Correct typo.
[emacs.git] / src / bytecode.c
blob3582e69dfb7ae3ec83939968f66795f49d036130
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.
22 hacked on by jwz@lucid.com 17-jun-91
23 o added a compile-time switch to turn on simple sanity checking;
24 o put back the obsolete byte-codes for error-detection;
25 o added a new instruction, unbind_all, which I will use for
26 tail-recursion elimination;
27 o made temp_output_buffer_show be called with the right number
28 of args;
29 o made the new bytecodes be called with args in the right order;
30 o added metering support.
32 by Hallvard:
33 o added relative jump instructions;
34 o all conditionals now only do QUIT if they jump.
37 #include <config.h>
38 #include "lisp.h"
39 #include "buffer.h"
40 #include "charset.h"
41 #include "syntax.h"
42 #include "window.h"
44 #ifdef CHECK_FRAME_FONT
45 #include "frame.h"
46 #include "xterm.h"
47 #endif
50 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
51 * debugging the byte compiler...)
53 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
55 /* #define BYTE_CODE_SAFE */
56 /* #define BYTE_CODE_METER */
59 #ifdef BYTE_CODE_METER
61 Lisp_Object Vbyte_code_meter, Qbyte_code_meter;
62 int byte_metering_on;
64 #define METER_2(code1, code2) \
65 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
66 ->contents[(code2)])
68 #define METER_1(code) METER_2 (0, (code))
70 #define METER_CODE(last_code, this_code) \
71 { \
72 if (byte_metering_on) \
73 { \
74 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_1 (this_code)++; \
76 if (last_code \
77 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
78 METER_2 (last_code, this_code)++; \
79 } \
82 #else /* no BYTE_CODE_METER */
84 #define METER_CODE(last_code, this_code)
86 #endif /* no BYTE_CODE_METER */
89 Lisp_Object Qbytecode;
91 /* Byte codes: */
93 #define Bvarref 010
94 #define Bvarset 020
95 #define Bvarbind 030
96 #define Bcall 040
97 #define Bunbind 050
99 #define Bnth 070
100 #define Bsymbolp 071
101 #define Bconsp 072
102 #define Bstringp 073
103 #define Blistp 074
104 #define Beq 075
105 #define Bmemq 076
106 #define Bnot 077
107 #define Bcar 0100
108 #define Bcdr 0101
109 #define Bcons 0102
110 #define Blist1 0103
111 #define Blist2 0104
112 #define Blist3 0105
113 #define Blist4 0106
114 #define Blength 0107
115 #define Baref 0110
116 #define Baset 0111
117 #define Bsymbol_value 0112
118 #define Bsymbol_function 0113
119 #define Bset 0114
120 #define Bfset 0115
121 #define Bget 0116
122 #define Bsubstring 0117
123 #define Bconcat2 0120
124 #define Bconcat3 0121
125 #define Bconcat4 0122
126 #define Bsub1 0123
127 #define Badd1 0124
128 #define Beqlsign 0125
129 #define Bgtr 0126
130 #define Blss 0127
131 #define Bleq 0130
132 #define Bgeq 0131
133 #define Bdiff 0132
134 #define Bnegate 0133
135 #define Bplus 0134
136 #define Bmax 0135
137 #define Bmin 0136
138 #define Bmult 0137
140 #define Bpoint 0140
141 /* Was Bmark in v17. */
142 #define Bsave_current_buffer 0141
143 #define Bgoto_char 0142
144 #define Binsert 0143
145 #define Bpoint_max 0144
146 #define Bpoint_min 0145
147 #define Bchar_after 0146
148 #define Bfollowing_char 0147
149 #define Bpreceding_char 0150
150 #define Bcurrent_column 0151
151 #define Bindent_to 0152
152 #define Bscan_buffer 0153 /* No longer generated as of v18 */
153 #define Beolp 0154
154 #define Beobp 0155
155 #define Bbolp 0156
156 #define Bbobp 0157
157 #define Bcurrent_buffer 0160
158 #define Bset_buffer 0161
159 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
160 #define Bread_char 0162 /* No longer generated as of v19 */
161 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
162 #define Binteractive_p 0164 /* Needed since interactive-p takes unevalled args */
164 #define Bforward_char 0165
165 #define Bforward_word 0166
166 #define Bskip_chars_forward 0167
167 #define Bskip_chars_backward 0170
168 #define Bforward_line 0171
169 #define Bchar_syntax 0172
170 #define Bbuffer_substring 0173
171 #define Bdelete_region 0174
172 #define Bnarrow_to_region 0175
173 #define Bwiden 0176
174 #define Bend_of_line 0177
176 #define Bconstant2 0201
177 #define Bgoto 0202
178 #define Bgotoifnil 0203
179 #define Bgotoifnonnil 0204
180 #define Bgotoifnilelsepop 0205
181 #define Bgotoifnonnilelsepop 0206
182 #define Breturn 0207
183 #define Bdiscard 0210
184 #define Bdup 0211
186 #define Bsave_excursion 0212
187 #define Bsave_window_excursion 0213
188 #define Bsave_restriction 0214
189 #define Bcatch 0215
191 #define Bunwind_protect 0216
192 #define Bcondition_case 0217
193 #define Btemp_output_buffer_setup 0220
194 #define Btemp_output_buffer_show 0221
196 #define Bunbind_all 0222
198 #define Bset_marker 0223
199 #define Bmatch_beginning 0224
200 #define Bmatch_end 0225
201 #define Bupcase 0226
202 #define Bdowncase 0227
204 #define Bstringeqlsign 0230
205 #define Bstringlss 0231
206 #define Bequal 0232
207 #define Bnthcdr 0233
208 #define Belt 0234
209 #define Bmember 0235
210 #define Bassq 0236
211 #define Bnreverse 0237
212 #define Bsetcar 0240
213 #define Bsetcdr 0241
214 #define Bcar_safe 0242
215 #define Bcdr_safe 0243
216 #define Bnconc 0244
217 #define Bquo 0245
218 #define Brem 0246
219 #define Bnumberp 0247
220 #define Bintegerp 0250
222 #define BRgoto 0252
223 #define BRgotoifnil 0253
224 #define BRgotoifnonnil 0254
225 #define BRgotoifnilelsepop 0255
226 #define BRgotoifnonnilelsepop 0256
228 #define BlistN 0257
229 #define BconcatN 0260
230 #define BinsertN 0261
232 #define Bconstant 0300
233 #define CONSTANTLIM 0100
236 /* Structure describing a value stack used during byte-code execution
237 in Fbyte_code. */
239 struct byte_stack
241 /* Program counter. This points into the byte_string below
242 and is relocated when that string is relocated. */
243 const unsigned char *pc;
245 /* Top and bottom of stack. The bottom points to an area of memory
246 allocated with alloca in Fbyte_code. */
247 Lisp_Object *top, *bottom;
249 /* The string containing the byte-code, and its current address.
250 Storing this here protects it from GC because mark_byte_stack
251 marks it. */
252 Lisp_Object byte_string;
253 const unsigned char *byte_string_start;
255 /* The vector of constants used during byte-code execution. Storing
256 this here protects it from GC because mark_byte_stack marks it. */
257 Lisp_Object constants;
259 /* Next entry in byte_stack_list. */
260 struct byte_stack *next;
263 /* A list of currently active byte-code execution value stacks.
264 Fbyte_code adds an entry to the head of this list before it starts
265 processing byte-code, and it removed the entry again when it is
266 done. Signalling an error truncates the list analoguous to
267 gcprolist. */
269 struct byte_stack *byte_stack_list;
272 /* Mark objects on byte_stack_list. Called during GC. */
274 void
275 mark_byte_stack ()
277 struct byte_stack *stack;
278 Lisp_Object *obj;
280 for (stack = byte_stack_list; stack; stack = stack->next)
282 /* If STACK->top is null here, this means there's an opcode in
283 Fbyte_code that wasn't expected to GC, but did. To find out
284 which opcode this is, record the value of `stack', and walk
285 up the stack in a debugger, stopping in frames of Fbyte_code.
286 The culprit is found in the frame of Fbyte_code where the
287 address of its local variable `stack' is equal to the
288 recorded value of `stack' here. */
289 eassert (stack->top);
291 for (obj = stack->bottom; obj <= stack->top; ++obj)
292 mark_object (*obj);
294 mark_object (stack->byte_string);
295 mark_object (stack->constants);
300 /* Unmark objects in the stacks on byte_stack_list. Relocate program
301 counters. Called when GC has completed. */
303 void
304 unmark_byte_stack ()
306 struct byte_stack *stack;
308 for (stack = byte_stack_list; stack; stack = stack->next)
310 if (stack->byte_string_start != SDATA (stack->byte_string))
312 int offset = stack->pc - stack->byte_string_start;
313 stack->byte_string_start = SDATA (stack->byte_string);
314 stack->pc = stack->byte_string_start + offset;
320 /* Fetch the next byte from the bytecode stream */
322 #define FETCH *stack.pc++
324 /* Fetch two bytes from the bytecode stream and make a 16-bit number
325 out of them */
327 #define FETCH2 (op = FETCH, op + (FETCH << 8))
329 /* Push x onto the execution stack. This used to be #define PUSH(x)
330 (*++stackp = (x)) This oddity is necessary because Alliant can't be
331 bothered to compile the preincrement operator properly, as of 4/91.
332 -JimB */
334 #define PUSH(x) (top++, *top = (x))
336 /* Pop a value off the execution stack. */
338 #define POP (*top--)
340 /* Discard n values from the execution stack. */
342 #define DISCARD(n) (top -= (n))
344 /* Get the value which is at the top of the execution stack, but don't
345 pop it. */
347 #define TOP (*top)
349 /* Actions that must be performed before and after calling a function
350 that might GC. */
352 #define BEFORE_POTENTIAL_GC() stack.top = top
353 #define AFTER_POTENTIAL_GC() stack.top = NULL
355 /* Garbage collect if we have consed enough since the last time.
356 We do this at every branch, to avoid loops that never GC. */
358 #define MAYBE_GC() \
359 if (consing_since_gc > gc_cons_threshold \
360 && consing_since_gc > gc_relative_threshold) \
362 BEFORE_POTENTIAL_GC (); \
363 Fgarbage_collect (); \
364 AFTER_POTENTIAL_GC (); \
366 else
368 /* Check for jumping out of range. */
370 #ifdef BYTE_CODE_SAFE
372 #define CHECK_RANGE(ARG) \
373 if (ARG >= bytestr_length) abort ()
375 #else /* not BYTE_CODE_SAFE */
377 #define CHECK_RANGE(ARG)
379 #endif /* not BYTE_CODE_SAFE */
381 /* A version of the QUIT macro which makes sure that the stack top is
382 set before signaling `quit'. */
384 #define BYTE_CODE_QUIT \
385 do { \
386 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
388 Lisp_Object flag = Vquit_flag; \
389 Vquit_flag = Qnil; \
390 BEFORE_POTENTIAL_GC (); \
391 if (EQ (Vthrow_on_input, flag)) \
392 Fthrow (Vthrow_on_input, Qt); \
393 Fsignal (Qquit, Qnil); \
394 AFTER_POTENTIAL_GC (); \
396 } while (0)
399 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
400 doc: /* Function used internally in byte-compiled code.
401 The first argument, BYTESTR, is a string of byte code;
402 the second, VECTOR, a vector of constants;
403 the third, MAXDEPTH, the maximum stack depth used in this function.
404 If the third argument is incorrect, Emacs may crash. */)
405 (bytestr, vector, maxdepth)
406 Lisp_Object bytestr, vector, maxdepth;
408 int count = SPECPDL_INDEX ();
409 #ifdef BYTE_CODE_METER
410 int this_op = 0;
411 int prev_op;
412 #endif
413 int op;
414 /* Lisp_Object v1, v2; */
415 Lisp_Object *vectorp;
416 #ifdef BYTE_CODE_SAFE
417 int const_length = XVECTOR (vector)->size;
418 Lisp_Object *stacke;
419 #endif
420 int bytestr_length;
421 struct byte_stack stack;
422 Lisp_Object *top;
423 Lisp_Object result;
425 #ifdef CHECK_FRAME_FONT
427 struct frame *f = SELECTED_FRAME ();
428 if (FRAME_X_P (f)
429 && FRAME_FONT (f)->direction != 0
430 && FRAME_FONT (f)->direction != 1)
431 abort ();
433 #endif
435 CHECK_STRING (bytestr);
436 CHECK_VECTOR (vector);
437 CHECK_NUMBER (maxdepth);
439 if (STRING_MULTIBYTE (bytestr))
440 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
441 because they produced a raw 8-bit string for byte-code and now
442 such a byte-code string is loaded as multibyte while raw 8-bit
443 characters converted to multibyte form. Thus, now we must
444 convert them back to the originally intended unibyte form. */
445 bytestr = Fstring_as_unibyte (bytestr);
447 bytestr_length = SBYTES (bytestr);
448 vectorp = XVECTOR (vector)->contents;
450 stack.byte_string = bytestr;
451 stack.pc = stack.byte_string_start = SDATA (bytestr);
452 stack.constants = vector;
453 stack.bottom = (Lisp_Object *) alloca (XFASTINT (maxdepth)
454 * sizeof (Lisp_Object));
455 top = stack.bottom - 1;
456 stack.top = NULL;
457 stack.next = byte_stack_list;
458 byte_stack_list = &stack;
460 #ifdef BYTE_CODE_SAFE
461 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
462 #endif
464 while (1)
466 #ifdef BYTE_CODE_SAFE
467 if (top > stacke)
468 abort ();
469 else if (top < stack.bottom - 1)
470 abort ();
471 #endif
473 #ifdef BYTE_CODE_METER
474 prev_op = this_op;
475 this_op = op = FETCH;
476 METER_CODE (prev_op, op);
477 #else
478 op = FETCH;
479 #endif
481 switch (op)
483 case Bvarref + 7:
484 op = FETCH2;
485 goto varref;
487 case Bvarref:
488 case Bvarref + 1:
489 case Bvarref + 2:
490 case Bvarref + 3:
491 case Bvarref + 4:
492 case Bvarref + 5:
493 op = op - Bvarref;
494 goto varref;
496 /* This seems to be the most frequently executed byte-code
497 among the Bvarref's, so avoid a goto here. */
498 case Bvarref+6:
499 op = FETCH;
500 varref:
502 Lisp_Object v1, v2;
504 v1 = vectorp[op];
505 if (SYMBOLP (v1))
507 v2 = SYMBOL_VALUE (v1);
508 if (MISCP (v2) || EQ (v2, Qunbound))
510 BEFORE_POTENTIAL_GC ();
511 v2 = Fsymbol_value (v1);
512 AFTER_POTENTIAL_GC ();
515 else
517 BEFORE_POTENTIAL_GC ();
518 v2 = Fsymbol_value (v1);
519 AFTER_POTENTIAL_GC ();
521 PUSH (v2);
522 break;
525 case Bgotoifnil:
527 Lisp_Object v1;
528 MAYBE_GC ();
529 op = FETCH2;
530 v1 = POP;
531 if (NILP (v1))
533 BYTE_CODE_QUIT;
534 CHECK_RANGE (op);
535 stack.pc = stack.byte_string_start + op;
537 break;
540 case Bcar:
542 Lisp_Object v1;
543 v1 = TOP;
544 TOP = CAR (v1);
545 break;
548 case Beq:
550 Lisp_Object v1;
551 v1 = POP;
552 TOP = EQ (v1, TOP) ? Qt : Qnil;
553 break;
556 case Bmemq:
558 Lisp_Object v1;
559 BEFORE_POTENTIAL_GC ();
560 v1 = POP;
561 TOP = Fmemq (TOP, v1);
562 AFTER_POTENTIAL_GC ();
563 break;
566 case Bcdr:
568 Lisp_Object v1;
569 v1 = TOP;
570 TOP = CDR (v1);
571 break;
574 case Bvarset:
575 case Bvarset+1:
576 case Bvarset+2:
577 case Bvarset+3:
578 case Bvarset+4:
579 case Bvarset+5:
580 op -= Bvarset;
581 goto varset;
583 case Bvarset+7:
584 op = FETCH2;
585 goto varset;
587 case Bvarset+6:
588 op = FETCH;
589 varset:
591 Lisp_Object sym, val;
593 sym = vectorp[op];
594 val = TOP;
596 /* Inline the most common case. */
597 if (SYMBOLP (sym)
598 && !EQ (val, Qunbound)
599 && !XSYMBOL (sym)->indirect_variable
600 && !SYMBOL_CONSTANT_P (sym)
601 && !MISCP (XSYMBOL (sym)->value))
602 XSYMBOL (sym)->value = val;
603 else
605 BEFORE_POTENTIAL_GC ();
606 set_internal (sym, val, current_buffer, 0);
607 AFTER_POTENTIAL_GC ();
610 (void) POP;
611 break;
613 case Bdup:
615 Lisp_Object v1;
616 v1 = TOP;
617 PUSH (v1);
618 break;
621 /* ------------------ */
623 case Bvarbind+6:
624 op = FETCH;
625 goto varbind;
627 case Bvarbind+7:
628 op = FETCH2;
629 goto varbind;
631 case Bvarbind:
632 case Bvarbind+1:
633 case Bvarbind+2:
634 case Bvarbind+3:
635 case Bvarbind+4:
636 case Bvarbind+5:
637 op -= Bvarbind;
638 varbind:
639 /* Specbind can signal and thus GC. */
640 BEFORE_POTENTIAL_GC ();
641 specbind (vectorp[op], POP);
642 AFTER_POTENTIAL_GC ();
643 break;
645 case Bcall+6:
646 op = FETCH;
647 goto docall;
649 case Bcall+7:
650 op = FETCH2;
651 goto docall;
653 case Bcall:
654 case Bcall+1:
655 case Bcall+2:
656 case Bcall+3:
657 case Bcall+4:
658 case Bcall+5:
659 op -= Bcall;
660 docall:
662 BEFORE_POTENTIAL_GC ();
663 DISCARD (op);
664 #ifdef BYTE_CODE_METER
665 if (byte_metering_on && SYMBOLP (TOP))
667 Lisp_Object v1, v2;
669 v1 = TOP;
670 v2 = Fget (v1, Qbyte_code_meter);
671 if (INTEGERP (v2)
672 && XINT (v2) < MOST_POSITIVE_FIXNUM)
674 XSETINT (v2, XINT (v2) + 1);
675 Fput (v1, Qbyte_code_meter, v2);
678 #endif
679 TOP = Ffuncall (op + 1, &TOP);
680 AFTER_POTENTIAL_GC ();
681 break;
684 case Bunbind+6:
685 op = FETCH;
686 goto dounbind;
688 case Bunbind+7:
689 op = FETCH2;
690 goto dounbind;
692 case Bunbind:
693 case Bunbind+1:
694 case Bunbind+2:
695 case Bunbind+3:
696 case Bunbind+4:
697 case Bunbind+5:
698 op -= Bunbind;
699 dounbind:
700 BEFORE_POTENTIAL_GC ();
701 unbind_to (SPECPDL_INDEX () - op, Qnil);
702 AFTER_POTENTIAL_GC ();
703 break;
705 case Bunbind_all:
706 /* To unbind back to the beginning of this frame. Not used yet,
707 but will be needed for tail-recursion elimination. */
708 BEFORE_POTENTIAL_GC ();
709 unbind_to (count, Qnil);
710 AFTER_POTENTIAL_GC ();
711 break;
713 case Bgoto:
714 MAYBE_GC ();
715 BYTE_CODE_QUIT;
716 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
717 CHECK_RANGE (op);
718 stack.pc = stack.byte_string_start + op;
719 break;
721 case Bgotoifnonnil:
723 Lisp_Object v1;
724 MAYBE_GC ();
725 op = FETCH2;
726 v1 = POP;
727 if (!NILP (v1))
729 BYTE_CODE_QUIT;
730 CHECK_RANGE (op);
731 stack.pc = stack.byte_string_start + op;
733 break;
736 case Bgotoifnilelsepop:
737 MAYBE_GC ();
738 op = FETCH2;
739 if (NILP (TOP))
741 BYTE_CODE_QUIT;
742 CHECK_RANGE (op);
743 stack.pc = stack.byte_string_start + op;
745 else DISCARD (1);
746 break;
748 case Bgotoifnonnilelsepop:
749 MAYBE_GC ();
750 op = FETCH2;
751 if (!NILP (TOP))
753 BYTE_CODE_QUIT;
754 CHECK_RANGE (op);
755 stack.pc = stack.byte_string_start + op;
757 else DISCARD (1);
758 break;
760 case BRgoto:
761 MAYBE_GC ();
762 BYTE_CODE_QUIT;
763 stack.pc += (int) *stack.pc - 127;
764 break;
766 case BRgotoifnil:
768 Lisp_Object v1;
769 MAYBE_GC ();
770 v1 = POP;
771 if (NILP (v1))
773 BYTE_CODE_QUIT;
774 stack.pc += (int) *stack.pc - 128;
776 stack.pc++;
777 break;
780 case BRgotoifnonnil:
782 Lisp_Object v1;
783 MAYBE_GC ();
784 v1 = POP;
785 if (!NILP (v1))
787 BYTE_CODE_QUIT;
788 stack.pc += (int) *stack.pc - 128;
790 stack.pc++;
791 break;
794 case BRgotoifnilelsepop:
795 MAYBE_GC ();
796 op = *stack.pc++;
797 if (NILP (TOP))
799 BYTE_CODE_QUIT;
800 stack.pc += op - 128;
802 else DISCARD (1);
803 break;
805 case BRgotoifnonnilelsepop:
806 MAYBE_GC ();
807 op = *stack.pc++;
808 if (!NILP (TOP))
810 BYTE_CODE_QUIT;
811 stack.pc += op - 128;
813 else DISCARD (1);
814 break;
816 case Breturn:
817 result = POP;
818 goto exit;
820 case Bdiscard:
821 DISCARD (1);
822 break;
824 case Bconstant2:
825 PUSH (vectorp[FETCH2]);
826 break;
828 case Bsave_excursion:
829 record_unwind_protect (save_excursion_restore,
830 save_excursion_save ());
831 break;
833 case Bsave_current_buffer:
834 case Bsave_current_buffer_1:
835 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
836 break;
838 case Bsave_window_excursion:
839 BEFORE_POTENTIAL_GC ();
840 TOP = Fsave_window_excursion (TOP);
841 AFTER_POTENTIAL_GC ();
842 break;
844 case Bsave_restriction:
845 record_unwind_protect (save_restriction_restore,
846 save_restriction_save ());
847 break;
849 case Bcatch:
851 Lisp_Object v1;
852 BEFORE_POTENTIAL_GC ();
853 v1 = POP;
854 TOP = internal_catch (TOP, Feval, v1);
855 AFTER_POTENTIAL_GC ();
856 break;
859 case Bunwind_protect:
860 record_unwind_protect (Fprogn, POP);
861 break;
863 case Bcondition_case:
865 Lisp_Object handlers, body;
866 handlers = POP;
867 body = POP;
868 BEFORE_POTENTIAL_GC ();
869 TOP = internal_lisp_condition_case (TOP, body, handlers);
870 AFTER_POTENTIAL_GC ();
871 break;
874 case Btemp_output_buffer_setup:
875 BEFORE_POTENTIAL_GC ();
876 CHECK_STRING (TOP);
877 temp_output_buffer_setup (SDATA (TOP));
878 AFTER_POTENTIAL_GC ();
879 TOP = Vstandard_output;
880 break;
882 case Btemp_output_buffer_show:
884 Lisp_Object v1;
885 BEFORE_POTENTIAL_GC ();
886 v1 = POP;
887 temp_output_buffer_show (TOP);
888 TOP = v1;
889 /* pop binding of standard-output */
890 unbind_to (SPECPDL_INDEX () - 1, Qnil);
891 AFTER_POTENTIAL_GC ();
892 break;
895 case Bnth:
897 Lisp_Object v1, v2;
898 BEFORE_POTENTIAL_GC ();
899 v1 = POP;
900 v2 = TOP;
901 CHECK_NUMBER (v2);
902 AFTER_POTENTIAL_GC ();
903 op = XINT (v2);
904 immediate_quit = 1;
905 while (--op >= 0 && CONSP (v1))
906 v1 = XCDR (v1);
907 immediate_quit = 0;
908 TOP = CAR (v1);
909 break;
912 case Bsymbolp:
913 TOP = SYMBOLP (TOP) ? Qt : Qnil;
914 break;
916 case Bconsp:
917 TOP = CONSP (TOP) ? Qt : Qnil;
918 break;
920 case Bstringp:
921 TOP = STRINGP (TOP) ? Qt : Qnil;
922 break;
924 case Blistp:
925 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
926 break;
928 case Bnot:
929 TOP = NILP (TOP) ? Qt : Qnil;
930 break;
932 case Bcons:
934 Lisp_Object v1;
935 v1 = POP;
936 TOP = Fcons (TOP, v1);
937 break;
940 case Blist1:
941 TOP = Fcons (TOP, Qnil);
942 break;
944 case Blist2:
946 Lisp_Object v1;
947 v1 = POP;
948 TOP = Fcons (TOP, Fcons (v1, Qnil));
949 break;
952 case Blist3:
953 DISCARD (2);
954 TOP = Flist (3, &TOP);
955 break;
957 case Blist4:
958 DISCARD (3);
959 TOP = Flist (4, &TOP);
960 break;
962 case BlistN:
963 op = FETCH;
964 DISCARD (op - 1);
965 TOP = Flist (op, &TOP);
966 break;
968 case Blength:
969 BEFORE_POTENTIAL_GC ();
970 TOP = Flength (TOP);
971 AFTER_POTENTIAL_GC ();
972 break;
974 case Baref:
976 Lisp_Object v1;
977 BEFORE_POTENTIAL_GC ();
978 v1 = POP;
979 TOP = Faref (TOP, v1);
980 AFTER_POTENTIAL_GC ();
981 break;
984 case Baset:
986 Lisp_Object v1, v2;
987 BEFORE_POTENTIAL_GC ();
988 v2 = POP; v1 = POP;
989 TOP = Faset (TOP, v1, v2);
990 AFTER_POTENTIAL_GC ();
991 break;
994 case Bsymbol_value:
995 BEFORE_POTENTIAL_GC ();
996 TOP = Fsymbol_value (TOP);
997 AFTER_POTENTIAL_GC ();
998 break;
1000 case Bsymbol_function:
1001 BEFORE_POTENTIAL_GC ();
1002 TOP = Fsymbol_function (TOP);
1003 AFTER_POTENTIAL_GC ();
1004 break;
1006 case Bset:
1008 Lisp_Object v1;
1009 BEFORE_POTENTIAL_GC ();
1010 v1 = POP;
1011 TOP = Fset (TOP, v1);
1012 AFTER_POTENTIAL_GC ();
1013 break;
1016 case Bfset:
1018 Lisp_Object v1;
1019 BEFORE_POTENTIAL_GC ();
1020 v1 = POP;
1021 TOP = Ffset (TOP, v1);
1022 AFTER_POTENTIAL_GC ();
1023 break;
1026 case Bget:
1028 Lisp_Object v1;
1029 BEFORE_POTENTIAL_GC ();
1030 v1 = POP;
1031 TOP = Fget (TOP, v1);
1032 AFTER_POTENTIAL_GC ();
1033 break;
1036 case Bsubstring:
1038 Lisp_Object v1, v2;
1039 BEFORE_POTENTIAL_GC ();
1040 v2 = POP; v1 = POP;
1041 TOP = Fsubstring (TOP, v1, v2);
1042 AFTER_POTENTIAL_GC ();
1043 break;
1046 case Bconcat2:
1047 BEFORE_POTENTIAL_GC ();
1048 DISCARD (1);
1049 TOP = Fconcat (2, &TOP);
1050 AFTER_POTENTIAL_GC ();
1051 break;
1053 case Bconcat3:
1054 BEFORE_POTENTIAL_GC ();
1055 DISCARD (2);
1056 TOP = Fconcat (3, &TOP);
1057 AFTER_POTENTIAL_GC ();
1058 break;
1060 case Bconcat4:
1061 BEFORE_POTENTIAL_GC ();
1062 DISCARD (3);
1063 TOP = Fconcat (4, &TOP);
1064 AFTER_POTENTIAL_GC ();
1065 break;
1067 case BconcatN:
1068 op = FETCH;
1069 BEFORE_POTENTIAL_GC ();
1070 DISCARD (op - 1);
1071 TOP = Fconcat (op, &TOP);
1072 AFTER_POTENTIAL_GC ();
1073 break;
1075 case Bsub1:
1077 Lisp_Object v1;
1078 v1 = TOP;
1079 if (INTEGERP (v1))
1081 XSETINT (v1, XINT (v1) - 1);
1082 TOP = v1;
1084 else
1086 BEFORE_POTENTIAL_GC ();
1087 TOP = Fsub1 (v1);
1088 AFTER_POTENTIAL_GC ();
1090 break;
1093 case Badd1:
1095 Lisp_Object v1;
1096 v1 = TOP;
1097 if (INTEGERP (v1))
1099 XSETINT (v1, XINT (v1) + 1);
1100 TOP = v1;
1102 else
1104 BEFORE_POTENTIAL_GC ();
1105 TOP = Fadd1 (v1);
1106 AFTER_POTENTIAL_GC ();
1108 break;
1111 case Beqlsign:
1113 Lisp_Object v1, v2;
1114 BEFORE_POTENTIAL_GC ();
1115 v2 = POP; v1 = TOP;
1116 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1117 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1118 AFTER_POTENTIAL_GC ();
1119 if (FLOATP (v1) || FLOATP (v2))
1121 double f1, f2;
1123 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1124 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1125 TOP = (f1 == f2 ? Qt : Qnil);
1127 else
1128 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1129 break;
1132 case Bgtr:
1134 Lisp_Object v1;
1135 BEFORE_POTENTIAL_GC ();
1136 v1 = POP;
1137 TOP = Fgtr (TOP, v1);
1138 AFTER_POTENTIAL_GC ();
1139 break;
1142 case Blss:
1144 Lisp_Object v1;
1145 BEFORE_POTENTIAL_GC ();
1146 v1 = POP;
1147 TOP = Flss (TOP, v1);
1148 AFTER_POTENTIAL_GC ();
1149 break;
1152 case Bleq:
1154 Lisp_Object v1;
1155 BEFORE_POTENTIAL_GC ();
1156 v1 = POP;
1157 TOP = Fleq (TOP, v1);
1158 AFTER_POTENTIAL_GC ();
1159 break;
1162 case Bgeq:
1164 Lisp_Object v1;
1165 BEFORE_POTENTIAL_GC ();
1166 v1 = POP;
1167 TOP = Fgeq (TOP, v1);
1168 AFTER_POTENTIAL_GC ();
1169 break;
1172 case Bdiff:
1173 BEFORE_POTENTIAL_GC ();
1174 DISCARD (1);
1175 TOP = Fminus (2, &TOP);
1176 AFTER_POTENTIAL_GC ();
1177 break;
1179 case Bnegate:
1181 Lisp_Object v1;
1182 v1 = TOP;
1183 if (INTEGERP (v1))
1185 XSETINT (v1, - XINT (v1));
1186 TOP = v1;
1188 else
1190 BEFORE_POTENTIAL_GC ();
1191 TOP = Fminus (1, &TOP);
1192 AFTER_POTENTIAL_GC ();
1194 break;
1197 case Bplus:
1198 BEFORE_POTENTIAL_GC ();
1199 DISCARD (1);
1200 TOP = Fplus (2, &TOP);
1201 AFTER_POTENTIAL_GC ();
1202 break;
1204 case Bmax:
1205 BEFORE_POTENTIAL_GC ();
1206 DISCARD (1);
1207 TOP = Fmax (2, &TOP);
1208 AFTER_POTENTIAL_GC ();
1209 break;
1211 case Bmin:
1212 BEFORE_POTENTIAL_GC ();
1213 DISCARD (1);
1214 TOP = Fmin (2, &TOP);
1215 AFTER_POTENTIAL_GC ();
1216 break;
1218 case Bmult:
1219 BEFORE_POTENTIAL_GC ();
1220 DISCARD (1);
1221 TOP = Ftimes (2, &TOP);
1222 AFTER_POTENTIAL_GC ();
1223 break;
1225 case Bquo:
1226 BEFORE_POTENTIAL_GC ();
1227 DISCARD (1);
1228 TOP = Fquo (2, &TOP);
1229 AFTER_POTENTIAL_GC ();
1230 break;
1232 case Brem:
1234 Lisp_Object v1;
1235 BEFORE_POTENTIAL_GC ();
1236 v1 = POP;
1237 TOP = Frem (TOP, v1);
1238 AFTER_POTENTIAL_GC ();
1239 break;
1242 case Bpoint:
1244 Lisp_Object v1;
1245 XSETFASTINT (v1, PT);
1246 PUSH (v1);
1247 break;
1250 case Bgoto_char:
1251 BEFORE_POTENTIAL_GC ();
1252 TOP = Fgoto_char (TOP);
1253 AFTER_POTENTIAL_GC ();
1254 break;
1256 case Binsert:
1257 BEFORE_POTENTIAL_GC ();
1258 TOP = Finsert (1, &TOP);
1259 AFTER_POTENTIAL_GC ();
1260 break;
1262 case BinsertN:
1263 op = FETCH;
1264 BEFORE_POTENTIAL_GC ();
1265 DISCARD (op - 1);
1266 TOP = Finsert (op, &TOP);
1267 AFTER_POTENTIAL_GC ();
1268 break;
1270 case Bpoint_max:
1272 Lisp_Object v1;
1273 XSETFASTINT (v1, ZV);
1274 PUSH (v1);
1275 break;
1278 case Bpoint_min:
1280 Lisp_Object v1;
1281 XSETFASTINT (v1, BEGV);
1282 PUSH (v1);
1283 break;
1286 case Bchar_after:
1287 BEFORE_POTENTIAL_GC ();
1288 TOP = Fchar_after (TOP);
1289 AFTER_POTENTIAL_GC ();
1290 break;
1292 case Bfollowing_char:
1294 Lisp_Object v1;
1295 BEFORE_POTENTIAL_GC ();
1296 v1 = Ffollowing_char ();
1297 AFTER_POTENTIAL_GC ();
1298 PUSH (v1);
1299 break;
1302 case Bpreceding_char:
1304 Lisp_Object v1;
1305 BEFORE_POTENTIAL_GC ();
1306 v1 = Fprevious_char ();
1307 AFTER_POTENTIAL_GC ();
1308 PUSH (v1);
1309 break;
1312 case Bcurrent_column:
1314 Lisp_Object v1;
1315 BEFORE_POTENTIAL_GC ();
1316 XSETFASTINT (v1, (int) current_column ()); /* iftc */
1317 AFTER_POTENTIAL_GC ();
1318 PUSH (v1);
1319 break;
1322 case Bindent_to:
1323 BEFORE_POTENTIAL_GC ();
1324 TOP = Findent_to (TOP, Qnil);
1325 AFTER_POTENTIAL_GC ();
1326 break;
1328 case Beolp:
1329 PUSH (Feolp ());
1330 break;
1332 case Beobp:
1333 PUSH (Feobp ());
1334 break;
1336 case Bbolp:
1337 PUSH (Fbolp ());
1338 break;
1340 case Bbobp:
1341 PUSH (Fbobp ());
1342 break;
1344 case Bcurrent_buffer:
1345 PUSH (Fcurrent_buffer ());
1346 break;
1348 case Bset_buffer:
1349 BEFORE_POTENTIAL_GC ();
1350 TOP = Fset_buffer (TOP);
1351 AFTER_POTENTIAL_GC ();
1352 break;
1354 case Binteractive_p:
1355 PUSH (Finteractive_p ());
1356 break;
1358 case Bforward_char:
1359 BEFORE_POTENTIAL_GC ();
1360 TOP = Fforward_char (TOP);
1361 AFTER_POTENTIAL_GC ();
1362 break;
1364 case Bforward_word:
1365 BEFORE_POTENTIAL_GC ();
1366 TOP = Fforward_word (TOP);
1367 AFTER_POTENTIAL_GC ();
1368 break;
1370 case Bskip_chars_forward:
1372 Lisp_Object v1;
1373 BEFORE_POTENTIAL_GC ();
1374 v1 = POP;
1375 TOP = Fskip_chars_forward (TOP, v1);
1376 AFTER_POTENTIAL_GC ();
1377 break;
1380 case Bskip_chars_backward:
1382 Lisp_Object v1;
1383 BEFORE_POTENTIAL_GC ();
1384 v1 = POP;
1385 TOP = Fskip_chars_backward (TOP, v1);
1386 AFTER_POTENTIAL_GC ();
1387 break;
1390 case Bforward_line:
1391 BEFORE_POTENTIAL_GC ();
1392 TOP = Fforward_line (TOP);
1393 AFTER_POTENTIAL_GC ();
1394 break;
1396 case Bchar_syntax:
1397 BEFORE_POTENTIAL_GC ();
1398 CHECK_NUMBER (TOP);
1399 AFTER_POTENTIAL_GC ();
1400 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (XINT (TOP))]);
1401 break;
1403 case Bbuffer_substring:
1405 Lisp_Object v1;
1406 BEFORE_POTENTIAL_GC ();
1407 v1 = POP;
1408 TOP = Fbuffer_substring (TOP, v1);
1409 AFTER_POTENTIAL_GC ();
1410 break;
1413 case Bdelete_region:
1415 Lisp_Object v1;
1416 BEFORE_POTENTIAL_GC ();
1417 v1 = POP;
1418 TOP = Fdelete_region (TOP, v1);
1419 AFTER_POTENTIAL_GC ();
1420 break;
1423 case Bnarrow_to_region:
1425 Lisp_Object v1;
1426 BEFORE_POTENTIAL_GC ();
1427 v1 = POP;
1428 TOP = Fnarrow_to_region (TOP, v1);
1429 AFTER_POTENTIAL_GC ();
1430 break;
1433 case Bwiden:
1434 BEFORE_POTENTIAL_GC ();
1435 PUSH (Fwiden ());
1436 AFTER_POTENTIAL_GC ();
1437 break;
1439 case Bend_of_line:
1440 BEFORE_POTENTIAL_GC ();
1441 TOP = Fend_of_line (TOP);
1442 AFTER_POTENTIAL_GC ();
1443 break;
1445 case Bset_marker:
1447 Lisp_Object v1, v2;
1448 BEFORE_POTENTIAL_GC ();
1449 v1 = POP;
1450 v2 = POP;
1451 TOP = Fset_marker (TOP, v2, v1);
1452 AFTER_POTENTIAL_GC ();
1453 break;
1456 case Bmatch_beginning:
1457 BEFORE_POTENTIAL_GC ();
1458 TOP = Fmatch_beginning (TOP);
1459 AFTER_POTENTIAL_GC ();
1460 break;
1462 case Bmatch_end:
1463 BEFORE_POTENTIAL_GC ();
1464 TOP = Fmatch_end (TOP);
1465 AFTER_POTENTIAL_GC ();
1466 break;
1468 case Bupcase:
1469 BEFORE_POTENTIAL_GC ();
1470 TOP = Fupcase (TOP);
1471 AFTER_POTENTIAL_GC ();
1472 break;
1474 case Bdowncase:
1475 BEFORE_POTENTIAL_GC ();
1476 TOP = Fdowncase (TOP);
1477 AFTER_POTENTIAL_GC ();
1478 break;
1480 case Bstringeqlsign:
1482 Lisp_Object v1;
1483 BEFORE_POTENTIAL_GC ();
1484 v1 = POP;
1485 TOP = Fstring_equal (TOP, v1);
1486 AFTER_POTENTIAL_GC ();
1487 break;
1490 case Bstringlss:
1492 Lisp_Object v1;
1493 BEFORE_POTENTIAL_GC ();
1494 v1 = POP;
1495 TOP = Fstring_lessp (TOP, v1);
1496 AFTER_POTENTIAL_GC ();
1497 break;
1500 case Bequal:
1502 Lisp_Object v1;
1503 v1 = POP;
1504 TOP = Fequal (TOP, v1);
1505 break;
1508 case Bnthcdr:
1510 Lisp_Object v1;
1511 BEFORE_POTENTIAL_GC ();
1512 v1 = POP;
1513 TOP = Fnthcdr (TOP, v1);
1514 AFTER_POTENTIAL_GC ();
1515 break;
1518 case Belt:
1520 Lisp_Object v1, v2;
1521 if (CONSP (TOP))
1523 /* Exchange args and then do nth. */
1524 BEFORE_POTENTIAL_GC ();
1525 v2 = POP;
1526 v1 = TOP;
1527 CHECK_NUMBER (v2);
1528 AFTER_POTENTIAL_GC ();
1529 op = XINT (v2);
1530 immediate_quit = 1;
1531 while (--op >= 0 && CONSP (v1))
1532 v1 = XCDR (v1);
1533 immediate_quit = 0;
1534 TOP = CAR (v1);
1536 else
1538 BEFORE_POTENTIAL_GC ();
1539 v1 = POP;
1540 TOP = Felt (TOP, v1);
1541 AFTER_POTENTIAL_GC ();
1543 break;
1546 case Bmember:
1548 Lisp_Object v1;
1549 BEFORE_POTENTIAL_GC ();
1550 v1 = POP;
1551 TOP = Fmember (TOP, v1);
1552 AFTER_POTENTIAL_GC ();
1553 break;
1556 case Bassq:
1558 Lisp_Object v1;
1559 BEFORE_POTENTIAL_GC ();
1560 v1 = POP;
1561 TOP = Fassq (TOP, v1);
1562 AFTER_POTENTIAL_GC ();
1563 break;
1566 case Bnreverse:
1567 BEFORE_POTENTIAL_GC ();
1568 TOP = Fnreverse (TOP);
1569 AFTER_POTENTIAL_GC ();
1570 break;
1572 case Bsetcar:
1574 Lisp_Object v1;
1575 BEFORE_POTENTIAL_GC ();
1576 v1 = POP;
1577 TOP = Fsetcar (TOP, v1);
1578 AFTER_POTENTIAL_GC ();
1579 break;
1582 case Bsetcdr:
1584 Lisp_Object v1;
1585 BEFORE_POTENTIAL_GC ();
1586 v1 = POP;
1587 TOP = Fsetcdr (TOP, v1);
1588 AFTER_POTENTIAL_GC ();
1589 break;
1592 case Bcar_safe:
1594 Lisp_Object v1;
1595 v1 = TOP;
1596 TOP = CAR_SAFE (v1);
1597 break;
1600 case Bcdr_safe:
1602 Lisp_Object v1;
1603 v1 = TOP;
1604 TOP = CDR_SAFE (v1);
1605 break;
1608 case Bnconc:
1609 BEFORE_POTENTIAL_GC ();
1610 DISCARD (1);
1611 TOP = Fnconc (2, &TOP);
1612 AFTER_POTENTIAL_GC ();
1613 break;
1615 case Bnumberp:
1616 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1617 break;
1619 case Bintegerp:
1620 TOP = INTEGERP (TOP) ? Qt : Qnil;
1621 break;
1623 #ifdef BYTE_CODE_SAFE
1624 case Bset_mark:
1625 BEFORE_POTENTIAL_GC ();
1626 error ("set-mark is an obsolete bytecode");
1627 AFTER_POTENTIAL_GC ();
1628 break;
1629 case Bscan_buffer:
1630 BEFORE_POTENTIAL_GC ();
1631 error ("scan-buffer is an obsolete bytecode");
1632 AFTER_POTENTIAL_GC ();
1633 break;
1634 #endif
1636 case 0:
1637 abort ();
1639 case 255:
1640 default:
1641 #ifdef BYTE_CODE_SAFE
1642 if (op < Bconstant)
1644 abort ();
1646 if ((op -= Bconstant) >= const_length)
1648 abort ();
1650 PUSH (vectorp[op]);
1651 #else
1652 PUSH (vectorp[op - Bconstant]);
1653 #endif
1657 exit:
1659 byte_stack_list = byte_stack_list->next;
1661 /* Binds and unbinds are supposed to be compiled balanced. */
1662 if (SPECPDL_INDEX () != count)
1663 #ifdef BYTE_CODE_SAFE
1664 error ("binding stack not balanced (serious byte compiler bug)");
1665 #else
1666 abort ();
1667 #endif
1669 return result;
1672 void
1673 syms_of_bytecode ()
1675 Qbytecode = intern ("byte-code");
1676 staticpro (&Qbytecode);
1678 defsubr (&Sbyte_code);
1680 #ifdef BYTE_CODE_METER
1682 DEFVAR_LISP ("byte-code-meter", &Vbyte_code_meter,
1683 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1684 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1685 opcode CODE has been executed.
1686 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1687 indicates how many times the byte opcodes CODE1 and CODE2 have been
1688 executed in succession. */);
1690 DEFVAR_BOOL ("byte-metering-on", &byte_metering_on,
1691 doc: /* If non-nil, keep profiling information on byte code usage.
1692 The variable byte-code-meter indicates how often each byte opcode is used.
1693 If a symbol has a property named `byte-code-meter' whose value is an
1694 integer, it is incremented each time that symbol's function is called. */);
1696 byte_metering_on = 0;
1697 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1698 Qbyte_code_meter = intern ("byte-code-meter");
1699 staticpro (&Qbyte_code_meter);
1701 int i = 256;
1702 while (i--)
1703 XVECTOR (Vbyte_code_meter)->contents[i] =
1704 Fmake_vector (make_number (256), make_number (0));
1706 #endif
1709 /* arch-tag: b9803b6f-1ed6-4190-8adf-33fd3a9d10e9
1710 (do not change this comment) */