(archive-unixdate): Corrected the date field string.
[emacs.git] / src / regex.c
blob148100805eb7021a0aa8e1ec496e4c5b560245b3
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
118 # include "lisp.h"
119 # include "buffer.h"
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
124 # include "syntax.h"
125 # include "charset.h"
126 # include "category.h"
128 # ifdef malloc
129 # undef malloc
130 # endif
131 # define malloc xmalloc
132 # ifdef realloc
133 # undef realloc
134 # endif
135 # define realloc xrealloc
136 # ifdef free
137 # undef free
138 # endif
139 # define free xfree
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
155 do { \
156 if (multibyte) \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
169 #else /* not emacs */
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
174 # undef REL_ALLOC
176 # if defined STDC_HEADERS || defined _LIBC
177 # include <stdlib.h>
178 # else
179 char *malloc ();
180 char *realloc ();
181 # endif
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
189 # endif
190 # endif
191 # endif
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198 # include <string.h>
199 # ifndef bzero
200 # ifndef _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
202 # else
203 # define bzero(s, n) __bzero (s, n)
204 # endif
205 # endif
206 # else
207 # include <strings.h>
208 # ifndef memcmp
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
210 # endif
211 # ifndef memcpy
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
213 # endif
214 # endif
215 # endif
217 /* Define the syntax stuff for \<, \>, etc. */
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode { Swhitespace = 0, Sword = 1 };
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
224 # else
225 # define SWITCH_ENUM_CAST(x) (x)
226 # endif
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
250 #ifndef RE_TRANSLATE
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
253 #endif
255 /* Get the interface, including the syntax bits. */
256 #include "regex.h"
258 /* isalpha etc. are used for the character classes. */
259 #include <ctype.h>
261 #ifdef emacs
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269 /* The Emacs definitions should not be directly affected by locales. */
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281 /* The rest must handle multibyte characters. */
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
285 : 1)
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
289 : 1)
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
302 # define ISLOWER(c) (LOWERCASEP (c))
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313 # define ISUPPER(c) (UPPERCASEP (c))
315 # define ISWORD(c) (SYNTAX (c) == Sword)
317 #else /* not emacs */
319 /* Jim Meyering writes:
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
331 # undef ISASCII
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
334 # else
335 # define ISASCII(c) isascii(c)
336 # endif
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
344 # ifdef isblank
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
346 # else
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348 # endif
349 # ifdef isgraph
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351 # else
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353 # endif
355 # undef ISPRINT
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367 # define ISWORD(c) ISALPHA(c)
369 # ifdef _tolower
370 # define TOLOWER(c) _tolower(c)
371 # else
372 # define TOLOWER(c) tolower(c)
373 # endif
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
378 # ifdef SYNTAX_TABLE
380 extern char *re_syntax_table;
382 # else /* not SYNTAX_TABLE */
384 static char re_syntax_table[CHAR_SET_SIZE];
386 static void
387 init_syntax_once ()
389 register int c;
390 static int done = 0;
392 if (done)
393 return;
395 bzero (re_syntax_table, sizeof re_syntax_table);
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
401 re_syntax_table['_'] = Sword;
403 done = 1;
406 # endif /* not SYNTAX_TABLE */
408 # define SYNTAX(c) re_syntax_table[(c)]
410 #endif /* not emacs */
412 #ifndef NULL
413 # define NULL (void *)0
414 #endif
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
421 #if __STDC__
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
426 #endif
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
438 #ifdef REGEX_MALLOC
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
444 #else /* not REGEX_MALLOC */
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # if HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
458 # endif /* not alloca */
460 # define REGEX_ALLOCATE alloca
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470 #endif /* not REGEX_MALLOC */
472 /* Define how to allocate the failure stack. */
474 #if defined REL_ALLOC && defined REGEX_MALLOC
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
483 #else /* not using relocating allocator */
485 # ifdef REGEX_MALLOC
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
491 # else /* not REGEX_MALLOC */
493 # define REGEX_ALLOCATE_STACK alloca
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517 #define BYTEWIDTH 8 /* In bits. */
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521 #undef MAX
522 #undef MIN
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char;
529 typedef char boolean;
530 #define false 0
531 #define true 1
533 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
545 typedef enum
547 no_op = 0,
549 /* Succeed right away--no more backtracking. */
550 succeed,
552 /* Followed by one byte giving n, then by n literal bytes. */
553 exactn,
555 /* Matches any (more or less) character. */
556 anychar,
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
572 charset,
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
576 charset_not,
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
581 field. */
582 start_memory,
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
587 pattern buffer. */
588 stop_memory,
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
592 duplicate,
594 /* Fail unless at beginning of line. */
595 begline,
597 /* Fail unless at end of line. */
598 endline,
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
602 begbuf,
604 /* Analogously, for end of buffer/string. */
605 endbuf,
607 /* Followed by two byte relative address to which to jump. */
608 jump,
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
612 on_failure_jump,
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump,
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart,
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
641 succeed_n,
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
645 jump_n,
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
650 set_number_at,
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
655 wordbound, /* Succeeds if at a word boundary. */
656 notwordbound, /* Succeeds if not at a word boundary. */
658 /* Matches any character whose syntax is specified. Followed by
659 a byte which contains a syntax code, e.g., Sword. */
660 syntaxspec,
662 /* Matches any character whose syntax is not that specified. */
663 notsyntaxspec
665 #ifdef emacs
666 ,before_dot, /* Succeeds if before point. */
667 at_dot, /* Succeeds if at point. */
668 after_dot, /* Succeeds if after point. */
670 /* Matches any character whose category-set contains the specified
671 category. The operator is followed by a byte which contains a
672 category code (mnemonic ASCII character). */
673 categoryspec,
675 /* Matches any character whose category-set does not contain the
676 specified category. The operator is followed by a byte which
677 contains the category code (mnemonic ASCII character). */
678 notcategoryspec
679 #endif /* emacs */
680 } re_opcode_t;
682 /* Common operations on the compiled pattern. */
684 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
686 #define STORE_NUMBER(destination, number) \
687 do { \
688 (destination)[0] = (number) & 0377; \
689 (destination)[1] = (number) >> 8; \
690 } while (0)
692 /* Same as STORE_NUMBER, except increment DESTINATION to
693 the byte after where the number is stored. Therefore, DESTINATION
694 must be an lvalue. */
696 #define STORE_NUMBER_AND_INCR(destination, number) \
697 do { \
698 STORE_NUMBER (destination, number); \
699 (destination) += 2; \
700 } while (0)
702 /* Put into DESTINATION a number stored in two contiguous bytes starting
703 at SOURCE. */
705 #define EXTRACT_NUMBER(destination, source) \
706 do { \
707 (destination) = *(source) & 0377; \
708 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
709 } while (0)
711 #ifdef DEBUG
712 static void extract_number _RE_ARGS ((int *dest, re_char *source));
713 static void
714 extract_number (dest, source)
715 int *dest;
716 re_char *source;
718 int temp = SIGN_EXTEND_CHAR (*(source + 1));
719 *dest = *source & 0377;
720 *dest += temp << 8;
723 # ifndef EXTRACT_MACROS /* To debug the macros. */
724 # undef EXTRACT_NUMBER
725 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
726 # endif /* not EXTRACT_MACROS */
728 #endif /* DEBUG */
730 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
731 SOURCE must be an lvalue. */
733 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
734 do { \
735 EXTRACT_NUMBER (destination, source); \
736 (source) += 2; \
737 } while (0)
739 #ifdef DEBUG
740 static void extract_number_and_incr _RE_ARGS ((int *destination,
741 re_char **source));
742 static void
743 extract_number_and_incr (destination, source)
744 int *destination;
745 re_char **source;
747 extract_number (destination, *source);
748 *source += 2;
751 # ifndef EXTRACT_MACROS
752 # undef EXTRACT_NUMBER_AND_INCR
753 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
754 extract_number_and_incr (&dest, &src)
755 # endif /* not EXTRACT_MACROS */
757 #endif /* DEBUG */
759 /* Store a multibyte character in three contiguous bytes starting
760 DESTINATION, and increment DESTINATION to the byte after where the
761 character is stored. Therefore, DESTINATION must be an lvalue. */
763 #define STORE_CHARACTER_AND_INCR(destination, character) \
764 do { \
765 (destination)[0] = (character) & 0377; \
766 (destination)[1] = ((character) >> 8) & 0377; \
767 (destination)[2] = (character) >> 16; \
768 (destination) += 3; \
769 } while (0)
771 /* Put into DESTINATION a character stored in three contiguous bytes
772 starting at SOURCE. */
774 #define EXTRACT_CHARACTER(destination, source) \
775 do { \
776 (destination) = ((source)[0] \
777 | ((source)[1] << 8) \
778 | ((source)[2] << 16)); \
779 } while (0)
782 /* Macros for charset. */
784 /* Size of bitmap of charset P in bytes. P is a start of charset,
785 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
786 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
788 /* Nonzero if charset P has range table. */
789 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
791 /* Return the address of range table of charset P. But not the start
792 of table itself, but the before where the number of ranges is
793 stored. `2 +' means to skip re_opcode_t and size of bitmap,
794 and the 2 bytes of flags at the start of the range table. */
795 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
797 /* Extract the bit flags that start a range table. */
798 #define CHARSET_RANGE_TABLE_BITS(p) \
799 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
800 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
802 /* Test if C is listed in the bitmap of charset P. */
803 #define CHARSET_LOOKUP_BITMAP(p, c) \
804 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
805 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
807 /* Return the address of end of RANGE_TABLE. COUNT is number of
808 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
809 is start of range and end of range. `* 3' is size of each start
810 and end. */
811 #define CHARSET_RANGE_TABLE_END(range_table, count) \
812 ((range_table) + (count) * 2 * 3)
814 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
815 COUNT is number of ranges in RANGE_TABLE. */
816 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
817 do \
819 re_wchar_t range_start, range_end; \
820 re_char *p; \
821 re_char *range_table_end \
822 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 for (p = (range_table); p < range_table_end; p += 2 * 3) \
826 EXTRACT_CHARACTER (range_start, p); \
827 EXTRACT_CHARACTER (range_end, p + 3); \
829 if (range_start <= (c) && (c) <= range_end) \
831 (not) = !(not); \
832 break; \
836 while (0)
838 /* Test if C is in range table of CHARSET. The flag NOT is negated if
839 C is listed in it. */
840 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
841 do \
843 /* Number of ranges in range table. */ \
844 int count; \
845 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 EXTRACT_NUMBER_AND_INCR (count, range_table); \
848 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
850 while (0)
852 /* If DEBUG is defined, Regex prints many voluminous messages about what
853 it is doing (if the variable `debug' is nonzero). If linked with the
854 main program in `iregex.c', you can enter patterns and strings
855 interactively. And if linked with the main program in `main.c' and
856 the other test files, you can run the already-written tests. */
858 #ifdef DEBUG
860 /* We use standard I/O for debugging. */
861 # include <stdio.h>
863 /* It is useful to test things that ``must'' be true when debugging. */
864 # include <assert.h>
866 static int debug = -100000;
868 # define DEBUG_STATEMENT(e) e
869 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
870 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
871 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
872 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
873 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
874 if (debug > 0) print_partial_compiled_pattern (s, e)
875 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
876 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
879 /* Print the fastmap in human-readable form. */
881 void
882 print_fastmap (fastmap)
883 char *fastmap;
885 unsigned was_a_range = 0;
886 unsigned i = 0;
888 while (i < (1 << BYTEWIDTH))
890 if (fastmap[i++])
892 was_a_range = 0;
893 putchar (i - 1);
894 while (i < (1 << BYTEWIDTH) && fastmap[i])
896 was_a_range = 1;
897 i++;
899 if (was_a_range)
901 printf ("-");
902 putchar (i - 1);
906 putchar ('\n');
910 /* Print a compiled pattern string in human-readable form, starting at
911 the START pointer into it and ending just before the pointer END. */
913 void
914 print_partial_compiled_pattern (start, end)
915 re_char *start;
916 re_char *end;
918 int mcnt, mcnt2;
919 re_char *p = start;
920 re_char *pend = end;
922 if (start == NULL)
924 printf ("(null)\n");
925 return;
928 /* Loop over pattern commands. */
929 while (p < pend)
931 printf ("%d:\t", p - start);
933 switch ((re_opcode_t) *p++)
935 case no_op:
936 printf ("/no_op");
937 break;
939 case succeed:
940 printf ("/succeed");
941 break;
943 case exactn:
944 mcnt = *p++;
945 printf ("/exactn/%d", mcnt);
948 putchar ('/');
949 putchar (*p++);
951 while (--mcnt);
952 break;
954 case start_memory:
955 printf ("/start_memory/%d", *p++);
956 break;
958 case stop_memory:
959 printf ("/stop_memory/%d", *p++);
960 break;
962 case duplicate:
963 printf ("/duplicate/%d", *p++);
964 break;
966 case anychar:
967 printf ("/anychar");
968 break;
970 case charset:
971 case charset_not:
973 register int c, last = -100;
974 register int in_range = 0;
975 int length = CHARSET_BITMAP_SIZE (p - 1);
976 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
978 printf ("/charset [%s",
979 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
981 assert (p + *p < pend);
983 for (c = 0; c < 256; c++)
984 if (c / 8 < length
985 && (p[1 + (c/8)] & (1 << (c % 8))))
987 /* Are we starting a range? */
988 if (last + 1 == c && ! in_range)
990 putchar ('-');
991 in_range = 1;
993 /* Have we broken a range? */
994 else if (last + 1 != c && in_range)
996 putchar (last);
997 in_range = 0;
1000 if (! in_range)
1001 putchar (c);
1003 last = c;
1006 if (in_range)
1007 putchar (last);
1009 putchar (']');
1011 p += 1 + length;
1013 if (has_range_table)
1015 int count;
1016 printf ("has-range-table");
1018 /* ??? Should print the range table; for now, just skip it. */
1019 p += 2; /* skip range table bits */
1020 EXTRACT_NUMBER_AND_INCR (count, p);
1021 p = CHARSET_RANGE_TABLE_END (p, count);
1024 break;
1026 case begline:
1027 printf ("/begline");
1028 break;
1030 case endline:
1031 printf ("/endline");
1032 break;
1034 case on_failure_jump:
1035 extract_number_and_incr (&mcnt, &p);
1036 printf ("/on_failure_jump to %d", p + mcnt - start);
1037 break;
1039 case on_failure_keep_string_jump:
1040 extract_number_and_incr (&mcnt, &p);
1041 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1042 break;
1044 case on_failure_jump_nastyloop:
1045 extract_number_and_incr (&mcnt, &p);
1046 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1047 break;
1049 case on_failure_jump_loop:
1050 extract_number_and_incr (&mcnt, &p);
1051 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
1052 break;
1054 case on_failure_jump_smart:
1055 extract_number_and_incr (&mcnt, &p);
1056 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
1057 break;
1059 case jump:
1060 extract_number_and_incr (&mcnt, &p);
1061 printf ("/jump to %d", p + mcnt - start);
1062 break;
1064 case succeed_n:
1065 extract_number_and_incr (&mcnt, &p);
1066 extract_number_and_incr (&mcnt2, &p);
1067 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1068 break;
1070 case jump_n:
1071 extract_number_and_incr (&mcnt, &p);
1072 extract_number_and_incr (&mcnt2, &p);
1073 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1074 break;
1076 case set_number_at:
1077 extract_number_and_incr (&mcnt, &p);
1078 extract_number_and_incr (&mcnt2, &p);
1079 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1080 break;
1082 case wordbound:
1083 printf ("/wordbound");
1084 break;
1086 case notwordbound:
1087 printf ("/notwordbound");
1088 break;
1090 case wordbeg:
1091 printf ("/wordbeg");
1092 break;
1094 case wordend:
1095 printf ("/wordend");
1097 case syntaxspec:
1098 printf ("/syntaxspec");
1099 mcnt = *p++;
1100 printf ("/%d", mcnt);
1101 break;
1103 case notsyntaxspec:
1104 printf ("/notsyntaxspec");
1105 mcnt = *p++;
1106 printf ("/%d", mcnt);
1107 break;
1109 # ifdef emacs
1110 case before_dot:
1111 printf ("/before_dot");
1112 break;
1114 case at_dot:
1115 printf ("/at_dot");
1116 break;
1118 case after_dot:
1119 printf ("/after_dot");
1120 break;
1122 case categoryspec:
1123 printf ("/categoryspec");
1124 mcnt = *p++;
1125 printf ("/%d", mcnt);
1126 break;
1128 case notcategoryspec:
1129 printf ("/notcategoryspec");
1130 mcnt = *p++;
1131 printf ("/%d", mcnt);
1132 break;
1133 # endif /* emacs */
1135 case begbuf:
1136 printf ("/begbuf");
1137 break;
1139 case endbuf:
1140 printf ("/endbuf");
1141 break;
1143 default:
1144 printf ("?%d", *(p-1));
1147 putchar ('\n');
1150 printf ("%d:\tend of pattern.\n", p - start);
1154 void
1155 print_compiled_pattern (bufp)
1156 struct re_pattern_buffer *bufp;
1158 re_char *buffer = bufp->buffer;
1160 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1161 printf ("%ld bytes used/%ld bytes allocated.\n",
1162 bufp->used, bufp->allocated);
1164 if (bufp->fastmap_accurate && bufp->fastmap)
1166 printf ("fastmap: ");
1167 print_fastmap (bufp->fastmap);
1170 printf ("re_nsub: %d\t", bufp->re_nsub);
1171 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1172 printf ("can_be_null: %d\t", bufp->can_be_null);
1173 printf ("no_sub: %d\t", bufp->no_sub);
1174 printf ("not_bol: %d\t", bufp->not_bol);
1175 printf ("not_eol: %d\t", bufp->not_eol);
1176 printf ("syntax: %lx\n", bufp->syntax);
1177 fflush (stdout);
1178 /* Perhaps we should print the translate table? */
1182 void
1183 print_double_string (where, string1, size1, string2, size2)
1184 re_char *where;
1185 re_char *string1;
1186 re_char *string2;
1187 int size1;
1188 int size2;
1190 int this_char;
1192 if (where == NULL)
1193 printf ("(null)");
1194 else
1196 if (FIRST_STRING_P (where))
1198 for (this_char = where - string1; this_char < size1; this_char++)
1199 putchar (string1[this_char]);
1201 where = string2;
1204 for (this_char = where - string2; this_char < size2; this_char++)
1205 putchar (string2[this_char]);
1209 #else /* not DEBUG */
1211 # undef assert
1212 # define assert(e)
1214 # define DEBUG_STATEMENT(e)
1215 # define DEBUG_PRINT1(x)
1216 # define DEBUG_PRINT2(x1, x2)
1217 # define DEBUG_PRINT3(x1, x2, x3)
1218 # define DEBUG_PRINT4(x1, x2, x3, x4)
1219 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1220 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1222 #endif /* not DEBUG */
1224 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1225 also be assigned to arbitrarily: each pattern buffer stores its own
1226 syntax, so it can be changed between regex compilations. */
1227 /* This has no initializer because initialized variables in Emacs
1228 become read-only after dumping. */
1229 reg_syntax_t re_syntax_options;
1232 /* Specify the precise syntax of regexps for compilation. This provides
1233 for compatibility for various utilities which historically have
1234 different, incompatible syntaxes.
1236 The argument SYNTAX is a bit mask comprised of the various bits
1237 defined in regex.h. We return the old syntax. */
1239 reg_syntax_t
1240 re_set_syntax (syntax)
1241 reg_syntax_t syntax;
1243 reg_syntax_t ret = re_syntax_options;
1245 re_syntax_options = syntax;
1246 return ret;
1248 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1250 /* This table gives an error message for each of the error codes listed
1251 in regex.h. Obviously the order here has to be same as there.
1252 POSIX doesn't require that we do anything for REG_NOERROR,
1253 but why not be nice? */
1255 static const char *re_error_msgid[] =
1257 gettext_noop ("Success"), /* REG_NOERROR */
1258 gettext_noop ("No match"), /* REG_NOMATCH */
1259 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1260 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1261 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1262 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1263 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1264 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1265 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1266 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1267 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1268 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1269 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1270 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1271 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1272 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1273 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1276 /* Avoiding alloca during matching, to placate r_alloc. */
1278 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1279 searching and matching functions should not call alloca. On some
1280 systems, alloca is implemented in terms of malloc, and if we're
1281 using the relocating allocator routines, then malloc could cause a
1282 relocation, which might (if the strings being searched are in the
1283 ralloc heap) shift the data out from underneath the regexp
1284 routines.
1286 Here's another reason to avoid allocation: Emacs
1287 processes input from X in a signal handler; processing X input may
1288 call malloc; if input arrives while a matching routine is calling
1289 malloc, then we're scrod. But Emacs can't just block input while
1290 calling matching routines; then we don't notice interrupts when
1291 they come in. So, Emacs blocks input around all regexp calls
1292 except the matching calls, which it leaves unprotected, in the
1293 faith that they will not malloc. */
1295 /* Normally, this is fine. */
1296 #define MATCH_MAY_ALLOCATE
1298 /* When using GNU C, we are not REALLY using the C alloca, no matter
1299 what config.h may say. So don't take precautions for it. */
1300 #ifdef __GNUC__
1301 # undef C_ALLOCA
1302 #endif
1304 /* The match routines may not allocate if (1) they would do it with malloc
1305 and (2) it's not safe for them to use malloc.
1306 Note that if REL_ALLOC is defined, matching would not use malloc for the
1307 failure stack, but we would still use it for the register vectors;
1308 so REL_ALLOC should not affect this. */
1309 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1310 # undef MATCH_MAY_ALLOCATE
1311 #endif
1314 /* Failure stack declarations and macros; both re_compile_fastmap and
1315 re_match_2 use a failure stack. These have to be macros because of
1316 REGEX_ALLOCATE_STACK. */
1319 /* Approximate number of failure points for which to initially allocate space
1320 when matching. If this number is exceeded, we allocate more
1321 space, so it is not a hard limit. */
1322 #ifndef INIT_FAILURE_ALLOC
1323 # define INIT_FAILURE_ALLOC 20
1324 #endif
1326 /* Roughly the maximum number of failure points on the stack. Would be
1327 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1328 This is a variable only so users of regex can assign to it; we never
1329 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1330 before using it, so it should probably be a byte-count instead. */
1331 # if defined MATCH_MAY_ALLOCATE
1332 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1333 whose default stack limit is 2mb. In order for a larger
1334 value to work reliably, you have to try to make it accord
1335 with the process stack limit. */
1336 size_t re_max_failures = 40000;
1337 # else
1338 size_t re_max_failures = 4000;
1339 # endif
1341 union fail_stack_elt
1343 re_char *pointer;
1344 /* This should be the biggest `int' that's no bigger than a pointer. */
1345 long integer;
1348 typedef union fail_stack_elt fail_stack_elt_t;
1350 typedef struct
1352 fail_stack_elt_t *stack;
1353 size_t size;
1354 size_t avail; /* Offset of next open position. */
1355 size_t frame; /* Offset of the cur constructed frame. */
1356 } fail_stack_type;
1358 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1359 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1362 /* Define macros to initialize and free the failure stack.
1363 Do `return -2' if the alloc fails. */
1365 #ifdef MATCH_MAY_ALLOCATE
1366 # define INIT_FAIL_STACK() \
1367 do { \
1368 fail_stack.stack = (fail_stack_elt_t *) \
1369 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1370 * sizeof (fail_stack_elt_t)); \
1372 if (fail_stack.stack == NULL) \
1373 return -2; \
1375 fail_stack.size = INIT_FAILURE_ALLOC; \
1376 fail_stack.avail = 0; \
1377 fail_stack.frame = 0; \
1378 } while (0)
1380 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1381 #else
1382 # define INIT_FAIL_STACK() \
1383 do { \
1384 fail_stack.avail = 0; \
1385 fail_stack.frame = 0; \
1386 } while (0)
1388 # define RESET_FAIL_STACK() ((void)0)
1389 #endif
1392 /* Double the size of FAIL_STACK, up to a limit
1393 which allows approximately `re_max_failures' items.
1395 Return 1 if succeeds, and 0 if either ran out of memory
1396 allocating space for it or it was already too large.
1398 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1400 /* Factor to increase the failure stack size by
1401 when we increase it.
1402 This used to be 2, but 2 was too wasteful
1403 because the old discarded stacks added up to as much space
1404 were as ultimate, maximum-size stack. */
1405 #define FAIL_STACK_GROWTH_FACTOR 4
1407 #define GROW_FAIL_STACK(fail_stack) \
1408 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1409 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1410 ? 0 \
1411 : ((fail_stack).stack \
1412 = (fail_stack_elt_t *) \
1413 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1414 (fail_stack).size * sizeof (fail_stack_elt_t), \
1415 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1416 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1417 * FAIL_STACK_GROWTH_FACTOR))), \
1419 (fail_stack).stack == NULL \
1420 ? 0 \
1421 : ((fail_stack).size \
1422 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1423 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1424 * FAIL_STACK_GROWTH_FACTOR)) \
1425 / sizeof (fail_stack_elt_t)), \
1426 1)))
1429 /* Push a pointer value onto the failure stack.
1430 Assumes the variable `fail_stack'. Probably should only
1431 be called from within `PUSH_FAILURE_POINT'. */
1432 #define PUSH_FAILURE_POINTER(item) \
1433 fail_stack.stack[fail_stack.avail++].pointer = (item)
1435 /* This pushes an integer-valued item onto the failure stack.
1436 Assumes the variable `fail_stack'. Probably should only
1437 be called from within `PUSH_FAILURE_POINT'. */
1438 #define PUSH_FAILURE_INT(item) \
1439 fail_stack.stack[fail_stack.avail++].integer = (item)
1441 /* Push a fail_stack_elt_t value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
1443 be called from within `PUSH_FAILURE_POINT'. */
1444 #define PUSH_FAILURE_ELT(item) \
1445 fail_stack.stack[fail_stack.avail++] = (item)
1447 /* These three POP... operations complement the three PUSH... operations.
1448 All assume that `fail_stack' is nonempty. */
1449 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1450 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1451 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1453 /* Individual items aside from the registers. */
1454 #define NUM_NONREG_ITEMS 3
1456 /* Used to examine the stack (to detect infinite loops). */
1457 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1458 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1459 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1460 #define TOP_FAILURE_HANDLE() fail_stack.frame
1463 #define ENSURE_FAIL_STACK(space) \
1464 while (REMAINING_AVAIL_SLOTS <= space) { \
1465 if (!GROW_FAIL_STACK (fail_stack)) \
1466 return -2; \
1467 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1468 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1471 /* Push register NUM onto the stack. */
1472 #define PUSH_FAILURE_REG(num) \
1473 do { \
1474 char *destination; \
1475 ENSURE_FAIL_STACK(3); \
1476 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1477 num, regstart[num], regend[num]); \
1478 PUSH_FAILURE_POINTER (regstart[num]); \
1479 PUSH_FAILURE_POINTER (regend[num]); \
1480 PUSH_FAILURE_INT (num); \
1481 } while (0)
1483 /* Change the counter's value to VAL, but make sure that it will
1484 be reset when backtracking. */
1485 #define PUSH_NUMBER(ptr,val) \
1486 do { \
1487 char *destination; \
1488 int c; \
1489 ENSURE_FAIL_STACK(3); \
1490 EXTRACT_NUMBER (c, ptr); \
1491 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1492 PUSH_FAILURE_INT (c); \
1493 PUSH_FAILURE_POINTER (ptr); \
1494 PUSH_FAILURE_INT (-1); \
1495 STORE_NUMBER (ptr, val); \
1496 } while (0)
1498 /* Pop a saved register off the stack. */
1499 #define POP_FAILURE_REG_OR_COUNT() \
1500 do { \
1501 int reg = POP_FAILURE_INT (); \
1502 if (reg == -1) \
1504 /* It's a counter. */ \
1505 /* Here, we discard `const', making re_match non-reentrant. */ \
1506 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1507 reg = POP_FAILURE_INT (); \
1508 STORE_NUMBER (ptr, reg); \
1509 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1511 else \
1513 regend[reg] = POP_FAILURE_POINTER (); \
1514 regstart[reg] = POP_FAILURE_POINTER (); \
1515 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1516 reg, regstart[reg], regend[reg]); \
1518 } while (0)
1520 /* Check that we are not stuck in an infinite loop. */
1521 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1522 do { \
1523 int failure = TOP_FAILURE_HANDLE (); \
1524 /* Check for infinite matching loops */ \
1525 while (failure > 0 \
1526 && (FAILURE_STR (failure) == string_place \
1527 || FAILURE_STR (failure) == NULL)) \
1529 assert (FAILURE_PAT (failure) >= bufp->buffer \
1530 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1531 if (FAILURE_PAT (failure) == pat_cur) \
1533 cycle = 1; \
1534 break; \
1536 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1537 failure = NEXT_FAILURE_HANDLE(failure); \
1539 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1540 } while (0)
1542 /* Push the information about the state we will need
1543 if we ever fail back to it.
1545 Requires variables fail_stack, regstart, regend and
1546 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1547 declared.
1549 Does `return FAILURE_CODE' if runs out of memory. */
1551 #define PUSH_FAILURE_POINT(pattern, string_place) \
1552 do { \
1553 char *destination; \
1554 /* Must be int, so when we don't save any registers, the arithmetic \
1555 of 0 + -1 isn't done as unsigned. */ \
1557 DEBUG_STATEMENT (nfailure_points_pushed++); \
1558 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1559 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1560 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1562 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1564 DEBUG_PRINT1 ("\n"); \
1566 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1567 PUSH_FAILURE_INT (fail_stack.frame); \
1569 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1570 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1571 DEBUG_PRINT1 ("'\n"); \
1572 PUSH_FAILURE_POINTER (string_place); \
1574 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1575 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1576 PUSH_FAILURE_POINTER (pattern); \
1578 /* Close the frame by moving the frame pointer past it. */ \
1579 fail_stack.frame = fail_stack.avail; \
1580 } while (0)
1582 /* Estimate the size of data pushed by a typical failure stack entry.
1583 An estimate is all we need, because all we use this for
1584 is to choose a limit for how big to make the failure stack. */
1585 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1586 #define TYPICAL_FAILURE_SIZE 20
1588 /* How many items can still be added to the stack without overflowing it. */
1589 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1592 /* Pops what PUSH_FAIL_STACK pushes.
1594 We restore into the parameters, all of which should be lvalues:
1595 STR -- the saved data position.
1596 PAT -- the saved pattern position.
1597 REGSTART, REGEND -- arrays of string positions.
1599 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1600 `pend', `string1', `size1', `string2', and `size2'. */
1602 #define POP_FAILURE_POINT(str, pat) \
1603 do { \
1604 assert (!FAIL_STACK_EMPTY ()); \
1606 /* Remove failure points and point to how many regs pushed. */ \
1607 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1608 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1609 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1611 /* Pop the saved registers. */ \
1612 while (fail_stack.frame < fail_stack.avail) \
1613 POP_FAILURE_REG_OR_COUNT (); \
1615 pat = POP_FAILURE_POINTER (); \
1616 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1617 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1619 /* If the saved string location is NULL, it came from an \
1620 on_failure_keep_string_jump opcode, and we want to throw away the \
1621 saved NULL, thus retaining our current position in the string. */ \
1622 str = POP_FAILURE_POINTER (); \
1623 DEBUG_PRINT2 (" Popping string %p: `", str); \
1624 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1625 DEBUG_PRINT1 ("'\n"); \
1627 fail_stack.frame = POP_FAILURE_INT (); \
1628 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1630 assert (fail_stack.avail >= 0); \
1631 assert (fail_stack.frame <= fail_stack.avail); \
1633 DEBUG_STATEMENT (nfailure_points_popped++); \
1634 } while (0) /* POP_FAILURE_POINT */
1638 /* Registers are set to a sentinel when they haven't yet matched. */
1639 #define REG_UNSET(e) ((e) == NULL)
1641 /* Subroutine declarations and macros for regex_compile. */
1643 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1644 reg_syntax_t syntax,
1645 struct re_pattern_buffer *bufp));
1646 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1647 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1648 int arg1, int arg2));
1649 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1650 int arg, unsigned char *end));
1651 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1652 int arg1, int arg2, unsigned char *end));
1653 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1654 re_char *p,
1655 reg_syntax_t syntax));
1656 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1657 re_char *pend,
1658 reg_syntax_t syntax));
1659 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1660 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1661 char *fastmap, const int multibyte));
1663 /* Fetch the next character in the uncompiled pattern, with no
1664 translation. */
1665 #define PATFETCH(c) \
1666 do { \
1667 int len; \
1668 if (p == pend) return REG_EEND; \
1669 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1670 p += len; \
1671 } while (0)
1674 /* If `translate' is non-null, return translate[D], else just D. We
1675 cast the subscript to translate because some data is declared as
1676 `char *', to avoid warnings when a string constant is passed. But
1677 when we use a character as a subscript we must make it unsigned. */
1678 #ifndef TRANSLATE
1679 # define TRANSLATE(d) \
1680 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1681 #endif
1684 /* Macros for outputting the compiled pattern into `buffer'. */
1686 /* If the buffer isn't allocated when it comes in, use this. */
1687 #define INIT_BUF_SIZE 32
1689 /* Make sure we have at least N more bytes of space in buffer. */
1690 #define GET_BUFFER_SPACE(n) \
1691 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1692 EXTEND_BUFFER ()
1694 /* Make sure we have one more byte of buffer space and then add C to it. */
1695 #define BUF_PUSH(c) \
1696 do { \
1697 GET_BUFFER_SPACE (1); \
1698 *b++ = (unsigned char) (c); \
1699 } while (0)
1702 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1703 #define BUF_PUSH_2(c1, c2) \
1704 do { \
1705 GET_BUFFER_SPACE (2); \
1706 *b++ = (unsigned char) (c1); \
1707 *b++ = (unsigned char) (c2); \
1708 } while (0)
1711 /* As with BUF_PUSH_2, except for three bytes. */
1712 #define BUF_PUSH_3(c1, c2, c3) \
1713 do { \
1714 GET_BUFFER_SPACE (3); \
1715 *b++ = (unsigned char) (c1); \
1716 *b++ = (unsigned char) (c2); \
1717 *b++ = (unsigned char) (c3); \
1718 } while (0)
1721 /* Store a jump with opcode OP at LOC to location TO. We store a
1722 relative address offset by the three bytes the jump itself occupies. */
1723 #define STORE_JUMP(op, loc, to) \
1724 store_op1 (op, loc, (to) - (loc) - 3)
1726 /* Likewise, for a two-argument jump. */
1727 #define STORE_JUMP2(op, loc, to, arg) \
1728 store_op2 (op, loc, (to) - (loc) - 3, arg)
1730 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1731 #define INSERT_JUMP(op, loc, to) \
1732 insert_op1 (op, loc, (to) - (loc) - 3, b)
1734 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1735 #define INSERT_JUMP2(op, loc, to, arg) \
1736 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1739 /* This is not an arbitrary limit: the arguments which represent offsets
1740 into the pattern are two bytes long. So if 2^16 bytes turns out to
1741 be too small, many things would have to change. */
1742 /* Any other compiler which, like MSC, has allocation limit below 2^16
1743 bytes will have to use approach similar to what was done below for
1744 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1745 reallocating to 0 bytes. Such thing is not going to work too well.
1746 You have been warned!! */
1747 #if defined _MSC_VER && !defined WIN32
1748 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1749 # define MAX_BUF_SIZE 65500L
1750 #else
1751 # define MAX_BUF_SIZE (1L << 16)
1752 #endif
1754 /* Extend the buffer by twice its current size via realloc and
1755 reset the pointers that pointed into the old block to point to the
1756 correct places in the new one. If extending the buffer results in it
1757 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1758 #if __BOUNDED_POINTERS__
1759 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1760 # define MOVE_BUFFER_POINTER(P) \
1761 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1762 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1763 else \
1765 SET_HIGH_BOUND (b); \
1766 SET_HIGH_BOUND (begalt); \
1767 if (fixup_alt_jump) \
1768 SET_HIGH_BOUND (fixup_alt_jump); \
1769 if (laststart) \
1770 SET_HIGH_BOUND (laststart); \
1771 if (pending_exact) \
1772 SET_HIGH_BOUND (pending_exact); \
1774 #else
1775 # define MOVE_BUFFER_POINTER(P) (P) += incr
1776 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1777 #endif
1778 #define EXTEND_BUFFER() \
1779 do { \
1780 re_char *old_buffer = bufp->buffer; \
1781 if (bufp->allocated == MAX_BUF_SIZE) \
1782 return REG_ESIZE; \
1783 bufp->allocated <<= 1; \
1784 if (bufp->allocated > MAX_BUF_SIZE) \
1785 bufp->allocated = MAX_BUF_SIZE; \
1786 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1787 if (bufp->buffer == NULL) \
1788 return REG_ESPACE; \
1789 /* If the buffer moved, move all the pointers into it. */ \
1790 if (old_buffer != bufp->buffer) \
1792 int incr = bufp->buffer - old_buffer; \
1793 MOVE_BUFFER_POINTER (b); \
1794 MOVE_BUFFER_POINTER (begalt); \
1795 if (fixup_alt_jump) \
1796 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1797 if (laststart) \
1798 MOVE_BUFFER_POINTER (laststart); \
1799 if (pending_exact) \
1800 MOVE_BUFFER_POINTER (pending_exact); \
1802 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1803 } while (0)
1806 /* Since we have one byte reserved for the register number argument to
1807 {start,stop}_memory, the maximum number of groups we can report
1808 things about is what fits in that byte. */
1809 #define MAX_REGNUM 255
1811 /* But patterns can have more than `MAX_REGNUM' registers. We just
1812 ignore the excess. */
1813 typedef int regnum_t;
1816 /* Macros for the compile stack. */
1818 /* Since offsets can go either forwards or backwards, this type needs to
1819 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1820 /* int may be not enough when sizeof(int) == 2. */
1821 typedef long pattern_offset_t;
1823 typedef struct
1825 pattern_offset_t begalt_offset;
1826 pattern_offset_t fixup_alt_jump;
1827 pattern_offset_t laststart_offset;
1828 regnum_t regnum;
1829 } compile_stack_elt_t;
1832 typedef struct
1834 compile_stack_elt_t *stack;
1835 unsigned size;
1836 unsigned avail; /* Offset of next open position. */
1837 } compile_stack_type;
1840 #define INIT_COMPILE_STACK_SIZE 32
1842 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1843 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1845 /* The next available element. */
1846 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1848 /* Explicit quit checking is only used on NTemacs. */
1849 #if defined WINDOWSNT && defined emacs && defined QUIT
1850 extern int immediate_quit;
1851 # define IMMEDIATE_QUIT_CHECK \
1852 do { \
1853 if (immediate_quit) QUIT; \
1854 } while (0)
1855 #else
1856 # define IMMEDIATE_QUIT_CHECK ((void)0)
1857 #endif
1859 /* Structure to manage work area for range table. */
1860 struct range_table_work_area
1862 int *table; /* actual work area. */
1863 int allocated; /* allocated size for work area in bytes. */
1864 int used; /* actually used size in words. */
1865 int bits; /* flag to record character classes */
1868 /* Make sure that WORK_AREA can hold more N multibyte characters.
1869 This is used only in set_image_of_range and set_image_of_range_1.
1870 It expects WORK_AREA to be a pointer.
1871 If it can't get the space, it returns from the surrounding function. */
1873 #define EXTEND_RANGE_TABLE(work_area, n) \
1874 do { \
1875 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1877 extend_range_table_work_area (work_area); \
1878 if ((work_area)->table == 0) \
1879 return (REG_ESPACE); \
1881 } while (0)
1883 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1884 (work_area).bits |= (bit)
1886 /* Bits used to implement the multibyte-part of the various character classes
1887 such as [:alnum:] in a charset's range table. */
1888 #define BIT_WORD 0x1
1889 #define BIT_LOWER 0x2
1890 #define BIT_PUNCT 0x4
1891 #define BIT_SPACE 0x8
1892 #define BIT_UPPER 0x10
1893 #define BIT_MULTIBYTE 0x20
1895 /* Set a range START..END to WORK_AREA.
1896 The range is passed through TRANSLATE, so START and END
1897 should be untranslated. */
1898 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1899 do { \
1900 int tem; \
1901 tem = set_image_of_range (&work_area, start, end, translate); \
1902 if (tem > 0) \
1903 FREE_STACK_RETURN (tem); \
1904 } while (0)
1906 /* Free allocated memory for WORK_AREA. */
1907 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1908 do { \
1909 if ((work_area).table) \
1910 free ((work_area).table); \
1911 } while (0)
1913 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1914 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1915 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1916 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1919 /* Set the bit for character C in a list. */
1920 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1923 /* Get the next unsigned number in the uncompiled pattern. */
1924 #define GET_UNSIGNED_NUMBER(num) \
1925 do { if (p != pend) \
1927 PATFETCH (c); \
1928 if (c == ' ') \
1929 FREE_STACK_RETURN (REG_BADBR); \
1930 while ('0' <= c && c <= '9') \
1932 int prev; \
1933 if (num < 0) \
1934 num = 0; \
1935 prev = num; \
1936 num = num * 10 + c - '0'; \
1937 if (num / 10 != prev) \
1938 FREE_STACK_RETURN (REG_BADBR); \
1939 if (p == pend) \
1940 break; \
1941 PATFETCH (c); \
1943 if (c == ' ') \
1944 FREE_STACK_RETURN (REG_BADBR); \
1946 } while (0)
1948 #if WIDE_CHAR_SUPPORT
1949 /* The GNU C library provides support for user-defined character classes
1950 and the functions from ISO C amendement 1. */
1951 # ifdef CHARCLASS_NAME_MAX
1952 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1953 # else
1954 /* This shouldn't happen but some implementation might still have this
1955 problem. Use a reasonable default value. */
1956 # define CHAR_CLASS_MAX_LENGTH 256
1957 # endif
1958 typedef wctype_t re_wctype_t;
1959 typedef wchar_t re_wchar_t;
1960 # define re_wctype wctype
1961 # define re_iswctype iswctype
1962 # define re_wctype_to_bit(cc) 0
1963 #else
1964 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1965 # define btowc(c) c
1967 /* Character classes. */
1968 typedef enum { RECC_ERROR = 0,
1969 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1970 RECC_GRAPH, RECC_PRINT,
1971 RECC_LOWER, RECC_UPPER,
1972 RECC_PUNCT, RECC_CNTRL,
1973 RECC_DIGIT, RECC_XDIGIT,
1974 RECC_BLANK, RECC_SPACE,
1975 RECC_MULTIBYTE, RECC_NONASCII,
1976 RECC_ASCII, RECC_UNIBYTE
1977 } re_wctype_t;
1979 typedef int re_wchar_t;
1981 /* Map a string to the char class it names (if any). */
1982 static re_wctype_t
1983 re_wctype (str)
1984 re_char *str;
1986 const char *string = str;
1987 if (STREQ (string, "alnum")) return RECC_ALNUM;
1988 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1989 else if (STREQ (string, "word")) return RECC_WORD;
1990 else if (STREQ (string, "ascii")) return RECC_ASCII;
1991 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1992 else if (STREQ (string, "graph")) return RECC_GRAPH;
1993 else if (STREQ (string, "lower")) return RECC_LOWER;
1994 else if (STREQ (string, "print")) return RECC_PRINT;
1995 else if (STREQ (string, "punct")) return RECC_PUNCT;
1996 else if (STREQ (string, "space")) return RECC_SPACE;
1997 else if (STREQ (string, "upper")) return RECC_UPPER;
1998 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1999 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2000 else if (STREQ (string, "digit")) return RECC_DIGIT;
2001 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2002 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2003 else if (STREQ (string, "blank")) return RECC_BLANK;
2004 else return 0;
2007 /* True iff CH is in the char class CC. */
2008 static boolean
2009 re_iswctype (ch, cc)
2010 int ch;
2011 re_wctype_t cc;
2013 switch (cc)
2015 case RECC_ALNUM: return ISALNUM (ch);
2016 case RECC_ALPHA: return ISALPHA (ch);
2017 case RECC_BLANK: return ISBLANK (ch);
2018 case RECC_CNTRL: return ISCNTRL (ch);
2019 case RECC_DIGIT: return ISDIGIT (ch);
2020 case RECC_GRAPH: return ISGRAPH (ch);
2021 case RECC_LOWER: return ISLOWER (ch);
2022 case RECC_PRINT: return ISPRINT (ch);
2023 case RECC_PUNCT: return ISPUNCT (ch);
2024 case RECC_SPACE: return ISSPACE (ch);
2025 case RECC_UPPER: return ISUPPER (ch);
2026 case RECC_XDIGIT: return ISXDIGIT (ch);
2027 case RECC_ASCII: return IS_REAL_ASCII (ch);
2028 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2029 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2030 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2031 case RECC_WORD: return ISWORD (ch);
2032 case RECC_ERROR: return false;
2033 default:
2034 abort();
2038 /* Return a bit-pattern to use in the range-table bits to match multibyte
2039 chars of class CC. */
2040 static int
2041 re_wctype_to_bit (cc)
2042 re_wctype_t cc;
2044 switch (cc)
2046 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2047 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2048 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2049 case RECC_LOWER: return BIT_LOWER;
2050 case RECC_UPPER: return BIT_UPPER;
2051 case RECC_PUNCT: return BIT_PUNCT;
2052 case RECC_SPACE: return BIT_SPACE;
2053 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2054 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2055 default:
2056 abort();
2059 #endif
2061 /* Filling in the work area of a range. */
2063 /* Actually extend the space in WORK_AREA. */
2065 static void
2066 extend_range_table_work_area (work_area)
2067 struct range_table_work_area *work_area;
2069 work_area->allocated += 16 * sizeof (int);
2070 if (work_area->table)
2071 work_area->table
2072 = (int *) realloc (work_area->table, work_area->allocated);
2073 else
2074 work_area->table
2075 = (int *) malloc (work_area->allocated);
2078 #ifdef emacs
2080 /* Carefully find the ranges of codes that are equivalent
2081 under case conversion to the range start..end when passed through
2082 TRANSLATE. Handle the case where non-letters can come in between
2083 two upper-case letters (which happens in Latin-1).
2084 Also handle the case of groups of more than 2 case-equivalent chars.
2086 The basic method is to look at consecutive characters and see
2087 if they can form a run that can be handled as one.
2089 Returns -1 if successful, REG_ESPACE if ran out of space. */
2091 static int
2092 set_image_of_range_1 (work_area, start, end, translate)
2093 RE_TRANSLATE_TYPE translate;
2094 struct range_table_work_area *work_area;
2095 re_wchar_t start, end;
2097 /* `one_case' indicates a character, or a run of characters,
2098 each of which is an isolate (no case-equivalents).
2099 This includes all ASCII non-letters.
2101 `two_case' indicates a character, or a run of characters,
2102 each of which has two case-equivalent forms.
2103 This includes all ASCII letters.
2105 `strange' indicates a character that has more than one
2106 case-equivalent. */
2108 enum case_type {one_case, two_case, strange};
2110 /* Describe the run that is in progress,
2111 which the next character can try to extend.
2112 If run_type is strange, that means there really is no run.
2113 If run_type is one_case, then run_start...run_end is the run.
2114 If run_type is two_case, then the run is run_start...run_end,
2115 and the case-equivalents end at run_eqv_end. */
2117 enum case_type run_type = strange;
2118 int run_start, run_end, run_eqv_end;
2120 Lisp_Object eqv_table;
2122 if (!RE_TRANSLATE_P (translate))
2124 EXTEND_RANGE_TABLE (work_area, 2);
2125 work_area->table[work_area->used++] = (start);
2126 work_area->table[work_area->used++] = (end);
2127 return -1;
2130 eqv_table = XCHAR_TABLE (translate)->extras[2];
2132 for (; start <= end; start++)
2134 enum case_type this_type;
2135 int eqv = RE_TRANSLATE (eqv_table, start);
2136 int minchar, maxchar;
2138 /* Classify this character */
2139 if (eqv == start)
2140 this_type = one_case;
2141 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2142 this_type = two_case;
2143 else
2144 this_type = strange;
2146 if (start < eqv)
2147 minchar = start, maxchar = eqv;
2148 else
2149 minchar = eqv, maxchar = start;
2151 /* Can this character extend the run in progress? */
2152 if (this_type == strange || this_type != run_type
2153 || !(minchar == run_end + 1
2154 && (run_type == two_case
2155 ? maxchar == run_eqv_end + 1 : 1)))
2157 /* No, end the run.
2158 Record each of its equivalent ranges. */
2159 if (run_type == one_case)
2161 EXTEND_RANGE_TABLE (work_area, 2);
2162 work_area->table[work_area->used++] = run_start;
2163 work_area->table[work_area->used++] = run_end;
2165 else if (run_type == two_case)
2167 EXTEND_RANGE_TABLE (work_area, 4);
2168 work_area->table[work_area->used++] = run_start;
2169 work_area->table[work_area->used++] = run_end;
2170 work_area->table[work_area->used++]
2171 = RE_TRANSLATE (eqv_table, run_start);
2172 work_area->table[work_area->used++]
2173 = RE_TRANSLATE (eqv_table, run_end);
2175 run_type = strange;
2178 if (this_type == strange)
2180 /* For a strange character, add each of its equivalents, one
2181 by one. Don't start a range. */
2184 EXTEND_RANGE_TABLE (work_area, 2);
2185 work_area->table[work_area->used++] = eqv;
2186 work_area->table[work_area->used++] = eqv;
2187 eqv = RE_TRANSLATE (eqv_table, eqv);
2189 while (eqv != start);
2192 /* Add this char to the run, or start a new run. */
2193 else if (run_type == strange)
2195 /* Initialize a new range. */
2196 run_type = this_type;
2197 run_start = start;
2198 run_end = start;
2199 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2201 else
2203 /* Extend a running range. */
2204 run_end = minchar;
2205 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2209 /* If a run is still in progress at the end, finish it now
2210 by recording its equivalent ranges. */
2211 if (run_type == one_case)
2213 EXTEND_RANGE_TABLE (work_area, 2);
2214 work_area->table[work_area->used++] = run_start;
2215 work_area->table[work_area->used++] = run_end;
2217 else if (run_type == two_case)
2219 EXTEND_RANGE_TABLE (work_area, 4);
2220 work_area->table[work_area->used++] = run_start;
2221 work_area->table[work_area->used++] = run_end;
2222 work_area->table[work_area->used++]
2223 = RE_TRANSLATE (eqv_table, run_start);
2224 work_area->table[work_area->used++]
2225 = RE_TRANSLATE (eqv_table, run_end);
2228 return -1;
2231 #endif /* emacs */
2233 /* Record the the image of the range start..end when passed through
2234 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2235 and is not even necessarily contiguous.
2236 Normally we approximate it with the smallest contiguous range that contains
2237 all the chars we need. However, for Latin-1 we go to extra effort
2238 to do a better job.
2240 This function is not called for ASCII ranges.
2242 Returns -1 if successful, REG_ESPACE if ran out of space. */
2244 static int
2245 set_image_of_range (work_area, start, end, translate)
2246 RE_TRANSLATE_TYPE translate;
2247 struct range_table_work_area *work_area;
2248 re_wchar_t start, end;
2250 re_wchar_t cmin, cmax;
2252 #ifdef emacs
2253 /* For Latin-1 ranges, use set_image_of_range_1
2254 to get proper handling of ranges that include letters and nonletters.
2255 For a range that includes the whole of Latin-1, this is not necessary.
2256 For other character sets, we don't bother to get this right. */
2257 if (RE_TRANSLATE_P (translate) && start < 04400
2258 && !(start < 04200 && end >= 04377))
2260 int newend;
2261 int tem;
2262 newend = end;
2263 if (newend > 04377)
2264 newend = 04377;
2265 tem = set_image_of_range_1 (work_area, start, newend, translate);
2266 if (tem > 0)
2267 return tem;
2269 start = 04400;
2270 if (end < 04400)
2271 return -1;
2273 #endif
2275 EXTEND_RANGE_TABLE (work_area, 2);
2276 work_area->table[work_area->used++] = (start);
2277 work_area->table[work_area->used++] = (end);
2279 cmin = -1, cmax = -1;
2281 if (RE_TRANSLATE_P (translate))
2283 int ch;
2285 for (ch = start; ch <= end; ch++)
2287 re_wchar_t c = TRANSLATE (ch);
2288 if (! (start <= c && c <= end))
2290 if (cmin == -1)
2291 cmin = c, cmax = c;
2292 else
2294 cmin = MIN (cmin, c);
2295 cmax = MAX (cmax, c);
2300 if (cmin != -1)
2302 EXTEND_RANGE_TABLE (work_area, 2);
2303 work_area->table[work_area->used++] = (cmin);
2304 work_area->table[work_area->used++] = (cmax);
2308 return -1;
2311 #ifndef MATCH_MAY_ALLOCATE
2313 /* If we cannot allocate large objects within re_match_2_internal,
2314 we make the fail stack and register vectors global.
2315 The fail stack, we grow to the maximum size when a regexp
2316 is compiled.
2317 The register vectors, we adjust in size each time we
2318 compile a regexp, according to the number of registers it needs. */
2320 static fail_stack_type fail_stack;
2322 /* Size with which the following vectors are currently allocated.
2323 That is so we can make them bigger as needed,
2324 but never make them smaller. */
2325 static int regs_allocated_size;
2327 static re_char ** regstart, ** regend;
2328 static re_char **best_regstart, **best_regend;
2330 /* Make the register vectors big enough for NUM_REGS registers,
2331 but don't make them smaller. */
2333 static
2334 regex_grow_registers (num_regs)
2335 int num_regs;
2337 if (num_regs > regs_allocated_size)
2339 RETALLOC_IF (regstart, num_regs, re_char *);
2340 RETALLOC_IF (regend, num_regs, re_char *);
2341 RETALLOC_IF (best_regstart, num_regs, re_char *);
2342 RETALLOC_IF (best_regend, num_regs, re_char *);
2344 regs_allocated_size = num_regs;
2348 #endif /* not MATCH_MAY_ALLOCATE */
2350 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2351 compile_stack,
2352 regnum_t regnum));
2354 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2355 Returns one of error codes defined in `regex.h', or zero for success.
2357 Assumes the `allocated' (and perhaps `buffer') and `translate'
2358 fields are set in BUFP on entry.
2360 If it succeeds, results are put in BUFP (if it returns an error, the
2361 contents of BUFP are undefined):
2362 `buffer' is the compiled pattern;
2363 `syntax' is set to SYNTAX;
2364 `used' is set to the length of the compiled pattern;
2365 `fastmap_accurate' is zero;
2366 `re_nsub' is the number of subexpressions in PATTERN;
2367 `not_bol' and `not_eol' are zero;
2369 The `fastmap' field is neither examined nor set. */
2371 /* Insert the `jump' from the end of last alternative to "here".
2372 The space for the jump has already been allocated. */
2373 #define FIXUP_ALT_JUMP() \
2374 do { \
2375 if (fixup_alt_jump) \
2376 STORE_JUMP (jump, fixup_alt_jump, b); \
2377 } while (0)
2380 /* Return, freeing storage we allocated. */
2381 #define FREE_STACK_RETURN(value) \
2382 do { \
2383 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2384 free (compile_stack.stack); \
2385 return value; \
2386 } while (0)
2388 static reg_errcode_t
2389 regex_compile (pattern, size, syntax, bufp)
2390 re_char *pattern;
2391 size_t size;
2392 reg_syntax_t syntax;
2393 struct re_pattern_buffer *bufp;
2395 /* We fetch characters from PATTERN here. */
2396 register re_wchar_t c, c1;
2398 /* A random temporary spot in PATTERN. */
2399 re_char *p1;
2401 /* Points to the end of the buffer, where we should append. */
2402 register unsigned char *b;
2404 /* Keeps track of unclosed groups. */
2405 compile_stack_type compile_stack;
2407 /* Points to the current (ending) position in the pattern. */
2408 #ifdef AIX
2409 /* `const' makes AIX compiler fail. */
2410 unsigned char *p = pattern;
2411 #else
2412 re_char *p = pattern;
2413 #endif
2414 re_char *pend = pattern + size;
2416 /* How to translate the characters in the pattern. */
2417 RE_TRANSLATE_TYPE translate = bufp->translate;
2419 /* Address of the count-byte of the most recently inserted `exactn'
2420 command. This makes it possible to tell if a new exact-match
2421 character can be added to that command or if the character requires
2422 a new `exactn' command. */
2423 unsigned char *pending_exact = 0;
2425 /* Address of start of the most recently finished expression.
2426 This tells, e.g., postfix * where to find the start of its
2427 operand. Reset at the beginning of groups and alternatives. */
2428 unsigned char *laststart = 0;
2430 /* Address of beginning of regexp, or inside of last group. */
2431 unsigned char *begalt;
2433 /* Place in the uncompiled pattern (i.e., the {) to
2434 which to go back if the interval is invalid. */
2435 re_char *beg_interval;
2437 /* Address of the place where a forward jump should go to the end of
2438 the containing expression. Each alternative of an `or' -- except the
2439 last -- ends with a forward jump of this sort. */
2440 unsigned char *fixup_alt_jump = 0;
2442 /* Counts open-groups as they are encountered. Remembered for the
2443 matching close-group on the compile stack, so the same register
2444 number is put in the stop_memory as the start_memory. */
2445 regnum_t regnum = 0;
2447 /* Work area for range table of charset. */
2448 struct range_table_work_area range_table_work;
2450 /* If the object matched can contain multibyte characters. */
2451 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2453 #ifdef DEBUG
2454 debug++;
2455 DEBUG_PRINT1 ("\nCompiling pattern: ");
2456 if (debug > 0)
2458 unsigned debug_count;
2460 for (debug_count = 0; debug_count < size; debug_count++)
2461 putchar (pattern[debug_count]);
2462 putchar ('\n');
2464 #endif /* DEBUG */
2466 /* Initialize the compile stack. */
2467 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2468 if (compile_stack.stack == NULL)
2469 return REG_ESPACE;
2471 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2472 compile_stack.avail = 0;
2474 range_table_work.table = 0;
2475 range_table_work.allocated = 0;
2477 /* Initialize the pattern buffer. */
2478 bufp->syntax = syntax;
2479 bufp->fastmap_accurate = 0;
2480 bufp->not_bol = bufp->not_eol = 0;
2482 /* Set `used' to zero, so that if we return an error, the pattern
2483 printer (for debugging) will think there's no pattern. We reset it
2484 at the end. */
2485 bufp->used = 0;
2487 /* Always count groups, whether or not bufp->no_sub is set. */
2488 bufp->re_nsub = 0;
2490 #if !defined emacs && !defined SYNTAX_TABLE
2491 /* Initialize the syntax table. */
2492 init_syntax_once ();
2493 #endif
2495 if (bufp->allocated == 0)
2497 if (bufp->buffer)
2498 { /* If zero allocated, but buffer is non-null, try to realloc
2499 enough space. This loses if buffer's address is bogus, but
2500 that is the user's responsibility. */
2501 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2503 else
2504 { /* Caller did not allocate a buffer. Do it for them. */
2505 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2507 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2509 bufp->allocated = INIT_BUF_SIZE;
2512 begalt = b = bufp->buffer;
2514 /* Loop through the uncompiled pattern until we're at the end. */
2515 while (p != pend)
2517 PATFETCH (c);
2519 switch (c)
2521 case '^':
2523 if ( /* If at start of pattern, it's an operator. */
2524 p == pattern + 1
2525 /* If context independent, it's an operator. */
2526 || syntax & RE_CONTEXT_INDEP_ANCHORS
2527 /* Otherwise, depends on what's come before. */
2528 || at_begline_loc_p (pattern, p, syntax))
2529 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2530 else
2531 goto normal_char;
2533 break;
2536 case '$':
2538 if ( /* If at end of pattern, it's an operator. */
2539 p == pend
2540 /* If context independent, it's an operator. */
2541 || syntax & RE_CONTEXT_INDEP_ANCHORS
2542 /* Otherwise, depends on what's next. */
2543 || at_endline_loc_p (p, pend, syntax))
2544 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2545 else
2546 goto normal_char;
2548 break;
2551 case '+':
2552 case '?':
2553 if ((syntax & RE_BK_PLUS_QM)
2554 || (syntax & RE_LIMITED_OPS))
2555 goto normal_char;
2556 handle_plus:
2557 case '*':
2558 /* If there is no previous pattern... */
2559 if (!laststart)
2561 if (syntax & RE_CONTEXT_INVALID_OPS)
2562 FREE_STACK_RETURN (REG_BADRPT);
2563 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2564 goto normal_char;
2568 /* 1 means zero (many) matches is allowed. */
2569 boolean zero_times_ok = 0, many_times_ok = 0;
2570 boolean greedy = 1;
2572 /* If there is a sequence of repetition chars, collapse it
2573 down to just one (the right one). We can't combine
2574 interval operators with these because of, e.g., `a{2}*',
2575 which should only match an even number of `a's. */
2577 for (;;)
2579 if ((syntax & RE_FRUGAL)
2580 && c == '?' && (zero_times_ok || many_times_ok))
2581 greedy = 0;
2582 else
2584 zero_times_ok |= c != '+';
2585 many_times_ok |= c != '?';
2588 if (p == pend)
2589 break;
2590 else if (*p == '*'
2591 || (!(syntax & RE_BK_PLUS_QM)
2592 && (*p == '+' || *p == '?')))
2594 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2596 if (p+1 == pend)
2597 FREE_STACK_RETURN (REG_EESCAPE);
2598 if (p[1] == '+' || p[1] == '?')
2599 PATFETCH (c); /* Gobble up the backslash. */
2600 else
2601 break;
2603 else
2604 break;
2605 /* If we get here, we found another repeat character. */
2606 PATFETCH (c);
2609 /* Star, etc. applied to an empty pattern is equivalent
2610 to an empty pattern. */
2611 if (!laststart || laststart == b)
2612 break;
2614 /* Now we know whether or not zero matches is allowed
2615 and also whether or not two or more matches is allowed. */
2616 if (greedy)
2618 if (many_times_ok)
2620 boolean simple = skip_one_char (laststart) == b;
2621 unsigned int startoffset = 0;
2622 re_opcode_t ofj =
2623 /* Check if the loop can match the empty string. */
2624 (simple || !analyse_first (laststart, b, NULL, 0))
2625 ? on_failure_jump : on_failure_jump_loop;
2626 assert (skip_one_char (laststart) <= b);
2628 if (!zero_times_ok && simple)
2629 { /* Since simple * loops can be made faster by using
2630 on_failure_keep_string_jump, we turn simple P+
2631 into PP* if P is simple. */
2632 unsigned char *p1, *p2;
2633 startoffset = b - laststart;
2634 GET_BUFFER_SPACE (startoffset);
2635 p1 = b; p2 = laststart;
2636 while (p2 < p1)
2637 *b++ = *p2++;
2638 zero_times_ok = 1;
2641 GET_BUFFER_SPACE (6);
2642 if (!zero_times_ok)
2643 /* A + loop. */
2644 STORE_JUMP (ofj, b, b + 6);
2645 else
2646 /* Simple * loops can use on_failure_keep_string_jump
2647 depending on what follows. But since we don't know
2648 that yet, we leave the decision up to
2649 on_failure_jump_smart. */
2650 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2651 laststart + startoffset, b + 6);
2652 b += 3;
2653 STORE_JUMP (jump, b, laststart + startoffset);
2654 b += 3;
2656 else
2658 /* A simple ? pattern. */
2659 assert (zero_times_ok);
2660 GET_BUFFER_SPACE (3);
2661 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2662 b += 3;
2665 else /* not greedy */
2666 { /* I wish the greedy and non-greedy cases could be merged. */
2668 GET_BUFFER_SPACE (7); /* We might use less. */
2669 if (many_times_ok)
2671 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2673 /* The non-greedy multiple match looks like
2674 a repeat..until: we only need a conditional jump
2675 at the end of the loop. */
2676 if (emptyp) BUF_PUSH (no_op);
2677 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2678 : on_failure_jump, b, laststart);
2679 b += 3;
2680 if (zero_times_ok)
2682 /* The repeat...until naturally matches one or more.
2683 To also match zero times, we need to first jump to
2684 the end of the loop (its conditional jump). */
2685 INSERT_JUMP (jump, laststart, b);
2686 b += 3;
2689 else
2691 /* non-greedy a?? */
2692 INSERT_JUMP (jump, laststart, b + 3);
2693 b += 3;
2694 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2695 b += 3;
2699 pending_exact = 0;
2700 break;
2703 case '.':
2704 laststart = b;
2705 BUF_PUSH (anychar);
2706 break;
2709 case '[':
2711 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2713 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2715 /* Ensure that we have enough space to push a charset: the
2716 opcode, the length count, and the bitset; 34 bytes in all. */
2717 GET_BUFFER_SPACE (34);
2719 laststart = b;
2721 /* We test `*p == '^' twice, instead of using an if
2722 statement, so we only need one BUF_PUSH. */
2723 BUF_PUSH (*p == '^' ? charset_not : charset);
2724 if (*p == '^')
2725 p++;
2727 /* Remember the first position in the bracket expression. */
2728 p1 = p;
2730 /* Push the number of bytes in the bitmap. */
2731 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2733 /* Clear the whole map. */
2734 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2736 /* charset_not matches newline according to a syntax bit. */
2737 if ((re_opcode_t) b[-2] == charset_not
2738 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2739 SET_LIST_BIT ('\n');
2741 /* Read in characters and ranges, setting map bits. */
2742 for (;;)
2744 boolean escaped_char = false;
2745 const unsigned char *p2 = p;
2747 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2749 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2750 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2751 So the translation is done later in a loop. Example:
2752 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2753 PATFETCH (c);
2755 /* \ might escape characters inside [...] and [^...]. */
2756 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2758 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2760 PATFETCH (c);
2761 escaped_char = true;
2763 else
2765 /* Could be the end of the bracket expression. If it's
2766 not (i.e., when the bracket expression is `[]' so
2767 far), the ']' character bit gets set way below. */
2768 if (c == ']' && p2 != p1)
2769 break;
2772 /* What should we do for the character which is
2773 greater than 0x7F, but not BASE_LEADING_CODE_P?
2774 XXX */
2776 /* See if we're at the beginning of a possible character
2777 class. */
2779 if (!escaped_char &&
2780 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2782 /* Leave room for the null. */
2783 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2784 const unsigned char *class_beg;
2786 PATFETCH (c);
2787 c1 = 0;
2788 class_beg = p;
2790 /* If pattern is `[[:'. */
2791 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2793 for (;;)
2795 PATFETCH (c);
2796 if ((c == ':' && *p == ']') || p == pend)
2797 break;
2798 if (c1 < CHAR_CLASS_MAX_LENGTH)
2799 str[c1++] = c;
2800 else
2801 /* This is in any case an invalid class name. */
2802 str[0] = '\0';
2804 str[c1] = '\0';
2806 /* If isn't a word bracketed by `[:' and `:]':
2807 undo the ending character, the letters, and
2808 leave the leading `:' and `[' (but set bits for
2809 them). */
2810 if (c == ':' && *p == ']')
2812 re_wchar_t ch;
2813 re_wctype_t cc;
2815 cc = re_wctype (str);
2817 if (cc == 0)
2818 FREE_STACK_RETURN (REG_ECTYPE);
2820 /* Throw away the ] at the end of the character
2821 class. */
2822 PATFETCH (c);
2824 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2826 /* Most character classes in a multibyte match
2827 just set a flag. Exceptions are is_blank,
2828 is_digit, is_cntrl, and is_xdigit, since
2829 they can only match ASCII characters. We
2830 don't need to handle them for multibyte.
2831 They are distinguished by a negative wctype. */
2833 if (multibyte)
2834 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2835 re_wctype_to_bit (cc));
2837 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2839 int translated = TRANSLATE (ch);
2840 if (re_iswctype (btowc (ch), cc))
2841 SET_LIST_BIT (translated);
2844 /* Repeat the loop. */
2845 continue;
2847 else
2849 /* Go back to right after the "[:". */
2850 p = class_beg;
2851 SET_LIST_BIT ('[');
2853 /* Because the `:' may starts the range, we
2854 can't simply set bit and repeat the loop.
2855 Instead, just set it to C and handle below. */
2856 c = ':';
2860 if (p < pend && p[0] == '-' && p[1] != ']')
2863 /* Discard the `-'. */
2864 PATFETCH (c1);
2866 /* Fetch the character which ends the range. */
2867 PATFETCH (c1);
2869 if (SINGLE_BYTE_CHAR_P (c))
2871 if (! SINGLE_BYTE_CHAR_P (c1))
2873 /* Handle a range starting with a
2874 character of less than 256, and ending
2875 with a character of not less than 256.
2876 Split that into two ranges, the low one
2877 ending at 0377, and the high one
2878 starting at the smallest character in
2879 the charset of C1 and ending at C1. */
2880 int charset = CHAR_CHARSET (c1);
2881 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2883 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2884 c2, c1);
2885 c1 = 0377;
2888 else if (!SAME_CHARSET_P (c, c1))
2889 FREE_STACK_RETURN (REG_ERANGE);
2891 else
2892 /* Range from C to C. */
2893 c1 = c;
2895 /* Set the range ... */
2896 if (SINGLE_BYTE_CHAR_P (c))
2897 /* ... into bitmap. */
2899 re_wchar_t this_char;
2900 re_wchar_t range_start = c, range_end = c1;
2902 /* If the start is after the end, the range is empty. */
2903 if (range_start > range_end)
2905 if (syntax & RE_NO_EMPTY_RANGES)
2906 FREE_STACK_RETURN (REG_ERANGE);
2907 /* Else, repeat the loop. */
2909 else
2911 for (this_char = range_start; this_char <= range_end;
2912 this_char++)
2913 SET_LIST_BIT (TRANSLATE (this_char));
2916 else
2917 /* ... into range table. */
2918 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2921 /* Discard any (non)matching list bytes that are all 0 at the
2922 end of the map. Decrease the map-length byte too. */
2923 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2924 b[-1]--;
2925 b += b[-1];
2927 /* Build real range table from work area. */
2928 if (RANGE_TABLE_WORK_USED (range_table_work)
2929 || RANGE_TABLE_WORK_BITS (range_table_work))
2931 int i;
2932 int used = RANGE_TABLE_WORK_USED (range_table_work);
2934 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2935 bytes for flags, two for COUNT, and three bytes for
2936 each character. */
2937 GET_BUFFER_SPACE (4 + used * 3);
2939 /* Indicate the existence of range table. */
2940 laststart[1] |= 0x80;
2942 /* Store the character class flag bits into the range table.
2943 If not in emacs, these flag bits are always 0. */
2944 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2945 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2947 STORE_NUMBER_AND_INCR (b, used / 2);
2948 for (i = 0; i < used; i++)
2949 STORE_CHARACTER_AND_INCR
2950 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2953 break;
2956 case '(':
2957 if (syntax & RE_NO_BK_PARENS)
2958 goto handle_open;
2959 else
2960 goto normal_char;
2963 case ')':
2964 if (syntax & RE_NO_BK_PARENS)
2965 goto handle_close;
2966 else
2967 goto normal_char;
2970 case '\n':
2971 if (syntax & RE_NEWLINE_ALT)
2972 goto handle_alt;
2973 else
2974 goto normal_char;
2977 case '|':
2978 if (syntax & RE_NO_BK_VBAR)
2979 goto handle_alt;
2980 else
2981 goto normal_char;
2984 case '{':
2985 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2986 goto handle_interval;
2987 else
2988 goto normal_char;
2991 case '\\':
2992 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2994 /* Do not translate the character after the \, so that we can
2995 distinguish, e.g., \B from \b, even if we normally would
2996 translate, e.g., B to b. */
2997 PATFETCH (c);
2999 switch (c)
3001 case '(':
3002 if (syntax & RE_NO_BK_PARENS)
3003 goto normal_backslash;
3005 handle_open:
3007 int shy = 0;
3008 if (p+1 < pend)
3010 /* Look for a special (?...) construct */
3011 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3013 PATFETCH (c); /* Gobble up the '?'. */
3014 PATFETCH (c);
3015 switch (c)
3017 case ':': shy = 1; break;
3018 default:
3019 /* Only (?:...) is supported right now. */
3020 FREE_STACK_RETURN (REG_BADPAT);
3025 if (!shy)
3027 bufp->re_nsub++;
3028 regnum++;
3031 if (COMPILE_STACK_FULL)
3033 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3034 compile_stack_elt_t);
3035 if (compile_stack.stack == NULL) return REG_ESPACE;
3037 compile_stack.size <<= 1;
3040 /* These are the values to restore when we hit end of this
3041 group. They are all relative offsets, so that if the
3042 whole pattern moves because of realloc, they will still
3043 be valid. */
3044 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3045 COMPILE_STACK_TOP.fixup_alt_jump
3046 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3047 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3048 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3050 /* Do not push a
3051 start_memory for groups beyond the last one we can
3052 represent in the compiled pattern. */
3053 if (regnum <= MAX_REGNUM && !shy)
3054 BUF_PUSH_2 (start_memory, regnum);
3056 compile_stack.avail++;
3058 fixup_alt_jump = 0;
3059 laststart = 0;
3060 begalt = b;
3061 /* If we've reached MAX_REGNUM groups, then this open
3062 won't actually generate any code, so we'll have to
3063 clear pending_exact explicitly. */
3064 pending_exact = 0;
3065 break;
3068 case ')':
3069 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3071 if (COMPILE_STACK_EMPTY)
3073 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3074 goto normal_backslash;
3075 else
3076 FREE_STACK_RETURN (REG_ERPAREN);
3079 handle_close:
3080 FIXUP_ALT_JUMP ();
3082 /* See similar code for backslashed left paren above. */
3083 if (COMPILE_STACK_EMPTY)
3085 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3086 goto normal_char;
3087 else
3088 FREE_STACK_RETURN (REG_ERPAREN);
3091 /* Since we just checked for an empty stack above, this
3092 ``can't happen''. */
3093 assert (compile_stack.avail != 0);
3095 /* We don't just want to restore into `regnum', because
3096 later groups should continue to be numbered higher,
3097 as in `(ab)c(de)' -- the second group is #2. */
3098 regnum_t this_group_regnum;
3100 compile_stack.avail--;
3101 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3102 fixup_alt_jump
3103 = COMPILE_STACK_TOP.fixup_alt_jump
3104 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3105 : 0;
3106 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3107 this_group_regnum = COMPILE_STACK_TOP.regnum;
3108 /* If we've reached MAX_REGNUM groups, then this open
3109 won't actually generate any code, so we'll have to
3110 clear pending_exact explicitly. */
3111 pending_exact = 0;
3113 /* We're at the end of the group, so now we know how many
3114 groups were inside this one. */
3115 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3116 BUF_PUSH_2 (stop_memory, this_group_regnum);
3118 break;
3121 case '|': /* `\|'. */
3122 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3123 goto normal_backslash;
3124 handle_alt:
3125 if (syntax & RE_LIMITED_OPS)
3126 goto normal_char;
3128 /* Insert before the previous alternative a jump which
3129 jumps to this alternative if the former fails. */
3130 GET_BUFFER_SPACE (3);
3131 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3132 pending_exact = 0;
3133 b += 3;
3135 /* The alternative before this one has a jump after it
3136 which gets executed if it gets matched. Adjust that
3137 jump so it will jump to this alternative's analogous
3138 jump (put in below, which in turn will jump to the next
3139 (if any) alternative's such jump, etc.). The last such
3140 jump jumps to the correct final destination. A picture:
3141 _____ _____
3142 | | | |
3143 | v | v
3144 a | b | c
3146 If we are at `b', then fixup_alt_jump right now points to a
3147 three-byte space after `a'. We'll put in the jump, set
3148 fixup_alt_jump to right after `b', and leave behind three
3149 bytes which we'll fill in when we get to after `c'. */
3151 FIXUP_ALT_JUMP ();
3153 /* Mark and leave space for a jump after this alternative,
3154 to be filled in later either by next alternative or
3155 when know we're at the end of a series of alternatives. */
3156 fixup_alt_jump = b;
3157 GET_BUFFER_SPACE (3);
3158 b += 3;
3160 laststart = 0;
3161 begalt = b;
3162 break;
3165 case '{':
3166 /* If \{ is a literal. */
3167 if (!(syntax & RE_INTERVALS)
3168 /* If we're at `\{' and it's not the open-interval
3169 operator. */
3170 || (syntax & RE_NO_BK_BRACES))
3171 goto normal_backslash;
3173 handle_interval:
3175 /* If got here, then the syntax allows intervals. */
3177 /* At least (most) this many matches must be made. */
3178 int lower_bound = 0, upper_bound = -1;
3180 beg_interval = p;
3182 if (p == pend)
3183 FREE_STACK_RETURN (REG_EBRACE);
3185 GET_UNSIGNED_NUMBER (lower_bound);
3187 if (c == ',')
3188 GET_UNSIGNED_NUMBER (upper_bound);
3189 else
3190 /* Interval such as `{1}' => match exactly once. */
3191 upper_bound = lower_bound;
3193 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3194 || (upper_bound >= 0 && lower_bound > upper_bound))
3195 FREE_STACK_RETURN (REG_BADBR);
3197 if (!(syntax & RE_NO_BK_BRACES))
3199 if (c != '\\')
3200 FREE_STACK_RETURN (REG_BADBR);
3202 PATFETCH (c);
3205 if (c != '}')
3206 FREE_STACK_RETURN (REG_BADBR);
3208 /* We just parsed a valid interval. */
3210 /* If it's invalid to have no preceding re. */
3211 if (!laststart)
3213 if (syntax & RE_CONTEXT_INVALID_OPS)
3214 FREE_STACK_RETURN (REG_BADRPT);
3215 else if (syntax & RE_CONTEXT_INDEP_OPS)
3216 laststart = b;
3217 else
3218 goto unfetch_interval;
3221 if (upper_bound == 0)
3222 /* If the upper bound is zero, just drop the sub pattern
3223 altogether. */
3224 b = laststart;
3225 else if (lower_bound == 1 && upper_bound == 1)
3226 /* Just match it once: nothing to do here. */
3229 /* Otherwise, we have a nontrivial interval. When
3230 we're all done, the pattern will look like:
3231 set_number_at <jump count> <upper bound>
3232 set_number_at <succeed_n count> <lower bound>
3233 succeed_n <after jump addr> <succeed_n count>
3234 <body of loop>
3235 jump_n <succeed_n addr> <jump count>
3236 (The upper bound and `jump_n' are omitted if
3237 `upper_bound' is 1, though.) */
3238 else
3239 { /* If the upper bound is > 1, we need to insert
3240 more at the end of the loop. */
3241 unsigned int nbytes = (upper_bound < 0 ? 3
3242 : upper_bound > 1 ? 5 : 0);
3243 unsigned int startoffset = 0;
3245 GET_BUFFER_SPACE (20); /* We might use less. */
3247 if (lower_bound == 0)
3249 /* A succeed_n that starts with 0 is really a
3250 a simple on_failure_jump_loop. */
3251 INSERT_JUMP (on_failure_jump_loop, laststart,
3252 b + 3 + nbytes);
3253 b += 3;
3255 else
3257 /* Initialize lower bound of the `succeed_n', even
3258 though it will be set during matching by its
3259 attendant `set_number_at' (inserted next),
3260 because `re_compile_fastmap' needs to know.
3261 Jump to the `jump_n' we might insert below. */
3262 INSERT_JUMP2 (succeed_n, laststart,
3263 b + 5 + nbytes,
3264 lower_bound);
3265 b += 5;
3267 /* Code to initialize the lower bound. Insert
3268 before the `succeed_n'. The `5' is the last two
3269 bytes of this `set_number_at', plus 3 bytes of
3270 the following `succeed_n'. */
3271 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3272 b += 5;
3273 startoffset += 5;
3276 if (upper_bound < 0)
3278 /* A negative upper bound stands for infinity,
3279 in which case it degenerates to a plain jump. */
3280 STORE_JUMP (jump, b, laststart + startoffset);
3281 b += 3;
3283 else if (upper_bound > 1)
3284 { /* More than one repetition is allowed, so
3285 append a backward jump to the `succeed_n'
3286 that starts this interval.
3288 When we've reached this during matching,
3289 we'll have matched the interval once, so
3290 jump back only `upper_bound - 1' times. */
3291 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3292 upper_bound - 1);
3293 b += 5;
3295 /* The location we want to set is the second
3296 parameter of the `jump_n'; that is `b-2' as
3297 an absolute address. `laststart' will be
3298 the `set_number_at' we're about to insert;
3299 `laststart+3' the number to set, the source
3300 for the relative address. But we are
3301 inserting into the middle of the pattern --
3302 so everything is getting moved up by 5.
3303 Conclusion: (b - 2) - (laststart + 3) + 5,
3304 i.e., b - laststart.
3306 We insert this at the beginning of the loop
3307 so that if we fail during matching, we'll
3308 reinitialize the bounds. */
3309 insert_op2 (set_number_at, laststart, b - laststart,
3310 upper_bound - 1, b);
3311 b += 5;
3314 pending_exact = 0;
3315 beg_interval = NULL;
3317 break;
3319 unfetch_interval:
3320 /* If an invalid interval, match the characters as literals. */
3321 assert (beg_interval);
3322 p = beg_interval;
3323 beg_interval = NULL;
3325 /* normal_char and normal_backslash need `c'. */
3326 c = '{';
3328 if (!(syntax & RE_NO_BK_BRACES))
3330 assert (p > pattern && p[-1] == '\\');
3331 goto normal_backslash;
3333 else
3334 goto normal_char;
3336 #ifdef emacs
3337 /* There is no way to specify the before_dot and after_dot
3338 operators. rms says this is ok. --karl */
3339 case '=':
3340 BUF_PUSH (at_dot);
3341 break;
3343 case 's':
3344 laststart = b;
3345 PATFETCH (c);
3346 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3347 break;
3349 case 'S':
3350 laststart = b;
3351 PATFETCH (c);
3352 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3353 break;
3355 case 'c':
3356 laststart = b;
3357 PATFETCH (c);
3358 BUF_PUSH_2 (categoryspec, c);
3359 break;
3361 case 'C':
3362 laststart = b;
3363 PATFETCH (c);
3364 BUF_PUSH_2 (notcategoryspec, c);
3365 break;
3366 #endif /* emacs */
3369 case 'w':
3370 if (syntax & RE_NO_GNU_OPS)
3371 goto normal_char;
3372 laststart = b;
3373 BUF_PUSH_2 (syntaxspec, Sword);
3374 break;
3377 case 'W':
3378 if (syntax & RE_NO_GNU_OPS)
3379 goto normal_char;
3380 laststart = b;
3381 BUF_PUSH_2 (notsyntaxspec, Sword);
3382 break;
3385 case '<':
3386 if (syntax & RE_NO_GNU_OPS)
3387 goto normal_char;
3388 BUF_PUSH (wordbeg);
3389 break;
3391 case '>':
3392 if (syntax & RE_NO_GNU_OPS)
3393 goto normal_char;
3394 BUF_PUSH (wordend);
3395 break;
3397 case 'b':
3398 if (syntax & RE_NO_GNU_OPS)
3399 goto normal_char;
3400 BUF_PUSH (wordbound);
3401 break;
3403 case 'B':
3404 if (syntax & RE_NO_GNU_OPS)
3405 goto normal_char;
3406 BUF_PUSH (notwordbound);
3407 break;
3409 case '`':
3410 if (syntax & RE_NO_GNU_OPS)
3411 goto normal_char;
3412 BUF_PUSH (begbuf);
3413 break;
3415 case '\'':
3416 if (syntax & RE_NO_GNU_OPS)
3417 goto normal_char;
3418 BUF_PUSH (endbuf);
3419 break;
3421 case '1': case '2': case '3': case '4': case '5':
3422 case '6': case '7': case '8': case '9':
3424 regnum_t reg;
3426 if (syntax & RE_NO_BK_REFS)
3427 goto normal_backslash;
3429 reg = c - '0';
3431 /* Can't back reference to a subexpression before its end. */
3432 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3433 FREE_STACK_RETURN (REG_ESUBREG);
3435 laststart = b;
3436 BUF_PUSH_2 (duplicate, reg);
3438 break;
3441 case '+':
3442 case '?':
3443 if (syntax & RE_BK_PLUS_QM)
3444 goto handle_plus;
3445 else
3446 goto normal_backslash;
3448 default:
3449 normal_backslash:
3450 /* You might think it would be useful for \ to mean
3451 not to translate; but if we don't translate it
3452 it will never match anything. */
3453 goto normal_char;
3455 break;
3458 default:
3459 /* Expects the character in `c'. */
3460 normal_char:
3461 /* If no exactn currently being built. */
3462 if (!pending_exact
3464 /* If last exactn not at current position. */
3465 || pending_exact + *pending_exact + 1 != b
3467 /* We have only one byte following the exactn for the count. */
3468 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3470 /* If followed by a repetition operator. */
3471 || (p != pend && (*p == '*' || *p == '^'))
3472 || ((syntax & RE_BK_PLUS_QM)
3473 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3474 : p != pend && (*p == '+' || *p == '?'))
3475 || ((syntax & RE_INTERVALS)
3476 && ((syntax & RE_NO_BK_BRACES)
3477 ? p != pend && *p == '{'
3478 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3480 /* Start building a new exactn. */
3482 laststart = b;
3484 BUF_PUSH_2 (exactn, 0);
3485 pending_exact = b - 1;
3488 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3490 int len;
3492 c = TRANSLATE (c);
3493 if (multibyte)
3494 len = CHAR_STRING (c, b);
3495 else
3496 *b = c, len = 1;
3497 b += len;
3498 (*pending_exact) += len;
3501 break;
3502 } /* switch (c) */
3503 } /* while p != pend */
3506 /* Through the pattern now. */
3508 FIXUP_ALT_JUMP ();
3510 if (!COMPILE_STACK_EMPTY)
3511 FREE_STACK_RETURN (REG_EPAREN);
3513 /* If we don't want backtracking, force success
3514 the first time we reach the end of the compiled pattern. */
3515 if (syntax & RE_NO_POSIX_BACKTRACKING)
3516 BUF_PUSH (succeed);
3518 free (compile_stack.stack);
3520 /* We have succeeded; set the length of the buffer. */
3521 bufp->used = b - bufp->buffer;
3523 #ifdef DEBUG
3524 if (debug > 0)
3526 re_compile_fastmap (bufp);
3527 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3528 print_compiled_pattern (bufp);
3530 debug--;
3531 #endif /* DEBUG */
3533 #ifndef MATCH_MAY_ALLOCATE
3534 /* Initialize the failure stack to the largest possible stack. This
3535 isn't necessary unless we're trying to avoid calling alloca in
3536 the search and match routines. */
3538 int num_regs = bufp->re_nsub + 1;
3540 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3542 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3544 if (! fail_stack.stack)
3545 fail_stack.stack
3546 = (fail_stack_elt_t *) malloc (fail_stack.size
3547 * sizeof (fail_stack_elt_t));
3548 else
3549 fail_stack.stack
3550 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3551 (fail_stack.size
3552 * sizeof (fail_stack_elt_t)));
3555 regex_grow_registers (num_regs);
3557 #endif /* not MATCH_MAY_ALLOCATE */
3559 return REG_NOERROR;
3560 } /* regex_compile */
3562 /* Subroutines for `regex_compile'. */
3564 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3566 static void
3567 store_op1 (op, loc, arg)
3568 re_opcode_t op;
3569 unsigned char *loc;
3570 int arg;
3572 *loc = (unsigned char) op;
3573 STORE_NUMBER (loc + 1, arg);
3577 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3579 static void
3580 store_op2 (op, loc, arg1, arg2)
3581 re_opcode_t op;
3582 unsigned char *loc;
3583 int arg1, arg2;
3585 *loc = (unsigned char) op;
3586 STORE_NUMBER (loc + 1, arg1);
3587 STORE_NUMBER (loc + 3, arg2);
3591 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3592 for OP followed by two-byte integer parameter ARG. */
3594 static void
3595 insert_op1 (op, loc, arg, end)
3596 re_opcode_t op;
3597 unsigned char *loc;
3598 int arg;
3599 unsigned char *end;
3601 register unsigned char *pfrom = end;
3602 register unsigned char *pto = end + 3;
3604 while (pfrom != loc)
3605 *--pto = *--pfrom;
3607 store_op1 (op, loc, arg);
3611 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3613 static void
3614 insert_op2 (op, loc, arg1, arg2, end)
3615 re_opcode_t op;
3616 unsigned char *loc;
3617 int arg1, arg2;
3618 unsigned char *end;
3620 register unsigned char *pfrom = end;
3621 register unsigned char *pto = end + 5;
3623 while (pfrom != loc)
3624 *--pto = *--pfrom;
3626 store_op2 (op, loc, arg1, arg2);
3630 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3631 after an alternative or a begin-subexpression. We assume there is at
3632 least one character before the ^. */
3634 static boolean
3635 at_begline_loc_p (pattern, p, syntax)
3636 re_char *pattern, *p;
3637 reg_syntax_t syntax;
3639 re_char *prev = p - 2;
3640 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3642 return
3643 /* After a subexpression? */
3644 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3645 /* After an alternative? */
3646 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3647 /* After a shy subexpression? */
3648 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3649 && prev[-1] == '?' && prev[-2] == '('
3650 && (syntax & RE_NO_BK_PARENS
3651 || (prev - 3 >= pattern && prev[-3] == '\\')));
3655 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3656 at least one character after the $, i.e., `P < PEND'. */
3658 static boolean
3659 at_endline_loc_p (p, pend, syntax)
3660 re_char *p, *pend;
3661 reg_syntax_t syntax;
3663 re_char *next = p;
3664 boolean next_backslash = *next == '\\';
3665 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3667 return
3668 /* Before a subexpression? */
3669 (syntax & RE_NO_BK_PARENS ? *next == ')'
3670 : next_backslash && next_next && *next_next == ')')
3671 /* Before an alternative? */
3672 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3673 : next_backslash && next_next && *next_next == '|');
3677 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3678 false if it's not. */
3680 static boolean
3681 group_in_compile_stack (compile_stack, regnum)
3682 compile_stack_type compile_stack;
3683 regnum_t regnum;
3685 int this_element;
3687 for (this_element = compile_stack.avail - 1;
3688 this_element >= 0;
3689 this_element--)
3690 if (compile_stack.stack[this_element].regnum == regnum)
3691 return true;
3693 return false;
3696 /* analyse_first.
3697 If fastmap is non-NULL, go through the pattern and fill fastmap
3698 with all the possible leading chars. If fastmap is NULL, don't
3699 bother filling it up (obviously) and only return whether the
3700 pattern could potentially match the empty string.
3702 Return 1 if p..pend might match the empty string.
3703 Return 0 if p..pend matches at least one char.
3704 Return -1 if fastmap was not updated accurately. */
3706 static int
3707 analyse_first (p, pend, fastmap, multibyte)
3708 re_char *p, *pend;
3709 char *fastmap;
3710 const int multibyte;
3712 int j, k;
3713 boolean not;
3715 /* If all elements for base leading-codes in fastmap is set, this
3716 flag is set true. */
3717 boolean match_any_multibyte_characters = false;
3719 assert (p);
3721 /* The loop below works as follows:
3722 - It has a working-list kept in the PATTERN_STACK and which basically
3723 starts by only containing a pointer to the first operation.
3724 - If the opcode we're looking at is a match against some set of
3725 chars, then we add those chars to the fastmap and go on to the
3726 next work element from the worklist (done via `break').
3727 - If the opcode is a control operator on the other hand, we either
3728 ignore it (if it's meaningless at this point, such as `start_memory')
3729 or execute it (if it's a jump). If the jump has several destinations
3730 (i.e. `on_failure_jump'), then we push the other destination onto the
3731 worklist.
3732 We guarantee termination by ignoring backward jumps (more or less),
3733 so that `p' is monotonically increasing. More to the point, we
3734 never set `p' (or push) anything `<= p1'. */
3736 while (p < pend)
3738 /* `p1' is used as a marker of how far back a `on_failure_jump'
3739 can go without being ignored. It is normally equal to `p'
3740 (which prevents any backward `on_failure_jump') except right
3741 after a plain `jump', to allow patterns such as:
3742 0: jump 10
3743 3..9: <body>
3744 10: on_failure_jump 3
3745 as used for the *? operator. */
3746 re_char *p1 = p;
3748 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3750 case succeed:
3751 return 1;
3752 continue;
3754 case duplicate:
3755 /* If the first character has to match a backreference, that means
3756 that the group was empty (since it already matched). Since this
3757 is the only case that interests us here, we can assume that the
3758 backreference must match the empty string. */
3759 p++;
3760 continue;
3763 /* Following are the cases which match a character. These end
3764 with `break'. */
3766 case exactn:
3767 if (fastmap)
3769 int c = RE_STRING_CHAR (p + 1, pend - p);
3771 if (SINGLE_BYTE_CHAR_P (c))
3772 fastmap[c] = 1;
3773 else
3774 fastmap[p[1]] = 1;
3776 break;
3779 case anychar:
3780 /* We could put all the chars except for \n (and maybe \0)
3781 but we don't bother since it is generally not worth it. */
3782 if (!fastmap) break;
3783 return -1;
3786 case charset_not:
3787 /* Chars beyond end of bitmap are possible matches.
3788 All the single-byte codes can occur in multibyte buffers.
3789 So any that are not listed in the charset
3790 are possible matches, even in multibyte buffers. */
3791 if (!fastmap) break;
3792 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3793 j < (1 << BYTEWIDTH); j++)
3794 fastmap[j] = 1;
3795 /* Fallthrough */
3796 case charset:
3797 if (!fastmap) break;
3798 not = (re_opcode_t) *(p - 1) == charset_not;
3799 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3800 j >= 0; j--)
3801 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3802 fastmap[j] = 1;
3804 if ((not && multibyte)
3805 /* Any character set can possibly contain a character
3806 which doesn't match the specified set of characters. */
3807 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3808 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3809 /* If we can match a character class, we can match
3810 any character set. */
3812 set_fastmap_for_multibyte_characters:
3813 if (match_any_multibyte_characters == false)
3815 for (j = 0x80; j < 0xA0; j++) /* XXX */
3816 if (BASE_LEADING_CODE_P (j))
3817 fastmap[j] = 1;
3818 match_any_multibyte_characters = true;
3822 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3823 && match_any_multibyte_characters == false)
3825 /* Set fastmap[I] 1 where I is a base leading code of each
3826 multibyte character in the range table. */
3827 int c, count;
3829 /* Make P points the range table. `+ 2' is to skip flag
3830 bits for a character class. */
3831 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3833 /* Extract the number of ranges in range table into COUNT. */
3834 EXTRACT_NUMBER_AND_INCR (count, p);
3835 for (; count > 0; count--, p += 2 * 3) /* XXX */
3837 /* Extract the start of each range. */
3838 EXTRACT_CHARACTER (c, p);
3839 j = CHAR_CHARSET (c);
3840 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3843 break;
3845 case syntaxspec:
3846 case notsyntaxspec:
3847 if (!fastmap) break;
3848 #ifndef emacs
3849 not = (re_opcode_t)p[-1] == notsyntaxspec;
3850 k = *p++;
3851 for (j = 0; j < (1 << BYTEWIDTH); j++)
3852 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3853 fastmap[j] = 1;
3854 break;
3855 #else /* emacs */
3856 /* This match depends on text properties. These end with
3857 aborting optimizations. */
3858 return -1;
3860 case categoryspec:
3861 case notcategoryspec:
3862 if (!fastmap) break;
3863 not = (re_opcode_t)p[-1] == notcategoryspec;
3864 k = *p++;
3865 for (j = 0; j < (1 << BYTEWIDTH); j++)
3866 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3867 fastmap[j] = 1;
3869 if (multibyte)
3870 /* Any character set can possibly contain a character
3871 whose category is K (or not). */
3872 goto set_fastmap_for_multibyte_characters;
3873 break;
3875 /* All cases after this match the empty string. These end with
3876 `continue'. */
3878 case before_dot:
3879 case at_dot:
3880 case after_dot:
3881 #endif /* !emacs */
3882 case no_op:
3883 case begline:
3884 case endline:
3885 case begbuf:
3886 case endbuf:
3887 case wordbound:
3888 case notwordbound:
3889 case wordbeg:
3890 case wordend:
3891 continue;
3894 case jump:
3895 EXTRACT_NUMBER_AND_INCR (j, p);
3896 if (j < 0)
3897 /* Backward jumps can only go back to code that we've already
3898 visited. `re_compile' should make sure this is true. */
3899 break;
3900 p += j;
3901 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3903 case on_failure_jump:
3904 case on_failure_keep_string_jump:
3905 case on_failure_jump_loop:
3906 case on_failure_jump_nastyloop:
3907 case on_failure_jump_smart:
3908 p++;
3909 break;
3910 default:
3911 continue;
3913 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3914 to jump back to "just after here". */
3915 /* Fallthrough */
3917 case on_failure_jump:
3918 case on_failure_keep_string_jump:
3919 case on_failure_jump_nastyloop:
3920 case on_failure_jump_loop:
3921 case on_failure_jump_smart:
3922 EXTRACT_NUMBER_AND_INCR (j, p);
3923 if (p + j <= p1)
3924 ; /* Backward jump to be ignored. */
3925 else
3926 { /* We have to look down both arms.
3927 We first go down the "straight" path so as to minimize
3928 stack usage when going through alternatives. */
3929 int r = analyse_first (p, pend, fastmap, multibyte);
3930 if (r) return r;
3931 p += j;
3933 continue;
3936 case jump_n:
3937 /* This code simply does not properly handle forward jump_n. */
3938 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3939 p += 4;
3940 /* jump_n can either jump or fall through. The (backward) jump
3941 case has already been handled, so we only need to look at the
3942 fallthrough case. */
3943 continue;
3945 case succeed_n:
3946 /* If N == 0, it should be an on_failure_jump_loop instead. */
3947 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3948 p += 4;
3949 /* We only care about one iteration of the loop, so we don't
3950 need to consider the case where this behaves like an
3951 on_failure_jump. */
3952 continue;
3955 case set_number_at:
3956 p += 4;
3957 continue;
3960 case start_memory:
3961 case stop_memory:
3962 p += 1;
3963 continue;
3966 default:
3967 abort (); /* We have listed all the cases. */
3968 } /* switch *p++ */
3970 /* Getting here means we have found the possible starting
3971 characters for one path of the pattern -- and that the empty
3972 string does not match. We need not follow this path further. */
3973 return 0;
3974 } /* while p */
3976 /* We reached the end without matching anything. */
3977 return 1;
3979 } /* analyse_first */
3981 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3982 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3983 characters can start a string that matches the pattern. This fastmap
3984 is used by re_search to skip quickly over impossible starting points.
3986 Character codes above (1 << BYTEWIDTH) are not represented in the
3987 fastmap, but the leading codes are represented. Thus, the fastmap
3988 indicates which character sets could start a match.
3990 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3991 area as BUFP->fastmap.
3993 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3994 the pattern buffer.
3996 Returns 0 if we succeed, -2 if an internal error. */
3999 re_compile_fastmap (bufp)
4000 struct re_pattern_buffer *bufp;
4002 char *fastmap = bufp->fastmap;
4003 int analysis;
4005 assert (fastmap && bufp->buffer);
4007 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4008 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4010 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4011 fastmap, RE_MULTIBYTE_P (bufp));
4012 bufp->can_be_null = (analysis != 0);
4013 return 0;
4014 } /* re_compile_fastmap */
4016 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4017 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4018 this memory for recording register information. STARTS and ENDS
4019 must be allocated using the malloc library routine, and must each
4020 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4022 If NUM_REGS == 0, then subsequent matches should allocate their own
4023 register data.
4025 Unless this function is called, the first search or match using
4026 PATTERN_BUFFER will allocate its own register data, without
4027 freeing the old data. */
4029 void
4030 re_set_registers (bufp, regs, num_regs, starts, ends)
4031 struct re_pattern_buffer *bufp;
4032 struct re_registers *regs;
4033 unsigned num_regs;
4034 regoff_t *starts, *ends;
4036 if (num_regs)
4038 bufp->regs_allocated = REGS_REALLOCATE;
4039 regs->num_regs = num_regs;
4040 regs->start = starts;
4041 regs->end = ends;
4043 else
4045 bufp->regs_allocated = REGS_UNALLOCATED;
4046 regs->num_regs = 0;
4047 regs->start = regs->end = (regoff_t *) 0;
4050 WEAK_ALIAS (__re_set_registers, re_set_registers)
4052 /* Searching routines. */
4054 /* Like re_search_2, below, but only one string is specified, and
4055 doesn't let you say where to stop matching. */
4058 re_search (bufp, string, size, startpos, range, regs)
4059 struct re_pattern_buffer *bufp;
4060 const char *string;
4061 int size, startpos, range;
4062 struct re_registers *regs;
4064 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4065 regs, size);
4067 WEAK_ALIAS (__re_search, re_search)
4069 /* Head address of virtual concatenation of string. */
4070 #define HEAD_ADDR_VSTRING(P) \
4071 (((P) >= size1 ? string2 : string1))
4073 /* End address of virtual concatenation of string. */
4074 #define STOP_ADDR_VSTRING(P) \
4075 (((P) >= size1 ? string2 + size2 : string1 + size1))
4077 /* Address of POS in the concatenation of virtual string. */
4078 #define POS_ADDR_VSTRING(POS) \
4079 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4081 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4082 virtual concatenation of STRING1 and STRING2, starting first at index
4083 STARTPOS, then at STARTPOS + 1, and so on.
4085 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4087 RANGE is how far to scan while trying to match. RANGE = 0 means try
4088 only at STARTPOS; in general, the last start tried is STARTPOS +
4089 RANGE.
4091 In REGS, return the indices of the virtual concatenation of STRING1
4092 and STRING2 that matched the entire BUFP->buffer and its contained
4093 subexpressions.
4095 Do not consider matching one past the index STOP in the virtual
4096 concatenation of STRING1 and STRING2.
4098 We return either the position in the strings at which the match was
4099 found, -1 if no match, or -2 if error (such as failure
4100 stack overflow). */
4103 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4104 struct re_pattern_buffer *bufp;
4105 const char *str1, *str2;
4106 int size1, size2;
4107 int startpos;
4108 int range;
4109 struct re_registers *regs;
4110 int stop;
4112 int val;
4113 re_char *string1 = (re_char*) str1;
4114 re_char *string2 = (re_char*) str2;
4115 register char *fastmap = bufp->fastmap;
4116 register RE_TRANSLATE_TYPE translate = bufp->translate;
4117 int total_size = size1 + size2;
4118 int endpos = startpos + range;
4119 boolean anchored_start;
4121 /* Nonzero if we have to concern multibyte character. */
4122 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4124 /* Check for out-of-range STARTPOS. */
4125 if (startpos < 0 || startpos > total_size)
4126 return -1;
4128 /* Fix up RANGE if it might eventually take us outside
4129 the virtual concatenation of STRING1 and STRING2.
4130 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4131 if (endpos < 0)
4132 range = 0 - startpos;
4133 else if (endpos > total_size)
4134 range = total_size - startpos;
4136 /* If the search isn't to be a backwards one, don't waste time in a
4137 search for a pattern anchored at beginning of buffer. */
4138 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4140 if (startpos > 0)
4141 return -1;
4142 else
4143 range = 0;
4146 #ifdef emacs
4147 /* In a forward search for something that starts with \=.
4148 don't keep searching past point. */
4149 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4151 range = PT_BYTE - BEGV_BYTE - startpos;
4152 if (range < 0)
4153 return -1;
4155 #endif /* emacs */
4157 /* Update the fastmap now if not correct already. */
4158 if (fastmap && !bufp->fastmap_accurate)
4159 re_compile_fastmap (bufp);
4161 /* See whether the pattern is anchored. */
4162 anchored_start = (bufp->buffer[0] == begline);
4164 #ifdef emacs
4165 gl_state.object = re_match_object;
4167 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4169 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4171 #endif
4173 /* Loop through the string, looking for a place to start matching. */
4174 for (;;)
4176 /* If the pattern is anchored,
4177 skip quickly past places we cannot match.
4178 We don't bother to treat startpos == 0 specially
4179 because that case doesn't repeat. */
4180 if (anchored_start && startpos > 0)
4182 if (! ((startpos <= size1 ? string1[startpos - 1]
4183 : string2[startpos - size1 - 1])
4184 == '\n'))
4185 goto advance;
4188 /* If a fastmap is supplied, skip quickly over characters that
4189 cannot be the start of a match. If the pattern can match the
4190 null string, however, we don't need to skip characters; we want
4191 the first null string. */
4192 if (fastmap && startpos < total_size && !bufp->can_be_null)
4194 register re_char *d;
4195 register re_wchar_t buf_ch;
4197 d = POS_ADDR_VSTRING (startpos);
4199 if (range > 0) /* Searching forwards. */
4201 register int lim = 0;
4202 int irange = range;
4204 if (startpos < size1 && startpos + range >= size1)
4205 lim = range - (size1 - startpos);
4207 /* Written out as an if-else to avoid testing `translate'
4208 inside the loop. */
4209 if (RE_TRANSLATE_P (translate))
4211 if (multibyte)
4212 while (range > lim)
4214 int buf_charlen;
4216 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4217 buf_charlen);
4219 buf_ch = RE_TRANSLATE (translate, buf_ch);
4220 if (buf_ch >= 0400
4221 || fastmap[buf_ch])
4222 break;
4224 range -= buf_charlen;
4225 d += buf_charlen;
4227 else
4228 while (range > lim
4229 && !fastmap[RE_TRANSLATE (translate, *d)])
4231 d++;
4232 range--;
4235 else
4236 while (range > lim && !fastmap[*d])
4238 d++;
4239 range--;
4242 startpos += irange - range;
4244 else /* Searching backwards. */
4246 int room = (startpos >= size1
4247 ? size2 + size1 - startpos
4248 : size1 - startpos);
4249 buf_ch = RE_STRING_CHAR (d, room);
4250 buf_ch = TRANSLATE (buf_ch);
4252 if (! (buf_ch >= 0400
4253 || fastmap[buf_ch]))
4254 goto advance;
4258 /* If can't match the null string, and that's all we have left, fail. */
4259 if (range >= 0 && startpos == total_size && fastmap
4260 && !bufp->can_be_null)
4261 return -1;
4263 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4264 startpos, regs, stop);
4265 #ifndef REGEX_MALLOC
4266 # ifdef C_ALLOCA
4267 alloca (0);
4268 # endif
4269 #endif
4271 if (val >= 0)
4272 return startpos;
4274 if (val == -2)
4275 return -2;
4277 advance:
4278 if (!range)
4279 break;
4280 else if (range > 0)
4282 /* Update STARTPOS to the next character boundary. */
4283 if (multibyte)
4285 re_char *p = POS_ADDR_VSTRING (startpos);
4286 re_char *pend = STOP_ADDR_VSTRING (startpos);
4287 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4289 range -= len;
4290 if (range < 0)
4291 break;
4292 startpos += len;
4294 else
4296 range--;
4297 startpos++;
4300 else
4302 range++;
4303 startpos--;
4305 /* Update STARTPOS to the previous character boundary. */
4306 if (multibyte)
4308 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4309 re_char *p0 = p;
4310 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4312 /* Find the head of multibyte form. */
4313 PREV_CHAR_BOUNDARY (p, phead);
4314 range += p0 - 1 - p;
4315 if (range > 0)
4316 break;
4318 startpos -= p0 - 1 - p;
4322 return -1;
4323 } /* re_search_2 */
4324 WEAK_ALIAS (__re_search_2, re_search_2)
4326 /* Declarations and macros for re_match_2. */
4328 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4329 register int len,
4330 RE_TRANSLATE_TYPE translate,
4331 const int multibyte));
4333 /* This converts PTR, a pointer into one of the search strings `string1'
4334 and `string2' into an offset from the beginning of that string. */
4335 #define POINTER_TO_OFFSET(ptr) \
4336 (FIRST_STRING_P (ptr) \
4337 ? ((regoff_t) ((ptr) - string1)) \
4338 : ((regoff_t) ((ptr) - string2 + size1)))
4340 /* Call before fetching a character with *d. This switches over to
4341 string2 if necessary.
4342 Check re_match_2_internal for a discussion of why end_match_2 might
4343 not be within string2 (but be equal to end_match_1 instead). */
4344 #define PREFETCH() \
4345 while (d == dend) \
4347 /* End of string2 => fail. */ \
4348 if (dend == end_match_2) \
4349 goto fail; \
4350 /* End of string1 => advance to string2. */ \
4351 d = string2; \
4352 dend = end_match_2; \
4355 /* Call before fetching a char with *d if you already checked other limits.
4356 This is meant for use in lookahead operations like wordend, etc..
4357 where we might need to look at parts of the string that might be
4358 outside of the LIMITs (i.e past `stop'). */
4359 #define PREFETCH_NOLIMIT() \
4360 if (d == end1) \
4362 d = string2; \
4363 dend = end_match_2; \
4366 /* Test if at very beginning or at very end of the virtual concatenation
4367 of `string1' and `string2'. If only one string, it's `string2'. */
4368 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4369 #define AT_STRINGS_END(d) ((d) == end2)
4372 /* Test if D points to a character which is word-constituent. We have
4373 two special cases to check for: if past the end of string1, look at
4374 the first character in string2; and if before the beginning of
4375 string2, look at the last character in string1. */
4376 #define WORDCHAR_P(d) \
4377 (SYNTAX ((d) == end1 ? *string2 \
4378 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4379 == Sword)
4381 /* Disabled due to a compiler bug -- see comment at case wordbound */
4383 /* The comment at case wordbound is following one, but we don't use
4384 AT_WORD_BOUNDARY anymore to support multibyte form.
4386 The DEC Alpha C compiler 3.x generates incorrect code for the
4387 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4388 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4389 macro and introducing temporary variables works around the bug. */
4391 #if 0
4392 /* Test if the character before D and the one at D differ with respect
4393 to being word-constituent. */
4394 #define AT_WORD_BOUNDARY(d) \
4395 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4396 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4397 #endif
4399 /* Free everything we malloc. */
4400 #ifdef MATCH_MAY_ALLOCATE
4401 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4402 # define FREE_VARIABLES() \
4403 do { \
4404 REGEX_FREE_STACK (fail_stack.stack); \
4405 FREE_VAR (regstart); \
4406 FREE_VAR (regend); \
4407 FREE_VAR (best_regstart); \
4408 FREE_VAR (best_regend); \
4409 } while (0)
4410 #else
4411 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4412 #endif /* not MATCH_MAY_ALLOCATE */
4415 /* Optimization routines. */
4417 /* If the operation is a match against one or more chars,
4418 return a pointer to the next operation, else return NULL. */
4419 static re_char *
4420 skip_one_char (p)
4421 re_char *p;
4423 switch (SWITCH_ENUM_CAST (*p++))
4425 case anychar:
4426 break;
4428 case exactn:
4429 p += *p + 1;
4430 break;
4432 case charset_not:
4433 case charset:
4434 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4436 int mcnt;
4437 p = CHARSET_RANGE_TABLE (p - 1);
4438 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4439 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4441 else
4442 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4443 break;
4445 case syntaxspec:
4446 case notsyntaxspec:
4447 #ifdef emacs
4448 case categoryspec:
4449 case notcategoryspec:
4450 #endif /* emacs */
4451 p++;
4452 break;
4454 default:
4455 p = NULL;
4457 return p;
4461 /* Jump over non-matching operations. */
4462 static unsigned char *
4463 skip_noops (p, pend)
4464 unsigned char *p, *pend;
4466 int mcnt;
4467 while (p < pend)
4469 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4471 case start_memory:
4472 case stop_memory:
4473 p += 2; break;
4474 case no_op:
4475 p += 1; break;
4476 case jump:
4477 p += 1;
4478 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4479 p += mcnt;
4480 break;
4481 default:
4482 return p;
4485 assert (p == pend);
4486 return p;
4489 /* Non-zero if "p1 matches something" implies "p2 fails". */
4490 static int
4491 mutually_exclusive_p (bufp, p1, p2)
4492 struct re_pattern_buffer *bufp;
4493 unsigned char *p1, *p2;
4495 re_opcode_t op2;
4496 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4497 unsigned char *pend = bufp->buffer + bufp->used;
4499 assert (p1 >= bufp->buffer && p1 < pend
4500 && p2 >= bufp->buffer && p2 <= pend);
4502 /* Skip over open/close-group commands.
4503 If what follows this loop is a ...+ construct,
4504 look at what begins its body, since we will have to
4505 match at least one of that. */
4506 p2 = skip_noops (p2, pend);
4507 /* The same skip can be done for p1, except that this function
4508 is only used in the case where p1 is a simple match operator. */
4509 /* p1 = skip_noops (p1, pend); */
4511 assert (p1 >= bufp->buffer && p1 < pend
4512 && p2 >= bufp->buffer && p2 <= pend);
4514 op2 = p2 == pend ? succeed : *p2;
4516 switch (SWITCH_ENUM_CAST (op2))
4518 case succeed:
4519 case endbuf:
4520 /* If we're at the end of the pattern, we can change. */
4521 if (skip_one_char (p1))
4523 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4524 return 1;
4526 break;
4528 case endline:
4529 case exactn:
4531 register re_wchar_t c
4532 = (re_opcode_t) *p2 == endline ? '\n'
4533 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4535 if ((re_opcode_t) *p1 == exactn)
4537 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4539 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4540 return 1;
4544 else if ((re_opcode_t) *p1 == charset
4545 || (re_opcode_t) *p1 == charset_not)
4547 int not = (re_opcode_t) *p1 == charset_not;
4549 /* Test if C is listed in charset (or charset_not)
4550 at `p1'. */
4551 if (SINGLE_BYTE_CHAR_P (c))
4553 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4554 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4555 not = !not;
4557 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4558 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4560 /* `not' is equal to 1 if c would match, which means
4561 that we can't change to pop_failure_jump. */
4562 if (!not)
4564 DEBUG_PRINT1 (" No match => fast loop.\n");
4565 return 1;
4568 else if ((re_opcode_t) *p1 == anychar
4569 && c == '\n')
4571 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4572 return 1;
4575 break;
4577 case charset:
4579 if ((re_opcode_t) *p1 == exactn)
4580 /* Reuse the code above. */
4581 return mutually_exclusive_p (bufp, p2, p1);
4583 /* It is hard to list up all the character in charset
4584 P2 if it includes multibyte character. Give up in
4585 such case. */
4586 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4588 /* Now, we are sure that P2 has no range table.
4589 So, for the size of bitmap in P2, `p2[1]' is
4590 enough. But P1 may have range table, so the
4591 size of bitmap table of P1 is extracted by
4592 using macro `CHARSET_BITMAP_SIZE'.
4594 Since we know that all the character listed in
4595 P2 is ASCII, it is enough to test only bitmap
4596 table of P1. */
4598 if ((re_opcode_t) *p1 == charset)
4600 int idx;
4601 /* We win if the charset inside the loop
4602 has no overlap with the one after the loop. */
4603 for (idx = 0;
4604 (idx < (int) p2[1]
4605 && idx < CHARSET_BITMAP_SIZE (p1));
4606 idx++)
4607 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4608 break;
4610 if (idx == p2[1]
4611 || idx == CHARSET_BITMAP_SIZE (p1))
4613 DEBUG_PRINT1 (" No match => fast loop.\n");
4614 return 1;
4617 else if ((re_opcode_t) *p1 == charset_not)
4619 int idx;
4620 /* We win if the charset_not inside the loop lists
4621 every character listed in the charset after. */
4622 for (idx = 0; idx < (int) p2[1]; idx++)
4623 if (! (p2[2 + idx] == 0
4624 || (idx < CHARSET_BITMAP_SIZE (p1)
4625 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4626 break;
4628 if (idx == p2[1])
4630 DEBUG_PRINT1 (" No match => fast loop.\n");
4631 return 1;
4636 break;
4638 case charset_not:
4639 switch (SWITCH_ENUM_CAST (*p1))
4641 case exactn:
4642 case charset:
4643 /* Reuse the code above. */
4644 return mutually_exclusive_p (bufp, p2, p1);
4645 case charset_not:
4646 /* When we have two charset_not, it's very unlikely that
4647 they don't overlap. The union of the two sets of excluded
4648 chars should cover all possible chars, which, as a matter of
4649 fact, is virtually impossible in multibyte buffers. */
4650 break;
4652 break;
4654 case wordend:
4655 case notsyntaxspec:
4656 return ((re_opcode_t) *p1 == syntaxspec
4657 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4659 case wordbeg:
4660 case syntaxspec:
4661 return ((re_opcode_t) *p1 == notsyntaxspec
4662 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4664 case wordbound:
4665 return (((re_opcode_t) *p1 == notsyntaxspec
4666 || (re_opcode_t) *p1 == syntaxspec)
4667 && p1[1] == Sword);
4669 #ifdef emacs
4670 case categoryspec:
4671 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4672 case notcategoryspec:
4673 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4674 #endif /* emacs */
4676 default:
4680 /* Safe default. */
4681 return 0;
4685 /* Matching routines. */
4687 #ifndef emacs /* Emacs never uses this. */
4688 /* re_match is like re_match_2 except it takes only a single string. */
4691 re_match (bufp, string, size, pos, regs)
4692 struct re_pattern_buffer *bufp;
4693 const char *string;
4694 int size, pos;
4695 struct re_registers *regs;
4697 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4698 pos, regs, size);
4699 # if defined C_ALLOCA && !defined REGEX_MALLOC
4700 alloca (0);
4701 # endif
4702 return result;
4704 WEAK_ALIAS (__re_match, re_match)
4705 #endif /* not emacs */
4707 #ifdef emacs
4708 /* In Emacs, this is the string or buffer in which we
4709 are matching. It is used for looking up syntax properties. */
4710 Lisp_Object re_match_object;
4711 #endif
4713 /* re_match_2 matches the compiled pattern in BUFP against the
4714 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4715 and SIZE2, respectively). We start matching at POS, and stop
4716 matching at STOP.
4718 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4719 store offsets for the substring each group matched in REGS. See the
4720 documentation for exactly how many groups we fill.
4722 We return -1 if no match, -2 if an internal error (such as the
4723 failure stack overflowing). Otherwise, we return the length of the
4724 matched substring. */
4727 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4728 struct re_pattern_buffer *bufp;
4729 const char *string1, *string2;
4730 int size1, size2;
4731 int pos;
4732 struct re_registers *regs;
4733 int stop;
4735 int result;
4737 #ifdef emacs
4738 int charpos;
4739 gl_state.object = re_match_object;
4740 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4741 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4742 #endif
4744 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4745 (re_char*) string2, size2,
4746 pos, regs, stop);
4747 #if defined C_ALLOCA && !defined REGEX_MALLOC
4748 alloca (0);
4749 #endif
4750 return result;
4752 WEAK_ALIAS (__re_match_2, re_match_2)
4754 /* This is a separate function so that we can force an alloca cleanup
4755 afterwards. */
4756 static int
4757 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4758 struct re_pattern_buffer *bufp;
4759 re_char *string1, *string2;
4760 int size1, size2;
4761 int pos;
4762 struct re_registers *regs;
4763 int stop;
4765 /* General temporaries. */
4766 int mcnt;
4767 size_t reg;
4768 boolean not;
4770 /* Just past the end of the corresponding string. */
4771 re_char *end1, *end2;
4773 /* Pointers into string1 and string2, just past the last characters in
4774 each to consider matching. */
4775 re_char *end_match_1, *end_match_2;
4777 /* Where we are in the data, and the end of the current string. */
4778 re_char *d, *dend;
4780 /* Used sometimes to remember where we were before starting matching
4781 an operator so that we can go back in case of failure. This "atomic"
4782 behavior of matching opcodes is indispensable to the correctness
4783 of the on_failure_keep_string_jump optimization. */
4784 re_char *dfail;
4786 /* Where we are in the pattern, and the end of the pattern. */
4787 re_char *p = bufp->buffer;
4788 re_char *pend = p + bufp->used;
4790 /* We use this to map every character in the string. */
4791 RE_TRANSLATE_TYPE translate = bufp->translate;
4793 /* Nonzero if we have to concern multibyte character. */
4794 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4796 /* Failure point stack. Each place that can handle a failure further
4797 down the line pushes a failure point on this stack. It consists of
4798 regstart, and regend for all registers corresponding to
4799 the subexpressions we're currently inside, plus the number of such
4800 registers, and, finally, two char *'s. The first char * is where
4801 to resume scanning the pattern; the second one is where to resume
4802 scanning the strings. */
4803 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4804 fail_stack_type fail_stack;
4805 #endif
4806 #ifdef DEBUG
4807 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4808 #endif
4810 #if defined REL_ALLOC && defined REGEX_MALLOC
4811 /* This holds the pointer to the failure stack, when
4812 it is allocated relocatably. */
4813 fail_stack_elt_t *failure_stack_ptr;
4814 #endif
4816 /* We fill all the registers internally, independent of what we
4817 return, for use in backreferences. The number here includes
4818 an element for register zero. */
4819 size_t num_regs = bufp->re_nsub + 1;
4821 /* Information on the contents of registers. These are pointers into
4822 the input strings; they record just what was matched (on this
4823 attempt) by a subexpression part of the pattern, that is, the
4824 regnum-th regstart pointer points to where in the pattern we began
4825 matching and the regnum-th regend points to right after where we
4826 stopped matching the regnum-th subexpression. (The zeroth register
4827 keeps track of what the whole pattern matches.) */
4828 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4829 re_char **regstart, **regend;
4830 #endif
4832 /* The following record the register info as found in the above
4833 variables when we find a match better than any we've seen before.
4834 This happens as we backtrack through the failure points, which in
4835 turn happens only if we have not yet matched the entire string. */
4836 unsigned best_regs_set = false;
4837 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4838 re_char **best_regstart, **best_regend;
4839 #endif
4841 /* Logically, this is `best_regend[0]'. But we don't want to have to
4842 allocate space for that if we're not allocating space for anything
4843 else (see below). Also, we never need info about register 0 for
4844 any of the other register vectors, and it seems rather a kludge to
4845 treat `best_regend' differently than the rest. So we keep track of
4846 the end of the best match so far in a separate variable. We
4847 initialize this to NULL so that when we backtrack the first time
4848 and need to test it, it's not garbage. */
4849 re_char *match_end = NULL;
4851 #ifdef DEBUG
4852 /* Counts the total number of registers pushed. */
4853 unsigned num_regs_pushed = 0;
4854 #endif
4856 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4858 INIT_FAIL_STACK ();
4860 #ifdef MATCH_MAY_ALLOCATE
4861 /* Do not bother to initialize all the register variables if there are
4862 no groups in the pattern, as it takes a fair amount of time. If
4863 there are groups, we include space for register 0 (the whole
4864 pattern), even though we never use it, since it simplifies the
4865 array indexing. We should fix this. */
4866 if (bufp->re_nsub)
4868 regstart = REGEX_TALLOC (num_regs, re_char *);
4869 regend = REGEX_TALLOC (num_regs, re_char *);
4870 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4871 best_regend = REGEX_TALLOC (num_regs, re_char *);
4873 if (!(regstart && regend && best_regstart && best_regend))
4875 FREE_VARIABLES ();
4876 return -2;
4879 else
4881 /* We must initialize all our variables to NULL, so that
4882 `FREE_VARIABLES' doesn't try to free them. */
4883 regstart = regend = best_regstart = best_regend = NULL;
4885 #endif /* MATCH_MAY_ALLOCATE */
4887 /* The starting position is bogus. */
4888 if (pos < 0 || pos > size1 + size2)
4890 FREE_VARIABLES ();
4891 return -1;
4894 /* Initialize subexpression text positions to -1 to mark ones that no
4895 start_memory/stop_memory has been seen for. Also initialize the
4896 register information struct. */
4897 for (reg = 1; reg < num_regs; reg++)
4898 regstart[reg] = regend[reg] = NULL;
4900 /* We move `string1' into `string2' if the latter's empty -- but not if
4901 `string1' is null. */
4902 if (size2 == 0 && string1 != NULL)
4904 string2 = string1;
4905 size2 = size1;
4906 string1 = 0;
4907 size1 = 0;
4909 end1 = string1 + size1;
4910 end2 = string2 + size2;
4912 /* `p' scans through the pattern as `d' scans through the data.
4913 `dend' is the end of the input string that `d' points within. `d'
4914 is advanced into the following input string whenever necessary, but
4915 this happens before fetching; therefore, at the beginning of the
4916 loop, `d' can be pointing at the end of a string, but it cannot
4917 equal `string2'. */
4918 if (pos >= size1)
4920 /* Only match within string2. */
4921 d = string2 + pos - size1;
4922 dend = end_match_2 = string2 + stop - size1;
4923 end_match_1 = end1; /* Just to give it a value. */
4925 else
4927 if (stop < size1)
4929 /* Only match within string1. */
4930 end_match_1 = string1 + stop;
4931 /* BEWARE!
4932 When we reach end_match_1, PREFETCH normally switches to string2.
4933 But in the present case, this means that just doing a PREFETCH
4934 makes us jump from `stop' to `gap' within the string.
4935 What we really want here is for the search to stop as
4936 soon as we hit end_match_1. That's why we set end_match_2
4937 to end_match_1 (since PREFETCH fails as soon as we hit
4938 end_match_2). */
4939 end_match_2 = end_match_1;
4941 else
4942 { /* It's important to use this code when stop == size so that
4943 moving `d' from end1 to string2 will not prevent the d == dend
4944 check from catching the end of string. */
4945 end_match_1 = end1;
4946 end_match_2 = string2 + stop - size1;
4948 d = string1 + pos;
4949 dend = end_match_1;
4952 DEBUG_PRINT1 ("The compiled pattern is: ");
4953 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4954 DEBUG_PRINT1 ("The string to match is: `");
4955 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4956 DEBUG_PRINT1 ("'\n");
4958 /* This loops over pattern commands. It exits by returning from the
4959 function if the match is complete, or it drops through if the match
4960 fails at this starting point in the input data. */
4961 for (;;)
4963 DEBUG_PRINT2 ("\n%p: ", p);
4965 if (p == pend)
4966 { /* End of pattern means we might have succeeded. */
4967 DEBUG_PRINT1 ("end of pattern ... ");
4969 /* If we haven't matched the entire string, and we want the
4970 longest match, try backtracking. */
4971 if (d != end_match_2)
4973 /* 1 if this match ends in the same string (string1 or string2)
4974 as the best previous match. */
4975 boolean same_str_p = (FIRST_STRING_P (match_end)
4976 == FIRST_STRING_P (d));
4977 /* 1 if this match is the best seen so far. */
4978 boolean best_match_p;
4980 /* AIX compiler got confused when this was combined
4981 with the previous declaration. */
4982 if (same_str_p)
4983 best_match_p = d > match_end;
4984 else
4985 best_match_p = !FIRST_STRING_P (d);
4987 DEBUG_PRINT1 ("backtracking.\n");
4989 if (!FAIL_STACK_EMPTY ())
4990 { /* More failure points to try. */
4992 /* If exceeds best match so far, save it. */
4993 if (!best_regs_set || best_match_p)
4995 best_regs_set = true;
4996 match_end = d;
4998 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5000 for (reg = 1; reg < num_regs; reg++)
5002 best_regstart[reg] = regstart[reg];
5003 best_regend[reg] = regend[reg];
5006 goto fail;
5009 /* If no failure points, don't restore garbage. And if
5010 last match is real best match, don't restore second
5011 best one. */
5012 else if (best_regs_set && !best_match_p)
5014 restore_best_regs:
5015 /* Restore best match. It may happen that `dend ==
5016 end_match_1' while the restored d is in string2.
5017 For example, the pattern `x.*y.*z' against the
5018 strings `x-' and `y-z-', if the two strings are
5019 not consecutive in memory. */
5020 DEBUG_PRINT1 ("Restoring best registers.\n");
5022 d = match_end;
5023 dend = ((d >= string1 && d <= end1)
5024 ? end_match_1 : end_match_2);
5026 for (reg = 1; reg < num_regs; reg++)
5028 regstart[reg] = best_regstart[reg];
5029 regend[reg] = best_regend[reg];
5032 } /* d != end_match_2 */
5034 succeed_label:
5035 DEBUG_PRINT1 ("Accepting match.\n");
5037 /* If caller wants register contents data back, do it. */
5038 if (regs && !bufp->no_sub)
5040 /* Have the register data arrays been allocated? */
5041 if (bufp->regs_allocated == REGS_UNALLOCATED)
5042 { /* No. So allocate them with malloc. We need one
5043 extra element beyond `num_regs' for the `-1' marker
5044 GNU code uses. */
5045 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5046 regs->start = TALLOC (regs->num_regs, regoff_t);
5047 regs->end = TALLOC (regs->num_regs, regoff_t);
5048 if (regs->start == NULL || regs->end == NULL)
5050 FREE_VARIABLES ();
5051 return -2;
5053 bufp->regs_allocated = REGS_REALLOCATE;
5055 else if (bufp->regs_allocated == REGS_REALLOCATE)
5056 { /* Yes. If we need more elements than were already
5057 allocated, reallocate them. If we need fewer, just
5058 leave it alone. */
5059 if (regs->num_regs < num_regs + 1)
5061 regs->num_regs = num_regs + 1;
5062 RETALLOC (regs->start, regs->num_regs, regoff_t);
5063 RETALLOC (regs->end, regs->num_regs, regoff_t);
5064 if (regs->start == NULL || regs->end == NULL)
5066 FREE_VARIABLES ();
5067 return -2;
5071 else
5073 /* These braces fend off a "empty body in an else-statement"
5074 warning under GCC when assert expands to nothing. */
5075 assert (bufp->regs_allocated == REGS_FIXED);
5078 /* Convert the pointer data in `regstart' and `regend' to
5079 indices. Register zero has to be set differently,
5080 since we haven't kept track of any info for it. */
5081 if (regs->num_regs > 0)
5083 regs->start[0] = pos;
5084 regs->end[0] = POINTER_TO_OFFSET (d);
5087 /* Go through the first `min (num_regs, regs->num_regs)'
5088 registers, since that is all we initialized. */
5089 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5091 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5092 regs->start[reg] = regs->end[reg] = -1;
5093 else
5095 regs->start[reg]
5096 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5097 regs->end[reg]
5098 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5102 /* If the regs structure we return has more elements than
5103 were in the pattern, set the extra elements to -1. If
5104 we (re)allocated the registers, this is the case,
5105 because we always allocate enough to have at least one
5106 -1 at the end. */
5107 for (reg = num_regs; reg < regs->num_regs; reg++)
5108 regs->start[reg] = regs->end[reg] = -1;
5109 } /* regs && !bufp->no_sub */
5111 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5112 nfailure_points_pushed, nfailure_points_popped,
5113 nfailure_points_pushed - nfailure_points_popped);
5114 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5116 mcnt = POINTER_TO_OFFSET (d) - pos;
5118 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5120 FREE_VARIABLES ();
5121 return mcnt;
5124 /* Otherwise match next pattern command. */
5125 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5127 /* Ignore these. Used to ignore the n of succeed_n's which
5128 currently have n == 0. */
5129 case no_op:
5130 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5131 break;
5133 case succeed:
5134 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5135 goto succeed_label;
5137 /* Match the next n pattern characters exactly. The following
5138 byte in the pattern defines n, and the n bytes after that
5139 are the characters to match. */
5140 case exactn:
5141 mcnt = *p++;
5142 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5144 /* Remember the start point to rollback upon failure. */
5145 dfail = d;
5147 /* This is written out as an if-else so we don't waste time
5148 testing `translate' inside the loop. */
5149 if (RE_TRANSLATE_P (translate))
5151 if (multibyte)
5154 int pat_charlen, buf_charlen;
5155 unsigned int pat_ch, buf_ch;
5157 PREFETCH ();
5158 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5159 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5161 if (RE_TRANSLATE (translate, buf_ch)
5162 != pat_ch)
5164 d = dfail;
5165 goto fail;
5168 p += pat_charlen;
5169 d += buf_charlen;
5170 mcnt -= pat_charlen;
5172 while (mcnt > 0);
5173 else
5176 PREFETCH ();
5177 if (RE_TRANSLATE (translate, *d) != *p++)
5179 d = dfail;
5180 goto fail;
5182 d++;
5184 while (--mcnt);
5186 else
5190 PREFETCH ();
5191 if (*d++ != *p++)
5193 d = dfail;
5194 goto fail;
5197 while (--mcnt);
5199 break;
5202 /* Match any character except possibly a newline or a null. */
5203 case anychar:
5205 int buf_charlen;
5206 re_wchar_t buf_ch;
5208 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5210 PREFETCH ();
5211 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5212 buf_ch = TRANSLATE (buf_ch);
5214 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5215 && buf_ch == '\n')
5216 || ((bufp->syntax & RE_DOT_NOT_NULL)
5217 && buf_ch == '\000'))
5218 goto fail;
5220 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5221 d += buf_charlen;
5223 break;
5226 case charset:
5227 case charset_not:
5229 register unsigned int c;
5230 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5231 int len;
5233 /* Start of actual range_table, or end of bitmap if there is no
5234 range table. */
5235 re_char *range_table;
5237 /* Nonzero if there is a range table. */
5238 int range_table_exists;
5240 /* Number of ranges of range table. This is not included
5241 in the initial byte-length of the command. */
5242 int count = 0;
5244 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5246 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5248 if (range_table_exists)
5250 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5251 EXTRACT_NUMBER_AND_INCR (count, range_table);
5254 PREFETCH ();
5255 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5256 c = TRANSLATE (c); /* The character to match. */
5258 if (SINGLE_BYTE_CHAR_P (c))
5259 { /* Lookup bitmap. */
5260 /* Cast to `unsigned' instead of `unsigned char' in
5261 case the bit list is a full 32 bytes long. */
5262 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5263 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5264 not = !not;
5266 #ifdef emacs
5267 else if (range_table_exists)
5269 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5271 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5272 | (class_bits & BIT_MULTIBYTE)
5273 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5274 | (class_bits & BIT_SPACE && ISSPACE (c))
5275 | (class_bits & BIT_UPPER && ISUPPER (c))
5276 | (class_bits & BIT_WORD && ISWORD (c)))
5277 not = !not;
5278 else
5279 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5281 #endif /* emacs */
5283 if (range_table_exists)
5284 p = CHARSET_RANGE_TABLE_END (range_table, count);
5285 else
5286 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5288 if (!not) goto fail;
5290 d += len;
5291 break;
5295 /* The beginning of a group is represented by start_memory.
5296 The argument is the register number. The text
5297 matched within the group is recorded (in the internal
5298 registers data structure) under the register number. */
5299 case start_memory:
5300 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5302 /* In case we need to undo this operation (via backtracking). */
5303 PUSH_FAILURE_REG ((unsigned int)*p);
5305 regstart[*p] = d;
5306 regend[*p] = NULL; /* probably unnecessary. -sm */
5307 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5309 /* Move past the register number and inner group count. */
5310 p += 1;
5311 break;
5314 /* The stop_memory opcode represents the end of a group. Its
5315 argument is the same as start_memory's: the register number. */
5316 case stop_memory:
5317 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5319 assert (!REG_UNSET (regstart[*p]));
5320 /* Strictly speaking, there should be code such as:
5322 assert (REG_UNSET (regend[*p]));
5323 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5325 But the only info to be pushed is regend[*p] and it is known to
5326 be UNSET, so there really isn't anything to push.
5327 Not pushing anything, on the other hand deprives us from the
5328 guarantee that regend[*p] is UNSET since undoing this operation
5329 will not reset its value properly. This is not important since
5330 the value will only be read on the next start_memory or at
5331 the very end and both events can only happen if this stop_memory
5332 is *not* undone. */
5334 regend[*p] = d;
5335 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5337 /* Move past the register number and the inner group count. */
5338 p += 1;
5339 break;
5342 /* \<digit> has been turned into a `duplicate' command which is
5343 followed by the numeric value of <digit> as the register number. */
5344 case duplicate:
5346 register re_char *d2, *dend2;
5347 int regno = *p++; /* Get which register to match against. */
5348 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5350 /* Can't back reference a group which we've never matched. */
5351 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5352 goto fail;
5354 /* Where in input to try to start matching. */
5355 d2 = regstart[regno];
5357 /* Remember the start point to rollback upon failure. */
5358 dfail = d;
5360 /* Where to stop matching; if both the place to start and
5361 the place to stop matching are in the same string, then
5362 set to the place to stop, otherwise, for now have to use
5363 the end of the first string. */
5365 dend2 = ((FIRST_STRING_P (regstart[regno])
5366 == FIRST_STRING_P (regend[regno]))
5367 ? regend[regno] : end_match_1);
5368 for (;;)
5370 /* If necessary, advance to next segment in register
5371 contents. */
5372 while (d2 == dend2)
5374 if (dend2 == end_match_2) break;
5375 if (dend2 == regend[regno]) break;
5377 /* End of string1 => advance to string2. */
5378 d2 = string2;
5379 dend2 = regend[regno];
5381 /* At end of register contents => success */
5382 if (d2 == dend2) break;
5384 /* If necessary, advance to next segment in data. */
5385 PREFETCH ();
5387 /* How many characters left in this segment to match. */
5388 mcnt = dend - d;
5390 /* Want how many consecutive characters we can match in
5391 one shot, so, if necessary, adjust the count. */
5392 if (mcnt > dend2 - d2)
5393 mcnt = dend2 - d2;
5395 /* Compare that many; failure if mismatch, else move
5396 past them. */
5397 if (RE_TRANSLATE_P (translate)
5398 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5399 : memcmp (d, d2, mcnt))
5401 d = dfail;
5402 goto fail;
5404 d += mcnt, d2 += mcnt;
5407 break;
5410 /* begline matches the empty string at the beginning of the string
5411 (unless `not_bol' is set in `bufp'), and after newlines. */
5412 case begline:
5413 DEBUG_PRINT1 ("EXECUTING begline.\n");
5415 if (AT_STRINGS_BEG (d))
5417 if (!bufp->not_bol) break;
5419 else
5421 unsigned char c;
5422 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5423 if (c == '\n')
5424 break;
5426 /* In all other cases, we fail. */
5427 goto fail;
5430 /* endline is the dual of begline. */
5431 case endline:
5432 DEBUG_PRINT1 ("EXECUTING endline.\n");
5434 if (AT_STRINGS_END (d))
5436 if (!bufp->not_eol) break;
5438 else
5440 PREFETCH_NOLIMIT ();
5441 if (*d == '\n')
5442 break;
5444 goto fail;
5447 /* Match at the very beginning of the data. */
5448 case begbuf:
5449 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5450 if (AT_STRINGS_BEG (d))
5451 break;
5452 goto fail;
5455 /* Match at the very end of the data. */
5456 case endbuf:
5457 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5458 if (AT_STRINGS_END (d))
5459 break;
5460 goto fail;
5463 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5464 pushes NULL as the value for the string on the stack. Then
5465 `POP_FAILURE_POINT' will keep the current value for the
5466 string, instead of restoring it. To see why, consider
5467 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5468 then the . fails against the \n. But the next thing we want
5469 to do is match the \n against the \n; if we restored the
5470 string value, we would be back at the foo.
5472 Because this is used only in specific cases, we don't need to
5473 check all the things that `on_failure_jump' does, to make
5474 sure the right things get saved on the stack. Hence we don't
5475 share its code. The only reason to push anything on the
5476 stack at all is that otherwise we would have to change
5477 `anychar's code to do something besides goto fail in this
5478 case; that seems worse than this. */
5479 case on_failure_keep_string_jump:
5480 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5481 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5482 mcnt, p + mcnt);
5484 PUSH_FAILURE_POINT (p - 3, NULL);
5485 break;
5487 /* A nasty loop is introduced by the non-greedy *? and +?.
5488 With such loops, the stack only ever contains one failure point
5489 at a time, so that a plain on_failure_jump_loop kind of
5490 cycle detection cannot work. Worse yet, such a detection
5491 can not only fail to detect a cycle, but it can also wrongly
5492 detect a cycle (between different instantiations of the same
5493 loop).
5494 So the method used for those nasty loops is a little different:
5495 We use a special cycle-detection-stack-frame which is pushed
5496 when the on_failure_jump_nastyloop failure-point is *popped*.
5497 This special frame thus marks the beginning of one iteration
5498 through the loop and we can hence easily check right here
5499 whether something matched between the beginning and the end of
5500 the loop. */
5501 case on_failure_jump_nastyloop:
5502 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5503 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5504 mcnt, p + mcnt);
5506 assert ((re_opcode_t)p[-4] == no_op);
5508 int cycle = 0;
5509 CHECK_INFINITE_LOOP (p - 4, d);
5510 if (!cycle)
5511 /* If there's a cycle, just continue without pushing
5512 this failure point. The failure point is the "try again"
5513 option, which shouldn't be tried.
5514 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5515 PUSH_FAILURE_POINT (p - 3, d);
5517 break;
5519 /* Simple loop detecting on_failure_jump: just check on the
5520 failure stack if the same spot was already hit earlier. */
5521 case on_failure_jump_loop:
5522 on_failure:
5523 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5524 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5525 mcnt, p + mcnt);
5527 int cycle = 0;
5528 CHECK_INFINITE_LOOP (p - 3, d);
5529 if (cycle)
5530 /* If there's a cycle, get out of the loop, as if the matching
5531 had failed. We used to just `goto fail' here, but that was
5532 aborting the search a bit too early: we want to keep the
5533 empty-loop-match and keep matching after the loop.
5534 We want (x?)*y\1z to match both xxyz and xxyxz. */
5535 p += mcnt;
5536 else
5537 PUSH_FAILURE_POINT (p - 3, d);
5539 break;
5542 /* Uses of on_failure_jump:
5544 Each alternative starts with an on_failure_jump that points
5545 to the beginning of the next alternative. Each alternative
5546 except the last ends with a jump that in effect jumps past
5547 the rest of the alternatives. (They really jump to the
5548 ending jump of the following alternative, because tensioning
5549 these jumps is a hassle.)
5551 Repeats start with an on_failure_jump that points past both
5552 the repetition text and either the following jump or
5553 pop_failure_jump back to this on_failure_jump. */
5554 case on_failure_jump:
5555 IMMEDIATE_QUIT_CHECK;
5556 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5557 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5558 mcnt, p + mcnt);
5560 PUSH_FAILURE_POINT (p -3, d);
5561 break;
5563 /* This operation is used for greedy *.
5564 Compare the beginning of the repeat with what in the
5565 pattern follows its end. If we can establish that there
5566 is nothing that they would both match, i.e., that we
5567 would have to backtrack because of (as in, e.g., `a*a')
5568 then we can use a non-backtracking loop based on
5569 on_failure_keep_string_jump instead of on_failure_jump. */
5570 case on_failure_jump_smart:
5571 IMMEDIATE_QUIT_CHECK;
5572 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5573 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5574 mcnt, p + mcnt);
5576 re_char *p1 = p; /* Next operation. */
5577 /* Here, we discard `const', making re_match non-reentrant. */
5578 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5579 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5581 p -= 3; /* Reset so that we will re-execute the
5582 instruction once it's been changed. */
5584 EXTRACT_NUMBER (mcnt, p2 - 2);
5586 /* Ensure this is a indeed the trivial kind of loop
5587 we are expecting. */
5588 assert (skip_one_char (p1) == p2 - 3);
5589 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5590 DEBUG_STATEMENT (debug += 2);
5591 if (mutually_exclusive_p (bufp, p1, p2))
5593 /* Use a fast `on_failure_keep_string_jump' loop. */
5594 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5595 *p3 = (unsigned char) on_failure_keep_string_jump;
5596 STORE_NUMBER (p2 - 2, mcnt + 3);
5598 else
5600 /* Default to a safe `on_failure_jump' loop. */
5601 DEBUG_PRINT1 (" smart default => slow loop.\n");
5602 *p3 = (unsigned char) on_failure_jump;
5604 DEBUG_STATEMENT (debug -= 2);
5606 break;
5608 /* Unconditionally jump (without popping any failure points). */
5609 case jump:
5610 unconditional_jump:
5611 IMMEDIATE_QUIT_CHECK;
5612 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5613 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5614 p += mcnt; /* Do the jump. */
5615 DEBUG_PRINT2 ("(to %p).\n", p);
5616 break;
5619 /* Have to succeed matching what follows at least n times.
5620 After that, handle like `on_failure_jump'. */
5621 case succeed_n:
5622 /* Signedness doesn't matter since we only compare MCNT to 0. */
5623 EXTRACT_NUMBER (mcnt, p + 2);
5624 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5626 /* Originally, mcnt is how many times we HAVE to succeed. */
5627 if (mcnt != 0)
5629 /* Here, we discard `const', making re_match non-reentrant. */
5630 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5631 mcnt--;
5632 p += 4;
5633 PUSH_NUMBER (p2, mcnt);
5635 else
5636 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5637 goto on_failure;
5638 break;
5640 case jump_n:
5641 /* Signedness doesn't matter since we only compare MCNT to 0. */
5642 EXTRACT_NUMBER (mcnt, p + 2);
5643 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5645 /* Originally, this is how many times we CAN jump. */
5646 if (mcnt != 0)
5648 /* Here, we discard `const', making re_match non-reentrant. */
5649 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5650 mcnt--;
5651 PUSH_NUMBER (p2, mcnt);
5652 goto unconditional_jump;
5654 /* If don't have to jump any more, skip over the rest of command. */
5655 else
5656 p += 4;
5657 break;
5659 case set_number_at:
5661 unsigned char *p2; /* Location of the counter. */
5662 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5664 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5665 /* Here, we discard `const', making re_match non-reentrant. */
5666 p2 = (unsigned char*) p + mcnt;
5667 /* Signedness doesn't matter since we only copy MCNT's bits . */
5668 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5669 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5670 PUSH_NUMBER (p2, mcnt);
5671 break;
5674 case wordbound:
5675 case notwordbound:
5676 not = (re_opcode_t) *(p - 1) == notwordbound;
5677 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5679 /* We SUCCEED (or FAIL) in one of the following cases: */
5681 /* Case 1: D is at the beginning or the end of string. */
5682 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5683 not = !not;
5684 else
5686 /* C1 is the character before D, S1 is the syntax of C1, C2
5687 is the character at D, and S2 is the syntax of C2. */
5688 re_wchar_t c1, c2;
5689 int s1, s2;
5690 #ifdef emacs
5691 int offset = PTR_TO_OFFSET (d - 1);
5692 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5693 UPDATE_SYNTAX_TABLE (charpos);
5694 #endif
5695 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5696 s1 = SYNTAX (c1);
5697 #ifdef emacs
5698 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5699 #endif
5700 PREFETCH_NOLIMIT ();
5701 c2 = RE_STRING_CHAR (d, dend - d);
5702 s2 = SYNTAX (c2);
5704 if (/* Case 2: Only one of S1 and S2 is Sword. */
5705 ((s1 == Sword) != (s2 == Sword))
5706 /* Case 3: Both of S1 and S2 are Sword, and macro
5707 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5708 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5709 not = !not;
5711 if (not)
5712 break;
5713 else
5714 goto fail;
5716 case wordbeg:
5717 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5719 /* We FAIL in one of the following cases: */
5721 /* Case 1: D is at the end of string. */
5722 if (AT_STRINGS_END (d))
5723 goto fail;
5724 else
5726 /* C1 is the character before D, S1 is the syntax of C1, C2
5727 is the character at D, and S2 is the syntax of C2. */
5728 re_wchar_t c1, c2;
5729 int s1, s2;
5730 #ifdef emacs
5731 int offset = PTR_TO_OFFSET (d);
5732 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5733 UPDATE_SYNTAX_TABLE (charpos);
5734 #endif
5735 PREFETCH ();
5736 c2 = RE_STRING_CHAR (d, dend - d);
5737 s2 = SYNTAX (c2);
5739 /* Case 2: S2 is not Sword. */
5740 if (s2 != Sword)
5741 goto fail;
5743 /* Case 3: D is not at the beginning of string ... */
5744 if (!AT_STRINGS_BEG (d))
5746 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5747 #ifdef emacs
5748 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5749 #endif
5750 s1 = SYNTAX (c1);
5752 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5753 returns 0. */
5754 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5755 goto fail;
5758 break;
5760 case wordend:
5761 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5763 /* We FAIL in one of the following cases: */
5765 /* Case 1: D is at the beginning of string. */
5766 if (AT_STRINGS_BEG (d))
5767 goto fail;
5768 else
5770 /* C1 is the character before D, S1 is the syntax of C1, C2
5771 is the character at D, and S2 is the syntax of C2. */
5772 re_wchar_t c1, c2;
5773 int s1, s2;
5774 #ifdef emacs
5775 int offset = PTR_TO_OFFSET (d) - 1;
5776 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5777 UPDATE_SYNTAX_TABLE (charpos);
5778 #endif
5779 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5780 s1 = SYNTAX (c1);
5782 /* Case 2: S1 is not Sword. */
5783 if (s1 != Sword)
5784 goto fail;
5786 /* Case 3: D is not at the end of string ... */
5787 if (!AT_STRINGS_END (d))
5789 PREFETCH_NOLIMIT ();
5790 c2 = RE_STRING_CHAR (d, dend - d);
5791 #ifdef emacs
5792 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5793 #endif
5794 s2 = SYNTAX (c2);
5796 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5797 returns 0. */
5798 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5799 goto fail;
5802 break;
5804 case syntaxspec:
5805 case notsyntaxspec:
5806 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5807 mcnt = *p++;
5808 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5809 PREFETCH ();
5810 #ifdef emacs
5812 int offset = PTR_TO_OFFSET (d);
5813 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5814 UPDATE_SYNTAX_TABLE (pos1);
5816 #endif
5818 int len;
5819 re_wchar_t c;
5821 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5823 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5824 goto fail;
5825 d += len;
5827 break;
5829 #ifdef emacs
5830 case before_dot:
5831 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5832 if (PTR_BYTE_POS (d) >= PT_BYTE)
5833 goto fail;
5834 break;
5836 case at_dot:
5837 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5838 if (PTR_BYTE_POS (d) != PT_BYTE)
5839 goto fail;
5840 break;
5842 case after_dot:
5843 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5844 if (PTR_BYTE_POS (d) <= PT_BYTE)
5845 goto fail;
5846 break;
5848 case categoryspec:
5849 case notcategoryspec:
5850 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5851 mcnt = *p++;
5852 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5853 PREFETCH ();
5855 int len;
5856 re_wchar_t c;
5858 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5860 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5861 goto fail;
5862 d += len;
5864 break;
5866 #endif /* emacs */
5868 default:
5869 abort ();
5871 continue; /* Successfully executed one pattern command; keep going. */
5874 /* We goto here if a matching operation fails. */
5875 fail:
5876 IMMEDIATE_QUIT_CHECK;
5877 if (!FAIL_STACK_EMPTY ())
5879 re_char *str, *pat;
5880 /* A restart point is known. Restore to that state. */
5881 DEBUG_PRINT1 ("\nFAIL:\n");
5882 POP_FAILURE_POINT (str, pat);
5883 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5885 case on_failure_keep_string_jump:
5886 assert (str == NULL);
5887 goto continue_failure_jump;
5889 case on_failure_jump_nastyloop:
5890 assert ((re_opcode_t)pat[-2] == no_op);
5891 PUSH_FAILURE_POINT (pat - 2, str);
5892 /* Fallthrough */
5894 case on_failure_jump_loop:
5895 case on_failure_jump:
5896 case succeed_n:
5897 d = str;
5898 continue_failure_jump:
5899 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5900 p = pat + mcnt;
5901 break;
5903 case no_op:
5904 /* A special frame used for nastyloops. */
5905 goto fail;
5907 default:
5908 abort();
5911 assert (p >= bufp->buffer && p <= pend);
5913 if (d >= string1 && d <= end1)
5914 dend = end_match_1;
5916 else
5917 break; /* Matching at this starting point really fails. */
5918 } /* for (;;) */
5920 if (best_regs_set)
5921 goto restore_best_regs;
5923 FREE_VARIABLES ();
5925 return -1; /* Failure to match. */
5926 } /* re_match_2 */
5928 /* Subroutine definitions for re_match_2. */
5930 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5931 bytes; nonzero otherwise. */
5933 static int
5934 bcmp_translate (s1, s2, len, translate, multibyte)
5935 re_char *s1, *s2;
5936 register int len;
5937 RE_TRANSLATE_TYPE translate;
5938 const int multibyte;
5940 register re_char *p1 = s1, *p2 = s2;
5941 re_char *p1_end = s1 + len;
5942 re_char *p2_end = s2 + len;
5944 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5945 different lengths, but relying on a single `len' would break this. -sm */
5946 while (p1 < p1_end && p2 < p2_end)
5948 int p1_charlen, p2_charlen;
5949 re_wchar_t p1_ch, p2_ch;
5951 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5952 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5954 if (RE_TRANSLATE (translate, p1_ch)
5955 != RE_TRANSLATE (translate, p2_ch))
5956 return 1;
5958 p1 += p1_charlen, p2 += p2_charlen;
5961 if (p1 != p1_end || p2 != p2_end)
5962 return 1;
5964 return 0;
5967 /* Entry points for GNU code. */
5969 /* re_compile_pattern is the GNU regular expression compiler: it
5970 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5971 Returns 0 if the pattern was valid, otherwise an error string.
5973 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5974 are set in BUFP on entry.
5976 We call regex_compile to do the actual compilation. */
5978 const char *
5979 re_compile_pattern (pattern, length, bufp)
5980 const char *pattern;
5981 size_t length;
5982 struct re_pattern_buffer *bufp;
5984 reg_errcode_t ret;
5986 /* GNU code is written to assume at least RE_NREGS registers will be set
5987 (and at least one extra will be -1). */
5988 bufp->regs_allocated = REGS_UNALLOCATED;
5990 /* And GNU code determines whether or not to get register information
5991 by passing null for the REGS argument to re_match, etc., not by
5992 setting no_sub. */
5993 bufp->no_sub = 0;
5995 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
5997 if (!ret)
5998 return NULL;
5999 return gettext (re_error_msgid[(int) ret]);
6001 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6003 /* Entry points compatible with 4.2 BSD regex library. We don't define
6004 them unless specifically requested. */
6006 #if defined _REGEX_RE_COMP || defined _LIBC
6008 /* BSD has one and only one pattern buffer. */
6009 static struct re_pattern_buffer re_comp_buf;
6011 char *
6012 # ifdef _LIBC
6013 /* Make these definitions weak in libc, so POSIX programs can redefine
6014 these names if they don't use our functions, and still use
6015 regcomp/regexec below without link errors. */
6016 weak_function
6017 # endif
6018 re_comp (s)
6019 const char *s;
6021 reg_errcode_t ret;
6023 if (!s)
6025 if (!re_comp_buf.buffer)
6026 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6027 return (char *) gettext ("No previous regular expression");
6028 return 0;
6031 if (!re_comp_buf.buffer)
6033 re_comp_buf.buffer = (unsigned char *) malloc (200);
6034 if (re_comp_buf.buffer == NULL)
6035 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6036 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6037 re_comp_buf.allocated = 200;
6039 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6040 if (re_comp_buf.fastmap == NULL)
6041 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6042 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6045 /* Since `re_exec' always passes NULL for the `regs' argument, we
6046 don't need to initialize the pattern buffer fields which affect it. */
6048 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6050 if (!ret)
6051 return NULL;
6053 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6054 return (char *) gettext (re_error_msgid[(int) ret]);
6059 # ifdef _LIBC
6060 weak_function
6061 # endif
6062 re_exec (s)
6063 const char *s;
6065 const int len = strlen (s);
6066 return
6067 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6069 #endif /* _REGEX_RE_COMP */
6071 /* POSIX.2 functions. Don't define these for Emacs. */
6073 #ifndef emacs
6075 /* regcomp takes a regular expression as a string and compiles it.
6077 PREG is a regex_t *. We do not expect any fields to be initialized,
6078 since POSIX says we shouldn't. Thus, we set
6080 `buffer' to the compiled pattern;
6081 `used' to the length of the compiled pattern;
6082 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6083 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6084 RE_SYNTAX_POSIX_BASIC;
6085 `fastmap' to an allocated space for the fastmap;
6086 `fastmap_accurate' to zero;
6087 `re_nsub' to the number of subexpressions in PATTERN.
6089 PATTERN is the address of the pattern string.
6091 CFLAGS is a series of bits which affect compilation.
6093 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6094 use POSIX basic syntax.
6096 If REG_NEWLINE is set, then . and [^...] don't match newline.
6097 Also, regexec will try a match beginning after every newline.
6099 If REG_ICASE is set, then we considers upper- and lowercase
6100 versions of letters to be equivalent when matching.
6102 If REG_NOSUB is set, then when PREG is passed to regexec, that
6103 routine will report only success or failure, and nothing about the
6104 registers.
6106 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6107 the return codes and their meanings.) */
6110 regcomp (preg, pattern, cflags)
6111 regex_t *__restrict preg;
6112 const char *__restrict pattern;
6113 int cflags;
6115 reg_errcode_t ret;
6116 reg_syntax_t syntax
6117 = (cflags & REG_EXTENDED) ?
6118 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6120 /* regex_compile will allocate the space for the compiled pattern. */
6121 preg->buffer = 0;
6122 preg->allocated = 0;
6123 preg->used = 0;
6125 /* Try to allocate space for the fastmap. */
6126 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6128 if (cflags & REG_ICASE)
6130 unsigned i;
6132 preg->translate
6133 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6134 * sizeof (*(RE_TRANSLATE_TYPE)0));
6135 if (preg->translate == NULL)
6136 return (int) REG_ESPACE;
6138 /* Map uppercase characters to corresponding lowercase ones. */
6139 for (i = 0; i < CHAR_SET_SIZE; i++)
6140 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6142 else
6143 preg->translate = NULL;
6145 /* If REG_NEWLINE is set, newlines are treated differently. */
6146 if (cflags & REG_NEWLINE)
6147 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6148 syntax &= ~RE_DOT_NEWLINE;
6149 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6151 else
6152 syntax |= RE_NO_NEWLINE_ANCHOR;
6154 preg->no_sub = !!(cflags & REG_NOSUB);
6156 /* POSIX says a null character in the pattern terminates it, so we
6157 can use strlen here in compiling the pattern. */
6158 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6160 /* POSIX doesn't distinguish between an unmatched open-group and an
6161 unmatched close-group: both are REG_EPAREN. */
6162 if (ret == REG_ERPAREN)
6163 ret = REG_EPAREN;
6165 if (ret == REG_NOERROR && preg->fastmap)
6166 { /* Compute the fastmap now, since regexec cannot modify the pattern
6167 buffer. */
6168 re_compile_fastmap (preg);
6169 if (preg->can_be_null)
6170 { /* The fastmap can't be used anyway. */
6171 free (preg->fastmap);
6172 preg->fastmap = NULL;
6175 return (int) ret;
6177 WEAK_ALIAS (__regcomp, regcomp)
6180 /* regexec searches for a given pattern, specified by PREG, in the
6181 string STRING.
6183 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6184 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6185 least NMATCH elements, and we set them to the offsets of the
6186 corresponding matched substrings.
6188 EFLAGS specifies `execution flags' which affect matching: if
6189 REG_NOTBOL is set, then ^ does not match at the beginning of the
6190 string; if REG_NOTEOL is set, then $ does not match at the end.
6192 We return 0 if we find a match and REG_NOMATCH if not. */
6195 regexec (preg, string, nmatch, pmatch, eflags)
6196 const regex_t *__restrict preg;
6197 const char *__restrict string;
6198 size_t nmatch;
6199 regmatch_t pmatch[__restrict_arr];
6200 int eflags;
6202 int ret;
6203 struct re_registers regs;
6204 regex_t private_preg;
6205 int len = strlen (string);
6206 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6208 private_preg = *preg;
6210 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6211 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6213 /* The user has told us exactly how many registers to return
6214 information about, via `nmatch'. We have to pass that on to the
6215 matching routines. */
6216 private_preg.regs_allocated = REGS_FIXED;
6218 if (want_reg_info)
6220 regs.num_regs = nmatch;
6221 regs.start = TALLOC (nmatch * 2, regoff_t);
6222 if (regs.start == NULL)
6223 return (int) REG_NOMATCH;
6224 regs.end = regs.start + nmatch;
6227 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6228 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6229 was a little bit longer but still only matching the real part.
6230 This works because the `endline' will check for a '\n' and will find a
6231 '\0', correctly deciding that this is not the end of a line.
6232 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6233 a convenient '\0' there. For all we know, the string could be preceded
6234 by '\n' which would throw things off. */
6236 /* Perform the searching operation. */
6237 ret = re_search (&private_preg, string, len,
6238 /* start: */ 0, /* range: */ len,
6239 want_reg_info ? &regs : (struct re_registers *) 0);
6241 /* Copy the register information to the POSIX structure. */
6242 if (want_reg_info)
6244 if (ret >= 0)
6246 unsigned r;
6248 for (r = 0; r < nmatch; r++)
6250 pmatch[r].rm_so = regs.start[r];
6251 pmatch[r].rm_eo = regs.end[r];
6255 /* If we needed the temporary register info, free the space now. */
6256 free (regs.start);
6259 /* We want zero return to mean success, unlike `re_search'. */
6260 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6262 WEAK_ALIAS (__regexec, regexec)
6265 /* Returns a message corresponding to an error code, ERRCODE, returned
6266 from either regcomp or regexec. We don't use PREG here. */
6268 size_t
6269 regerror (errcode, preg, errbuf, errbuf_size)
6270 int errcode;
6271 const regex_t *preg;
6272 char *errbuf;
6273 size_t errbuf_size;
6275 const char *msg;
6276 size_t msg_size;
6278 if (errcode < 0
6279 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6280 /* Only error codes returned by the rest of the code should be passed
6281 to this routine. If we are given anything else, or if other regex
6282 code generates an invalid error code, then the program has a bug.
6283 Dump core so we can fix it. */
6284 abort ();
6286 msg = gettext (re_error_msgid[errcode]);
6288 msg_size = strlen (msg) + 1; /* Includes the null. */
6290 if (errbuf_size != 0)
6292 if (msg_size > errbuf_size)
6294 strncpy (errbuf, msg, errbuf_size - 1);
6295 errbuf[errbuf_size - 1] = 0;
6297 else
6298 strcpy (errbuf, msg);
6301 return msg_size;
6303 WEAK_ALIAS (__regerror, regerror)
6306 /* Free dynamically allocated space used by PREG. */
6308 void
6309 regfree (preg)
6310 regex_t *preg;
6312 if (preg->buffer != NULL)
6313 free (preg->buffer);
6314 preg->buffer = NULL;
6316 preg->allocated = 0;
6317 preg->used = 0;
6319 if (preg->fastmap != NULL)
6320 free (preg->fastmap);
6321 preg->fastmap = NULL;
6322 preg->fastmap_accurate = 0;
6324 if (preg->translate != NULL)
6325 free (preg->translate);
6326 preg->translate = NULL;
6328 WEAK_ALIAS (__regfree, regfree)
6330 #endif /* not emacs */