(mm-inline-media-tests): Add
[emacs.git] / src / window.h
blobc5737ef723896f3fa060d22bc670829f22558b0f
1 /* Window definitions for GNU Emacs.
2 Copyright (C) 1985, 1986, 1993, 1995 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #ifndef WINDOW_H_INCLUDED
22 #define WINDOW_H_INCLUDED
24 #include "dispextern.h"
26 /* Windows are allocated as if they were vectors, but then the
27 Lisp data type is changed to Lisp_Window. They are garbage
28 collected along with the vectors.
30 All windows in use are arranged into a tree, with pointers up and down.
32 Windows that are leaves of the tree are actually displayed
33 and show the contents of buffers. Windows that are not leaves
34 are used for representing the way groups of leaf windows are
35 arranged on the frame. Leaf windows never become non-leaves.
36 They are deleted only by calling delete-window on them (but
37 this can be done implicitly). Combination windows can be created
38 and deleted at any time.
40 A leaf window has a non-nil buffer field, and also
41 has markers in its start and pointm fields. Non-leaf windows
42 have nil in these fields.
44 Non-leaf windows are either vertical or horizontal combinations.
46 A vertical combination window has children that are arranged on the frame
47 one above the next. Its vchild field points to the uppermost child.
48 The parent field of each of the children points to the vertical
49 combination window. The next field of each child points to the
50 child below it, or is nil for the lowest child. The prev field
51 of each child points to the child above it, or is nil for the
52 highest child.
54 A horizontal combination window has children that are side by side.
55 Its hchild field points to the leftmost child. In each child
56 the next field points to the child to the right and the prev field
57 points to the child to the left.
59 The children of a vertical combination window may be leaf windows
60 or horizontal combination windows. The children of a horizontal
61 combination window may be leaf windows or vertical combination windows.
63 At the top of the tree are two windows which have nil as parent.
64 The second of these is minibuf_window. The first one manages all
65 the frame area that is not minibuffer, and is called the root window.
66 Different windows can be the root at different times;
67 initially the root window is a leaf window, but if more windows
68 are created then that leaf window ceases to be root and a newly
69 made combination window becomes root instead.
71 In any case, on screens which have an ordinary window and a
72 minibuffer, prev of the minibuf window is the root window and next of
73 the root window is the minibuf window. On minibufferless screens or
74 minibuffer-only screens, the root window and the minibuffer window are
75 one and the same, so its prev and next members are nil.
77 A dead window has its buffer, hchild, and vchild windows all nil. */
79 struct cursor_pos
81 /* Pixel position. These are always window relative. */
82 int x, y;
84 /* Glyph matrix position. */
85 int hpos, vpos;
88 struct window
90 /* The first two fields are really the header of a vector */
91 /* The window code does not refer to them. */
92 EMACS_INT size;
93 struct Lisp_Vector *vec_next;
94 /* The frame this window is on. */
95 Lisp_Object frame;
96 /* t if this window is a minibuffer window. */
97 Lisp_Object mini_p;
98 /* Following child (to right or down) at same level of tree */
99 Lisp_Object next;
100 /* Preceding child (to left or up) at same level of tree */
101 Lisp_Object prev;
102 /* First child of this window. */
103 /* vchild is used if this is a vertical combination,
104 hchild if this is a horizontal combination. */
105 Lisp_Object hchild, vchild;
106 /* The window this one is a child of. */
107 Lisp_Object parent;
108 /* The upper left corner coordinates of this window,
109 as integers relative to upper left corner of frame = 0, 0 */
110 Lisp_Object left;
111 Lisp_Object top;
112 /* The size of the window */
113 Lisp_Object height;
114 Lisp_Object width;
115 /* The buffer displayed in this window */
116 /* Of the fields vchild, hchild and buffer, only one is non-nil. */
117 Lisp_Object buffer;
118 /* A marker pointing to where in the text to start displaying */
119 Lisp_Object start;
120 /* A marker pointing to where in the text point is in this window,
121 used only when the window is not selected.
122 This exists so that when multiple windows show one buffer
123 each one can have its own value of point. */
124 Lisp_Object pointm;
125 /* Non-nil means next redisplay must use the value of start
126 set up for it in advance. Set by scrolling commands. */
127 Lisp_Object force_start;
128 /* Non-nil means we have explicitly changed the value of start,
129 but that the next redisplay is not obliged to use the new value.
130 This is used in Fdelete_other_windows to force a call to
131 Vwindow_scroll_functions. */
132 Lisp_Object optional_new_start;
133 /* Number of columns display within the window is scrolled to the left. */
134 Lisp_Object hscroll;
135 /* Minimum hscroll for automatic hscrolling. This is the value
136 the user has set, by set-window-hscroll for example. */
137 Lisp_Object min_hscroll;
138 /* Number saying how recently window was selected */
139 Lisp_Object use_time;
140 /* Unique number of window assigned when it was created */
141 Lisp_Object sequence_number;
142 /* No permanent meaning; used by save-window-excursion's bookkeeping */
143 Lisp_Object temslot;
144 /* text.modified of displayed buffer as of last time display completed */
145 Lisp_Object last_modified;
146 /* BUF_OVERLAY_MODIFIED of displayed buffer as of last complete update. */
147 Lisp_Object last_overlay_modified;
148 /* Value of point at that time */
149 Lisp_Object last_point;
150 /* Non-nil if the buffer was "modified" when the window
151 was last updated. */
152 Lisp_Object last_had_star;
153 /* This window's vertical scroll bar. This field is only for use
154 by the window-system-dependent code which implements the
155 scroll bars; it can store anything it likes here. If this
156 window is newly created and we haven't displayed a scroll bar in
157 it yet, or if the frame doesn't have any scroll bars, this is nil. */
158 Lisp_Object vertical_scroll_bar;
160 /* Width of left and right marginal areas. A value of nil means
161 no margin. */
162 Lisp_Object left_margin_width;
163 Lisp_Object right_margin_width;
165 /* The rest are currently not used or only half used */
166 /* Frame coords of mark as of last time display completed */
167 /* May be nil if mark does not exist or was not on frame */
168 Lisp_Object last_mark_x;
169 Lisp_Object last_mark_y;
170 /* Z - the buffer position of the last glyph in the current matrix
171 of W. Only valid if WINDOW_END_VALID is not nil. */
172 Lisp_Object window_end_pos;
173 /* Glyph matrix row of the last glyph in the current matrix
174 of W. Only valid if WINDOW_END_VALID is not nil. */
175 Lisp_Object window_end_vpos;
176 /* t if window_end_pos is truly valid.
177 This is nil if nontrivial redisplay is preempted
178 since in that case the frame image that window_end_pos
179 did not get onto the frame. */
180 Lisp_Object window_end_valid;
181 /* Non-nil means must regenerate mode line of this window */
182 Lisp_Object update_mode_line;
183 /* Non-nil means current value of `start'
184 was the beginning of a line when it was chosen. */
185 Lisp_Object start_at_line_beg;
186 /* Display-table to use for displaying chars in this window.
187 Nil means use the buffer's own display-table. */
188 Lisp_Object display_table;
189 /* Non-nil means window is marked as dedicated. */
190 Lisp_Object dedicated;
191 /* Line number and position of a line somewhere above the
192 top of the screen. */
193 /* If this field is nil, it means we don't have a base line. */
194 Lisp_Object base_line_number;
195 /* If this field is nil, it means we don't have a base line.
196 If it is a buffer, it means don't display the line number
197 as long as the window shows that buffer. */
198 Lisp_Object base_line_pos;
199 /* If we have highlighted the region (or any part of it),
200 this is the mark position that we used, as an integer. */
201 Lisp_Object region_showing;
202 /* The column number currently displayed in this window's mode line,
203 or nil if column numbers are not being displayed. */
204 Lisp_Object column_number_displayed;
205 /* If redisplay in this window goes beyond this buffer position,
206 must run the redisplay-end-trigger-hook. */
207 Lisp_Object redisplay_end_trigger;
208 /* Non-nil means don't delete this window for becoming "too small". */
209 Lisp_Object too_small_ok;
211 /* Original window height and top before mini-window was
212 enlarged. */
213 Lisp_Object orig_height, orig_top;
215 /* No Lisp data may follow below this point without changing
216 mark_object in alloc.c. The member current_matrix must be the
217 first non-Lisp member. */
219 /* Glyph matrices. */
220 struct glyph_matrix *current_matrix;
221 struct glyph_matrix *desired_matrix;
223 /* Cursor position as of last update that completed without
224 pause. This is the position of last_point. */
225 struct cursor_pos last_cursor;
227 /* Intended cursor position. This is a position within the
228 glyph matrix. */
229 struct cursor_pos cursor;
231 /* Where the cursor actually is. */
232 struct cursor_pos phys_cursor;
234 /* Cursor type last drawn on the window. Used for X frames; -1
235 initially. */
236 int phys_cursor_type;
238 /* This is handy for undrawing the cursor. */
239 int phys_cursor_ascent, phys_cursor_height;
241 /* Non-zero means the cursor is currently displayed. This can be
242 set to zero by functions overpainting the cursor image. */
243 unsigned phys_cursor_on_p : 1;
245 /* 0 means cursor is logically on, 1 means it's off. Used for
246 blinking cursor. */
247 unsigned cursor_off_p : 1;
249 /* Value of cursor_off_p as of the last redisplay. */
250 unsigned last_cursor_off_p : 1;
252 /* 1 means desired matrix has been build and window must be
253 updated in update_frame. */
254 unsigned must_be_updated_p : 1;
256 /* Flag indicating that this window is not a real one.
257 Currently only used for menu bar windows of frames. */
258 unsigned pseudo_window_p : 1;
260 /* Amount by which lines of this window are scrolled in
261 y-direction (smooth scrolling). */
262 int vscroll;
264 /* Z_BYTE - the buffer position of the last glyph in the current matrix
265 of W. Only valid if WINDOW_END_VALID is not nil. */
266 int window_end_bytepos;
268 /* 1 means the window start of this window is frozen and may not
269 be changed during redisplay. If point is not in the window,
270 accept that. */
271 unsigned frozen_window_start_p : 1;
273 /* 1 means that this window's height is temporarily fixed. Used
274 in resize_mini_window to precent resizing selected_window, if
275 possible. */
276 unsigned height_fixed_p : 1;
279 /* 1 if W is a minibuffer window. */
281 #define MINI_WINDOW_P(W) (!EQ ((W)->mini_p, Qnil))
283 /* Return the window column at which the text in window W starts.
284 This is different from the `left' field because it does not include
285 a left-hand scroll bar if any. */
287 #define WINDOW_LEFT_MARGIN(W) \
288 (XFASTINT ((W)->left) \
289 + FRAME_LEFT_SCROLL_BAR_WIDTH (XFRAME (WINDOW_FRAME (W))))
291 /* Return the window column before which window W ends.
292 This includes a right-hand scroll bar, if any. */
294 #define WINDOW_RIGHT_EDGE(W) \
295 (XFASTINT ((W)->left) + XFASTINT ((W)->width))
297 /* Return the window column before which the text in window W ends.
298 This is different from WINDOW_RIGHT_EDGE because it does not include
299 a scroll bar or window-separating line on the right edge. */
301 #define WINDOW_RIGHT_MARGIN(W) \
302 (WINDOW_RIGHT_EDGE (W) \
303 - (FRAME_HAS_VERTICAL_SCROLL_BARS_ON_RIGHT (XFRAME (WINDOW_FRAME (W))) \
304 ? FRAME_SCROLL_BAR_COLS (XFRAME (WINDOW_FRAME (W))) \
305 : 0))
307 /* 1 if window W takes up the full width of its frame. */
309 #define WINDOW_FULL_WIDTH_P(W) \
310 (XFASTINT ((W)->width) == FRAME_WINDOW_WIDTH (XFRAME (WINDOW_FRAME (W))))
312 /* 1 if window W's has no other windows to its right in its frame. */
314 #define WINDOW_RIGHTMOST_P(W) \
315 (WINDOW_RIGHT_EDGE (W) == FRAME_WINDOW_WIDTH (XFRAME (WINDOW_FRAME (W))))
318 /* This is the window in which the terminal's cursor should
319 be left when nothing is being done with it. This must
320 always be a leaf window, and its buffer is selected by
321 the top level editing loop at the end of each command.
323 This value is always the same as
324 FRAME_SELECTED_WINDOW (selected_frame). */
326 extern Lisp_Object selected_window;
328 /* This is a time stamp for window selection, so we can find the least
329 recently used window. Its only users are Fselect_window,
330 init_window_once, and make_frame. */
332 extern int window_select_count;
334 /* The minibuffer window of the selected frame.
335 Note that you cannot test for minibufferness of an arbitrary window
336 by comparing against this; use the MINI_WINDOW_P macro instead. */
338 extern Lisp_Object minibuf_window;
340 /* Non-nil => window to for C-M-v to scroll when the minibuffer is
341 selected. */
343 extern Lisp_Object Vminibuf_scroll_window;
345 /* Nil or a symbol naming the window system under which emacs is
346 running ('x is the only current possibility) */
348 extern Lisp_Object Vwindow_system;
350 /* Version number of X windows: 10, 11 or nil. */
352 extern Lisp_Object Vwindow_system_version;
354 /* Window that the mouse is over (nil if no mouse support). */
356 extern Lisp_Object Vmouse_window;
358 /* Last mouse-click event (nil if no mouse support). */
360 extern Lisp_Object Vmouse_event;
362 EXFUN (Fnext_window, 3);
363 EXFUN (Fselect_window, 1);
364 EXFUN (Fdisplay_buffer, 3);
365 EXFUN (Fset_window_buffer, 2);
366 EXFUN (Fset_window_hscroll, 2);
367 EXFUN (Fwindow_hscroll, 1);
368 EXFUN (Fset_window_vscroll, 2);
369 EXFUN (Fwindow_vscroll, 1);
370 EXFUN (Fset_window_margins, 3);
371 EXFUN (Fwindow_live_p, 1);
372 EXFUN (Fset_window_point, 2);
373 extern Lisp_Object make_window P_ ((void));
374 extern void delete_window P_ ((Lisp_Object));
375 extern Lisp_Object window_from_coordinates P_ ((struct frame *, int, int, int *, int));
376 EXFUN (Fwindow_dedicated_p, 1);
377 extern int window_height P_ ((Lisp_Object));
378 extern int window_width P_ ((Lisp_Object));
379 extern void set_window_height P_ ((Lisp_Object, int, int));
380 extern void set_window_width P_ ((Lisp_Object, int, int));
381 extern void delete_all_subwindows P_ ((struct window *));
382 extern void freeze_window_starts P_ ((struct frame *, int));
383 extern void foreach_window P_ ((struct frame *,
384 int (* fn) (struct window *, void *),
385 void *));
386 extern void grow_mini_window P_ ((struct window *, int));
387 extern void shrink_mini_window P_ ((struct window *));
390 /* Make WINDOW display BUFFER as its contents. RUN_HOOKS_P non-zero
391 means it's allowed to run hooks. See make_frame for a case where
392 it's not allowed. */
394 void set_window_buffer P_ ((Lisp_Object window, Lisp_Object buffer,
395 int run_hooks_p));
397 /* Prompt to display in front of the minibuffer contents. */
399 extern Lisp_Object minibuf_prompt;
401 /* The visual width of the above. */
403 extern int minibuf_prompt_width;
405 /* This is the window where the echo area message was displayed. It
406 is always a minibuffer window, but it may not be the same window
407 currently active as a minibuffer. */
409 extern Lisp_Object echo_area_window;
411 /* Depth in recursive edits. */
413 extern int command_loop_level;
415 /* Depth in minibuffer invocations. */
417 extern int minibuf_level;
419 /* true iff we should redraw the mode lines on the next redisplay. */
421 extern int update_mode_lines;
423 /* Nonzero if BEGV - BEG or Z - ZV of current buffer has changed since
424 last redisplay that finished. */
426 extern int clip_changed;
428 /* Nonzero if window sizes or contents have changed since last
429 redisplay that finished */
431 extern int windows_or_buffers_changed;
433 /* Number of windows displaying the selected buffer. Normally this is
434 1, but it can be more. */
436 extern int buffer_shared;
438 /* If *ROWS or *COLS are too small a size for FRAME, set them to the
439 minimum allowable size. */
441 extern void check_frame_size P_ ((struct frame *frame, int *rows, int *cols));
443 /* Return a pointer to the glyph W's physical cursor is on. Value is
444 null if W's current matrix is invalid, so that no meaningfull glyph
445 can be returned. */
447 struct glyph *get_phys_cursor_glyph P_ ((struct window *w));
449 #endif /* not WINDOW_H_INCLUDED */