Docstring fixes.
[emacs.git] / src / charset.h
blob83b31abf1f6380421df329b58871af9df963a61c
1 /* Header for multibyte character handler.
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #ifndef EMACS_CHARSET_H
23 #define EMACS_CHARSET_H
25 /* #define BYTE_COMBINING_DEBUG */
27 /*** GENERAL NOTE on CHARACTER SET (CHARSET) ***
29 A character set ("charset" hereafter) is a meaningful collection
30 (i.e. language, culture, functionality, etc) of characters. Emacs
31 handles multiple charsets at once. Each charset corresponds to one
32 of ISO charsets. Emacs identifies a charset by a unique
33 identification number, whereas ISO identifies a charset by a triplet
34 of DIMENSION, CHARS and FINAL-CHAR. So, hereafter, just saying
35 "charset" means an identification number (integer value).
37 The value range of charset is 0x00, 0x81..0xFE. There are four
38 kinds of charset depending on DIMENSION (1 or 2) and CHARS (94 or
39 96). For instance, a charset of DIMENSION2_CHARS94 contains 94x94
40 characters.
42 Within Emacs Lisp, a charset is treated as a symbol which has a
43 property `charset'. The property value is a vector containing
44 various information about the charset. For readability of C codes,
45 we use the following convention for C variable names:
46 charset_symbol: Emacs Lisp symbol of a charset
47 charset_id: Emacs Lisp integer of an identification number of a charset
48 charset: C integer of an identification number of a charset
50 Each charset (except for ascii) is assigned a base leading-code
51 (range 0x80..0x9E). In addition, a charset of greater than 0xA0
52 (whose base leading-code is 0x9A..0x9D) is assigned an extended
53 leading-code (range 0xA0..0xFE). In this case, each base
54 leading-code specify the allowable range of extended leading-code as
55 shown in the table below. A leading-code is used to represent a
56 character in Emacs' buffer and string.
58 We call a charset which has extended leading-code as "private
59 charset" because those are mainly for a charset which is not yet
60 registered by ISO. On the contrary, we call a charset which does
61 not have extended leading-code as "official charset".
63 ---------------------------------------------------------------------------
64 charset dimension base leading-code extended leading-code
65 ---------------------------------------------------------------------------
66 0x00 official dim1 -- none -- -- none --
67 (ASCII)
68 0x01..0x7F --never used--
69 0x80 official dim1 -- none -- -- none --
70 (eight-bit-graphic)
71 0x81..0x8F official dim1 same as charset -- none --
72 0x90..0x99 official dim2 same as charset -- none --
73 0x9A..0x9D --never used--
74 0x9E official dim1 same as charset -- none --
75 (eight-bit-control)
76 0x9F --never used--
77 0xA0..0xDF private dim1 0x9A same as charset
78 of 1-column width
79 0xE0..0xEF private dim1 0x9B same as charset
80 of 2-column width
81 0xF0..0xF4 private dim2 0x9C same as charset
82 of 1-column width
83 0xF5..0xFE private dim2 0x9D same as charset
84 of 2-column width
85 0xFF --never used--
86 ---------------------------------------------------------------------------
90 /* Definition of special leading-codes. */
91 /* Leading-code followed by extended leading-code. */
92 #define LEADING_CODE_PRIVATE_11 0x9A /* for private DIMENSION1 of 1-column */
93 #define LEADING_CODE_PRIVATE_12 0x9B /* for private DIMENSION1 of 2-column */
94 #define LEADING_CODE_PRIVATE_21 0x9C /* for private DIMENSION2 of 1-column */
95 #define LEADING_CODE_PRIVATE_22 0x9D /* for private DIMENSION2 of 2-column */
97 #define LEADING_CODE_8_BIT_CONTROL 0x9E /* for `eight-bit-control' */
99 /* Extended leading-code. */
100 /* Start of each extended leading-codes. */
101 #define LEADING_CODE_EXT_11 0xA0 /* follows LEADING_CODE_PRIVATE_11 */
102 #define LEADING_CODE_EXT_12 0xE0 /* follows LEADING_CODE_PRIVATE_12 */
103 #define LEADING_CODE_EXT_21 0xF0 /* follows LEADING_CODE_PRIVATE_21 */
104 #define LEADING_CODE_EXT_22 0xF5 /* follows LEADING_CODE_PRIVATE_22 */
105 /* Maximum value of extended leading-codes. */
106 #define LEADING_CODE_EXT_MAX 0xFE
108 /* Definition of minimum/maximum charset of each DIMENSION. */
109 #define MIN_CHARSET_OFFICIAL_DIMENSION1 0x80
110 #define MAX_CHARSET_OFFICIAL_DIMENSION1 0x8F
111 #define MIN_CHARSET_OFFICIAL_DIMENSION2 0x90
112 #define MAX_CHARSET_OFFICIAL_DIMENSION2 0x99
113 #define MIN_CHARSET_PRIVATE_DIMENSION1 LEADING_CODE_EXT_11
114 #define MIN_CHARSET_PRIVATE_DIMENSION2 LEADING_CODE_EXT_21
116 /* Maximum value of overall charset identification number. */
117 #define MAX_CHARSET 0xFE
119 /* Definition of special charsets. */
120 #define CHARSET_ASCII 0 /* 0x00..0x7F */
121 #define CHARSET_8_BIT_CONTROL 0x9E /* 0x80..0x9F */
122 #define CHARSET_8_BIT_GRAPHIC 0x80 /* 0xA0..0xFF */
124 extern int charset_latin_iso8859_1; /* ISO8859-1 (Latin-1) */
125 extern int charset_jisx0208_1978; /* JISX0208.1978 (Japanese Kanji old set) */
126 extern int charset_jisx0208; /* JISX0208.1983 (Japanese Kanji) */
127 extern int charset_katakana_jisx0201; /* JISX0201.Kana (Japanese Katakana) */
128 extern int charset_latin_jisx0201; /* JISX0201.Roman (Japanese Roman) */
129 extern int charset_big5_1; /* Big5 Level 1 (Chinese Traditional) */
130 extern int charset_big5_2; /* Big5 Level 2 (Chinese Traditional) */
132 /* Check if CH is an ASCII character or a base leading-code.
133 Nowadays, any byte can be the first byte of a character in a
134 multibyte buffer/string. So this macro name is not appropriate. */
135 #define CHAR_HEAD_P(ch) ((unsigned char) (ch) < 0xA0)
137 /*** GENERAL NOTE on CHARACTER REPRESENTATION ***
139 At first, the term "character" or "char" is used for a multilingual
140 character (of course, including ASCII character), not for a byte in
141 computer memory. We use the term "code" or "byte" for the latter
142 case.
144 A character is identified by charset and one or two POSITION-CODEs.
145 POSITION-CODE is the position of the character in the charset. A
146 character of DIMENSION1 charset has one POSITION-CODE: POSITION-CODE-1.
147 A character of DIMENSION2 charset has two POSITION-CODE:
148 POSITION-CODE-1 and POSITION-CODE-2. The code range of
149 POSITION-CODE is 0x20..0x7F.
151 Emacs has two kinds of representation of a character: multi-byte
152 form (for buffer and string) and single-word form (for character
153 object in Emacs Lisp). The latter is called "character code" here
154 after. Both representations encode the information of charset and
155 POSITION-CODE but in a different way (for instance, MSB of
156 POSITION-CODE is set in multi-byte form).
158 For details of multi-byte form, see the section "2. Emacs internal
159 format handlers" of `coding.c'.
161 Emacs uses 19 bits for a character code. The bits are divided into
162 3 fields: FIELD1(5bits):FIELD2(7bits):FIELD3(7bits).
164 A character code of DIMENSION1 character uses FIELD2 to hold charset
165 and FIELD3 to hold POSITION-CODE-1. A character code of DIMENSION2
166 character uses FIELD1 to hold charset, FIELD2 and FIELD3 to hold
167 POSITION-CODE-1 and POSITION-CODE-2 respectively.
169 More precisely...
171 FIELD2 of DIMENSION1 character (except for ascii, eight-bit-control,
172 and eight-bit-graphic) is "charset - 0x70". This is to make all
173 character codes except for ASCII and 8-bit codes greater than 256.
174 So, the range of FIELD2 of DIMENSION1 character is 0, 1, or
175 0x11..0x7F.
177 FIELD1 of DIMENSION2 character is "charset - 0x8F" for official
178 charset and "charset - 0xE0" for private charset. So, the range of
179 FIELD1 of DIMENSION2 character is 0x01..0x1E.
181 -----------------------------------------------------------------------------
182 charset FIELD1 (5-bit) FIELD2 (7-bit) FIELD3 (7-bit)
183 -----------------------------------------------------------------------------
184 ascii 0 0 0x00..0x7F
185 eight-bit-control 0 1 0x00..0x1F
186 eight-bit-graphic 0 1 0x20..0x7F
187 DIMENSION1 0 charset - 0x70 POSITION-CODE-1
188 DIMENSION2(o) charset - 0x8F POSITION-CODE-1 POSITION-CODE-2
189 DIMENSION2(p) charset - 0xE0 POSITION-CODE-1 POSITION-CODE-2
190 -----------------------------------------------------------------------------
191 "(o)": official, "(p)": private
192 -----------------------------------------------------------------------------
195 /* Masks of each field of character code. */
196 #define CHAR_FIELD1_MASK (0x1F << 14)
197 #define CHAR_FIELD2_MASK (0x7F << 7)
198 #define CHAR_FIELD3_MASK 0x7F
200 /* Macros to access each field of character C. */
201 #define CHAR_FIELD1(c) (((c) & CHAR_FIELD1_MASK) >> 14)
202 #define CHAR_FIELD2(c) (((c) & CHAR_FIELD2_MASK) >> 7)
203 #define CHAR_FIELD3(c) ((c) & CHAR_FIELD3_MASK)
205 /* Minimum character code of character of each DIMENSION. */
206 #define MIN_CHAR_OFFICIAL_DIMENSION1 \
207 ((0x81 - 0x70) << 7)
208 #define MIN_CHAR_PRIVATE_DIMENSION1 \
209 ((MIN_CHARSET_PRIVATE_DIMENSION1 - 0x70) << 7)
210 #define MIN_CHAR_OFFICIAL_DIMENSION2 \
211 ((MIN_CHARSET_OFFICIAL_DIMENSION2 - 0x8F) << 14)
212 #define MIN_CHAR_PRIVATE_DIMENSION2 \
213 ((MIN_CHARSET_PRIVATE_DIMENSION2 - 0xE0) << 14)
214 /* Maximum character code currently used plus 1. */
215 #define MAX_CHAR (0x1F << 14)
217 /* 1 if C is a single byte character, else 0. */
218 #define SINGLE_BYTE_CHAR_P(c) ((unsigned) (c) < 0x100)
220 /* 1 if BYTE is an ASCII character in itself, in multibyte mode. */
221 #define ASCII_BYTE_P(byte) ((byte) < 0x80)
223 /* A char-table containing information of each character set.
225 Unlike ordinary char-tables, this doesn't contain any nested table.
226 Only the top level elements are used. Each element is a vector of
227 the following information:
228 CHARSET-ID, BYTES, DIMENSION, CHARS, WIDTH, DIRECTION,
229 LEADING-CODE-BASE, LEADING-CODE-EXT,
230 ISO-FINAL-CHAR, ISO-GRAPHIC-PLANE,
231 REVERSE-CHARSET, SHORT-NAME, LONG-NAME, DESCRIPTION,
232 PLIST.
234 CHARSET-ID (integer) is the identification number of the charset.
236 BYTES (integer) is the length of multi-byte form of a character in
237 the charset: one of 1, 2, 3, and 4.
239 DIMENSION (integer) is the number of bytes to represent a character: 1 or 2.
241 CHARS (integer) is the number of characters in a dimension: 94 or 96.
243 WIDTH (integer) is the number of columns a character in the charset
244 occupies on the screen: one of 0, 1, and 2..
246 DIRECTION (integer) is the rendering direction of characters in the
247 charset when rendering. If 0, render from left to right, else
248 render from right to left.
250 LEADING-CODE-BASE (integer) is the base leading-code for the
251 charset.
253 LEADING-CODE-EXT (integer) is the extended leading-code for the
254 charset. All charsets of less than 0xA0 has the value 0.
256 ISO-FINAL-CHAR (character) is the final character of the
257 corresponding ISO 2022 charset. It is -1 for such a character
258 that is used only internally (e.g. `eight-bit-control').
260 ISO-GRAPHIC-PLANE (integer) is the graphic plane to be invoked
261 while encoding to variants of ISO 2022 coding system, one of the
262 following: 0/graphic-plane-left(GL), 1/graphic-plane-right(GR). It
263 is -1 for such a character that is used only internally
264 (e.g. `eight-bit-control').
266 REVERSE-CHARSET (integer) is the charset which differs only in
267 LEFT-TO-RIGHT value from the charset. If there's no such a
268 charset, the value is -1.
270 SHORT-NAME (string) is the short name to refer to the charset.
272 LONG-NAME (string) is the long name to refer to the charset.
274 DESCRIPTION (string) is the description string of the charset.
276 PLIST (property list) may contain any type of information a user
277 want to put and get by functions `put-charset-property' and
278 `get-charset-property' respectively. */
279 extern Lisp_Object Vcharset_table;
281 /* Macros to access various information of CHARSET in Vcharset_table.
282 We provide these macros for efficiency. No range check of CHARSET. */
284 /* Return entry of CHARSET (C integer) in Vcharset_table. */
285 #define CHARSET_TABLE_ENTRY(charset) \
286 XCHAR_TABLE (Vcharset_table)->contents[((charset) == CHARSET_ASCII \
287 ? 0 : (charset) + 128)]
289 /* Return information INFO-IDX of CHARSET. */
290 #define CHARSET_TABLE_INFO(charset, info_idx) \
291 XVECTOR (CHARSET_TABLE_ENTRY (charset))->contents[info_idx]
293 #define CHARSET_ID_IDX (0)
294 #define CHARSET_BYTES_IDX (1)
295 #define CHARSET_DIMENSION_IDX (2)
296 #define CHARSET_CHARS_IDX (3)
297 #define CHARSET_WIDTH_IDX (4)
298 #define CHARSET_DIRECTION_IDX (5)
299 #define CHARSET_LEADING_CODE_BASE_IDX (6)
300 #define CHARSET_LEADING_CODE_EXT_IDX (7)
301 #define CHARSET_ISO_FINAL_CHAR_IDX (8)
302 #define CHARSET_ISO_GRAPHIC_PLANE_IDX (9)
303 #define CHARSET_REVERSE_CHARSET_IDX (10)
304 #define CHARSET_SHORT_NAME_IDX (11)
305 #define CHARSET_LONG_NAME_IDX (12)
306 #define CHARSET_DESCRIPTION_IDX (13)
307 #define CHARSET_PLIST_IDX (14)
308 /* Size of a vector of each entry of Vcharset_table. */
309 #define CHARSET_MAX_IDX (15)
311 /* And several more macros to be used frequently. */
312 #define CHARSET_BYTES(charset) \
313 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_BYTES_IDX))
314 #define CHARSET_DIMENSION(charset) \
315 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIMENSION_IDX))
316 #define CHARSET_CHARS(charset) \
317 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_CHARS_IDX))
318 #define CHARSET_WIDTH(charset) \
319 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_WIDTH_IDX))
320 #define CHARSET_DIRECTION(charset) \
321 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIRECTION_IDX))
322 #define CHARSET_LEADING_CODE_BASE(charset) \
323 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_BASE_IDX))
324 #define CHARSET_LEADING_CODE_EXT(charset) \
325 XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_EXT_IDX))
326 #define CHARSET_ISO_FINAL_CHAR(charset) \
327 XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_FINAL_CHAR_IDX))
328 #define CHARSET_ISO_GRAPHIC_PLANE(charset) \
329 XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_GRAPHIC_PLANE_IDX))
330 #define CHARSET_REVERSE_CHARSET(charset) \
331 XINT (CHARSET_TABLE_INFO (charset, CHARSET_REVERSE_CHARSET_IDX))
333 /* Macros to specify direction of a charset. */
334 #define CHARSET_DIRECTION_LEFT_TO_RIGHT 0
335 #define CHARSET_DIRECTION_RIGHT_TO_LEFT 1
337 /* A vector of charset symbol indexed by charset-id. This is used
338 only for returning charset symbol from C functions. */
339 extern Lisp_Object Vcharset_symbol_table;
341 /* Return symbol of CHARSET. */
342 #define CHARSET_SYMBOL(charset) \
343 XVECTOR (Vcharset_symbol_table)->contents[charset]
345 /* 1 if CHARSET is in valid value range, else 0. */
346 #define CHARSET_VALID_P(charset) \
347 ((charset) == 0 \
348 || ((charset) > 0x80 && (charset) <= MAX_CHARSET_OFFICIAL_DIMENSION2) \
349 || ((charset) >= MIN_CHARSET_PRIVATE_DIMENSION1 \
350 && (charset) <= MAX_CHARSET) \
351 || ((charset) == CHARSET_8_BIT_CONTROL) \
352 || ((charset) == CHARSET_8_BIT_GRAPHIC))
354 /* 1 if CHARSET is already defined, else 0. */
355 #define CHARSET_DEFINED_P(charset) \
356 (((charset) >= 0) && ((charset) <= MAX_CHARSET) \
357 && !NILP (CHARSET_TABLE_ENTRY (charset)))
359 /* Since the information CHARSET-BYTES and CHARSET-WIDTH of
360 Vcharset_table can be retrieved only by the first byte of
361 multi-byte form (an ASCII code or a base leading-code), we provide
362 here tables to be used by macros BYTES_BY_CHAR_HEAD and
363 WIDTH_BY_CHAR_HEAD for faster information retrieval. */
364 extern int bytes_by_char_head[256];
365 extern int width_by_char_head[256];
367 #define BYTES_BY_CHAR_HEAD(char_head) \
368 (ASCII_BYTE_P (char_head) ? 1 : bytes_by_char_head[char_head])
369 #define WIDTH_BY_CHAR_HEAD(char_head) \
370 (ASCII_BYTE_P (char_head) ? 1 : width_by_char_head[char_head])
372 /* Charset of the character C. */
373 #define CHAR_CHARSET(c) \
374 (SINGLE_BYTE_CHAR_P (c) \
375 ? (ASCII_BYTE_P (c) \
376 ? CHARSET_ASCII \
377 : (c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC) \
378 : ((c) < MIN_CHAR_OFFICIAL_DIMENSION2 \
379 ? CHAR_FIELD2 (c) + 0x70 \
380 : ((c) < MIN_CHAR_PRIVATE_DIMENSION2 \
381 ? CHAR_FIELD1 (c) + 0x8F \
382 : CHAR_FIELD1 (c) + 0xE0)))
384 /* Check if two characters C1 and C2 belong to the same charset. */
385 #define SAME_CHARSET_P(c1, c2) \
386 (c1 < MIN_CHAR_OFFICIAL_DIMENSION2 \
387 ? (c1 & CHAR_FIELD2_MASK) == (c2 & CHAR_FIELD2_MASK) \
388 : (c1 & CHAR_FIELD1_MASK) == (c2 & CHAR_FIELD1_MASK))
390 /* Return a character of which charset is CHARSET and position-codes
391 are C1 and C2. DIMENSION1 character ignores C2. */
392 #define MAKE_CHAR(charset, c1, c2) \
393 ((charset) == CHARSET_ASCII \
394 ? (c1) & 0x7F \
395 : (((charset) == CHARSET_8_BIT_CONTROL \
396 || (charset) == CHARSET_8_BIT_GRAPHIC) \
397 ? ((c1) & 0x7F) | 0x80 \
398 : ((CHARSET_DEFINED_P (charset) \
399 ? CHARSET_DIMENSION (charset) == 1 \
400 : (charset) < MIN_CHARSET_PRIVATE_DIMENSION2) \
401 ? (((charset) - 0x70) << 7) | ((c1) <= 0 ? 0 : ((c1) & 0x7F)) \
402 : ((((charset) \
403 - ((charset) < MIN_CHARSET_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)) \
404 << 14) \
405 | ((c2) <= 0 ? 0 : ((c2) & 0x7F)) \
406 | ((c1) <= 0 ? 0 : (((c1) & 0x7F) << 7))))))
409 /* If GENERICP is nonzero, return nonzero iff C is a valid normal or
410 generic character. If GENERICP is zero, return nonzero iff C is a
411 valid normal character. */
412 #define CHAR_VALID_P(c, genericp) \
413 ((c) >= 0 \
414 && (SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, genericp)))
416 /* This default value is used when nonascii-translation-table or
417 nonascii-insert-offset fail to convert unibyte character to a valid
418 multibyte character. This makes a Latin-1 character. */
420 #define DEFAULT_NONASCII_INSERT_OFFSET 0x800
422 /* Parse multibyte string STR of length LENGTH and set BYTES to the
423 byte length of a character at STR. */
425 #ifdef BYTE_COMBINING_DEBUG
427 #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
428 do { \
429 int i = 1; \
430 while (i < (length) && ! CHAR_HEAD_P ((str)[i])) i++; \
431 (bytes) = BYTES_BY_CHAR_HEAD ((str)[0]); \
432 if ((bytes) > i) \
433 abort (); \
434 } while (0)
436 #else /* not BYTE_COMBINING_DEBUG */
438 #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
439 (bytes) = BYTES_BY_CHAR_HEAD ((str)[0])
441 #endif /* not BYTE_COMBINING_DEBUG */
443 /* Return 1 iff the byte sequence at unibyte string STR (LENGTH bytes)
444 is valid as a multibyte form. If valid, by a side effect, BYTES is
445 set to the byte length of the multibyte form. */
447 #define UNIBYTE_STR_AS_MULTIBYTE_P(str, length, bytes) \
448 (((str)[0] < 0x80 || (str)[0] >= 0xA0) \
449 ? (bytes) = 1 \
450 : (((bytes) = BYTES_BY_CHAR_HEAD ((str)[0])), \
451 ((bytes) > 1 && (bytes) <= (length) \
452 && (str)[0] != LEADING_CODE_8_BIT_CONTROL \
453 && !CHAR_HEAD_P ((str)[1]) \
454 && ((bytes) == 2 \
455 || (!CHAR_HEAD_P ((str)[2]) \
456 && ((bytes) == 3 \
457 || !CHAR_HEAD_P ((str)[3])))))))
459 /* Return 1 iff the byte sequence at multibyte string STR is valid as
460 a unibyte form. By a side effect, BYTES is set to the byte length
461 of one character at STR. */
463 #define MULTIBYTE_STR_AS_UNIBYTE_P(str, bytes) \
464 ((bytes) = BYTES_BY_CHAR_HEAD ((str)[0]), \
465 (str)[0] != LEADING_CODE_8_BIT_CONTROL)
467 /* The charset of character C is stored in CHARSET, and the
468 position-codes of C are stored in C1 and C2.
469 We store -1 in C2 if the dimension of the charset is 1. */
471 #define SPLIT_CHAR(c, charset, c1, c2) \
472 (SINGLE_BYTE_CHAR_P (c) \
473 ? ((charset \
474 = (ASCII_BYTE_P (c) \
475 ? CHARSET_ASCII \
476 : ((c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC))), \
477 c1 = (c), c2 = -1) \
478 : ((c) & CHAR_FIELD1_MASK \
479 ? (charset = (CHAR_FIELD1 (c) \
480 + ((c) < MIN_CHAR_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)), \
481 c1 = CHAR_FIELD2 (c), \
482 c2 = CHAR_FIELD3 (c)) \
483 : (charset = CHAR_FIELD2 (c) + 0x70, \
484 c1 = CHAR_FIELD3 (c), \
485 c2 = -1)))
487 /* Return 1 iff character C has valid printable glyph. */
488 #define CHAR_PRINTABLE_P(c) (ASCII_BYTE_P (c) || char_printable_p (c))
490 /* The charset of the character at STR is stored in CHARSET, and the
491 position-codes are stored in C1 and C2.
492 We store -1 in C2 if the character is just 2 bytes. */
494 #define SPLIT_STRING(str, len, charset, c1, c2) \
495 ((BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) < 2 \
496 || BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) > len \
497 || split_string (str, len, &charset, &c1, &c2) < 0) \
498 ? c1 = *(str), charset = CHARSET_ASCII \
499 : charset)
501 /* Mapping table from ISO2022's charset (specified by DIMENSION,
502 CHARS, and FINAL_CHAR) to Emacs' charset. Should be accessed by
503 macro ISO_CHARSET_TABLE (DIMENSION, CHARS, FINAL_CHAR). */
504 extern int iso_charset_table[2][2][128];
506 #define ISO_CHARSET_TABLE(dimension, chars, final_char) \
507 iso_charset_table[XINT (dimension) - 1][XINT (chars) > 94][XINT (final_char)]
509 #define BASE_LEADING_CODE_P(c) (BYTES_BY_CHAR_HEAD ((unsigned char) (c)) > 1)
511 /* Return how many bytes C will occupy in a multibyte buffer. */
512 #define CHAR_BYTES(c) \
513 (SINGLE_BYTE_CHAR_P (c) \
514 ? ((ASCII_BYTE_P (c) || (c) >= 0xA0) ? 1 : 2) \
515 : char_bytes (c))
517 /* The following two macros CHAR_STRING and STRING_CHAR are the main
518 entry points to convert between Emacs two types of character
519 representations: multi-byte form and single-word form (character
520 code). */
522 /* Store multi-byte form of the character C in STR. The caller should
523 allocate at least MAX_MULTIBYTE_LENGTH bytes area at STR in
524 advance. Returns the length of the multi-byte form. If C is an
525 invalid character code, signal an error. */
527 #define CHAR_STRING(c, str) \
528 (ASCII_BYTE_P (c) \
529 ? (*(str) = (unsigned char)(c), 1) \
530 : char_to_string (c, (unsigned char *) str))
532 /* Return a character code of the character of which multi-byte form
533 is at STR and the length is LEN. If STR doesn't contain valid
534 multi-byte form, only the first byte in STR is returned. */
536 #define STRING_CHAR(str, len) \
537 (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
538 ? (unsigned char) *(str) \
539 : string_to_char (str, len, 0))
541 /* This is like STRING_CHAR but the third arg ACTUAL_LEN is set to the
542 length of the multi-byte form. Just to know the length, use
543 MULTIBYTE_FORM_LENGTH. */
545 #define STRING_CHAR_AND_LENGTH(str, len, actual_len) \
546 (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
547 ? ((actual_len) = 1), (unsigned char) *(str) \
548 : string_to_char (str, len, &(actual_len)))
550 /* Fetch the "next" character from Lisp string STRING at byte position
551 BYTEIDX, character position CHARIDX. Store it into OUTPUT.
553 All the args must be side-effect-free.
554 BYTEIDX and CHARIDX must be lvalues;
555 we increment them past the character fetched. */
557 #define FETCH_STRING_CHAR_ADVANCE(OUTPUT, STRING, CHARIDX, BYTEIDX) \
558 if (1) \
560 CHARIDX++; \
561 if (STRING_MULTIBYTE (STRING)) \
563 unsigned char *ptr = &XSTRING (STRING)->data[BYTEIDX]; \
564 int space_left = XSTRING (STRING)->size_byte - BYTEIDX; \
565 int actual_len; \
567 OUTPUT = STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
568 BYTEIDX += actual_len; \
570 else \
571 OUTPUT = XSTRING (STRING)->data[BYTEIDX++]; \
573 else
575 /* Like FETCH_STRING_CHAR_ADVANCE but assume STRING is multibyte. */
577 #define FETCH_STRING_CHAR_ADVANCE_NO_CHECK(OUTPUT, STRING, CHARIDX, BYTEIDX) \
578 if (1) \
580 unsigned char *fetch_string_char_ptr = &XSTRING (STRING)->data[BYTEIDX]; \
581 int fetch_string_char_space_left = XSTRING (STRING)->size_byte - BYTEIDX; \
582 int actual_len; \
584 OUTPUT \
585 = STRING_CHAR_AND_LENGTH (fetch_string_char_ptr, \
586 fetch_string_char_space_left, actual_len); \
588 BYTEIDX += actual_len; \
589 CHARIDX++; \
591 else
593 /* Like FETCH_STRING_CHAR_ADVANCE but fetch character from the current
594 buffer. */
596 #define FETCH_CHAR_ADVANCE(OUTPUT, CHARIDX, BYTEIDX) \
597 if (1) \
599 CHARIDX++; \
600 if (!NILP (current_buffer->enable_multibyte_characters)) \
602 unsigned char *ptr = BYTE_POS_ADDR (BYTEIDX); \
603 int space_left = ((CHARIDX < GPT ? GPT_BYTE : Z_BYTE) - BYTEIDX); \
604 int actual_len; \
606 OUTPUT= STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
607 BYTEIDX += actual_len; \
609 else \
611 OUTPUT = *(BYTE_POS_ADDR (BYTEIDX)); \
612 BYTEIDX++; \
615 else
617 /* Return the length of the multi-byte form at string STR of length LEN. */
619 #define MULTIBYTE_FORM_LENGTH(str, len) \
620 (BYTES_BY_CHAR_HEAD (*(unsigned char *)(str)) == 1 \
621 ? 1 \
622 : multibyte_form_length (str, len))
624 #ifdef emacs
626 /* Increase the buffer byte position POS_BYTE of the current buffer to
627 the next character boundary. This macro relies on the fact that
628 *GPT_ADDR and *Z_ADDR are always accessible and the values are
629 '\0'. No range checking of POS. */
631 #ifdef BYTE_COMBINING_DEBUG
633 #define INC_POS(pos_byte) \
634 do { \
635 unsigned char *p = BYTE_POS_ADDR (pos_byte); \
636 if (BASE_LEADING_CODE_P (*p)) \
638 int len, bytes; \
639 len = Z_BYTE - pos_byte; \
640 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
641 pos_byte += bytes; \
643 else \
644 pos_byte++; \
645 } while (0)
647 #else /* not BYTE_COMBINING_DEBUG */
649 #define INC_POS(pos_byte) \
650 do { \
651 unsigned char *p = BYTE_POS_ADDR (pos_byte); \
652 pos_byte += BYTES_BY_CHAR_HEAD (*p); \
653 } while (0)
655 #endif /* not BYTE_COMBINING_DEBUG */
657 /* Decrease the buffer byte position POS_BYTE of the current buffer to
658 the previous character boundary. No range checking of POS. */
659 #define DEC_POS(pos_byte) \
660 do { \
661 unsigned char *p, *p_min; \
663 pos_byte--; \
664 if (pos_byte < GPT_BYTE) \
665 p = BEG_ADDR + pos_byte - 1, p_min = BEG_ADDR; \
666 else \
667 p = BEG_ADDR + GAP_SIZE + pos_byte - 1, p_min = GAP_END_ADDR; \
668 if (p > p_min && !CHAR_HEAD_P (*p)) \
670 unsigned char *pend = p--; \
671 int len, bytes; \
672 while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
673 len = pend + 1 - p; \
674 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
675 if (bytes == len) \
676 pos_byte -= len - 1; \
678 } while (0)
680 /* Increment both CHARPOS and BYTEPOS, each in the appropriate way. */
682 #define INC_BOTH(charpos, bytepos) \
683 do \
685 (charpos)++; \
686 if (NILP (current_buffer->enable_multibyte_characters)) \
687 (bytepos)++; \
688 else \
689 INC_POS ((bytepos)); \
691 while (0)
693 /* Decrement both CHARPOS and BYTEPOS, each in the appropriate way. */
695 #define DEC_BOTH(charpos, bytepos) \
696 do \
698 (charpos)--; \
699 if (NILP (current_buffer->enable_multibyte_characters)) \
700 (bytepos)--; \
701 else \
702 DEC_POS ((bytepos)); \
704 while (0)
706 /* Increase the buffer byte position POS_BYTE of the current buffer to
707 the next character boundary. This macro relies on the fact that
708 *GPT_ADDR and *Z_ADDR are always accessible and the values are
709 '\0'. No range checking of POS_BYTE. */
711 #ifdef BYTE_COMBINING_DEBUG
713 #define BUF_INC_POS(buf, pos_byte) \
714 do { \
715 unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
716 if (BASE_LEADING_CODE_P (*p)) \
718 int len, bytes; \
719 len = BUF_Z_BYTE (buf) - pos_byte; \
720 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
721 pos_byte += bytes; \
723 else \
724 pos_byte++; \
725 } while (0)
727 #else /* not BYTE_COMBINING_DEBUG */
729 #define BUF_INC_POS(buf, pos_byte) \
730 do { \
731 unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
732 pos_byte += BYTES_BY_CHAR_HEAD (*p); \
733 } while (0)
735 #endif /* not BYTE_COMBINING_DEBUG */
737 /* Decrease the buffer byte position POS_BYTE of the current buffer to
738 the previous character boundary. No range checking of POS_BYTE. */
739 #define BUF_DEC_POS(buf, pos_byte) \
740 do { \
741 unsigned char *p, *p_min; \
742 pos_byte--; \
743 if (pos_byte < BUF_GPT_BYTE (buf)) \
745 p = BUF_BEG_ADDR (buf) + pos_byte - 1; \
746 p_min = BUF_BEG_ADDR (buf); \
748 else \
750 p = BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + pos_byte - 1; \
751 p_min = BUF_GAP_END_ADDR (buf); \
753 if (p > p_min && !CHAR_HEAD_P (*p)) \
755 unsigned char *pend = p--; \
756 int len, bytes; \
757 while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
758 len = pend + 1 - p; \
759 PARSE_MULTIBYTE_SEQ (p, len, bytes); \
760 if (bytes == len) \
761 pos_byte -= len - 1; \
763 } while (0)
765 #endif /* emacs */
767 /* This is the maximum byte length of multi-byte sequence. */
768 #define MAX_MULTIBYTE_LENGTH 4
770 extern void invalid_character P_ ((int));
772 extern int translate_char P_ ((Lisp_Object, int, int, int, int));
773 extern int split_string P_ ((const unsigned char *, int, int *,
774 unsigned char *, unsigned char *));
775 extern int char_to_string P_ ((int, unsigned char *));
776 extern int string_to_char P_ ((const unsigned char *, int, int *));
777 extern int char_printable_p P_ ((int c));
778 extern int multibyte_form_length P_ ((const unsigned char *, int));
779 extern void parse_str_as_multibyte P_ ((unsigned char *, int, int *, int *));
780 extern int str_as_multibyte P_ ((unsigned char *, int, int, int *));
781 extern int str_to_multibyte P_ ((unsigned char *, int, int));
782 extern int str_as_unibyte P_ ((unsigned char *, int));
783 extern int get_charset_id P_ ((Lisp_Object));
784 extern int find_charset_in_text P_ ((unsigned char *, int, int, int *,
785 Lisp_Object));
786 extern int strwidth P_ ((unsigned char *, int));
787 extern int char_bytes P_ ((int));
788 extern int char_valid_p P_ ((int, int));
790 extern Lisp_Object Vtranslation_table_vector;
792 /* Return a translation table of id number ID. */
793 #define GET_TRANSLATION_TABLE(id) \
794 (XCDR(XVECTOR(Vtranslation_table_vector)->contents[(id)]))
796 /* A char-table for characters which may invoke auto-filling. */
797 extern Lisp_Object Vauto_fill_chars;
799 /* Copy LEN bytes from FROM to TO. This macro should be used only
800 when a caller knows that LEN is short and the obvious copy loop is
801 faster than calling bcopy which has some overhead. Copying a
802 multibyte sequence of a multibyte character is the typical case. */
804 #define BCOPY_SHORT(from, to, len) \
805 do { \
806 int i = len; \
807 unsigned char *from_p = from, *to_p = to; \
808 while (i--) *to_p++ = *from_p++; \
809 } while (0)
811 #endif /* EMACS_CHARSET_H */