1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
52 #define WIDE_CHAR_SUPPORT 1
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
128 # include "character.h"
129 # include "category.h"
134 # define malloc xmalloc
138 # define realloc xrealloc
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
150 # define RE_STRING_CHAR(p, multibyte) \
151 (multibyte ? (STRING_CHAR (p)) : (*(p)))
152 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
153 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
155 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
157 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
159 /* Set C a (possibly converted to multibyte) character before P. P
160 points into a string which is the virtual concatenation of STR1
161 (which ends at END1) or STR2 (which ends at END2). */
162 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
164 if (target_multibyte) \
166 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
167 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
168 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
169 c = STRING_CHAR (dtemp); \
173 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
174 (c) = RE_CHAR_TO_MULTIBYTE (c); \
178 /* Set C a (possibly converted to multibyte) character at P, and set
179 LEN to the byte length of that character. */
180 # define GET_CHAR_AFTER(c, p, len) \
182 if (target_multibyte) \
183 (c) = STRING_CHAR_AND_LENGTH (p, len); \
188 (c) = RE_CHAR_TO_MULTIBYTE (c); \
192 #else /* not emacs */
194 /* If we are not linking with Emacs proper,
195 we can't use the relocating allocator
196 even if config.h says that we can. */
199 # if defined STDC_HEADERS || defined _LIBC
206 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213 val
= (void *) malloc (size
);
216 write (2, "virtual memory exhausted\n", 25);
223 xrealloc (block
, size
)
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
231 val
= (void *) malloc (size
);
233 val
= (void *) realloc (block
, size
);
236 write (2, "virtual memory exhausted\n", 25);
245 # define malloc xmalloc
249 # define realloc xrealloc
251 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
252 If nothing else has been done, use the method below. */
253 # ifdef INHIBIT_STRING_HEADER
254 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
255 # if !defined bzero && !defined bcopy
256 # undef INHIBIT_STRING_HEADER
261 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
262 This is used in most programs--a few other programs avoid this
263 by defining INHIBIT_STRING_HEADER. */
264 # ifndef INHIBIT_STRING_HEADER
265 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
269 # define bzero(s, n) (memset (s, '\0', n), (s))
271 # define bzero(s, n) __bzero (s, n)
275 # include <strings.h>
277 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
280 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
285 /* Define the syntax stuff for \<, \>, etc. */
287 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
288 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
290 # define SWITCH_ENUM_CAST(x) (x)
292 /* Dummy macros for non-Emacs environments. */
293 # define CHAR_CHARSET(c) 0
294 # define CHARSET_LEADING_CODE_BASE(c) 0
295 # define MAX_MULTIBYTE_LENGTH 1
296 # define RE_MULTIBYTE_P(x) 0
297 # define RE_TARGET_MULTIBYTE_P(x) 0
298 # define WORD_BOUNDARY_P(c1, c2) (0)
299 # define CHAR_HEAD_P(p) (1)
300 # define SINGLE_BYTE_CHAR_P(c) (1)
301 # define SAME_CHARSET_P(c1, c2) (1)
302 # define BYTES_BY_CHAR_HEAD(p) (1)
303 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
304 # define STRING_CHAR(p) (*(p))
305 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
306 # define CHAR_STRING(c, s) (*(s) = (c), 1)
307 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
308 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
309 # define RE_CHAR_TO_MULTIBYTE(c) (c)
310 # define RE_CHAR_TO_UNIBYTE(c) (c)
311 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
312 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
313 # define GET_CHAR_AFTER(c, p, len) \
315 # define MAKE_CHAR(charset, c1, c2) (c1)
316 # define BYTE8_TO_CHAR(c) (c)
317 # define CHAR_BYTE8_P(c) (0)
318 # define CHAR_LEADING_CODE(c) (c)
320 #endif /* not emacs */
323 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
324 # define RE_TRANSLATE_P(TBL) (TBL)
327 /* Get the interface, including the syntax bits. */
330 /* isalpha etc. are used for the character classes. */
335 /* 1 if C is an ASCII character. */
336 # define IS_REAL_ASCII(c) ((c) < 0200)
338 /* 1 if C is a unibyte character. */
339 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
341 /* The Emacs definitions should not be directly affected by locales. */
343 /* In Emacs, these are only used for single-byte characters. */
344 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
345 # define ISCNTRL(c) ((c) < ' ')
346 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
347 || ((c) >= 'a' && (c) <= 'f') \
348 || ((c) >= 'A' && (c) <= 'F'))
350 /* This is only used for single-byte characters. */
351 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
353 /* The rest must handle multibyte characters. */
355 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
356 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
359 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
360 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
363 # define ISALNUM(c) (IS_REAL_ASCII (c) \
364 ? (((c) >= 'a' && (c) <= 'z') \
365 || ((c) >= 'A' && (c) <= 'Z') \
366 || ((c) >= '0' && (c) <= '9')) \
367 : SYNTAX (c) == Sword)
369 # define ISALPHA(c) (IS_REAL_ASCII (c) \
370 ? (((c) >= 'a' && (c) <= 'z') \
371 || ((c) >= 'A' && (c) <= 'Z')) \
372 : SYNTAX (c) == Sword)
374 # define ISLOWER(c) (LOWERCASEP (c))
376 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
377 ? ((c) > ' ' && (c) < 0177 \
378 && !(((c) >= 'a' && (c) <= 'z') \
379 || ((c) >= 'A' && (c) <= 'Z') \
380 || ((c) >= '0' && (c) <= '9'))) \
381 : SYNTAX (c) != Sword)
383 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
385 # define ISUPPER(c) (UPPERCASEP (c))
387 # define ISWORD(c) (SYNTAX (c) == Sword)
389 #else /* not emacs */
391 /* Jim Meyering writes:
393 "... Some ctype macros are valid only for character codes that
394 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
395 using /bin/cc or gcc but without giving an ansi option). So, all
396 ctype uses should be through macros like ISPRINT... If
397 STDC_HEADERS is defined, then autoconf has verified that the ctype
398 macros don't need to be guarded with references to isascii. ...
399 Defining isascii to 1 should let any compiler worth its salt
400 eliminate the && through constant folding."
401 Solaris defines some of these symbols so we must undefine them first. */
404 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
405 # define ISASCII(c) 1
407 # define ISASCII(c) isascii(c)
410 /* 1 if C is an ASCII character. */
411 # define IS_REAL_ASCII(c) ((c) < 0200)
413 /* This distinction is not meaningful, except in Emacs. */
414 # define ISUNIBYTE(c) 1
417 # define ISBLANK(c) (ISASCII (c) && isblank (c))
419 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
422 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
424 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
428 # define ISPRINT(c) (ISASCII (c) && isprint (c))
429 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
430 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
431 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
432 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
433 # define ISLOWER(c) (ISASCII (c) && islower (c))
434 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
435 # define ISSPACE(c) (ISASCII (c) && isspace (c))
436 # define ISUPPER(c) (ISASCII (c) && isupper (c))
437 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
439 # define ISWORD(c) ISALPHA(c)
442 # define TOLOWER(c) _tolower(c)
444 # define TOLOWER(c) tolower(c)
447 /* How many characters in the character set. */
448 # define CHAR_SET_SIZE 256
452 extern char *re_syntax_table
;
454 # else /* not SYNTAX_TABLE */
456 static char re_syntax_table
[CHAR_SET_SIZE
];
467 bzero (re_syntax_table
, sizeof re_syntax_table
);
469 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
471 re_syntax_table
[c
] = Sword
;
473 re_syntax_table
['_'] = Ssymbol
;
478 # endif /* not SYNTAX_TABLE */
480 # define SYNTAX(c) re_syntax_table[(c)]
482 #endif /* not emacs */
485 # define NULL (void *)0
488 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
489 since ours (we hope) works properly with all combinations of
490 machines, compilers, `char' and `unsigned char' argument types.
491 (Per Bothner suggested the basic approach.) */
492 #undef SIGN_EXTEND_CHAR
494 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
495 #else /* not __STDC__ */
496 /* As in Harbison and Steele. */
497 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
500 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
501 use `alloca' instead of `malloc'. This is because using malloc in
502 re_search* or re_match* could cause memory leaks when C-g is used in
503 Emacs; also, malloc is slower and causes storage fragmentation. On
504 the other hand, malloc is more portable, and easier to debug.
506 Because we sometimes use alloca, some routines have to be macros,
507 not functions -- `alloca'-allocated space disappears at the end of the
508 function it is called in. */
512 # define REGEX_ALLOCATE malloc
513 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
514 # define REGEX_FREE free
516 #else /* not REGEX_MALLOC */
518 /* Emacs already defines alloca, sometimes. */
521 /* Make alloca work the best possible way. */
523 # define alloca __builtin_alloca
524 # else /* not __GNUC__ */
525 # ifdef HAVE_ALLOCA_H
527 # endif /* HAVE_ALLOCA_H */
528 # endif /* not __GNUC__ */
530 # endif /* not alloca */
532 # define REGEX_ALLOCATE alloca
534 /* Assumes a `char *destination' variable. */
535 # define REGEX_REALLOCATE(source, osize, nsize) \
536 (destination = (char *) alloca (nsize), \
537 memcpy (destination, source, osize))
539 /* No need to do anything to free, after alloca. */
540 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
542 #endif /* not REGEX_MALLOC */
544 /* Define how to allocate the failure stack. */
546 #if defined REL_ALLOC && defined REGEX_MALLOC
548 # define REGEX_ALLOCATE_STACK(size) \
549 r_alloc (&failure_stack_ptr, (size))
550 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
551 r_re_alloc (&failure_stack_ptr, (nsize))
552 # define REGEX_FREE_STACK(ptr) \
553 r_alloc_free (&failure_stack_ptr)
555 #else /* not using relocating allocator */
559 # define REGEX_ALLOCATE_STACK malloc
560 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
561 # define REGEX_FREE_STACK free
563 # else /* not REGEX_MALLOC */
565 # define REGEX_ALLOCATE_STACK alloca
567 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
568 REGEX_REALLOCATE (source, osize, nsize)
569 /* No need to explicitly free anything. */
570 # define REGEX_FREE_STACK(arg) ((void)0)
572 # endif /* not REGEX_MALLOC */
573 #endif /* not using relocating allocator */
576 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
577 `string1' or just past its end. This works if PTR is NULL, which is
579 #define FIRST_STRING_P(ptr) \
580 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
582 /* (Re)Allocate N items of type T using malloc, or fail. */
583 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
584 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
585 #define RETALLOC_IF(addr, n, t) \
586 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
587 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
589 #define BYTEWIDTH 8 /* In bits. */
591 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
595 #define MAX(a, b) ((a) > (b) ? (a) : (b))
596 #define MIN(a, b) ((a) < (b) ? (a) : (b))
598 /* Type of source-pattern and string chars. */
599 typedef const unsigned char re_char
;
601 typedef char boolean
;
605 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
606 re_char
*string1
, int size1
,
607 re_char
*string2
, int size2
,
609 struct re_registers
*regs
,
612 /* These are the command codes that appear in compiled regular
613 expressions. Some opcodes are followed by argument bytes. A
614 command code can specify any interpretation whatsoever for its
615 arguments. Zero bytes may appear in the compiled regular expression. */
621 /* Succeed right away--no more backtracking. */
624 /* Followed by one byte giving n, then by n literal bytes. */
627 /* Matches any (more or less) character. */
630 /* Matches any one char belonging to specified set. First
631 following byte is number of bitmap bytes. Then come bytes
632 for a bitmap saying which chars are in. Bits in each byte
633 are ordered low-bit-first. A character is in the set if its
634 bit is 1. A character too large to have a bit in the map is
635 automatically not in the set.
637 If the length byte has the 0x80 bit set, then that stuff
638 is followed by a range table:
639 2 bytes of flags for character sets (low 8 bits, high 8 bits)
640 See RANGE_TABLE_WORK_BITS below.
641 2 bytes, the number of pairs that follow (upto 32767)
642 pairs, each 2 multibyte characters,
643 each multibyte character represented as 3 bytes. */
646 /* Same parameters as charset, but match any character that is
647 not one of those specified. */
650 /* Start remembering the text that is matched, for storing in a
651 register. Followed by one byte with the register number, in
652 the range 0 to one less than the pattern buffer's re_nsub
656 /* Stop remembering the text that is matched and store it in a
657 memory register. Followed by one byte with the register
658 number, in the range 0 to one less than `re_nsub' in the
662 /* Match a duplicate of something remembered. Followed by one
663 byte containing the register number. */
666 /* Fail unless at beginning of line. */
669 /* Fail unless at end of line. */
672 /* Succeeds if at beginning of buffer (if emacs) or at beginning
673 of string to be matched (if not). */
676 /* Analogously, for end of buffer/string. */
679 /* Followed by two byte relative address to which to jump. */
682 /* Followed by two-byte relative address of place to resume at
683 in case of failure. */
686 /* Like on_failure_jump, but pushes a placeholder instead of the
687 current string position when executed. */
688 on_failure_keep_string_jump
,
690 /* Just like `on_failure_jump', except that it checks that we
691 don't get stuck in an infinite loop (matching an empty string
693 on_failure_jump_loop
,
695 /* Just like `on_failure_jump_loop', except that it checks for
696 a different kind of loop (the kind that shows up with non-greedy
697 operators). This operation has to be immediately preceded
699 on_failure_jump_nastyloop
,
701 /* A smart `on_failure_jump' used for greedy * and + operators.
702 It analyses the loop before which it is put and if the
703 loop does not require backtracking, it changes itself to
704 `on_failure_keep_string_jump' and short-circuits the loop,
705 else it just defaults to changing itself into `on_failure_jump'.
706 It assumes that it is pointing to just past a `jump'. */
707 on_failure_jump_smart
,
709 /* Followed by two-byte relative address and two-byte number n.
710 After matching N times, jump to the address upon failure.
711 Does not work if N starts at 0: use on_failure_jump_loop
715 /* Followed by two-byte relative address, and two-byte number n.
716 Jump to the address N times, then fail. */
719 /* Set the following two-byte relative address to the
720 subsequent two-byte number. The address *includes* the two
724 wordbeg
, /* Succeeds if at word beginning. */
725 wordend
, /* Succeeds if at word end. */
727 wordbound
, /* Succeeds if at a word boundary. */
728 notwordbound
, /* Succeeds if not at a word boundary. */
730 symbeg
, /* Succeeds if at symbol beginning. */
731 symend
, /* Succeeds if at symbol end. */
733 /* Matches any character whose syntax is specified. Followed by
734 a byte which contains a syntax code, e.g., Sword. */
737 /* Matches any character whose syntax is not that specified. */
741 ,before_dot
, /* Succeeds if before point. */
742 at_dot
, /* Succeeds if at point. */
743 after_dot
, /* Succeeds if after point. */
745 /* Matches any character whose category-set contains the specified
746 category. The operator is followed by a byte which contains a
747 category code (mnemonic ASCII character). */
750 /* Matches any character whose category-set does not contain the
751 specified category. The operator is followed by a byte which
752 contains the category code (mnemonic ASCII character). */
757 /* Common operations on the compiled pattern. */
759 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
761 #define STORE_NUMBER(destination, number) \
763 (destination)[0] = (number) & 0377; \
764 (destination)[1] = (number) >> 8; \
767 /* Same as STORE_NUMBER, except increment DESTINATION to
768 the byte after where the number is stored. Therefore, DESTINATION
769 must be an lvalue. */
771 #define STORE_NUMBER_AND_INCR(destination, number) \
773 STORE_NUMBER (destination, number); \
774 (destination) += 2; \
777 /* Put into DESTINATION a number stored in two contiguous bytes starting
780 #define EXTRACT_NUMBER(destination, source) \
782 (destination) = *(source) & 0377; \
783 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
787 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
789 extract_number (dest
, source
)
793 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
794 *dest
= *source
& 0377;
798 # ifndef EXTRACT_MACROS /* To debug the macros. */
799 # undef EXTRACT_NUMBER
800 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
801 # endif /* not EXTRACT_MACROS */
805 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
806 SOURCE must be an lvalue. */
808 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
810 EXTRACT_NUMBER (destination, source); \
815 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
818 extract_number_and_incr (destination
, source
)
822 extract_number (destination
, *source
);
826 # ifndef EXTRACT_MACROS
827 # undef EXTRACT_NUMBER_AND_INCR
828 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
829 extract_number_and_incr (&dest, &src)
830 # endif /* not EXTRACT_MACROS */
834 /* Store a multibyte character in three contiguous bytes starting
835 DESTINATION, and increment DESTINATION to the byte after where the
836 character is stored. Therefore, DESTINATION must be an lvalue. */
838 #define STORE_CHARACTER_AND_INCR(destination, character) \
840 (destination)[0] = (character) & 0377; \
841 (destination)[1] = ((character) >> 8) & 0377; \
842 (destination)[2] = (character) >> 16; \
843 (destination) += 3; \
846 /* Put into DESTINATION a character stored in three contiguous bytes
847 starting at SOURCE. */
849 #define EXTRACT_CHARACTER(destination, source) \
851 (destination) = ((source)[0] \
852 | ((source)[1] << 8) \
853 | ((source)[2] << 16)); \
857 /* Macros for charset. */
859 /* Size of bitmap of charset P in bytes. P is a start of charset,
860 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
861 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
863 /* Nonzero if charset P has range table. */
864 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
866 /* Return the address of range table of charset P. But not the start
867 of table itself, but the before where the number of ranges is
868 stored. `2 +' means to skip re_opcode_t and size of bitmap,
869 and the 2 bytes of flags at the start of the range table. */
870 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
872 /* Extract the bit flags that start a range table. */
873 #define CHARSET_RANGE_TABLE_BITS(p) \
874 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
875 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
877 /* Test if C is listed in the bitmap of charset P. */
878 #define CHARSET_LOOKUP_BITMAP(p, c) \
879 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
880 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
882 /* Return the address of end of RANGE_TABLE. COUNT is number of
883 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
884 is start of range and end of range. `* 3' is size of each start
886 #define CHARSET_RANGE_TABLE_END(range_table, count) \
887 ((range_table) + (count) * 2 * 3)
889 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
890 COUNT is number of ranges in RANGE_TABLE. */
891 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
894 re_wchar_t range_start, range_end; \
896 re_char *range_table_end \
897 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
899 for (p = (range_table); p < range_table_end; p += 2 * 3) \
901 EXTRACT_CHARACTER (range_start, p); \
902 EXTRACT_CHARACTER (range_end, p + 3); \
904 if (range_start <= (c) && (c) <= range_end) \
913 /* Test if C is in range table of CHARSET. The flag NOT is negated if
914 C is listed in it. */
915 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
918 /* Number of ranges in range table. */ \
920 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
922 EXTRACT_NUMBER_AND_INCR (count, range_table); \
923 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
927 /* If DEBUG is defined, Regex prints many voluminous messages about what
928 it is doing (if the variable `debug' is nonzero). If linked with the
929 main program in `iregex.c', you can enter patterns and strings
930 interactively. And if linked with the main program in `main.c' and
931 the other test files, you can run the already-written tests. */
935 /* We use standard I/O for debugging. */
938 /* It is useful to test things that ``must'' be true when debugging. */
941 static int debug
= -100000;
943 # define DEBUG_STATEMENT(e) e
944 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
945 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
946 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
947 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
948 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
949 if (debug > 0) print_partial_compiled_pattern (s, e)
950 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
951 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
954 /* Print the fastmap in human-readable form. */
957 print_fastmap (fastmap
)
960 unsigned was_a_range
= 0;
963 while (i
< (1 << BYTEWIDTH
))
969 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
985 /* Print a compiled pattern string in human-readable form, starting at
986 the START pointer into it and ending just before the pointer END. */
989 print_partial_compiled_pattern (start
, end
)
999 fprintf (stderr
, "(null)\n");
1003 /* Loop over pattern commands. */
1006 fprintf (stderr
, "%d:\t", p
- start
);
1008 switch ((re_opcode_t
) *p
++)
1011 fprintf (stderr
, "/no_op");
1015 fprintf (stderr
, "/succeed");
1020 fprintf (stderr
, "/exactn/%d", mcnt
);
1023 fprintf (stderr
, "/%c", *p
++);
1029 fprintf (stderr
, "/start_memory/%d", *p
++);
1033 fprintf (stderr
, "/stop_memory/%d", *p
++);
1037 fprintf (stderr
, "/duplicate/%d", *p
++);
1041 fprintf (stderr
, "/anychar");
1047 register int c
, last
= -100;
1048 register int in_range
= 0;
1049 int length
= CHARSET_BITMAP_SIZE (p
- 1);
1050 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
1052 fprintf (stderr
, "/charset [%s",
1053 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
1056 fprintf (stderr
, " !extends past end of pattern! ");
1058 for (c
= 0; c
< 256; c
++)
1060 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
1062 /* Are we starting a range? */
1063 if (last
+ 1 == c
&& ! in_range
)
1065 fprintf (stderr
, "-");
1068 /* Have we broken a range? */
1069 else if (last
+ 1 != c
&& in_range
)
1071 fprintf (stderr
, "%c", last
);
1076 fprintf (stderr
, "%c", c
);
1082 fprintf (stderr
, "%c", last
);
1084 fprintf (stderr
, "]");
1088 if (has_range_table
)
1091 fprintf (stderr
, "has-range-table");
1093 /* ??? Should print the range table; for now, just skip it. */
1094 p
+= 2; /* skip range table bits */
1095 EXTRACT_NUMBER_AND_INCR (count
, p
);
1096 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1102 fprintf (stderr
, "/begline");
1106 fprintf (stderr
, "/endline");
1109 case on_failure_jump
:
1110 extract_number_and_incr (&mcnt
, &p
);
1111 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1114 case on_failure_keep_string_jump
:
1115 extract_number_and_incr (&mcnt
, &p
);
1116 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1119 case on_failure_jump_nastyloop
:
1120 extract_number_and_incr (&mcnt
, &p
);
1121 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1124 case on_failure_jump_loop
:
1125 extract_number_and_incr (&mcnt
, &p
);
1126 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1129 case on_failure_jump_smart
:
1130 extract_number_and_incr (&mcnt
, &p
);
1131 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1135 extract_number_and_incr (&mcnt
, &p
);
1136 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1140 extract_number_and_incr (&mcnt
, &p
);
1141 extract_number_and_incr (&mcnt2
, &p
);
1142 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1146 extract_number_and_incr (&mcnt
, &p
);
1147 extract_number_and_incr (&mcnt2
, &p
);
1148 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1152 extract_number_and_incr (&mcnt
, &p
);
1153 extract_number_and_incr (&mcnt2
, &p
);
1154 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1158 fprintf (stderr
, "/wordbound");
1162 fprintf (stderr
, "/notwordbound");
1166 fprintf (stderr
, "/wordbeg");
1170 fprintf (stderr
, "/wordend");
1174 fprintf (stderr
, "/symbeg");
1178 fprintf (stderr
, "/symend");
1182 fprintf (stderr
, "/syntaxspec");
1184 fprintf (stderr
, "/%d", mcnt
);
1188 fprintf (stderr
, "/notsyntaxspec");
1190 fprintf (stderr
, "/%d", mcnt
);
1195 fprintf (stderr
, "/before_dot");
1199 fprintf (stderr
, "/at_dot");
1203 fprintf (stderr
, "/after_dot");
1207 fprintf (stderr
, "/categoryspec");
1209 fprintf (stderr
, "/%d", mcnt
);
1212 case notcategoryspec
:
1213 fprintf (stderr
, "/notcategoryspec");
1215 fprintf (stderr
, "/%d", mcnt
);
1220 fprintf (stderr
, "/begbuf");
1224 fprintf (stderr
, "/endbuf");
1228 fprintf (stderr
, "?%d", *(p
-1));
1231 fprintf (stderr
, "\n");
1234 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1239 print_compiled_pattern (bufp
)
1240 struct re_pattern_buffer
*bufp
;
1242 re_char
*buffer
= bufp
->buffer
;
1244 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1245 printf ("%ld bytes used/%ld bytes allocated.\n",
1246 bufp
->used
, bufp
->allocated
);
1248 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1250 printf ("fastmap: ");
1251 print_fastmap (bufp
->fastmap
);
1254 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1255 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1256 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1257 printf ("no_sub: %d\t", bufp
->no_sub
);
1258 printf ("not_bol: %d\t", bufp
->not_bol
);
1259 printf ("not_eol: %d\t", bufp
->not_eol
);
1260 printf ("syntax: %lx\n", bufp
->syntax
);
1262 /* Perhaps we should print the translate table? */
1267 print_double_string (where
, string1
, size1
, string2
, size2
)
1280 if (FIRST_STRING_P (where
))
1282 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1283 putchar (string1
[this_char
]);
1288 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1289 putchar (string2
[this_char
]);
1293 #else /* not DEBUG */
1298 # define DEBUG_STATEMENT(e)
1299 # define DEBUG_PRINT1(x)
1300 # define DEBUG_PRINT2(x1, x2)
1301 # define DEBUG_PRINT3(x1, x2, x3)
1302 # define DEBUG_PRINT4(x1, x2, x3, x4)
1303 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1304 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1306 #endif /* not DEBUG */
1308 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311 /* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313 reg_syntax_t re_syntax_options
;
1316 /* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1320 The argument SYNTAX is a bit mask comprised of the various bits
1321 defined in regex.h. We return the old syntax. */
1324 re_set_syntax (syntax
)
1325 reg_syntax_t syntax
;
1327 reg_syntax_t ret
= re_syntax_options
;
1329 re_syntax_options
= syntax
;
1332 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1334 /* Regexp to use to replace spaces, or NULL meaning don't. */
1335 static re_char
*whitespace_regexp
;
1338 re_set_whitespace_regexp (regexp
)
1341 whitespace_regexp
= (re_char
*) regexp
;
1343 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1345 /* This table gives an error message for each of the error codes listed
1346 in regex.h. Obviously the order here has to be same as there.
1347 POSIX doesn't require that we do anything for REG_NOERROR,
1348 but why not be nice? */
1350 static const char *re_error_msgid
[] =
1352 gettext_noop ("Success"), /* REG_NOERROR */
1353 gettext_noop ("No match"), /* REG_NOMATCH */
1354 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1355 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1356 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1357 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1358 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1359 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1360 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1361 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1362 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1363 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1364 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1365 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1366 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1367 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1368 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1369 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1372 /* Avoiding alloca during matching, to placate r_alloc. */
1374 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375 searching and matching functions should not call alloca. On some
1376 systems, alloca is implemented in terms of malloc, and if we're
1377 using the relocating allocator routines, then malloc could cause a
1378 relocation, which might (if the strings being searched are in the
1379 ralloc heap) shift the data out from underneath the regexp
1382 Here's another reason to avoid allocation: Emacs
1383 processes input from X in a signal handler; processing X input may
1384 call malloc; if input arrives while a matching routine is calling
1385 malloc, then we're scrod. But Emacs can't just block input while
1386 calling matching routines; then we don't notice interrupts when
1387 they come in. So, Emacs blocks input around all regexp calls
1388 except the matching calls, which it leaves unprotected, in the
1389 faith that they will not malloc. */
1391 /* Normally, this is fine. */
1392 #define MATCH_MAY_ALLOCATE
1394 /* The match routines may not allocate if (1) they would do it with malloc
1395 and (2) it's not safe for them to use malloc.
1396 Note that if REL_ALLOC is defined, matching would not use malloc for the
1397 failure stack, but we would still use it for the register vectors;
1398 so REL_ALLOC should not affect this. */
1399 #if defined REGEX_MALLOC && defined emacs
1400 # undef MATCH_MAY_ALLOCATE
1404 /* Failure stack declarations and macros; both re_compile_fastmap and
1405 re_match_2 use a failure stack. These have to be macros because of
1406 REGEX_ALLOCATE_STACK. */
1409 /* Approximate number of failure points for which to initially allocate space
1410 when matching. If this number is exceeded, we allocate more
1411 space, so it is not a hard limit. */
1412 #ifndef INIT_FAILURE_ALLOC
1413 # define INIT_FAILURE_ALLOC 20
1416 /* Roughly the maximum number of failure points on the stack. Would be
1417 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1418 This is a variable only so users of regex can assign to it; we never
1419 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1420 before using it, so it should probably be a byte-count instead. */
1421 # if defined MATCH_MAY_ALLOCATE
1422 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1423 whose default stack limit is 2mb. In order for a larger
1424 value to work reliably, you have to try to make it accord
1425 with the process stack limit. */
1426 size_t re_max_failures
= 40000;
1428 size_t re_max_failures
= 4000;
1431 union fail_stack_elt
1434 /* This should be the biggest `int' that's no bigger than a pointer. */
1438 typedef union fail_stack_elt fail_stack_elt_t
;
1442 fail_stack_elt_t
*stack
;
1444 size_t avail
; /* Offset of next open position. */
1445 size_t frame
; /* Offset of the cur constructed frame. */
1448 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1449 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1452 /* Define macros to initialize and free the failure stack.
1453 Do `return -2' if the alloc fails. */
1455 #ifdef MATCH_MAY_ALLOCATE
1456 # define INIT_FAIL_STACK() \
1458 fail_stack.stack = (fail_stack_elt_t *) \
1459 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1460 * sizeof (fail_stack_elt_t)); \
1462 if (fail_stack.stack == NULL) \
1465 fail_stack.size = INIT_FAILURE_ALLOC; \
1466 fail_stack.avail = 0; \
1467 fail_stack.frame = 0; \
1470 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1472 # define INIT_FAIL_STACK() \
1474 fail_stack.avail = 0; \
1475 fail_stack.frame = 0; \
1478 # define RESET_FAIL_STACK() ((void)0)
1482 /* Double the size of FAIL_STACK, up to a limit
1483 which allows approximately `re_max_failures' items.
1485 Return 1 if succeeds, and 0 if either ran out of memory
1486 allocating space for it or it was already too large.
1488 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1490 /* Factor to increase the failure stack size by
1491 when we increase it.
1492 This used to be 2, but 2 was too wasteful
1493 because the old discarded stacks added up to as much space
1494 were as ultimate, maximum-size stack. */
1495 #define FAIL_STACK_GROWTH_FACTOR 4
1497 #define GROW_FAIL_STACK(fail_stack) \
1498 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1499 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1501 : ((fail_stack).stack \
1502 = (fail_stack_elt_t *) \
1503 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1504 (fail_stack).size * sizeof (fail_stack_elt_t), \
1505 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1506 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1507 * FAIL_STACK_GROWTH_FACTOR))), \
1509 (fail_stack).stack == NULL \
1511 : ((fail_stack).size \
1512 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1513 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1514 * FAIL_STACK_GROWTH_FACTOR)) \
1515 / sizeof (fail_stack_elt_t)), \
1519 /* Push a pointer value onto the failure stack.
1520 Assumes the variable `fail_stack'. Probably should only
1521 be called from within `PUSH_FAILURE_POINT'. */
1522 #define PUSH_FAILURE_POINTER(item) \
1523 fail_stack.stack[fail_stack.avail++].pointer = (item)
1525 /* This pushes an integer-valued item onto the failure stack.
1526 Assumes the variable `fail_stack'. Probably should only
1527 be called from within `PUSH_FAILURE_POINT'. */
1528 #define PUSH_FAILURE_INT(item) \
1529 fail_stack.stack[fail_stack.avail++].integer = (item)
1531 /* Push a fail_stack_elt_t value onto the failure stack.
1532 Assumes the variable `fail_stack'. Probably should only
1533 be called from within `PUSH_FAILURE_POINT'. */
1534 #define PUSH_FAILURE_ELT(item) \
1535 fail_stack.stack[fail_stack.avail++] = (item)
1537 /* These three POP... operations complement the three PUSH... operations.
1538 All assume that `fail_stack' is nonempty. */
1539 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1540 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1541 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1543 /* Individual items aside from the registers. */
1544 #define NUM_NONREG_ITEMS 3
1546 /* Used to examine the stack (to detect infinite loops). */
1547 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1548 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1549 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1550 #define TOP_FAILURE_HANDLE() fail_stack.frame
1553 #define ENSURE_FAIL_STACK(space) \
1554 while (REMAINING_AVAIL_SLOTS <= space) { \
1555 if (!GROW_FAIL_STACK (fail_stack)) \
1557 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1558 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1561 /* Push register NUM onto the stack. */
1562 #define PUSH_FAILURE_REG(num) \
1564 char *destination; \
1565 ENSURE_FAIL_STACK(3); \
1566 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1567 num, regstart[num], regend[num]); \
1568 PUSH_FAILURE_POINTER (regstart[num]); \
1569 PUSH_FAILURE_POINTER (regend[num]); \
1570 PUSH_FAILURE_INT (num); \
1573 /* Change the counter's value to VAL, but make sure that it will
1574 be reset when backtracking. */
1575 #define PUSH_NUMBER(ptr,val) \
1577 char *destination; \
1579 ENSURE_FAIL_STACK(3); \
1580 EXTRACT_NUMBER (c, ptr); \
1581 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1582 PUSH_FAILURE_INT (c); \
1583 PUSH_FAILURE_POINTER (ptr); \
1584 PUSH_FAILURE_INT (-1); \
1585 STORE_NUMBER (ptr, val); \
1588 /* Pop a saved register off the stack. */
1589 #define POP_FAILURE_REG_OR_COUNT() \
1591 int reg = POP_FAILURE_INT (); \
1594 /* It's a counter. */ \
1595 /* Here, we discard `const', making re_match non-reentrant. */ \
1596 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1597 reg = POP_FAILURE_INT (); \
1598 STORE_NUMBER (ptr, reg); \
1599 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1603 regend[reg] = POP_FAILURE_POINTER (); \
1604 regstart[reg] = POP_FAILURE_POINTER (); \
1605 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1606 reg, regstart[reg], regend[reg]); \
1610 /* Check that we are not stuck in an infinite loop. */
1611 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1613 int failure = TOP_FAILURE_HANDLE (); \
1614 /* Check for infinite matching loops */ \
1615 while (failure > 0 \
1616 && (FAILURE_STR (failure) == string_place \
1617 || FAILURE_STR (failure) == NULL)) \
1619 assert (FAILURE_PAT (failure) >= bufp->buffer \
1620 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1621 if (FAILURE_PAT (failure) == pat_cur) \
1626 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1627 failure = NEXT_FAILURE_HANDLE(failure); \
1629 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1632 /* Push the information about the state we will need
1633 if we ever fail back to it.
1635 Requires variables fail_stack, regstart, regend and
1636 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1639 Does `return FAILURE_CODE' if runs out of memory. */
1641 #define PUSH_FAILURE_POINT(pattern, string_place) \
1643 char *destination; \
1644 /* Must be int, so when we don't save any registers, the arithmetic \
1645 of 0 + -1 isn't done as unsigned. */ \
1647 DEBUG_STATEMENT (nfailure_points_pushed++); \
1648 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1649 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1650 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1652 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1654 DEBUG_PRINT1 ("\n"); \
1656 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1657 PUSH_FAILURE_INT (fail_stack.frame); \
1659 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1660 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1661 DEBUG_PRINT1 ("'\n"); \
1662 PUSH_FAILURE_POINTER (string_place); \
1664 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1665 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1666 PUSH_FAILURE_POINTER (pattern); \
1668 /* Close the frame by moving the frame pointer past it. */ \
1669 fail_stack.frame = fail_stack.avail; \
1672 /* Estimate the size of data pushed by a typical failure stack entry.
1673 An estimate is all we need, because all we use this for
1674 is to choose a limit for how big to make the failure stack. */
1675 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1676 #define TYPICAL_FAILURE_SIZE 20
1678 /* How many items can still be added to the stack without overflowing it. */
1679 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1682 /* Pops what PUSH_FAIL_STACK pushes.
1684 We restore into the parameters, all of which should be lvalues:
1685 STR -- the saved data position.
1686 PAT -- the saved pattern position.
1687 REGSTART, REGEND -- arrays of string positions.
1689 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1690 `pend', `string1', `size1', `string2', and `size2'. */
1692 #define POP_FAILURE_POINT(str, pat) \
1694 assert (!FAIL_STACK_EMPTY ()); \
1696 /* Remove failure points and point to how many regs pushed. */ \
1697 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1698 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1699 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1701 /* Pop the saved registers. */ \
1702 while (fail_stack.frame < fail_stack.avail) \
1703 POP_FAILURE_REG_OR_COUNT (); \
1705 pat = POP_FAILURE_POINTER (); \
1706 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1707 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1709 /* If the saved string location is NULL, it came from an \
1710 on_failure_keep_string_jump opcode, and we want to throw away the \
1711 saved NULL, thus retaining our current position in the string. */ \
1712 str = POP_FAILURE_POINTER (); \
1713 DEBUG_PRINT2 (" Popping string %p: `", str); \
1714 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1715 DEBUG_PRINT1 ("'\n"); \
1717 fail_stack.frame = POP_FAILURE_INT (); \
1718 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1720 assert (fail_stack.avail >= 0); \
1721 assert (fail_stack.frame <= fail_stack.avail); \
1723 DEBUG_STATEMENT (nfailure_points_popped++); \
1724 } while (0) /* POP_FAILURE_POINT */
1728 /* Registers are set to a sentinel when they haven't yet matched. */
1729 #define REG_UNSET(e) ((e) == NULL)
1731 /* Subroutine declarations and macros for regex_compile. */
1733 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1734 reg_syntax_t syntax
,
1735 struct re_pattern_buffer
*bufp
));
1736 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1737 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1738 int arg1
, int arg2
));
1739 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1740 int arg
, unsigned char *end
));
1741 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1742 int arg1
, int arg2
, unsigned char *end
));
1743 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1745 reg_syntax_t syntax
));
1746 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1748 reg_syntax_t syntax
));
1749 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1750 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1751 char *fastmap
, const int multibyte
));
1753 /* Fetch the next character in the uncompiled pattern, with no
1755 #define PATFETCH(c) \
1758 if (p == pend) return REG_EEND; \
1759 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1764 /* If `translate' is non-null, return translate[D], else just D. We
1765 cast the subscript to translate because some data is declared as
1766 `char *', to avoid warnings when a string constant is passed. But
1767 when we use a character as a subscript we must make it unsigned. */
1769 # define TRANSLATE(d) \
1770 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1774 /* Macros for outputting the compiled pattern into `buffer'. */
1776 /* If the buffer isn't allocated when it comes in, use this. */
1777 #define INIT_BUF_SIZE 32
1779 /* Make sure we have at least N more bytes of space in buffer. */
1780 #define GET_BUFFER_SPACE(n) \
1781 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1784 /* Make sure we have one more byte of buffer space and then add C to it. */
1785 #define BUF_PUSH(c) \
1787 GET_BUFFER_SPACE (1); \
1788 *b++ = (unsigned char) (c); \
1792 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1793 #define BUF_PUSH_2(c1, c2) \
1795 GET_BUFFER_SPACE (2); \
1796 *b++ = (unsigned char) (c1); \
1797 *b++ = (unsigned char) (c2); \
1801 /* As with BUF_PUSH_2, except for three bytes. */
1802 #define BUF_PUSH_3(c1, c2, c3) \
1804 GET_BUFFER_SPACE (3); \
1805 *b++ = (unsigned char) (c1); \
1806 *b++ = (unsigned char) (c2); \
1807 *b++ = (unsigned char) (c3); \
1811 /* Store a jump with opcode OP at LOC to location TO. We store a
1812 relative address offset by the three bytes the jump itself occupies. */
1813 #define STORE_JUMP(op, loc, to) \
1814 store_op1 (op, loc, (to) - (loc) - 3)
1816 /* Likewise, for a two-argument jump. */
1817 #define STORE_JUMP2(op, loc, to, arg) \
1818 store_op2 (op, loc, (to) - (loc) - 3, arg)
1820 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1821 #define INSERT_JUMP(op, loc, to) \
1822 insert_op1 (op, loc, (to) - (loc) - 3, b)
1824 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1825 #define INSERT_JUMP2(op, loc, to, arg) \
1826 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1829 /* This is not an arbitrary limit: the arguments which represent offsets
1830 into the pattern are two bytes long. So if 2^15 bytes turns out to
1831 be too small, many things would have to change. */
1832 # define MAX_BUF_SIZE (1L << 15)
1834 #if 0 /* This is when we thought it could be 2^16 bytes. */
1835 /* Any other compiler which, like MSC, has allocation limit below 2^16
1836 bytes will have to use approach similar to what was done below for
1837 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1838 reallocating to 0 bytes. Such thing is not going to work too well.
1839 You have been warned!! */
1840 #if defined _MSC_VER && !defined WIN32
1841 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1842 # define MAX_BUF_SIZE 65500L
1844 # define MAX_BUF_SIZE (1L << 16)
1848 /* Extend the buffer by twice its current size via realloc and
1849 reset the pointers that pointed into the old block to point to the
1850 correct places in the new one. If extending the buffer results in it
1851 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1852 #if __BOUNDED_POINTERS__
1853 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1854 # define MOVE_BUFFER_POINTER(P) \
1855 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1856 SET_HIGH_BOUND (P), \
1857 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1858 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1861 SET_HIGH_BOUND (b); \
1862 SET_HIGH_BOUND (begalt); \
1863 if (fixup_alt_jump) \
1864 SET_HIGH_BOUND (fixup_alt_jump); \
1866 SET_HIGH_BOUND (laststart); \
1867 if (pending_exact) \
1868 SET_HIGH_BOUND (pending_exact); \
1871 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1872 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1874 #define EXTEND_BUFFER() \
1876 unsigned char *old_buffer = bufp->buffer; \
1877 if (bufp->allocated == MAX_BUF_SIZE) \
1879 bufp->allocated <<= 1; \
1880 if (bufp->allocated > MAX_BUF_SIZE) \
1881 bufp->allocated = MAX_BUF_SIZE; \
1882 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1883 if (bufp->buffer == NULL) \
1884 return REG_ESPACE; \
1885 /* If the buffer moved, move all the pointers into it. */ \
1886 if (old_buffer != bufp->buffer) \
1888 unsigned char *new_buffer = bufp->buffer; \
1889 MOVE_BUFFER_POINTER (b); \
1890 MOVE_BUFFER_POINTER (begalt); \
1891 if (fixup_alt_jump) \
1892 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1894 MOVE_BUFFER_POINTER (laststart); \
1895 if (pending_exact) \
1896 MOVE_BUFFER_POINTER (pending_exact); \
1898 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1902 /* Since we have one byte reserved for the register number argument to
1903 {start,stop}_memory, the maximum number of groups we can report
1904 things about is what fits in that byte. */
1905 #define MAX_REGNUM 255
1907 /* But patterns can have more than `MAX_REGNUM' registers. We just
1908 ignore the excess. */
1909 typedef int regnum_t
;
1912 /* Macros for the compile stack. */
1914 /* Since offsets can go either forwards or backwards, this type needs to
1915 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1916 /* int may be not enough when sizeof(int) == 2. */
1917 typedef long pattern_offset_t
;
1921 pattern_offset_t begalt_offset
;
1922 pattern_offset_t fixup_alt_jump
;
1923 pattern_offset_t laststart_offset
;
1925 } compile_stack_elt_t
;
1930 compile_stack_elt_t
*stack
;
1932 unsigned avail
; /* Offset of next open position. */
1933 } compile_stack_type
;
1936 #define INIT_COMPILE_STACK_SIZE 32
1938 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1939 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1941 /* The next available element. */
1942 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1944 /* Explicit quit checking is only used on NTemacs and whenever we
1945 use polling to process input events. */
1946 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1947 extern int immediate_quit
;
1948 # define IMMEDIATE_QUIT_CHECK \
1950 if (immediate_quit) QUIT; \
1953 # define IMMEDIATE_QUIT_CHECK ((void)0)
1956 /* Structure to manage work area for range table. */
1957 struct range_table_work_area
1959 int *table
; /* actual work area. */
1960 int allocated
; /* allocated size for work area in bytes. */
1961 int used
; /* actually used size in words. */
1962 int bits
; /* flag to record character classes */
1965 /* Make sure that WORK_AREA can hold more N multibyte characters.
1966 This is used only in set_image_of_range and set_image_of_range_1.
1967 It expects WORK_AREA to be a pointer.
1968 If it can't get the space, it returns from the surrounding function. */
1970 #define EXTEND_RANGE_TABLE(work_area, n) \
1972 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1974 extend_range_table_work_area (&work_area); \
1975 if ((work_area).table == 0) \
1976 return (REG_ESPACE); \
1980 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1981 (work_area).bits |= (bit)
1983 /* Bits used to implement the multibyte-part of the various character classes
1984 such as [:alnum:] in a charset's range table. */
1985 #define BIT_WORD 0x1
1986 #define BIT_LOWER 0x2
1987 #define BIT_PUNCT 0x4
1988 #define BIT_SPACE 0x8
1989 #define BIT_UPPER 0x10
1990 #define BIT_MULTIBYTE 0x20
1992 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1993 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1995 EXTEND_RANGE_TABLE ((work_area), 2); \
1996 (work_area).table[(work_area).used++] = (range_start); \
1997 (work_area).table[(work_area).used++] = (range_end); \
2000 /* Free allocated memory for WORK_AREA. */
2001 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2003 if ((work_area).table) \
2004 free ((work_area).table); \
2007 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
2008 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
2009 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
2010 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
2013 /* Set the bit for character C in a list. */
2014 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
2019 /* Store characters in the range FROM to TO in the bitmap at B (for
2020 ASCII and unibyte characters) and WORK_AREA (for multibyte
2021 characters) while translating them and paying attention to the
2022 continuity of translated characters.
2024 Implementation note: It is better to implement these fairly big
2025 macros by a function, but it's not that easy because macros called
2026 in this macro assume various local variables already declared. */
2028 /* Both FROM and TO are ASCII characters. */
2030 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2034 for (C0 = (FROM); C0 <= (TO); C0++) \
2036 C1 = TRANSLATE (C0); \
2037 if (! ASCII_CHAR_P (C1)) \
2039 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2040 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2043 SET_LIST_BIT (C1); \
2048 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
2050 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2052 int C0, C1, C2, I; \
2053 int USED = RANGE_TABLE_WORK_USED (work_area); \
2055 for (C0 = (FROM); C0 <= (TO); C0++) \
2057 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2058 if (CHAR_BYTE8_P (C1)) \
2059 SET_LIST_BIT (C0); \
2062 C2 = TRANSLATE (C1); \
2064 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2066 SET_LIST_BIT (C1); \
2067 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2069 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2070 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2072 if (C2 >= from - 1 && C2 <= to + 1) \
2074 if (C2 == from - 1) \
2075 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2076 else if (C2 == to + 1) \
2077 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2082 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2088 /* Both FROM and TO are multibyte characters. */
2090 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2092 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2094 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2095 for (C0 = (FROM); C0 <= (TO); C0++) \
2097 C1 = TRANSLATE (C0); \
2098 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2099 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2100 SET_LIST_BIT (C2); \
2101 if (C1 >= (FROM) && C1 <= (TO)) \
2103 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2105 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2106 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2108 if (C1 >= from - 1 && C1 <= to + 1) \
2110 if (C1 == from - 1) \
2111 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2112 else if (C1 == to + 1) \
2113 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2118 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2124 /* Get the next unsigned number in the uncompiled pattern. */
2125 #define GET_UNSIGNED_NUMBER(num) \
2128 FREE_STACK_RETURN (REG_EBRACE); \
2132 while ('0' <= c && c <= '9') \
2138 num = num * 10 + c - '0'; \
2139 if (num / 10 != prev) \
2140 FREE_STACK_RETURN (REG_BADBR); \
2142 FREE_STACK_RETURN (REG_EBRACE); \
2148 #if ! WIDE_CHAR_SUPPORT
2150 /* Map a string to the char class it names (if any). */
2155 const char *string
= str
;
2156 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2157 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2158 else if (STREQ (string
, "word")) return RECC_WORD
;
2159 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2160 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2161 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2162 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2163 else if (STREQ (string
, "print")) return RECC_PRINT
;
2164 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2165 else if (STREQ (string
, "space")) return RECC_SPACE
;
2166 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2167 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2168 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2169 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2170 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2171 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2172 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2176 /* True if CH is in the char class CC. */
2178 re_iswctype (ch
, cc
)
2184 case RECC_ALNUM
: return ISALNUM (ch
);
2185 case RECC_ALPHA
: return ISALPHA (ch
);
2186 case RECC_BLANK
: return ISBLANK (ch
);
2187 case RECC_CNTRL
: return ISCNTRL (ch
);
2188 case RECC_DIGIT
: return ISDIGIT (ch
);
2189 case RECC_GRAPH
: return ISGRAPH (ch
);
2190 case RECC_LOWER
: return ISLOWER (ch
);
2191 case RECC_PRINT
: return ISPRINT (ch
);
2192 case RECC_PUNCT
: return ISPUNCT (ch
);
2193 case RECC_SPACE
: return ISSPACE (ch
);
2194 case RECC_UPPER
: return ISUPPER (ch
);
2195 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2196 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2197 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2198 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2199 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2200 case RECC_WORD
: return ISWORD (ch
);
2201 case RECC_ERROR
: return false;
2207 /* Return a bit-pattern to use in the range-table bits to match multibyte
2208 chars of class CC. */
2210 re_wctype_to_bit (cc
)
2215 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2216 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2217 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2218 case RECC_LOWER
: return BIT_LOWER
;
2219 case RECC_UPPER
: return BIT_UPPER
;
2220 case RECC_PUNCT
: return BIT_PUNCT
;
2221 case RECC_SPACE
: return BIT_SPACE
;
2222 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2223 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2230 /* Filling in the work area of a range. */
2232 /* Actually extend the space in WORK_AREA. */
2235 extend_range_table_work_area (work_area
)
2236 struct range_table_work_area
*work_area
;
2238 work_area
->allocated
+= 16 * sizeof (int);
2239 if (work_area
->table
)
2241 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2244 = (int *) malloc (work_area
->allocated
);
2250 /* Carefully find the ranges of codes that are equivalent
2251 under case conversion to the range start..end when passed through
2252 TRANSLATE. Handle the case where non-letters can come in between
2253 two upper-case letters (which happens in Latin-1).
2254 Also handle the case of groups of more than 2 case-equivalent chars.
2256 The basic method is to look at consecutive characters and see
2257 if they can form a run that can be handled as one.
2259 Returns -1 if successful, REG_ESPACE if ran out of space. */
2262 set_image_of_range_1 (work_area
, start
, end
, translate
)
2263 RE_TRANSLATE_TYPE translate
;
2264 struct range_table_work_area
*work_area
;
2265 re_wchar_t start
, end
;
2267 /* `one_case' indicates a character, or a run of characters,
2268 each of which is an isolate (no case-equivalents).
2269 This includes all ASCII non-letters.
2271 `two_case' indicates a character, or a run of characters,
2272 each of which has two case-equivalent forms.
2273 This includes all ASCII letters.
2275 `strange' indicates a character that has more than one
2278 enum case_type
{one_case
, two_case
, strange
};
2280 /* Describe the run that is in progress,
2281 which the next character can try to extend.
2282 If run_type is strange, that means there really is no run.
2283 If run_type is one_case, then run_start...run_end is the run.
2284 If run_type is two_case, then the run is run_start...run_end,
2285 and the case-equivalents end at run_eqv_end. */
2287 enum case_type run_type
= strange
;
2288 int run_start
, run_end
, run_eqv_end
;
2290 Lisp_Object eqv_table
;
2292 if (!RE_TRANSLATE_P (translate
))
2294 EXTEND_RANGE_TABLE (work_area
, 2);
2295 work_area
->table
[work_area
->used
++] = (start
);
2296 work_area
->table
[work_area
->used
++] = (end
);
2300 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2302 for (; start
<= end
; start
++)
2304 enum case_type this_type
;
2305 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2306 int minchar
, maxchar
;
2308 /* Classify this character */
2310 this_type
= one_case
;
2311 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2312 this_type
= two_case
;
2314 this_type
= strange
;
2317 minchar
= start
, maxchar
= eqv
;
2319 minchar
= eqv
, maxchar
= start
;
2321 /* Can this character extend the run in progress? */
2322 if (this_type
== strange
|| this_type
!= run_type
2323 || !(minchar
== run_end
+ 1
2324 && (run_type
== two_case
2325 ? maxchar
== run_eqv_end
+ 1 : 1)))
2328 Record each of its equivalent ranges. */
2329 if (run_type
== one_case
)
2331 EXTEND_RANGE_TABLE (work_area
, 2);
2332 work_area
->table
[work_area
->used
++] = run_start
;
2333 work_area
->table
[work_area
->used
++] = run_end
;
2335 else if (run_type
== two_case
)
2337 EXTEND_RANGE_TABLE (work_area
, 4);
2338 work_area
->table
[work_area
->used
++] = run_start
;
2339 work_area
->table
[work_area
->used
++] = run_end
;
2340 work_area
->table
[work_area
->used
++]
2341 = RE_TRANSLATE (eqv_table
, run_start
);
2342 work_area
->table
[work_area
->used
++]
2343 = RE_TRANSLATE (eqv_table
, run_end
);
2348 if (this_type
== strange
)
2350 /* For a strange character, add each of its equivalents, one
2351 by one. Don't start a range. */
2354 EXTEND_RANGE_TABLE (work_area
, 2);
2355 work_area
->table
[work_area
->used
++] = eqv
;
2356 work_area
->table
[work_area
->used
++] = eqv
;
2357 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2359 while (eqv
!= start
);
2362 /* Add this char to the run, or start a new run. */
2363 else if (run_type
== strange
)
2365 /* Initialize a new range. */
2366 run_type
= this_type
;
2369 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2373 /* Extend a running range. */
2375 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2379 /* If a run is still in progress at the end, finish it now
2380 by recording its equivalent ranges. */
2381 if (run_type
== one_case
)
2383 EXTEND_RANGE_TABLE (work_area
, 2);
2384 work_area
->table
[work_area
->used
++] = run_start
;
2385 work_area
->table
[work_area
->used
++] = run_end
;
2387 else if (run_type
== two_case
)
2389 EXTEND_RANGE_TABLE (work_area
, 4);
2390 work_area
->table
[work_area
->used
++] = run_start
;
2391 work_area
->table
[work_area
->used
++] = run_end
;
2392 work_area
->table
[work_area
->used
++]
2393 = RE_TRANSLATE (eqv_table
, run_start
);
2394 work_area
->table
[work_area
->used
++]
2395 = RE_TRANSLATE (eqv_table
, run_end
);
2403 /* Record the image of the range start..end when passed through
2404 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2405 and is not even necessarily contiguous.
2406 Normally we approximate it with the smallest contiguous range that contains
2407 all the chars we need. However, for Latin-1 we go to extra effort
2410 This function is not called for ASCII ranges.
2412 Returns -1 if successful, REG_ESPACE if ran out of space. */
2415 set_image_of_range (work_area
, start
, end
, translate
)
2416 RE_TRANSLATE_TYPE translate
;
2417 struct range_table_work_area
*work_area
;
2418 re_wchar_t start
, end
;
2420 re_wchar_t cmin
, cmax
;
2423 /* For Latin-1 ranges, use set_image_of_range_1
2424 to get proper handling of ranges that include letters and nonletters.
2425 For a range that includes the whole of Latin-1, this is not necessary.
2426 For other character sets, we don't bother to get this right. */
2427 if (RE_TRANSLATE_P (translate
) && start
< 04400
2428 && !(start
< 04200 && end
>= 04377))
2435 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2445 EXTEND_RANGE_TABLE (work_area
, 2);
2446 work_area
->table
[work_area
->used
++] = (start
);
2447 work_area
->table
[work_area
->used
++] = (end
);
2449 cmin
= -1, cmax
= -1;
2451 if (RE_TRANSLATE_P (translate
))
2455 for (ch
= start
; ch
<= end
; ch
++)
2457 re_wchar_t c
= TRANSLATE (ch
);
2458 if (! (start
<= c
&& c
<= end
))
2464 cmin
= MIN (cmin
, c
);
2465 cmax
= MAX (cmax
, c
);
2472 EXTEND_RANGE_TABLE (work_area
, 2);
2473 work_area
->table
[work_area
->used
++] = (cmin
);
2474 work_area
->table
[work_area
->used
++] = (cmax
);
2482 #ifndef MATCH_MAY_ALLOCATE
2484 /* If we cannot allocate large objects within re_match_2_internal,
2485 we make the fail stack and register vectors global.
2486 The fail stack, we grow to the maximum size when a regexp
2488 The register vectors, we adjust in size each time we
2489 compile a regexp, according to the number of registers it needs. */
2491 static fail_stack_type fail_stack
;
2493 /* Size with which the following vectors are currently allocated.
2494 That is so we can make them bigger as needed,
2495 but never make them smaller. */
2496 static int regs_allocated_size
;
2498 static re_char
** regstart
, ** regend
;
2499 static re_char
**best_regstart
, **best_regend
;
2501 /* Make the register vectors big enough for NUM_REGS registers,
2502 but don't make them smaller. */
2505 regex_grow_registers (num_regs
)
2508 if (num_regs
> regs_allocated_size
)
2510 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2511 RETALLOC_IF (regend
, num_regs
, re_char
*);
2512 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2513 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2515 regs_allocated_size
= num_regs
;
2519 #endif /* not MATCH_MAY_ALLOCATE */
2521 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2525 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2526 Returns one of error codes defined in `regex.h', or zero for success.
2528 Assumes the `allocated' (and perhaps `buffer') and `translate'
2529 fields are set in BUFP on entry.
2531 If it succeeds, results are put in BUFP (if it returns an error, the
2532 contents of BUFP are undefined):
2533 `buffer' is the compiled pattern;
2534 `syntax' is set to SYNTAX;
2535 `used' is set to the length of the compiled pattern;
2536 `fastmap_accurate' is zero;
2537 `re_nsub' is the number of subexpressions in PATTERN;
2538 `not_bol' and `not_eol' are zero;
2540 The `fastmap' field is neither examined nor set. */
2542 /* Insert the `jump' from the end of last alternative to "here".
2543 The space for the jump has already been allocated. */
2544 #define FIXUP_ALT_JUMP() \
2546 if (fixup_alt_jump) \
2547 STORE_JUMP (jump, fixup_alt_jump, b); \
2551 /* Return, freeing storage we allocated. */
2552 #define FREE_STACK_RETURN(value) \
2554 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2555 free (compile_stack.stack); \
2559 static reg_errcode_t
2560 regex_compile (pattern
, size
, syntax
, bufp
)
2563 reg_syntax_t syntax
;
2564 struct re_pattern_buffer
*bufp
;
2566 /* We fetch characters from PATTERN here. */
2567 register re_wchar_t c
, c1
;
2569 /* A random temporary spot in PATTERN. */
2572 /* Points to the end of the buffer, where we should append. */
2573 register unsigned char *b
;
2575 /* Keeps track of unclosed groups. */
2576 compile_stack_type compile_stack
;
2578 /* Points to the current (ending) position in the pattern. */
2580 /* `const' makes AIX compiler fail. */
2581 unsigned char *p
= pattern
;
2583 re_char
*p
= pattern
;
2585 re_char
*pend
= pattern
+ size
;
2587 /* How to translate the characters in the pattern. */
2588 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2590 /* Address of the count-byte of the most recently inserted `exactn'
2591 command. This makes it possible to tell if a new exact-match
2592 character can be added to that command or if the character requires
2593 a new `exactn' command. */
2594 unsigned char *pending_exact
= 0;
2596 /* Address of start of the most recently finished expression.
2597 This tells, e.g., postfix * where to find the start of its
2598 operand. Reset at the beginning of groups and alternatives. */
2599 unsigned char *laststart
= 0;
2601 /* Address of beginning of regexp, or inside of last group. */
2602 unsigned char *begalt
;
2604 /* Place in the uncompiled pattern (i.e., the {) to
2605 which to go back if the interval is invalid. */
2606 re_char
*beg_interval
;
2608 /* Address of the place where a forward jump should go to the end of
2609 the containing expression. Each alternative of an `or' -- except the
2610 last -- ends with a forward jump of this sort. */
2611 unsigned char *fixup_alt_jump
= 0;
2613 /* Work area for range table of charset. */
2614 struct range_table_work_area range_table_work
;
2616 /* If the object matched can contain multibyte characters. */
2617 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2619 /* If a target of matching can contain multibyte characters. */
2620 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
2622 /* Nonzero if we have pushed down into a subpattern. */
2623 int in_subpattern
= 0;
2625 /* These hold the values of p, pattern, and pend from the main
2626 pattern when we have pushed into a subpattern. */
2628 re_char
*main_pattern
;
2633 DEBUG_PRINT1 ("\nCompiling pattern: ");
2636 unsigned debug_count
;
2638 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2639 putchar (pattern
[debug_count
]);
2644 /* Initialize the compile stack. */
2645 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2646 if (compile_stack
.stack
== NULL
)
2649 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2650 compile_stack
.avail
= 0;
2652 range_table_work
.table
= 0;
2653 range_table_work
.allocated
= 0;
2655 /* Initialize the pattern buffer. */
2656 bufp
->syntax
= syntax
;
2657 bufp
->fastmap_accurate
= 0;
2658 bufp
->not_bol
= bufp
->not_eol
= 0;
2659 bufp
->used_syntax
= 0;
2661 /* Set `used' to zero, so that if we return an error, the pattern
2662 printer (for debugging) will think there's no pattern. We reset it
2666 /* Always count groups, whether or not bufp->no_sub is set. */
2669 #if !defined emacs && !defined SYNTAX_TABLE
2670 /* Initialize the syntax table. */
2671 init_syntax_once ();
2674 if (bufp
->allocated
== 0)
2677 { /* If zero allocated, but buffer is non-null, try to realloc
2678 enough space. This loses if buffer's address is bogus, but
2679 that is the user's responsibility. */
2680 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2683 { /* Caller did not allocate a buffer. Do it for them. */
2684 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2686 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2688 bufp
->allocated
= INIT_BUF_SIZE
;
2691 begalt
= b
= bufp
->buffer
;
2693 /* Loop through the uncompiled pattern until we're at the end. */
2698 /* If this is the end of an included regexp,
2699 pop back to the main regexp and try again. */
2703 pattern
= main_pattern
;
2708 /* If this is the end of the main regexp, we are done. */
2720 /* If there's no special whitespace regexp, treat
2721 spaces normally. And don't try to do this recursively. */
2722 if (!whitespace_regexp
|| in_subpattern
)
2725 /* Peek past following spaces. */
2732 /* If the spaces are followed by a repetition op,
2733 treat them normally. */
2735 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2736 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2739 /* Replace the spaces with the whitespace regexp. */
2743 main_pattern
= pattern
;
2744 p
= pattern
= whitespace_regexp
;
2745 pend
= p
+ strlen (p
);
2751 if ( /* If at start of pattern, it's an operator. */
2753 /* If context independent, it's an operator. */
2754 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2755 /* Otherwise, depends on what's come before. */
2756 || at_begline_loc_p (pattern
, p
, syntax
))
2757 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2766 if ( /* If at end of pattern, it's an operator. */
2768 /* If context independent, it's an operator. */
2769 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2770 /* Otherwise, depends on what's next. */
2771 || at_endline_loc_p (p
, pend
, syntax
))
2772 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2781 if ((syntax
& RE_BK_PLUS_QM
)
2782 || (syntax
& RE_LIMITED_OPS
))
2786 /* If there is no previous pattern... */
2789 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2790 FREE_STACK_RETURN (REG_BADRPT
);
2791 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2796 /* 1 means zero (many) matches is allowed. */
2797 boolean zero_times_ok
= 0, many_times_ok
= 0;
2800 /* If there is a sequence of repetition chars, collapse it
2801 down to just one (the right one). We can't combine
2802 interval operators with these because of, e.g., `a{2}*',
2803 which should only match an even number of `a's. */
2807 if ((syntax
& RE_FRUGAL
)
2808 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2812 zero_times_ok
|= c
!= '+';
2813 many_times_ok
|= c
!= '?';
2819 || (!(syntax
& RE_BK_PLUS_QM
)
2820 && (*p
== '+' || *p
== '?')))
2822 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2825 FREE_STACK_RETURN (REG_EESCAPE
);
2826 if (p
[1] == '+' || p
[1] == '?')
2827 PATFETCH (c
); /* Gobble up the backslash. */
2833 /* If we get here, we found another repeat character. */
2837 /* Star, etc. applied to an empty pattern is equivalent
2838 to an empty pattern. */
2839 if (!laststart
|| laststart
== b
)
2842 /* Now we know whether or not zero matches is allowed
2843 and also whether or not two or more matches is allowed. */
2848 boolean simple
= skip_one_char (laststart
) == b
;
2849 unsigned int startoffset
= 0;
2851 /* Check if the loop can match the empty string. */
2852 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2853 ? on_failure_jump
: on_failure_jump_loop
;
2854 assert (skip_one_char (laststart
) <= b
);
2856 if (!zero_times_ok
&& simple
)
2857 { /* Since simple * loops can be made faster by using
2858 on_failure_keep_string_jump, we turn simple P+
2859 into PP* if P is simple. */
2860 unsigned char *p1
, *p2
;
2861 startoffset
= b
- laststart
;
2862 GET_BUFFER_SPACE (startoffset
);
2863 p1
= b
; p2
= laststart
;
2869 GET_BUFFER_SPACE (6);
2872 STORE_JUMP (ofj
, b
, b
+ 6);
2874 /* Simple * loops can use on_failure_keep_string_jump
2875 depending on what follows. But since we don't know
2876 that yet, we leave the decision up to
2877 on_failure_jump_smart. */
2878 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2879 laststart
+ startoffset
, b
+ 6);
2881 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2886 /* A simple ? pattern. */
2887 assert (zero_times_ok
);
2888 GET_BUFFER_SPACE (3);
2889 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2893 else /* not greedy */
2894 { /* I wish the greedy and non-greedy cases could be merged. */
2896 GET_BUFFER_SPACE (7); /* We might use less. */
2899 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2901 /* The non-greedy multiple match looks like
2902 a repeat..until: we only need a conditional jump
2903 at the end of the loop. */
2904 if (emptyp
) BUF_PUSH (no_op
);
2905 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2906 : on_failure_jump
, b
, laststart
);
2910 /* The repeat...until naturally matches one or more.
2911 To also match zero times, we need to first jump to
2912 the end of the loop (its conditional jump). */
2913 INSERT_JUMP (jump
, laststart
, b
);
2919 /* non-greedy a?? */
2920 INSERT_JUMP (jump
, laststart
, b
+ 3);
2922 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2939 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2941 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2943 /* Ensure that we have enough space to push a charset: the
2944 opcode, the length count, and the bitset; 34 bytes in all. */
2945 GET_BUFFER_SPACE (34);
2949 /* We test `*p == '^' twice, instead of using an if
2950 statement, so we only need one BUF_PUSH. */
2951 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2955 /* Remember the first position in the bracket expression. */
2958 /* Push the number of bytes in the bitmap. */
2959 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2961 /* Clear the whole map. */
2962 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2964 /* charset_not matches newline according to a syntax bit. */
2965 if ((re_opcode_t
) b
[-2] == charset_not
2966 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2967 SET_LIST_BIT ('\n');
2969 /* Read in characters and ranges, setting map bits. */
2972 boolean escaped_char
= false;
2973 const unsigned char *p2
= p
;
2976 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2978 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2979 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2980 So the translation is done later in a loop. Example:
2981 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2984 /* \ might escape characters inside [...] and [^...]. */
2985 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2987 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2990 escaped_char
= true;
2994 /* Could be the end of the bracket expression. If it's
2995 not (i.e., when the bracket expression is `[]' so
2996 far), the ']' character bit gets set way below. */
2997 if (c
== ']' && p2
!= p1
)
3001 /* See if we're at the beginning of a possible character
3004 if (!escaped_char
&&
3005 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3007 /* Leave room for the null. */
3008 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3009 const unsigned char *class_beg
;
3015 /* If pattern is `[[:'. */
3016 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3021 if ((c
== ':' && *p
== ']') || p
== pend
)
3023 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3026 /* This is in any case an invalid class name. */
3031 /* If isn't a word bracketed by `[:' and `:]':
3032 undo the ending character, the letters, and
3033 leave the leading `:' and `[' (but set bits for
3035 if (c
== ':' && *p
== ']')
3040 cc
= re_wctype (str
);
3043 FREE_STACK_RETURN (REG_ECTYPE
);
3045 /* Throw away the ] at the end of the character
3049 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3052 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
3053 if (re_iswctype (btowc (ch
), cc
))
3056 if (c
< (1 << BYTEWIDTH
))
3060 /* Most character classes in a multibyte match
3061 just set a flag. Exceptions are is_blank,
3062 is_digit, is_cntrl, and is_xdigit, since
3063 they can only match ASCII characters. We
3064 don't need to handle them for multibyte.
3065 They are distinguished by a negative wctype. */
3067 /* Setup the gl_state object to its buffer-defined
3068 value. This hardcodes the buffer-global
3069 syntax-table for ASCII chars, while the other chars
3070 will obey syntax-table properties. It's not ideal,
3071 but it's the way it's been done until now. */
3072 SETUP_BUFFER_SYNTAX_TABLE ();
3074 for (ch
= 0; ch
< 256; ++ch
)
3076 c
= RE_CHAR_TO_MULTIBYTE (ch
);
3077 if (! CHAR_BYTE8_P (c
)
3078 && re_iswctype (c
, cc
))
3084 if (ASCII_CHAR_P (c1
))
3086 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
3090 SET_RANGE_TABLE_WORK_AREA_BIT
3091 (range_table_work
, re_wctype_to_bit (cc
));
3093 /* In most cases the matching rule for char classes
3094 only uses the syntax table for multibyte chars,
3095 so that the content of the syntax-table it is not
3096 hardcoded in the range_table. SPACE and WORD are
3097 the two exceptions. */
3098 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
3099 bufp
->used_syntax
= 1;
3101 /* Repeat the loop. */
3106 /* Go back to right after the "[:". */
3110 /* Because the `:' may starts the range, we
3111 can't simply set bit and repeat the loop.
3112 Instead, just set it to C and handle below. */
3117 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
3120 /* Discard the `-'. */
3123 /* Fetch the character which ends the range. */
3126 if (CHAR_BYTE8_P (c1
)
3127 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
3128 /* Treat the range from a multibyte character to
3129 raw-byte character as empty. */
3134 /* Range from C to C. */
3139 if (syntax
& RE_NO_EMPTY_RANGES
)
3140 FREE_STACK_RETURN (REG_ERANGEX
);
3141 /* Else, repeat the loop. */
3146 /* Set the range into bitmap */
3147 for (; c
<= c1
; c
++)
3150 if (ch
< (1 << BYTEWIDTH
))
3157 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3159 if (CHAR_BYTE8_P (c1
))
3160 c
= BYTE8_TO_CHAR (128);
3164 if (CHAR_BYTE8_P (c
))
3166 c
= CHAR_TO_BYTE8 (c
);
3167 c1
= CHAR_TO_BYTE8 (c1
);
3168 for (; c
<= c1
; c
++)
3173 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3177 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3184 /* Discard any (non)matching list bytes that are all 0 at the
3185 end of the map. Decrease the map-length byte too. */
3186 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3190 /* Build real range table from work area. */
3191 if (RANGE_TABLE_WORK_USED (range_table_work
)
3192 || RANGE_TABLE_WORK_BITS (range_table_work
))
3195 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3197 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3198 bytes for flags, two for COUNT, and three bytes for
3200 GET_BUFFER_SPACE (4 + used
* 3);
3202 /* Indicate the existence of range table. */
3203 laststart
[1] |= 0x80;
3205 /* Store the character class flag bits into the range table.
3206 If not in emacs, these flag bits are always 0. */
3207 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3208 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3210 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3211 for (i
= 0; i
< used
; i
++)
3212 STORE_CHARACTER_AND_INCR
3213 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3220 if (syntax
& RE_NO_BK_PARENS
)
3227 if (syntax
& RE_NO_BK_PARENS
)
3234 if (syntax
& RE_NEWLINE_ALT
)
3241 if (syntax
& RE_NO_BK_VBAR
)
3248 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3249 goto handle_interval
;
3255 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3257 /* Do not translate the character after the \, so that we can
3258 distinguish, e.g., \B from \b, even if we normally would
3259 translate, e.g., B to b. */
3265 if (syntax
& RE_NO_BK_PARENS
)
3266 goto normal_backslash
;
3271 regnum_t regnum
= 0;
3274 /* Look for a special (?...) construct */
3275 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3277 PATFETCH (c
); /* Gobble up the '?'. */
3283 case ':': shy
= 1; break;
3285 /* An explicitly specified regnum must start
3288 FREE_STACK_RETURN (REG_BADPAT
);
3289 case '1': case '2': case '3': case '4':
3290 case '5': case '6': case '7': case '8': case '9':
3291 regnum
= 10*regnum
+ (c
- '0'); break;
3293 /* Only (?:...) is supported right now. */
3294 FREE_STACK_RETURN (REG_BADPAT
);
3301 regnum
= ++bufp
->re_nsub
;
3303 { /* It's actually not shy, but explicitly numbered. */
3305 if (regnum
> bufp
->re_nsub
)
3306 bufp
->re_nsub
= regnum
;
3307 else if (regnum
> bufp
->re_nsub
3308 /* Ideally, we'd want to check that the specified
3309 group can't have matched (i.e. all subgroups
3310 using the same regnum are in other branches of
3311 OR patterns), but we don't currently keep track
3312 of enough info to do that easily. */
3313 || group_in_compile_stack (compile_stack
, regnum
))
3314 FREE_STACK_RETURN (REG_BADPAT
);
3317 /* It's really shy. */
3318 regnum
= - bufp
->re_nsub
;
3320 if (COMPILE_STACK_FULL
)
3322 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3323 compile_stack_elt_t
);
3324 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3326 compile_stack
.size
<<= 1;
3329 /* These are the values to restore when we hit end of this
3330 group. They are all relative offsets, so that if the
3331 whole pattern moves because of realloc, they will still
3333 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3334 COMPILE_STACK_TOP
.fixup_alt_jump
3335 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3336 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3337 COMPILE_STACK_TOP
.regnum
= regnum
;
3339 /* Do not push a start_memory for groups beyond the last one
3340 we can represent in the compiled pattern. */
3341 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3342 BUF_PUSH_2 (start_memory
, regnum
);
3344 compile_stack
.avail
++;
3349 /* If we've reached MAX_REGNUM groups, then this open
3350 won't actually generate any code, so we'll have to
3351 clear pending_exact explicitly. */
3357 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3359 if (COMPILE_STACK_EMPTY
)
3361 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3362 goto normal_backslash
;
3364 FREE_STACK_RETURN (REG_ERPAREN
);
3370 /* See similar code for backslashed left paren above. */
3371 if (COMPILE_STACK_EMPTY
)
3373 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3376 FREE_STACK_RETURN (REG_ERPAREN
);
3379 /* Since we just checked for an empty stack above, this
3380 ``can't happen''. */
3381 assert (compile_stack
.avail
!= 0);
3383 /* We don't just want to restore into `regnum', because
3384 later groups should continue to be numbered higher,
3385 as in `(ab)c(de)' -- the second group is #2. */
3388 compile_stack
.avail
--;
3389 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3391 = COMPILE_STACK_TOP
.fixup_alt_jump
3392 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3394 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3395 regnum
= COMPILE_STACK_TOP
.regnum
;
3396 /* If we've reached MAX_REGNUM groups, then this open
3397 won't actually generate any code, so we'll have to
3398 clear pending_exact explicitly. */
3401 /* We're at the end of the group, so now we know how many
3402 groups were inside this one. */
3403 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3404 BUF_PUSH_2 (stop_memory
, regnum
);
3409 case '|': /* `\|'. */
3410 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3411 goto normal_backslash
;
3413 if (syntax
& RE_LIMITED_OPS
)
3416 /* Insert before the previous alternative a jump which
3417 jumps to this alternative if the former fails. */
3418 GET_BUFFER_SPACE (3);
3419 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3423 /* The alternative before this one has a jump after it
3424 which gets executed if it gets matched. Adjust that
3425 jump so it will jump to this alternative's analogous
3426 jump (put in below, which in turn will jump to the next
3427 (if any) alternative's such jump, etc.). The last such
3428 jump jumps to the correct final destination. A picture:
3434 If we are at `b', then fixup_alt_jump right now points to a
3435 three-byte space after `a'. We'll put in the jump, set
3436 fixup_alt_jump to right after `b', and leave behind three
3437 bytes which we'll fill in when we get to after `c'. */
3441 /* Mark and leave space for a jump after this alternative,
3442 to be filled in later either by next alternative or
3443 when know we're at the end of a series of alternatives. */
3445 GET_BUFFER_SPACE (3);
3454 /* If \{ is a literal. */
3455 if (!(syntax
& RE_INTERVALS
)
3456 /* If we're at `\{' and it's not the open-interval
3458 || (syntax
& RE_NO_BK_BRACES
))
3459 goto normal_backslash
;
3463 /* If got here, then the syntax allows intervals. */
3465 /* At least (most) this many matches must be made. */
3466 int lower_bound
= 0, upper_bound
= -1;
3470 GET_UNSIGNED_NUMBER (lower_bound
);
3473 GET_UNSIGNED_NUMBER (upper_bound
);
3475 /* Interval such as `{1}' => match exactly once. */
3476 upper_bound
= lower_bound
;
3478 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3479 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3480 FREE_STACK_RETURN (REG_BADBR
);
3482 if (!(syntax
& RE_NO_BK_BRACES
))
3485 FREE_STACK_RETURN (REG_BADBR
);
3487 FREE_STACK_RETURN (REG_EESCAPE
);
3492 FREE_STACK_RETURN (REG_BADBR
);
3494 /* We just parsed a valid interval. */
3496 /* If it's invalid to have no preceding re. */
3499 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3500 FREE_STACK_RETURN (REG_BADRPT
);
3501 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3504 goto unfetch_interval
;
3507 if (upper_bound
== 0)
3508 /* If the upper bound is zero, just drop the sub pattern
3511 else if (lower_bound
== 1 && upper_bound
== 1)
3512 /* Just match it once: nothing to do here. */
3515 /* Otherwise, we have a nontrivial interval. When
3516 we're all done, the pattern will look like:
3517 set_number_at <jump count> <upper bound>
3518 set_number_at <succeed_n count> <lower bound>
3519 succeed_n <after jump addr> <succeed_n count>
3521 jump_n <succeed_n addr> <jump count>
3522 (The upper bound and `jump_n' are omitted if
3523 `upper_bound' is 1, though.) */
3525 { /* If the upper bound is > 1, we need to insert
3526 more at the end of the loop. */
3527 unsigned int nbytes
= (upper_bound
< 0 ? 3
3528 : upper_bound
> 1 ? 5 : 0);
3529 unsigned int startoffset
= 0;
3531 GET_BUFFER_SPACE (20); /* We might use less. */
3533 if (lower_bound
== 0)
3535 /* A succeed_n that starts with 0 is really a
3536 a simple on_failure_jump_loop. */
3537 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3543 /* Initialize lower bound of the `succeed_n', even
3544 though it will be set during matching by its
3545 attendant `set_number_at' (inserted next),
3546 because `re_compile_fastmap' needs to know.
3547 Jump to the `jump_n' we might insert below. */
3548 INSERT_JUMP2 (succeed_n
, laststart
,
3553 /* Code to initialize the lower bound. Insert
3554 before the `succeed_n'. The `5' is the last two
3555 bytes of this `set_number_at', plus 3 bytes of
3556 the following `succeed_n'. */
3557 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3562 if (upper_bound
< 0)
3564 /* A negative upper bound stands for infinity,
3565 in which case it degenerates to a plain jump. */
3566 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3569 else if (upper_bound
> 1)
3570 { /* More than one repetition is allowed, so
3571 append a backward jump to the `succeed_n'
3572 that starts this interval.
3574 When we've reached this during matching,
3575 we'll have matched the interval once, so
3576 jump back only `upper_bound - 1' times. */
3577 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3581 /* The location we want to set is the second
3582 parameter of the `jump_n'; that is `b-2' as
3583 an absolute address. `laststart' will be
3584 the `set_number_at' we're about to insert;
3585 `laststart+3' the number to set, the source
3586 for the relative address. But we are
3587 inserting into the middle of the pattern --
3588 so everything is getting moved up by 5.
3589 Conclusion: (b - 2) - (laststart + 3) + 5,
3590 i.e., b - laststart.
3592 We insert this at the beginning of the loop
3593 so that if we fail during matching, we'll
3594 reinitialize the bounds. */
3595 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3596 upper_bound
- 1, b
);
3601 beg_interval
= NULL
;
3606 /* If an invalid interval, match the characters as literals. */
3607 assert (beg_interval
);
3609 beg_interval
= NULL
;
3611 /* normal_char and normal_backslash need `c'. */
3614 if (!(syntax
& RE_NO_BK_BRACES
))
3616 assert (p
> pattern
&& p
[-1] == '\\');
3617 goto normal_backslash
;
3623 /* There is no way to specify the before_dot and after_dot
3624 operators. rms says this is ok. --karl */
3632 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3638 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3644 BUF_PUSH_2 (categoryspec
, c
);
3650 BUF_PUSH_2 (notcategoryspec
, c
);
3656 if (syntax
& RE_NO_GNU_OPS
)
3659 BUF_PUSH_2 (syntaxspec
, Sword
);
3664 if (syntax
& RE_NO_GNU_OPS
)
3667 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3672 if (syntax
& RE_NO_GNU_OPS
)
3678 if (syntax
& RE_NO_GNU_OPS
)
3684 if (syntax
& RE_NO_GNU_OPS
)
3693 FREE_STACK_RETURN (REG_BADPAT
);
3697 if (syntax
& RE_NO_GNU_OPS
)
3699 BUF_PUSH (wordbound
);
3703 if (syntax
& RE_NO_GNU_OPS
)
3705 BUF_PUSH (notwordbound
);
3709 if (syntax
& RE_NO_GNU_OPS
)
3715 if (syntax
& RE_NO_GNU_OPS
)
3720 case '1': case '2': case '3': case '4': case '5':
3721 case '6': case '7': case '8': case '9':
3725 if (syntax
& RE_NO_BK_REFS
)
3726 goto normal_backslash
;
3730 if (reg
> bufp
->re_nsub
|| reg
< 1
3731 /* Can't back reference to a subexp before its end. */
3732 || group_in_compile_stack (compile_stack
, reg
))
3733 FREE_STACK_RETURN (REG_ESUBREG
);
3736 BUF_PUSH_2 (duplicate
, reg
);
3743 if (syntax
& RE_BK_PLUS_QM
)
3746 goto normal_backslash
;
3750 /* You might think it would be useful for \ to mean
3751 not to translate; but if we don't translate it
3752 it will never match anything. */
3759 /* Expects the character in `c'. */
3761 /* If no exactn currently being built. */
3764 /* If last exactn not at current position. */
3765 || pending_exact
+ *pending_exact
+ 1 != b
3767 /* We have only one byte following the exactn for the count. */
3768 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3770 /* If followed by a repetition operator. */
3771 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3772 || ((syntax
& RE_BK_PLUS_QM
)
3773 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3774 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3775 || ((syntax
& RE_INTERVALS
)
3776 && ((syntax
& RE_NO_BK_BRACES
)
3777 ? p
!= pend
&& *p
== '{'
3778 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3780 /* Start building a new exactn. */
3784 BUF_PUSH_2 (exactn
, 0);
3785 pending_exact
= b
- 1;
3788 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3795 len
= CHAR_STRING (c
, b
);
3800 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3801 if (! CHAR_BYTE8_P (c1
))
3803 re_wchar_t c2
= TRANSLATE (c1
);
3805 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3811 (*pending_exact
) += len
;
3816 } /* while p != pend */
3819 /* Through the pattern now. */
3823 if (!COMPILE_STACK_EMPTY
)
3824 FREE_STACK_RETURN (REG_EPAREN
);
3826 /* If we don't want backtracking, force success
3827 the first time we reach the end of the compiled pattern. */
3828 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3831 /* We have succeeded; set the length of the buffer. */
3832 bufp
->used
= b
- bufp
->buffer
;
3837 re_compile_fastmap (bufp
);
3838 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3839 print_compiled_pattern (bufp
);
3844 #ifndef MATCH_MAY_ALLOCATE
3845 /* Initialize the failure stack to the largest possible stack. This
3846 isn't necessary unless we're trying to avoid calling alloca in
3847 the search and match routines. */
3849 int num_regs
= bufp
->re_nsub
+ 1;
3851 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3853 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3855 if (! fail_stack
.stack
)
3857 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3858 * sizeof (fail_stack_elt_t
));
3861 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3863 * sizeof (fail_stack_elt_t
)));
3866 regex_grow_registers (num_regs
);
3868 #endif /* not MATCH_MAY_ALLOCATE */
3870 FREE_STACK_RETURN (REG_NOERROR
);
3871 } /* regex_compile */
3873 /* Subroutines for `regex_compile'. */
3875 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3878 store_op1 (op
, loc
, arg
)
3883 *loc
= (unsigned char) op
;
3884 STORE_NUMBER (loc
+ 1, arg
);
3888 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3891 store_op2 (op
, loc
, arg1
, arg2
)
3896 *loc
= (unsigned char) op
;
3897 STORE_NUMBER (loc
+ 1, arg1
);
3898 STORE_NUMBER (loc
+ 3, arg2
);
3902 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3903 for OP followed by two-byte integer parameter ARG. */
3906 insert_op1 (op
, loc
, arg
, end
)
3912 register unsigned char *pfrom
= end
;
3913 register unsigned char *pto
= end
+ 3;
3915 while (pfrom
!= loc
)
3918 store_op1 (op
, loc
, arg
);
3922 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3925 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3931 register unsigned char *pfrom
= end
;
3932 register unsigned char *pto
= end
+ 5;
3934 while (pfrom
!= loc
)
3937 store_op2 (op
, loc
, arg1
, arg2
);
3941 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3942 after an alternative or a begin-subexpression. We assume there is at
3943 least one character before the ^. */
3946 at_begline_loc_p (pattern
, p
, syntax
)
3947 re_char
*pattern
, *p
;
3948 reg_syntax_t syntax
;
3950 re_char
*prev
= p
- 2;
3951 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3954 /* After a subexpression? */
3955 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3956 /* After an alternative? */
3957 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3958 /* After a shy subexpression? */
3959 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3960 && prev
[-1] == '?' && prev
[-2] == '('
3961 && (syntax
& RE_NO_BK_PARENS
3962 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3966 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3967 at least one character after the $, i.e., `P < PEND'. */
3970 at_endline_loc_p (p
, pend
, syntax
)
3972 reg_syntax_t syntax
;
3975 boolean next_backslash
= *next
== '\\';
3976 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3979 /* Before a subexpression? */
3980 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3981 : next_backslash
&& next_next
&& *next_next
== ')')
3982 /* Before an alternative? */
3983 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3984 : next_backslash
&& next_next
&& *next_next
== '|');
3988 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3989 false if it's not. */
3992 group_in_compile_stack (compile_stack
, regnum
)
3993 compile_stack_type compile_stack
;
3998 for (this_element
= compile_stack
.avail
- 1;
4001 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4008 If fastmap is non-NULL, go through the pattern and fill fastmap
4009 with all the possible leading chars. If fastmap is NULL, don't
4010 bother filling it up (obviously) and only return whether the
4011 pattern could potentially match the empty string.
4013 Return 1 if p..pend might match the empty string.
4014 Return 0 if p..pend matches at least one char.
4015 Return -1 if fastmap was not updated accurately. */
4018 analyse_first (p
, pend
, fastmap
, multibyte
)
4021 const int multibyte
;
4026 /* If all elements for base leading-codes in fastmap is set, this
4027 flag is set true. */
4028 boolean match_any_multibyte_characters
= false;
4032 /* The loop below works as follows:
4033 - It has a working-list kept in the PATTERN_STACK and which basically
4034 starts by only containing a pointer to the first operation.
4035 - If the opcode we're looking at is a match against some set of
4036 chars, then we add those chars to the fastmap and go on to the
4037 next work element from the worklist (done via `break').
4038 - If the opcode is a control operator on the other hand, we either
4039 ignore it (if it's meaningless at this point, such as `start_memory')
4040 or execute it (if it's a jump). If the jump has several destinations
4041 (i.e. `on_failure_jump'), then we push the other destination onto the
4043 We guarantee termination by ignoring backward jumps (more or less),
4044 so that `p' is monotonically increasing. More to the point, we
4045 never set `p' (or push) anything `<= p1'. */
4049 /* `p1' is used as a marker of how far back a `on_failure_jump'
4050 can go without being ignored. It is normally equal to `p'
4051 (which prevents any backward `on_failure_jump') except right
4052 after a plain `jump', to allow patterns such as:
4055 10: on_failure_jump 3
4056 as used for the *? operator. */
4059 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4066 /* If the first character has to match a backreference, that means
4067 that the group was empty (since it already matched). Since this
4068 is the only case that interests us here, we can assume that the
4069 backreference must match the empty string. */
4074 /* Following are the cases which match a character. These end
4080 /* If multibyte is nonzero, the first byte of each
4081 character is an ASCII or a leading code. Otherwise,
4082 each byte is a character. Thus, this works in both
4087 /* For the case of matching this unibyte regex
4088 against multibyte, we must set a leading code of
4089 the corresponding multibyte character. */
4090 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
4092 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
4099 /* We could put all the chars except for \n (and maybe \0)
4100 but we don't bother since it is generally not worth it. */
4101 if (!fastmap
) break;
4106 if (!fastmap
) break;
4108 /* Chars beyond end of bitmap are possible matches. */
4109 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
4110 j
< (1 << BYTEWIDTH
); j
++)
4116 if (!fastmap
) break;
4117 not = (re_opcode_t
) *(p
- 1) == charset_not
;
4118 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
4120 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
4124 if (/* Any leading code can possibly start a character
4125 which doesn't match the specified set of characters. */
4128 /* If we can match a character class, we can match any
4129 multibyte characters. */
4130 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4131 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
4134 if (match_any_multibyte_characters
== false)
4136 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4137 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4139 match_any_multibyte_characters
= true;
4143 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
4144 && match_any_multibyte_characters
== false)
4146 /* Set fastmap[I] to 1 where I is a leading code of each
4147 multibyte characer in the range table. */
4149 unsigned char lc1
, lc2
;
4151 /* Make P points the range table. `+ 2' is to skip flag
4152 bits for a character class. */
4153 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
4155 /* Extract the number of ranges in range table into COUNT. */
4156 EXTRACT_NUMBER_AND_INCR (count
, p
);
4157 for (; count
> 0; count
--, p
+= 3)
4159 /* Extract the start and end of each range. */
4160 EXTRACT_CHARACTER (c
, p
);
4161 lc1
= CHAR_LEADING_CODE (c
);
4163 EXTRACT_CHARACTER (c
, p
);
4164 lc2
= CHAR_LEADING_CODE (c
);
4165 for (j
= lc1
; j
<= lc2
; j
++)
4174 if (!fastmap
) break;
4176 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4178 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4179 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4183 /* This match depends on text properties. These end with
4184 aborting optimizations. */
4188 case notcategoryspec
:
4189 if (!fastmap
) break;
4190 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4192 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4193 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4196 /* Any leading code can possibly start a character which
4197 has or doesn't has the specified category. */
4198 if (match_any_multibyte_characters
== false)
4200 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4201 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4203 match_any_multibyte_characters
= true;
4207 /* All cases after this match the empty string. These end with
4229 EXTRACT_NUMBER_AND_INCR (j
, p
);
4231 /* Backward jumps can only go back to code that we've already
4232 visited. `re_compile' should make sure this is true. */
4235 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4237 case on_failure_jump
:
4238 case on_failure_keep_string_jump
:
4239 case on_failure_jump_loop
:
4240 case on_failure_jump_nastyloop
:
4241 case on_failure_jump_smart
:
4247 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4248 to jump back to "just after here". */
4251 case on_failure_jump
:
4252 case on_failure_keep_string_jump
:
4253 case on_failure_jump_nastyloop
:
4254 case on_failure_jump_loop
:
4255 case on_failure_jump_smart
:
4256 EXTRACT_NUMBER_AND_INCR (j
, p
);
4258 ; /* Backward jump to be ignored. */
4260 { /* We have to look down both arms.
4261 We first go down the "straight" path so as to minimize
4262 stack usage when going through alternatives. */
4263 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4271 /* This code simply does not properly handle forward jump_n. */
4272 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4274 /* jump_n can either jump or fall through. The (backward) jump
4275 case has already been handled, so we only need to look at the
4276 fallthrough case. */
4280 /* If N == 0, it should be an on_failure_jump_loop instead. */
4281 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4283 /* We only care about one iteration of the loop, so we don't
4284 need to consider the case where this behaves like an
4301 abort (); /* We have listed all the cases. */
4304 /* Getting here means we have found the possible starting
4305 characters for one path of the pattern -- and that the empty
4306 string does not match. We need not follow this path further. */
4310 /* We reached the end without matching anything. */
4313 } /* analyse_first */
4315 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4316 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4317 characters can start a string that matches the pattern. This fastmap
4318 is used by re_search to skip quickly over impossible starting points.
4320 Character codes above (1 << BYTEWIDTH) are not represented in the
4321 fastmap, but the leading codes are represented. Thus, the fastmap
4322 indicates which character sets could start a match.
4324 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4325 area as BUFP->fastmap.
4327 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4330 Returns 0 if we succeed, -2 if an internal error. */
4333 re_compile_fastmap (bufp
)
4334 struct re_pattern_buffer
*bufp
;
4336 char *fastmap
= bufp
->fastmap
;
4339 assert (fastmap
&& bufp
->buffer
);
4341 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4342 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4344 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4345 fastmap
, RE_MULTIBYTE_P (bufp
));
4346 bufp
->can_be_null
= (analysis
!= 0);
4348 } /* re_compile_fastmap */
4350 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4351 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4352 this memory for recording register information. STARTS and ENDS
4353 must be allocated using the malloc library routine, and must each
4354 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4356 If NUM_REGS == 0, then subsequent matches should allocate their own
4359 Unless this function is called, the first search or match using
4360 PATTERN_BUFFER will allocate its own register data, without
4361 freeing the old data. */
4364 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4365 struct re_pattern_buffer
*bufp
;
4366 struct re_registers
*regs
;
4368 regoff_t
*starts
, *ends
;
4372 bufp
->regs_allocated
= REGS_REALLOCATE
;
4373 regs
->num_regs
= num_regs
;
4374 regs
->start
= starts
;
4379 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4381 regs
->start
= regs
->end
= (regoff_t
*) 0;
4384 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4386 /* Searching routines. */
4388 /* Like re_search_2, below, but only one string is specified, and
4389 doesn't let you say where to stop matching. */
4392 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4393 struct re_pattern_buffer
*bufp
;
4395 int size
, startpos
, range
;
4396 struct re_registers
*regs
;
4398 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4401 WEAK_ALIAS (__re_search
, re_search
)
4403 /* Head address of virtual concatenation of string. */
4404 #define HEAD_ADDR_VSTRING(P) \
4405 (((P) >= size1 ? string2 : string1))
4407 /* End address of virtual concatenation of string. */
4408 #define STOP_ADDR_VSTRING(P) \
4409 (((P) >= size1 ? string2 + size2 : string1 + size1))
4411 /* Address of POS in the concatenation of virtual string. */
4412 #define POS_ADDR_VSTRING(POS) \
4413 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4415 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4416 virtual concatenation of STRING1 and STRING2, starting first at index
4417 STARTPOS, then at STARTPOS + 1, and so on.
4419 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4421 RANGE is how far to scan while trying to match. RANGE = 0 means try
4422 only at STARTPOS; in general, the last start tried is STARTPOS +
4425 In REGS, return the indices of the virtual concatenation of STRING1
4426 and STRING2 that matched the entire BUFP->buffer and its contained
4429 Do not consider matching one past the index STOP in the virtual
4430 concatenation of STRING1 and STRING2.
4432 We return either the position in the strings at which the match was
4433 found, -1 if no match, or -2 if error (such as failure
4437 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4438 struct re_pattern_buffer
*bufp
;
4439 const char *str1
, *str2
;
4443 struct re_registers
*regs
;
4447 re_char
*string1
= (re_char
*) str1
;
4448 re_char
*string2
= (re_char
*) str2
;
4449 register char *fastmap
= bufp
->fastmap
;
4450 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4451 int total_size
= size1
+ size2
;
4452 int endpos
= startpos
+ range
;
4453 boolean anchored_start
;
4454 /* Nonzero if we are searching multibyte string. */
4455 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4457 /* Check for out-of-range STARTPOS. */
4458 if (startpos
< 0 || startpos
> total_size
)
4461 /* Fix up RANGE if it might eventually take us outside
4462 the virtual concatenation of STRING1 and STRING2.
4463 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4465 range
= 0 - startpos
;
4466 else if (endpos
> total_size
)
4467 range
= total_size
- startpos
;
4469 /* If the search isn't to be a backwards one, don't waste time in a
4470 search for a pattern anchored at beginning of buffer. */
4471 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4480 /* In a forward search for something that starts with \=.
4481 don't keep searching past point. */
4482 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4484 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4490 /* Update the fastmap now if not correct already. */
4491 if (fastmap
&& !bufp
->fastmap_accurate
)
4492 re_compile_fastmap (bufp
);
4494 /* See whether the pattern is anchored. */
4495 anchored_start
= (bufp
->buffer
[0] == begline
);
4498 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4500 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4502 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4506 /* Loop through the string, looking for a place to start matching. */
4509 /* If the pattern is anchored,
4510 skip quickly past places we cannot match.
4511 We don't bother to treat startpos == 0 specially
4512 because that case doesn't repeat. */
4513 if (anchored_start
&& startpos
> 0)
4515 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4516 : string2
[startpos
- size1
- 1])
4521 /* If a fastmap is supplied, skip quickly over characters that
4522 cannot be the start of a match. If the pattern can match the
4523 null string, however, we don't need to skip characters; we want
4524 the first null string. */
4525 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4527 register re_char
*d
;
4528 register re_wchar_t buf_ch
;
4530 d
= POS_ADDR_VSTRING (startpos
);
4532 if (range
> 0) /* Searching forwards. */
4534 register int lim
= 0;
4537 if (startpos
< size1
&& startpos
+ range
>= size1
)
4538 lim
= range
- (size1
- startpos
);
4540 /* Written out as an if-else to avoid testing `translate'
4542 if (RE_TRANSLATE_P (translate
))
4549 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4550 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4551 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4554 range
-= buf_charlen
;
4560 register re_wchar_t ch
, translated
;
4563 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4564 translated
= RE_TRANSLATE (translate
, ch
);
4565 if (translated
!= ch
4566 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4568 if (fastmap
[buf_ch
])
4581 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4582 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4584 range
-= buf_charlen
;
4588 while (range
> lim
&& !fastmap
[*d
])
4594 startpos
+= irange
- range
;
4596 else /* Searching backwards. */
4600 buf_ch
= STRING_CHAR (d
);
4601 buf_ch
= TRANSLATE (buf_ch
);
4602 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4607 register re_wchar_t ch
, translated
;
4610 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4611 translated
= TRANSLATE (ch
);
4612 if (translated
!= ch
4613 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4615 if (! fastmap
[TRANSLATE (buf_ch
)])
4621 /* If can't match the null string, and that's all we have left, fail. */
4622 if (range
>= 0 && startpos
== total_size
&& fastmap
4623 && !bufp
->can_be_null
)
4626 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4627 startpos
, regs
, stop
);
4640 /* Update STARTPOS to the next character boundary. */
4643 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4644 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4645 int len
= BYTES_BY_CHAR_HEAD (*p
);
4663 /* Update STARTPOS to the previous character boundary. */
4666 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4668 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4670 /* Find the head of multibyte form. */
4671 PREV_CHAR_BOUNDARY (p
, phead
);
4672 range
+= p0
- 1 - p
;
4676 startpos
-= p0
- 1 - p
;
4682 WEAK_ALIAS (__re_search_2
, re_search_2
)
4684 /* Declarations and macros for re_match_2. */
4686 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4688 RE_TRANSLATE_TYPE translate
,
4689 const int multibyte
));
4691 /* This converts PTR, a pointer into one of the search strings `string1'
4692 and `string2' into an offset from the beginning of that string. */
4693 #define POINTER_TO_OFFSET(ptr) \
4694 (FIRST_STRING_P (ptr) \
4695 ? ((regoff_t) ((ptr) - string1)) \
4696 : ((regoff_t) ((ptr) - string2 + size1)))
4698 /* Call before fetching a character with *d. This switches over to
4699 string2 if necessary.
4700 Check re_match_2_internal for a discussion of why end_match_2 might
4701 not be within string2 (but be equal to end_match_1 instead). */
4702 #define PREFETCH() \
4705 /* End of string2 => fail. */ \
4706 if (dend == end_match_2) \
4708 /* End of string1 => advance to string2. */ \
4710 dend = end_match_2; \
4713 /* Call before fetching a char with *d if you already checked other limits.
4714 This is meant for use in lookahead operations like wordend, etc..
4715 where we might need to look at parts of the string that might be
4716 outside of the LIMITs (i.e past `stop'). */
4717 #define PREFETCH_NOLIMIT() \
4721 dend = end_match_2; \
4724 /* Test if at very beginning or at very end of the virtual concatenation
4725 of `string1' and `string2'. If only one string, it's `string2'. */
4726 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4727 #define AT_STRINGS_END(d) ((d) == end2)
4730 /* Test if D points to a character which is word-constituent. We have
4731 two special cases to check for: if past the end of string1, look at
4732 the first character in string2; and if before the beginning of
4733 string2, look at the last character in string1. */
4734 #define WORDCHAR_P(d) \
4735 (SYNTAX ((d) == end1 ? *string2 \
4736 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4739 /* Disabled due to a compiler bug -- see comment at case wordbound */
4741 /* The comment at case wordbound is following one, but we don't use
4742 AT_WORD_BOUNDARY anymore to support multibyte form.
4744 The DEC Alpha C compiler 3.x generates incorrect code for the
4745 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4746 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4747 macro and introducing temporary variables works around the bug. */
4750 /* Test if the character before D and the one at D differ with respect
4751 to being word-constituent. */
4752 #define AT_WORD_BOUNDARY(d) \
4753 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4754 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4757 /* Free everything we malloc. */
4758 #ifdef MATCH_MAY_ALLOCATE
4759 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4760 # define FREE_VARIABLES() \
4762 REGEX_FREE_STACK (fail_stack.stack); \
4763 FREE_VAR (regstart); \
4764 FREE_VAR (regend); \
4765 FREE_VAR (best_regstart); \
4766 FREE_VAR (best_regend); \
4769 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4770 #endif /* not MATCH_MAY_ALLOCATE */
4773 /* Optimization routines. */
4775 /* If the operation is a match against one or more chars,
4776 return a pointer to the next operation, else return NULL. */
4781 switch (SWITCH_ENUM_CAST (*p
++))
4792 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4795 p
= CHARSET_RANGE_TABLE (p
- 1);
4796 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4797 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4800 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4807 case notcategoryspec
:
4819 /* Jump over non-matching operations. */
4821 skip_noops (p
, pend
)
4827 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4836 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4847 /* Non-zero if "p1 matches something" implies "p2 fails". */
4849 mutually_exclusive_p (bufp
, p1
, p2
)
4850 struct re_pattern_buffer
*bufp
;
4854 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4855 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4857 assert (p1
>= bufp
->buffer
&& p1
< pend
4858 && p2
>= bufp
->buffer
&& p2
<= pend
);
4860 /* Skip over open/close-group commands.
4861 If what follows this loop is a ...+ construct,
4862 look at what begins its body, since we will have to
4863 match at least one of that. */
4864 p2
= skip_noops (p2
, pend
);
4865 /* The same skip can be done for p1, except that this function
4866 is only used in the case where p1 is a simple match operator. */
4867 /* p1 = skip_noops (p1, pend); */
4869 assert (p1
>= bufp
->buffer
&& p1
< pend
4870 && p2
>= bufp
->buffer
&& p2
<= pend
);
4872 op2
= p2
== pend
? succeed
: *p2
;
4874 switch (SWITCH_ENUM_CAST (op2
))
4878 /* If we're at the end of the pattern, we can change. */
4879 if (skip_one_char (p1
))
4881 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4889 register re_wchar_t c
4890 = (re_opcode_t
) *p2
== endline
? '\n'
4891 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4893 if ((re_opcode_t
) *p1
== exactn
)
4895 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4897 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4902 else if ((re_opcode_t
) *p1
== charset
4903 || (re_opcode_t
) *p1
== charset_not
)
4905 int not = (re_opcode_t
) *p1
== charset_not
;
4907 /* Test if C is listed in charset (or charset_not)
4909 if (! multibyte
|| IS_REAL_ASCII (c
))
4911 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4912 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4915 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4916 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4918 /* `not' is equal to 1 if c would match, which means
4919 that we can't change to pop_failure_jump. */
4922 DEBUG_PRINT1 (" No match => fast loop.\n");
4926 else if ((re_opcode_t
) *p1
== anychar
4929 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4937 if ((re_opcode_t
) *p1
== exactn
)
4938 /* Reuse the code above. */
4939 return mutually_exclusive_p (bufp
, p2
, p1
);
4941 /* It is hard to list up all the character in charset
4942 P2 if it includes multibyte character. Give up in
4944 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4946 /* Now, we are sure that P2 has no range table.
4947 So, for the size of bitmap in P2, `p2[1]' is
4948 enough. But P1 may have range table, so the
4949 size of bitmap table of P1 is extracted by
4950 using macro `CHARSET_BITMAP_SIZE'.
4952 In a multibyte case, we know that all the character
4953 listed in P2 is ASCII. In a unibyte case, P1 has only a
4954 bitmap table. So, in both cases, it is enough to test
4955 only the bitmap table of P1. */
4957 if ((re_opcode_t
) *p1
== charset
)
4960 /* We win if the charset inside the loop
4961 has no overlap with the one after the loop. */
4964 && idx
< CHARSET_BITMAP_SIZE (p1
));
4966 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4970 || idx
== CHARSET_BITMAP_SIZE (p1
))
4972 DEBUG_PRINT1 (" No match => fast loop.\n");
4976 else if ((re_opcode_t
) *p1
== charset_not
)
4979 /* We win if the charset_not inside the loop lists
4980 every character listed in the charset after. */
4981 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4982 if (! (p2
[2 + idx
] == 0
4983 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4984 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4989 DEBUG_PRINT1 (" No match => fast loop.\n");
4998 switch (SWITCH_ENUM_CAST (*p1
))
5002 /* Reuse the code above. */
5003 return mutually_exclusive_p (bufp
, p2
, p1
);
5005 /* When we have two charset_not, it's very unlikely that
5006 they don't overlap. The union of the two sets of excluded
5007 chars should cover all possible chars, which, as a matter of
5008 fact, is virtually impossible in multibyte buffers. */
5014 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
5016 return ((re_opcode_t
) *p1
== syntaxspec
5017 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5019 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
5022 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
5024 return ((re_opcode_t
) *p1
== notsyntaxspec
5025 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
5027 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
5030 return (((re_opcode_t
) *p1
== notsyntaxspec
5031 || (re_opcode_t
) *p1
== syntaxspec
)
5036 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
5037 case notcategoryspec
:
5038 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
5050 /* Matching routines. */
5052 #ifndef emacs /* Emacs never uses this. */
5053 /* re_match is like re_match_2 except it takes only a single string. */
5056 re_match (bufp
, string
, size
, pos
, regs
)
5057 struct re_pattern_buffer
*bufp
;
5060 struct re_registers
*regs
;
5062 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
5066 WEAK_ALIAS (__re_match
, re_match
)
5067 #endif /* not emacs */
5070 /* In Emacs, this is the string or buffer in which we
5071 are matching. It is used for looking up syntax properties. */
5072 Lisp_Object re_match_object
;
5075 /* re_match_2 matches the compiled pattern in BUFP against the
5076 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5077 and SIZE2, respectively). We start matching at POS, and stop
5080 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5081 store offsets for the substring each group matched in REGS. See the
5082 documentation for exactly how many groups we fill.
5084 We return -1 if no match, -2 if an internal error (such as the
5085 failure stack overflowing). Otherwise, we return the length of the
5086 matched substring. */
5089 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5090 struct re_pattern_buffer
*bufp
;
5091 const char *string1
, *string2
;
5094 struct re_registers
*regs
;
5101 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
5102 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
5103 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
5106 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
5107 (re_char
*) string2
, size2
,
5111 WEAK_ALIAS (__re_match_2
, re_match_2
)
5114 /* This is a separate function so that we can force an alloca cleanup
5117 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5118 struct re_pattern_buffer
*bufp
;
5119 re_char
*string1
, *string2
;
5122 struct re_registers
*regs
;
5125 /* General temporaries. */
5130 /* Just past the end of the corresponding string. */
5131 re_char
*end1
, *end2
;
5133 /* Pointers into string1 and string2, just past the last characters in
5134 each to consider matching. */
5135 re_char
*end_match_1
, *end_match_2
;
5137 /* Where we are in the data, and the end of the current string. */
5140 /* Used sometimes to remember where we were before starting matching
5141 an operator so that we can go back in case of failure. This "atomic"
5142 behavior of matching opcodes is indispensable to the correctness
5143 of the on_failure_keep_string_jump optimization. */
5146 /* Where we are in the pattern, and the end of the pattern. */
5147 re_char
*p
= bufp
->buffer
;
5148 re_char
*pend
= p
+ bufp
->used
;
5150 /* We use this to map every character in the string. */
5151 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5153 /* Nonzero if BUFP is setup from a multibyte regex. */
5154 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
5156 /* Nonzero if STRING1/STRING2 are multibyte. */
5157 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
5159 /* Failure point stack. Each place that can handle a failure further
5160 down the line pushes a failure point on this stack. It consists of
5161 regstart, and regend for all registers corresponding to
5162 the subexpressions we're currently inside, plus the number of such
5163 registers, and, finally, two char *'s. The first char * is where
5164 to resume scanning the pattern; the second one is where to resume
5165 scanning the strings. */
5166 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5167 fail_stack_type fail_stack
;
5170 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5173 #if defined REL_ALLOC && defined REGEX_MALLOC
5174 /* This holds the pointer to the failure stack, when
5175 it is allocated relocatably. */
5176 fail_stack_elt_t
*failure_stack_ptr
;
5179 /* We fill all the registers internally, independent of what we
5180 return, for use in backreferences. The number here includes
5181 an element for register zero. */
5182 size_t num_regs
= bufp
->re_nsub
+ 1;
5184 /* Information on the contents of registers. These are pointers into
5185 the input strings; they record just what was matched (on this
5186 attempt) by a subexpression part of the pattern, that is, the
5187 regnum-th regstart pointer points to where in the pattern we began
5188 matching and the regnum-th regend points to right after where we
5189 stopped matching the regnum-th subexpression. (The zeroth register
5190 keeps track of what the whole pattern matches.) */
5191 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5192 re_char
**regstart
, **regend
;
5195 /* The following record the register info as found in the above
5196 variables when we find a match better than any we've seen before.
5197 This happens as we backtrack through the failure points, which in
5198 turn happens only if we have not yet matched the entire string. */
5199 unsigned best_regs_set
= false;
5200 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5201 re_char
**best_regstart
, **best_regend
;
5204 /* Logically, this is `best_regend[0]'. But we don't want to have to
5205 allocate space for that if we're not allocating space for anything
5206 else (see below). Also, we never need info about register 0 for
5207 any of the other register vectors, and it seems rather a kludge to
5208 treat `best_regend' differently than the rest. So we keep track of
5209 the end of the best match so far in a separate variable. We
5210 initialize this to NULL so that when we backtrack the first time
5211 and need to test it, it's not garbage. */
5212 re_char
*match_end
= NULL
;
5215 /* Counts the total number of registers pushed. */
5216 unsigned num_regs_pushed
= 0;
5219 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5223 #ifdef MATCH_MAY_ALLOCATE
5224 /* Do not bother to initialize all the register variables if there are
5225 no groups in the pattern, as it takes a fair amount of time. If
5226 there are groups, we include space for register 0 (the whole
5227 pattern), even though we never use it, since it simplifies the
5228 array indexing. We should fix this. */
5231 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5232 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5233 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5234 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5236 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5244 /* We must initialize all our variables to NULL, so that
5245 `FREE_VARIABLES' doesn't try to free them. */
5246 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5248 #endif /* MATCH_MAY_ALLOCATE */
5250 /* The starting position is bogus. */
5251 if (pos
< 0 || pos
> size1
+ size2
)
5257 /* Initialize subexpression text positions to -1 to mark ones that no
5258 start_memory/stop_memory has been seen for. Also initialize the
5259 register information struct. */
5260 for (reg
= 1; reg
< num_regs
; reg
++)
5261 regstart
[reg
] = regend
[reg
] = NULL
;
5263 /* We move `string1' into `string2' if the latter's empty -- but not if
5264 `string1' is null. */
5265 if (size2
== 0 && string1
!= NULL
)
5272 end1
= string1
+ size1
;
5273 end2
= string2
+ size2
;
5275 /* `p' scans through the pattern as `d' scans through the data.
5276 `dend' is the end of the input string that `d' points within. `d'
5277 is advanced into the following input string whenever necessary, but
5278 this happens before fetching; therefore, at the beginning of the
5279 loop, `d' can be pointing at the end of a string, but it cannot
5283 /* Only match within string2. */
5284 d
= string2
+ pos
- size1
;
5285 dend
= end_match_2
= string2
+ stop
- size1
;
5286 end_match_1
= end1
; /* Just to give it a value. */
5292 /* Only match within string1. */
5293 end_match_1
= string1
+ stop
;
5295 When we reach end_match_1, PREFETCH normally switches to string2.
5296 But in the present case, this means that just doing a PREFETCH
5297 makes us jump from `stop' to `gap' within the string.
5298 What we really want here is for the search to stop as
5299 soon as we hit end_match_1. That's why we set end_match_2
5300 to end_match_1 (since PREFETCH fails as soon as we hit
5302 end_match_2
= end_match_1
;
5305 { /* It's important to use this code when stop == size so that
5306 moving `d' from end1 to string2 will not prevent the d == dend
5307 check from catching the end of string. */
5309 end_match_2
= string2
+ stop
- size1
;
5315 DEBUG_PRINT1 ("The compiled pattern is: ");
5316 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5317 DEBUG_PRINT1 ("The string to match is: `");
5318 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5319 DEBUG_PRINT1 ("'\n");
5321 /* This loops over pattern commands. It exits by returning from the
5322 function if the match is complete, or it drops through if the match
5323 fails at this starting point in the input data. */
5326 DEBUG_PRINT2 ("\n%p: ", p
);
5329 { /* End of pattern means we might have succeeded. */
5330 DEBUG_PRINT1 ("end of pattern ... ");
5332 /* If we haven't matched the entire string, and we want the
5333 longest match, try backtracking. */
5334 if (d
!= end_match_2
)
5336 /* 1 if this match ends in the same string (string1 or string2)
5337 as the best previous match. */
5338 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5339 == FIRST_STRING_P (d
));
5340 /* 1 if this match is the best seen so far. */
5341 boolean best_match_p
;
5343 /* AIX compiler got confused when this was combined
5344 with the previous declaration. */
5346 best_match_p
= d
> match_end
;
5348 best_match_p
= !FIRST_STRING_P (d
);
5350 DEBUG_PRINT1 ("backtracking.\n");
5352 if (!FAIL_STACK_EMPTY ())
5353 { /* More failure points to try. */
5355 /* If exceeds best match so far, save it. */
5356 if (!best_regs_set
|| best_match_p
)
5358 best_regs_set
= true;
5361 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5363 for (reg
= 1; reg
< num_regs
; reg
++)
5365 best_regstart
[reg
] = regstart
[reg
];
5366 best_regend
[reg
] = regend
[reg
];
5372 /* If no failure points, don't restore garbage. And if
5373 last match is real best match, don't restore second
5375 else if (best_regs_set
&& !best_match_p
)
5378 /* Restore best match. It may happen that `dend ==
5379 end_match_1' while the restored d is in string2.
5380 For example, the pattern `x.*y.*z' against the
5381 strings `x-' and `y-z-', if the two strings are
5382 not consecutive in memory. */
5383 DEBUG_PRINT1 ("Restoring best registers.\n");
5386 dend
= ((d
>= string1
&& d
<= end1
)
5387 ? end_match_1
: end_match_2
);
5389 for (reg
= 1; reg
< num_regs
; reg
++)
5391 regstart
[reg
] = best_regstart
[reg
];
5392 regend
[reg
] = best_regend
[reg
];
5395 } /* d != end_match_2 */
5398 DEBUG_PRINT1 ("Accepting match.\n");
5400 /* If caller wants register contents data back, do it. */
5401 if (regs
&& !bufp
->no_sub
)
5403 /* Have the register data arrays been allocated? */
5404 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5405 { /* No. So allocate them with malloc. We need one
5406 extra element beyond `num_regs' for the `-1' marker
5408 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5409 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5410 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5411 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5416 bufp
->regs_allocated
= REGS_REALLOCATE
;
5418 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5419 { /* Yes. If we need more elements than were already
5420 allocated, reallocate them. If we need fewer, just
5422 if (regs
->num_regs
< num_regs
+ 1)
5424 regs
->num_regs
= num_regs
+ 1;
5425 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5426 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5427 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5436 /* These braces fend off a "empty body in an else-statement"
5437 warning under GCC when assert expands to nothing. */
5438 assert (bufp
->regs_allocated
== REGS_FIXED
);
5441 /* Convert the pointer data in `regstart' and `regend' to
5442 indices. Register zero has to be set differently,
5443 since we haven't kept track of any info for it. */
5444 if (regs
->num_regs
> 0)
5446 regs
->start
[0] = pos
;
5447 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5450 /* Go through the first `min (num_regs, regs->num_regs)'
5451 registers, since that is all we initialized. */
5452 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5454 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5455 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5459 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5461 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5465 /* If the regs structure we return has more elements than
5466 were in the pattern, set the extra elements to -1. If
5467 we (re)allocated the registers, this is the case,
5468 because we always allocate enough to have at least one
5470 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5471 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5472 } /* regs && !bufp->no_sub */
5474 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5475 nfailure_points_pushed
, nfailure_points_popped
,
5476 nfailure_points_pushed
- nfailure_points_popped
);
5477 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5479 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5481 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5487 /* Otherwise match next pattern command. */
5488 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5490 /* Ignore these. Used to ignore the n of succeed_n's which
5491 currently have n == 0. */
5493 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5497 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5500 /* Match the next n pattern characters exactly. The following
5501 byte in the pattern defines n, and the n bytes after that
5502 are the characters to match. */
5505 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5507 /* Remember the start point to rollback upon failure. */
5511 /* This is written out as an if-else so we don't waste time
5512 testing `translate' inside the loop. */
5513 if (RE_TRANSLATE_P (translate
))
5517 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5537 /* The cost of testing `translate' is comparatively small. */
5538 if (target_multibyte
)
5541 int pat_charlen
, buf_charlen
;
5546 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5549 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5552 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5554 if (TRANSLATE (buf_ch
) != pat_ch
)
5562 mcnt
-= pat_charlen
;
5568 int pat_charlen
, buf_charlen
;
5574 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5575 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5582 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5583 if (! CHAR_BYTE8_P (buf_ch
))
5585 buf_ch
= TRANSLATE (buf_ch
);
5586 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5592 if (buf_ch
!= pat_ch
)
5605 /* Match any character except possibly a newline or a null. */
5611 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5614 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5616 buf_ch
= TRANSLATE (buf_ch
);
5618 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5620 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5621 && buf_ch
== '\000'))
5624 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5633 register unsigned int c
;
5634 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5637 /* Start of actual range_table, or end of bitmap if there is no
5639 re_char
*range_table
;
5641 /* Nonzero if there is a range table. */
5642 int range_table_exists
;
5644 /* Number of ranges of range table. This is not included
5645 in the initial byte-length of the command. */
5648 /* Whether matching against a unibyte character. */
5649 boolean unibyte_char
= false;
5651 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5653 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5655 if (range_table_exists
)
5657 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5658 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5662 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5663 if (target_multibyte
)
5668 c1
= RE_CHAR_TO_UNIBYTE (c
);
5671 unibyte_char
= true;
5677 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5679 if (! CHAR_BYTE8_P (c1
))
5681 c1
= TRANSLATE (c1
);
5682 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5685 unibyte_char
= true;
5690 unibyte_char
= true;
5693 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5694 { /* Lookup bitmap. */
5695 /* Cast to `unsigned' instead of `unsigned char' in
5696 case the bit list is a full 32 bytes long. */
5697 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5698 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5702 else if (range_table_exists
)
5704 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5706 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5707 | (class_bits
& BIT_MULTIBYTE
)
5708 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5709 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5710 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5711 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5714 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5718 if (range_table_exists
)
5719 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5721 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5723 if (!not) goto fail
;
5730 /* The beginning of a group is represented by start_memory.
5731 The argument is the register number. The text
5732 matched within the group is recorded (in the internal
5733 registers data structure) under the register number. */
5735 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5737 /* In case we need to undo this operation (via backtracking). */
5738 PUSH_FAILURE_REG ((unsigned int)*p
);
5741 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5742 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5744 /* Move past the register number and inner group count. */
5749 /* The stop_memory opcode represents the end of a group. Its
5750 argument is the same as start_memory's: the register number. */
5752 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5754 assert (!REG_UNSET (regstart
[*p
]));
5755 /* Strictly speaking, there should be code such as:
5757 assert (REG_UNSET (regend[*p]));
5758 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5760 But the only info to be pushed is regend[*p] and it is known to
5761 be UNSET, so there really isn't anything to push.
5762 Not pushing anything, on the other hand deprives us from the
5763 guarantee that regend[*p] is UNSET since undoing this operation
5764 will not reset its value properly. This is not important since
5765 the value will only be read on the next start_memory or at
5766 the very end and both events can only happen if this stop_memory
5770 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5772 /* Move past the register number and the inner group count. */
5777 /* \<digit> has been turned into a `duplicate' command which is
5778 followed by the numeric value of <digit> as the register number. */
5781 register re_char
*d2
, *dend2
;
5782 int regno
= *p
++; /* Get which register to match against. */
5783 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5785 /* Can't back reference a group which we've never matched. */
5786 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5789 /* Where in input to try to start matching. */
5790 d2
= regstart
[regno
];
5792 /* Remember the start point to rollback upon failure. */
5795 /* Where to stop matching; if both the place to start and
5796 the place to stop matching are in the same string, then
5797 set to the place to stop, otherwise, for now have to use
5798 the end of the first string. */
5800 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5801 == FIRST_STRING_P (regend
[regno
]))
5802 ? regend
[regno
] : end_match_1
);
5805 /* If necessary, advance to next segment in register
5809 if (dend2
== end_match_2
) break;
5810 if (dend2
== regend
[regno
]) break;
5812 /* End of string1 => advance to string2. */
5814 dend2
= regend
[regno
];
5816 /* At end of register contents => success */
5817 if (d2
== dend2
) break;
5819 /* If necessary, advance to next segment in data. */
5822 /* How many characters left in this segment to match. */
5825 /* Want how many consecutive characters we can match in
5826 one shot, so, if necessary, adjust the count. */
5827 if (mcnt
> dend2
- d2
)
5830 /* Compare that many; failure if mismatch, else move
5832 if (RE_TRANSLATE_P (translate
)
5833 ? bcmp_translate (d
, d2
, mcnt
, translate
, target_multibyte
)
5834 : memcmp (d
, d2
, mcnt
))
5839 d
+= mcnt
, d2
+= mcnt
;
5845 /* begline matches the empty string at the beginning of the string
5846 (unless `not_bol' is set in `bufp'), and after newlines. */
5848 DEBUG_PRINT1 ("EXECUTING begline.\n");
5850 if (AT_STRINGS_BEG (d
))
5852 if (!bufp
->not_bol
) break;
5857 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5861 /* In all other cases, we fail. */
5865 /* endline is the dual of begline. */
5867 DEBUG_PRINT1 ("EXECUTING endline.\n");
5869 if (AT_STRINGS_END (d
))
5871 if (!bufp
->not_eol
) break;
5875 PREFETCH_NOLIMIT ();
5882 /* Match at the very beginning of the data. */
5884 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5885 if (AT_STRINGS_BEG (d
))
5890 /* Match at the very end of the data. */
5892 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5893 if (AT_STRINGS_END (d
))
5898 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5899 pushes NULL as the value for the string on the stack. Then
5900 `POP_FAILURE_POINT' will keep the current value for the
5901 string, instead of restoring it. To see why, consider
5902 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5903 then the . fails against the \n. But the next thing we want
5904 to do is match the \n against the \n; if we restored the
5905 string value, we would be back at the foo.
5907 Because this is used only in specific cases, we don't need to
5908 check all the things that `on_failure_jump' does, to make
5909 sure the right things get saved on the stack. Hence we don't
5910 share its code. The only reason to push anything on the
5911 stack at all is that otherwise we would have to change
5912 `anychar's code to do something besides goto fail in this
5913 case; that seems worse than this. */
5914 case on_failure_keep_string_jump
:
5915 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5916 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5919 PUSH_FAILURE_POINT (p
- 3, NULL
);
5922 /* A nasty loop is introduced by the non-greedy *? and +?.
5923 With such loops, the stack only ever contains one failure point
5924 at a time, so that a plain on_failure_jump_loop kind of
5925 cycle detection cannot work. Worse yet, such a detection
5926 can not only fail to detect a cycle, but it can also wrongly
5927 detect a cycle (between different instantiations of the same
5929 So the method used for those nasty loops is a little different:
5930 We use a special cycle-detection-stack-frame which is pushed
5931 when the on_failure_jump_nastyloop failure-point is *popped*.
5932 This special frame thus marks the beginning of one iteration
5933 through the loop and we can hence easily check right here
5934 whether something matched between the beginning and the end of
5936 case on_failure_jump_nastyloop
:
5937 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5938 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5941 assert ((re_opcode_t
)p
[-4] == no_op
);
5944 CHECK_INFINITE_LOOP (p
- 4, d
);
5946 /* If there's a cycle, just continue without pushing
5947 this failure point. The failure point is the "try again"
5948 option, which shouldn't be tried.
5949 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5950 PUSH_FAILURE_POINT (p
- 3, d
);
5954 /* Simple loop detecting on_failure_jump: just check on the
5955 failure stack if the same spot was already hit earlier. */
5956 case on_failure_jump_loop
:
5958 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5959 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5963 CHECK_INFINITE_LOOP (p
- 3, d
);
5965 /* If there's a cycle, get out of the loop, as if the matching
5966 had failed. We used to just `goto fail' here, but that was
5967 aborting the search a bit too early: we want to keep the
5968 empty-loop-match and keep matching after the loop.
5969 We want (x?)*y\1z to match both xxyz and xxyxz. */
5972 PUSH_FAILURE_POINT (p
- 3, d
);
5977 /* Uses of on_failure_jump:
5979 Each alternative starts with an on_failure_jump that points
5980 to the beginning of the next alternative. Each alternative
5981 except the last ends with a jump that in effect jumps past
5982 the rest of the alternatives. (They really jump to the
5983 ending jump of the following alternative, because tensioning
5984 these jumps is a hassle.)
5986 Repeats start with an on_failure_jump that points past both
5987 the repetition text and either the following jump or
5988 pop_failure_jump back to this on_failure_jump. */
5989 case on_failure_jump
:
5990 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5991 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5994 PUSH_FAILURE_POINT (p
-3, d
);
5997 /* This operation is used for greedy *.
5998 Compare the beginning of the repeat with what in the
5999 pattern follows its end. If we can establish that there
6000 is nothing that they would both match, i.e., that we
6001 would have to backtrack because of (as in, e.g., `a*a')
6002 then we can use a non-backtracking loop based on
6003 on_failure_keep_string_jump instead of on_failure_jump. */
6004 case on_failure_jump_smart
:
6005 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6006 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6009 re_char
*p1
= p
; /* Next operation. */
6010 /* Here, we discard `const', making re_match non-reentrant. */
6011 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
6012 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
6014 p
-= 3; /* Reset so that we will re-execute the
6015 instruction once it's been changed. */
6017 EXTRACT_NUMBER (mcnt
, p2
- 2);
6019 /* Ensure this is a indeed the trivial kind of loop
6020 we are expecting. */
6021 assert (skip_one_char (p1
) == p2
- 3);
6022 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
6023 DEBUG_STATEMENT (debug
+= 2);
6024 if (mutually_exclusive_p (bufp
, p1
, p2
))
6026 /* Use a fast `on_failure_keep_string_jump' loop. */
6027 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
6028 *p3
= (unsigned char) on_failure_keep_string_jump
;
6029 STORE_NUMBER (p2
- 2, mcnt
+ 3);
6033 /* Default to a safe `on_failure_jump' loop. */
6034 DEBUG_PRINT1 (" smart default => slow loop.\n");
6035 *p3
= (unsigned char) on_failure_jump
;
6037 DEBUG_STATEMENT (debug
-= 2);
6041 /* Unconditionally jump (without popping any failure points). */
6044 IMMEDIATE_QUIT_CHECK
;
6045 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
6046 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
6047 p
+= mcnt
; /* Do the jump. */
6048 DEBUG_PRINT2 ("(to %p).\n", p
);
6052 /* Have to succeed matching what follows at least n times.
6053 After that, handle like `on_failure_jump'. */
6055 /* Signedness doesn't matter since we only compare MCNT to 0. */
6056 EXTRACT_NUMBER (mcnt
, p
+ 2);
6057 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
6059 /* Originally, mcnt is how many times we HAVE to succeed. */
6062 /* Here, we discard `const', making re_match non-reentrant. */
6063 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6066 PUSH_NUMBER (p2
, mcnt
);
6069 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6074 /* Signedness doesn't matter since we only compare MCNT to 0. */
6075 EXTRACT_NUMBER (mcnt
, p
+ 2);
6076 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
6078 /* Originally, this is how many times we CAN jump. */
6081 /* Here, we discard `const', making re_match non-reentrant. */
6082 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
6084 PUSH_NUMBER (p2
, mcnt
);
6085 goto unconditional_jump
;
6087 /* If don't have to jump any more, skip over the rest of command. */
6094 unsigned char *p2
; /* Location of the counter. */
6095 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
6097 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6098 /* Here, we discard `const', making re_match non-reentrant. */
6099 p2
= (unsigned char*) p
+ mcnt
;
6100 /* Signedness doesn't matter since we only copy MCNT's bits . */
6101 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6102 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
6103 PUSH_NUMBER (p2
, mcnt
);
6109 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
6110 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
6112 /* We SUCCEED (or FAIL) in one of the following cases: */
6114 /* Case 1: D is at the beginning or the end of string. */
6115 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
6119 /* C1 is the character before D, S1 is the syntax of C1, C2
6120 is the character at D, and S2 is the syntax of C2. */
6125 int offset
= PTR_TO_OFFSET (d
- 1);
6126 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6127 UPDATE_SYNTAX_TABLE (charpos
);
6129 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6132 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6134 PREFETCH_NOLIMIT ();
6135 GET_CHAR_AFTER (c2
, d
, dummy
);
6138 if (/* Case 2: Only one of S1 and S2 is Sword. */
6139 ((s1
== Sword
) != (s2
== Sword
))
6140 /* Case 3: Both of S1 and S2 are Sword, and macro
6141 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6142 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
6151 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
6153 /* We FAIL in one of the following cases: */
6155 /* Case 1: D is at the end of string. */
6156 if (AT_STRINGS_END (d
))
6160 /* C1 is the character before D, S1 is the syntax of C1, C2
6161 is the character at D, and S2 is the syntax of C2. */
6166 int offset
= PTR_TO_OFFSET (d
);
6167 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6168 UPDATE_SYNTAX_TABLE (charpos
);
6171 GET_CHAR_AFTER (c2
, d
, dummy
);
6174 /* Case 2: S2 is not Sword. */
6178 /* Case 3: D is not at the beginning of string ... */
6179 if (!AT_STRINGS_BEG (d
))
6181 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6183 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6187 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6189 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6196 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6198 /* We FAIL in one of the following cases: */
6200 /* Case 1: D is at the beginning of string. */
6201 if (AT_STRINGS_BEG (d
))
6205 /* C1 is the character before D, S1 is the syntax of C1, C2
6206 is the character at D, and S2 is the syntax of C2. */
6211 int offset
= PTR_TO_OFFSET (d
) - 1;
6212 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6213 UPDATE_SYNTAX_TABLE (charpos
);
6215 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6218 /* Case 2: S1 is not Sword. */
6222 /* Case 3: D is not at the end of string ... */
6223 if (!AT_STRINGS_END (d
))
6225 PREFETCH_NOLIMIT ();
6226 GET_CHAR_AFTER (c2
, d
, dummy
);
6228 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6232 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6234 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6241 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6243 /* We FAIL in one of the following cases: */
6245 /* Case 1: D is at the end of string. */
6246 if (AT_STRINGS_END (d
))
6250 /* C1 is the character before D, S1 is the syntax of C1, C2
6251 is the character at D, and S2 is the syntax of C2. */
6255 int offset
= PTR_TO_OFFSET (d
);
6256 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6257 UPDATE_SYNTAX_TABLE (charpos
);
6260 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6263 /* Case 2: S2 is neither Sword nor Ssymbol. */
6264 if (s2
!= Sword
&& s2
!= Ssymbol
)
6267 /* Case 3: D is not at the beginning of string ... */
6268 if (!AT_STRINGS_BEG (d
))
6270 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6272 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6276 /* ... and S1 is Sword or Ssymbol. */
6277 if (s1
== Sword
|| s1
== Ssymbol
)
6284 DEBUG_PRINT1 ("EXECUTING symend.\n");
6286 /* We FAIL in one of the following cases: */
6288 /* Case 1: D is at the beginning of string. */
6289 if (AT_STRINGS_BEG (d
))
6293 /* C1 is the character before D, S1 is the syntax of C1, C2
6294 is the character at D, and S2 is the syntax of C2. */
6298 int offset
= PTR_TO_OFFSET (d
) - 1;
6299 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6300 UPDATE_SYNTAX_TABLE (charpos
);
6302 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6305 /* Case 2: S1 is neither Ssymbol nor Sword. */
6306 if (s1
!= Sword
&& s1
!= Ssymbol
)
6309 /* Case 3: D is not at the end of string ... */
6310 if (!AT_STRINGS_END (d
))
6312 PREFETCH_NOLIMIT ();
6313 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6315 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6319 /* ... and S2 is Sword or Ssymbol. */
6320 if (s2
== Sword
|| s2
== Ssymbol
)
6328 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6330 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6334 int offset
= PTR_TO_OFFSET (d
);
6335 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6336 UPDATE_SYNTAX_TABLE (pos1
);
6343 GET_CHAR_AFTER (c
, d
, len
);
6344 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6352 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6353 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6358 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6359 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6364 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6365 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6370 case notcategoryspec
:
6371 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6373 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6379 GET_CHAR_AFTER (c
, d
, len
);
6380 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6391 continue; /* Successfully executed one pattern command; keep going. */
6394 /* We goto here if a matching operation fails. */
6396 IMMEDIATE_QUIT_CHECK
;
6397 if (!FAIL_STACK_EMPTY ())
6400 /* A restart point is known. Restore to that state. */
6401 DEBUG_PRINT1 ("\nFAIL:\n");
6402 POP_FAILURE_POINT (str
, pat
);
6403 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6405 case on_failure_keep_string_jump
:
6406 assert (str
== NULL
);
6407 goto continue_failure_jump
;
6409 case on_failure_jump_nastyloop
:
6410 assert ((re_opcode_t
)pat
[-2] == no_op
);
6411 PUSH_FAILURE_POINT (pat
- 2, str
);
6414 case on_failure_jump_loop
:
6415 case on_failure_jump
:
6418 continue_failure_jump
:
6419 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6424 /* A special frame used for nastyloops. */
6431 assert (p
>= bufp
->buffer
&& p
<= pend
);
6433 if (d
>= string1
&& d
<= end1
)
6437 break; /* Matching at this starting point really fails. */
6441 goto restore_best_regs
;
6445 return -1; /* Failure to match. */
6448 /* Subroutine definitions for re_match_2. */
6450 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6451 bytes; nonzero otherwise. */
6454 bcmp_translate (s1
, s2
, len
, translate
, target_multibyte
)
6457 RE_TRANSLATE_TYPE translate
;
6458 const int target_multibyte
;
6460 register re_char
*p1
= s1
, *p2
= s2
;
6461 re_char
*p1_end
= s1
+ len
;
6462 re_char
*p2_end
= s2
+ len
;
6464 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6465 different lengths, but relying on a single `len' would break this. -sm */
6466 while (p1
< p1_end
&& p2
< p2_end
)
6468 int p1_charlen
, p2_charlen
;
6469 re_wchar_t p1_ch
, p2_ch
;
6471 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6472 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6474 if (RE_TRANSLATE (translate
, p1_ch
)
6475 != RE_TRANSLATE (translate
, p2_ch
))
6478 p1
+= p1_charlen
, p2
+= p2_charlen
;
6481 if (p1
!= p1_end
|| p2
!= p2_end
)
6487 /* Entry points for GNU code. */
6489 /* re_compile_pattern is the GNU regular expression compiler: it
6490 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6491 Returns 0 if the pattern was valid, otherwise an error string.
6493 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6494 are set in BUFP on entry.
6496 We call regex_compile to do the actual compilation. */
6499 re_compile_pattern (pattern
, length
, bufp
)
6500 const char *pattern
;
6502 struct re_pattern_buffer
*bufp
;
6506 /* GNU code is written to assume at least RE_NREGS registers will be set
6507 (and at least one extra will be -1). */
6508 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6510 /* And GNU code determines whether or not to get register information
6511 by passing null for the REGS argument to re_match, etc., not by
6515 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6519 return gettext (re_error_msgid
[(int) ret
]);
6521 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6523 /* Entry points compatible with 4.2 BSD regex library. We don't define
6524 them unless specifically requested. */
6526 #if defined _REGEX_RE_COMP || defined _LIBC
6528 /* BSD has one and only one pattern buffer. */
6529 static struct re_pattern_buffer re_comp_buf
;
6533 /* Make these definitions weak in libc, so POSIX programs can redefine
6534 these names if they don't use our functions, and still use
6535 regcomp/regexec below without link errors. */
6545 if (!re_comp_buf
.buffer
)
6546 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6547 return (char *) gettext ("No previous regular expression");
6551 if (!re_comp_buf
.buffer
)
6553 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6554 if (re_comp_buf
.buffer
== NULL
)
6555 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6556 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6557 re_comp_buf
.allocated
= 200;
6559 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6560 if (re_comp_buf
.fastmap
== NULL
)
6561 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6562 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6565 /* Since `re_exec' always passes NULL for the `regs' argument, we
6566 don't need to initialize the pattern buffer fields which affect it. */
6568 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6573 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6574 return (char *) gettext (re_error_msgid
[(int) ret
]);
6585 const int len
= strlen (s
);
6587 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6589 #endif /* _REGEX_RE_COMP */
6591 /* POSIX.2 functions. Don't define these for Emacs. */
6595 /* regcomp takes a regular expression as a string and compiles it.
6597 PREG is a regex_t *. We do not expect any fields to be initialized,
6598 since POSIX says we shouldn't. Thus, we set
6600 `buffer' to the compiled pattern;
6601 `used' to the length of the compiled pattern;
6602 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6603 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6604 RE_SYNTAX_POSIX_BASIC;
6605 `fastmap' to an allocated space for the fastmap;
6606 `fastmap_accurate' to zero;
6607 `re_nsub' to the number of subexpressions in PATTERN.
6609 PATTERN is the address of the pattern string.
6611 CFLAGS is a series of bits which affect compilation.
6613 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6614 use POSIX basic syntax.
6616 If REG_NEWLINE is set, then . and [^...] don't match newline.
6617 Also, regexec will try a match beginning after every newline.
6619 If REG_ICASE is set, then we considers upper- and lowercase
6620 versions of letters to be equivalent when matching.
6622 If REG_NOSUB is set, then when PREG is passed to regexec, that
6623 routine will report only success or failure, and nothing about the
6626 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6627 the return codes and their meanings.) */
6630 regcomp (preg
, pattern
, cflags
)
6631 regex_t
*__restrict preg
;
6632 const char *__restrict pattern
;
6637 = (cflags
& REG_EXTENDED
) ?
6638 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6640 /* regex_compile will allocate the space for the compiled pattern. */
6642 preg
->allocated
= 0;
6645 /* Try to allocate space for the fastmap. */
6646 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6648 if (cflags
& REG_ICASE
)
6653 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6654 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6655 if (preg
->translate
== NULL
)
6656 return (int) REG_ESPACE
;
6658 /* Map uppercase characters to corresponding lowercase ones. */
6659 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6660 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6663 preg
->translate
= NULL
;
6665 /* If REG_NEWLINE is set, newlines are treated differently. */
6666 if (cflags
& REG_NEWLINE
)
6667 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6668 syntax
&= ~RE_DOT_NEWLINE
;
6669 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6672 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6674 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6676 /* POSIX says a null character in the pattern terminates it, so we
6677 can use strlen here in compiling the pattern. */
6678 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6680 /* POSIX doesn't distinguish between an unmatched open-group and an
6681 unmatched close-group: both are REG_EPAREN. */
6682 if (ret
== REG_ERPAREN
)
6685 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6686 { /* Compute the fastmap now, since regexec cannot modify the pattern
6688 re_compile_fastmap (preg
);
6689 if (preg
->can_be_null
)
6690 { /* The fastmap can't be used anyway. */
6691 free (preg
->fastmap
);
6692 preg
->fastmap
= NULL
;
6697 WEAK_ALIAS (__regcomp
, regcomp
)
6700 /* regexec searches for a given pattern, specified by PREG, in the
6703 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6704 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6705 least NMATCH elements, and we set them to the offsets of the
6706 corresponding matched substrings.
6708 EFLAGS specifies `execution flags' which affect matching: if
6709 REG_NOTBOL is set, then ^ does not match at the beginning of the
6710 string; if REG_NOTEOL is set, then $ does not match at the end.
6712 We return 0 if we find a match and REG_NOMATCH if not. */
6715 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6716 const regex_t
*__restrict preg
;
6717 const char *__restrict string
;
6719 regmatch_t pmatch
[__restrict_arr
];
6723 struct re_registers regs
;
6724 regex_t private_preg
;
6725 int len
= strlen (string
);
6726 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6728 private_preg
= *preg
;
6730 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6731 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6733 /* The user has told us exactly how many registers to return
6734 information about, via `nmatch'. We have to pass that on to the
6735 matching routines. */
6736 private_preg
.regs_allocated
= REGS_FIXED
;
6740 regs
.num_regs
= nmatch
;
6741 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6742 if (regs
.start
== NULL
)
6743 return (int) REG_NOMATCH
;
6744 regs
.end
= regs
.start
+ nmatch
;
6747 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6748 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6749 was a little bit longer but still only matching the real part.
6750 This works because the `endline' will check for a '\n' and will find a
6751 '\0', correctly deciding that this is not the end of a line.
6752 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6753 a convenient '\0' there. For all we know, the string could be preceded
6754 by '\n' which would throw things off. */
6756 /* Perform the searching operation. */
6757 ret
= re_search (&private_preg
, string
, len
,
6758 /* start: */ 0, /* range: */ len
,
6759 want_reg_info
? ®s
: (struct re_registers
*) 0);
6761 /* Copy the register information to the POSIX structure. */
6768 for (r
= 0; r
< nmatch
; r
++)
6770 pmatch
[r
].rm_so
= regs
.start
[r
];
6771 pmatch
[r
].rm_eo
= regs
.end
[r
];
6775 /* If we needed the temporary register info, free the space now. */
6779 /* We want zero return to mean success, unlike `re_search'. */
6780 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6782 WEAK_ALIAS (__regexec
, regexec
)
6785 /* Returns a message corresponding to an error code, ERR_CODE, returned
6786 from either regcomp or regexec. We don't use PREG here.
6788 ERR_CODE was previously called ERRCODE, but that name causes an
6789 error with msvc8 compiler. */
6792 regerror (err_code
, preg
, errbuf
, errbuf_size
)
6794 const regex_t
*preg
;
6802 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6803 /* Only error codes returned by the rest of the code should be passed
6804 to this routine. If we are given anything else, or if other regex
6805 code generates an invalid error code, then the program has a bug.
6806 Dump core so we can fix it. */
6809 msg
= gettext (re_error_msgid
[err_code
]);
6811 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6813 if (errbuf_size
!= 0)
6815 if (msg_size
> errbuf_size
)
6817 strncpy (errbuf
, msg
, errbuf_size
- 1);
6818 errbuf
[errbuf_size
- 1] = 0;
6821 strcpy (errbuf
, msg
);
6826 WEAK_ALIAS (__regerror
, regerror
)
6829 /* Free dynamically allocated space used by PREG. */
6835 free (preg
->buffer
);
6836 preg
->buffer
= NULL
;
6838 preg
->allocated
= 0;
6841 free (preg
->fastmap
);
6842 preg
->fastmap
= NULL
;
6843 preg
->fastmap_accurate
= 0;
6845 free (preg
->translate
);
6846 preg
->translate
= NULL
;
6848 WEAK_ALIAS (__regfree
, regfree
)
6850 #endif /* not emacs */
6852 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6853 (do not change this comment) */