(mm-inline-media-tests): Add
[emacs.git] / src / floatfns.c
blobdb1c3a7231ef3661e50459b0875966a12b9a0187
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* ANSI C requires only these float functions:
23 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
24 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
26 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
27 Define HAVE_CBRT if you have cbrt.
28 Define HAVE_RINT if you have a working rint.
29 If you don't define these, then the appropriate routines will be simulated.
31 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
32 (This should happen automatically.)
34 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
35 This has no effect if HAVE_MATHERR is defined.
37 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
38 (What systems actually do this? Please let us know.)
40 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
41 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
42 range checking will happen before calling the float routines. This has
43 no effect if HAVE_MATHERR is defined (since matherr will be called when
44 a domain error occurs.)
47 #include <config.h>
48 #include <signal.h>
49 #include "lisp.h"
50 #include "syssignal.h"
52 #if STDC_HEADERS
53 #include <float.h>
54 #endif
56 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
57 #ifndef IEEE_FLOATING_POINT
58 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
59 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
60 #define IEEE_FLOATING_POINT 1
61 #else
62 #define IEEE_FLOATING_POINT 0
63 #endif
64 #endif
66 /* Work around a problem that happens because math.h on hpux 7
67 defines two static variables--which, in Emacs, are not really static,
68 because `static' is defined as nothing. The problem is that they are
69 defined both here and in lread.c.
70 These macros prevent the name conflict. */
71 #if defined (HPUX) && !defined (HPUX8)
72 #define _MAXLDBL floatfns_maxldbl
73 #define _NMAXLDBL floatfns_nmaxldbl
74 #endif
76 #include <math.h>
78 /* This declaration is omitted on some systems, like Ultrix. */
79 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
80 extern double logb ();
81 #endif /* not HPUX and HAVE_LOGB and no logb macro */
83 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
84 /* If those are defined, then this is probably a `matherr' machine. */
85 # ifndef HAVE_MATHERR
86 # define HAVE_MATHERR
87 # endif
88 #endif
90 #ifdef NO_MATHERR
91 #undef HAVE_MATHERR
92 #endif
94 #ifdef HAVE_MATHERR
95 # ifdef FLOAT_CHECK_ERRNO
96 # undef FLOAT_CHECK_ERRNO
97 # endif
98 # ifdef FLOAT_CHECK_DOMAIN
99 # undef FLOAT_CHECK_DOMAIN
100 # endif
101 #endif
103 #ifndef NO_FLOAT_CHECK_ERRNO
104 #define FLOAT_CHECK_ERRNO
105 #endif
107 #ifdef FLOAT_CHECK_ERRNO
108 # include <errno.h>
110 #ifndef USE_CRT_DLL
111 extern int errno;
112 #endif
113 #endif
115 /* Avoid traps on VMS from sinh and cosh.
116 All the other functions set errno instead. */
118 #ifdef VMS
119 #undef cosh
120 #undef sinh
121 #define cosh(x) ((exp(x)+exp(-x))*0.5)
122 #define sinh(x) ((exp(x)-exp(-x))*0.5)
123 #endif /* VMS */
125 static SIGTYPE float_error ();
127 /* Nonzero while executing in floating point.
128 This tells float_error what to do. */
130 static int in_float;
132 /* If an argument is out of range for a mathematical function,
133 here is the actual argument value to use in the error message.
134 These variables are used only across the floating point library call
135 so there is no need to staticpro them. */
137 static Lisp_Object float_error_arg, float_error_arg2;
139 static char *float_error_fn_name;
141 /* Evaluate the floating point expression D, recording NUM
142 as the original argument for error messages.
143 D is normally an assignment expression.
144 Handle errors which may result in signals or may set errno.
146 Note that float_error may be declared to return void, so you can't
147 just cast the zero after the colon to (SIGTYPE) to make the types
148 check properly. */
150 #ifdef FLOAT_CHECK_ERRNO
151 #define IN_FLOAT(d, name, num) \
152 do { \
153 float_error_arg = num; \
154 float_error_fn_name = name; \
155 in_float = 1; errno = 0; (d); in_float = 0; \
156 switch (errno) { \
157 case 0: break; \
158 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
159 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
160 default: arith_error (float_error_fn_name, float_error_arg); \
162 } while (0)
163 #define IN_FLOAT2(d, name, num, num2) \
164 do { \
165 float_error_arg = num; \
166 float_error_arg2 = num2; \
167 float_error_fn_name = name; \
168 in_float = 1; errno = 0; (d); in_float = 0; \
169 switch (errno) { \
170 case 0: break; \
171 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
172 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
173 default: arith_error (float_error_fn_name, float_error_arg); \
175 } while (0)
176 #else
177 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
178 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
179 #endif
181 /* Convert float to Lisp_Int if it fits, else signal a range error
182 using the given arguments. */
183 #define FLOAT_TO_INT(x, i, name, num) \
184 do \
186 if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \
187 (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \
188 range_error (name, num); \
189 XSETINT (i, (EMACS_INT)(x)); \
191 while (0)
192 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
193 do \
195 if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \
196 (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \
197 range_error2 (name, num1, num2); \
198 XSETINT (i, (EMACS_INT)(x)); \
200 while (0)
202 #define arith_error(op,arg) \
203 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
204 #define range_error(op,arg) \
205 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
206 #define range_error2(op,a1,a2) \
207 Fsignal (Qrange_error, Fcons (build_string ((op)), \
208 Fcons ((a1), Fcons ((a2), Qnil))))
209 #define domain_error(op,arg) \
210 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
211 #define domain_error2(op,a1,a2) \
212 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
213 Fcons ((a1), Fcons ((a2), Qnil))))
215 /* Extract a Lisp number as a `double', or signal an error. */
217 double
218 extract_float (num)
219 Lisp_Object num;
221 CHECK_NUMBER_OR_FLOAT (num, 0);
223 if (FLOATP (num))
224 return XFLOAT_DATA (num);
225 return (double) XINT (num);
228 /* Trig functions. */
230 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
231 "Return the inverse cosine of ARG.")
232 (arg)
233 register Lisp_Object arg;
235 double d = extract_float (arg);
236 #ifdef FLOAT_CHECK_DOMAIN
237 if (d > 1.0 || d < -1.0)
238 domain_error ("acos", arg);
239 #endif
240 IN_FLOAT (d = acos (d), "acos", arg);
241 return make_float (d);
244 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
245 "Return the inverse sine of ARG.")
246 (arg)
247 register Lisp_Object arg;
249 double d = extract_float (arg);
250 #ifdef FLOAT_CHECK_DOMAIN
251 if (d > 1.0 || d < -1.0)
252 domain_error ("asin", arg);
253 #endif
254 IN_FLOAT (d = asin (d), "asin", arg);
255 return make_float (d);
258 DEFUN ("atan", Fatan, Satan, 1, 1, 0,
259 "Return the inverse tangent of ARG.")
260 (arg)
261 register Lisp_Object arg;
263 double d = extract_float (arg);
264 IN_FLOAT (d = atan (d), "atan", arg);
265 return make_float (d);
268 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
269 "Return the cosine of ARG.")
270 (arg)
271 register Lisp_Object arg;
273 double d = extract_float (arg);
274 IN_FLOAT (d = cos (d), "cos", arg);
275 return make_float (d);
278 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
279 "Return the sine of ARG.")
280 (arg)
281 register Lisp_Object arg;
283 double d = extract_float (arg);
284 IN_FLOAT (d = sin (d), "sin", arg);
285 return make_float (d);
288 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
289 "Return the tangent of ARG.")
290 (arg)
291 register Lisp_Object arg;
293 double d = extract_float (arg);
294 double c = cos (d);
295 #ifdef FLOAT_CHECK_DOMAIN
296 if (c == 0.0)
297 domain_error ("tan", arg);
298 #endif
299 IN_FLOAT (d = sin (d) / c, "tan", arg);
300 return make_float (d);
303 #if 0 /* Leave these out unless we find there's a reason for them. */
305 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
306 "Return the bessel function j0 of ARG.")
307 (arg)
308 register Lisp_Object arg;
310 double d = extract_float (arg);
311 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
312 return make_float (d);
315 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
316 "Return the bessel function j1 of ARG.")
317 (arg)
318 register Lisp_Object arg;
320 double d = extract_float (arg);
321 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
322 return make_float (d);
325 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
326 "Return the order N bessel function output jn of ARG.\n\
327 The first arg (the order) is truncated to an integer.")
328 (n, arg)
329 register Lisp_Object n, arg;
331 int i1 = extract_float (n);
332 double f2 = extract_float (arg);
334 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
335 return make_float (f2);
338 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
339 "Return the bessel function y0 of ARG.")
340 (arg)
341 register Lisp_Object arg;
343 double d = extract_float (arg);
344 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
345 return make_float (d);
348 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
349 "Return the bessel function y1 of ARG.")
350 (arg)
351 register Lisp_Object arg;
353 double d = extract_float (arg);
354 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
355 return make_float (d);
358 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
359 "Return the order N bessel function output yn of ARG.\n\
360 The first arg (the order) is truncated to an integer.")
361 (n, arg)
362 register Lisp_Object n, arg;
364 int i1 = extract_float (n);
365 double f2 = extract_float (arg);
367 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
368 return make_float (f2);
371 #endif
373 #if 0 /* Leave these out unless we see they are worth having. */
375 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
376 "Return the mathematical error function of ARG.")
377 (arg)
378 register Lisp_Object arg;
380 double d = extract_float (arg);
381 IN_FLOAT (d = erf (d), "erf", arg);
382 return make_float (d);
385 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
386 "Return the complementary error function of ARG.")
387 (arg)
388 register Lisp_Object arg;
390 double d = extract_float (arg);
391 IN_FLOAT (d = erfc (d), "erfc", arg);
392 return make_float (d);
395 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
396 "Return the log gamma of ARG.")
397 (arg)
398 register Lisp_Object arg;
400 double d = extract_float (arg);
401 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
402 return make_float (d);
405 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
406 "Return the cube root of ARG.")
407 (arg)
408 register Lisp_Object arg;
410 double d = extract_float (arg);
411 #ifdef HAVE_CBRT
412 IN_FLOAT (d = cbrt (d), "cube-root", arg);
413 #else
414 if (d >= 0.0)
415 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
416 else
417 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
418 #endif
419 return make_float (d);
422 #endif
424 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
425 "Return the exponential base e of ARG.")
426 (arg)
427 register Lisp_Object arg;
429 double d = extract_float (arg);
430 #ifdef FLOAT_CHECK_DOMAIN
431 if (d > 709.7827) /* Assume IEEE doubles here */
432 range_error ("exp", arg);
433 else if (d < -709.0)
434 return make_float (0.0);
435 else
436 #endif
437 IN_FLOAT (d = exp (d), "exp", arg);
438 return make_float (d);
441 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
442 "Return the exponential ARG1 ** ARG2.")
443 (arg1, arg2)
444 register Lisp_Object arg1, arg2;
446 double f1, f2;
448 CHECK_NUMBER_OR_FLOAT (arg1, 0);
449 CHECK_NUMBER_OR_FLOAT (arg2, 0);
450 if (INTEGERP (arg1) /* common lisp spec */
451 && INTEGERP (arg2)) /* don't promote, if both are ints */
452 { /* this can be improved by pre-calculating */
453 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
454 Lisp_Object val;
456 x = XINT (arg1);
457 y = XINT (arg2);
458 acc = 1;
460 if (y < 0)
462 if (x == 1)
463 acc = 1;
464 else if (x == -1)
465 acc = (y & 1) ? -1 : 1;
466 else
467 acc = 0;
469 else
471 while (y > 0)
473 if (y & 1)
474 acc *= x;
475 x *= x;
476 y = (unsigned)y >> 1;
479 XSETINT (val, acc);
480 return val;
482 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
483 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
484 /* Really should check for overflow, too */
485 if (f1 == 0.0 && f2 == 0.0)
486 f1 = 1.0;
487 #ifdef FLOAT_CHECK_DOMAIN
488 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
489 domain_error2 ("expt", arg1, arg2);
490 #endif
491 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
492 return make_float (f1);
495 DEFUN ("log", Flog, Slog, 1, 2, 0,
496 "Return the natural logarithm of ARG.\n\
497 If second optional argument BASE is given, return log ARG using that base.")
498 (arg, base)
499 register Lisp_Object arg, base;
501 double d = extract_float (arg);
503 #ifdef FLOAT_CHECK_DOMAIN
504 if (d <= 0.0)
505 domain_error2 ("log", arg, base);
506 #endif
507 if (NILP (base))
508 IN_FLOAT (d = log (d), "log", arg);
509 else
511 double b = extract_float (base);
513 #ifdef FLOAT_CHECK_DOMAIN
514 if (b <= 0.0 || b == 1.0)
515 domain_error2 ("log", arg, base);
516 #endif
517 if (b == 10.0)
518 IN_FLOAT2 (d = log10 (d), "log", arg, base);
519 else
520 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
522 return make_float (d);
525 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
526 "Return the logarithm base 10 of ARG.")
527 (arg)
528 register Lisp_Object arg;
530 double d = extract_float (arg);
531 #ifdef FLOAT_CHECK_DOMAIN
532 if (d <= 0.0)
533 domain_error ("log10", arg);
534 #endif
535 IN_FLOAT (d = log10 (d), "log10", arg);
536 return make_float (d);
539 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
540 "Return the square root of ARG.")
541 (arg)
542 register Lisp_Object arg;
544 double d = extract_float (arg);
545 #ifdef FLOAT_CHECK_DOMAIN
546 if (d < 0.0)
547 domain_error ("sqrt", arg);
548 #endif
549 IN_FLOAT (d = sqrt (d), "sqrt", arg);
550 return make_float (d);
553 #if 0 /* Not clearly worth adding. */
555 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
556 "Return the inverse hyperbolic cosine of ARG.")
557 (arg)
558 register Lisp_Object arg;
560 double d = extract_float (arg);
561 #ifdef FLOAT_CHECK_DOMAIN
562 if (d < 1.0)
563 domain_error ("acosh", arg);
564 #endif
565 #ifdef HAVE_INVERSE_HYPERBOLIC
566 IN_FLOAT (d = acosh (d), "acosh", arg);
567 #else
568 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
569 #endif
570 return make_float (d);
573 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
574 "Return the inverse hyperbolic sine of ARG.")
575 (arg)
576 register Lisp_Object arg;
578 double d = extract_float (arg);
579 #ifdef HAVE_INVERSE_HYPERBOLIC
580 IN_FLOAT (d = asinh (d), "asinh", arg);
581 #else
582 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
583 #endif
584 return make_float (d);
587 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
588 "Return the inverse hyperbolic tangent of ARG.")
589 (arg)
590 register Lisp_Object arg;
592 double d = extract_float (arg);
593 #ifdef FLOAT_CHECK_DOMAIN
594 if (d >= 1.0 || d <= -1.0)
595 domain_error ("atanh", arg);
596 #endif
597 #ifdef HAVE_INVERSE_HYPERBOLIC
598 IN_FLOAT (d = atanh (d), "atanh", arg);
599 #else
600 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
601 #endif
602 return make_float (d);
605 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
606 "Return the hyperbolic cosine of ARG.")
607 (arg)
608 register Lisp_Object arg;
610 double d = extract_float (arg);
611 #ifdef FLOAT_CHECK_DOMAIN
612 if (d > 710.0 || d < -710.0)
613 range_error ("cosh", arg);
614 #endif
615 IN_FLOAT (d = cosh (d), "cosh", arg);
616 return make_float (d);
619 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
620 "Return the hyperbolic sine of ARG.")
621 (arg)
622 register Lisp_Object arg;
624 double d = extract_float (arg);
625 #ifdef FLOAT_CHECK_DOMAIN
626 if (d > 710.0 || d < -710.0)
627 range_error ("sinh", arg);
628 #endif
629 IN_FLOAT (d = sinh (d), "sinh", arg);
630 return make_float (d);
633 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
634 "Return the hyperbolic tangent of ARG.")
635 (arg)
636 register Lisp_Object arg;
638 double d = extract_float (arg);
639 IN_FLOAT (d = tanh (d), "tanh", arg);
640 return make_float (d);
642 #endif
644 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
645 "Return the absolute value of ARG.")
646 (arg)
647 register Lisp_Object arg;
649 CHECK_NUMBER_OR_FLOAT (arg, 0);
651 if (FLOATP (arg))
652 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
653 else if (XINT (arg) < 0)
654 XSETINT (arg, - XINT (arg));
656 return arg;
659 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
660 "Return the floating point number equal to ARG.")
661 (arg)
662 register Lisp_Object arg;
664 CHECK_NUMBER_OR_FLOAT (arg, 0);
666 if (INTEGERP (arg))
667 return make_float ((double) XINT (arg));
668 else /* give 'em the same float back */
669 return arg;
672 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
673 "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\
674 This is the same as the exponent of a float.")
675 (arg)
676 Lisp_Object arg;
678 Lisp_Object val;
679 EMACS_INT value;
680 double f = extract_float (arg);
682 if (f == 0.0)
683 value = -(VALMASK >> 1);
684 else
686 #ifdef HAVE_LOGB
687 IN_FLOAT (value = logb (f), "logb", arg);
688 #else
689 #ifdef HAVE_FREXP
690 int ivalue;
691 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
692 value = ivalue - 1;
693 #else
694 int i;
695 double d;
696 if (f < 0.0)
697 f = -f;
698 value = -1;
699 while (f < 0.5)
701 for (i = 1, d = 0.5; d * d >= f; i += i)
702 d *= d;
703 f /= d;
704 value -= i;
706 while (f >= 1.0)
708 for (i = 1, d = 2.0; d * d <= f; i += i)
709 d *= d;
710 f /= d;
711 value += i;
713 #endif
714 #endif
716 XSETINT (val, value);
717 return val;
721 /* the rounding functions */
723 static Lisp_Object
724 rounding_driver (arg, divisor, double_round, int_round2, name)
725 register Lisp_Object arg, divisor;
726 double (*double_round) ();
727 EMACS_INT (*int_round2) ();
728 char *name;
730 CHECK_NUMBER_OR_FLOAT (arg, 0);
732 if (! NILP (divisor))
734 EMACS_INT i1, i2;
736 CHECK_NUMBER_OR_FLOAT (divisor, 1);
738 if (FLOATP (arg) || FLOATP (divisor))
740 double f1, f2;
742 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
743 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
744 if (! IEEE_FLOATING_POINT && f2 == 0)
745 Fsignal (Qarith_error, Qnil);
747 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
748 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
749 return arg;
752 i1 = XINT (arg);
753 i2 = XINT (divisor);
755 if (i2 == 0)
756 Fsignal (Qarith_error, Qnil);
758 XSETINT (arg, (*int_round2) (i1, i2));
759 return arg;
762 if (FLOATP (arg))
764 double d;
766 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
767 FLOAT_TO_INT (d, arg, name, arg);
770 return arg;
773 /* With C's /, the result is implementation-defined if either operand
774 is negative, so take care with negative operands in the following
775 integer functions. */
777 static EMACS_INT
778 ceiling2 (i1, i2)
779 EMACS_INT i1, i2;
781 return (i2 < 0
782 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
783 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
786 static EMACS_INT
787 floor2 (i1, i2)
788 EMACS_INT i1, i2;
790 return (i2 < 0
791 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
792 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
795 static EMACS_INT
796 truncate2 (i1, i2)
797 EMACS_INT i1, i2;
799 return (i2 < 0
800 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
801 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
804 static EMACS_INT
805 round2 (i1, i2)
806 EMACS_INT i1, i2;
808 /* The C language's division operator gives us one remainder R, but
809 we want the remainder R1 on the other side of 0 if R1 is closer
810 to 0 than R is; because we want to round to even, we also want R1
811 if R and R1 are the same distance from 0 and if C's quotient is
812 odd. */
813 EMACS_INT q = i1 / i2;
814 EMACS_INT r = i1 % i2;
815 EMACS_INT abs_r = r < 0 ? -r : r;
816 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
817 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
820 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
821 if `rint' exists but does not work right. */
822 #ifdef HAVE_RINT
823 #define emacs_rint rint
824 #else
825 static double
826 emacs_rint (d)
827 double d;
829 return floor (d + 0.5);
831 #endif
833 static double
834 double_identity (d)
835 double d;
837 return d;
840 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
841 "Return the smallest integer no less than ARG. (Round toward +inf.)\n\
842 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR.")
843 (arg, divisor)
844 Lisp_Object arg, divisor;
846 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
849 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
850 "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
851 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
852 (arg, divisor)
853 Lisp_Object arg, divisor;
855 return rounding_driver (arg, divisor, floor, floor2, "floor");
858 DEFUN ("round", Fround, Sround, 1, 2, 0,
859 "Return the nearest integer to ARG.\n\
860 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.")
861 (arg, divisor)
862 Lisp_Object arg, divisor;
864 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
867 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
868 "Truncate a floating point number to an int.\n\
869 Rounds ARG toward zero.\n\
870 With optional DIVISOR, truncate ARG/DIVISOR.")
871 (arg, divisor)
872 Lisp_Object arg, divisor;
874 return rounding_driver (arg, divisor, double_identity, truncate2,
875 "truncate");
879 Lisp_Object
880 fmod_float (x, y)
881 register Lisp_Object x, y;
883 double f1, f2;
885 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
886 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
888 if (! IEEE_FLOATING_POINT && f2 == 0)
889 Fsignal (Qarith_error, Qnil);
891 /* If the "remainder" comes out with the wrong sign, fix it. */
892 IN_FLOAT2 ((f1 = fmod (f1, f2),
893 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
894 "mod", x, y);
895 return make_float (f1);
898 /* It's not clear these are worth adding. */
900 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
901 "Return the smallest integer no less than ARG, as a float.\n\
902 \(Round toward +inf.\)")
903 (arg)
904 register Lisp_Object arg;
906 double d = extract_float (arg);
907 IN_FLOAT (d = ceil (d), "fceiling", arg);
908 return make_float (d);
911 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
912 "Return the largest integer no greater than ARG, as a float.\n\
913 \(Round towards -inf.\)")
914 (arg)
915 register Lisp_Object arg;
917 double d = extract_float (arg);
918 IN_FLOAT (d = floor (d), "ffloor", arg);
919 return make_float (d);
922 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
923 "Return the nearest integer to ARG, as a float.")
924 (arg)
925 register Lisp_Object arg;
927 double d = extract_float (arg);
928 IN_FLOAT (d = emacs_rint (d), "fround", arg);
929 return make_float (d);
932 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
933 "Truncate a floating point number to an integral float value.\n\
934 Rounds the value toward zero.")
935 (arg)
936 register Lisp_Object arg;
938 double d = extract_float (arg);
939 if (d >= 0.0)
940 IN_FLOAT (d = floor (d), "ftruncate", arg);
941 else
942 IN_FLOAT (d = ceil (d), "ftruncate", arg);
943 return make_float (d);
946 #ifdef FLOAT_CATCH_SIGILL
947 static SIGTYPE
948 float_error (signo)
949 int signo;
951 if (! in_float)
952 fatal_error_signal (signo);
954 #ifdef BSD_SYSTEM
955 #ifdef BSD4_1
956 sigrelse (SIGILL);
957 #else /* not BSD4_1 */
958 sigsetmask (SIGEMPTYMASK);
959 #endif /* not BSD4_1 */
960 #else
961 /* Must reestablish handler each time it is called. */
962 signal (SIGILL, float_error);
963 #endif /* BSD_SYSTEM */
965 in_float = 0;
967 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
970 /* Another idea was to replace the library function `infnan'
971 where SIGILL is signaled. */
973 #endif /* FLOAT_CATCH_SIGILL */
975 #ifdef HAVE_MATHERR
976 int
977 matherr (x)
978 struct exception *x;
980 Lisp_Object args;
981 if (! in_float)
982 /* Not called from emacs-lisp float routines; do the default thing. */
983 return 0;
984 if (!strcmp (x->name, "pow"))
985 x->name = "expt";
987 args
988 = Fcons (build_string (x->name),
989 Fcons (make_float (x->arg1),
990 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
991 ? Fcons (make_float (x->arg2), Qnil)
992 : Qnil)));
993 switch (x->type)
995 case DOMAIN: Fsignal (Qdomain_error, args); break;
996 case SING: Fsignal (Qsingularity_error, args); break;
997 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
998 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
999 default: Fsignal (Qarith_error, args); break;
1001 return (1); /* don't set errno or print a message */
1003 #endif /* HAVE_MATHERR */
1005 void
1006 init_floatfns ()
1008 #ifdef FLOAT_CATCH_SIGILL
1009 signal (SIGILL, float_error);
1010 #endif
1011 in_float = 0;
1014 void
1015 syms_of_floatfns ()
1017 defsubr (&Sacos);
1018 defsubr (&Sasin);
1019 defsubr (&Satan);
1020 defsubr (&Scos);
1021 defsubr (&Ssin);
1022 defsubr (&Stan);
1023 #if 0
1024 defsubr (&Sacosh);
1025 defsubr (&Sasinh);
1026 defsubr (&Satanh);
1027 defsubr (&Scosh);
1028 defsubr (&Ssinh);
1029 defsubr (&Stanh);
1030 defsubr (&Sbessel_y0);
1031 defsubr (&Sbessel_y1);
1032 defsubr (&Sbessel_yn);
1033 defsubr (&Sbessel_j0);
1034 defsubr (&Sbessel_j1);
1035 defsubr (&Sbessel_jn);
1036 defsubr (&Serf);
1037 defsubr (&Serfc);
1038 defsubr (&Slog_gamma);
1039 defsubr (&Scube_root);
1040 #endif
1041 defsubr (&Sfceiling);
1042 defsubr (&Sffloor);
1043 defsubr (&Sfround);
1044 defsubr (&Sftruncate);
1045 defsubr (&Sexp);
1046 defsubr (&Sexpt);
1047 defsubr (&Slog);
1048 defsubr (&Slog10);
1049 defsubr (&Ssqrt);
1051 defsubr (&Sabs);
1052 defsubr (&Sfloat);
1053 defsubr (&Slogb);
1054 defsubr (&Sceiling);
1055 defsubr (&Sfloor);
1056 defsubr (&Sround);
1057 defsubr (&Struncate);