* lisp/progmodes/js.el (js-indent-line): Don't widen.
[emacs.git] / lisp / progmodes / ebnf-otz.el
blob0e8909cbfa410d040bcab7c3137abebc901072eb
1 ;;; ebnf-otz.el --- syntactic chart OpTimiZer
3 ;; Copyright (C) 1999-2014 Free Software Foundation, Inc.
5 ;; Author: Vinicius Jose Latorre <viniciusjl@ig.com.br>
6 ;; Maintainer: Vinicius Jose Latorre <viniciusjl@ig.com.br>
7 ;; Keywords: wp, ebnf, PostScript
8 ;; Old-Version: 1.0
9 ;; Package: ebnf2ps
11 ;; This file is part of GNU Emacs.
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
26 ;;; Commentary:
28 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
31 ;; This is part of ebnf2ps package.
33 ;; This package defines an optimizer for ebnf2ps.
35 ;; See ebnf2ps.el for documentation.
38 ;; Optimizations
39 ;; -------------
42 ;; *To be implemented*:
43 ;; left recursion:
44 ;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
46 ;; right recursion:
47 ;; A = B | C A. ==> A = {C}* B.
48 ;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
50 ;; optional:
51 ;; A = B | C B. ==> A = [C] B.
52 ;; A = B | B C. ==> A = B [C].
53 ;; A = D | B D | B C D. ==> A = [B [C]] D.
56 ;; *Already implemented*:
57 ;; left recursion:
58 ;; A = B | A C. ==> A = B {C}*.
59 ;; A = B | A B. ==> A = {B}+.
60 ;; A = | A B. ==> A = {B}*.
61 ;; A = B | A C B. ==> A = {B || C}+.
62 ;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
64 ;; optional:
65 ;; A = B | . ==> A = [B].
66 ;; A = | B . ==> A = [B].
68 ;; factorization:
69 ;; A = B C | B D. ==> A = B (C | D).
70 ;; A = C B | D B. ==> A = (C | D) B.
71 ;; A = B C E | B D E. ==> A = B (C | D) E.
73 ;; none:
74 ;; A = B | C | . ==> A = B | C | .
75 ;; A = B | C A D. ==> A = B | C A D.
78 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
80 ;;; Code:
83 (require 'ebnf2ps)
86 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
89 (defvar ebnf-empty-rule-list nil
90 "List of empty rule name.")
93 (defun ebnf-add-empty-rule-list (rule)
94 "Add empty RULE in `ebnf-empty-rule-list'."
95 (and ebnf-ignore-empty-rule
96 (eq (ebnf-node-kind (ebnf-node-production rule))
97 'ebnf-generate-empty)
98 (setq ebnf-empty-rule-list (cons (ebnf-node-name rule)
99 ebnf-empty-rule-list))))
102 (defun ebnf-otz-initialize ()
103 "Initialize optimizer."
104 (setq ebnf-empty-rule-list nil))
107 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
108 ;; Eliminate empty rules
111 (defun ebnf-eliminate-empty-rules (syntax-list)
112 "Eliminate empty rules."
113 (while ebnf-empty-rule-list
114 (let ((ebnf-total (length syntax-list))
115 (ebnf-nprod 0)
116 (prod-list syntax-list)
117 new-list before)
118 (while prod-list
119 (ebnf-message-info "Eliminating empty rules")
120 (let ((rule (car prod-list)))
121 ;; if any non-terminal pertains to ebnf-empty-rule-list
122 ;; then eliminate non-terminal from rule
123 (if (ebnf-eliminate-empty rule)
124 (setq before prod-list)
125 ;; eliminate empty rule from syntax-list
126 (setq new-list (cons (ebnf-node-name rule) new-list))
127 (if before
128 (setcdr before (cdr prod-list))
129 (setq syntax-list (cdr syntax-list)))))
130 (setq prod-list (cdr prod-list)))
131 (setq ebnf-empty-rule-list new-list)))
132 syntax-list)
135 ;; [production width-func entry height width name production action]
136 ;; [sequence width-func entry height width list]
137 ;; [alternative width-func entry height width list]
138 ;; [non-terminal width-func entry height width name default]
139 ;; [empty width-func entry height width]
140 ;; [terminal width-func entry height width name default]
141 ;; [special width-func entry height width name default]
143 (defun ebnf-eliminate-empty (rule)
144 (let ((kind (ebnf-node-kind rule)))
145 (cond
146 ;; non-terminal
147 ((eq kind 'ebnf-generate-non-terminal)
148 (if (member (ebnf-node-name rule) ebnf-empty-rule-list)
150 rule))
151 ;; sequence
152 ((eq kind 'ebnf-generate-sequence)
153 (let ((seq (ebnf-node-list rule))
154 (header (ebnf-node-list rule))
155 before elt)
156 (while seq
157 (setq elt (car seq))
158 (if (ebnf-eliminate-empty elt)
159 (setq before seq)
160 (if before
161 (setcdr before (cdr seq))
162 (setq header (cdr header))))
163 (setq seq (cdr seq)))
164 (when header
165 (ebnf-node-list rule header)
166 rule)))
167 ;; alternative
168 ((eq kind 'ebnf-generate-alternative)
169 (let ((seq (ebnf-node-list rule))
170 (header (ebnf-node-list rule))
171 before elt)
172 (while seq
173 (setq elt (car seq))
174 (if (ebnf-eliminate-empty elt)
175 (setq before seq)
176 (if before
177 (setcdr before (cdr seq))
178 (setq header (cdr header))))
179 (setq seq (cdr seq)))
180 (when header
181 (if (= (length header) 1)
182 (car header)
183 (ebnf-node-list rule header)
184 rule))))
185 ;; production
186 ((eq kind 'ebnf-generate-production)
187 (let ((prod (ebnf-eliminate-empty (ebnf-node-production rule))))
188 (when prod
189 (ebnf-node-production rule prod)
190 rule)))
191 ;; terminal, special and empty
193 rule)
197 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
198 ;; Optimizations
201 ;; *To be implemented*:
202 ;; left recursion:
203 ;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
205 ;; right recursion:
206 ;; A = B | C A. ==> A = {C}* B.
207 ;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
209 ;; optional:
210 ;; A = B | C B. ==> A = [C] B.
211 ;; A = B | B C. ==> A = B [C].
212 ;; A = D | B D | B C D. ==> A = [B [C]] D.
215 ;; *Already implemented*:
216 ;; left recursion:
217 ;; A = B | A C. ==> A = B {C}*.
218 ;; A = B | A B. ==> A = {B}+.
219 ;; A = | A B. ==> A = {B}*.
220 ;; A = B | A C B. ==> A = {B || C}+.
221 ;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
223 ;; optional:
224 ;; A = B | . ==> A = [B].
225 ;; A = | B . ==> A = [B].
227 ;; factorization:
228 ;; A = B C | B D. ==> A = B (C | D).
229 ;; A = C B | D B. ==> A = (C | D) B.
230 ;; A = B C E | B D E. ==> A = B (C | D) E.
232 ;; none:
233 ;; A = B | C | . ==> A = B | C | .
234 ;; A = B | C A D. ==> A = B | C A D.
236 (defun ebnf-optimize (syntax-list)
237 "Syntactic chart optimizer."
238 (if (not ebnf-optimize)
239 syntax-list
240 (let ((ebnf-total (length syntax-list))
241 (ebnf-nprod 0)
242 new)
243 (while syntax-list
244 (setq new (cons (ebnf-optimize1 (car syntax-list)) new)
245 syntax-list (cdr syntax-list)))
246 (nreverse new))))
249 ;; left recursion:
250 ;; 1. A = B | A C. ==> A = B {C}*.
251 ;; 2. A = B | A B. ==> A = {B}+.
252 ;; 3. A = | A B. ==> A = {B}*.
253 ;; 4. A = B | A C B. ==> A = {B || C}+.
254 ;; 5. A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
256 ;; optional:
257 ;; 6. A = B | . ==> A = [B].
258 ;; 7. A = | B . ==> A = [B].
260 ;; factorization:
261 ;; 8. A = B C | B D. ==> A = B (C | D).
262 ;; 9. A = C B | D B. ==> A = (C | D) B.
263 ;; 10. A = B C E | B D E. ==> A = B (C | D) E.
265 (defun ebnf-optimize1 (prod)
266 (ebnf-message-info "Optimizing syntactic chart")
267 (let ((production (ebnf-node-production prod)))
268 (and (eq (ebnf-node-kind production) 'ebnf-generate-alternative)
269 (let* ((hlist (ebnf-split-header-prefix
270 (ebnf-node-list production)
271 (ebnf-node-name prod)))
272 (nlist (car hlist))
273 (zlist (cdr hlist))
274 (elist (ebnf-split-header-suffix nlist zlist)))
275 (ebnf-node-production
276 prod
277 (cond
278 ;; cases 2., 4.
279 (elist
280 (and (eq elist t)
281 (setq elist nil))
282 (setq elist (or (ebnf-prefix-suffix elist)
283 elist))
284 (let* ((nl (ebnf-extract-empty nlist))
285 (el (or (ebnf-prefix-suffix (cdr nl))
286 (ebnf-create-alternative (cdr nl)))))
287 (if (car nl)
288 (ebnf-make-zero-or-more el elist)
289 (ebnf-make-one-or-more el elist))))
290 ;; cases 1., 3., 5.
291 (zlist
292 (let* ((xlist (cdr (ebnf-extract-empty zlist)))
293 (znode (ebnf-make-zero-or-more
294 (or (ebnf-prefix-suffix xlist)
295 (ebnf-create-alternative xlist))))
296 (nnode (ebnf-map-list-to-optional nlist)))
297 (and nnode
298 (setq nlist (list nnode)))
299 (if (or (null nlist)
300 (and (= (length nlist) 1)
301 (eq (ebnf-node-kind (car nlist))
302 'ebnf-generate-empty)))
303 znode
304 (ebnf-make-sequence
305 (list (or (ebnf-prefix-suffix nlist)
306 (ebnf-create-alternative nlist))
307 znode)))))
308 ;; cases 6., 7.
309 ((ebnf-map-node-to-optional production)
311 ;; cases 8., 9., 10.
312 ((ebnf-prefix-suffix nlist)
314 ;; none
316 production)
317 ))))
318 prod))
321 (defun ebnf-split-header-prefix (node-list header)
322 (let* ((hlist (ebnf-split-header-prefix1 node-list header))
323 (nlist (car hlist))
324 zlist empty-p)
325 (while (setq hlist (cdr hlist))
326 (let ((elt (car hlist)))
327 (if (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
328 (setq zlist (cons
329 (let ((seq (cdr (ebnf-node-list elt))))
330 (if (= (length seq) 1)
331 (car seq)
332 (ebnf-node-list elt seq)
333 elt))
334 zlist))
335 (setq empty-p t))))
336 (and empty-p
337 (setq zlist (cons (ebnf-make-empty)
338 zlist)))
339 (cons nlist (nreverse zlist))))
342 (defun ebnf-split-header-prefix1 (node-list header)
343 (let (hlist nlist)
344 (while node-list
345 (if (ebnf-node-equal-header (car node-list) header)
346 (setq hlist (cons (car node-list) hlist))
347 (setq nlist (cons (car node-list) nlist)))
348 (setq node-list (cdr node-list)))
349 (cons (nreverse nlist) (nreverse hlist))))
352 (defun ebnf-node-equal-header (node header)
353 (let ((kind (ebnf-node-kind node)))
354 (cond
355 ((eq kind 'ebnf-generate-sequence)
356 (ebnf-node-equal-header (car (ebnf-node-list node)) header))
357 ((eq kind 'ebnf-generate-non-terminal)
358 (string= (ebnf-node-name node) header))
360 nil)
364 (defun ebnf-map-node-to-optional (node)
365 (and (eq (ebnf-node-kind node) 'ebnf-generate-alternative)
366 (ebnf-map-list-to-optional (ebnf-node-list node))))
369 (defun ebnf-map-list-to-optional (nlist)
370 (and (= (length nlist) 2)
371 (let ((first (nth 0 nlist))
372 (second (nth 1 nlist)))
373 (cond
374 ;; empty second
375 ((eq (ebnf-node-kind first) 'ebnf-generate-empty)
376 (ebnf-make-optional second))
377 ;; first empty
378 ((eq (ebnf-node-kind second) 'ebnf-generate-empty)
379 (ebnf-make-optional first))
380 ;; first second
382 nil)
383 ))))
386 (defun ebnf-extract-empty (elist)
387 (let ((now elist)
388 before empty-p)
389 (while now
390 (if (not (eq (ebnf-node-kind (car now)) 'ebnf-generate-empty))
391 (setq before now)
392 (setq empty-p t)
393 (if before
394 (setcdr before (cdr now))
395 (setq elist (cdr elist))))
396 (setq now (cdr now)))
397 (cons empty-p elist)))
400 (defun ebnf-split-header-suffix (nlist zlist)
401 (let (new empty-p)
402 (and (cond
403 ((= (length nlist) 1)
404 (let ((ok t)
405 (elt (car nlist)))
406 (while (and ok zlist)
407 (setq ok (ebnf-split-header-suffix1 elt (car zlist))
408 zlist (cdr zlist))
409 (if (eq ok t)
410 (setq empty-p t)
411 (setq new (cons ok new))))
412 ok))
413 ((= (length nlist) (length zlist))
414 (let ((ok t))
415 (while (and ok zlist)
416 (setq ok (ebnf-split-header-suffix1 (car nlist) (car zlist))
417 nlist (cdr nlist)
418 zlist (cdr zlist))
419 (if (eq ok t)
420 (setq empty-p t)
421 (setq new (cons ok new))))
422 ok))
424 nil)
426 (let* ((lis (ebnf-unique-list new))
427 (len (length lis)))
428 (cond
429 ((zerop len)
431 ((= len 1)
432 (setq lis (car lis))
433 (if empty-p
434 (ebnf-make-optional lis)
435 lis))
437 (and empty-p
438 (setq lis (cons (ebnf-make-empty) lis)))
439 (ebnf-create-alternative (nreverse lis)))
440 )))))
443 (defun ebnf-split-header-suffix1 (ne ze)
444 (cond
445 ((eq (ebnf-node-kind ne) 'ebnf-generate-sequence)
446 (and (eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
447 (let ((nl (ebnf-node-list ne))
448 (zl (ebnf-node-list ze))
449 len z)
450 (and (>= (length zl) (length nl))
451 (let ((ok t))
452 (setq len (- (length zl) (length nl))
453 z (nthcdr len zl))
454 (while (and ok z)
455 (setq ok (ebnf-node-equal (car z) (car nl))
456 z (cdr z)
457 nl (cdr nl)))
459 (if (zerop len)
461 (setcdr (nthcdr (1- len) zl) nil)
462 ze)))))
463 ((eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
464 (let* ((zl (ebnf-node-list ze))
465 (len (length zl)))
466 (and (ebnf-node-equal ne (car (nthcdr (1- len) zl)))
467 (cond
468 ((= len 1)
470 ((= len 2)
471 (car zl))
473 (setcdr (nthcdr (- len 2) zl) nil)
475 ))))
477 (ebnf-node-equal ne ze))
481 (defun ebnf-prefix-suffix (lis)
482 (and lis (listp lis)
483 (let* ((prefix (ebnf-split-prefix lis))
484 (suffix (ebnf-split-suffix (cdr prefix)))
485 (middle (cdr suffix)))
486 (setq prefix (car prefix)
487 suffix (car suffix))
488 (and (or prefix suffix)
489 (ebnf-make-sequence
490 (nconc prefix
491 (and middle
492 (list (or (ebnf-map-list-to-optional middle)
493 (ebnf-create-alternative middle))))
494 suffix))))))
497 (defun ebnf-split-prefix (lis)
498 (let* ((len (length lis))
499 (tail lis)
500 (head (if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
501 (ebnf-node-list (car lis))
502 (list (car lis))))
503 (ipre (1+ len)))
504 ;; determine prefix length
505 (while (and (> ipre 0) (setq tail (cdr tail)))
506 (let ((cur head)
507 (this (if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
508 (ebnf-node-list (car tail))
509 (list (car tail))))
510 (i 0))
511 (while (and cur this
512 (ebnf-node-equal (car cur) (car this)))
513 (setq cur (cdr cur)
514 this (cdr this)
515 i (1+ i)))
516 (setq ipre (min ipre i))))
517 (if (or (zerop ipre) (> ipre len))
518 ;; no prefix at all
519 (cons nil lis)
520 (let* ((tail (nthcdr ipre head))
521 ;; get prefix
522 (prefix (progn
523 (and tail
524 (setcdr (nthcdr (1- ipre) head) nil))
525 head))
526 empty-p before)
527 ;; adjust first element
528 (if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
529 (null tail))
530 (setq lis (cdr lis)
531 tail lis
532 empty-p t)
533 (if (= (length tail) 1)
534 (setcar lis (car tail))
535 (ebnf-node-list (car lis) tail))
536 (setq tail (cdr lis)))
537 ;; eliminate prefix from lis based on ipre
538 (while tail
539 (let ((elt (car tail))
540 rest)
541 (if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
542 (setq rest (nthcdr ipre (ebnf-node-list elt))))
543 (progn
544 (if (= (length rest) 1)
545 (setcar tail (car rest))
546 (ebnf-node-list elt rest))
547 (setq before tail))
548 (setq empty-p t)
549 (if before
550 (setcdr before (cdr tail))
551 (setq lis (cdr lis))))
552 (setq tail (cdr tail))))
553 (cons prefix (ebnf-unique-list
554 (if empty-p
555 (nconc lis (list (ebnf-make-empty)))
556 lis)))))))
559 (defun ebnf-split-suffix (lis)
560 (let* ((len (length lis))
561 (tail lis)
562 (head (nreverse
563 (if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
564 (ebnf-node-list (car lis))
565 (list (car lis)))))
566 (isuf (1+ len)))
567 ;; determine suffix length
568 (while (and (> isuf 0) (setq tail (cdr tail)))
569 (let* ((cur head)
570 (tlis (nreverse
571 (if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
572 (ebnf-node-list (car tail))
573 (list (car tail)))))
574 (this tlis)
575 (i 0))
576 (while (and cur this
577 (ebnf-node-equal (car cur) (car this)))
578 (setq cur (cdr cur)
579 this (cdr this)
580 i (1+ i)))
581 (nreverse tlis)
582 (setq isuf (min isuf i))))
583 (setq head (nreverse head))
584 (if (or (zerop isuf) (> isuf len))
585 ;; no suffix at all
586 (cons nil lis)
587 (let* ((n (- (length head) isuf))
588 ;; get suffix
589 (suffix (nthcdr n head))
590 (tail (and (> n 0)
591 (progn
592 (setcdr (nthcdr (1- n) head) nil)
593 head)))
594 before empty-p)
595 ;; adjust first element
596 (if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
597 (null tail))
598 (setq lis (cdr lis)
599 tail lis
600 empty-p t)
601 (if (= (length tail) 1)
602 (setcar lis (car tail))
603 (ebnf-node-list (car lis) tail))
604 (setq tail (cdr lis)))
605 ;; eliminate suffix from lis based on isuf
606 (while tail
607 (let ((elt (car tail))
608 rest)
609 (if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
610 (setq rest (ebnf-node-list elt)
611 n (- (length rest) isuf))
612 (> n 0))
613 (progn
614 (if (= n 1)
615 (setcar tail (car rest))
616 (setcdr (nthcdr (1- n) rest) nil)
617 (ebnf-node-list elt rest))
618 (setq before tail))
619 (setq empty-p t)
620 (if before
621 (setcdr before (cdr tail))
622 (setq lis (cdr lis))))
623 (setq tail (cdr tail))))
624 (cons suffix (ebnf-unique-list
625 (if empty-p
626 (nconc lis (list (ebnf-make-empty)))
627 lis)))))))
630 (defun ebnf-unique-list (nlist)
631 (let ((current nlist)
632 before)
633 (while current
634 (let ((tail (cdr current))
635 (head (car current))
636 remove-p)
637 (while tail
638 (if (not (ebnf-node-equal head (car tail)))
639 (setq tail (cdr tail))
640 (setq remove-p t
641 tail nil)
642 (if before
643 (setcdr before (cdr current))
644 (setq nlist (cdr nlist)))))
645 (or remove-p
646 (setq before current))
647 (setq current (cdr current))))
648 nlist))
651 (defun ebnf-node-equal (A B)
652 (let ((kindA (ebnf-node-kind A))
653 (kindB (ebnf-node-kind B)))
654 (and (eq kindA kindB)
655 (cond
656 ;; empty
657 ((eq kindA 'ebnf-generate-empty)
659 ;; non-terminal, terminal, special
660 ((memq kindA '(ebnf-generate-non-terminal
661 ebnf-generate-terminal
662 ebnf-generate-special))
663 (string= (ebnf-node-name A) (ebnf-node-name B)))
664 ;; alternative, sequence
665 ((memq kindA '(ebnf-generate-alternative ; any order
666 ebnf-generate-sequence)) ; order is important
667 (let ((listA (ebnf-node-list A))
668 (listB (ebnf-node-list B)))
669 (and (= (length listA) (length listB))
670 (let ((ok t))
671 (while (and ok listA)
672 (setq ok (ebnf-node-equal (car listA) (car listB))
673 listA (cdr listA)
674 listB (cdr listB)))
675 ok))))
676 ;; production
677 ((eq kindA 'ebnf-generate-production)
678 (and (string= (ebnf-node-name A) (ebnf-node-name B))
679 (ebnf-node-equal (ebnf-node-production A)
680 (ebnf-node-production B))))
681 ;; otherwise
683 nil)
684 ))))
687 (defun ebnf-create-alternative (alt)
688 (if (> (length alt) 1)
689 (ebnf-make-alternative alt)
690 (car alt)))
693 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
696 (provide 'ebnf-otz)
699 ;;; ebnf-otz.el ends here