);
507 return make_float (f3);
510 DEFUN ("log", Flog, Slog, 1, 2, 0,
511 doc: /* Return the natural logarithm of ARG.
512 If the optional argument BASE is given, return log ARG using that base. */)
513 (arg, base)
514 register Lisp_Object arg, base;
516 double d = extract_float (arg);
518 #ifdef FLOAT_CHECK_DOMAIN
519 if (d <= 0.0)
520 domain_error2 ("log", arg, base);
521 #endif
522 if (NILP (base))
523 IN_FLOAT (d = log (d), "log", arg);
524 else
526 double b = extract_float (base);
528 #ifdef FLOAT_CHECK_DOMAIN
529 if (b <= 0.0 || b == 1.0)
530 domain_error2 ("log", arg, base);
531 #endif
532 if (b == 10.0)
533 IN_FLOAT2 (d = log10 (d), "log", arg, base);
534 else
535 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
537 return make_float (d);
540 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
541 doc: /* Return the logarithm base 10 of ARG. */)
542 (arg)
543 register Lisp_Object arg;
545 double d = extract_float (arg);
546 #ifdef FLOAT_CHECK_DOMAIN
547 if (d <= 0.0)
548 domain_error ("log10", arg);
549 #endif
550 IN_FLOAT (d = log10 (d), "log10", arg);
551 return make_float (d);
554 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
555 doc: /* Return the square root of ARG. */)
556 (arg)
557 register Lisp_Object arg;
559 double d = extract_float (arg);
560 #ifdef FLOAT_CHECK_DOMAIN
561 if (d < 0.0)
562 domain_error ("sqrt", arg);
563 #endif
564 IN_FLOAT (d = sqrt (d), "sqrt", arg);
565 return make_float (d);
568 #if 0 /* Not clearly worth adding. */
570 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
571 doc: /* Return the inverse hyperbolic cosine of ARG. */)
572 (arg)
573 register Lisp_Object arg;
575 double d = extract_float (arg);
576 #ifdef FLOAT_CHECK_DOMAIN
577 if (d < 1.0)
578 domain_error ("acosh", arg);
579 #endif
580 #ifdef HAVE_INVERSE_HYPERBOLIC
581 IN_FLOAT (d = acosh (d), "acosh", arg);
582 #else
583 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
584 #endif
585 return make_float (d);
588 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
589 doc: /* Return the inverse hyperbolic sine of ARG. */)
590 (arg)
591 register Lisp_Object arg;
593 double d = extract_float (arg);
594 #ifdef HAVE_INVERSE_HYPERBOLIC
595 IN_FLOAT (d = asinh (d), "asinh", arg);
596 #else
597 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
598 #endif
599 return make_float (d);
602 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
603 doc: /* Return the inverse hyperbolic tangent of ARG. */)
604 (arg)
605 register Lisp_Object arg;
607 double d = extract_float (arg);
608 #ifdef FLOAT_CHECK_DOMAIN
609 if (d >= 1.0 || d <= -1.0)
610 domain_error ("atanh", arg);
611 #endif
612 #ifdef HAVE_INVERSE_HYPERBOLIC
613 IN_FLOAT (d = atanh (d), "atanh", arg);
614 #else
615 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
616 #endif
617 return make_float (d);
620 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
621 doc: /* Return the hyperbolic cosine of ARG. */)
622 (arg)
623 register Lisp_Object arg;
625 double d = extract_float (arg);
626 #ifdef FLOAT_CHECK_DOMAIN
627 if (d > 710.0 || d < -710.0)
628 range_error ("cosh", arg);
629 #endif
630 IN_FLOAT (d = cosh (d), "cosh", arg);
631 return make_float (d);
634 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
635 doc: /* Return the hyperbolic sine of ARG. */)
636 (arg)
637 register Lisp_Object arg;
639 double d = extract_float (arg);
640 #ifdef FLOAT_CHECK_DOMAIN
641 if (d > 710.0 || d < -710.0)
642 range_error ("sinh", arg);
643 #endif
644 IN_FLOAT (d = sinh (d), "sinh", arg);
645 return make_float (d);
648 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
649 doc: /* Return the hyperbolic tangent of ARG. */)
650 (arg)
651 register Lisp_Object arg;
653 double d = extract_float (arg);
654 IN_FLOAT (d = tanh (d), "tanh", arg);
655 return make_float (d);
657 #endif
659 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
660 doc: /* Return the absolute value of ARG. */)
661 (arg)
662 register Lisp_Object arg;
664 CHECK_NUMBER_OR_FLOAT (arg);
666 if (FLOATP (arg))
667 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
668 else if (XINT (arg) < 0)
669 XSETINT (arg, - XINT (arg));
671 return arg;
674 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
675 doc: /* Return the floating point number equal to ARG. */)
676 (arg)
677 register Lisp_Object arg;
679 CHECK_NUMBER_OR_FLOAT (arg);
681 if (INTEGERP (arg))
682 return make_float ((double) XINT (arg));
683 else /* give 'em the same float back */
684 return arg;
687 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
688 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
689 This is the same as the exponent of a float. */)
690 (arg)
691 Lisp_Object arg;
693 Lisp_Object val;
694 EMACS_INT value;
695 double f = extract_float (arg);
697 if (f == 0.0)
698 value = MOST_NEGATIVE_FIXNUM;
699 else
701 #ifdef HAVE_LOGB
702 IN_FLOAT (value = logb (f), "logb", arg);
703 #else
704 #ifdef HAVE_FREXP
705 int ivalue;
706 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
707 value = ivalue - 1;
708 #else
709 int i;
710 double d;
711 if (f < 0.0)
712 f = -f;
713 value = -1;
714 while (f < 0.5)
716 for (i = 1, d = 0.5; d * d >= f; i += i)
717 d *= d;
718 f /= d;
719 value -= i;
721 while (f >= 1.0)
723 for (i = 1, d = 2.0; d * d <= f; i += i)
724 d *= d;
725 f /= d;
726 value += i;
728 #endif
729 #endif
731 XSETINT (val, value);
732 return val;
736 /* the rounding functions */
738 static Lisp_Object
739 rounding_driver (arg, divisor, double_round, int_round2, name)
740 register Lisp_Object arg, divisor;
741 double (*double_round) ();
742 EMACS_INT (*int_round2) ();
743 char *name;
745 CHECK_NUMBER_OR_FLOAT (arg);
747 if (! NILP (divisor))
749 EMACS_INT i1, i2;
751 CHECK_NUMBER_OR_FLOAT (divisor);
753 if (FLOATP (arg) || FLOATP (divisor))
755 double f1, f2;
757 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
758 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
759 if (! IEEE_FLOATING_POINT && f2 == 0)
760 xsignal0 (Qarith_error);
762 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
763 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
764 return arg;
767 i1 = XINT (arg);
768 i2 = XINT (divisor);
770 if (i2 == 0)
771 xsignal0 (Qarith_error);
773 XSETINT (arg, (*int_round2) (i1, i2));
774 return arg;
777 if (FLOATP (arg))
779 double d;
781 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
782 FLOAT_TO_INT (d, arg, name, arg);
785 return arg;
788 /* With C's /, the result is implementation-defined if either operand
789 is negative, so take care with negative operands in the following
790 integer functions. */
792 static EMACS_INT
793 ceiling2 (i1, i2)
794 EMACS_INT i1, i2;
796 return (i2 < 0
797 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
798 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
801 static EMACS_INT
802 floor2 (i1, i2)
803 EMACS_INT i1, i2;
805 return (i2 < 0
806 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
807 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
810 static EMACS_INT
811 truncate2 (i1, i2)
812 EMACS_INT i1, i2;
814 return (i2 < 0
815 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
816 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
819 static EMACS_INT
820 round2 (i1, i2)
821 EMACS_INT i1, i2;
823 /* The C language's division operator gives us one remainder R, but
824 we want the remainder R1 on the other side of 0 if R1 is closer
825 to 0 than R is; because we want to round to even, we also want R1
826 if R and R1 are the same distance from 0 and if C's quotient is
827 odd. */
828 EMACS_INT q = i1 / i2;
829 EMACS_INT r = i1 % i2;
830 EMACS_INT abs_r = r < 0 ? -r : r;
831 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
832 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
835 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
836 if `rint' exists but does not work right. */
837 #ifdef HAVE_RINT
838 #define emacs_rint rint
839 #else
840 static double
841 emacs_rint (d)
842 double d;
844 return floor (d + 0.5);
846 #endif
848 static double
849 double_identity (d)
850 double d;
852 return d;
855 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
856 doc: /* Return the smallest integer no less than ARG.
857 This rounds the value towards +inf.
858 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
859 (arg, divisor)
860 Lisp_Object arg, divisor;
862 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
865 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
866 doc: /* Return the largest integer no greater than ARG.
867 This rounds the value towards -inf.
868 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
869 (arg, divisor)
870 Lisp_Object arg, divisor;
872 return rounding_driver (arg, divisor, floor, floor2, "floor");
875 DEFUN ("round", Fround, Sround, 1, 2, 0,
876 doc: /* Return the nearest integer to ARG.
877 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
879 Rounding a value equidistant between two integers may choose the
880 integer closer to zero, or it may prefer an even integer, depending on
881 your machine. For example, \(round 2.5\) can return 3 on some
882 systems, but 2 on others. */)
883 (arg, divisor)
884 Lisp_Object arg, divisor;
886 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
889 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
890 doc: /* Truncate a floating point number to an int.
891 Rounds ARG toward zero.
892 With optional DIVISOR, truncate ARG/DIVISOR. */)
893 (arg, divisor)
894 Lisp_Object arg, divisor;
896 return rounding_driver (arg, divisor, double_identity, truncate2,
897 "truncate");
901 Lisp_Object
902 fmod_float (x, y)
903 register Lisp_Object x, y;
905 double f1, f2;
907 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
908 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
910 if (! IEEE_FLOATING_POINT && f2 == 0)
911 xsignal0 (Qarith_error);
913 /* If the "remainder" comes out with the wrong sign, fix it. */
914 IN_FLOAT2 ((f1 = fmod (f1, f2),
915 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
916 "mod", x, y);
917 return make_float (f1);
920 /* It's not clear these are worth adding. */
922 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
923 doc: /* Return the smallest integer no less than ARG, as a float.
924 \(Round toward +inf.\) */)
925 (arg)
926 register Lisp_Object arg;
928 double d = extract_float (arg);
929 IN_FLOAT (d = ceil (d), "fceiling", arg);
930 return make_float (d);
933 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
934 doc: /* Return the largest integer no greater than ARG, as a float.
935 \(Round towards -inf.\) */)
936 (arg)
937 register Lisp_Object arg;
939 double d = extract_float (arg);
940 IN_FLOAT (d = floor (d), "ffloor", arg);
941 return make_float (d);
944 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
945 doc: /* Return the nearest integer to ARG, as a float. */)
946 (arg)
947 register Lisp_Object arg;
949 double d = extract_float (arg);
950 IN_FLOAT (d = emacs_rint (d), "fround", arg);
951 return make_float (d);
954 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
955 doc: /* Truncate a floating point number to an integral float value.
956 Rounds the value toward zero. */)
957 (arg)
958 register Lisp_Object arg;
960 double d = extract_float (arg);
961 if (d >= 0.0)
962 IN_FLOAT (d = floor (d), "ftruncate", arg);
963 else
964 IN_FLOAT (d = ceil (d), "ftruncate", arg);
965 return make_float (d);
968 #ifdef FLOAT_CATCH_SIGILL
969 static SIGTYPE
970 float_error (signo)
971 int signo;
973 if (! in_float)
974 fatal_error_signal (signo);
976 #ifdef BSD_SYSTEM
977 #ifdef BSD4_1
978 sigrelse (SIGILL);
979 #else /* not BSD4_1 */
980 sigsetmask (SIGEMPTYMASK);
981 #endif /* not BSD4_1 */
982 #else
983 /* Must reestablish handler each time it is called. */
984 signal (SIGILL, float_error);
985 #endif /* BSD_SYSTEM */
987 SIGNAL_THREAD_CHECK (signo);
988 in_float = 0;
990 xsignal1 (Qarith_error, float_error_arg);
993 /* Another idea was to replace the library function `infnan'
994 where SIGILL is signaled. */
996 #endif /* FLOAT_CATCH_SIGILL */
998 #ifdef HAVE_MATHERR
1000 matherr (x)
1001 struct exception *x;
1003 Lisp_Object args;
1004 if (! in_float)
1005 /* Not called from emacs-lisp float routines; do the default thing. */
1006 return 0;
1007 if (!strcmp (x->name, "pow"))
1008 x->name = "expt";
1010 args
1011 = Fcons (build_string (x->name),
1012 Fcons (make_float (x->arg1),
1013 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
1014 ? Fcons (make_float (x->arg2), Qnil)
1015 : Qnil)));
1016 switch (x->type)
1018 case DOMAIN: xsignal (Qdomain_error, args); break;
1019 case SING: xsignal (Qsingularity_error, args); break;
1020 case OVERFLOW: xsignal (Qoverflow_error, args); break;
1021 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1022 default: xsignal (Qarith_error, args); break;
1024 return (1); /* don't set errno or print a message */
1026 #endif /* HAVE_MATHERR */
1028 void
1029 init_floatfns ()
1031 #ifdef FLOAT_CATCH_SIGILL
1032 signal (SIGILL, float_error);
1033 #endif
1034 in_float = 0;
1037 void
1038 syms_of_floatfns ()
1040 defsubr (&Sacos);
1041 defsubr (&Sasin);
1042 defsubr (&Satan);
1043 defsubr (&Scos);
1044 defsubr (&Ssin);
1045 defsubr (&Stan);
1046 #if 0
1047 defsubr (&Sacosh);
1048 defsubr (&Sasinh);
1049 defsubr (&Satanh);
1050 defsubr (&Scosh);
1051 defsubr (&Ssinh);
1052 defsubr (&Stanh);
1053 defsubr (&Sbessel_y0);
1054 defsubr (&Sbessel_y1);
1055 defsubr (&Sbessel_yn);
1056 defsubr (&Sbessel_j0);
1057 defsubr (&Sbessel_j1);
1058 defsubr (&Sbessel_jn);
1059 defsubr (&Serf);
1060 defsubr (&Serfc);
1061 defsubr (&Slog_gamma);
1062 defsubr (&Scube_root);
1063 #endif
1064 defsubr (&Sfceiling);
1065 defsubr (&Sffloor);
1066 defsubr (&Sfround);
1067 defsubr (&Sftruncate);
1068 defsubr (&Sexp);
1069 defsubr (&Sexpt);
1070 defsubr (&Slog);
1071 defsubr (&Slog10);
1072 defsubr (&Ssqrt);
1074 defsubr (&Sabs);
1075 defsubr (&Sfloat);
1076 defsubr (&Slogb);
1077 defsubr (&Sceiling);
1078 defsubr (&Sfloor);
1079 defsubr (&Sround);
1080 defsubr (&Struncate);
1083 /* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1084 (do not change this comment) */