1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
39 #endif /* not emacs */
41 /* This contains all code conversion map available to CCL. */
42 Lisp_Object Vcode_conversion_map_vector
;
44 /* Alist of fontname patterns vs corresponding CCL program. */
45 Lisp_Object Vfont_ccl_encoder_alist
;
47 /* This symbol is a property which assocates with ccl program vector.
48 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
49 Lisp_Object Qccl_program
;
51 /* These symbols are properties which associate with code conversion
52 map and their ID respectively. */
53 Lisp_Object Qcode_conversion_map
;
54 Lisp_Object Qcode_conversion_map_id
;
56 /* Symbols of ccl program have this property, a value of the property
57 is an index for Vccl_protram_table. */
58 Lisp_Object Qccl_program_idx
;
60 /* Table of registered CCL programs. Each element is a vector of
61 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
62 the program, CCL_PROG (vector) is the compiled code of the program,
63 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
64 already resolved to index numbers or not. */
65 Lisp_Object Vccl_program_table
;
67 /* CCL (Code Conversion Language) is a simple language which has
68 operations on one input buffer, one output buffer, and 7 registers.
69 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
70 `ccl-compile' compiles a CCL program and produces a CCL code which
71 is a vector of integers. The structure of this vector is as
72 follows: The 1st element: buffer-magnification, a factor for the
73 size of output buffer compared with the size of input buffer. The
74 2nd element: address of CCL code to be executed when encountered
75 with end of input stream. The 3rd and the remaining elements: CCL
78 /* Header of CCL compiled code */
79 #define CCL_HEADER_BUF_MAG 0
80 #define CCL_HEADER_EOF 1
81 #define CCL_HEADER_MAIN 2
83 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
84 MSB is always 0), each contains CCL command and/or arguments in the
87 |----------------- integer (28-bit) ------------------|
88 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
89 |--constant argument--|-register-|-register-|-command-|
90 ccccccccccccccccc RRR rrr XXXXX
92 |------- relative address -------|-register-|-command-|
93 cccccccccccccccccccc rrr XXXXX
95 |------------- constant or other args ----------------|
96 cccccccccccccccccccccccccccc
98 where, `cc...c' is a non-negative integer indicating constant value
99 (the left most `c' is always 0) or an absolute jump address, `RRR'
100 and `rrr' are CCL register number, `XXXXX' is one of the following
105 Each comment fields shows one or more lines for command syntax and
106 the following lines for semantics of the command. In semantics, IC
107 stands for Instruction Counter. */
109 #define CCL_SetRegister 0x00 /* Set register a register value:
110 1:00000000000000000RRRrrrXXXXX
111 ------------------------------
115 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
116 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
117 ------------------------------
118 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
121 #define CCL_SetConst 0x02 /* Set register a constant value:
122 1:00000000000000000000rrrXXXXX
124 ------------------------------
129 #define CCL_SetArray 0x03 /* Set register an element of array:
130 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
134 ------------------------------
135 if (0 <= reg[RRR] < CC..C)
136 reg[rrr] = ELEMENT[reg[RRR]];
140 #define CCL_Jump 0x04 /* Jump:
141 1:A--D--D--R--E--S--S-000XXXXX
142 ------------------------------
146 /* Note: If CC..C is greater than 0, the second code is omitted. */
148 #define CCL_JumpCond 0x05 /* Jump conditional:
149 1:A--D--D--R--E--S--S-rrrXXXXX
150 ------------------------------
156 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
157 1:A--D--D--R--E--S--S-rrrXXXXX
158 ------------------------------
163 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
164 1:A--D--D--R--E--S--S-rrrXXXXX
165 2:A--D--D--R--E--S--S-rrrYYYYY
166 -----------------------------
172 /* Note: If read is suspended, the resumed execution starts from the
173 second code (YYYYY == CCL_ReadJump). */
175 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
176 1:A--D--D--R--E--S--S-000XXXXX
178 ------------------------------
183 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
184 1:A--D--D--R--E--S--S-rrrXXXXX
186 3:A--D--D--R--E--S--S-rrrYYYYY
187 -----------------------------
193 /* Note: If read is suspended, the resumed execution starts from the
194 second code (YYYYY == CCL_ReadJump). */
196 #define CCL_WriteStringJump 0x0A /* Write string and jump:
197 1:A--D--D--R--E--S--S-000XXXXX
199 3:0000STRIN[0]STRIN[1]STRIN[2]
201 ------------------------------
202 write_string (STRING, LENGTH);
206 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
207 1:A--D--D--R--E--S--S-rrrXXXXX
212 N:A--D--D--R--E--S--S-rrrYYYYY
213 ------------------------------
214 if (0 <= reg[rrr] < LENGTH)
215 write (ELEMENT[reg[rrr]]);
216 IC += LENGTH + 2; (... pointing at N+1)
220 /* Note: If read is suspended, the resumed execution starts from the
221 Nth code (YYYYY == CCL_ReadJump). */
223 #define CCL_ReadJump 0x0C /* Read and jump:
224 1:A--D--D--R--E--S--S-rrrYYYYY
225 -----------------------------
230 #define CCL_Branch 0x0D /* Jump by branch table:
231 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
232 2:A--D--D--R--E-S-S[0]000XXXXX
233 3:A--D--D--R--E-S-S[1]000XXXXX
235 ------------------------------
236 if (0 <= reg[rrr] < CC..C)
237 IC += ADDRESS[reg[rrr]];
239 IC += ADDRESS[CC..C];
242 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
243 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
244 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
246 ------------------------------
251 #define CCL_WriteExprConst 0x0F /* write result of expression:
252 1:00000OPERATION000RRR000XXXXX
254 ------------------------------
255 write (reg[RRR] OPERATION CONSTANT);
259 /* Note: If the Nth read is suspended, the resumed execution starts
260 from the Nth code. */
262 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
263 and jump by branch table:
264 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
265 2:A--D--D--R--E-S-S[0]000XXXXX
266 3:A--D--D--R--E-S-S[1]000XXXXX
268 ------------------------------
270 if (0 <= reg[rrr] < CC..C)
271 IC += ADDRESS[reg[rrr]];
273 IC += ADDRESS[CC..C];
276 #define CCL_WriteRegister 0x11 /* Write registers:
277 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
278 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
280 ------------------------------
286 /* Note: If the Nth write is suspended, the resumed execution
287 starts from the Nth code. */
289 #define CCL_WriteExprRegister 0x12 /* Write result of expression
290 1:00000OPERATIONRrrRRR000XXXXX
291 ------------------------------
292 write (reg[RRR] OPERATION reg[Rrr]);
295 #define CCL_Call 0x13 /* Call the CCL program whose ID is
297 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
298 [2:00000000cccccccccccccccccccc]
299 ------------------------------
307 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
308 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
309 [2:0000STRIN[0]STRIN[1]STRIN[2]]
311 -----------------------------
315 write_string (STRING, CC..C);
316 IC += (CC..C + 2) / 3;
319 #define CCL_WriteArray 0x15 /* Write an element of array:
320 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
324 ------------------------------
325 if (0 <= reg[rrr] < CC..C)
326 write (ELEMENT[reg[rrr]]);
330 #define CCL_End 0x16 /* Terminate:
331 1:00000000000000000000000XXXXX
332 ------------------------------
336 /* The following two codes execute an assignment arithmetic/logical
337 operation. The form of the operation is like REG OP= OPERAND. */
339 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
340 1:00000OPERATION000000rrrXXXXX
342 ------------------------------
343 reg[rrr] OPERATION= CONSTANT;
346 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
347 1:00000OPERATION000RRRrrrXXXXX
348 ------------------------------
349 reg[rrr] OPERATION= reg[RRR];
352 /* The following codes execute an arithmetic/logical operation. The
353 form of the operation is like REG_X = REG_Y OP OPERAND2. */
355 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
356 1:00000OPERATION000RRRrrrXXXXX
358 ------------------------------
359 reg[rrr] = reg[RRR] OPERATION CONSTANT;
363 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
364 1:00000OPERATIONRrrRRRrrrXXXXX
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
369 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
370 an operation on constant:
371 1:A--D--D--R--E--S--S-rrrXXXXX
374 -----------------------------
375 reg[7] = reg[rrr] OPERATION CONSTANT;
382 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
383 an operation on register:
384 1:A--D--D--R--E--S--S-rrrXXXXX
387 -----------------------------
388 reg[7] = reg[rrr] OPERATION reg[RRR];
395 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
396 to an operation on constant:
397 1:A--D--D--R--E--S--S-rrrXXXXX
400 -----------------------------
402 reg[7] = reg[rrr] OPERATION CONSTANT;
409 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
410 to an operation on register:
411 1:A--D--D--R--E--S--S-rrrXXXXX
414 -----------------------------
416 reg[7] = reg[rrr] OPERATION reg[RRR];
423 #define CCL_Extention 0x1F /* Extended CCL code
424 1:ExtendedCOMMNDRrrRRRrrrXXXXX
427 ------------------------------
428 extended_command (rrr,RRR,Rrr,ARGS)
432 Here after, Extended CCL Instructions.
433 Bit length of extended command is 14.
434 Therefore, the instruction code range is 0..16384(0x3fff).
437 /* Read a multibyte characeter.
438 A code point is stored into reg[rrr]. A charset ID is stored into
441 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
442 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
444 /* Write a multibyte character.
445 Write a character whose code point is reg[rrr] and the charset ID
448 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451 /* Translate a character whose code point is reg[rrr] and the charset
452 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
454 A translated character is set in reg[rrr] (code point) and reg[RRR]
457 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
460 /* Translate a character whose code point is reg[rrr] and the charset
461 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
463 A translated character is set in reg[rrr] (code point) and reg[RRR]
466 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
467 1:ExtendedCOMMNDRrrRRRrrrXXXXX
468 2:ARGUMENT(Translation Table ID)
471 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
472 reg[RRR]) MAP until some value is found.
474 Each MAP is a Lisp vector whose element is number, nil, t, or
476 If the element is nil, ignore the map and proceed to the next map.
477 If the element is t or lambda, finish without changing reg[rrr].
478 If the element is a number, set reg[rrr] to the number and finish.
480 Detail of the map structure is descibed in the comment for
481 CCL_MapMultiple below. */
483 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
484 1:ExtendedCOMMNDXXXRRRrrrXXXXX
491 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
494 MAPs are supplied in the succeeding CCL codes as follows:
496 When CCL program gives this nested structure of map to this command:
499 (MAP-ID121 MAP-ID122 MAP-ID123)
502 (MAP-ID211 (MAP-ID2111) MAP-ID212)
504 the compiled CCL codes has this sequence:
505 CCL_MapMultiple (CCL code of this command)
506 16 (total number of MAPs and SEPARATORs)
524 A value of each SEPARATOR follows this rule:
525 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
526 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
528 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
530 When some map fails to map (i.e. it doesn't have a value for
531 reg[rrr]), the mapping is treated as identity.
533 The mapping is iterated for all maps in each map set (set of maps
534 separated by SEPARATOR) except in the case that lambda is
535 encountered. More precisely, the mapping proceeds as below:
537 At first, VAL0 is set to reg[rrr], and it is translated by the
538 first map to VAL1. Then, VAL1 is translated by the next map to
539 VAL2. This mapping is iterated until the last map is used. The
540 result of the mapping is the last value of VAL?.
542 But, when VALm is mapped to VALn and VALn is not a number, the
543 mapping proceed as below:
545 If VALn is nil, the lastest map is ignored and the mapping of VALm
546 proceed to the next map.
548 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
549 proceed to the next map.
551 If VALn is lambda, the whole mapping process terminates, and VALm
552 is the result of this mapping.
554 Each map is a Lisp vector of the following format (a) or (b):
555 (a)......[STARTPOINT VAL1 VAL2 ...]
556 (b)......[t VAL STARTPOINT ENDPOINT],
558 STARTPOINT is an offset to be used for indexing a map,
559 ENDPOINT is a maximum index number of a map,
560 VAL and VALn is a number, nil, t, or lambda.
562 Valid index range of a map of type (a) is:
563 STARTPOINT <= index < STARTPOINT + map_size - 1
564 Valid index range of a map of type (b) is:
565 STARTPOINT <= index < ENDPOINT */
567 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
568 1:ExtendedCOMMNDXXXRRRrrrXXXXX
580 #define MAX_MAP_SET_LEVEL 20
588 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
589 static tr_stack
*mapping_stack_pointer
;
591 #define PUSH_MAPPING_STACK(restlen, orig) \
593 mapping_stack_pointer->rest_length = (restlen); \
594 mapping_stack_pointer->orig_val = (orig); \
595 mapping_stack_pointer++; \
598 #define POP_MAPPING_STACK(restlen, orig) \
600 mapping_stack_pointer--; \
601 (restlen) = mapping_stack_pointer->rest_length; \
602 (orig) = mapping_stack_pointer->orig_val; \
605 #define CCL_MapSingle 0x12 /* Map by single code conversion map
606 1:ExtendedCOMMNDXXXRRRrrrXXXXX
608 ------------------------------
609 Map reg[rrr] by MAP-ID.
610 If some valid mapping is found,
611 set reg[rrr] to the result,
616 /* CCL arithmetic/logical operators. */
617 #define CCL_PLUS 0x00 /* X = Y + Z */
618 #define CCL_MINUS 0x01 /* X = Y - Z */
619 #define CCL_MUL 0x02 /* X = Y * Z */
620 #define CCL_DIV 0x03 /* X = Y / Z */
621 #define CCL_MOD 0x04 /* X = Y % Z */
622 #define CCL_AND 0x05 /* X = Y & Z */
623 #define CCL_OR 0x06 /* X = Y | Z */
624 #define CCL_XOR 0x07 /* X = Y ^ Z */
625 #define CCL_LSH 0x08 /* X = Y << Z */
626 #define CCL_RSH 0x09 /* X = Y >> Z */
627 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
628 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
629 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
630 #define CCL_LS 0x10 /* X = (X < Y) */
631 #define CCL_GT 0x11 /* X = (X > Y) */
632 #define CCL_EQ 0x12 /* X = (X == Y) */
633 #define CCL_LE 0x13 /* X = (X <= Y) */
634 #define CCL_GE 0x14 /* X = (X >= Y) */
635 #define CCL_NE 0x15 /* X = (X != Y) */
637 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
638 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
639 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
640 r[7] = LOWER_BYTE (SJIS (Y, Z) */
642 /* Terminate CCL program successfully. */
643 #define CCL_SUCCESS \
645 ccl->status = CCL_STAT_SUCCESS; \
649 /* Suspend CCL program because of reading from empty input buffer or
650 writing to full output buffer. When this program is resumed, the
651 same I/O command is executed. */
652 #define CCL_SUSPEND(stat) \
655 ccl->status = stat; \
659 /* Terminate CCL program because of invalid command. Should not occur
660 in the normal case. */
661 #define CCL_INVALID_CMD \
663 ccl->status = CCL_STAT_INVALID_CMD; \
664 goto ccl_error_handler; \
667 /* Encode one character CH to multibyte form and write to the current
668 output buffer. If CH is less than 256, CH is written as is. */
669 #define CCL_WRITE_CHAR(ch) \
671 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
672 if (ch == '\n' && ccl->eol_type == CODING_EOL_CRLF) \
676 else if (dst + bytes <= (dst_bytes ? dst_end : src)) \
680 if (ccl->eol_type == CODING_EOL_CRLF) \
681 *dst++ = '\r', *dst++ = '\n'; \
682 else if (ccl->eol_type == CODING_EOL_CR) \
687 else if (bytes == 1) \
690 if ((ch) >= 0x80 && (ch) < 0xA0) \
691 /* We may have to convert this eight-bit char to \
692 multibyte form later. */ \
696 dst += CHAR_STRING (ch, dst); \
699 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
702 /* Write a string at ccl_prog[IC] of length LEN to the current output
704 #define CCL_WRITE_STRING(len) \
708 else if (dst + len <= (dst_bytes ? dst_end : src)) \
709 for (i = 0; i < len; i++) \
710 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
711 >> ((2 - (i % 3)) * 8)) & 0xFF; \
713 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
716 /* Read one byte from the current input buffer into Rth register. */
717 #define CCL_READ_CHAR(r) \
721 else if (src < src_end) \
724 if (r == LEADING_CODE_8_BIT_CONTROL \
728 else if (ccl->last_block) \
734 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
738 /* Set C to the character code made from CHARSET and CODE. This is
739 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
740 are not valid, set C to (CODE & 0xFF) because that is usually the
741 case that CCL_ReadMultibyteChar2 read an invalid code and it set
742 CODE to that invalid byte. */
744 #define CCL_MAKE_CHAR(charset, code, c) \
746 if (charset == CHARSET_ASCII) \
748 else if (CHARSET_DEFINED_P (charset) \
749 && (code & 0x7F) >= 32 \
750 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
752 int c1 = code & 0x7F, c2 = 0; \
755 c2 = c1, c1 = (code >> 7) & 0x7F; \
756 c = MAKE_CHAR (charset, c1, c2); \
763 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
764 text goes to a place pointed by DESTINATION, the length of which
765 should not exceed DST_BYTES. The bytes actually processed is
766 returned as *CONSUMED. The return value is the length of the
767 resulting text. As a side effect, the contents of CCL registers
768 are updated. If SOURCE or DESTINATION is NULL, only operations on
769 registers are permitted. */
772 #define CCL_DEBUG_BACKTRACE_LEN 256
773 int ccl_backtrace_table
[CCL_BACKTRACE_TABLE
];
774 int ccl_backtrace_idx
;
777 struct ccl_prog_stack
779 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
780 int ic
; /* Instruction Counter. */
783 /* For the moment, we only support depth 256 of stack. */
784 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
787 ccl_driver (ccl
, source
, destination
, src_bytes
, dst_bytes
, consumed
)
788 struct ccl_program
*ccl
;
789 unsigned char *source
, *destination
;
790 int src_bytes
, dst_bytes
;
793 register int *reg
= ccl
->reg
;
794 register int ic
= ccl
->ic
;
795 register int code
, field1
, field2
;
796 register Lisp_Object
*ccl_prog
= ccl
->prog
;
797 unsigned char *src
= source
, *src_end
= src
+ src_bytes
;
798 unsigned char *dst
= destination
, *dst_end
= dst
+ dst_bytes
;
801 int stack_idx
= ccl
->stack_idx
;
802 /* Instruction counter of the current CCL code. */
805 if (ic
>= ccl
->eof_ic
)
806 ic
= CCL_HEADER_MAIN
;
808 if (ccl
->buf_magnification
==0) /* We can't produce any bytes. */
812 ccl_backtrace_idx
= 0;
819 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
820 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
821 ccl_backtrace_idx
= 0;
822 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
825 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
827 /* We can't just signal Qquit, instead break the loop as if
828 the whole data is processed. Don't reset Vquit_flag, it
829 must be handled later at a safer place. */
831 src
= source
+ src_bytes
;
832 ccl
->status
= CCL_STAT_QUIT
;
837 code
= XINT (ccl_prog
[ic
]); ic
++;
839 field2
= (code
& 0xFF) >> 5;
842 #define RRR (field1 & 7)
843 #define Rrr ((field1 >> 3) & 7)
845 #define EXCMD (field1 >> 6)
849 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
853 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
857 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
858 reg
[rrr
] = XINT (ccl_prog
[ic
]);
862 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
865 if ((unsigned int) i
< j
)
866 reg
[rrr
] = XINT (ccl_prog
[ic
+ i
]);
870 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
874 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
879 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
885 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
889 CCL_READ_CHAR (reg
[rrr
]);
893 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
894 i
= XINT (ccl_prog
[ic
]);
899 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
900 i
= XINT (ccl_prog
[ic
]);
903 CCL_READ_CHAR (reg
[rrr
]);
907 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
908 j
= XINT (ccl_prog
[ic
]);
910 CCL_WRITE_STRING (j
);
914 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
916 j
= XINT (ccl_prog
[ic
]);
917 if ((unsigned int) i
< j
)
919 i
= XINT (ccl_prog
[ic
+ 1 + i
]);
923 CCL_READ_CHAR (reg
[rrr
]);
924 ic
+= ADDR
- (j
+ 2);
927 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
928 CCL_READ_CHAR (reg
[rrr
]);
932 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
933 CCL_READ_CHAR (reg
[rrr
]);
934 /* fall through ... */
935 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
936 if ((unsigned int) reg
[rrr
] < field1
)
937 ic
+= XINT (ccl_prog
[ic
+ reg
[rrr
]]);
939 ic
+= XINT (ccl_prog
[ic
+ field1
]);
942 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
945 CCL_READ_CHAR (reg
[rrr
]);
947 code
= XINT (ccl_prog
[ic
]); ic
++;
949 field2
= (code
& 0xFF) >> 5;
953 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
956 j
= XINT (ccl_prog
[ic
]);
958 jump_address
= ic
+ 1;
961 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
967 code
= XINT (ccl_prog
[ic
]); ic
++;
969 field2
= (code
& 0xFF) >> 5;
973 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
981 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
986 /* If FFF is nonzero, the CCL program ID is in the
990 prog_id
= XINT (ccl_prog
[ic
]);
998 || prog_id
>= XVECTOR (Vccl_program_table
)->size
999 || (slot
= XVECTOR (Vccl_program_table
)->contents
[prog_id
],
1001 || !VECTORP (XVECTOR (slot
)->contents
[1]))
1005 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1006 ic
= ccl_prog_stack_struct
[0].ic
;
1011 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1012 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1014 ccl_prog
= XVECTOR (XVECTOR (slot
)->contents
[1])->contents
;
1015 ic
= CCL_HEADER_MAIN
;
1019 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1021 CCL_WRITE_CHAR (field1
);
1024 CCL_WRITE_STRING (field1
);
1025 ic
+= (field1
+ 2) / 3;
1029 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1031 if ((unsigned int) i
< field1
)
1033 j
= XINT (ccl_prog
[ic
+ i
]);
1039 case CCL_End
: /* 0000000000000000000000XXXXX */
1043 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1044 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1049 /* ccl->ic should points to this command code again to
1050 suppress further processing. */
1054 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1055 i
= XINT (ccl_prog
[ic
]);
1060 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1067 case CCL_PLUS
: reg
[rrr
] += i
; break;
1068 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1069 case CCL_MUL
: reg
[rrr
] *= i
; break;
1070 case CCL_DIV
: reg
[rrr
] /= i
; break;
1071 case CCL_MOD
: reg
[rrr
] %= i
; break;
1072 case CCL_AND
: reg
[rrr
] &= i
; break;
1073 case CCL_OR
: reg
[rrr
] |= i
; break;
1074 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1075 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1076 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1077 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1078 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1079 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1080 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1081 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1082 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1083 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1084 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1085 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1086 default: CCL_INVALID_CMD
;
1090 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1092 j
= XINT (ccl_prog
[ic
]);
1094 jump_address
= ++ic
;
1097 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1104 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1105 CCL_READ_CHAR (reg
[rrr
]);
1106 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1108 op
= XINT (ccl_prog
[ic
]);
1109 jump_address
= ic
++ + ADDR
;
1110 j
= XINT (ccl_prog
[ic
]);
1115 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1116 CCL_READ_CHAR (reg
[rrr
]);
1117 case CCL_JumpCondExprReg
:
1119 op
= XINT (ccl_prog
[ic
]);
1120 jump_address
= ic
++ + ADDR
;
1121 j
= reg
[XINT (ccl_prog
[ic
])];
1128 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1129 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1130 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1131 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1132 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1133 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1134 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1135 case CCL_XOR
: reg
[rrr
] = i
^ j
;; break;
1136 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1137 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1138 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1139 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1140 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1141 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1142 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1143 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1144 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1145 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1146 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1147 case CCL_DECODE_SJIS
: DECODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1148 case CCL_ENCODE_SJIS
: ENCODE_SJIS (i
, j
, reg
[rrr
], reg
[7]); break;
1149 default: CCL_INVALID_CMD
;
1152 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1165 case CCL_ReadMultibyteChar2
:
1173 goto ccl_read_multibyte_character_suspend
;
1181 reg
[RRR
] = CHARSET_ASCII
;
1183 else if (i
<= MAX_CHARSET_OFFICIAL_DIMENSION1
)
1186 goto ccl_read_multibyte_character_suspend
;
1188 reg
[rrr
] = (*src
++ & 0x7F);
1190 else if (i
<= MAX_CHARSET_OFFICIAL_DIMENSION2
)
1192 if ((src
+ 1) >= src_end
)
1193 goto ccl_read_multibyte_character_suspend
;
1195 i
= (*src
++ & 0x7F);
1196 reg
[rrr
] = ((i
<< 7) | (*src
& 0x7F));
1199 else if ((i
== LEADING_CODE_PRIVATE_11
)
1200 || (i
== LEADING_CODE_PRIVATE_12
))
1202 if ((src
+ 1) >= src_end
)
1203 goto ccl_read_multibyte_character_suspend
;
1205 reg
[rrr
] = (*src
++ & 0x7F);
1207 else if ((i
== LEADING_CODE_PRIVATE_21
)
1208 || (i
== LEADING_CODE_PRIVATE_22
))
1210 if ((src
+ 2) >= src_end
)
1211 goto ccl_read_multibyte_character_suspend
;
1213 i
= (*src
++ & 0x7F);
1214 reg
[rrr
] = ((i
<< 7) | (*src
& 0x7F));
1217 else if (i
== LEADING_CODE_8_BIT_CONTROL
)
1220 goto ccl_read_multibyte_character_suspend
;
1221 reg
[RRR
] = CHARSET_8_BIT_CONTROL
;
1222 reg
[rrr
] = (*src
++ - 0x20);
1226 reg
[RRR
] = CHARSET_8_BIT_GRAPHIC
;
1231 /* INVALID CODE. Return a single byte character. */
1232 reg
[RRR
] = CHARSET_ASCII
;
1239 ccl_read_multibyte_character_suspend
:
1241 if (ccl
->last_block
)
1247 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC
);
1251 case CCL_WriteMultibyteChar2
:
1252 i
= reg
[RRR
]; /* charset */
1253 if (i
== CHARSET_ASCII
1254 || i
== CHARSET_8_BIT_CONTROL
1255 || i
== CHARSET_8_BIT_GRAPHIC
)
1256 i
= reg
[rrr
] & 0xFF;
1257 else if (CHARSET_DIMENSION (i
) == 1)
1258 i
= ((i
- 0x70) << 7) | (reg
[rrr
] & 0x7F);
1259 else if (i
< MIN_CHARSET_PRIVATE_DIMENSION2
)
1260 i
= ((i
- 0x8F) << 14) | reg
[rrr
];
1262 i
= ((i
- 0xE0) << 14) | reg
[rrr
];
1268 case CCL_TranslateCharacter
:
1269 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1270 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]),
1272 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1279 case CCL_TranslateCharacterConstTbl
:
1280 op
= XINT (ccl_prog
[ic
]); /* table */
1282 CCL_MAKE_CHAR (reg
[RRR
], reg
[rrr
], i
);
1283 op
= translate_char (GET_TRANSLATION_TABLE (op
), i
, -1, 0, 0);
1284 SPLIT_CHAR (op
, reg
[RRR
], i
, j
);
1291 case CCL_IterateMultipleMap
:
1293 Lisp_Object map
, content
, attrib
, value
;
1294 int point
, size
, fin_ic
;
1296 j
= XINT (ccl_prog
[ic
++]); /* number of maps. */
1299 if ((j
> reg
[RRR
]) && (j
>= 0))
1314 size
= XVECTOR (Vcode_conversion_map_vector
)->size
;
1315 point
= XINT (ccl_prog
[ic
++]);
1316 if (point
>= size
) continue;
1318 XVECTOR (Vcode_conversion_map_vector
)->contents
[point
];
1320 /* Check map varidity. */
1321 if (!CONSP (map
)) continue;
1323 if (!VECTORP (map
)) continue;
1324 size
= XVECTOR (map
)->size
;
1325 if (size
<= 1) continue;
1327 content
= XVECTOR (map
)->contents
[0];
1330 [STARTPOINT VAL1 VAL2 ...] or
1331 [t ELELMENT STARTPOINT ENDPOINT] */
1332 if (NUMBERP (content
))
1334 point
= XUINT (content
);
1335 point
= op
- point
+ 1;
1336 if (!((point
>= 1) && (point
< size
))) continue;
1337 content
= XVECTOR (map
)->contents
[point
];
1339 else if (EQ (content
, Qt
))
1341 if (size
!= 4) continue;
1342 if ((op
>= XUINT (XVECTOR (map
)->contents
[2]))
1343 && (op
< XUINT (XVECTOR (map
)->contents
[3])))
1344 content
= XVECTOR (map
)->contents
[1];
1353 else if (NUMBERP (content
))
1356 reg
[rrr
] = XINT(content
);
1359 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1364 else if (CONSP (content
))
1366 attrib
= XCAR (content
);
1367 value
= XCDR (content
);
1368 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1371 reg
[rrr
] = XUINT (value
);
1381 case CCL_MapMultiple
:
1383 Lisp_Object map
, content
, attrib
, value
;
1384 int point
, size
, map_vector_size
;
1385 int map_set_rest_length
, fin_ic
;
1387 map_set_rest_length
=
1388 XINT (ccl_prog
[ic
++]); /* number of maps and separators. */
1389 fin_ic
= ic
+ map_set_rest_length
;
1390 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1394 map_set_rest_length
-= i
;
1402 mapping_stack_pointer
= mapping_stack
;
1404 PUSH_MAPPING_STACK (0, op
);
1406 map_vector_size
= XVECTOR (Vcode_conversion_map_vector
)->size
;
1407 for (;map_set_rest_length
> 0;i
++, map_set_rest_length
--)
1409 point
= XINT(ccl_prog
[ic
++]);
1413 if (mapping_stack_pointer
1414 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1418 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1420 map_set_rest_length
= point
+ 1;
1425 if (point
>= map_vector_size
) continue;
1426 map
= (XVECTOR (Vcode_conversion_map_vector
)
1429 /* Check map varidity. */
1430 if (!CONSP (map
)) continue;
1432 if (!VECTORP (map
)) continue;
1433 size
= XVECTOR (map
)->size
;
1434 if (size
<= 1) continue;
1436 content
= XVECTOR (map
)->contents
[0];
1439 [STARTPOINT VAL1 VAL2 ...] or
1440 [t ELEMENT STARTPOINT ENDPOINT] */
1441 if (NUMBERP (content
))
1443 point
= XUINT (content
);
1444 point
= op
- point
+ 1;
1445 if (!((point
>= 1) && (point
< size
))) continue;
1446 content
= XVECTOR (map
)->contents
[point
];
1448 else if (EQ (content
, Qt
))
1450 if (size
!= 4) continue;
1451 if ((op
>= XUINT (XVECTOR (map
)->contents
[2])) &&
1452 (op
< XUINT (XVECTOR (map
)->contents
[3])))
1453 content
= XVECTOR (map
)->contents
[1];
1462 else if (NUMBERP (content
))
1464 op
= XINT (content
);
1466 i
+= map_set_rest_length
;
1467 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1469 else if (CONSP (content
))
1471 attrib
= XCAR (content
);
1472 value
= XCDR (content
);
1473 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1477 i
+= map_set_rest_length
;
1478 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1480 else if (EQ (content
, Qt
))
1484 i
+= map_set_rest_length
;
1485 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1487 else if (EQ (content
, Qlambda
))
1502 Lisp_Object map
, attrib
, value
, content
;
1504 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1506 if (j
>= XVECTOR (Vcode_conversion_map_vector
)->size
)
1511 map
= XVECTOR (Vcode_conversion_map_vector
)->contents
[j
];
1523 size
= XVECTOR (map
)->size
;
1524 point
= XUINT (XVECTOR (map
)->contents
[0]);
1525 point
= op
- point
+ 1;
1528 (!((point
>= 1) && (point
< size
))))
1533 content
= XVECTOR (map
)->contents
[point
];
1536 else if (NUMBERP (content
))
1537 reg
[rrr
] = XINT (content
);
1538 else if (EQ (content
, Qt
));
1539 else if (CONSP (content
))
1541 attrib
= XCAR (content
);
1542 value
= XCDR (content
);
1543 if (!NUMBERP (attrib
) || !NUMBERP (value
))
1545 reg
[rrr
] = XUINT(value
);
1567 /* We can insert an error message only if DESTINATION is
1568 specified and we still have a room to store the message
1576 switch (ccl
->status
)
1578 case CCL_STAT_INVALID_CMD
:
1579 sprintf(msg
, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1580 code
& 0x1F, code
, this_ic
);
1583 int i
= ccl_backtrace_idx
- 1;
1586 msglen
= strlen (msg
);
1587 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1589 bcopy (msg
, dst
, msglen
);
1593 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1595 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1596 if (ccl_backtrace_table
[i
] == 0)
1598 sprintf(msg
, " %d", ccl_backtrace_table
[i
]);
1599 msglen
= strlen (msg
);
1600 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1602 bcopy (msg
, dst
, msglen
);
1611 sprintf(msg
, "\nCCL: Quited.");
1615 sprintf(msg
, "\nCCL: Unknown error type (%d).", ccl
->status
);
1618 msglen
= strlen (msg
);
1619 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1621 bcopy (msg
, dst
, msglen
);
1628 ccl
->stack_idx
= stack_idx
;
1629 ccl
->prog
= ccl_prog
;
1630 if (consumed
) *consumed
= src
- source
;
1631 return (dst
? dst
- destination
: 0);
1634 /* Resolve symbols in the specified CCL code (Lisp vector). This
1635 function converts symbols of code conversion maps and character
1636 translation tables embeded in the CCL code into their ID numbers.
1638 The return value is a vector (CCL itself or a new vector in which
1639 all symbols are resolved), Qt if resolving of some symbol failed,
1640 or nil if CCL contains invalid data. */
1643 resolve_symbol_ccl_program (ccl
)
1646 int i
, veclen
, unresolved
= 0;
1647 Lisp_Object result
, contents
, val
;
1650 veclen
= XVECTOR (result
)->size
;
1652 for (i
= 0; i
< veclen
; i
++)
1654 contents
= XVECTOR (result
)->contents
[i
];
1655 if (INTEGERP (contents
))
1657 else if (CONSP (contents
)
1658 && SYMBOLP (XCAR (contents
))
1659 && SYMBOLP (XCDR (contents
)))
1661 /* This is the new style for embedding symbols. The form is
1662 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1665 if (EQ (result
, ccl
))
1666 result
= Fcopy_sequence (ccl
);
1668 val
= Fget (XCAR (contents
), XCDR (contents
));
1670 XVECTOR (result
)->contents
[i
] = val
;
1675 else if (SYMBOLP (contents
))
1677 /* This is the old style for embedding symbols. This style
1678 may lead to a bug if, for instance, a translation table
1679 and a code conversion map have the same name. */
1680 if (EQ (result
, ccl
))
1681 result
= Fcopy_sequence (ccl
);
1683 val
= Fget (contents
, Qtranslation_table_id
);
1685 XVECTOR (result
)->contents
[i
] = val
;
1688 val
= Fget (contents
, Qcode_conversion_map_id
);
1690 XVECTOR (result
)->contents
[i
] = val
;
1693 val
= Fget (contents
, Qccl_program_idx
);
1695 XVECTOR (result
)->contents
[i
] = val
;
1705 return (unresolved
? Qt
: result
);
1708 /* Return the compiled code (vector) of CCL program CCL_PROG.
1709 CCL_PROG is a name (symbol) of the program or already compiled
1710 code. If necessary, resolve symbols in the compiled code to index
1711 numbers. If we failed to get the compiled code or to resolve
1712 symbols, return Qnil. */
1715 ccl_get_compiled_code (ccl_prog
)
1716 Lisp_Object ccl_prog
;
1718 Lisp_Object val
, slot
;
1720 if (VECTORP (ccl_prog
))
1722 val
= resolve_symbol_ccl_program (ccl_prog
);
1723 return (VECTORP (val
) ? val
: Qnil
);
1725 if (!SYMBOLP (ccl_prog
))
1728 val
= Fget (ccl_prog
, Qccl_program_idx
);
1730 || XINT (val
) >= XVECTOR (Vccl_program_table
)->size
)
1732 slot
= XVECTOR (Vccl_program_table
)->contents
[XINT (val
)];
1733 if (! VECTORP (slot
)
1734 || XVECTOR (slot
)->size
!= 3
1735 || ! VECTORP (XVECTOR (slot
)->contents
[1]))
1737 if (NILP (XVECTOR (slot
)->contents
[2]))
1739 val
= resolve_symbol_ccl_program (XVECTOR (slot
)->contents
[1]);
1740 if (! VECTORP (val
))
1742 XVECTOR (slot
)->contents
[1] = val
;
1743 XVECTOR (slot
)->contents
[2] = Qt
;
1745 return XVECTOR (slot
)->contents
[1];
1748 /* Setup fields of the structure pointed by CCL appropriately for the
1749 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1750 of the CCL program or the already compiled code (vector).
1751 Return 0 if we succeed this setup, else return -1.
1753 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1755 setup_ccl_program (ccl
, ccl_prog
)
1756 struct ccl_program
*ccl
;
1757 Lisp_Object ccl_prog
;
1761 if (! NILP (ccl_prog
))
1763 struct Lisp_Vector
*vp
;
1765 ccl_prog
= ccl_get_compiled_code (ccl_prog
);
1766 if (! VECTORP (ccl_prog
))
1768 vp
= XVECTOR (ccl_prog
);
1769 ccl
->size
= vp
->size
;
1770 ccl
->prog
= vp
->contents
;
1771 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
1772 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
1774 ccl
->ic
= CCL_HEADER_MAIN
;
1775 for (i
= 0; i
< 8; i
++)
1777 ccl
->last_block
= 0;
1778 ccl
->private_state
= 0;
1781 ccl
->eol_type
= CODING_EOL_LF
;
1787 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
1788 "Return t if OBJECT is a CCL program name or a compiled CCL program code.\n\
1789 See the documentation of `define-ccl-program' for the detail of CCL program.")
1795 if (VECTORP (object
))
1797 val
= resolve_symbol_ccl_program (object
);
1798 return (VECTORP (val
) ? Qt
: Qnil
);
1800 if (!SYMBOLP (object
))
1803 val
= Fget (object
, Qccl_program_idx
);
1804 return ((! NATNUMP (val
)
1805 || XINT (val
) >= XVECTOR (Vccl_program_table
)->size
)
1809 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
1810 "Execute CCL-PROGRAM with registers initialized by REGISTERS.\n\
1812 CCL-PROGRAM is a CCL program name (symbol)\n\
1813 or a compiled code generated by `ccl-compile' (for backward compatibility,\n\
1814 in this case, the overhead of the execution is bigger than the former case).\n\
1815 No I/O commands should appear in CCL-PROGRAM.\n\
1817 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value\n\
1820 As side effect, each element of REGISTERS holds the value of\n\
1821 corresponding register after the execution.\n\
1823 See the documentation of `define-ccl-program' for the detail of CCL program.")
1825 Lisp_Object ccl_prog
, reg
;
1827 struct ccl_program ccl
;
1830 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
1831 error ("Invalid CCL program");
1833 CHECK_VECTOR (reg
, 1);
1834 if (XVECTOR (reg
)->size
!= 8)
1835 error ("Length of vector REGISTERS is not 8");
1837 for (i
= 0; i
< 8; i
++)
1838 ccl
.reg
[i
] = (INTEGERP (XVECTOR (reg
)->contents
[i
])
1839 ? XINT (XVECTOR (reg
)->contents
[i
])
1842 ccl_driver (&ccl
, (char *)0, (char *)0, 0, 0, (int *)0);
1844 if (ccl
.status
!= CCL_STAT_SUCCESS
)
1845 error ("Error in CCL program at %dth code", ccl
.ic
);
1847 for (i
= 0; i
< 8; i
++)
1848 XSETINT (XVECTOR (reg
)->contents
[i
], ccl
.reg
[i
]);
1852 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
1854 "Execute CCL-PROGRAM with initial STATUS on STRING.\n\
1856 CCL-PROGRAM is a symbol registered by register-ccl-program,\n\
1857 or a compiled code generated by `ccl-compile' (for backward compatibility,\n\
1858 in this case, the execution is slower).\n\
1860 Read buffer is set to STRING, and write buffer is allocated automatically.\n\
1862 STATUS is a vector of [R0 R1 ... R7 IC], where\n\
1863 R0..R7 are initial values of corresponding registers,\n\
1864 IC is the instruction counter specifying from where to start the program.\n\
1865 If R0..R7 are nil, they are initialized to 0.\n\
1866 If IC is nil, it is initialized to head of the CCL program.\n\
1868 If optional 4th arg CONTINUE is non-nil, keep IC on read operation\n\
1869 when read buffer is exausted, else, IC is always set to the end of\n\
1870 CCL-PROGRAM on exit.\n\
1872 It returns the contents of write buffer as a string,\n\
1873 and as side effect, STATUS is updated.\n\
1874 If the optional 5th arg UNIBYTE-P is non-nil, the returned string\n\
1875 is a unibyte string. By default it is a multibyte string.\n\
1877 See the documentation of `define-ccl-program' for the detail of CCL program.")
1878 (ccl_prog
, status
, str
, contin
, unibyte_p
)
1879 Lisp_Object ccl_prog
, status
, str
, contin
, unibyte_p
;
1882 struct ccl_program ccl
;
1886 struct gcpro gcpro1
, gcpro2
;
1888 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
1889 error ("Invalid CCL program");
1891 CHECK_VECTOR (status
, 1);
1892 if (XVECTOR (status
)->size
!= 9)
1893 error ("Length of vector STATUS is not 9");
1894 CHECK_STRING (str
, 2);
1896 GCPRO2 (status
, str
);
1898 for (i
= 0; i
< 8; i
++)
1900 if (NILP (XVECTOR (status
)->contents
[i
]))
1901 XSETINT (XVECTOR (status
)->contents
[i
], 0);
1902 if (INTEGERP (XVECTOR (status
)->contents
[i
]))
1903 ccl
.reg
[i
] = XINT (XVECTOR (status
)->contents
[i
]);
1905 if (INTEGERP (XVECTOR (status
)->contents
[i
]))
1907 i
= XFASTINT (XVECTOR (status
)->contents
[8]);
1908 if (ccl
.ic
< i
&& i
< ccl
.size
)
1911 outbufsize
= STRING_BYTES (XSTRING (str
)) * ccl
.buf_magnification
+ 256;
1912 outbuf
= (char *) xmalloc (outbufsize
);
1913 ccl
.last_block
= NILP (contin
);
1914 ccl
.multibyte
= STRING_MULTIBYTE (str
);
1915 produced
= ccl_driver (&ccl
, XSTRING (str
)->data
, outbuf
,
1916 STRING_BYTES (XSTRING (str
)), outbufsize
, (int *)0);
1917 for (i
= 0; i
< 8; i
++)
1918 XSET (XVECTOR (status
)->contents
[i
], Lisp_Int
, ccl
.reg
[i
]);
1919 XSETINT (XVECTOR (status
)->contents
[8], ccl
.ic
);
1922 if (NILP (unibyte_p
))
1923 val
= make_string (outbuf
, produced
);
1925 val
= make_unibyte_string (outbuf
, produced
);
1928 if (ccl
.status
!= CCL_STAT_SUCCESS
1929 && ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
1930 && ccl
.status
!= CCL_STAT_SUSPEND_BY_DST
)
1931 error ("Error in CCL program at %dth code", ccl
.ic
);
1936 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
1938 "Register CCL program CCL_PROG as NAME in `ccl-program-table'.\n\
1939 CCL_PROG should be a compiled CCL program (vector), or nil.\n\
1940 If it is nil, just reserve NAME as a CCL program name.\n\
1941 Return index number of the registered CCL program.")
1943 Lisp_Object name
, ccl_prog
;
1945 int len
= XVECTOR (Vccl_program_table
)->size
;
1947 Lisp_Object resolved
;
1949 CHECK_SYMBOL (name
, 0);
1951 if (!NILP (ccl_prog
))
1953 CHECK_VECTOR (ccl_prog
, 1);
1954 resolved
= resolve_symbol_ccl_program (ccl_prog
);
1955 if (! NILP (resolved
))
1957 ccl_prog
= resolved
;
1962 for (idx
= 0; idx
< len
; idx
++)
1966 slot
= XVECTOR (Vccl_program_table
)->contents
[idx
];
1967 if (!VECTORP (slot
))
1968 /* This is the first unsed slot. Register NAME here. */
1971 if (EQ (name
, XVECTOR (slot
)->contents
[0]))
1973 /* Update this slot. */
1974 XVECTOR (slot
)->contents
[1] = ccl_prog
;
1975 XVECTOR (slot
)->contents
[2] = resolved
;
1976 return make_number (idx
);
1982 /* Extend the table. */
1983 Lisp_Object new_table
;
1986 new_table
= Fmake_vector (make_number (len
* 2), Qnil
);
1987 for (j
= 0; j
< len
; j
++)
1988 XVECTOR (new_table
)->contents
[j
]
1989 = XVECTOR (Vccl_program_table
)->contents
[j
];
1990 Vccl_program_table
= new_table
;
1996 elt
= Fmake_vector (make_number (3), Qnil
);
1997 XVECTOR (elt
)->contents
[0] = name
;
1998 XVECTOR (elt
)->contents
[1] = ccl_prog
;
1999 XVECTOR (elt
)->contents
[2] = resolved
;
2000 XVECTOR (Vccl_program_table
)->contents
[idx
] = elt
;
2003 Fput (name
, Qccl_program_idx
, make_number (idx
));
2004 return make_number (idx
);
2007 /* Register code conversion map.
2008 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2009 The first element is start code point.
2010 The rest elements are mapped numbers.
2011 Symbol t means to map to an original number before mapping.
2012 Symbol nil means that the corresponding element is empty.
2013 Symbol lambda menas to terminate mapping here.
2016 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2017 Sregister_code_conversion_map
,
2019 "Register SYMBOL as code conversion map MAP.\n\
2020 Return index number of the registered map.")
2022 Lisp_Object symbol
, map
;
2024 int len
= XVECTOR (Vcode_conversion_map_vector
)->size
;
2028 CHECK_SYMBOL (symbol
, 0);
2029 CHECK_VECTOR (map
, 1);
2031 for (i
= 0; i
< len
; i
++)
2033 Lisp_Object slot
= XVECTOR (Vcode_conversion_map_vector
)->contents
[i
];
2038 if (EQ (symbol
, XCAR (slot
)))
2040 index
= make_number (i
);
2042 Fput (symbol
, Qcode_conversion_map
, map
);
2043 Fput (symbol
, Qcode_conversion_map_id
, index
);
2050 Lisp_Object new_vector
= Fmake_vector (make_number (len
* 2), Qnil
);
2053 for (j
= 0; j
< len
; j
++)
2054 XVECTOR (new_vector
)->contents
[j
]
2055 = XVECTOR (Vcode_conversion_map_vector
)->contents
[j
];
2056 Vcode_conversion_map_vector
= new_vector
;
2059 index
= make_number (i
);
2060 Fput (symbol
, Qcode_conversion_map
, map
);
2061 Fput (symbol
, Qcode_conversion_map_id
, index
);
2062 XVECTOR (Vcode_conversion_map_vector
)->contents
[i
] = Fcons (symbol
, map
);
2070 staticpro (&Vccl_program_table
);
2071 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2073 Qccl_program
= intern ("ccl-program");
2074 staticpro (&Qccl_program
);
2076 Qccl_program_idx
= intern ("ccl-program-idx");
2077 staticpro (&Qccl_program_idx
);
2079 Qcode_conversion_map
= intern ("code-conversion-map");
2080 staticpro (&Qcode_conversion_map
);
2082 Qcode_conversion_map_id
= intern ("code-conversion-map-id");
2083 staticpro (&Qcode_conversion_map_id
);
2085 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector
,
2086 "Vector of code conversion maps.");
2087 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2089 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist
,
2090 "Alist of fontname patterns vs corresponding CCL program.\n\
2091 Each element looks like (REGEXP . CCL-CODE),\n\
2092 where CCL-CODE is a compiled CCL program.\n\
2093 When a font whose name matches REGEXP is used for displaying a character,\n\
2094 CCL-CODE is executed to calculate the code point in the font\n\
2095 from the charset number and position code(s) of the character which are set\n\
2096 in CCL registers R0, R1, and R2 before the execution.\n\
2097 The code point in the font is set in CCL registers R1 and R2\n\
2098 when the execution terminated.\n\
2099 If the font is single-byte font, the register R2 is not used.");
2100 Vfont_ccl_encoder_alist
= Qnil
;
2102 defsubr (&Sccl_program_p
);
2103 defsubr (&Sccl_execute
);
2104 defsubr (&Sccl_execute_on_string
);
2105 defsubr (&Sregister_ccl_program
);
2106 defsubr (&Sregister_code_conversion_map
);