Check for pty.h. Improve the libungif test.
[emacs.git] / src / intervals.c
blob09a9bc512b1b8280326e52421df2cee3979bd130
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* NOTES:
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
30 Need to call *_left_hook when buffer is killed.
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 Lisp_Object merge_properties_sticky ();
56 static INTERVAL reproduce_tree P_ ((INTERVAL, INTERVAL));
57 static INTERVAL reproduce_tree_obj P_ ((INTERVAL, Lisp_Object));
59 /* Utility functions for intervals. */
62 /* Create the root interval of some object, a buffer or string. */
64 INTERVAL
65 create_root_interval (parent)
66 Lisp_Object parent;
68 INTERVAL new;
70 CHECK_IMPURE (parent);
72 new = make_interval ();
74 if (BUFFERP (parent))
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 BUF_INTERVALS (XBUFFER (parent)) = new;
79 new->position = 1;
81 else if (STRINGP (parent))
83 new->total_length = XSTRING (parent)->size;
84 XSTRING (parent)->intervals = new;
85 new->position = 0;
88 SET_INTERVAL_OBJECT (new, parent);
90 return new;
93 /* Make the interval TARGET have exactly the properties of SOURCE */
95 void
96 copy_properties (source, target)
97 register INTERVAL source, target;
99 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
100 return;
102 COPY_INTERVAL_CACHE (source, target);
103 target->plist = Fcopy_sequence (source->plist);
106 /* Merge the properties of interval SOURCE into the properties
107 of interval TARGET. That is to say, each property in SOURCE
108 is added to TARGET if TARGET has no such property as yet. */
110 static void
111 merge_properties (source, target)
112 register INTERVAL source, target;
114 register Lisp_Object o, sym, val;
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
119 MERGE_INTERVAL_CACHE (source, target);
121 o = source->plist;
122 while (! EQ (o, Qnil))
124 sym = Fcar (o);
125 val = Fmemq (sym, target->plist);
127 if (NILP (val))
129 o = Fcdr (o);
130 val = Fcar (o);
131 target->plist = Fcons (sym, Fcons (val, target->plist));
132 o = Fcdr (o);
134 else
135 o = Fcdr (Fcdr (o));
139 /* Return 1 if the two intervals have the same properties,
140 0 otherwise. */
143 intervals_equal (i0, i1)
144 INTERVAL i0, i1;
146 register Lisp_Object i0_cdr, i0_sym, i1_val;
147 register int i1_len;
149 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
150 return 1;
152 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
153 return 0;
155 i1_len = XFASTINT (Flength (i1->plist));
156 if (i1_len & 0x1) /* Paranoia -- plists are always even */
157 abort ();
158 i1_len /= 2;
159 i0_cdr = i0->plist;
160 while (!NILP (i0_cdr))
162 /* Lengths of the two plists were unequal. */
163 if (i1_len == 0)
164 return 0;
166 i0_sym = Fcar (i0_cdr);
167 i1_val = Fmemq (i0_sym, i1->plist);
169 /* i0 has something i1 doesn't. */
170 if (EQ (i1_val, Qnil))
171 return 0;
173 /* i0 and i1 both have sym, but it has different values in each. */
174 i0_cdr = Fcdr (i0_cdr);
175 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
176 return 0;
178 i0_cdr = Fcdr (i0_cdr);
179 i1_len--;
182 /* Lengths of the two plists were unequal. */
183 if (i1_len > 0)
184 return 0;
186 return 1;
190 /* Traverse an interval tree TREE, performing FUNCTION on each node.
191 No guarantee is made about the order of traversal.
192 Pass FUNCTION two args: an interval, and ARG. */
194 void
195 traverse_intervals_noorder (tree, function, arg)
196 INTERVAL tree;
197 void (* function) P_ ((INTERVAL, Lisp_Object));
198 Lisp_Object arg;
200 /* Minimize stack usage. */
201 while (!NULL_INTERVAL_P (tree))
203 (*function) (tree, arg);
204 if (NULL_INTERVAL_P (tree->right))
205 tree = tree->left;
206 else
208 traverse_intervals_noorder (tree->left, function, arg);
209 tree = tree->right;
214 /* Traverse an interval tree TREE, performing FUNCTION on each node.
215 Pass FUNCTION two args: an interval, and ARG. */
217 void
218 traverse_intervals (tree, position, function, arg)
219 INTERVAL tree;
220 int position;
221 void (* function) P_ ((INTERVAL, Lisp_Object));
222 Lisp_Object arg;
224 while (!NULL_INTERVAL_P (tree))
226 traverse_intervals (tree->left, position, function, arg);
227 position += LEFT_TOTAL_LENGTH (tree);
228 tree->position = position;
229 (*function) (tree, arg);
230 position += LENGTH (tree); tree = tree->right;
234 #if 0
236 static int icount;
237 static int idepth;
238 static int zero_length;
240 /* These functions are temporary, for debugging purposes only. */
242 INTERVAL search_interval, found_interval;
244 void
245 check_for_interval (i)
246 register INTERVAL i;
248 if (i == search_interval)
250 found_interval = i;
251 icount++;
255 INTERVAL
256 search_for_interval (i, tree)
257 register INTERVAL i, tree;
259 icount = 0;
260 search_interval = i;
261 found_interval = NULL_INTERVAL;
262 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
263 return found_interval;
266 static void
267 inc_interval_count (i)
268 INTERVAL i;
270 icount++;
271 if (LENGTH (i) == 0)
272 zero_length++;
273 if (depth > idepth)
274 idepth = depth;
278 count_intervals (i)
279 register INTERVAL i;
281 icount = 0;
282 idepth = 0;
283 zero_length = 0;
284 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
286 return icount;
289 static INTERVAL
290 root_interval (interval)
291 INTERVAL interval;
293 register INTERVAL i = interval;
295 while (! ROOT_INTERVAL_P (i))
296 i = INTERVAL_PARENT (i);
298 return i;
300 #endif
302 /* Assuming that a left child exists, perform the following operation:
305 / \ / \
306 B => A
307 / \ / \
311 static INLINE INTERVAL
312 rotate_right (interval)
313 INTERVAL interval;
315 INTERVAL i;
316 INTERVAL B = interval->left;
317 int old_total = interval->total_length;
319 /* Deal with any Parent of A; make it point to B. */
320 if (! ROOT_INTERVAL_P (interval))
322 if (AM_LEFT_CHILD (interval))
323 INTERVAL_PARENT (interval)->left = B;
324 else
325 INTERVAL_PARENT (interval)->right = B;
327 COPY_INTERVAL_PARENT (B, interval);
329 /* Make B the parent of A */
330 i = B->right;
331 B->right = interval;
332 SET_INTERVAL_PARENT (interval, B);
334 /* Make A point to c */
335 interval->left = i;
336 if (! NULL_INTERVAL_P (i))
337 SET_INTERVAL_PARENT (i, interval);
339 /* A's total length is decreased by the length of B and its left child. */
340 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
342 /* B must have the same total length of A. */
343 B->total_length = old_total;
345 return B;
348 /* Assuming that a right child exists, perform the following operation:
350 A B
351 / \ / \
352 B => A
353 / \ / \
357 static INLINE INTERVAL
358 rotate_left (interval)
359 INTERVAL interval;
361 INTERVAL i;
362 INTERVAL B = interval->right;
363 int old_total = interval->total_length;
365 /* Deal with any parent of A; make it point to B. */
366 if (! ROOT_INTERVAL_P (interval))
368 if (AM_LEFT_CHILD (interval))
369 INTERVAL_PARENT (interval)->left = B;
370 else
371 INTERVAL_PARENT (interval)->right = B;
373 COPY_INTERVAL_PARENT (B, interval);
375 /* Make B the parent of A */
376 i = B->left;
377 B->left = interval;
378 SET_INTERVAL_PARENT (interval, B);
380 /* Make A point to c */
381 interval->right = i;
382 if (! NULL_INTERVAL_P (i))
383 SET_INTERVAL_PARENT (i, interval);
385 /* A's total length is decreased by the length of B and its right child. */
386 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
388 /* B must have the same total length of A. */
389 B->total_length = old_total;
391 return B;
394 /* Balance an interval tree with the assumption that the subtrees
395 themselves are already balanced. */
397 static INTERVAL
398 balance_an_interval (i)
399 INTERVAL i;
401 register int old_diff, new_diff;
403 while (1)
405 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
406 if (old_diff > 0)
408 new_diff = i->total_length - i->left->total_length
409 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
410 if (abs (new_diff) >= old_diff)
411 break;
412 i = rotate_right (i);
413 balance_an_interval (i->right);
415 else if (old_diff < 0)
417 new_diff = i->total_length - i->right->total_length
418 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
419 if (abs (new_diff) >= -old_diff)
420 break;
421 i = rotate_left (i);
422 balance_an_interval (i->left);
424 else
425 break;
427 return i;
430 /* Balance INTERVAL, potentially stuffing it back into its parent
431 Lisp Object. */
433 static INLINE INTERVAL
434 balance_possible_root_interval (interval)
435 register INTERVAL interval;
437 Lisp_Object parent;
438 int have_parent = 0;
440 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
441 return interval;
443 if (INTERVAL_HAS_OBJECT (interval))
445 have_parent = 1;
446 GET_INTERVAL_OBJECT (parent, interval);
448 interval = balance_an_interval (interval);
450 if (have_parent)
452 if (BUFFERP (parent))
453 BUF_INTERVALS (XBUFFER (parent)) = interval;
454 else if (STRINGP (parent))
455 XSTRING (parent)->intervals = interval;
458 return interval;
461 /* Balance the interval tree TREE. Balancing is by weight
462 (the amount of text). */
464 static INTERVAL
465 balance_intervals_internal (tree)
466 register INTERVAL tree;
468 /* Balance within each side. */
469 if (tree->left)
470 balance_intervals_internal (tree->left);
471 if (tree->right)
472 balance_intervals_internal (tree->right);
473 return balance_an_interval (tree);
476 /* Advertised interface to balance intervals. */
478 INTERVAL
479 balance_intervals (tree)
480 INTERVAL tree;
482 if (tree == NULL_INTERVAL)
483 return NULL_INTERVAL;
485 return balance_intervals_internal (tree);
488 /* Split INTERVAL into two pieces, starting the second piece at
489 character position OFFSET (counting from 0), relative to INTERVAL.
490 INTERVAL becomes the left-hand piece, and the right-hand piece
491 (second, lexicographically) is returned.
493 The size and position fields of the two intervals are set based upon
494 those of the original interval. The property list of the new interval
495 is reset, thus it is up to the caller to do the right thing with the
496 result.
498 Note that this does not change the position of INTERVAL; if it is a root,
499 it is still a root after this operation. */
501 INTERVAL
502 split_interval_right (interval, offset)
503 INTERVAL interval;
504 int offset;
506 INTERVAL new = make_interval ();
507 int position = interval->position;
508 int new_length = LENGTH (interval) - offset;
510 new->position = position + offset;
511 SET_INTERVAL_PARENT (new, interval);
513 if (NULL_RIGHT_CHILD (interval))
515 interval->right = new;
516 new->total_length = new_length;
518 else
520 /* Insert the new node between INTERVAL and its right child. */
521 new->right = interval->right;
522 SET_INTERVAL_PARENT (interval->right, new);
523 interval->right = new;
524 new->total_length = new_length + new->right->total_length;
525 balance_an_interval (new);
528 balance_possible_root_interval (interval);
530 return new;
533 /* Split INTERVAL into two pieces, starting the second piece at
534 character position OFFSET (counting from 0), relative to INTERVAL.
535 INTERVAL becomes the right-hand piece, and the left-hand piece
536 (first, lexicographically) is returned.
538 The size and position fields of the two intervals are set based upon
539 those of the original interval. The property list of the new interval
540 is reset, thus it is up to the caller to do the right thing with the
541 result.
543 Note that this does not change the position of INTERVAL; if it is a root,
544 it is still a root after this operation. */
546 INTERVAL
547 split_interval_left (interval, offset)
548 INTERVAL interval;
549 int offset;
551 INTERVAL new = make_interval ();
552 int new_length = offset;
554 new->position = interval->position;
555 interval->position = interval->position + offset;
556 SET_INTERVAL_PARENT (new, interval);
558 if (NULL_LEFT_CHILD (interval))
560 interval->left = new;
561 new->total_length = new_length;
563 else
565 /* Insert the new node between INTERVAL and its left child. */
566 new->left = interval->left;
567 SET_INTERVAL_PARENT (new->left, new);
568 interval->left = new;
569 new->total_length = new_length + new->left->total_length;
570 balance_an_interval (new);
573 balance_possible_root_interval (interval);
575 return new;
578 /* Return the proper position for the first character
579 described by the interval tree SOURCE.
580 This is 1 if the parent is a buffer,
581 0 if the parent is a string or if there is no parent.
583 Don't use this function on an interval which is the child
584 of another interval! */
587 interval_start_pos (source)
588 INTERVAL source;
590 Lisp_Object parent;
592 if (NULL_INTERVAL_P (source))
593 return 0;
595 if (! INTERVAL_HAS_OBJECT (source))
596 return 0;
597 GET_INTERVAL_OBJECT (parent, source);
598 if (BUFFERP (parent))
599 return BUF_BEG (XBUFFER (parent));
600 return 0;
603 /* Find the interval containing text position POSITION in the text
604 represented by the interval tree TREE. POSITION is a buffer
605 position (starting from 1) or a string index (starting from 0).
606 If POSITION is at the end of the buffer or string,
607 return the interval containing the last character.
609 The `position' field, which is a cache of an interval's position,
610 is updated in the interval found. Other functions (e.g., next_interval)
611 will update this cache based on the result of find_interval. */
613 INTERVAL
614 find_interval (tree, position)
615 register INTERVAL tree;
616 register int position;
618 /* The distance from the left edge of the subtree at TREE
619 to POSITION. */
620 register int relative_position;
622 if (NULL_INTERVAL_P (tree))
623 return NULL_INTERVAL;
625 relative_position = position;
626 if (INTERVAL_HAS_OBJECT (tree))
628 Lisp_Object parent;
629 GET_INTERVAL_OBJECT (parent, tree);
630 if (BUFFERP (parent))
631 relative_position -= BUF_BEG (XBUFFER (parent));
634 if (relative_position > TOTAL_LENGTH (tree))
635 abort (); /* Paranoia */
637 if (!handling_signal)
638 tree = balance_possible_root_interval (tree);
640 while (1)
642 if (relative_position < LEFT_TOTAL_LENGTH (tree))
644 tree = tree->left;
646 else if (! NULL_RIGHT_CHILD (tree)
647 && relative_position >= (TOTAL_LENGTH (tree)
648 - RIGHT_TOTAL_LENGTH (tree)))
650 relative_position -= (TOTAL_LENGTH (tree)
651 - RIGHT_TOTAL_LENGTH (tree));
652 tree = tree->right;
654 else
656 tree->position
657 = (position - relative_position /* the left edge of *tree */
658 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
660 return tree;
665 /* Find the succeeding interval (lexicographically) to INTERVAL.
666 Sets the `position' field based on that of INTERVAL (see
667 find_interval). */
669 INTERVAL
670 next_interval (interval)
671 register INTERVAL interval;
673 register INTERVAL i = interval;
674 register int next_position;
676 if (NULL_INTERVAL_P (i))
677 return NULL_INTERVAL;
678 next_position = interval->position + LENGTH (interval);
680 if (! NULL_RIGHT_CHILD (i))
682 i = i->right;
683 while (! NULL_LEFT_CHILD (i))
684 i = i->left;
686 i->position = next_position;
687 return i;
690 while (! NULL_PARENT (i))
692 if (AM_LEFT_CHILD (i))
694 i = INTERVAL_PARENT (i);
695 i->position = next_position;
696 return i;
699 i = INTERVAL_PARENT (i);
702 return NULL_INTERVAL;
705 /* Find the preceding interval (lexicographically) to INTERVAL.
706 Sets the `position' field based on that of INTERVAL (see
707 find_interval). */
709 INTERVAL
710 previous_interval (interval)
711 register INTERVAL interval;
713 register INTERVAL i;
715 if (NULL_INTERVAL_P (interval))
716 return NULL_INTERVAL;
718 if (! NULL_LEFT_CHILD (interval))
720 i = interval->left;
721 while (! NULL_RIGHT_CHILD (i))
722 i = i->right;
724 i->position = interval->position - LENGTH (i);
725 return i;
728 i = interval;
729 while (! NULL_PARENT (i))
731 if (AM_RIGHT_CHILD (i))
733 i = INTERVAL_PARENT (i);
735 i->position = interval->position - LENGTH (i);
736 return i;
738 i = INTERVAL_PARENT (i);
741 return NULL_INTERVAL;
744 /* Find the interval containing POS given some non-NULL INTERVAL
745 in the same tree. Note that we need to update interval->position
746 if we go down the tree.
747 To speed up the process, we assume that the ->position of
748 I and all its parents is already uptodate. */
749 INTERVAL
750 update_interval (i, pos)
751 register INTERVAL i;
752 int pos;
754 if (NULL_INTERVAL_P (i))
755 return NULL_INTERVAL;
757 while (1)
759 if (pos < i->position)
761 /* Move left. */
762 if (pos >= i->position - TOTAL_LENGTH (i->left))
764 i->left->position = i->position - TOTAL_LENGTH (i->left)
765 + LEFT_TOTAL_LENGTH (i->left);
766 i = i->left; /* Move to the left child */
768 else if (NULL_PARENT (i))
769 error ("Point before start of properties");
770 else
771 i = INTERVAL_PARENT (i);
772 continue;
774 else if (pos >= INTERVAL_LAST_POS (i))
776 /* Move right. */
777 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
779 i->right->position = INTERVAL_LAST_POS (i) +
780 LEFT_TOTAL_LENGTH (i->right);
781 i = i->right; /* Move to the right child */
783 else if (NULL_PARENT (i))
784 error ("Point after end of properties");
785 else
786 i = INTERVAL_PARENT (i);
787 continue;
789 else
790 return i;
795 #if 0
796 /* Traverse a path down the interval tree TREE to the interval
797 containing POSITION, adjusting all nodes on the path for
798 an addition of LENGTH characters. Insertion between two intervals
799 (i.e., point == i->position, where i is second interval) means
800 text goes into second interval.
802 Modifications are needed to handle the hungry bits -- after simply
803 finding the interval at position (don't add length going down),
804 if it's the beginning of the interval, get the previous interval
805 and check the hungry bits of both. Then add the length going back up
806 to the root. */
808 static INTERVAL
809 adjust_intervals_for_insertion (tree, position, length)
810 INTERVAL tree;
811 int position, length;
813 register int relative_position;
814 register INTERVAL this;
816 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
817 abort ();
819 /* If inserting at point-max of a buffer, that position
820 will be out of range */
821 if (position > TOTAL_LENGTH (tree))
822 position = TOTAL_LENGTH (tree);
823 relative_position = position;
824 this = tree;
826 while (1)
828 if (relative_position <= LEFT_TOTAL_LENGTH (this))
830 this->total_length += length;
831 this = this->left;
833 else if (relative_position > (TOTAL_LENGTH (this)
834 - RIGHT_TOTAL_LENGTH (this)))
836 relative_position -= (TOTAL_LENGTH (this)
837 - RIGHT_TOTAL_LENGTH (this));
838 this->total_length += length;
839 this = this->right;
841 else
843 /* If we are to use zero-length intervals as buffer pointers,
844 then this code will have to change. */
845 this->total_length += length;
846 this->position = LEFT_TOTAL_LENGTH (this)
847 + position - relative_position + 1;
848 return tree;
852 #endif
854 /* Effect an adjustment corresponding to the addition of LENGTH characters
855 of text. Do this by finding the interval containing POSITION in the
856 interval tree TREE, and then adjusting all of its ancestors by adding
857 LENGTH to them.
859 If POSITION is the first character of an interval, meaning that point
860 is actually between the two intervals, make the new text belong to
861 the interval which is "sticky".
863 If both intervals are "sticky", then make them belong to the left-most
864 interval. Another possibility would be to create a new interval for
865 this text, and make it have the merged properties of both ends. */
867 static INTERVAL
868 adjust_intervals_for_insertion (tree, position, length)
869 INTERVAL tree;
870 int position, length;
872 register INTERVAL i;
873 register INTERVAL temp;
874 int eobp = 0;
875 Lisp_Object parent;
876 int offset;
878 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
879 abort ();
881 GET_INTERVAL_OBJECT (parent, tree);
882 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
884 /* If inserting at point-max of a buffer, that position will be out
885 of range. Remember that buffer positions are 1-based. */
886 if (position >= TOTAL_LENGTH (tree) + offset)
888 position = TOTAL_LENGTH (tree) + offset;
889 eobp = 1;
892 i = find_interval (tree, position);
894 /* If in middle of an interval which is not sticky either way,
895 we must not just give its properties to the insertion.
896 So split this interval at the insertion point.
898 Originally, the if condition here was this:
899 (! (position == i->position || eobp)
900 && END_NONSTICKY_P (i)
901 && FRONT_NONSTICKY_P (i))
902 But, these macros are now unreliable because of introduction of
903 Vtext_property_default_nonsticky. So, we always check properties
904 one by one if POSITION is in middle of an interval. */
905 if (! (position == i->position || eobp))
907 Lisp_Object tail;
908 Lisp_Object front, rear;
910 tail = i->plist;
912 /* Properties font-sticky and rear-nonsticky override
913 Vtext_property_default_nonsticky. So, if they are t, we can
914 skip one by one checking of properties. */
915 rear = textget (i->plist, Qrear_nonsticky);
916 if (! CONSP (rear) && ! NILP (rear))
918 /* All properties are nonsticky. We split the interval. */
919 goto check_done;
921 front = textget (i->plist, Qfront_sticky);
922 if (! CONSP (front) && ! NILP (front))
924 /* All properties are sticky. We don't split the interval. */
925 tail = Qnil;
926 goto check_done;
929 /* Does any actual property pose an actual problem? We break
930 the loop if we find a nonsticky property. */
931 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
933 Lisp_Object prop, tmp;
934 prop = XCAR (tail);
936 /* Is this particular property front-sticky? */
937 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
938 continue;
940 /* Is this particular property rear-nonsticky? */
941 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
942 break;
944 /* Is this particular property recorded as sticky or
945 nonsticky in Vtext_property_default_nonsticky? */
946 tmp = Fassq (prop, Vtext_property_default_nonsticky);
947 if (CONSP (tmp))
949 if (NILP (tmp))
950 continue;
951 break;
954 /* By default, a text property is rear-sticky, thus we
955 continue the loop. */
958 check_done:
959 /* If any property is a real problem, split the interval. */
960 if (! NILP (tail))
962 temp = split_interval_right (i, position - i->position);
963 copy_properties (i, temp);
964 i = temp;
968 /* If we are positioned between intervals, check the stickiness of
969 both of them. We have to do this too, if we are at BEG or Z. */
970 if (position == i->position || eobp)
972 register INTERVAL prev;
974 if (position == BEG)
975 prev = 0;
976 else if (eobp)
978 prev = i;
979 i = 0;
981 else
982 prev = previous_interval (i);
984 /* Even if we are positioned between intervals, we default
985 to the left one if it exists. We extend it now and split
986 off a part later, if stickiness demands it. */
987 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
989 temp->total_length += length;
990 temp = balance_possible_root_interval (temp);
993 /* If at least one interval has sticky properties,
994 we check the stickiness property by property.
996 Originally, the if condition here was this:
997 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
998 But, these macros are now unreliable because of introduction
999 of Vtext_property_default_nonsticky. So, we always have to
1000 check stickiness of properties one by one. If cache of
1001 stickiness is implemented in the future, we may be able to
1002 use those macros again. */
1003 if (1)
1005 Lisp_Object pleft, pright;
1006 struct interval newi;
1008 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1009 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1010 newi.plist = merge_properties_sticky (pleft, pright);
1012 if (! prev) /* i.e. position == BEG */
1014 if (! intervals_equal (i, &newi))
1016 i = split_interval_left (i, length);
1017 i->plist = newi.plist;
1020 else if (! intervals_equal (prev, &newi))
1022 prev = split_interval_right (prev,
1023 position - prev->position);
1024 prev->plist = newi.plist;
1025 if (! NULL_INTERVAL_P (i)
1026 && intervals_equal (prev, i))
1027 merge_interval_right (prev);
1030 /* We will need to update the cache here later. */
1032 else if (! prev && ! NILP (i->plist))
1034 /* Just split off a new interval at the left.
1035 Since I wasn't front-sticky, the empty plist is ok. */
1036 i = split_interval_left (i, length);
1040 /* Otherwise just extend the interval. */
1041 else
1043 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1045 temp->total_length += length;
1046 temp = balance_possible_root_interval (temp);
1050 return tree;
1053 /* Any property might be front-sticky on the left, rear-sticky on the left,
1054 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1055 can be arranged in a matrix with rows denoting the left conditions and
1056 columns denoting the right conditions:
1057 _ __ _
1058 _ FR FR FR FR
1059 FR__ 0 1 2 3
1060 _FR 4 5 6 7
1061 FR 8 9 A B
1062 FR C D E F
1064 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1065 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1066 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1067 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1068 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1069 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1070 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1071 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1073 We inherit from whoever has a sticky side facing us. If both sides
1074 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1075 non-nil value for the current property. If both sides do, then we take
1076 from the left.
1078 When we inherit a property, we get its stickiness as well as its value.
1079 So, when we merge the above two lists, we expect to get this:
1081 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1082 rear-nonsticky (p6 pa)
1083 p0 L p1 L p2 L p3 L p6 R p7 R
1084 pa R pb R pc L pd L pe L pf L)
1086 The optimizable special cases are:
1087 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1088 left rear-nonsticky = t, right front-sticky = t (inherit right)
1089 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1092 Lisp_Object
1093 merge_properties_sticky (pleft, pright)
1094 Lisp_Object pleft, pright;
1096 register Lisp_Object props, front, rear;
1097 Lisp_Object lfront, lrear, rfront, rrear;
1098 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1099 int use_left, use_right;
1100 int lpresent;
1102 props = Qnil;
1103 front = Qnil;
1104 rear = Qnil;
1105 lfront = textget (pleft, Qfront_sticky);
1106 lrear = textget (pleft, Qrear_nonsticky);
1107 rfront = textget (pright, Qfront_sticky);
1108 rrear = textget (pright, Qrear_nonsticky);
1110 /* Go through each element of PRIGHT. */
1111 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1113 Lisp_Object tmp;
1115 sym = Fcar (tail1);
1117 /* Sticky properties get special treatment. */
1118 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1119 continue;
1121 rval = Fcar (Fcdr (tail1));
1122 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1123 if (EQ (sym, Fcar (tail2)))
1124 break;
1126 /* Indicate whether the property is explicitly defined on the left.
1127 (We know it is defined explicitly on the right
1128 because otherwise we don't get here.) */
1129 lpresent = ! NILP (tail2);
1130 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1132 /* Even if lrear or rfront say nothing about the stickiness of
1133 SYM, Vtext_property_default_nonsticky may give default
1134 stickiness to SYM. */
1135 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1136 use_left = (lpresent
1137 && ! (TMEM (sym, lrear)
1138 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1139 use_right = (TMEM (sym, rfront)
1140 || (CONSP (tmp) && NILP (XCDR (tmp))));
1141 if (use_left && use_right)
1143 if (NILP (lval))
1144 use_left = 0;
1145 else if (NILP (rval))
1146 use_right = 0;
1148 if (use_left)
1150 /* We build props as (value sym ...) rather than (sym value ...)
1151 because we plan to nreverse it when we're done. */
1152 props = Fcons (lval, Fcons (sym, props));
1153 if (TMEM (sym, lfront))
1154 front = Fcons (sym, front);
1155 if (TMEM (sym, lrear))
1156 rear = Fcons (sym, rear);
1158 else if (use_right)
1160 props = Fcons (rval, Fcons (sym, props));
1161 if (TMEM (sym, rfront))
1162 front = Fcons (sym, front);
1163 if (TMEM (sym, rrear))
1164 rear = Fcons (sym, rear);
1168 /* Now go through each element of PLEFT. */
1169 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1171 Lisp_Object tmp;
1173 sym = Fcar (tail2);
1175 /* Sticky properties get special treatment. */
1176 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1177 continue;
1179 /* If sym is in PRIGHT, we've already considered it. */
1180 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1181 if (EQ (sym, Fcar (tail1)))
1182 break;
1183 if (! NILP (tail1))
1184 continue;
1186 lval = Fcar (Fcdr (tail2));
1188 /* Even if lrear or rfront say nothing about the stickiness of
1189 SYM, Vtext_property_default_nonsticky may give default
1190 stickiness to SYM. */
1191 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1193 /* Since rval is known to be nil in this loop, the test simplifies. */
1194 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1196 props = Fcons (lval, Fcons (sym, props));
1197 if (TMEM (sym, lfront))
1198 front = Fcons (sym, front);
1200 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1202 /* The value is nil, but we still inherit the stickiness
1203 from the right. */
1204 front = Fcons (sym, front);
1205 if (TMEM (sym, rrear))
1206 rear = Fcons (sym, rear);
1209 props = Fnreverse (props);
1210 if (! NILP (rear))
1211 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1213 cat = textget (props, Qcategory);
1214 if (! NILP (front)
1216 /* If we have inherited a front-stick category property that is t,
1217 we don't need to set up a detailed one. */
1218 ! (! NILP (cat) && SYMBOLP (cat)
1219 && EQ (Fget (cat, Qfront_sticky), Qt)))
1220 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1221 return props;
1225 /* Delete an node I from its interval tree by merging its subtrees
1226 into one subtree which is then returned. Caller is responsible for
1227 storing the resulting subtree into its parent. */
1229 static INTERVAL
1230 delete_node (i)
1231 register INTERVAL i;
1233 register INTERVAL migrate, this;
1234 register int migrate_amt;
1236 if (NULL_INTERVAL_P (i->left))
1237 return i->right;
1238 if (NULL_INTERVAL_P (i->right))
1239 return i->left;
1241 migrate = i->left;
1242 migrate_amt = i->left->total_length;
1243 this = i->right;
1244 this->total_length += migrate_amt;
1245 while (! NULL_INTERVAL_P (this->left))
1247 this = this->left;
1248 this->total_length += migrate_amt;
1250 this->left = migrate;
1251 SET_INTERVAL_PARENT (migrate, this);
1253 return i->right;
1256 /* Delete interval I from its tree by calling `delete_node'
1257 and properly connecting the resultant subtree.
1259 I is presumed to be empty; that is, no adjustments are made
1260 for the length of I. */
1262 void
1263 delete_interval (i)
1264 register INTERVAL i;
1266 register INTERVAL parent;
1267 int amt = LENGTH (i);
1269 if (amt > 0) /* Only used on zero-length intervals now. */
1270 abort ();
1272 if (ROOT_INTERVAL_P (i))
1274 Lisp_Object owner;
1275 GET_INTERVAL_OBJECT (owner, i);
1276 parent = delete_node (i);
1277 if (! NULL_INTERVAL_P (parent))
1278 SET_INTERVAL_OBJECT (parent, owner);
1280 if (BUFFERP (owner))
1281 BUF_INTERVALS (XBUFFER (owner)) = parent;
1282 else if (STRINGP (owner))
1283 XSTRING (owner)->intervals = parent;
1284 else
1285 abort ();
1287 return;
1290 parent = INTERVAL_PARENT (i);
1291 if (AM_LEFT_CHILD (i))
1293 parent->left = delete_node (i);
1294 if (! NULL_INTERVAL_P (parent->left))
1295 SET_INTERVAL_PARENT (parent->left, parent);
1297 else
1299 parent->right = delete_node (i);
1300 if (! NULL_INTERVAL_P (parent->right))
1301 SET_INTERVAL_PARENT (parent->right, parent);
1305 /* Find the interval in TREE corresponding to the relative position
1306 FROM and delete as much as possible of AMOUNT from that interval.
1307 Return the amount actually deleted, and if the interval was
1308 zeroed-out, delete that interval node from the tree.
1310 Note that FROM is actually origin zero, aka relative to the
1311 leftmost edge of tree. This is appropriate since we call ourselves
1312 recursively on subtrees.
1314 Do this by recursing down TREE to the interval in question, and
1315 deleting the appropriate amount of text. */
1317 static int
1318 interval_deletion_adjustment (tree, from, amount)
1319 register INTERVAL tree;
1320 register int from, amount;
1322 register int relative_position = from;
1324 if (NULL_INTERVAL_P (tree))
1325 return 0;
1327 /* Left branch */
1328 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1330 int subtract = interval_deletion_adjustment (tree->left,
1331 relative_position,
1332 amount);
1333 tree->total_length -= subtract;
1334 return subtract;
1336 /* Right branch */
1337 else if (relative_position >= (TOTAL_LENGTH (tree)
1338 - RIGHT_TOTAL_LENGTH (tree)))
1340 int subtract;
1342 relative_position -= (tree->total_length
1343 - RIGHT_TOTAL_LENGTH (tree));
1344 subtract = interval_deletion_adjustment (tree->right,
1345 relative_position,
1346 amount);
1347 tree->total_length -= subtract;
1348 return subtract;
1350 /* Here -- this node. */
1351 else
1353 /* How much can we delete from this interval? */
1354 int my_amount = ((tree->total_length
1355 - RIGHT_TOTAL_LENGTH (tree))
1356 - relative_position);
1358 if (amount > my_amount)
1359 amount = my_amount;
1361 tree->total_length -= amount;
1362 if (LENGTH (tree) == 0)
1363 delete_interval (tree);
1365 return amount;
1368 /* Never reach here. */
1371 /* Effect the adjustments necessary to the interval tree of BUFFER to
1372 correspond to the deletion of LENGTH characters from that buffer
1373 text. The deletion is effected at position START (which is a
1374 buffer position, i.e. origin 1). */
1376 static void
1377 adjust_intervals_for_deletion (buffer, start, length)
1378 struct buffer *buffer;
1379 int start, length;
1381 register int left_to_delete = length;
1382 register INTERVAL tree = BUF_INTERVALS (buffer);
1383 Lisp_Object parent;
1384 int offset;
1386 GET_INTERVAL_OBJECT (parent, tree);
1387 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1389 if (NULL_INTERVAL_P (tree))
1390 return;
1392 if (start > offset + TOTAL_LENGTH (tree)
1393 || start + length > offset + TOTAL_LENGTH (tree))
1394 abort ();
1396 if (length == TOTAL_LENGTH (tree))
1398 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1399 return;
1402 if (ONLY_INTERVAL_P (tree))
1404 tree->total_length -= length;
1405 return;
1408 if (start > offset + TOTAL_LENGTH (tree))
1409 start = offset + TOTAL_LENGTH (tree);
1410 while (left_to_delete > 0)
1412 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1413 left_to_delete);
1414 tree = BUF_INTERVALS (buffer);
1415 if (left_to_delete == tree->total_length)
1417 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1418 return;
1423 /* Make the adjustments necessary to the interval tree of BUFFER to
1424 represent an addition or deletion of LENGTH characters starting
1425 at position START. Addition or deletion is indicated by the sign
1426 of LENGTH. */
1428 INLINE void
1429 offset_intervals (buffer, start, length)
1430 struct buffer *buffer;
1431 int start, length;
1433 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1434 return;
1436 if (length > 0)
1437 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1438 else
1439 adjust_intervals_for_deletion (buffer, start, -length);
1442 /* Merge interval I with its lexicographic successor. The resulting
1443 interval is returned, and has the properties of the original
1444 successor. The properties of I are lost. I is removed from the
1445 interval tree.
1447 IMPORTANT:
1448 The caller must verify that this is not the last (rightmost)
1449 interval. */
1451 INTERVAL
1452 merge_interval_right (i)
1453 register INTERVAL i;
1455 register int absorb = LENGTH (i);
1456 register INTERVAL successor;
1458 /* Zero out this interval. */
1459 i->total_length -= absorb;
1461 /* Find the succeeding interval. */
1462 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1463 as we descend. */
1465 successor = i->right;
1466 while (! NULL_LEFT_CHILD (successor))
1468 successor->total_length += absorb;
1469 successor = successor->left;
1472 successor->total_length += absorb;
1473 delete_interval (i);
1474 return successor;
1477 successor = i;
1478 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1479 we ascend. */
1481 if (AM_LEFT_CHILD (successor))
1483 successor = INTERVAL_PARENT (successor);
1484 delete_interval (i);
1485 return successor;
1488 successor = INTERVAL_PARENT (successor);
1489 successor->total_length -= absorb;
1492 /* This must be the rightmost or last interval and cannot
1493 be merged right. The caller should have known. */
1494 abort ();
1497 /* Merge interval I with its lexicographic predecessor. The resulting
1498 interval is returned, and has the properties of the original predecessor.
1499 The properties of I are lost. Interval node I is removed from the tree.
1501 IMPORTANT:
1502 The caller must verify that this is not the first (leftmost) interval. */
1504 INTERVAL
1505 merge_interval_left (i)
1506 register INTERVAL i;
1508 register int absorb = LENGTH (i);
1509 register INTERVAL predecessor;
1511 /* Zero out this interval. */
1512 i->total_length -= absorb;
1514 /* Find the preceding interval. */
1515 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1516 adding ABSORB as we go. */
1518 predecessor = i->left;
1519 while (! NULL_RIGHT_CHILD (predecessor))
1521 predecessor->total_length += absorb;
1522 predecessor = predecessor->right;
1525 predecessor->total_length += absorb;
1526 delete_interval (i);
1527 return predecessor;
1530 predecessor = i;
1531 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1532 subtracting ABSORB. */
1534 if (AM_RIGHT_CHILD (predecessor))
1536 predecessor = INTERVAL_PARENT (predecessor);
1537 delete_interval (i);
1538 return predecessor;
1541 predecessor = INTERVAL_PARENT (predecessor);
1542 predecessor->total_length -= absorb;
1545 /* This must be the leftmost or first interval and cannot
1546 be merged left. The caller should have known. */
1547 abort ();
1550 /* Make an exact copy of interval tree SOURCE which descends from
1551 PARENT. This is done by recursing through SOURCE, copying
1552 the current interval and its properties, and then adjusting
1553 the pointers of the copy. */
1555 static INTERVAL
1556 reproduce_tree (source, parent)
1557 INTERVAL source, parent;
1559 register INTERVAL t = make_interval ();
1561 bcopy (source, t, INTERVAL_SIZE);
1562 copy_properties (source, t);
1563 SET_INTERVAL_PARENT (t, parent);
1564 if (! NULL_LEFT_CHILD (source))
1565 t->left = reproduce_tree (source->left, t);
1566 if (! NULL_RIGHT_CHILD (source))
1567 t->right = reproduce_tree (source->right, t);
1569 return t;
1572 static INTERVAL
1573 reproduce_tree_obj (source, parent)
1574 INTERVAL source;
1575 Lisp_Object parent;
1577 register INTERVAL t = make_interval ();
1579 bcopy (source, t, INTERVAL_SIZE);
1580 copy_properties (source, t);
1581 SET_INTERVAL_OBJECT (t, parent);
1582 if (! NULL_LEFT_CHILD (source))
1583 t->left = reproduce_tree (source->left, t);
1584 if (! NULL_RIGHT_CHILD (source))
1585 t->right = reproduce_tree (source->right, t);
1587 return t;
1590 #if 0
1591 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1593 /* Make a new interval of length LENGTH starting at START in the
1594 group of intervals INTERVALS, which is actually an interval tree.
1595 Returns the new interval.
1597 Generate an error if the new positions would overlap an existing
1598 interval. */
1600 static INTERVAL
1601 make_new_interval (intervals, start, length)
1602 INTERVAL intervals;
1603 int start, length;
1605 INTERVAL slot;
1607 slot = find_interval (intervals, start);
1608 if (start + length > slot->position + LENGTH (slot))
1609 error ("Interval would overlap");
1611 if (start == slot->position && length == LENGTH (slot))
1612 return slot;
1614 if (slot->position == start)
1616 /* New right node. */
1617 split_interval_right (slot, length);
1618 return slot;
1621 if (slot->position + LENGTH (slot) == start + length)
1623 /* New left node. */
1624 split_interval_left (slot, LENGTH (slot) - length);
1625 return slot;
1628 /* Convert interval SLOT into three intervals. */
1629 split_interval_left (slot, start - slot->position);
1630 split_interval_right (slot, length);
1631 return slot;
1633 #endif
1635 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1636 LENGTH is the length of the text in SOURCE.
1638 The `position' field of the SOURCE intervals is assumed to be
1639 consistent with its parent; therefore, SOURCE must be an
1640 interval tree made with copy_interval or must be the whole
1641 tree of a buffer or a string.
1643 This is used in insdel.c when inserting Lisp_Strings into the
1644 buffer. The text corresponding to SOURCE is already in the buffer
1645 when this is called. The intervals of new tree are a copy of those
1646 belonging to the string being inserted; intervals are never
1647 shared.
1649 If the inserted text had no intervals associated, and we don't
1650 want to inherit the surrounding text's properties, this function
1651 simply returns -- offset_intervals should handle placing the
1652 text in the correct interval, depending on the sticky bits.
1654 If the inserted text had properties (intervals), then there are two
1655 cases -- either insertion happened in the middle of some interval,
1656 or between two intervals.
1658 If the text goes into the middle of an interval, then new
1659 intervals are created in the middle with only the properties of
1660 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1661 which case the new text has the union of its properties and those
1662 of the text into which it was inserted.
1664 If the text goes between two intervals, then if neither interval
1665 had its appropriate sticky property set (front_sticky, rear_sticky),
1666 the new text has only its properties. If one of the sticky properties
1667 is set, then the new text "sticks" to that region and its properties
1668 depend on merging as above. If both the preceding and succeeding
1669 intervals to the new text are "sticky", then the new text retains
1670 only its properties, as if neither sticky property were set. Perhaps
1671 we should consider merging all three sets of properties onto the new
1672 text... */
1674 void
1675 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1676 INTERVAL source;
1677 int position, length;
1678 struct buffer *buffer;
1679 int inherit;
1681 register INTERVAL under, over, this, prev;
1682 register INTERVAL tree;
1684 tree = BUF_INTERVALS (buffer);
1686 /* If the new text has no properties, then with inheritance it
1687 becomes part of whatever interval it was inserted into.
1688 To prevent inheritance, we must clear out the properties
1689 of the newly inserted text. */
1690 if (NULL_INTERVAL_P (source))
1692 Lisp_Object buf;
1693 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1695 XSETBUFFER (buf, buffer);
1696 set_text_properties_1 (make_number (position),
1697 make_number (position + length),
1698 Qnil, buf, 0);
1700 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1701 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1702 return;
1705 if (NULL_INTERVAL_P (tree))
1707 /* The inserted text constitutes the whole buffer, so
1708 simply copy over the interval structure. */
1709 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1711 Lisp_Object buf;
1712 XSETBUFFER (buf, buffer);
1713 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1714 BUF_INTERVALS (buffer)->position = 1;
1716 /* Explicitly free the old tree here? */
1718 return;
1721 /* Create an interval tree in which to place a copy
1722 of the intervals of the inserted string. */
1724 Lisp_Object buf;
1725 XSETBUFFER (buf, buffer);
1726 tree = create_root_interval (buf);
1729 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1730 /* If the buffer contains only the new string, but
1731 there was already some interval tree there, then it may be
1732 some zero length intervals. Eventually, do something clever
1733 about inserting properly. For now, just waste the old intervals. */
1735 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1736 BUF_INTERVALS (buffer)->position = 1;
1737 /* Explicitly free the old tree here. */
1739 return;
1741 /* Paranoia -- the text has already been added, so this buffer
1742 should be of non-zero length. */
1743 else if (TOTAL_LENGTH (tree) == 0)
1744 abort ();
1746 this = under = find_interval (tree, position);
1747 if (NULL_INTERVAL_P (under)) /* Paranoia */
1748 abort ();
1749 over = find_interval (source, interval_start_pos (source));
1751 /* Here for insertion in the middle of an interval.
1752 Split off an equivalent interval to the right,
1753 then don't bother with it any more. */
1755 if (position > under->position)
1757 INTERVAL end_unchanged
1758 = split_interval_left (this, position - under->position);
1759 copy_properties (under, end_unchanged);
1760 under->position = position;
1762 else
1764 /* This call may have some effect because previous_interval may
1765 update `position' fields of intervals. Thus, don't ignore it
1766 for the moment. Someone please tell me the truth (K.Handa). */
1767 prev = previous_interval (under);
1768 #if 0
1769 /* But, this code surely has no effect. And, anyway,
1770 END_NONSTICKY_P is unreliable now. */
1771 if (prev && !END_NONSTICKY_P (prev))
1772 prev = 0;
1773 #endif /* 0 */
1776 /* Insertion is now at beginning of UNDER. */
1778 /* The inserted text "sticks" to the interval `under',
1779 which means it gets those properties.
1780 The properties of under are the result of
1781 adjust_intervals_for_insertion, so stickiness has
1782 already been taken care of. */
1784 while (! NULL_INTERVAL_P (over))
1786 if (LENGTH (over) < LENGTH (under))
1788 this = split_interval_left (under, LENGTH (over));
1789 copy_properties (under, this);
1791 else
1792 this = under;
1793 copy_properties (over, this);
1794 if (inherit)
1795 merge_properties (over, this);
1796 else
1797 copy_properties (over, this);
1798 over = next_interval (over);
1801 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1802 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1803 return;
1806 /* Get the value of property PROP from PLIST,
1807 which is the plist of an interval.
1808 We check for direct properties, for categories with property PROP,
1809 and for PROP appearing on the default-text-properties list. */
1811 Lisp_Object
1812 textget (plist, prop)
1813 Lisp_Object plist;
1814 register Lisp_Object prop;
1816 register Lisp_Object tail, fallback;
1817 fallback = Qnil;
1819 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1821 register Lisp_Object tem;
1822 tem = Fcar (tail);
1823 if (EQ (prop, tem))
1824 return Fcar (Fcdr (tail));
1825 if (EQ (tem, Qcategory))
1827 tem = Fcar (Fcdr (tail));
1828 if (SYMBOLP (tem))
1829 fallback = Fget (tem, prop);
1833 if (! NILP (fallback))
1834 return fallback;
1835 if (CONSP (Vdefault_text_properties))
1836 return Fplist_get (Vdefault_text_properties, prop);
1837 return Qnil;
1841 /* Set point "temporarily", without checking any text properties. */
1843 INLINE void
1844 temp_set_point (buffer, charpos)
1845 struct buffer *buffer;
1846 int charpos;
1848 temp_set_point_both (buffer, charpos,
1849 buf_charpos_to_bytepos (buffer, charpos));
1852 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1853 byte position BYTEPOS. */
1855 INLINE void
1856 temp_set_point_both (buffer, charpos, bytepos)
1857 int charpos, bytepos;
1858 struct buffer *buffer;
1860 /* In a single-byte buffer, the two positions must be equal. */
1861 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1862 && charpos != bytepos)
1863 abort ();
1865 if (charpos > bytepos)
1866 abort ();
1868 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1869 abort ();
1871 BUF_PT_BYTE (buffer) = bytepos;
1872 BUF_PT (buffer) = charpos;
1875 /* Set point in BUFFER to CHARPOS. If the target position is
1876 before an intangible character, move to an ok place. */
1878 void
1879 set_point (buffer, charpos)
1880 register struct buffer *buffer;
1881 register int charpos;
1883 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1886 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1887 position BYTEPOS. If the target position is
1888 before an intangible character, move to an ok place. */
1890 void
1891 set_point_both (buffer, charpos, bytepos)
1892 register struct buffer *buffer;
1893 register int charpos, bytepos;
1895 register INTERVAL to, from, toprev, fromprev;
1896 int buffer_point;
1897 int old_position = BUF_PT (buffer);
1898 int backwards = (charpos < old_position ? 1 : 0);
1899 int have_overlays;
1900 int original_position;
1902 buffer->point_before_scroll = Qnil;
1904 if (charpos == BUF_PT (buffer))
1905 return;
1907 /* In a single-byte buffer, the two positions must be equal. */
1908 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1909 && charpos != bytepos)
1910 abort ();
1912 /* Check this now, before checking if the buffer has any intervals.
1913 That way, we can catch conditions which break this sanity check
1914 whether or not there are intervals in the buffer. */
1915 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1916 abort ();
1918 have_overlays = (! NILP (buffer->overlays_before)
1919 || ! NILP (buffer->overlays_after));
1921 /* If we have no text properties and overlays,
1922 then we can do it quickly. */
1923 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1925 temp_set_point_both (buffer, charpos, bytepos);
1926 return;
1929 /* Set TO to the interval containing the char after CHARPOS,
1930 and TOPREV to the interval containing the char before CHARPOS.
1931 Either one may be null. They may be equal. */
1932 to = find_interval (BUF_INTERVALS (buffer), charpos);
1933 if (charpos == BUF_BEGV (buffer))
1934 toprev = 0;
1935 else if (to && to->position == charpos)
1936 toprev = previous_interval (to);
1937 else
1938 toprev = to;
1940 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1941 ? BUF_ZV (buffer) - 1
1942 : BUF_PT (buffer));
1944 /* Set FROM to the interval containing the char after PT,
1945 and FROMPREV to the interval containing the char before PT.
1946 Either one may be null. They may be equal. */
1947 /* We could cache this and save time. */
1948 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1949 if (buffer_point == BUF_BEGV (buffer))
1950 fromprev = 0;
1951 else if (from && from->position == BUF_PT (buffer))
1952 fromprev = previous_interval (from);
1953 else if (buffer_point != BUF_PT (buffer))
1954 fromprev = from, from = 0;
1955 else
1956 fromprev = from;
1958 /* Moving within an interval. */
1959 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1960 && ! have_overlays)
1962 temp_set_point_both (buffer, charpos, bytepos);
1963 return;
1966 original_position = charpos;
1968 /* If the new position is between two intangible characters
1969 with the same intangible property value,
1970 move forward or backward until a change in that property. */
1971 if (NILP (Vinhibit_point_motion_hooks)
1972 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1973 || have_overlays)
1974 /* Intangibility never stops us from positioning at the beginning
1975 or end of the buffer, so don't bother checking in that case. */
1976 && charpos != BEGV && charpos != ZV)
1978 Lisp_Object intangible_propval, invisible_propval;
1979 Lisp_Object pos;
1980 int invis_p;
1982 XSETINT (pos, charpos);
1984 if (backwards)
1986 /* If the preceding char is both invisible and intangible,
1987 start backing up from just before that one. */
1989 intangible_propval
1990 = Fget_char_property (make_number (charpos - 1),
1991 Qintangible, Qnil);
1992 invisible_propval
1993 = Fget_char_property (make_number (charpos - 1), Qinvisible, Qnil);
1994 invis_p = TEXT_PROP_MEANS_INVISIBLE (invisible_propval);
1996 if (! NILP (intangible_propval) && invis_p)
1997 XSETINT (pos, --charpos);
1999 /* If following char is intangible,
2000 skip back over all chars with matching intangible property. */
2002 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
2004 if (! NILP (intangible_propval))
2006 while (XINT (pos) > BUF_BEGV (buffer)
2007 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2008 Qintangible, Qnil),
2009 intangible_propval))
2010 pos = Fprevious_char_property_change (pos, Qnil);
2013 else
2015 /* If preceding char is intangible,
2016 skip forward over all chars with matching intangible property. */
2018 intangible_propval = Fget_char_property (make_number (charpos - 1),
2019 Qintangible, Qnil);
2021 if (! NILP (intangible_propval))
2023 while (XINT (pos) < BUF_ZV (buffer)
2024 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2025 intangible_propval))
2026 pos = Fnext_char_property_change (pos, Qnil);
2028 /* Is the last one invisible as well as intangible? */
2030 invisible_propval
2031 = Fget_char_property (make_number (XINT (pos) - 1),
2032 Qinvisible, Qnil);
2033 invis_p = TEXT_PROP_MEANS_INVISIBLE (invisible_propval);
2035 /* If so, advance one character more:
2036 don't stop after an invisible, intangible character. */
2038 if (invis_p && XINT (pos) < BUF_ZV (buffer))
2039 XSETINT (pos, XINT (pos) + 1);
2043 charpos = XINT (pos);
2044 bytepos = buf_charpos_to_bytepos (buffer, charpos);
2047 if (charpos != original_position)
2049 /* Set TO to the interval containing the char after CHARPOS,
2050 and TOPREV to the interval containing the char before CHARPOS.
2051 Either one may be null. They may be equal. */
2052 to = find_interval (BUF_INTERVALS (buffer), charpos);
2053 if (charpos == BUF_BEGV (buffer))
2054 toprev = 0;
2055 else if (to && to->position == charpos)
2056 toprev = previous_interval (to);
2057 else
2058 toprev = to;
2061 /* Here TO is the interval after the stopping point
2062 and TOPREV is the interval before the stopping point.
2063 One or the other may be null. */
2065 temp_set_point_both (buffer, charpos, bytepos);
2067 /* We run point-left and point-entered hooks here, iff the
2068 two intervals are not equivalent. These hooks take
2069 (old_point, new_point) as arguments. */
2070 if (NILP (Vinhibit_point_motion_hooks)
2071 && (! intervals_equal (from, to)
2072 || ! intervals_equal (fromprev, toprev)))
2074 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2076 if (fromprev)
2077 leave_after = textget (fromprev->plist, Qpoint_left);
2078 else
2079 leave_after = Qnil;
2080 if (from)
2081 leave_before = textget (from->plist, Qpoint_left);
2082 else
2083 leave_before = Qnil;
2085 if (toprev)
2086 enter_after = textget (toprev->plist, Qpoint_entered);
2087 else
2088 enter_after = Qnil;
2089 if (to)
2090 enter_before = textget (to->plist, Qpoint_entered);
2091 else
2092 enter_before = Qnil;
2094 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2095 call2 (leave_before, make_number (old_position),
2096 make_number (charpos));
2097 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2098 call2 (leave_after, make_number (old_position),
2099 make_number (charpos));
2101 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2102 call2 (enter_before, make_number (old_position),
2103 make_number (charpos));
2104 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2105 call2 (enter_after, make_number (old_position),
2106 make_number (charpos));
2110 /* Move point to POSITION, unless POSITION is inside an intangible
2111 segment that reaches all the way to point. */
2113 void
2114 move_if_not_intangible (position)
2115 int position;
2117 Lisp_Object pos;
2118 Lisp_Object intangible_propval;
2120 XSETINT (pos, position);
2122 if (! NILP (Vinhibit_point_motion_hooks))
2123 /* If intangible is inhibited, always move point to POSITION. */
2125 else if (PT < position && XINT (pos) < ZV)
2127 /* We want to move forward, so check the text before POSITION. */
2129 intangible_propval = Fget_char_property (pos,
2130 Qintangible, Qnil);
2132 /* If following char is intangible,
2133 skip back over all chars with matching intangible property. */
2134 if (! NILP (intangible_propval))
2135 while (XINT (pos) > BEGV
2136 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2137 Qintangible, Qnil),
2138 intangible_propval))
2139 pos = Fprevious_char_property_change (pos, Qnil);
2141 else if (XINT (pos) > BEGV)
2143 /* We want to move backward, so check the text after POSITION. */
2145 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2146 Qintangible, Qnil);
2148 /* If following char is intangible,
2149 skip forward over all chars with matching intangible property. */
2150 if (! NILP (intangible_propval))
2151 while (XINT (pos) < ZV
2152 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2153 intangible_propval))
2154 pos = Fnext_char_property_change (pos, Qnil);
2158 /* If the whole stretch between PT and POSITION isn't intangible,
2159 try moving to POSITION (which means we actually move farther
2160 if POSITION is inside of intangible text). */
2162 if (XINT (pos) != PT)
2163 SET_PT (position);
2166 /* If text at position POS has property PROP, set *VAL to the property
2167 value, *START and *END to the beginning and end of a region that
2168 has the same property, and return 1. Otherwise return 0.
2170 OBJECT is the string or buffer to look for the property in;
2171 nil means the current buffer. */
2174 get_property_and_range (pos, prop, val, start, end, object)
2175 int pos;
2176 Lisp_Object prop, *val;
2177 int *start, *end;
2178 Lisp_Object object;
2180 INTERVAL i, prev, next;
2182 if (NILP (object))
2183 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2184 else if (BUFFERP (object))
2185 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2186 else if (STRINGP (object))
2187 i = find_interval (XSTRING (object)->intervals, pos);
2188 else
2189 abort ();
2191 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2192 return 0;
2193 *val = textget (i->plist, prop);
2194 if (NILP (*val))
2195 return 0;
2197 next = i; /* remember it in advance */
2198 prev = previous_interval (i);
2199 while (! NULL_INTERVAL_P (prev)
2200 && EQ (*val, textget (prev->plist, prop)))
2201 i = prev, prev = previous_interval (prev);
2202 *start = i->position;
2204 next = next_interval (i);
2205 while (! NULL_INTERVAL_P (next)
2206 && EQ (*val, textget (next->plist, prop)))
2207 i = next, next = next_interval (next);
2208 *end = i->position + LENGTH (i);
2210 return 1;
2213 /* Return the proper local keymap TYPE for position POSITION in
2214 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2215 specified by the PROP property, if any. Otherwise, if TYPE is
2216 `local-map' use BUFFER's local map. */
2218 Lisp_Object
2219 get_local_map (position, buffer, type)
2220 register int position;
2221 register struct buffer *buffer;
2222 Lisp_Object type;
2224 Lisp_Object prop, lispy_position, lispy_buffer;
2225 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2227 /* Perhaps we should just change `position' to the limit. */
2228 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2229 abort ();
2231 /* Ignore narrowing, so that a local map continues to be valid even if
2232 the visible region contains no characters and hence no properties. */
2233 old_begv = BUF_BEGV (buffer);
2234 old_zv = BUF_ZV (buffer);
2235 old_begv_byte = BUF_BEGV_BYTE (buffer);
2236 old_zv_byte = BUF_ZV_BYTE (buffer);
2237 BUF_BEGV (buffer) = BUF_BEG (buffer);
2238 BUF_ZV (buffer) = BUF_Z (buffer);
2239 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2240 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2242 /* There are no properties at the end of the buffer, so in that case
2243 check for a local map on the last character of the buffer instead. */
2244 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
2245 --position;
2246 XSETFASTINT (lispy_position, position);
2247 XSETBUFFER (lispy_buffer, buffer);
2248 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2250 BUF_BEGV (buffer) = old_begv;
2251 BUF_ZV (buffer) = old_zv;
2252 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2253 BUF_ZV_BYTE (buffer) = old_zv_byte;
2255 /* Use the local map only if it is valid. */
2256 prop = get_keymap (prop, 0, 0);
2257 if (CONSP (prop))
2258 return prop;
2260 if (EQ (type, Qkeymap))
2261 return Qnil;
2262 else
2263 return buffer->keymap;
2266 /* Produce an interval tree reflecting the intervals in
2267 TREE from START to START + LENGTH.
2268 The new interval tree has no parent and has a starting-position of 0. */
2270 INTERVAL
2271 copy_intervals (tree, start, length)
2272 INTERVAL tree;
2273 int start, length;
2275 register INTERVAL i, new, t;
2276 register int got, prevlen;
2278 if (NULL_INTERVAL_P (tree) || length <= 0)
2279 return NULL_INTERVAL;
2281 i = find_interval (tree, start);
2282 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2283 abort ();
2285 /* If there is only one interval and it's the default, return nil. */
2286 if ((start - i->position + 1 + length) < LENGTH (i)
2287 && DEFAULT_INTERVAL_P (i))
2288 return NULL_INTERVAL;
2290 new = make_interval ();
2291 new->position = 0;
2292 got = (LENGTH (i) - (start - i->position));
2293 new->total_length = length;
2294 copy_properties (i, new);
2296 t = new;
2297 prevlen = got;
2298 while (got < length)
2300 i = next_interval (i);
2301 t = split_interval_right (t, prevlen);
2302 copy_properties (i, t);
2303 prevlen = LENGTH (i);
2304 got += prevlen;
2307 return balance_an_interval (new);
2310 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2312 INLINE void
2313 copy_intervals_to_string (string, buffer, position, length)
2314 Lisp_Object string;
2315 struct buffer *buffer;
2316 int position, length;
2318 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2319 position, length);
2320 if (NULL_INTERVAL_P (interval_copy))
2321 return;
2323 SET_INTERVAL_OBJECT (interval_copy, string);
2324 XSTRING (string)->intervals = interval_copy;
2327 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2328 Assume they have identical characters. */
2331 compare_string_intervals (s1, s2)
2332 Lisp_Object s1, s2;
2334 INTERVAL i1, i2;
2335 int pos = 0;
2336 int end = XSTRING (s1)->size;
2338 i1 = find_interval (XSTRING (s1)->intervals, 0);
2339 i2 = find_interval (XSTRING (s2)->intervals, 0);
2341 while (pos < end)
2343 /* Determine how far we can go before we reach the end of I1 or I2. */
2344 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2345 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2346 int distance = min (len1, len2);
2348 /* If we ever find a mismatch between the strings,
2349 they differ. */
2350 if (! intervals_equal (i1, i2))
2351 return 0;
2353 /* Advance POS till the end of the shorter interval,
2354 and advance one or both interval pointers for the new position. */
2355 pos += distance;
2356 if (len1 == distance)
2357 i1 = next_interval (i1);
2358 if (len2 == distance)
2359 i2 = next_interval (i2);
2361 return 1;
2364 /* Recursively adjust interval I in the current buffer
2365 for setting enable_multibyte_characters to MULTI_FLAG.
2366 The range of interval I is START ... END in characters,
2367 START_BYTE ... END_BYTE in bytes. */
2369 static void
2370 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2371 INTERVAL i;
2372 int multi_flag;
2373 int start, start_byte, end, end_byte;
2375 /* Fix the length of this interval. */
2376 if (multi_flag)
2377 i->total_length = end - start;
2378 else
2379 i->total_length = end_byte - start_byte;
2381 /* Recursively fix the length of the subintervals. */
2382 if (i->left)
2384 int left_end, left_end_byte;
2386 if (multi_flag)
2388 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2389 left_end = BYTE_TO_CHAR (left_end_byte);
2391 else
2393 left_end = start + LEFT_TOTAL_LENGTH (i);
2394 left_end_byte = CHAR_TO_BYTE (left_end);
2397 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2398 left_end, left_end_byte);
2400 if (i->right)
2402 int right_start_byte, right_start;
2404 if (multi_flag)
2406 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2407 right_start = BYTE_TO_CHAR (right_start_byte);
2409 else
2411 right_start = end - RIGHT_TOTAL_LENGTH (i);
2412 right_start_byte = CHAR_TO_BYTE (right_start);
2415 set_intervals_multibyte_1 (i->right, multi_flag,
2416 right_start, right_start_byte,
2417 end, end_byte);
2421 /* Update the intervals of the current buffer
2422 to fit the contents as multibyte (if MULTI_FLAG is 1)
2423 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2425 void
2426 set_intervals_multibyte (multi_flag)
2427 int multi_flag;
2429 if (BUF_INTERVALS (current_buffer))
2430 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2431 BEG, BEG_BYTE, Z, Z_BYTE);