Don't show drag cursor when modeline can't be dragged (Bug#16647).
[emacs.git] / src / fns.c
blob7b3d41d5374fb82d194d9dbbb30bddf3e6d4382c
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
4 Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <unistd.h>
24 #include <time.h>
26 #include <intprops.h>
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
43 Lisp_Object Qstring_lessp;
44 static Lisp_Object Qprovide, Qrequire;
45 static Lisp_Object Qyes_or_no_p_history;
46 Lisp_Object Qcursor_in_echo_area;
47 static Lisp_Object Qwidget_type;
48 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
54 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
55 doc: /* Return the argument unchanged. */)
56 (Lisp_Object arg)
58 return arg;
61 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
62 doc: /* Return a pseudo-random number.
63 All integers representable in Lisp, i.e. between `most-negative-fixnum'
64 and `most-positive-fixnum', inclusive, are equally likely.
66 With positive integer LIMIT, return random number in interval [0,LIMIT).
67 With argument t, set the random number seed from the current time and pid.
68 With a string argument, set the seed based on the string's contents.
69 Other values of LIMIT are ignored.
71 See Info node `(elisp)Random Numbers' for more details. */)
72 (Lisp_Object limit)
74 EMACS_INT val;
76 if (EQ (limit, Qt))
77 init_random ();
78 else if (STRINGP (limit))
79 seed_random (SSDATA (limit), SBYTES (limit));
81 val = get_random ();
82 if (NATNUMP (limit) && XFASTINT (limit) != 0)
83 val %= XFASTINT (limit);
84 return make_number (val);
87 /* Heuristic on how many iterations of a tight loop can be safely done
88 before it's time to do a QUIT. This must be a power of 2. */
89 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91 /* Random data-structure functions. */
93 static void
94 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
96 CHECK_TYPE (NILP (x), Qlistp, y);
99 DEFUN ("length", Flength, Slength, 1, 1, 0,
100 doc: /* Return the length of vector, list or string SEQUENCE.
101 A byte-code function object is also allowed.
102 If the string contains multibyte characters, this is not necessarily
103 the number of bytes in the string; it is the number of characters.
104 To get the number of bytes, use `string-bytes'. */)
105 (register Lisp_Object sequence)
107 register Lisp_Object val;
109 if (STRINGP (sequence))
110 XSETFASTINT (val, SCHARS (sequence));
111 else if (VECTORP (sequence))
112 XSETFASTINT (val, ASIZE (sequence));
113 else if (CHAR_TABLE_P (sequence))
114 XSETFASTINT (val, MAX_CHAR);
115 else if (BOOL_VECTOR_P (sequence))
116 XSETFASTINT (val, bool_vector_size (sequence));
117 else if (COMPILEDP (sequence))
118 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
119 else if (CONSP (sequence))
121 EMACS_INT i = 0;
125 ++i;
126 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
128 if (MOST_POSITIVE_FIXNUM < i)
129 error ("List too long");
130 QUIT;
132 sequence = XCDR (sequence);
134 while (CONSP (sequence));
136 CHECK_LIST_END (sequence, sequence);
138 val = make_number (i);
140 else if (NILP (sequence))
141 XSETFASTINT (val, 0);
142 else
143 wrong_type_argument (Qsequencep, sequence);
145 return val;
148 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
149 doc: /* Return the length of a list, but avoid error or infinite loop.
150 This function never gets an error. If LIST is not really a list,
151 it returns 0. If LIST is circular, it returns a finite value
152 which is at least the number of distinct elements. */)
153 (Lisp_Object list)
155 Lisp_Object tail, halftail;
156 double hilen = 0;
157 uintmax_t lolen = 1;
159 if (! CONSP (list))
160 return make_number (0);
162 /* halftail is used to detect circular lists. */
163 for (tail = halftail = list; ; )
165 tail = XCDR (tail);
166 if (! CONSP (tail))
167 break;
168 if (EQ (tail, halftail))
169 break;
170 lolen++;
171 if ((lolen & 1) == 0)
173 halftail = XCDR (halftail);
174 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
176 QUIT;
177 if (lolen == 0)
178 hilen += UINTMAX_MAX + 1.0;
183 /* If the length does not fit into a fixnum, return a float.
184 On all known practical machines this returns an upper bound on
185 the true length. */
186 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
189 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
190 doc: /* Return the number of bytes in STRING.
191 If STRING is multibyte, this may be greater than the length of STRING. */)
192 (Lisp_Object string)
194 CHECK_STRING (string);
195 return make_number (SBYTES (string));
198 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
199 doc: /* Return t if two strings have identical contents.
200 Case is significant, but text properties are ignored.
201 Symbols are also allowed; their print names are used instead. */)
202 (register Lisp_Object s1, Lisp_Object s2)
204 if (SYMBOLP (s1))
205 s1 = SYMBOL_NAME (s1);
206 if (SYMBOLP (s2))
207 s2 = SYMBOL_NAME (s2);
208 CHECK_STRING (s1);
209 CHECK_STRING (s2);
211 if (SCHARS (s1) != SCHARS (s2)
212 || SBYTES (s1) != SBYTES (s2)
213 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
214 return Qnil;
215 return Qt;
218 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
219 doc: /* Compare the contents of two strings, converting to multibyte if needed.
220 The arguments START1, END1, START2, and END2, if non-nil, are
221 positions specifying which parts of STR1 or STR2 to compare. In
222 string STR1, compare the part between START1 (inclusive) and END1
223 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
224 the string; if END1 is nil, it defaults to the length of the string.
225 Likewise, in string STR2, compare the part between START2 and END2.
227 The strings are compared by the numeric values of their characters.
228 For instance, STR1 is "less than" STR2 if its first differing
229 character has a smaller numeric value. If IGNORE-CASE is non-nil,
230 characters are converted to lower-case before comparing them. Unibyte
231 strings are converted to multibyte for comparison.
233 The value is t if the strings (or specified portions) match.
234 If string STR1 is less, the value is a negative number N;
235 - 1 - N is the number of characters that match at the beginning.
236 If string STR1 is greater, the value is a positive number N;
237 N - 1 is the number of characters that match at the beginning. */)
238 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
240 register ptrdiff_t end1_char, end2_char;
241 register ptrdiff_t i1, i1_byte, i2, i2_byte;
243 CHECK_STRING (str1);
244 CHECK_STRING (str2);
245 if (NILP (start1))
246 start1 = make_number (0);
247 if (NILP (start2))
248 start2 = make_number (0);
249 CHECK_NATNUM (start1);
250 CHECK_NATNUM (start2);
251 if (! NILP (end1))
252 CHECK_NATNUM (end1);
253 if (! NILP (end2))
254 CHECK_NATNUM (end2);
256 end1_char = SCHARS (str1);
257 if (! NILP (end1) && end1_char > XINT (end1))
258 end1_char = XINT (end1);
259 if (end1_char < XINT (start1))
260 args_out_of_range (str1, start1);
262 end2_char = SCHARS (str2);
263 if (! NILP (end2) && end2_char > XINT (end2))
264 end2_char = XINT (end2);
265 if (end2_char < XINT (start2))
266 args_out_of_range (str2, start2);
268 i1 = XINT (start1);
269 i2 = XINT (start2);
271 i1_byte = string_char_to_byte (str1, i1);
272 i2_byte = string_char_to_byte (str2, i2);
274 while (i1 < end1_char && i2 < end2_char)
276 /* When we find a mismatch, we must compare the
277 characters, not just the bytes. */
278 int c1, c2;
280 if (STRING_MULTIBYTE (str1))
281 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
282 else
284 c1 = SREF (str1, i1++);
285 MAKE_CHAR_MULTIBYTE (c1);
288 if (STRING_MULTIBYTE (str2))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
290 else
292 c2 = SREF (str2, i2++);
293 MAKE_CHAR_MULTIBYTE (c2);
296 if (c1 == c2)
297 continue;
299 if (! NILP (ignore_case))
301 Lisp_Object tem;
303 tem = Fupcase (make_number (c1));
304 c1 = XINT (tem);
305 tem = Fupcase (make_number (c2));
306 c2 = XINT (tem);
309 if (c1 == c2)
310 continue;
312 /* Note that I1 has already been incremented
313 past the character that we are comparing;
314 hence we don't add or subtract 1 here. */
315 if (c1 < c2)
316 return make_number (- i1 + XINT (start1));
317 else
318 return make_number (i1 - XINT (start1));
321 if (i1 < end1_char)
322 return make_number (i1 - XINT (start1) + 1);
323 if (i2 < end2_char)
324 return make_number (- i1 + XINT (start1) - 1);
326 return Qt;
329 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
330 doc: /* Return t if first arg string is less than second in lexicographic order.
331 Case is significant.
332 Symbols are also allowed; their print names are used instead. */)
333 (register Lisp_Object s1, Lisp_Object s2)
335 register ptrdiff_t end;
336 register ptrdiff_t i1, i1_byte, i2, i2_byte;
338 if (SYMBOLP (s1))
339 s1 = SYMBOL_NAME (s1);
340 if (SYMBOLP (s2))
341 s2 = SYMBOL_NAME (s2);
342 CHECK_STRING (s1);
343 CHECK_STRING (s2);
345 i1 = i1_byte = i2 = i2_byte = 0;
347 end = SCHARS (s1);
348 if (end > SCHARS (s2))
349 end = SCHARS (s2);
351 while (i1 < end)
353 /* When we find a mismatch, we must compare the
354 characters, not just the bytes. */
355 int c1, c2;
357 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
358 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
360 if (c1 != c2)
361 return c1 < c2 ? Qt : Qnil;
363 return i1 < SCHARS (s2) ? Qt : Qnil;
366 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
367 enum Lisp_Type target_type, bool last_special);
369 /* ARGSUSED */
370 Lisp_Object
371 concat2 (Lisp_Object s1, Lisp_Object s2)
373 Lisp_Object args[2];
374 args[0] = s1;
375 args[1] = s2;
376 return concat (2, args, Lisp_String, 0);
379 /* ARGSUSED */
380 Lisp_Object
381 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
383 Lisp_Object args[3];
384 args[0] = s1;
385 args[1] = s2;
386 args[2] = s3;
387 return concat (3, args, Lisp_String, 0);
390 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
391 doc: /* Concatenate all the arguments and make the result a list.
392 The result is a list whose elements are the elements of all the arguments.
393 Each argument may be a list, vector or string.
394 The last argument is not copied, just used as the tail of the new list.
395 usage: (append &rest SEQUENCES) */)
396 (ptrdiff_t nargs, Lisp_Object *args)
398 return concat (nargs, args, Lisp_Cons, 1);
401 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
402 doc: /* Concatenate all the arguments and make the result a string.
403 The result is a string whose elements are the elements of all the arguments.
404 Each argument may be a string or a list or vector of characters (integers).
405 usage: (concat &rest SEQUENCES) */)
406 (ptrdiff_t nargs, Lisp_Object *args)
408 return concat (nargs, args, Lisp_String, 0);
411 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
412 doc: /* Concatenate all the arguments and make the result a vector.
413 The result is a vector whose elements are the elements of all the arguments.
414 Each argument may be a list, vector or string.
415 usage: (vconcat &rest SEQUENCES) */)
416 (ptrdiff_t nargs, Lisp_Object *args)
418 return concat (nargs, args, Lisp_Vectorlike, 0);
422 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
423 doc: /* Return a copy of a list, vector, string or char-table.
424 The elements of a list or vector are not copied; they are shared
425 with the original. */)
426 (Lisp_Object arg)
428 if (NILP (arg)) return arg;
430 if (CHAR_TABLE_P (arg))
432 return copy_char_table (arg);
435 if (BOOL_VECTOR_P (arg))
437 EMACS_INT nbits = bool_vector_size (arg);
438 ptrdiff_t nbytes = bool_vector_bytes (nbits);
439 Lisp_Object val = make_uninit_bool_vector (nbits);
440 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
441 return val;
444 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
445 wrong_type_argument (Qsequencep, arg);
447 return concat (1, &arg, XTYPE (arg), 0);
450 /* This structure holds information of an argument of `concat' that is
451 a string and has text properties to be copied. */
452 struct textprop_rec
454 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
455 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
456 ptrdiff_t to; /* refer to VAL (the target string) */
459 static Lisp_Object
460 concat (ptrdiff_t nargs, Lisp_Object *args,
461 enum Lisp_Type target_type, bool last_special)
463 Lisp_Object val;
464 Lisp_Object tail;
465 Lisp_Object this;
466 ptrdiff_t toindex;
467 ptrdiff_t toindex_byte = 0;
468 EMACS_INT result_len;
469 EMACS_INT result_len_byte;
470 ptrdiff_t argnum;
471 Lisp_Object last_tail;
472 Lisp_Object prev;
473 bool some_multibyte;
474 /* When we make a multibyte string, we can't copy text properties
475 while concatenating each string because the length of resulting
476 string can't be decided until we finish the whole concatenation.
477 So, we record strings that have text properties to be copied
478 here, and copy the text properties after the concatenation. */
479 struct textprop_rec *textprops = NULL;
480 /* Number of elements in textprops. */
481 ptrdiff_t num_textprops = 0;
482 USE_SAFE_ALLOCA;
484 tail = Qnil;
486 /* In append, the last arg isn't treated like the others */
487 if (last_special && nargs > 0)
489 nargs--;
490 last_tail = args[nargs];
492 else
493 last_tail = Qnil;
495 /* Check each argument. */
496 for (argnum = 0; argnum < nargs; argnum++)
498 this = args[argnum];
499 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
500 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
501 wrong_type_argument (Qsequencep, this);
504 /* Compute total length in chars of arguments in RESULT_LEN.
505 If desired output is a string, also compute length in bytes
506 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
507 whether the result should be a multibyte string. */
508 result_len_byte = 0;
509 result_len = 0;
510 some_multibyte = 0;
511 for (argnum = 0; argnum < nargs; argnum++)
513 EMACS_INT len;
514 this = args[argnum];
515 len = XFASTINT (Flength (this));
516 if (target_type == Lisp_String)
518 /* We must count the number of bytes needed in the string
519 as well as the number of characters. */
520 ptrdiff_t i;
521 Lisp_Object ch;
522 int c;
523 ptrdiff_t this_len_byte;
525 if (VECTORP (this) || COMPILEDP (this))
526 for (i = 0; i < len; i++)
528 ch = AREF (this, i);
529 CHECK_CHARACTER (ch);
530 c = XFASTINT (ch);
531 this_len_byte = CHAR_BYTES (c);
532 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
533 string_overflow ();
534 result_len_byte += this_len_byte;
535 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
536 some_multibyte = 1;
538 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
539 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
540 else if (CONSP (this))
541 for (; CONSP (this); this = XCDR (this))
543 ch = XCAR (this);
544 CHECK_CHARACTER (ch);
545 c = XFASTINT (ch);
546 this_len_byte = CHAR_BYTES (c);
547 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
548 string_overflow ();
549 result_len_byte += this_len_byte;
550 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
551 some_multibyte = 1;
553 else if (STRINGP (this))
555 if (STRING_MULTIBYTE (this))
557 some_multibyte = 1;
558 this_len_byte = SBYTES (this);
560 else
561 this_len_byte = count_size_as_multibyte (SDATA (this),
562 SCHARS (this));
563 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
564 string_overflow ();
565 result_len_byte += this_len_byte;
569 result_len += len;
570 if (MOST_POSITIVE_FIXNUM < result_len)
571 memory_full (SIZE_MAX);
574 if (! some_multibyte)
575 result_len_byte = result_len;
577 /* Create the output object. */
578 if (target_type == Lisp_Cons)
579 val = Fmake_list (make_number (result_len), Qnil);
580 else if (target_type == Lisp_Vectorlike)
581 val = Fmake_vector (make_number (result_len), Qnil);
582 else if (some_multibyte)
583 val = make_uninit_multibyte_string (result_len, result_len_byte);
584 else
585 val = make_uninit_string (result_len);
587 /* In `append', if all but last arg are nil, return last arg. */
588 if (target_type == Lisp_Cons && EQ (val, Qnil))
589 return last_tail;
591 /* Copy the contents of the args into the result. */
592 if (CONSP (val))
593 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
594 else
595 toindex = 0, toindex_byte = 0;
597 prev = Qnil;
598 if (STRINGP (val))
599 SAFE_NALLOCA (textprops, 1, nargs);
601 for (argnum = 0; argnum < nargs; argnum++)
603 Lisp_Object thislen;
604 ptrdiff_t thisleni = 0;
605 register ptrdiff_t thisindex = 0;
606 register ptrdiff_t thisindex_byte = 0;
608 this = args[argnum];
609 if (!CONSP (this))
610 thislen = Flength (this), thisleni = XINT (thislen);
612 /* Between strings of the same kind, copy fast. */
613 if (STRINGP (this) && STRINGP (val)
614 && STRING_MULTIBYTE (this) == some_multibyte)
616 ptrdiff_t thislen_byte = SBYTES (this);
618 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
619 if (string_intervals (this))
621 textprops[num_textprops].argnum = argnum;
622 textprops[num_textprops].from = 0;
623 textprops[num_textprops++].to = toindex;
625 toindex_byte += thislen_byte;
626 toindex += thisleni;
628 /* Copy a single-byte string to a multibyte string. */
629 else if (STRINGP (this) && STRINGP (val))
631 if (string_intervals (this))
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
637 toindex_byte += copy_text (SDATA (this),
638 SDATA (val) + toindex_byte,
639 SCHARS (this), 0, 1);
640 toindex += thisleni;
642 else
643 /* Copy element by element. */
644 while (1)
646 register Lisp_Object elt;
648 /* Fetch next element of `this' arg into `elt', or break if
649 `this' is exhausted. */
650 if (NILP (this)) break;
651 if (CONSP (this))
652 elt = XCAR (this), this = XCDR (this);
653 else if (thisindex >= thisleni)
654 break;
655 else if (STRINGP (this))
657 int c;
658 if (STRING_MULTIBYTE (this))
659 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
660 thisindex,
661 thisindex_byte);
662 else
664 c = SREF (this, thisindex); thisindex++;
665 if (some_multibyte && !ASCII_CHAR_P (c))
666 c = BYTE8_TO_CHAR (c);
668 XSETFASTINT (elt, c);
670 else if (BOOL_VECTOR_P (this))
672 elt = bool_vector_ref (this, thisindex);
673 thisindex++;
675 else
677 elt = AREF (this, thisindex);
678 thisindex++;
681 /* Store this element into the result. */
682 if (toindex < 0)
684 XSETCAR (tail, elt);
685 prev = tail;
686 tail = XCDR (tail);
688 else if (VECTORP (val))
690 ASET (val, toindex, elt);
691 toindex++;
693 else
695 int c;
696 CHECK_CHARACTER (elt);
697 c = XFASTINT (elt);
698 if (some_multibyte)
699 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
700 else
701 SSET (val, toindex_byte++, c);
702 toindex++;
706 if (!NILP (prev))
707 XSETCDR (prev, last_tail);
709 if (num_textprops > 0)
711 Lisp_Object props;
712 ptrdiff_t last_to_end = -1;
714 for (argnum = 0; argnum < num_textprops; argnum++)
716 this = args[textprops[argnum].argnum];
717 props = text_property_list (this,
718 make_number (0),
719 make_number (SCHARS (this)),
720 Qnil);
721 /* If successive arguments have properties, be sure that the
722 value of `composition' property be the copy. */
723 if (last_to_end == textprops[argnum].to)
724 make_composition_value_copy (props);
725 add_text_properties_from_list (val, props,
726 make_number (textprops[argnum].to));
727 last_to_end = textprops[argnum].to + SCHARS (this);
731 SAFE_FREE ();
732 return val;
735 static Lisp_Object string_char_byte_cache_string;
736 static ptrdiff_t string_char_byte_cache_charpos;
737 static ptrdiff_t string_char_byte_cache_bytepos;
739 void
740 clear_string_char_byte_cache (void)
742 string_char_byte_cache_string = Qnil;
745 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
747 ptrdiff_t
748 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
750 ptrdiff_t i_byte;
751 ptrdiff_t best_below, best_below_byte;
752 ptrdiff_t best_above, best_above_byte;
754 best_below = best_below_byte = 0;
755 best_above = SCHARS (string);
756 best_above_byte = SBYTES (string);
757 if (best_above == best_above_byte)
758 return char_index;
760 if (EQ (string, string_char_byte_cache_string))
762 if (string_char_byte_cache_charpos < char_index)
764 best_below = string_char_byte_cache_charpos;
765 best_below_byte = string_char_byte_cache_bytepos;
767 else
769 best_above = string_char_byte_cache_charpos;
770 best_above_byte = string_char_byte_cache_bytepos;
774 if (char_index - best_below < best_above - char_index)
776 unsigned char *p = SDATA (string) + best_below_byte;
778 while (best_below < char_index)
780 p += BYTES_BY_CHAR_HEAD (*p);
781 best_below++;
783 i_byte = p - SDATA (string);
785 else
787 unsigned char *p = SDATA (string) + best_above_byte;
789 while (best_above > char_index)
791 p--;
792 while (!CHAR_HEAD_P (*p)) p--;
793 best_above--;
795 i_byte = p - SDATA (string);
798 string_char_byte_cache_bytepos = i_byte;
799 string_char_byte_cache_charpos = char_index;
800 string_char_byte_cache_string = string;
802 return i_byte;
805 /* Return the character index corresponding to BYTE_INDEX in STRING. */
807 ptrdiff_t
808 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
810 ptrdiff_t i, i_byte;
811 ptrdiff_t best_below, best_below_byte;
812 ptrdiff_t best_above, best_above_byte;
814 best_below = best_below_byte = 0;
815 best_above = SCHARS (string);
816 best_above_byte = SBYTES (string);
817 if (best_above == best_above_byte)
818 return byte_index;
820 if (EQ (string, string_char_byte_cache_string))
822 if (string_char_byte_cache_bytepos < byte_index)
824 best_below = string_char_byte_cache_charpos;
825 best_below_byte = string_char_byte_cache_bytepos;
827 else
829 best_above = string_char_byte_cache_charpos;
830 best_above_byte = string_char_byte_cache_bytepos;
834 if (byte_index - best_below_byte < best_above_byte - byte_index)
836 unsigned char *p = SDATA (string) + best_below_byte;
837 unsigned char *pend = SDATA (string) + byte_index;
839 while (p < pend)
841 p += BYTES_BY_CHAR_HEAD (*p);
842 best_below++;
844 i = best_below;
845 i_byte = p - SDATA (string);
847 else
849 unsigned char *p = SDATA (string) + best_above_byte;
850 unsigned char *pbeg = SDATA (string) + byte_index;
852 while (p > pbeg)
854 p--;
855 while (!CHAR_HEAD_P (*p)) p--;
856 best_above--;
858 i = best_above;
859 i_byte = p - SDATA (string);
862 string_char_byte_cache_bytepos = i_byte;
863 string_char_byte_cache_charpos = i;
864 string_char_byte_cache_string = string;
866 return i;
869 /* Convert STRING to a multibyte string. */
871 static Lisp_Object
872 string_make_multibyte (Lisp_Object string)
874 unsigned char *buf;
875 ptrdiff_t nbytes;
876 Lisp_Object ret;
877 USE_SAFE_ALLOCA;
879 if (STRING_MULTIBYTE (string))
880 return string;
882 nbytes = count_size_as_multibyte (SDATA (string),
883 SCHARS (string));
884 /* If all the chars are ASCII, they won't need any more bytes
885 once converted. In that case, we can return STRING itself. */
886 if (nbytes == SBYTES (string))
887 return string;
889 buf = SAFE_ALLOCA (nbytes);
890 copy_text (SDATA (string), buf, SBYTES (string),
891 0, 1);
893 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
894 SAFE_FREE ();
896 return ret;
900 /* Convert STRING (if unibyte) to a multibyte string without changing
901 the number of characters. Characters 0200 trough 0237 are
902 converted to eight-bit characters. */
904 Lisp_Object
905 string_to_multibyte (Lisp_Object string)
907 unsigned char *buf;
908 ptrdiff_t nbytes;
909 Lisp_Object ret;
910 USE_SAFE_ALLOCA;
912 if (STRING_MULTIBYTE (string))
913 return string;
915 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
916 /* If all the chars are ASCII, they won't need any more bytes once
917 converted. */
918 if (nbytes == SBYTES (string))
919 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
921 buf = SAFE_ALLOCA (nbytes);
922 memcpy (buf, SDATA (string), SBYTES (string));
923 str_to_multibyte (buf, nbytes, SBYTES (string));
925 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
926 SAFE_FREE ();
928 return ret;
932 /* Convert STRING to a single-byte string. */
934 Lisp_Object
935 string_make_unibyte (Lisp_Object string)
937 ptrdiff_t nchars;
938 unsigned char *buf;
939 Lisp_Object ret;
940 USE_SAFE_ALLOCA;
942 if (! STRING_MULTIBYTE (string))
943 return string;
945 nchars = SCHARS (string);
947 buf = SAFE_ALLOCA (nchars);
948 copy_text (SDATA (string), buf, SBYTES (string),
949 1, 0);
951 ret = make_unibyte_string ((char *) buf, nchars);
952 SAFE_FREE ();
954 return ret;
957 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
958 1, 1, 0,
959 doc: /* Return the multibyte equivalent of STRING.
960 If STRING is unibyte and contains non-ASCII characters, the function
961 `unibyte-char-to-multibyte' is used to convert each unibyte character
962 to a multibyte character. In this case, the returned string is a
963 newly created string with no text properties. If STRING is multibyte
964 or entirely ASCII, it is returned unchanged. In particular, when
965 STRING is unibyte and entirely ASCII, the returned string is unibyte.
966 \(When the characters are all ASCII, Emacs primitives will treat the
967 string the same way whether it is unibyte or multibyte.) */)
968 (Lisp_Object string)
970 CHECK_STRING (string);
972 return string_make_multibyte (string);
975 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
976 1, 1, 0,
977 doc: /* Return the unibyte equivalent of STRING.
978 Multibyte character codes are converted to unibyte according to
979 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
980 If the lookup in the translation table fails, this function takes just
981 the low 8 bits of each character. */)
982 (Lisp_Object string)
984 CHECK_STRING (string);
986 return string_make_unibyte (string);
989 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
990 1, 1, 0,
991 doc: /* Return a unibyte string with the same individual bytes as STRING.
992 If STRING is unibyte, the result is STRING itself.
993 Otherwise it is a newly created string, with no text properties.
994 If STRING is multibyte and contains a character of charset
995 `eight-bit', it is converted to the corresponding single byte. */)
996 (Lisp_Object string)
998 CHECK_STRING (string);
1000 if (STRING_MULTIBYTE (string))
1002 unsigned char *str = (unsigned char *) xlispstrdup (string);
1003 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
1005 string = make_unibyte_string ((char *) str, bytes);
1006 xfree (str);
1008 return string;
1011 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1012 1, 1, 0,
1013 doc: /* Return a multibyte string with the same individual bytes as STRING.
1014 If STRING is multibyte, the result is STRING itself.
1015 Otherwise it is a newly created string, with no text properties.
1017 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1018 part of a correct utf-8 sequence), it is converted to the corresponding
1019 multibyte character of charset `eight-bit'.
1020 See also `string-to-multibyte'.
1022 Beware, this often doesn't really do what you think it does.
1023 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1024 If you're not sure, whether to use `string-as-multibyte' or
1025 `string-to-multibyte', use `string-to-multibyte'. */)
1026 (Lisp_Object string)
1028 CHECK_STRING (string);
1030 if (! STRING_MULTIBYTE (string))
1032 Lisp_Object new_string;
1033 ptrdiff_t nchars, nbytes;
1035 parse_str_as_multibyte (SDATA (string),
1036 SBYTES (string),
1037 &nchars, &nbytes);
1038 new_string = make_uninit_multibyte_string (nchars, nbytes);
1039 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1040 if (nbytes != SBYTES (string))
1041 str_as_multibyte (SDATA (new_string), nbytes,
1042 SBYTES (string), NULL);
1043 string = new_string;
1044 set_string_intervals (string, NULL);
1046 return string;
1049 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1050 1, 1, 0,
1051 doc: /* Return a multibyte string with the same individual chars as STRING.
1052 If STRING is multibyte, the result is STRING itself.
1053 Otherwise it is a newly created string, with no text properties.
1055 If STRING is unibyte and contains an 8-bit byte, it is converted to
1056 the corresponding multibyte character of charset `eight-bit'.
1058 This differs from `string-as-multibyte' by converting each byte of a correct
1059 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1060 correct sequence. */)
1061 (Lisp_Object string)
1063 CHECK_STRING (string);
1065 return string_to_multibyte (string);
1068 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1069 1, 1, 0,
1070 doc: /* Return a unibyte string with the same individual chars as STRING.
1071 If STRING is unibyte, the result is STRING itself.
1072 Otherwise it is a newly created string, with no text properties,
1073 where each `eight-bit' character is converted to the corresponding byte.
1074 If STRING contains a non-ASCII, non-`eight-bit' character,
1075 an error is signaled. */)
1076 (Lisp_Object string)
1078 CHECK_STRING (string);
1080 if (STRING_MULTIBYTE (string))
1082 ptrdiff_t chars = SCHARS (string);
1083 unsigned char *str = xmalloc (chars);
1084 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1086 if (converted < chars)
1087 error ("Can't convert the %"pD"dth character to unibyte", converted);
1088 string = make_unibyte_string ((char *) str, chars);
1089 xfree (str);
1091 return string;
1095 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1096 doc: /* Return a copy of ALIST.
1097 This is an alist which represents the same mapping from objects to objects,
1098 but does not share the alist structure with ALIST.
1099 The objects mapped (cars and cdrs of elements of the alist)
1100 are shared, however.
1101 Elements of ALIST that are not conses are also shared. */)
1102 (Lisp_Object alist)
1104 register Lisp_Object tem;
1106 CHECK_LIST (alist);
1107 if (NILP (alist))
1108 return alist;
1109 alist = concat (1, &alist, Lisp_Cons, 0);
1110 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1112 register Lisp_Object car;
1113 car = XCAR (tem);
1115 if (CONSP (car))
1116 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1118 return alist;
1121 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1122 doc: /* Return a new string whose contents are a substring of STRING.
1123 The returned string consists of the characters between index FROM
1124 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1125 zero-indexed: 0 means the first character of STRING. Negative values
1126 are counted from the end of STRING. If TO is nil, the substring runs
1127 to the end of STRING.
1129 The STRING argument may also be a vector. In that case, the return
1130 value is a new vector that contains the elements between index FROM
1131 \(inclusive) and index TO (exclusive) of that vector argument. */)
1132 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1134 Lisp_Object res;
1135 ptrdiff_t size;
1136 EMACS_INT from_char, to_char;
1138 CHECK_VECTOR_OR_STRING (string);
1139 CHECK_NUMBER (from);
1141 if (STRINGP (string))
1142 size = SCHARS (string);
1143 else
1144 size = ASIZE (string);
1146 if (NILP (to))
1147 to_char = size;
1148 else
1150 CHECK_NUMBER (to);
1152 to_char = XINT (to);
1153 if (to_char < 0)
1154 to_char += size;
1157 from_char = XINT (from);
1158 if (from_char < 0)
1159 from_char += size;
1160 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1161 args_out_of_range_3 (string, make_number (from_char),
1162 make_number (to_char));
1164 if (STRINGP (string))
1166 ptrdiff_t to_byte =
1167 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1168 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1169 res = make_specified_string (SSDATA (string) + from_byte,
1170 to_char - from_char, to_byte - from_byte,
1171 STRING_MULTIBYTE (string));
1172 copy_text_properties (make_number (from_char), make_number (to_char),
1173 string, make_number (0), res, Qnil);
1175 else
1176 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1178 return res;
1182 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1183 doc: /* Return a substring of STRING, without text properties.
1184 It starts at index FROM and ends before TO.
1185 TO may be nil or omitted; then the substring runs to the end of STRING.
1186 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1187 If FROM or TO is negative, it counts from the end.
1189 With one argument, just copy STRING without its properties. */)
1190 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1192 ptrdiff_t size;
1193 EMACS_INT from_char, to_char;
1194 ptrdiff_t from_byte, to_byte;
1196 CHECK_STRING (string);
1198 size = SCHARS (string);
1200 if (NILP (from))
1201 from_char = 0;
1202 else
1204 CHECK_NUMBER (from);
1205 from_char = XINT (from);
1206 if (from_char < 0)
1207 from_char += size;
1210 if (NILP (to))
1211 to_char = size;
1212 else
1214 CHECK_NUMBER (to);
1215 to_char = XINT (to);
1216 if (to_char < 0)
1217 to_char += size;
1220 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1221 args_out_of_range_3 (string, make_number (from_char),
1222 make_number (to_char));
1224 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1225 to_byte =
1226 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1227 return make_specified_string (SSDATA (string) + from_byte,
1228 to_char - from_char, to_byte - from_byte,
1229 STRING_MULTIBYTE (string));
1232 /* Extract a substring of STRING, giving start and end positions
1233 both in characters and in bytes. */
1235 Lisp_Object
1236 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1237 ptrdiff_t to, ptrdiff_t to_byte)
1239 Lisp_Object res;
1240 ptrdiff_t size;
1242 CHECK_VECTOR_OR_STRING (string);
1244 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1246 if (!(0 <= from && from <= to && to <= size))
1247 args_out_of_range_3 (string, make_number (from), make_number (to));
1249 if (STRINGP (string))
1251 res = make_specified_string (SSDATA (string) + from_byte,
1252 to - from, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 copy_text_properties (make_number (from), make_number (to),
1255 string, make_number (0), res, Qnil);
1257 else
1258 res = Fvector (to - from, aref_addr (string, from));
1260 return res;
1263 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1264 doc: /* Take cdr N times on LIST, return the result. */)
1265 (Lisp_Object n, Lisp_Object list)
1267 EMACS_INT i, num;
1268 CHECK_NUMBER (n);
1269 num = XINT (n);
1270 for (i = 0; i < num && !NILP (list); i++)
1272 QUIT;
1273 CHECK_LIST_CONS (list, list);
1274 list = XCDR (list);
1276 return list;
1279 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1280 doc: /* Return the Nth element of LIST.
1281 N counts from zero. If LIST is not that long, nil is returned. */)
1282 (Lisp_Object n, Lisp_Object list)
1284 return Fcar (Fnthcdr (n, list));
1287 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1288 doc: /* Return element of SEQUENCE at index N. */)
1289 (register Lisp_Object sequence, Lisp_Object n)
1291 CHECK_NUMBER (n);
1292 if (CONSP (sequence) || NILP (sequence))
1293 return Fcar (Fnthcdr (n, sequence));
1295 /* Faref signals a "not array" error, so check here. */
1296 CHECK_ARRAY (sequence, Qsequencep);
1297 return Faref (sequence, n);
1300 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1301 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1302 The value is actually the tail of LIST whose car is ELT. */)
1303 (register Lisp_Object elt, Lisp_Object list)
1305 register Lisp_Object tail;
1306 for (tail = list; CONSP (tail); tail = XCDR (tail))
1308 register Lisp_Object tem;
1309 CHECK_LIST_CONS (tail, list);
1310 tem = XCAR (tail);
1311 if (! NILP (Fequal (elt, tem)))
1312 return tail;
1313 QUIT;
1315 return Qnil;
1318 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1319 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1320 The value is actually the tail of LIST whose car is ELT. */)
1321 (register Lisp_Object elt, Lisp_Object list)
1323 while (1)
1325 if (!CONSP (list) || EQ (XCAR (list), elt))
1326 break;
1328 list = XCDR (list);
1329 if (!CONSP (list) || EQ (XCAR (list), elt))
1330 break;
1332 list = XCDR (list);
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1336 list = XCDR (list);
1337 QUIT;
1340 CHECK_LIST (list);
1341 return list;
1344 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1345 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1346 The value is actually the tail of LIST whose car is ELT. */)
1347 (register Lisp_Object elt, Lisp_Object list)
1349 register Lisp_Object tail;
1351 if (!FLOATP (elt))
1352 return Fmemq (elt, list);
1354 for (tail = list; CONSP (tail); tail = XCDR (tail))
1356 register Lisp_Object tem;
1357 CHECK_LIST_CONS (tail, list);
1358 tem = XCAR (tail);
1359 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
1360 return tail;
1361 QUIT;
1363 return Qnil;
1366 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1367 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1368 The value is actually the first element of LIST whose car is KEY.
1369 Elements of LIST that are not conses are ignored. */)
1370 (Lisp_Object key, Lisp_Object list)
1372 while (1)
1374 if (!CONSP (list)
1375 || (CONSP (XCAR (list))
1376 && EQ (XCAR (XCAR (list)), key)))
1377 break;
1379 list = XCDR (list);
1380 if (!CONSP (list)
1381 || (CONSP (XCAR (list))
1382 && EQ (XCAR (XCAR (list)), key)))
1383 break;
1385 list = XCDR (list);
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1391 list = XCDR (list);
1392 QUIT;
1395 return CAR (list);
1398 /* Like Fassq but never report an error and do not allow quits.
1399 Use only on lists known never to be circular. */
1401 Lisp_Object
1402 assq_no_quit (Lisp_Object key, Lisp_Object list)
1404 while (CONSP (list)
1405 && (!CONSP (XCAR (list))
1406 || !EQ (XCAR (XCAR (list)), key)))
1407 list = XCDR (list);
1409 return CAR_SAFE (list);
1412 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1413 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1414 The value is actually the first element of LIST whose car equals KEY. */)
1415 (Lisp_Object key, Lisp_Object list)
1417 Lisp_Object car;
1419 while (1)
1421 if (!CONSP (list)
1422 || (CONSP (XCAR (list))
1423 && (car = XCAR (XCAR (list)),
1424 EQ (car, key) || !NILP (Fequal (car, key)))))
1425 break;
1427 list = XCDR (list);
1428 if (!CONSP (list)
1429 || (CONSP (XCAR (list))
1430 && (car = XCAR (XCAR (list)),
1431 EQ (car, key) || !NILP (Fequal (car, key)))))
1432 break;
1434 list = XCDR (list);
1435 if (!CONSP (list)
1436 || (CONSP (XCAR (list))
1437 && (car = XCAR (XCAR (list)),
1438 EQ (car, key) || !NILP (Fequal (car, key)))))
1439 break;
1441 list = XCDR (list);
1442 QUIT;
1445 return CAR (list);
1448 /* Like Fassoc but never report an error and do not allow quits.
1449 Use only on lists known never to be circular. */
1451 Lisp_Object
1452 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1454 while (CONSP (list)
1455 && (!CONSP (XCAR (list))
1456 || (!EQ (XCAR (XCAR (list)), key)
1457 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1458 list = XCDR (list);
1460 return CONSP (list) ? XCAR (list) : Qnil;
1463 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1464 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1465 The value is actually the first element of LIST whose cdr is KEY. */)
1466 (register Lisp_Object key, Lisp_Object list)
1468 while (1)
1470 if (!CONSP (list)
1471 || (CONSP (XCAR (list))
1472 && EQ (XCDR (XCAR (list)), key)))
1473 break;
1475 list = XCDR (list);
1476 if (!CONSP (list)
1477 || (CONSP (XCAR (list))
1478 && EQ (XCDR (XCAR (list)), key)))
1479 break;
1481 list = XCDR (list);
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1487 list = XCDR (list);
1488 QUIT;
1491 return CAR (list);
1494 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1495 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1496 The value is actually the first element of LIST whose cdr equals KEY. */)
1497 (Lisp_Object key, Lisp_Object list)
1499 Lisp_Object cdr;
1501 while (1)
1503 if (!CONSP (list)
1504 || (CONSP (XCAR (list))
1505 && (cdr = XCDR (XCAR (list)),
1506 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1507 break;
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && (cdr = XCDR (XCAR (list)),
1513 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1514 break;
1516 list = XCDR (list);
1517 if (!CONSP (list)
1518 || (CONSP (XCAR (list))
1519 && (cdr = XCDR (XCAR (list)),
1520 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1521 break;
1523 list = XCDR (list);
1524 QUIT;
1527 return CAR (list);
1530 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1531 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1532 More precisely, this function skips any members `eq' to ELT at the
1533 front of LIST, then removes members `eq' to ELT from the remaining
1534 sublist by modifying its list structure, then returns the resulting
1535 list.
1537 Write `(setq foo (delq element foo))' to be sure of correctly changing
1538 the value of a list `foo'. */)
1539 (register Lisp_Object elt, Lisp_Object list)
1541 Lisp_Object tail, tortoise, prev = Qnil;
1542 bool skip;
1544 FOR_EACH_TAIL (tail, list, tortoise, skip)
1546 Lisp_Object tem = XCAR (tail);
1547 if (EQ (elt, tem))
1549 if (NILP (prev))
1550 list = XCDR (tail);
1551 else
1552 Fsetcdr (prev, XCDR (tail));
1554 else
1555 prev = tail;
1557 return list;
1560 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1561 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1562 SEQ must be a sequence (i.e. a list, a vector, or a string).
1563 The return value is a sequence of the same type.
1565 If SEQ is a list, this behaves like `delq', except that it compares
1566 with `equal' instead of `eq'. In particular, it may remove elements
1567 by altering the list structure.
1569 If SEQ is not a list, deletion is never performed destructively;
1570 instead this function creates and returns a new vector or string.
1572 Write `(setq foo (delete element foo))' to be sure of correctly
1573 changing the value of a sequence `foo'. */)
1574 (Lisp_Object elt, Lisp_Object seq)
1576 if (VECTORP (seq))
1578 ptrdiff_t i, n;
1580 for (i = n = 0; i < ASIZE (seq); ++i)
1581 if (NILP (Fequal (AREF (seq, i), elt)))
1582 ++n;
1584 if (n != ASIZE (seq))
1586 struct Lisp_Vector *p = allocate_vector (n);
1588 for (i = n = 0; i < ASIZE (seq); ++i)
1589 if (NILP (Fequal (AREF (seq, i), elt)))
1590 p->contents[n++] = AREF (seq, i);
1592 XSETVECTOR (seq, p);
1595 else if (STRINGP (seq))
1597 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1598 int c;
1600 for (i = nchars = nbytes = ibyte = 0;
1601 i < SCHARS (seq);
1602 ++i, ibyte += cbytes)
1604 if (STRING_MULTIBYTE (seq))
1606 c = STRING_CHAR (SDATA (seq) + ibyte);
1607 cbytes = CHAR_BYTES (c);
1609 else
1611 c = SREF (seq, i);
1612 cbytes = 1;
1615 if (!INTEGERP (elt) || c != XINT (elt))
1617 ++nchars;
1618 nbytes += cbytes;
1622 if (nchars != SCHARS (seq))
1624 Lisp_Object tem;
1626 tem = make_uninit_multibyte_string (nchars, nbytes);
1627 if (!STRING_MULTIBYTE (seq))
1628 STRING_SET_UNIBYTE (tem);
1630 for (i = nchars = nbytes = ibyte = 0;
1631 i < SCHARS (seq);
1632 ++i, ibyte += cbytes)
1634 if (STRING_MULTIBYTE (seq))
1636 c = STRING_CHAR (SDATA (seq) + ibyte);
1637 cbytes = CHAR_BYTES (c);
1639 else
1641 c = SREF (seq, i);
1642 cbytes = 1;
1645 if (!INTEGERP (elt) || c != XINT (elt))
1647 unsigned char *from = SDATA (seq) + ibyte;
1648 unsigned char *to = SDATA (tem) + nbytes;
1649 ptrdiff_t n;
1651 ++nchars;
1652 nbytes += cbytes;
1654 for (n = cbytes; n--; )
1655 *to++ = *from++;
1659 seq = tem;
1662 else
1664 Lisp_Object tail, prev;
1666 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1668 CHECK_LIST_CONS (tail, seq);
1670 if (!NILP (Fequal (elt, XCAR (tail))))
1672 if (NILP (prev))
1673 seq = XCDR (tail);
1674 else
1675 Fsetcdr (prev, XCDR (tail));
1677 else
1678 prev = tail;
1679 QUIT;
1683 return seq;
1686 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1687 doc: /* Reverse LIST by modifying cdr pointers.
1688 Return the reversed list. Expects a properly nil-terminated list. */)
1689 (Lisp_Object list)
1691 register Lisp_Object prev, tail, next;
1693 if (NILP (list)) return list;
1694 prev = Qnil;
1695 tail = list;
1696 while (!NILP (tail))
1698 QUIT;
1699 CHECK_LIST_CONS (tail, tail);
1700 next = XCDR (tail);
1701 Fsetcdr (tail, prev);
1702 prev = tail;
1703 tail = next;
1705 return prev;
1708 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1709 doc: /* Reverse LIST, copying. Return the reversed list.
1710 See also the function `nreverse', which is used more often. */)
1711 (Lisp_Object list)
1713 Lisp_Object new;
1715 for (new = Qnil; CONSP (list); list = XCDR (list))
1717 QUIT;
1718 new = Fcons (XCAR (list), new);
1720 CHECK_LIST_END (list, list);
1721 return new;
1724 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1725 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1726 Returns the sorted list. LIST is modified by side effects.
1727 PREDICATE is called with two elements of LIST, and should return non-nil
1728 if the first element should sort before the second. */)
1729 (Lisp_Object list, Lisp_Object predicate)
1731 Lisp_Object front, back;
1732 register Lisp_Object len, tem;
1733 struct gcpro gcpro1, gcpro2;
1734 EMACS_INT length;
1736 front = list;
1737 len = Flength (list);
1738 length = XINT (len);
1739 if (length < 2)
1740 return list;
1742 XSETINT (len, (length / 2) - 1);
1743 tem = Fnthcdr (len, list);
1744 back = Fcdr (tem);
1745 Fsetcdr (tem, Qnil);
1747 GCPRO2 (front, back);
1748 front = Fsort (front, predicate);
1749 back = Fsort (back, predicate);
1750 UNGCPRO;
1751 return merge (front, back, predicate);
1754 Lisp_Object
1755 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1757 Lisp_Object value;
1758 register Lisp_Object tail;
1759 Lisp_Object tem;
1760 register Lisp_Object l1, l2;
1761 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1763 l1 = org_l1;
1764 l2 = org_l2;
1765 tail = Qnil;
1766 value = Qnil;
1768 /* It is sufficient to protect org_l1 and org_l2.
1769 When l1 and l2 are updated, we copy the new values
1770 back into the org_ vars. */
1771 GCPRO4 (org_l1, org_l2, pred, value);
1773 while (1)
1775 if (NILP (l1))
1777 UNGCPRO;
1778 if (NILP (tail))
1779 return l2;
1780 Fsetcdr (tail, l2);
1781 return value;
1783 if (NILP (l2))
1785 UNGCPRO;
1786 if (NILP (tail))
1787 return l1;
1788 Fsetcdr (tail, l1);
1789 return value;
1791 tem = call2 (pred, Fcar (l2), Fcar (l1));
1792 if (NILP (tem))
1794 tem = l1;
1795 l1 = Fcdr (l1);
1796 org_l1 = l1;
1798 else
1800 tem = l2;
1801 l2 = Fcdr (l2);
1802 org_l2 = l2;
1804 if (NILP (tail))
1805 value = tem;
1806 else
1807 Fsetcdr (tail, tem);
1808 tail = tem;
1813 /* This does not check for quits. That is safe since it must terminate. */
1815 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1816 doc: /* Extract a value from a property list.
1817 PLIST is a property list, which is a list of the form
1818 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1819 corresponding to the given PROP, or nil if PROP is not one of the
1820 properties on the list. This function never signals an error. */)
1821 (Lisp_Object plist, Lisp_Object prop)
1823 Lisp_Object tail, halftail;
1825 /* halftail is used to detect circular lists. */
1826 tail = halftail = plist;
1827 while (CONSP (tail) && CONSP (XCDR (tail)))
1829 if (EQ (prop, XCAR (tail)))
1830 return XCAR (XCDR (tail));
1832 tail = XCDR (XCDR (tail));
1833 halftail = XCDR (halftail);
1834 if (EQ (tail, halftail))
1835 break;
1838 return Qnil;
1841 DEFUN ("get", Fget, Sget, 2, 2, 0,
1842 doc: /* Return the value of SYMBOL's PROPNAME property.
1843 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1844 (Lisp_Object symbol, Lisp_Object propname)
1846 CHECK_SYMBOL (symbol);
1847 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1850 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1851 doc: /* Change value in PLIST of PROP to VAL.
1852 PLIST is a property list, which is a list of the form
1853 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1854 If PROP is already a property on the list, its value is set to VAL,
1855 otherwise the new PROP VAL pair is added. The new plist is returned;
1856 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1857 The PLIST is modified by side effects. */)
1858 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1860 register Lisp_Object tail, prev;
1861 Lisp_Object newcell;
1862 prev = Qnil;
1863 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1864 tail = XCDR (XCDR (tail)))
1866 if (EQ (prop, XCAR (tail)))
1868 Fsetcar (XCDR (tail), val);
1869 return plist;
1872 prev = tail;
1873 QUIT;
1875 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1876 if (NILP (prev))
1877 return newcell;
1878 else
1879 Fsetcdr (XCDR (prev), newcell);
1880 return plist;
1883 DEFUN ("put", Fput, Sput, 3, 3, 0,
1884 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1885 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1886 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1888 CHECK_SYMBOL (symbol);
1889 set_symbol_plist
1890 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1891 return value;
1894 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1895 doc: /* Extract a value from a property list, comparing with `equal'.
1896 PLIST is a property list, which is a list of the form
1897 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1898 corresponding to the given PROP, or nil if PROP is not
1899 one of the properties on the list. */)
1900 (Lisp_Object plist, Lisp_Object prop)
1902 Lisp_Object tail;
1904 for (tail = plist;
1905 CONSP (tail) && CONSP (XCDR (tail));
1906 tail = XCDR (XCDR (tail)))
1908 if (! NILP (Fequal (prop, XCAR (tail))))
1909 return XCAR (XCDR (tail));
1911 QUIT;
1914 CHECK_LIST_END (tail, prop);
1916 return Qnil;
1919 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1920 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1921 PLIST is a property list, which is a list of the form
1922 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1923 If PROP is already a property on the list, its value is set to VAL,
1924 otherwise the new PROP VAL pair is added. The new plist is returned;
1925 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1926 The PLIST is modified by side effects. */)
1927 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1929 register Lisp_Object tail, prev;
1930 Lisp_Object newcell;
1931 prev = Qnil;
1932 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1933 tail = XCDR (XCDR (tail)))
1935 if (! NILP (Fequal (prop, XCAR (tail))))
1937 Fsetcar (XCDR (tail), val);
1938 return plist;
1941 prev = tail;
1942 QUIT;
1944 newcell = list2 (prop, val);
1945 if (NILP (prev))
1946 return newcell;
1947 else
1948 Fsetcdr (XCDR (prev), newcell);
1949 return plist;
1952 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1953 doc: /* Return t if the two args are the same Lisp object.
1954 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1955 (Lisp_Object obj1, Lisp_Object obj2)
1957 if (FLOATP (obj1))
1958 return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
1959 else
1960 return EQ (obj1, obj2) ? Qt : Qnil;
1963 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1964 doc: /* Return t if two Lisp objects have similar structure and contents.
1965 They must have the same data type.
1966 Conses are compared by comparing the cars and the cdrs.
1967 Vectors and strings are compared element by element.
1968 Numbers are compared by value, but integers cannot equal floats.
1969 (Use `=' if you want integers and floats to be able to be equal.)
1970 Symbols must match exactly. */)
1971 (register Lisp_Object o1, Lisp_Object o2)
1973 return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
1976 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1977 doc: /* Return t if two Lisp objects have similar structure and contents.
1978 This is like `equal' except that it compares the text properties
1979 of strings. (`equal' ignores text properties.) */)
1980 (register Lisp_Object o1, Lisp_Object o2)
1982 return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
1985 /* DEPTH is current depth of recursion. Signal an error if it
1986 gets too deep.
1987 PROPS means compare string text properties too. */
1989 static bool
1990 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
1991 Lisp_Object ht)
1993 if (depth > 10)
1995 if (depth > 200)
1996 error ("Stack overflow in equal");
1997 if (NILP (ht))
1999 Lisp_Object args[2];
2000 args[0] = QCtest;
2001 args[1] = Qeq;
2002 ht = Fmake_hash_table (2, args);
2004 switch (XTYPE (o1))
2006 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2008 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2009 EMACS_UINT hash;
2010 ptrdiff_t i = hash_lookup (h, o1, &hash);
2011 if (i >= 0)
2012 { /* `o1' was seen already. */
2013 Lisp_Object o2s = HASH_VALUE (h, i);
2014 if (!NILP (Fmemq (o2, o2s)))
2015 return 1;
2016 else
2017 set_hash_value_slot (h, i, Fcons (o2, o2s));
2019 else
2020 hash_put (h, o1, Fcons (o2, Qnil), hash);
2022 default: ;
2026 tail_recurse:
2027 QUIT;
2028 if (EQ (o1, o2))
2029 return 1;
2030 if (XTYPE (o1) != XTYPE (o2))
2031 return 0;
2033 switch (XTYPE (o1))
2035 case Lisp_Float:
2037 double d1, d2;
2039 d1 = extract_float (o1);
2040 d2 = extract_float (o2);
2041 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2042 though they are not =. */
2043 return d1 == d2 || (d1 != d1 && d2 != d2);
2046 case Lisp_Cons:
2047 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
2048 return 0;
2049 o1 = XCDR (o1);
2050 o2 = XCDR (o2);
2051 /* FIXME: This inf-loops in a circular list! */
2052 goto tail_recurse;
2054 case Lisp_Misc:
2055 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2056 return 0;
2057 if (OVERLAYP (o1))
2059 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2060 depth + 1, props, ht)
2061 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2062 depth + 1, props, ht))
2063 return 0;
2064 o1 = XOVERLAY (o1)->plist;
2065 o2 = XOVERLAY (o2)->plist;
2066 goto tail_recurse;
2068 if (MARKERP (o1))
2070 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2071 && (XMARKER (o1)->buffer == 0
2072 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2074 break;
2076 case Lisp_Vectorlike:
2078 register int i;
2079 ptrdiff_t size = ASIZE (o1);
2080 /* Pseudovectors have the type encoded in the size field, so this test
2081 actually checks that the objects have the same type as well as the
2082 same size. */
2083 if (ASIZE (o2) != size)
2084 return 0;
2085 /* Boolvectors are compared much like strings. */
2086 if (BOOL_VECTOR_P (o1))
2088 EMACS_INT size = bool_vector_size (o1);
2089 if (size != bool_vector_size (o2))
2090 return 0;
2091 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2092 bool_vector_bytes (size)))
2093 return 0;
2094 return 1;
2096 if (WINDOW_CONFIGURATIONP (o1))
2097 return compare_window_configurations (o1, o2, 0);
2099 /* Aside from them, only true vectors, char-tables, compiled
2100 functions, and fonts (font-spec, font-entity, font-object)
2101 are sensible to compare, so eliminate the others now. */
2102 if (size & PSEUDOVECTOR_FLAG)
2104 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2105 < PVEC_COMPILED)
2106 return 0;
2107 size &= PSEUDOVECTOR_SIZE_MASK;
2109 for (i = 0; i < size; i++)
2111 Lisp_Object v1, v2;
2112 v1 = AREF (o1, i);
2113 v2 = AREF (o2, i);
2114 if (!internal_equal (v1, v2, depth + 1, props, ht))
2115 return 0;
2117 return 1;
2119 break;
2121 case Lisp_String:
2122 if (SCHARS (o1) != SCHARS (o2))
2123 return 0;
2124 if (SBYTES (o1) != SBYTES (o2))
2125 return 0;
2126 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2127 return 0;
2128 if (props && !compare_string_intervals (o1, o2))
2129 return 0;
2130 return 1;
2132 default:
2133 break;
2136 return 0;
2140 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2141 doc: /* Store each element of ARRAY with ITEM.
2142 ARRAY is a vector, string, char-table, or bool-vector. */)
2143 (Lisp_Object array, Lisp_Object item)
2145 register ptrdiff_t size, idx;
2147 if (VECTORP (array))
2148 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2149 ASET (array, idx, item);
2150 else if (CHAR_TABLE_P (array))
2152 int i;
2154 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2155 set_char_table_contents (array, i, item);
2156 set_char_table_defalt (array, item);
2158 else if (STRINGP (array))
2160 register unsigned char *p = SDATA (array);
2161 int charval;
2162 CHECK_CHARACTER (item);
2163 charval = XFASTINT (item);
2164 size = SCHARS (array);
2165 if (STRING_MULTIBYTE (array))
2167 unsigned char str[MAX_MULTIBYTE_LENGTH];
2168 int len = CHAR_STRING (charval, str);
2169 ptrdiff_t size_byte = SBYTES (array);
2171 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2172 || SCHARS (array) * len != size_byte)
2173 error ("Attempt to change byte length of a string");
2174 for (idx = 0; idx < size_byte; idx++)
2175 *p++ = str[idx % len];
2177 else
2178 for (idx = 0; idx < size; idx++)
2179 p[idx] = charval;
2181 else if (BOOL_VECTOR_P (array))
2182 return bool_vector_fill (array, item);
2183 else
2184 wrong_type_argument (Qarrayp, array);
2185 return array;
2188 DEFUN ("clear-string", Fclear_string, Sclear_string,
2189 1, 1, 0,
2190 doc: /* Clear the contents of STRING.
2191 This makes STRING unibyte and may change its length. */)
2192 (Lisp_Object string)
2194 ptrdiff_t len;
2195 CHECK_STRING (string);
2196 len = SBYTES (string);
2197 memset (SDATA (string), 0, len);
2198 STRING_SET_CHARS (string, len);
2199 STRING_SET_UNIBYTE (string);
2200 return Qnil;
2203 /* ARGSUSED */
2204 Lisp_Object
2205 nconc2 (Lisp_Object s1, Lisp_Object s2)
2207 Lisp_Object args[2];
2208 args[0] = s1;
2209 args[1] = s2;
2210 return Fnconc (2, args);
2213 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2214 doc: /* Concatenate any number of lists by altering them.
2215 Only the last argument is not altered, and need not be a list.
2216 usage: (nconc &rest LISTS) */)
2217 (ptrdiff_t nargs, Lisp_Object *args)
2219 ptrdiff_t argnum;
2220 register Lisp_Object tail, tem, val;
2222 val = tail = Qnil;
2224 for (argnum = 0; argnum < nargs; argnum++)
2226 tem = args[argnum];
2227 if (NILP (tem)) continue;
2229 if (NILP (val))
2230 val = tem;
2232 if (argnum + 1 == nargs) break;
2234 CHECK_LIST_CONS (tem, tem);
2236 while (CONSP (tem))
2238 tail = tem;
2239 tem = XCDR (tail);
2240 QUIT;
2243 tem = args[argnum + 1];
2244 Fsetcdr (tail, tem);
2245 if (NILP (tem))
2246 args[argnum + 1] = tail;
2249 return val;
2252 /* This is the guts of all mapping functions.
2253 Apply FN to each element of SEQ, one by one,
2254 storing the results into elements of VALS, a C vector of Lisp_Objects.
2255 LENI is the length of VALS, which should also be the length of SEQ. */
2257 static void
2258 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2260 register Lisp_Object tail;
2261 Lisp_Object dummy;
2262 register EMACS_INT i;
2263 struct gcpro gcpro1, gcpro2, gcpro3;
2265 if (vals)
2267 /* Don't let vals contain any garbage when GC happens. */
2268 for (i = 0; i < leni; i++)
2269 vals[i] = Qnil;
2271 GCPRO3 (dummy, fn, seq);
2272 gcpro1.var = vals;
2273 gcpro1.nvars = leni;
2275 else
2276 GCPRO2 (fn, seq);
2277 /* We need not explicitly protect `tail' because it is used only on lists, and
2278 1) lists are not relocated and 2) the list is marked via `seq' so will not
2279 be freed */
2281 if (VECTORP (seq) || COMPILEDP (seq))
2283 for (i = 0; i < leni; i++)
2285 dummy = call1 (fn, AREF (seq, i));
2286 if (vals)
2287 vals[i] = dummy;
2290 else if (BOOL_VECTOR_P (seq))
2292 for (i = 0; i < leni; i++)
2294 dummy = call1 (fn, bool_vector_ref (seq, i));
2295 if (vals)
2296 vals[i] = dummy;
2299 else if (STRINGP (seq))
2301 ptrdiff_t i_byte;
2303 for (i = 0, i_byte = 0; i < leni;)
2305 int c;
2306 ptrdiff_t i_before = i;
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2315 else /* Must be a list, since Flength did not get an error */
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2327 UNGCPRO;
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2353 SAFE_ALLOCA_LISP (args, nargs);
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2368 return ret;
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2388 SAFE_ALLOCA_LISP (args, leni);
2390 mapcar1 (leni, args, function, sequence);
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2395 return ret;
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2404 register EMACS_INT leni;
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2411 return sequence;
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2417 Anything that calls this function must protect from GC! */
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2422 return call1 (intern ("yes-or-no-p"), prompt);
2425 /* Anything that calls this function must protect from GC! */
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question.
2429 Return t if answer is yes, and nil if the answer is no.
2430 PROMPT is the string to display to ask the question. It should end in
2431 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2433 The user must confirm the answer with RET, and can edit it until it
2434 has been confirmed.
2436 If dialog boxes are supported, a dialog box will be used
2437 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2438 (Lisp_Object prompt)
2440 register Lisp_Object ans;
2441 Lisp_Object args[2];
2442 struct gcpro gcpro1;
2444 CHECK_STRING (prompt);
2446 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2447 && use_dialog_box)
2449 Lisp_Object pane, menu, obj;
2450 redisplay_preserve_echo_area (4);
2451 pane = list2 (Fcons (build_string ("Yes"), Qt),
2452 Fcons (build_string ("No"), Qnil));
2453 GCPRO1 (pane);
2454 menu = Fcons (prompt, pane);
2455 obj = Fx_popup_dialog (Qt, menu, Qnil);
2456 UNGCPRO;
2457 return obj;
2460 args[0] = prompt;
2461 args[1] = build_string ("(yes or no) ");
2462 prompt = Fconcat (2, args);
2464 GCPRO1 (prompt);
2466 while (1)
2468 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2469 Qyes_or_no_p_history, Qnil,
2470 Qnil));
2471 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2473 UNGCPRO;
2474 return Qt;
2476 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2478 UNGCPRO;
2479 return Qnil;
2482 Fding (Qnil);
2483 Fdiscard_input ();
2484 message1 ("Please answer yes or no.");
2485 Fsleep_for (make_number (2), Qnil);
2489 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2490 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2492 Each of the three load averages is multiplied by 100, then converted
2493 to integer.
2495 When USE-FLOATS is non-nil, floats will be used instead of integers.
2496 These floats are not multiplied by 100.
2498 If the 5-minute or 15-minute load averages are not available, return a
2499 shortened list, containing only those averages which are available.
2501 An error is thrown if the load average can't be obtained. In some
2502 cases making it work would require Emacs being installed setuid or
2503 setgid so that it can read kernel information, and that usually isn't
2504 advisable. */)
2505 (Lisp_Object use_floats)
2507 double load_ave[3];
2508 int loads = getloadavg (load_ave, 3);
2509 Lisp_Object ret = Qnil;
2511 if (loads < 0)
2512 error ("load-average not implemented for this operating system");
2514 while (loads-- > 0)
2516 Lisp_Object load = (NILP (use_floats)
2517 ? make_number (100.0 * load_ave[loads])
2518 : make_float (load_ave[loads]));
2519 ret = Fcons (load, ret);
2522 return ret;
2525 static Lisp_Object Qsubfeatures;
2527 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2528 doc: /* Return t if FEATURE is present in this Emacs.
2530 Use this to conditionalize execution of lisp code based on the
2531 presence or absence of Emacs or environment extensions.
2532 Use `provide' to declare that a feature is available. This function
2533 looks at the value of the variable `features'. The optional argument
2534 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2535 (Lisp_Object feature, Lisp_Object subfeature)
2537 register Lisp_Object tem;
2538 CHECK_SYMBOL (feature);
2539 tem = Fmemq (feature, Vfeatures);
2540 if (!NILP (tem) && !NILP (subfeature))
2541 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2542 return (NILP (tem)) ? Qnil : Qt;
2545 static Lisp_Object Qfuncall;
2547 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2548 doc: /* Announce that FEATURE is a feature of the current Emacs.
2549 The optional argument SUBFEATURES should be a list of symbols listing
2550 particular subfeatures supported in this version of FEATURE. */)
2551 (Lisp_Object feature, Lisp_Object subfeatures)
2553 register Lisp_Object tem;
2554 CHECK_SYMBOL (feature);
2555 CHECK_LIST (subfeatures);
2556 if (!NILP (Vautoload_queue))
2557 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2558 Vautoload_queue);
2559 tem = Fmemq (feature, Vfeatures);
2560 if (NILP (tem))
2561 Vfeatures = Fcons (feature, Vfeatures);
2562 if (!NILP (subfeatures))
2563 Fput (feature, Qsubfeatures, subfeatures);
2564 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2566 /* Run any load-hooks for this file. */
2567 tem = Fassq (feature, Vafter_load_alist);
2568 if (CONSP (tem))
2569 Fmapc (Qfuncall, XCDR (tem));
2571 return feature;
2574 /* `require' and its subroutines. */
2576 /* List of features currently being require'd, innermost first. */
2578 static Lisp_Object require_nesting_list;
2580 static void
2581 require_unwind (Lisp_Object old_value)
2583 require_nesting_list = old_value;
2586 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2587 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2588 If FEATURE is not a member of the list `features', then the feature
2589 is not loaded; so load the file FILENAME.
2590 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2591 and `load' will try to load this name appended with the suffix `.elc' or
2592 `.el', in that order. The name without appended suffix will not be used.
2593 See `get-load-suffixes' for the complete list of suffixes.
2594 If the optional third argument NOERROR is non-nil,
2595 then return nil if the file is not found instead of signaling an error.
2596 Normally the return value is FEATURE.
2597 The normal messages at start and end of loading FILENAME are suppressed. */)
2598 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2600 Lisp_Object tem;
2601 struct gcpro gcpro1, gcpro2;
2602 bool from_file = load_in_progress;
2604 CHECK_SYMBOL (feature);
2606 /* Record the presence of `require' in this file
2607 even if the feature specified is already loaded.
2608 But not more than once in any file,
2609 and not when we aren't loading or reading from a file. */
2610 if (!from_file)
2611 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2612 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2613 from_file = 1;
2615 if (from_file)
2617 tem = Fcons (Qrequire, feature);
2618 if (NILP (Fmember (tem, Vcurrent_load_list)))
2619 LOADHIST_ATTACH (tem);
2621 tem = Fmemq (feature, Vfeatures);
2623 if (NILP (tem))
2625 ptrdiff_t count = SPECPDL_INDEX ();
2626 int nesting = 0;
2628 /* This is to make sure that loadup.el gives a clear picture
2629 of what files are preloaded and when. */
2630 if (! NILP (Vpurify_flag))
2631 error ("(require %s) while preparing to dump",
2632 SDATA (SYMBOL_NAME (feature)));
2634 /* A certain amount of recursive `require' is legitimate,
2635 but if we require the same feature recursively 3 times,
2636 signal an error. */
2637 tem = require_nesting_list;
2638 while (! NILP (tem))
2640 if (! NILP (Fequal (feature, XCAR (tem))))
2641 nesting++;
2642 tem = XCDR (tem);
2644 if (nesting > 3)
2645 error ("Recursive `require' for feature `%s'",
2646 SDATA (SYMBOL_NAME (feature)));
2648 /* Update the list for any nested `require's that occur. */
2649 record_unwind_protect (require_unwind, require_nesting_list);
2650 require_nesting_list = Fcons (feature, require_nesting_list);
2652 /* Value saved here is to be restored into Vautoload_queue */
2653 record_unwind_protect (un_autoload, Vautoload_queue);
2654 Vautoload_queue = Qt;
2656 /* Load the file. */
2657 GCPRO2 (feature, filename);
2658 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2659 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2660 UNGCPRO;
2662 /* If load failed entirely, return nil. */
2663 if (NILP (tem))
2664 return unbind_to (count, Qnil);
2666 tem = Fmemq (feature, Vfeatures);
2667 if (NILP (tem))
2668 error ("Required feature `%s' was not provided",
2669 SDATA (SYMBOL_NAME (feature)));
2671 /* Once loading finishes, don't undo it. */
2672 Vautoload_queue = Qt;
2673 feature = unbind_to (count, feature);
2676 return feature;
2679 /* Primitives for work of the "widget" library.
2680 In an ideal world, this section would not have been necessary.
2681 However, lisp function calls being as slow as they are, it turns
2682 out that some functions in the widget library (wid-edit.el) are the
2683 bottleneck of Widget operation. Here is their translation to C,
2684 for the sole reason of efficiency. */
2686 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2687 doc: /* Return non-nil if PLIST has the property PROP.
2688 PLIST is a property list, which is a list of the form
2689 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2690 Unlike `plist-get', this allows you to distinguish between a missing
2691 property and a property with the value nil.
2692 The value is actually the tail of PLIST whose car is PROP. */)
2693 (Lisp_Object plist, Lisp_Object prop)
2695 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2697 QUIT;
2698 plist = XCDR (plist);
2699 plist = CDR (plist);
2701 return plist;
2704 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2705 doc: /* In WIDGET, set PROPERTY to VALUE.
2706 The value can later be retrieved with `widget-get'. */)
2707 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2709 CHECK_CONS (widget);
2710 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2711 return value;
2714 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2715 doc: /* In WIDGET, get the value of PROPERTY.
2716 The value could either be specified when the widget was created, or
2717 later with `widget-put'. */)
2718 (Lisp_Object widget, Lisp_Object property)
2720 Lisp_Object tmp;
2722 while (1)
2724 if (NILP (widget))
2725 return Qnil;
2726 CHECK_CONS (widget);
2727 tmp = Fplist_member (XCDR (widget), property);
2728 if (CONSP (tmp))
2730 tmp = XCDR (tmp);
2731 return CAR (tmp);
2733 tmp = XCAR (widget);
2734 if (NILP (tmp))
2735 return Qnil;
2736 widget = Fget (tmp, Qwidget_type);
2740 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2741 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2742 ARGS are passed as extra arguments to the function.
2743 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2744 (ptrdiff_t nargs, Lisp_Object *args)
2746 /* This function can GC. */
2747 Lisp_Object newargs[3];
2748 struct gcpro gcpro1, gcpro2;
2749 Lisp_Object result;
2751 newargs[0] = Fwidget_get (args[0], args[1]);
2752 newargs[1] = args[0];
2753 newargs[2] = Flist (nargs - 2, args + 2);
2754 GCPRO2 (newargs[0], newargs[2]);
2755 result = Fapply (3, newargs);
2756 UNGCPRO;
2757 return result;
2760 #ifdef HAVE_LANGINFO_CODESET
2761 #include <langinfo.h>
2762 #endif
2764 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2765 doc: /* Access locale data ITEM for the current C locale, if available.
2766 ITEM should be one of the following:
2768 `codeset', returning the character set as a string (locale item CODESET);
2770 `days', returning a 7-element vector of day names (locale items DAY_n);
2772 `months', returning a 12-element vector of month names (locale items MON_n);
2774 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2775 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2777 If the system can't provide such information through a call to
2778 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2780 See also Info node `(libc)Locales'.
2782 The data read from the system are decoded using `locale-coding-system'. */)
2783 (Lisp_Object item)
2785 char *str = NULL;
2786 #ifdef HAVE_LANGINFO_CODESET
2787 Lisp_Object val;
2788 if (EQ (item, Qcodeset))
2790 str = nl_langinfo (CODESET);
2791 return build_string (str);
2793 #ifdef DAY_1
2794 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2796 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2797 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2798 int i;
2799 struct gcpro gcpro1;
2800 GCPRO1 (v);
2801 synchronize_system_time_locale ();
2802 for (i = 0; i < 7; i++)
2804 str = nl_langinfo (days[i]);
2805 val = build_unibyte_string (str);
2806 /* Fixme: Is this coding system necessarily right, even if
2807 it is consistent with CODESET? If not, what to do? */
2808 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2809 0));
2811 UNGCPRO;
2812 return v;
2814 #endif /* DAY_1 */
2815 #ifdef MON_1
2816 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2818 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2819 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2820 MON_8, MON_9, MON_10, MON_11, MON_12};
2821 int i;
2822 struct gcpro gcpro1;
2823 GCPRO1 (v);
2824 synchronize_system_time_locale ();
2825 for (i = 0; i < 12; i++)
2827 str = nl_langinfo (months[i]);
2828 val = build_unibyte_string (str);
2829 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2830 0));
2832 UNGCPRO;
2833 return v;
2835 #endif /* MON_1 */
2836 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2837 but is in the locale files. This could be used by ps-print. */
2838 #ifdef PAPER_WIDTH
2839 else if (EQ (item, Qpaper))
2840 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2841 #endif /* PAPER_WIDTH */
2842 #endif /* HAVE_LANGINFO_CODESET*/
2843 return Qnil;
2846 /* base64 encode/decode functions (RFC 2045).
2847 Based on code from GNU recode. */
2849 #define MIME_LINE_LENGTH 76
2851 #define IS_ASCII(Character) \
2852 ((Character) < 128)
2853 #define IS_BASE64(Character) \
2854 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2855 #define IS_BASE64_IGNORABLE(Character) \
2856 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2857 || (Character) == '\f' || (Character) == '\r')
2859 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2860 character or return retval if there are no characters left to
2861 process. */
2862 #define READ_QUADRUPLET_BYTE(retval) \
2863 do \
2865 if (i == length) \
2867 if (nchars_return) \
2868 *nchars_return = nchars; \
2869 return (retval); \
2871 c = from[i++]; \
2873 while (IS_BASE64_IGNORABLE (c))
2875 /* Table of characters coding the 64 values. */
2876 static const char base64_value_to_char[64] =
2878 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2879 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2880 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2881 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2882 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2883 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2884 '8', '9', '+', '/' /* 60-63 */
2887 /* Table of base64 values for first 128 characters. */
2888 static const short base64_char_to_value[128] =
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2893 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2894 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2895 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2896 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2897 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2898 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2899 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2900 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2901 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2902 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2905 /* The following diagram shows the logical steps by which three octets
2906 get transformed into four base64 characters.
2908 .--------. .--------. .--------.
2909 |aaaaaabb| |bbbbcccc| |ccdddddd|
2910 `--------' `--------' `--------'
2911 6 2 4 4 2 6
2912 .--------+--------+--------+--------.
2913 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2914 `--------+--------+--------+--------'
2916 .--------+--------+--------+--------.
2917 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2918 `--------+--------+--------+--------'
2920 The octets are divided into 6 bit chunks, which are then encoded into
2921 base64 characters. */
2924 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2925 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2926 ptrdiff_t *);
2928 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2929 2, 3, "r",
2930 doc: /* Base64-encode the region between BEG and END.
2931 Return the length of the encoded text.
2932 Optional third argument NO-LINE-BREAK means do not break long lines
2933 into shorter lines. */)
2934 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2936 char *encoded;
2937 ptrdiff_t allength, length;
2938 ptrdiff_t ibeg, iend, encoded_length;
2939 ptrdiff_t old_pos = PT;
2940 USE_SAFE_ALLOCA;
2942 validate_region (&beg, &end);
2944 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2945 iend = CHAR_TO_BYTE (XFASTINT (end));
2946 move_gap_both (XFASTINT (beg), ibeg);
2948 /* We need to allocate enough room for encoding the text.
2949 We need 33 1/3% more space, plus a newline every 76
2950 characters, and then we round up. */
2951 length = iend - ibeg;
2952 allength = length + length/3 + 1;
2953 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2955 encoded = SAFE_ALLOCA (allength);
2956 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2957 encoded, length, NILP (no_line_break),
2958 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2959 if (encoded_length > allength)
2960 emacs_abort ();
2962 if (encoded_length < 0)
2964 /* The encoding wasn't possible. */
2965 SAFE_FREE ();
2966 error ("Multibyte character in data for base64 encoding");
2969 /* Now we have encoded the region, so we insert the new contents
2970 and delete the old. (Insert first in order to preserve markers.) */
2971 SET_PT_BOTH (XFASTINT (beg), ibeg);
2972 insert (encoded, encoded_length);
2973 SAFE_FREE ();
2974 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2976 /* If point was outside of the region, restore it exactly; else just
2977 move to the beginning of the region. */
2978 if (old_pos >= XFASTINT (end))
2979 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2980 else if (old_pos > XFASTINT (beg))
2981 old_pos = XFASTINT (beg);
2982 SET_PT (old_pos);
2984 /* We return the length of the encoded text. */
2985 return make_number (encoded_length);
2988 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2989 1, 2, 0,
2990 doc: /* Base64-encode STRING and return the result.
2991 Optional second argument NO-LINE-BREAK means do not break long lines
2992 into shorter lines. */)
2993 (Lisp_Object string, Lisp_Object no_line_break)
2995 ptrdiff_t allength, length, encoded_length;
2996 char *encoded;
2997 Lisp_Object encoded_string;
2998 USE_SAFE_ALLOCA;
3000 CHECK_STRING (string);
3002 /* We need to allocate enough room for encoding the text.
3003 We need 33 1/3% more space, plus a newline every 76
3004 characters, and then we round up. */
3005 length = SBYTES (string);
3006 allength = length + length/3 + 1;
3007 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3009 /* We need to allocate enough room for decoding the text. */
3010 encoded = SAFE_ALLOCA (allength);
3012 encoded_length = base64_encode_1 (SSDATA (string),
3013 encoded, length, NILP (no_line_break),
3014 STRING_MULTIBYTE (string));
3015 if (encoded_length > allength)
3016 emacs_abort ();
3018 if (encoded_length < 0)
3020 /* The encoding wasn't possible. */
3021 SAFE_FREE ();
3022 error ("Multibyte character in data for base64 encoding");
3025 encoded_string = make_unibyte_string (encoded, encoded_length);
3026 SAFE_FREE ();
3028 return encoded_string;
3031 static ptrdiff_t
3032 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3033 bool line_break, bool multibyte)
3035 int counter = 0;
3036 ptrdiff_t i = 0;
3037 char *e = to;
3038 int c;
3039 unsigned int value;
3040 int bytes;
3042 while (i < length)
3044 if (multibyte)
3046 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3047 if (CHAR_BYTE8_P (c))
3048 c = CHAR_TO_BYTE8 (c);
3049 else if (c >= 256)
3050 return -1;
3051 i += bytes;
3053 else
3054 c = from[i++];
3056 /* Wrap line every 76 characters. */
3058 if (line_break)
3060 if (counter < MIME_LINE_LENGTH / 4)
3061 counter++;
3062 else
3064 *e++ = '\n';
3065 counter = 1;
3069 /* Process first byte of a triplet. */
3071 *e++ = base64_value_to_char[0x3f & c >> 2];
3072 value = (0x03 & c) << 4;
3074 /* Process second byte of a triplet. */
3076 if (i == length)
3078 *e++ = base64_value_to_char[value];
3079 *e++ = '=';
3080 *e++ = '=';
3081 break;
3084 if (multibyte)
3086 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3087 if (CHAR_BYTE8_P (c))
3088 c = CHAR_TO_BYTE8 (c);
3089 else if (c >= 256)
3090 return -1;
3091 i += bytes;
3093 else
3094 c = from[i++];
3096 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3097 value = (0x0f & c) << 2;
3099 /* Process third byte of a triplet. */
3101 if (i == length)
3103 *e++ = base64_value_to_char[value];
3104 *e++ = '=';
3105 break;
3108 if (multibyte)
3110 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3111 if (CHAR_BYTE8_P (c))
3112 c = CHAR_TO_BYTE8 (c);
3113 else if (c >= 256)
3114 return -1;
3115 i += bytes;
3117 else
3118 c = from[i++];
3120 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3121 *e++ = base64_value_to_char[0x3f & c];
3124 return e - to;
3128 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3129 2, 2, "r",
3130 doc: /* Base64-decode the region between BEG and END.
3131 Return the length of the decoded text.
3132 If the region can't be decoded, signal an error and don't modify the buffer. */)
3133 (Lisp_Object beg, Lisp_Object end)
3135 ptrdiff_t ibeg, iend, length, allength;
3136 char *decoded;
3137 ptrdiff_t old_pos = PT;
3138 ptrdiff_t decoded_length;
3139 ptrdiff_t inserted_chars;
3140 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3141 USE_SAFE_ALLOCA;
3143 validate_region (&beg, &end);
3145 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3146 iend = CHAR_TO_BYTE (XFASTINT (end));
3148 length = iend - ibeg;
3150 /* We need to allocate enough room for decoding the text. If we are
3151 working on a multibyte buffer, each decoded code may occupy at
3152 most two bytes. */
3153 allength = multibyte ? length * 2 : length;
3154 decoded = SAFE_ALLOCA (allength);
3156 move_gap_both (XFASTINT (beg), ibeg);
3157 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3158 decoded, length,
3159 multibyte, &inserted_chars);
3160 if (decoded_length > allength)
3161 emacs_abort ();
3163 if (decoded_length < 0)
3165 /* The decoding wasn't possible. */
3166 SAFE_FREE ();
3167 error ("Invalid base64 data");
3170 /* Now we have decoded the region, so we insert the new contents
3171 and delete the old. (Insert first in order to preserve markers.) */
3172 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3173 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3174 SAFE_FREE ();
3176 /* Delete the original text. */
3177 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3178 iend + decoded_length, 1);
3180 /* If point was outside of the region, restore it exactly; else just
3181 move to the beginning of the region. */
3182 if (old_pos >= XFASTINT (end))
3183 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3184 else if (old_pos > XFASTINT (beg))
3185 old_pos = XFASTINT (beg);
3186 SET_PT (old_pos > ZV ? ZV : old_pos);
3188 return make_number (inserted_chars);
3191 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3192 1, 1, 0,
3193 doc: /* Base64-decode STRING and return the result. */)
3194 (Lisp_Object string)
3196 char *decoded;
3197 ptrdiff_t length, decoded_length;
3198 Lisp_Object decoded_string;
3199 USE_SAFE_ALLOCA;
3201 CHECK_STRING (string);
3203 length = SBYTES (string);
3204 /* We need to allocate enough room for decoding the text. */
3205 decoded = SAFE_ALLOCA (length);
3207 /* The decoded result should be unibyte. */
3208 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3209 0, NULL);
3210 if (decoded_length > length)
3211 emacs_abort ();
3212 else if (decoded_length >= 0)
3213 decoded_string = make_unibyte_string (decoded, decoded_length);
3214 else
3215 decoded_string = Qnil;
3217 SAFE_FREE ();
3218 if (!STRINGP (decoded_string))
3219 error ("Invalid base64 data");
3221 return decoded_string;
3224 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3225 MULTIBYTE, the decoded result should be in multibyte
3226 form. If NCHARS_RETURN is not NULL, store the number of produced
3227 characters in *NCHARS_RETURN. */
3229 static ptrdiff_t
3230 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3231 bool multibyte, ptrdiff_t *nchars_return)
3233 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3234 char *e = to;
3235 unsigned char c;
3236 unsigned long value;
3237 ptrdiff_t nchars = 0;
3239 while (1)
3241 /* Process first byte of a quadruplet. */
3243 READ_QUADRUPLET_BYTE (e-to);
3245 if (!IS_BASE64 (c))
3246 return -1;
3247 value = base64_char_to_value[c] << 18;
3249 /* Process second byte of a quadruplet. */
3251 READ_QUADRUPLET_BYTE (-1);
3253 if (!IS_BASE64 (c))
3254 return -1;
3255 value |= base64_char_to_value[c] << 12;
3257 c = (unsigned char) (value >> 16);
3258 if (multibyte && c >= 128)
3259 e += BYTE8_STRING (c, e);
3260 else
3261 *e++ = c;
3262 nchars++;
3264 /* Process third byte of a quadruplet. */
3266 READ_QUADRUPLET_BYTE (-1);
3268 if (c == '=')
3270 READ_QUADRUPLET_BYTE (-1);
3272 if (c != '=')
3273 return -1;
3274 continue;
3277 if (!IS_BASE64 (c))
3278 return -1;
3279 value |= base64_char_to_value[c] << 6;
3281 c = (unsigned char) (0xff & value >> 8);
3282 if (multibyte && c >= 128)
3283 e += BYTE8_STRING (c, e);
3284 else
3285 *e++ = c;
3286 nchars++;
3288 /* Process fourth byte of a quadruplet. */
3290 READ_QUADRUPLET_BYTE (-1);
3292 if (c == '=')
3293 continue;
3295 if (!IS_BASE64 (c))
3296 return -1;
3297 value |= base64_char_to_value[c];
3299 c = (unsigned char) (0xff & value);
3300 if (multibyte && c >= 128)
3301 e += BYTE8_STRING (c, e);
3302 else
3303 *e++ = c;
3304 nchars++;
3310 /***********************************************************************
3311 ***** *****
3312 ***** Hash Tables *****
3313 ***** *****
3314 ***********************************************************************/
3316 /* Implemented by gerd@gnu.org. This hash table implementation was
3317 inspired by CMUCL hash tables. */
3319 /* Ideas:
3321 1. For small tables, association lists are probably faster than
3322 hash tables because they have lower overhead.
3324 For uses of hash tables where the O(1) behavior of table
3325 operations is not a requirement, it might therefore be a good idea
3326 not to hash. Instead, we could just do a linear search in the
3327 key_and_value vector of the hash table. This could be done
3328 if a `:linear-search t' argument is given to make-hash-table. */
3331 /* The list of all weak hash tables. Don't staticpro this one. */
3333 static struct Lisp_Hash_Table *weak_hash_tables;
3335 /* Various symbols. */
3337 static Lisp_Object Qhash_table_p;
3338 static Lisp_Object Qkey, Qvalue, Qeql;
3339 Lisp_Object Qeq, Qequal;
3340 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3341 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3344 /***********************************************************************
3345 Utilities
3346 ***********************************************************************/
3348 static void
3349 CHECK_HASH_TABLE (Lisp_Object x)
3351 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3354 static void
3355 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3357 h->key_and_value = key_and_value;
3359 static void
3360 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3362 h->next = next;
3364 static void
3365 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3367 gc_aset (h->next, idx, val);
3369 static void
3370 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3372 h->hash = hash;
3374 static void
3375 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3377 gc_aset (h->hash, idx, val);
3379 static void
3380 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3382 h->index = index;
3384 static void
3385 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3387 gc_aset (h->index, idx, val);
3390 /* If OBJ is a Lisp hash table, return a pointer to its struct
3391 Lisp_Hash_Table. Otherwise, signal an error. */
3393 static struct Lisp_Hash_Table *
3394 check_hash_table (Lisp_Object obj)
3396 CHECK_HASH_TABLE (obj);
3397 return XHASH_TABLE (obj);
3401 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3402 number. A number is "almost" a prime number if it is not divisible
3403 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3405 EMACS_INT
3406 next_almost_prime (EMACS_INT n)
3408 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3409 for (n |= 1; ; n += 2)
3410 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3411 return n;
3415 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3416 which USED[I] is non-zero. If found at index I in ARGS, set
3417 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3418 0. This function is used to extract a keyword/argument pair from
3419 a DEFUN parameter list. */
3421 static ptrdiff_t
3422 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3424 ptrdiff_t i;
3426 for (i = 1; i < nargs; i++)
3427 if (!used[i - 1] && EQ (args[i - 1], key))
3429 used[i - 1] = 1;
3430 used[i] = 1;
3431 return i;
3434 return 0;
3438 /* Return a Lisp vector which has the same contents as VEC but has
3439 at least INCR_MIN more entries, where INCR_MIN is positive.
3440 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3441 than NITEMS_MAX. Entries in the resulting
3442 vector that are not copied from VEC are set to nil. */
3444 Lisp_Object
3445 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3447 struct Lisp_Vector *v;
3448 ptrdiff_t i, incr, incr_max, old_size, new_size;
3449 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3450 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3451 ? nitems_max : C_language_max);
3452 eassert (VECTORP (vec));
3453 eassert (0 < incr_min && -1 <= nitems_max);
3454 old_size = ASIZE (vec);
3455 incr_max = n_max - old_size;
3456 incr = max (incr_min, min (old_size >> 1, incr_max));
3457 if (incr_max < incr)
3458 memory_full (SIZE_MAX);
3459 new_size = old_size + incr;
3460 v = allocate_vector (new_size);
3461 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3462 for (i = old_size; i < new_size; ++i)
3463 v->contents[i] = Qnil;
3464 XSETVECTOR (vec, v);
3465 return vec;
3469 /***********************************************************************
3470 Low-level Functions
3471 ***********************************************************************/
3473 static struct hash_table_test hashtest_eq;
3474 struct hash_table_test hashtest_eql, hashtest_equal;
3476 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3477 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3478 KEY2 are the same. */
3480 static bool
3481 cmpfn_eql (struct hash_table_test *ht,
3482 Lisp_Object key1,
3483 Lisp_Object key2)
3485 return (FLOATP (key1)
3486 && FLOATP (key2)
3487 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3491 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3492 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3493 KEY2 are the same. */
3495 static bool
3496 cmpfn_equal (struct hash_table_test *ht,
3497 Lisp_Object key1,
3498 Lisp_Object key2)
3500 return !NILP (Fequal (key1, key2));
3504 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3505 HASH2 in hash table H using H->user_cmp_function. Value is true
3506 if KEY1 and KEY2 are the same. */
3508 static bool
3509 cmpfn_user_defined (struct hash_table_test *ht,
3510 Lisp_Object key1,
3511 Lisp_Object key2)
3513 Lisp_Object args[3];
3515 args[0] = ht->user_cmp_function;
3516 args[1] = key1;
3517 args[2] = key2;
3518 return !NILP (Ffuncall (3, args));
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eq' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3526 static EMACS_UINT
3527 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3529 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3530 return hash;
3533 /* Value is a hash code for KEY for use in hash table H which uses
3534 `eql' to compare keys. The hash code returned is guaranteed to fit
3535 in a Lisp integer. */
3537 static EMACS_UINT
3538 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3540 EMACS_UINT hash;
3541 if (FLOATP (key))
3542 hash = sxhash (key, 0);
3543 else
3544 hash = XHASH (key) ^ XTYPE (key);
3545 return hash;
3548 /* Value is a hash code for KEY for use in hash table H which uses
3549 `equal' to compare keys. The hash code returned is guaranteed to fit
3550 in a Lisp integer. */
3552 static EMACS_UINT
3553 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3555 EMACS_UINT hash = sxhash (key, 0);
3556 return hash;
3559 /* Value is a hash code for KEY for use in hash table H which uses as
3560 user-defined function to compare keys. The hash code returned is
3561 guaranteed to fit in a Lisp integer. */
3563 static EMACS_UINT
3564 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3566 Lisp_Object args[2], hash;
3568 args[0] = ht->user_hash_function;
3569 args[1] = key;
3570 hash = Ffuncall (2, args);
3571 return hashfn_eq (ht, hash);
3574 /* An upper bound on the size of a hash table index. It must fit in
3575 ptrdiff_t and be a valid Emacs fixnum. */
3576 #define INDEX_SIZE_BOUND \
3577 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3579 /* Create and initialize a new hash table.
3581 TEST specifies the test the hash table will use to compare keys.
3582 It must be either one of the predefined tests `eq', `eql' or
3583 `equal' or a symbol denoting a user-defined test named TEST with
3584 test and hash functions USER_TEST and USER_HASH.
3586 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3588 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3589 new size when it becomes full is computed by adding REHASH_SIZE to
3590 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3591 table's new size is computed by multiplying its old size with
3592 REHASH_SIZE.
3594 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3595 be resized when the ratio of (number of entries in the table) /
3596 (table size) is >= REHASH_THRESHOLD.
3598 WEAK specifies the weakness of the table. If non-nil, it must be
3599 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3601 Lisp_Object
3602 make_hash_table (struct hash_table_test test,
3603 Lisp_Object size, Lisp_Object rehash_size,
3604 Lisp_Object rehash_threshold, Lisp_Object weak)
3606 struct Lisp_Hash_Table *h;
3607 Lisp_Object table;
3608 EMACS_INT index_size, sz;
3609 ptrdiff_t i;
3610 double index_float;
3612 /* Preconditions. */
3613 eassert (SYMBOLP (test.name));
3614 eassert (INTEGERP (size) && XINT (size) >= 0);
3615 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3616 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3617 eassert (FLOATP (rehash_threshold)
3618 && 0 < XFLOAT_DATA (rehash_threshold)
3619 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3621 if (XFASTINT (size) == 0)
3622 size = make_number (1);
3624 sz = XFASTINT (size);
3625 index_float = sz / XFLOAT_DATA (rehash_threshold);
3626 index_size = (index_float < INDEX_SIZE_BOUND + 1
3627 ? next_almost_prime (index_float)
3628 : INDEX_SIZE_BOUND + 1);
3629 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3630 error ("Hash table too large");
3632 /* Allocate a table and initialize it. */
3633 h = allocate_hash_table ();
3635 /* Initialize hash table slots. */
3636 h->test = test;
3637 h->weak = weak;
3638 h->rehash_threshold = rehash_threshold;
3639 h->rehash_size = rehash_size;
3640 h->count = 0;
3641 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3642 h->hash = Fmake_vector (size, Qnil);
3643 h->next = Fmake_vector (size, Qnil);
3644 h->index = Fmake_vector (make_number (index_size), Qnil);
3646 /* Set up the free list. */
3647 for (i = 0; i < sz - 1; ++i)
3648 set_hash_next_slot (h, i, make_number (i + 1));
3649 h->next_free = make_number (0);
3651 XSET_HASH_TABLE (table, h);
3652 eassert (HASH_TABLE_P (table));
3653 eassert (XHASH_TABLE (table) == h);
3655 /* Maybe add this hash table to the list of all weak hash tables. */
3656 if (NILP (h->weak))
3657 h->next_weak = NULL;
3658 else
3660 h->next_weak = weak_hash_tables;
3661 weak_hash_tables = h;
3664 return table;
3668 /* Return a copy of hash table H1. Keys and values are not copied,
3669 only the table itself is. */
3671 static Lisp_Object
3672 copy_hash_table (struct Lisp_Hash_Table *h1)
3674 Lisp_Object table;
3675 struct Lisp_Hash_Table *h2;
3677 h2 = allocate_hash_table ();
3678 *h2 = *h1;
3679 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3680 h2->hash = Fcopy_sequence (h1->hash);
3681 h2->next = Fcopy_sequence (h1->next);
3682 h2->index = Fcopy_sequence (h1->index);
3683 XSET_HASH_TABLE (table, h2);
3685 /* Maybe add this hash table to the list of all weak hash tables. */
3686 if (!NILP (h2->weak))
3688 h2->next_weak = weak_hash_tables;
3689 weak_hash_tables = h2;
3692 return table;
3696 /* Resize hash table H if it's too full. If H cannot be resized
3697 because it's already too large, throw an error. */
3699 static void
3700 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3702 if (NILP (h->next_free))
3704 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3705 EMACS_INT new_size, index_size, nsize;
3706 ptrdiff_t i;
3707 double index_float;
3709 if (INTEGERP (h->rehash_size))
3710 new_size = old_size + XFASTINT (h->rehash_size);
3711 else
3713 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3714 if (float_new_size < INDEX_SIZE_BOUND + 1)
3716 new_size = float_new_size;
3717 if (new_size <= old_size)
3718 new_size = old_size + 1;
3720 else
3721 new_size = INDEX_SIZE_BOUND + 1;
3723 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3724 index_size = (index_float < INDEX_SIZE_BOUND + 1
3725 ? next_almost_prime (index_float)
3726 : INDEX_SIZE_BOUND + 1);
3727 nsize = max (index_size, 2 * new_size);
3728 if (INDEX_SIZE_BOUND < nsize)
3729 error ("Hash table too large to resize");
3731 #ifdef ENABLE_CHECKING
3732 if (HASH_TABLE_P (Vpurify_flag)
3733 && XHASH_TABLE (Vpurify_flag) == h)
3735 Lisp_Object args[2];
3736 args[0] = build_string ("Growing hash table to: %d");
3737 args[1] = make_number (new_size);
3738 Fmessage (2, args);
3740 #endif
3742 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3743 2 * (new_size - old_size), -1));
3744 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3745 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3746 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3748 /* Update the free list. Do it so that new entries are added at
3749 the end of the free list. This makes some operations like
3750 maphash faster. */
3751 for (i = old_size; i < new_size - 1; ++i)
3752 set_hash_next_slot (h, i, make_number (i + 1));
3754 if (!NILP (h->next_free))
3756 Lisp_Object last, next;
3758 last = h->next_free;
3759 while (next = HASH_NEXT (h, XFASTINT (last)),
3760 !NILP (next))
3761 last = next;
3763 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3765 else
3766 XSETFASTINT (h->next_free, old_size);
3768 /* Rehash. */
3769 for (i = 0; i < old_size; ++i)
3770 if (!NILP (HASH_HASH (h, i)))
3772 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3773 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3774 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3775 set_hash_index_slot (h, start_of_bucket, make_number (i));
3781 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3782 the hash code of KEY. Value is the index of the entry in H
3783 matching KEY, or -1 if not found. */
3785 ptrdiff_t
3786 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3788 EMACS_UINT hash_code;
3789 ptrdiff_t start_of_bucket;
3790 Lisp_Object idx;
3792 hash_code = h->test.hashfn (&h->test, key);
3793 eassert ((hash_code & ~INTMASK) == 0);
3794 if (hash)
3795 *hash = hash_code;
3797 start_of_bucket = hash_code % ASIZE (h->index);
3798 idx = HASH_INDEX (h, start_of_bucket);
3800 /* We need not gcpro idx since it's either an integer or nil. */
3801 while (!NILP (idx))
3803 ptrdiff_t i = XFASTINT (idx);
3804 if (EQ (key, HASH_KEY (h, i))
3805 || (h->test.cmpfn
3806 && hash_code == XUINT (HASH_HASH (h, i))
3807 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3808 break;
3809 idx = HASH_NEXT (h, i);
3812 return NILP (idx) ? -1 : XFASTINT (idx);
3816 /* Put an entry into hash table H that associates KEY with VALUE.
3817 HASH is a previously computed hash code of KEY.
3818 Value is the index of the entry in H matching KEY. */
3820 ptrdiff_t
3821 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3822 EMACS_UINT hash)
3824 ptrdiff_t start_of_bucket, i;
3826 eassert ((hash & ~INTMASK) == 0);
3828 /* Increment count after resizing because resizing may fail. */
3829 maybe_resize_hash_table (h);
3830 h->count++;
3832 /* Store key/value in the key_and_value vector. */
3833 i = XFASTINT (h->next_free);
3834 h->next_free = HASH_NEXT (h, i);
3835 set_hash_key_slot (h, i, key);
3836 set_hash_value_slot (h, i, value);
3838 /* Remember its hash code. */
3839 set_hash_hash_slot (h, i, make_number (hash));
3841 /* Add new entry to its collision chain. */
3842 start_of_bucket = hash % ASIZE (h->index);
3843 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3844 set_hash_index_slot (h, start_of_bucket, make_number (i));
3845 return i;
3849 /* Remove the entry matching KEY from hash table H, if there is one. */
3851 static void
3852 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3854 EMACS_UINT hash_code;
3855 ptrdiff_t start_of_bucket;
3856 Lisp_Object idx, prev;
3858 hash_code = h->test.hashfn (&h->test, key);
3859 eassert ((hash_code & ~INTMASK) == 0);
3860 start_of_bucket = hash_code % ASIZE (h->index);
3861 idx = HASH_INDEX (h, start_of_bucket);
3862 prev = Qnil;
3864 /* We need not gcpro idx, prev since they're either integers or nil. */
3865 while (!NILP (idx))
3867 ptrdiff_t i = XFASTINT (idx);
3869 if (EQ (key, HASH_KEY (h, i))
3870 || (h->test.cmpfn
3871 && hash_code == XUINT (HASH_HASH (h, i))
3872 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3874 /* Take entry out of collision chain. */
3875 if (NILP (prev))
3876 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3877 else
3878 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3880 /* Clear slots in key_and_value and add the slots to
3881 the free list. */
3882 set_hash_key_slot (h, i, Qnil);
3883 set_hash_value_slot (h, i, Qnil);
3884 set_hash_hash_slot (h, i, Qnil);
3885 set_hash_next_slot (h, i, h->next_free);
3886 h->next_free = make_number (i);
3887 h->count--;
3888 eassert (h->count >= 0);
3889 break;
3891 else
3893 prev = idx;
3894 idx = HASH_NEXT (h, i);
3900 /* Clear hash table H. */
3902 static void
3903 hash_clear (struct Lisp_Hash_Table *h)
3905 if (h->count > 0)
3907 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3909 for (i = 0; i < size; ++i)
3911 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3912 set_hash_key_slot (h, i, Qnil);
3913 set_hash_value_slot (h, i, Qnil);
3914 set_hash_hash_slot (h, i, Qnil);
3917 for (i = 0; i < ASIZE (h->index); ++i)
3918 ASET (h->index, i, Qnil);
3920 h->next_free = make_number (0);
3921 h->count = 0;
3927 /************************************************************************
3928 Weak Hash Tables
3929 ************************************************************************/
3931 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3932 entries from the table that don't survive the current GC.
3933 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3934 true if anything was marked. */
3936 static bool
3937 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3939 ptrdiff_t bucket, n;
3940 bool marked;
3942 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3943 marked = 0;
3945 for (bucket = 0; bucket < n; ++bucket)
3947 Lisp_Object idx, next, prev;
3949 /* Follow collision chain, removing entries that
3950 don't survive this garbage collection. */
3951 prev = Qnil;
3952 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3954 ptrdiff_t i = XFASTINT (idx);
3955 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3956 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3957 bool remove_p;
3959 if (EQ (h->weak, Qkey))
3960 remove_p = !key_known_to_survive_p;
3961 else if (EQ (h->weak, Qvalue))
3962 remove_p = !value_known_to_survive_p;
3963 else if (EQ (h->weak, Qkey_or_value))
3964 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3965 else if (EQ (h->weak, Qkey_and_value))
3966 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3967 else
3968 emacs_abort ();
3970 next = HASH_NEXT (h, i);
3972 if (remove_entries_p)
3974 if (remove_p)
3976 /* Take out of collision chain. */
3977 if (NILP (prev))
3978 set_hash_index_slot (h, bucket, next);
3979 else
3980 set_hash_next_slot (h, XFASTINT (prev), next);
3982 /* Add to free list. */
3983 set_hash_next_slot (h, i, h->next_free);
3984 h->next_free = idx;
3986 /* Clear key, value, and hash. */
3987 set_hash_key_slot (h, i, Qnil);
3988 set_hash_value_slot (h, i, Qnil);
3989 set_hash_hash_slot (h, i, Qnil);
3991 h->count--;
3993 else
3995 prev = idx;
3998 else
4000 if (!remove_p)
4002 /* Make sure key and value survive. */
4003 if (!key_known_to_survive_p)
4005 mark_object (HASH_KEY (h, i));
4006 marked = 1;
4009 if (!value_known_to_survive_p)
4011 mark_object (HASH_VALUE (h, i));
4012 marked = 1;
4019 return marked;
4022 /* Remove elements from weak hash tables that don't survive the
4023 current garbage collection. Remove weak tables that don't survive
4024 from Vweak_hash_tables. Called from gc_sweep. */
4026 void
4027 sweep_weak_hash_tables (void)
4029 struct Lisp_Hash_Table *h, *used, *next;
4030 bool marked;
4032 /* Mark all keys and values that are in use. Keep on marking until
4033 there is no more change. This is necessary for cases like
4034 value-weak table A containing an entry X -> Y, where Y is used in a
4035 key-weak table B, Z -> Y. If B comes after A in the list of weak
4036 tables, X -> Y might be removed from A, although when looking at B
4037 one finds that it shouldn't. */
4040 marked = 0;
4041 for (h = weak_hash_tables; h; h = h->next_weak)
4043 if (h->header.size & ARRAY_MARK_FLAG)
4044 marked |= sweep_weak_table (h, 0);
4047 while (marked);
4049 /* Remove tables and entries that aren't used. */
4050 for (h = weak_hash_tables, used = NULL; h; h = next)
4052 next = h->next_weak;
4054 if (h->header.size & ARRAY_MARK_FLAG)
4056 /* TABLE is marked as used. Sweep its contents. */
4057 if (h->count > 0)
4058 sweep_weak_table (h, 1);
4060 /* Add table to the list of used weak hash tables. */
4061 h->next_weak = used;
4062 used = h;
4066 weak_hash_tables = used;
4071 /***********************************************************************
4072 Hash Code Computation
4073 ***********************************************************************/
4075 /* Maximum depth up to which to dive into Lisp structures. */
4077 #define SXHASH_MAX_DEPTH 3
4079 /* Maximum length up to which to take list and vector elements into
4080 account. */
4082 #define SXHASH_MAX_LEN 7
4084 /* Return a hash for string PTR which has length LEN. The hash value
4085 can be any EMACS_UINT value. */
4087 EMACS_UINT
4088 hash_string (char const *ptr, ptrdiff_t len)
4090 char const *p = ptr;
4091 char const *end = p + len;
4092 unsigned char c;
4093 EMACS_UINT hash = 0;
4095 while (p != end)
4097 c = *p++;
4098 hash = sxhash_combine (hash, c);
4101 return hash;
4104 /* Return a hash for string PTR which has length LEN. The hash
4105 code returned is guaranteed to fit in a Lisp integer. */
4107 static EMACS_UINT
4108 sxhash_string (char const *ptr, ptrdiff_t len)
4110 EMACS_UINT hash = hash_string (ptr, len);
4111 return SXHASH_REDUCE (hash);
4114 /* Return a hash for the floating point value VAL. */
4116 static EMACS_UINT
4117 sxhash_float (double val)
4119 EMACS_UINT hash = 0;
4120 enum {
4121 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4122 + (sizeof val % sizeof hash != 0))
4124 union {
4125 double val;
4126 EMACS_UINT word[WORDS_PER_DOUBLE];
4127 } u;
4128 int i;
4129 u.val = val;
4130 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4131 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4132 hash = sxhash_combine (hash, u.word[i]);
4133 return SXHASH_REDUCE (hash);
4136 /* Return a hash for list LIST. DEPTH is the current depth in the
4137 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4139 static EMACS_UINT
4140 sxhash_list (Lisp_Object list, int depth)
4142 EMACS_UINT hash = 0;
4143 int i;
4145 if (depth < SXHASH_MAX_DEPTH)
4146 for (i = 0;
4147 CONSP (list) && i < SXHASH_MAX_LEN;
4148 list = XCDR (list), ++i)
4150 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4151 hash = sxhash_combine (hash, hash2);
4154 if (!NILP (list))
4156 EMACS_UINT hash2 = sxhash (list, depth + 1);
4157 hash = sxhash_combine (hash, hash2);
4160 return SXHASH_REDUCE (hash);
4164 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4165 the Lisp structure. */
4167 static EMACS_UINT
4168 sxhash_vector (Lisp_Object vec, int depth)
4170 EMACS_UINT hash = ASIZE (vec);
4171 int i, n;
4173 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4174 for (i = 0; i < n; ++i)
4176 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4177 hash = sxhash_combine (hash, hash2);
4180 return SXHASH_REDUCE (hash);
4183 /* Return a hash for bool-vector VECTOR. */
4185 static EMACS_UINT
4186 sxhash_bool_vector (Lisp_Object vec)
4188 EMACS_INT size = bool_vector_size (vec);
4189 EMACS_UINT hash = size;
4190 int i, n;
4192 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4193 for (i = 0; i < n; ++i)
4194 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4196 return SXHASH_REDUCE (hash);
4200 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4201 structure. Value is an unsigned integer clipped to INTMASK. */
4203 EMACS_UINT
4204 sxhash (Lisp_Object obj, int depth)
4206 EMACS_UINT hash;
4208 if (depth > SXHASH_MAX_DEPTH)
4209 return 0;
4211 switch (XTYPE (obj))
4213 case_Lisp_Int:
4214 hash = XUINT (obj);
4215 break;
4217 case Lisp_Misc:
4218 hash = XHASH (obj);
4219 break;
4221 case Lisp_Symbol:
4222 obj = SYMBOL_NAME (obj);
4223 /* Fall through. */
4225 case Lisp_String:
4226 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4227 break;
4229 /* This can be everything from a vector to an overlay. */
4230 case Lisp_Vectorlike:
4231 if (VECTORP (obj))
4232 /* According to the CL HyperSpec, two arrays are equal only if
4233 they are `eq', except for strings and bit-vectors. In
4234 Emacs, this works differently. We have to compare element
4235 by element. */
4236 hash = sxhash_vector (obj, depth);
4237 else if (BOOL_VECTOR_P (obj))
4238 hash = sxhash_bool_vector (obj);
4239 else
4240 /* Others are `equal' if they are `eq', so let's take their
4241 address as hash. */
4242 hash = XHASH (obj);
4243 break;
4245 case Lisp_Cons:
4246 hash = sxhash_list (obj, depth);
4247 break;
4249 case Lisp_Float:
4250 hash = sxhash_float (XFLOAT_DATA (obj));
4251 break;
4253 default:
4254 emacs_abort ();
4257 return hash;
4262 /***********************************************************************
4263 Lisp Interface
4264 ***********************************************************************/
4267 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4268 doc: /* Compute a hash code for OBJ and return it as integer. */)
4269 (Lisp_Object obj)
4271 EMACS_UINT hash = sxhash (obj, 0);
4272 return make_number (hash);
4276 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4277 doc: /* Create and return a new hash table.
4279 Arguments are specified as keyword/argument pairs. The following
4280 arguments are defined:
4282 :test TEST -- TEST must be a symbol that specifies how to compare
4283 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4284 `equal'. User-supplied test and hash functions can be specified via
4285 `define-hash-table-test'.
4287 :size SIZE -- A hint as to how many elements will be put in the table.
4288 Default is 65.
4290 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4291 fills up. If REHASH-SIZE is an integer, increase the size by that
4292 amount. If it is a float, it must be > 1.0, and the new size is the
4293 old size multiplied by that factor. Default is 1.5.
4295 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4296 Resize the hash table when the ratio (number of entries / table size)
4297 is greater than or equal to THRESHOLD. Default is 0.8.
4299 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4300 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4301 returned is a weak table. Key/value pairs are removed from a weak
4302 hash table when there are no non-weak references pointing to their
4303 key, value, one of key or value, or both key and value, depending on
4304 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4305 is nil.
4307 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4308 (ptrdiff_t nargs, Lisp_Object *args)
4310 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4311 struct hash_table_test testdesc;
4312 char *used;
4313 ptrdiff_t i;
4315 /* The vector `used' is used to keep track of arguments that
4316 have been consumed. */
4317 used = alloca (nargs * sizeof *used);
4318 memset (used, 0, nargs * sizeof *used);
4320 /* See if there's a `:test TEST' among the arguments. */
4321 i = get_key_arg (QCtest, nargs, args, used);
4322 test = i ? args[i] : Qeql;
4323 if (EQ (test, Qeq))
4324 testdesc = hashtest_eq;
4325 else if (EQ (test, Qeql))
4326 testdesc = hashtest_eql;
4327 else if (EQ (test, Qequal))
4328 testdesc = hashtest_equal;
4329 else
4331 /* See if it is a user-defined test. */
4332 Lisp_Object prop;
4334 prop = Fget (test, Qhash_table_test);
4335 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4336 signal_error ("Invalid hash table test", test);
4337 testdesc.name = test;
4338 testdesc.user_cmp_function = XCAR (prop);
4339 testdesc.user_hash_function = XCAR (XCDR (prop));
4340 testdesc.hashfn = hashfn_user_defined;
4341 testdesc.cmpfn = cmpfn_user_defined;
4344 /* See if there's a `:size SIZE' argument. */
4345 i = get_key_arg (QCsize, nargs, args, used);
4346 size = i ? args[i] : Qnil;
4347 if (NILP (size))
4348 size = make_number (DEFAULT_HASH_SIZE);
4349 else if (!INTEGERP (size) || XINT (size) < 0)
4350 signal_error ("Invalid hash table size", size);
4352 /* Look for `:rehash-size SIZE'. */
4353 i = get_key_arg (QCrehash_size, nargs, args, used);
4354 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4355 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4356 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4357 signal_error ("Invalid hash table rehash size", rehash_size);
4359 /* Look for `:rehash-threshold THRESHOLD'. */
4360 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4361 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4362 if (! (FLOATP (rehash_threshold)
4363 && 0 < XFLOAT_DATA (rehash_threshold)
4364 && XFLOAT_DATA (rehash_threshold) <= 1))
4365 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4367 /* Look for `:weakness WEAK'. */
4368 i = get_key_arg (QCweakness, nargs, args, used);
4369 weak = i ? args[i] : Qnil;
4370 if (EQ (weak, Qt))
4371 weak = Qkey_and_value;
4372 if (!NILP (weak)
4373 && !EQ (weak, Qkey)
4374 && !EQ (weak, Qvalue)
4375 && !EQ (weak, Qkey_or_value)
4376 && !EQ (weak, Qkey_and_value))
4377 signal_error ("Invalid hash table weakness", weak);
4379 /* Now, all args should have been used up, or there's a problem. */
4380 for (i = 0; i < nargs; ++i)
4381 if (!used[i])
4382 signal_error ("Invalid argument list", args[i]);
4384 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4388 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4389 doc: /* Return a copy of hash table TABLE. */)
4390 (Lisp_Object table)
4392 return copy_hash_table (check_hash_table (table));
4396 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4397 doc: /* Return the number of elements in TABLE. */)
4398 (Lisp_Object table)
4400 return make_number (check_hash_table (table)->count);
4404 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4405 Shash_table_rehash_size, 1, 1, 0,
4406 doc: /* Return the current rehash size of TABLE. */)
4407 (Lisp_Object table)
4409 return check_hash_table (table)->rehash_size;
4413 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4414 Shash_table_rehash_threshold, 1, 1, 0,
4415 doc: /* Return the current rehash threshold of TABLE. */)
4416 (Lisp_Object table)
4418 return check_hash_table (table)->rehash_threshold;
4422 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4423 doc: /* Return the size of TABLE.
4424 The size can be used as an argument to `make-hash-table' to create
4425 a hash table than can hold as many elements as TABLE holds
4426 without need for resizing. */)
4427 (Lisp_Object table)
4429 struct Lisp_Hash_Table *h = check_hash_table (table);
4430 return make_number (HASH_TABLE_SIZE (h));
4434 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4435 doc: /* Return the test TABLE uses. */)
4436 (Lisp_Object table)
4438 return check_hash_table (table)->test.name;
4442 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4443 1, 1, 0,
4444 doc: /* Return the weakness of TABLE. */)
4445 (Lisp_Object table)
4447 return check_hash_table (table)->weak;
4451 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4452 doc: /* Return t if OBJ is a Lisp hash table object. */)
4453 (Lisp_Object obj)
4455 return HASH_TABLE_P (obj) ? Qt : Qnil;
4459 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4460 doc: /* Clear hash table TABLE and return it. */)
4461 (Lisp_Object table)
4463 hash_clear (check_hash_table (table));
4464 /* Be compatible with XEmacs. */
4465 return table;
4469 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4470 doc: /* Look up KEY in TABLE and return its associated value.
4471 If KEY is not found, return DFLT which defaults to nil. */)
4472 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4474 struct Lisp_Hash_Table *h = check_hash_table (table);
4475 ptrdiff_t i = hash_lookup (h, key, NULL);
4476 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4480 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4481 doc: /* Associate KEY with VALUE in hash table TABLE.
4482 If KEY is already present in table, replace its current value with
4483 VALUE. In any case, return VALUE. */)
4484 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4486 struct Lisp_Hash_Table *h = check_hash_table (table);
4487 ptrdiff_t i;
4488 EMACS_UINT hash;
4490 i = hash_lookup (h, key, &hash);
4491 if (i >= 0)
4492 set_hash_value_slot (h, i, value);
4493 else
4494 hash_put (h, key, value, hash);
4496 return value;
4500 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4501 doc: /* Remove KEY from TABLE. */)
4502 (Lisp_Object key, Lisp_Object table)
4504 struct Lisp_Hash_Table *h = check_hash_table (table);
4505 hash_remove_from_table (h, key);
4506 return Qnil;
4510 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4511 doc: /* Call FUNCTION for all entries in hash table TABLE.
4512 FUNCTION is called with two arguments, KEY and VALUE.
4513 `maphash' always returns nil. */)
4514 (Lisp_Object function, Lisp_Object table)
4516 struct Lisp_Hash_Table *h = check_hash_table (table);
4517 Lisp_Object args[3];
4518 ptrdiff_t i;
4520 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4521 if (!NILP (HASH_HASH (h, i)))
4523 args[0] = function;
4524 args[1] = HASH_KEY (h, i);
4525 args[2] = HASH_VALUE (h, i);
4526 Ffuncall (3, args);
4529 return Qnil;
4533 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4534 Sdefine_hash_table_test, 3, 3, 0,
4535 doc: /* Define a new hash table test with name NAME, a symbol.
4537 In hash tables created with NAME specified as test, use TEST to
4538 compare keys, and HASH for computing hash codes of keys.
4540 TEST must be a function taking two arguments and returning non-nil if
4541 both arguments are the same. HASH must be a function taking one
4542 argument and returning an object that is the hash code of the argument.
4543 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4544 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4545 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4547 return Fput (name, Qhash_table_test, list2 (test, hash));
4552 /************************************************************************
4553 MD5, SHA-1, and SHA-2
4554 ************************************************************************/
4556 #include "md5.h"
4557 #include "sha1.h"
4558 #include "sha256.h"
4559 #include "sha512.h"
4561 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4563 static Lisp_Object
4564 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4566 int i;
4567 ptrdiff_t size;
4568 EMACS_INT start_char = 0, end_char = 0;
4569 ptrdiff_t start_byte, end_byte;
4570 register EMACS_INT b, e;
4571 register struct buffer *bp;
4572 EMACS_INT temp;
4573 int digest_size;
4574 void *(*hash_func) (const char *, size_t, void *);
4575 Lisp_Object digest;
4577 CHECK_SYMBOL (algorithm);
4579 if (STRINGP (object))
4581 if (NILP (coding_system))
4583 /* Decide the coding-system to encode the data with. */
4585 if (STRING_MULTIBYTE (object))
4586 /* use default, we can't guess correct value */
4587 coding_system = preferred_coding_system ();
4588 else
4589 coding_system = Qraw_text;
4592 if (NILP (Fcoding_system_p (coding_system)))
4594 /* Invalid coding system. */
4596 if (!NILP (noerror))
4597 coding_system = Qraw_text;
4598 else
4599 xsignal1 (Qcoding_system_error, coding_system);
4602 if (STRING_MULTIBYTE (object))
4603 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4605 size = SCHARS (object);
4607 if (!NILP (start))
4609 CHECK_NUMBER (start);
4611 start_char = XINT (start);
4613 if (start_char < 0)
4614 start_char += size;
4617 if (NILP (end))
4618 end_char = size;
4619 else
4621 CHECK_NUMBER (end);
4623 end_char = XINT (end);
4625 if (end_char < 0)
4626 end_char += size;
4629 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4630 args_out_of_range_3 (object, make_number (start_char),
4631 make_number (end_char));
4633 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4634 end_byte =
4635 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4637 else
4639 struct buffer *prev = current_buffer;
4641 record_unwind_current_buffer ();
4643 CHECK_BUFFER (object);
4645 bp = XBUFFER (object);
4646 set_buffer_internal (bp);
4648 if (NILP (start))
4649 b = BEGV;
4650 else
4652 CHECK_NUMBER_COERCE_MARKER (start);
4653 b = XINT (start);
4656 if (NILP (end))
4657 e = ZV;
4658 else
4660 CHECK_NUMBER_COERCE_MARKER (end);
4661 e = XINT (end);
4664 if (b > e)
4665 temp = b, b = e, e = temp;
4667 if (!(BEGV <= b && e <= ZV))
4668 args_out_of_range (start, end);
4670 if (NILP (coding_system))
4672 /* Decide the coding-system to encode the data with.
4673 See fileio.c:Fwrite-region */
4675 if (!NILP (Vcoding_system_for_write))
4676 coding_system = Vcoding_system_for_write;
4677 else
4679 bool force_raw_text = 0;
4681 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4682 if (NILP (coding_system)
4683 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4685 coding_system = Qnil;
4686 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4687 force_raw_text = 1;
4690 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4692 /* Check file-coding-system-alist. */
4693 Lisp_Object args[4], val;
4695 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4696 args[3] = Fbuffer_file_name (object);
4697 val = Ffind_operation_coding_system (4, args);
4698 if (CONSP (val) && !NILP (XCDR (val)))
4699 coding_system = XCDR (val);
4702 if (NILP (coding_system)
4703 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4705 /* If we still have not decided a coding system, use the
4706 default value of buffer-file-coding-system. */
4707 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4710 if (!force_raw_text
4711 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4712 /* Confirm that VAL can surely encode the current region. */
4713 coding_system = call4 (Vselect_safe_coding_system_function,
4714 make_number (b), make_number (e),
4715 coding_system, Qnil);
4717 if (force_raw_text)
4718 coding_system = Qraw_text;
4721 if (NILP (Fcoding_system_p (coding_system)))
4723 /* Invalid coding system. */
4725 if (!NILP (noerror))
4726 coding_system = Qraw_text;
4727 else
4728 xsignal1 (Qcoding_system_error, coding_system);
4732 object = make_buffer_string (b, e, 0);
4733 set_buffer_internal (prev);
4734 /* Discard the unwind protect for recovering the current
4735 buffer. */
4736 specpdl_ptr--;
4738 if (STRING_MULTIBYTE (object))
4739 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4740 start_byte = 0;
4741 end_byte = SBYTES (object);
4744 if (EQ (algorithm, Qmd5))
4746 digest_size = MD5_DIGEST_SIZE;
4747 hash_func = md5_buffer;
4749 else if (EQ (algorithm, Qsha1))
4751 digest_size = SHA1_DIGEST_SIZE;
4752 hash_func = sha1_buffer;
4754 else if (EQ (algorithm, Qsha224))
4756 digest_size = SHA224_DIGEST_SIZE;
4757 hash_func = sha224_buffer;
4759 else if (EQ (algorithm, Qsha256))
4761 digest_size = SHA256_DIGEST_SIZE;
4762 hash_func = sha256_buffer;
4764 else if (EQ (algorithm, Qsha384))
4766 digest_size = SHA384_DIGEST_SIZE;
4767 hash_func = sha384_buffer;
4769 else if (EQ (algorithm, Qsha512))
4771 digest_size = SHA512_DIGEST_SIZE;
4772 hash_func = sha512_buffer;
4774 else
4775 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4777 /* allocate 2 x digest_size so that it can be re-used to hold the
4778 hexified value */
4779 digest = make_uninit_string (digest_size * 2);
4781 hash_func (SSDATA (object) + start_byte,
4782 end_byte - start_byte,
4783 SSDATA (digest));
4785 if (NILP (binary))
4787 unsigned char *p = SDATA (digest);
4788 for (i = digest_size - 1; i >= 0; i--)
4790 static char const hexdigit[16] = "0123456789abcdef";
4791 int p_i = p[i];
4792 p[2 * i] = hexdigit[p_i >> 4];
4793 p[2 * i + 1] = hexdigit[p_i & 0xf];
4795 return digest;
4797 else
4798 return make_unibyte_string (SSDATA (digest), digest_size);
4801 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4802 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4804 A message digest is a cryptographic checksum of a document, and the
4805 algorithm to calculate it is defined in RFC 1321.
4807 The two optional arguments START and END are character positions
4808 specifying for which part of OBJECT the message digest should be
4809 computed. If nil or omitted, the digest is computed for the whole
4810 OBJECT.
4812 The MD5 message digest is computed from the result of encoding the
4813 text in a coding system, not directly from the internal Emacs form of
4814 the text. The optional fourth argument CODING-SYSTEM specifies which
4815 coding system to encode the text with. It should be the same coding
4816 system that you used or will use when actually writing the text into a
4817 file.
4819 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4820 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4821 system would be chosen by default for writing this text into a file.
4823 If OBJECT is a string, the most preferred coding system (see the
4824 command `prefer-coding-system') is used.
4826 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4827 guesswork fails. Normally, an error is signaled in such case. */)
4828 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4830 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4833 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4834 doc: /* Return the secure hash of OBJECT, a buffer or string.
4835 ALGORITHM is a symbol specifying the hash to use:
4836 md5, sha1, sha224, sha256, sha384 or sha512.
4838 The two optional arguments START and END are positions specifying for
4839 which part of OBJECT to compute the hash. If nil or omitted, uses the
4840 whole OBJECT.
4842 If BINARY is non-nil, returns a string in binary form. */)
4843 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4845 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4848 void
4849 syms_of_fns (void)
4851 DEFSYM (Qmd5, "md5");
4852 DEFSYM (Qsha1, "sha1");
4853 DEFSYM (Qsha224, "sha224");
4854 DEFSYM (Qsha256, "sha256");
4855 DEFSYM (Qsha384, "sha384");
4856 DEFSYM (Qsha512, "sha512");
4858 /* Hash table stuff. */
4859 DEFSYM (Qhash_table_p, "hash-table-p");
4860 DEFSYM (Qeq, "eq");
4861 DEFSYM (Qeql, "eql");
4862 DEFSYM (Qequal, "equal");
4863 DEFSYM (QCtest, ":test");
4864 DEFSYM (QCsize, ":size");
4865 DEFSYM (QCrehash_size, ":rehash-size");
4866 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4867 DEFSYM (QCweakness, ":weakness");
4868 DEFSYM (Qkey, "key");
4869 DEFSYM (Qvalue, "value");
4870 DEFSYM (Qhash_table_test, "hash-table-test");
4871 DEFSYM (Qkey_or_value, "key-or-value");
4872 DEFSYM (Qkey_and_value, "key-and-value");
4874 defsubr (&Ssxhash);
4875 defsubr (&Smake_hash_table);
4876 defsubr (&Scopy_hash_table);
4877 defsubr (&Shash_table_count);
4878 defsubr (&Shash_table_rehash_size);
4879 defsubr (&Shash_table_rehash_threshold);
4880 defsubr (&Shash_table_size);
4881 defsubr (&Shash_table_test);
4882 defsubr (&Shash_table_weakness);
4883 defsubr (&Shash_table_p);
4884 defsubr (&Sclrhash);
4885 defsubr (&Sgethash);
4886 defsubr (&Sputhash);
4887 defsubr (&Sremhash);
4888 defsubr (&Smaphash);
4889 defsubr (&Sdefine_hash_table_test);
4891 DEFSYM (Qstring_lessp, "string-lessp");
4892 DEFSYM (Qprovide, "provide");
4893 DEFSYM (Qrequire, "require");
4894 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4895 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4896 DEFSYM (Qwidget_type, "widget-type");
4898 staticpro (&string_char_byte_cache_string);
4899 string_char_byte_cache_string = Qnil;
4901 require_nesting_list = Qnil;
4902 staticpro (&require_nesting_list);
4904 Fset (Qyes_or_no_p_history, Qnil);
4906 DEFVAR_LISP ("features", Vfeatures,
4907 doc: /* A list of symbols which are the features of the executing Emacs.
4908 Used by `featurep' and `require', and altered by `provide'. */);
4909 Vfeatures = list1 (intern_c_string ("emacs"));
4910 DEFSYM (Qsubfeatures, "subfeatures");
4911 DEFSYM (Qfuncall, "funcall");
4913 #ifdef HAVE_LANGINFO_CODESET
4914 DEFSYM (Qcodeset, "codeset");
4915 DEFSYM (Qdays, "days");
4916 DEFSYM (Qmonths, "months");
4917 DEFSYM (Qpaper, "paper");
4918 #endif /* HAVE_LANGINFO_CODESET */
4920 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4921 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4922 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4923 invoked by mouse clicks and mouse menu items.
4925 On some platforms, file selection dialogs are also enabled if this is
4926 non-nil. */);
4927 use_dialog_box = 1;
4929 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4930 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4931 This applies to commands from menus and tool bar buttons even when
4932 they are initiated from the keyboard. If `use-dialog-box' is nil,
4933 that disables the use of a file dialog, regardless of the value of
4934 this variable. */);
4935 use_file_dialog = 1;
4937 defsubr (&Sidentity);
4938 defsubr (&Srandom);
4939 defsubr (&Slength);
4940 defsubr (&Ssafe_length);
4941 defsubr (&Sstring_bytes);
4942 defsubr (&Sstring_equal);
4943 defsubr (&Scompare_strings);
4944 defsubr (&Sstring_lessp);
4945 defsubr (&Sappend);
4946 defsubr (&Sconcat);
4947 defsubr (&Svconcat);
4948 defsubr (&Scopy_sequence);
4949 defsubr (&Sstring_make_multibyte);
4950 defsubr (&Sstring_make_unibyte);
4951 defsubr (&Sstring_as_multibyte);
4952 defsubr (&Sstring_as_unibyte);
4953 defsubr (&Sstring_to_multibyte);
4954 defsubr (&Sstring_to_unibyte);
4955 defsubr (&Scopy_alist);
4956 defsubr (&Ssubstring);
4957 defsubr (&Ssubstring_no_properties);
4958 defsubr (&Snthcdr);
4959 defsubr (&Snth);
4960 defsubr (&Selt);
4961 defsubr (&Smember);
4962 defsubr (&Smemq);
4963 defsubr (&Smemql);
4964 defsubr (&Sassq);
4965 defsubr (&Sassoc);
4966 defsubr (&Srassq);
4967 defsubr (&Srassoc);
4968 defsubr (&Sdelq);
4969 defsubr (&Sdelete);
4970 defsubr (&Snreverse);
4971 defsubr (&Sreverse);
4972 defsubr (&Ssort);
4973 defsubr (&Splist_get);
4974 defsubr (&Sget);
4975 defsubr (&Splist_put);
4976 defsubr (&Sput);
4977 defsubr (&Slax_plist_get);
4978 defsubr (&Slax_plist_put);
4979 defsubr (&Seql);
4980 defsubr (&Sequal);
4981 defsubr (&Sequal_including_properties);
4982 defsubr (&Sfillarray);
4983 defsubr (&Sclear_string);
4984 defsubr (&Snconc);
4985 defsubr (&Smapcar);
4986 defsubr (&Smapc);
4987 defsubr (&Smapconcat);
4988 defsubr (&Syes_or_no_p);
4989 defsubr (&Sload_average);
4990 defsubr (&Sfeaturep);
4991 defsubr (&Srequire);
4992 defsubr (&Sprovide);
4993 defsubr (&Splist_member);
4994 defsubr (&Swidget_put);
4995 defsubr (&Swidget_get);
4996 defsubr (&Swidget_apply);
4997 defsubr (&Sbase64_encode_region);
4998 defsubr (&Sbase64_decode_region);
4999 defsubr (&Sbase64_encode_string);
5000 defsubr (&Sbase64_decode_string);
5001 defsubr (&Smd5);
5002 defsubr (&Ssecure_hash);
5003 defsubr (&Slocale_info);
5005 hashtest_eq.name = Qeq;
5006 hashtest_eq.user_hash_function = Qnil;
5007 hashtest_eq.user_cmp_function = Qnil;
5008 hashtest_eq.cmpfn = 0;
5009 hashtest_eq.hashfn = hashfn_eq;
5011 hashtest_eql.name = Qeql;
5012 hashtest_eql.user_hash_function = Qnil;
5013 hashtest_eql.user_cmp_function = Qnil;
5014 hashtest_eql.cmpfn = cmpfn_eql;
5015 hashtest_eql.hashfn = hashfn_eql;
5017 hashtest_equal.name = Qequal;
5018 hashtest_equal.user_hash_function = Qnil;
5019 hashtest_equal.user_cmp_function = Qnil;
5020 hashtest_equal.cmpfn = cmpfn_equal;
5021 hashtest_equal.hashfn = hashfn_equal;