(AC_PREREQ): Bump from 2.50 to 2.51; needed for vfork.
[emacs.git] / src / alloc.c
blob6a47b872d2358ad8ff28a2e2f6cfce320a75c2f0
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
25 /* Note that this declares bzero on OSF/1. How dumb. */
27 #include <signal.h>
29 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
30 memory. Can do this only if using gmalloc.c. */
32 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
33 #undef GC_MALLOC_CHECK
34 #endif
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "charset.h"
51 #include "syssignal.h"
52 #include <setjmp.h>
54 #ifdef HAVE_UNISTD_H
55 #include <unistd.h>
56 #else
57 extern POINTER_TYPE *sbrk ();
58 #endif
60 #ifdef DOUG_LEA_MALLOC
62 #include <malloc.h>
63 /* malloc.h #defines this as size_t, at least in glibc2. */
64 #ifndef __malloc_size_t
65 #define __malloc_size_t int
66 #endif
68 /* Specify maximum number of areas to mmap. It would be nice to use a
69 value that explicitly means "no limit". */
71 #define MMAP_MAX_AREAS 100000000
73 #else /* not DOUG_LEA_MALLOC */
75 /* The following come from gmalloc.c. */
77 #define __malloc_size_t size_t
78 extern __malloc_size_t _bytes_used;
79 extern __malloc_size_t __malloc_extra_blocks;
81 #endif /* not DOUG_LEA_MALLOC */
83 /* Macro to verify that storage intended for Lisp objects is not
84 out of range to fit in the space for a pointer.
85 ADDRESS is the start of the block, and SIZE
86 is the amount of space within which objects can start. */
88 #define VALIDATE_LISP_STORAGE(address, size) \
89 do \
90 { \
91 Lisp_Object val; \
92 XSETCONS (val, (char *) address + size); \
93 if ((char *) XCONS (val) != (char *) address + size) \
94 { \
95 xfree (address); \
96 memory_full (); \
97 } \
98 } while (0)
100 /* Value of _bytes_used, when spare_memory was freed. */
102 static __malloc_size_t bytes_used_when_full;
104 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
105 to a struct Lisp_String. */
107 #define MARK_STRING(S) ((S)->size |= MARKBIT)
108 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
109 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
111 /* Value is the number of bytes/chars of S, a pointer to a struct
112 Lisp_String. This must be used instead of STRING_BYTES (S) or
113 S->size during GC, because S->size contains the mark bit for
114 strings. */
116 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
117 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
119 /* Number of bytes of consing done since the last gc. */
121 int consing_since_gc;
123 /* Count the amount of consing of various sorts of space. */
125 int cons_cells_consed;
126 int floats_consed;
127 int vector_cells_consed;
128 int symbols_consed;
129 int string_chars_consed;
130 int misc_objects_consed;
131 int intervals_consed;
132 int strings_consed;
134 /* Number of bytes of consing since GC before another GC should be done. */
136 int gc_cons_threshold;
138 /* Nonzero during GC. */
140 int gc_in_progress;
142 /* Nonzero means display messages at beginning and end of GC. */
144 int garbage_collection_messages;
146 #ifndef VIRT_ADDR_VARIES
147 extern
148 #endif /* VIRT_ADDR_VARIES */
149 int malloc_sbrk_used;
151 #ifndef VIRT_ADDR_VARIES
152 extern
153 #endif /* VIRT_ADDR_VARIES */
154 int malloc_sbrk_unused;
156 /* Two limits controlling how much undo information to keep. */
158 int undo_limit;
159 int undo_strong_limit;
161 /* Number of live and free conses etc. */
163 static int total_conses, total_markers, total_symbols, total_vector_size;
164 static int total_free_conses, total_free_markers, total_free_symbols;
165 static int total_free_floats, total_floats;
167 /* Points to memory space allocated as "spare", to be freed if we run
168 out of memory. */
170 static char *spare_memory;
172 /* Amount of spare memory to keep in reserve. */
174 #define SPARE_MEMORY (1 << 14)
176 /* Number of extra blocks malloc should get when it needs more core. */
178 static int malloc_hysteresis;
180 /* Non-nil means defun should do purecopy on the function definition. */
182 Lisp_Object Vpurify_flag;
184 #ifndef HAVE_SHM
186 /* Force it into data space! */
188 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
189 #define PUREBEG (char *) pure
191 #else /* HAVE_SHM */
193 #define pure PURE_SEG_BITS /* Use shared memory segment */
194 #define PUREBEG (char *)PURE_SEG_BITS
196 #endif /* HAVE_SHM */
198 /* Pointer to the pure area, and its size. */
200 static char *purebeg;
201 static size_t pure_size;
203 /* Number of bytes of pure storage used before pure storage overflowed.
204 If this is non-zero, this implies that an overflow occurred. */
206 static size_t pure_bytes_used_before_overflow;
208 /* Value is non-zero if P points into pure space. */
210 #define PURE_POINTER_P(P) \
211 (((PNTR_COMPARISON_TYPE) (P) \
212 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
213 && ((PNTR_COMPARISON_TYPE) (P) \
214 >= (PNTR_COMPARISON_TYPE) purebeg))
216 /* Index in pure at which next pure object will be allocated.. */
218 int pure_bytes_used;
220 /* If nonzero, this is a warning delivered by malloc and not yet
221 displayed. */
223 char *pending_malloc_warning;
225 /* Pre-computed signal argument for use when memory is exhausted. */
227 Lisp_Object memory_signal_data;
229 /* Maximum amount of C stack to save when a GC happens. */
231 #ifndef MAX_SAVE_STACK
232 #define MAX_SAVE_STACK 16000
233 #endif
235 /* Buffer in which we save a copy of the C stack at each GC. */
237 char *stack_copy;
238 int stack_copy_size;
240 /* Non-zero means ignore malloc warnings. Set during initialization.
241 Currently not used. */
243 int ignore_warnings;
245 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
247 /* Hook run after GC has finished. */
249 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
251 static void mark_buffer P_ ((Lisp_Object));
252 static void mark_kboards P_ ((void));
253 static void gc_sweep P_ ((void));
254 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
255 static void mark_face_cache P_ ((struct face_cache *));
257 #ifdef HAVE_WINDOW_SYSTEM
258 static void mark_image P_ ((struct image *));
259 static void mark_image_cache P_ ((struct frame *));
260 #endif /* HAVE_WINDOW_SYSTEM */
262 static struct Lisp_String *allocate_string P_ ((void));
263 static void compact_small_strings P_ ((void));
264 static void free_large_strings P_ ((void));
265 static void sweep_strings P_ ((void));
267 extern int message_enable_multibyte;
269 /* When scanning the C stack for live Lisp objects, Emacs keeps track
270 of what memory allocated via lisp_malloc is intended for what
271 purpose. This enumeration specifies the type of memory. */
273 enum mem_type
275 MEM_TYPE_NON_LISP,
276 MEM_TYPE_BUFFER,
277 MEM_TYPE_CONS,
278 MEM_TYPE_STRING,
279 MEM_TYPE_MISC,
280 MEM_TYPE_SYMBOL,
281 MEM_TYPE_FLOAT,
282 /* Keep the following vector-like types together, with
283 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
284 first. Or change the code of live_vector_p, for instance. */
285 MEM_TYPE_VECTOR,
286 MEM_TYPE_PROCESS,
287 MEM_TYPE_HASH_TABLE,
288 MEM_TYPE_FRAME,
289 MEM_TYPE_WINDOW
292 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
295 #include <stdio.h> /* For fprintf. */
296 #endif
298 /* A unique object in pure space used to make some Lisp objects
299 on free lists recognizable in O(1). */
301 Lisp_Object Vdead;
303 #ifdef GC_MALLOC_CHECK
305 enum mem_type allocated_mem_type;
306 int dont_register_blocks;
308 #endif /* GC_MALLOC_CHECK */
310 /* A node in the red-black tree describing allocated memory containing
311 Lisp data. Each such block is recorded with its start and end
312 address when it is allocated, and removed from the tree when it
313 is freed.
315 A red-black tree is a balanced binary tree with the following
316 properties:
318 1. Every node is either red or black.
319 2. Every leaf is black.
320 3. If a node is red, then both of its children are black.
321 4. Every simple path from a node to a descendant leaf contains
322 the same number of black nodes.
323 5. The root is always black.
325 When nodes are inserted into the tree, or deleted from the tree,
326 the tree is "fixed" so that these properties are always true.
328 A red-black tree with N internal nodes has height at most 2
329 log(N+1). Searches, insertions and deletions are done in O(log N).
330 Please see a text book about data structures for a detailed
331 description of red-black trees. Any book worth its salt should
332 describe them. */
334 struct mem_node
336 struct mem_node *left, *right, *parent;
338 /* Start and end of allocated region. */
339 void *start, *end;
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
344 /* Memory type. */
345 enum mem_type type;
348 /* Base address of stack. Set in main. */
350 Lisp_Object *stack_base;
352 /* Root of the tree describing allocated Lisp memory. */
354 static struct mem_node *mem_root;
356 /* Lowest and highest known address in the heap. */
358 static void *min_heap_address, *max_heap_address;
360 /* Sentinel node of the tree. */
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
365 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
366 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
367 static void lisp_free P_ ((POINTER_TYPE *));
368 static void mark_stack P_ ((void));
369 static int live_vector_p P_ ((struct mem_node *, void *));
370 static int live_buffer_p P_ ((struct mem_node *, void *));
371 static int live_string_p P_ ((struct mem_node *, void *));
372 static int live_cons_p P_ ((struct mem_node *, void *));
373 static int live_symbol_p P_ ((struct mem_node *, void *));
374 static int live_float_p P_ ((struct mem_node *, void *));
375 static int live_misc_p P_ ((struct mem_node *, void *));
376 static void mark_maybe_object P_ ((Lisp_Object));
377 static void mark_memory P_ ((void *, void *));
378 static void mem_init P_ ((void));
379 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
380 static void mem_insert_fixup P_ ((struct mem_node *));
381 static void mem_rotate_left P_ ((struct mem_node *));
382 static void mem_rotate_right P_ ((struct mem_node *));
383 static void mem_delete P_ ((struct mem_node *));
384 static void mem_delete_fixup P_ ((struct mem_node *));
385 static INLINE struct mem_node *mem_find P_ ((void *));
387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
388 static void check_gcpros P_ ((void));
389 #endif
391 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393 /* Recording what needs to be marked for gc. */
395 struct gcpro *gcprolist;
397 /* Addresses of staticpro'd variables. */
399 #define NSTATICS 1024
400 Lisp_Object *staticvec[NSTATICS] = {0};
402 /* Index of next unused slot in staticvec. */
404 int staticidx = 0;
406 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
409 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
410 ALIGNMENT must be a power of 2. */
412 #define ALIGN(SZ, ALIGNMENT) \
413 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
417 /************************************************************************
418 Malloc
419 ************************************************************************/
421 /* Write STR to Vstandard_output plus some advice on how to free some
422 memory. Called when memory gets low. */
424 Lisp_Object
425 malloc_warning_1 (str)
426 Lisp_Object str;
428 Fprinc (str, Vstandard_output);
429 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
430 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
431 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
432 return Qnil;
436 /* Function malloc calls this if it finds we are near exhausting
437 storage. */
439 void
440 malloc_warning (str)
441 char *str;
443 pending_malloc_warning = str;
447 /* Display a malloc warning in buffer *Danger*. */
449 void
450 display_malloc_warning ()
452 register Lisp_Object val;
454 val = build_string (pending_malloc_warning);
455 pending_malloc_warning = 0;
456 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
460 #ifdef DOUG_LEA_MALLOC
461 # define BYTES_USED (mallinfo ().arena)
462 #else
463 # define BYTES_USED _bytes_used
464 #endif
467 /* Called if malloc returns zero. */
469 void
470 memory_full ()
472 #ifndef SYSTEM_MALLOC
473 bytes_used_when_full = BYTES_USED;
474 #endif
476 /* The first time we get here, free the spare memory. */
477 if (spare_memory)
479 free (spare_memory);
480 spare_memory = 0;
483 /* This used to call error, but if we've run out of memory, we could
484 get infinite recursion trying to build the string. */
485 while (1)
486 Fsignal (Qnil, memory_signal_data);
490 /* Called if we can't allocate relocatable space for a buffer. */
492 void
493 buffer_memory_full ()
495 /* If buffers use the relocating allocator, no need to free
496 spare_memory, because we may have plenty of malloc space left
497 that we could get, and if we don't, the malloc that fails will
498 itself cause spare_memory to be freed. If buffers don't use the
499 relocating allocator, treat this like any other failing
500 malloc. */
502 #ifndef REL_ALLOC
503 memory_full ();
504 #endif
506 /* This used to call error, but if we've run out of memory, we could
507 get infinite recursion trying to build the string. */
508 while (1)
509 Fsignal (Qerror, memory_signal_data);
513 /* Like malloc but check for no memory and block interrupt input.. */
515 POINTER_TYPE *
516 xmalloc (size)
517 size_t size;
519 register POINTER_TYPE *val;
521 BLOCK_INPUT;
522 val = (POINTER_TYPE *) malloc (size);
523 UNBLOCK_INPUT;
525 if (!val && size)
526 memory_full ();
527 return val;
531 /* Like realloc but check for no memory and block interrupt input.. */
533 POINTER_TYPE *
534 xrealloc (block, size)
535 POINTER_TYPE *block;
536 size_t size;
538 register POINTER_TYPE *val;
540 BLOCK_INPUT;
541 /* We must call malloc explicitly when BLOCK is 0, since some
542 reallocs don't do this. */
543 if (! block)
544 val = (POINTER_TYPE *) malloc (size);
545 else
546 val = (POINTER_TYPE *) realloc (block, size);
547 UNBLOCK_INPUT;
549 if (!val && size) memory_full ();
550 return val;
554 /* Like free but block interrupt input.. */
556 void
557 xfree (block)
558 POINTER_TYPE *block;
560 BLOCK_INPUT;
561 free (block);
562 UNBLOCK_INPUT;
566 /* Like strdup, but uses xmalloc. */
568 char *
569 xstrdup (s)
570 char *s;
572 size_t len = strlen (s) + 1;
573 char *p = (char *) xmalloc (len);
574 bcopy (s, p, len);
575 return p;
579 /* Like malloc but used for allocating Lisp data. NBYTES is the
580 number of bytes to allocate, TYPE describes the intended use of the
581 allcated memory block (for strings, for conses, ...). */
583 static POINTER_TYPE *
584 lisp_malloc (nbytes, type)
585 size_t nbytes;
586 enum mem_type type;
588 register void *val;
590 BLOCK_INPUT;
592 #ifdef GC_MALLOC_CHECK
593 allocated_mem_type = type;
594 #endif
596 val = (void *) malloc (nbytes);
598 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
599 if (val && type != MEM_TYPE_NON_LISP)
600 mem_insert (val, (char *) val + nbytes, type);
601 #endif
603 UNBLOCK_INPUT;
604 if (!val && nbytes)
605 memory_full ();
606 return val;
610 /* Return a new buffer structure allocated from the heap with
611 a call to lisp_malloc. */
613 struct buffer *
614 allocate_buffer ()
616 struct buffer *b
617 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
618 MEM_TYPE_BUFFER);
619 VALIDATE_LISP_STORAGE (b, sizeof *b);
620 return b;
624 /* Free BLOCK. This must be called to free memory allocated with a
625 call to lisp_malloc. */
627 static void
628 lisp_free (block)
629 POINTER_TYPE *block;
631 BLOCK_INPUT;
632 free (block);
633 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
634 mem_delete (mem_find (block));
635 #endif
636 UNBLOCK_INPUT;
640 /* Arranging to disable input signals while we're in malloc.
642 This only works with GNU malloc. To help out systems which can't
643 use GNU malloc, all the calls to malloc, realloc, and free
644 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
645 pairs; unfortunately, we have no idea what C library functions
646 might call malloc, so we can't really protect them unless you're
647 using GNU malloc. Fortunately, most of the major operating can use
648 GNU malloc. */
650 #ifndef SYSTEM_MALLOC
651 #ifndef DOUG_LEA_MALLOC
652 extern void * (*__malloc_hook) P_ ((size_t));
653 extern void * (*__realloc_hook) P_ ((void *, size_t));
654 extern void (*__free_hook) P_ ((void *));
655 /* Else declared in malloc.h, perhaps with an extra arg. */
656 #endif /* DOUG_LEA_MALLOC */
657 static void * (*old_malloc_hook) ();
658 static void * (*old_realloc_hook) ();
659 static void (*old_free_hook) ();
661 /* This function is used as the hook for free to call. */
663 static void
664 emacs_blocked_free (ptr)
665 void *ptr;
667 BLOCK_INPUT;
669 #ifdef GC_MALLOC_CHECK
670 if (ptr)
672 struct mem_node *m;
674 m = mem_find (ptr);
675 if (m == MEM_NIL || m->start != ptr)
677 fprintf (stderr,
678 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
679 abort ();
681 else
683 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
684 mem_delete (m);
687 #endif /* GC_MALLOC_CHECK */
689 __free_hook = old_free_hook;
690 free (ptr);
692 /* If we released our reserve (due to running out of memory),
693 and we have a fair amount free once again,
694 try to set aside another reserve in case we run out once more. */
695 if (spare_memory == 0
696 /* Verify there is enough space that even with the malloc
697 hysteresis this call won't run out again.
698 The code here is correct as long as SPARE_MEMORY
699 is substantially larger than the block size malloc uses. */
700 && (bytes_used_when_full
701 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
702 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
704 __free_hook = emacs_blocked_free;
705 UNBLOCK_INPUT;
709 /* If we released our reserve (due to running out of memory),
710 and we have a fair amount free once again,
711 try to set aside another reserve in case we run out once more.
713 This is called when a relocatable block is freed in ralloc.c. */
715 void
716 refill_memory_reserve ()
718 if (spare_memory == 0)
719 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
723 /* This function is the malloc hook that Emacs uses. */
725 static void *
726 emacs_blocked_malloc (size)
727 size_t size;
729 void *value;
731 BLOCK_INPUT;
732 __malloc_hook = old_malloc_hook;
733 #ifdef DOUG_LEA_MALLOC
734 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
735 #else
736 __malloc_extra_blocks = malloc_hysteresis;
737 #endif
739 value = (void *) malloc (size);
741 #ifdef GC_MALLOC_CHECK
743 struct mem_node *m = mem_find (value);
744 if (m != MEM_NIL)
746 fprintf (stderr, "Malloc returned %p which is already in use\n",
747 value);
748 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
749 m->start, m->end, (char *) m->end - (char *) m->start,
750 m->type);
751 abort ();
754 if (!dont_register_blocks)
756 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
757 allocated_mem_type = MEM_TYPE_NON_LISP;
760 #endif /* GC_MALLOC_CHECK */
762 __malloc_hook = emacs_blocked_malloc;
763 UNBLOCK_INPUT;
765 /* fprintf (stderr, "%p malloc\n", value); */
766 return value;
770 /* This function is the realloc hook that Emacs uses. */
772 static void *
773 emacs_blocked_realloc (ptr, size)
774 void *ptr;
775 size_t size;
777 void *value;
779 BLOCK_INPUT;
780 __realloc_hook = old_realloc_hook;
782 #ifdef GC_MALLOC_CHECK
783 if (ptr)
785 struct mem_node *m = mem_find (ptr);
786 if (m == MEM_NIL || m->start != ptr)
788 fprintf (stderr,
789 "Realloc of %p which wasn't allocated with malloc\n",
790 ptr);
791 abort ();
794 mem_delete (m);
797 /* fprintf (stderr, "%p -> realloc\n", ptr); */
799 /* Prevent malloc from registering blocks. */
800 dont_register_blocks = 1;
801 #endif /* GC_MALLOC_CHECK */
803 value = (void *) realloc (ptr, size);
805 #ifdef GC_MALLOC_CHECK
806 dont_register_blocks = 0;
809 struct mem_node *m = mem_find (value);
810 if (m != MEM_NIL)
812 fprintf (stderr, "Realloc returns memory that is already in use\n");
813 abort ();
816 /* Can't handle zero size regions in the red-black tree. */
817 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
820 /* fprintf (stderr, "%p <- realloc\n", value); */
821 #endif /* GC_MALLOC_CHECK */
823 __realloc_hook = emacs_blocked_realloc;
824 UNBLOCK_INPUT;
826 return value;
830 /* Called from main to set up malloc to use our hooks. */
832 void
833 uninterrupt_malloc ()
835 if (__free_hook != emacs_blocked_free)
836 old_free_hook = __free_hook;
837 __free_hook = emacs_blocked_free;
839 if (__malloc_hook != emacs_blocked_malloc)
840 old_malloc_hook = __malloc_hook;
841 __malloc_hook = emacs_blocked_malloc;
843 if (__realloc_hook != emacs_blocked_realloc)
844 old_realloc_hook = __realloc_hook;
845 __realloc_hook = emacs_blocked_realloc;
848 #endif /* not SYSTEM_MALLOC */
852 /***********************************************************************
853 Interval Allocation
854 ***********************************************************************/
856 /* Number of intervals allocated in an interval_block structure.
857 The 1020 is 1024 minus malloc overhead. */
859 #define INTERVAL_BLOCK_SIZE \
860 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
862 /* Intervals are allocated in chunks in form of an interval_block
863 structure. */
865 struct interval_block
867 struct interval_block *next;
868 struct interval intervals[INTERVAL_BLOCK_SIZE];
871 /* Current interval block. Its `next' pointer points to older
872 blocks. */
874 struct interval_block *interval_block;
876 /* Index in interval_block above of the next unused interval
877 structure. */
879 static int interval_block_index;
881 /* Number of free and live intervals. */
883 static int total_free_intervals, total_intervals;
885 /* List of free intervals. */
887 INTERVAL interval_free_list;
889 /* Total number of interval blocks now in use. */
891 int n_interval_blocks;
894 /* Initialize interval allocation. */
896 static void
897 init_intervals ()
899 interval_block
900 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
901 MEM_TYPE_NON_LISP);
902 interval_block->next = 0;
903 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
904 interval_block_index = 0;
905 interval_free_list = 0;
906 n_interval_blocks = 1;
910 /* Return a new interval. */
912 INTERVAL
913 make_interval ()
915 INTERVAL val;
917 if (interval_free_list)
919 val = interval_free_list;
920 interval_free_list = INTERVAL_PARENT (interval_free_list);
922 else
924 if (interval_block_index == INTERVAL_BLOCK_SIZE)
926 register struct interval_block *newi;
928 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
929 MEM_TYPE_NON_LISP);
931 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
932 newi->next = interval_block;
933 interval_block = newi;
934 interval_block_index = 0;
935 n_interval_blocks++;
937 val = &interval_block->intervals[interval_block_index++];
939 consing_since_gc += sizeof (struct interval);
940 intervals_consed++;
941 RESET_INTERVAL (val);
942 return val;
946 /* Mark Lisp objects in interval I. */
948 static void
949 mark_interval (i, dummy)
950 register INTERVAL i;
951 Lisp_Object dummy;
953 if (XMARKBIT (i->plist))
954 abort ();
955 mark_object (&i->plist);
956 XMARK (i->plist);
960 /* Mark the interval tree rooted in TREE. Don't call this directly;
961 use the macro MARK_INTERVAL_TREE instead. */
963 static void
964 mark_interval_tree (tree)
965 register INTERVAL tree;
967 /* No need to test if this tree has been marked already; this
968 function is always called through the MARK_INTERVAL_TREE macro,
969 which takes care of that. */
971 /* XMARK expands to an assignment; the LHS of an assignment can't be
972 a cast. */
973 XMARK (tree->up.obj);
975 traverse_intervals_noorder (tree, mark_interval, Qnil);
979 /* Mark the interval tree rooted in I. */
981 #define MARK_INTERVAL_TREE(i) \
982 do { \
983 if (!NULL_INTERVAL_P (i) \
984 && ! XMARKBIT (i->up.obj)) \
985 mark_interval_tree (i); \
986 } while (0)
989 /* The oddity in the call to XUNMARK is necessary because XUNMARK
990 expands to an assignment to its argument, and most C compilers
991 don't support casts on the left operand of `='. */
993 #define UNMARK_BALANCE_INTERVALS(i) \
994 do { \
995 if (! NULL_INTERVAL_P (i)) \
997 XUNMARK ((i)->up.obj); \
998 (i) = balance_intervals (i); \
1000 } while (0)
1003 /* Number support. If NO_UNION_TYPE isn't in effect, we
1004 can't create number objects in macros. */
1005 #ifndef make_number
1006 Lisp_Object
1007 make_number (n)
1008 int n;
1010 Lisp_Object obj;
1011 obj.s.val = n;
1012 obj.s.type = Lisp_Int;
1013 return obj;
1015 #endif
1017 /***********************************************************************
1018 String Allocation
1019 ***********************************************************************/
1021 /* Lisp_Strings are allocated in string_block structures. When a new
1022 string_block is allocated, all the Lisp_Strings it contains are
1023 added to a free-list string_free_list. When a new Lisp_String is
1024 needed, it is taken from that list. During the sweep phase of GC,
1025 string_blocks that are entirely free are freed, except two which
1026 we keep.
1028 String data is allocated from sblock structures. Strings larger
1029 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1030 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1032 Sblocks consist internally of sdata structures, one for each
1033 Lisp_String. The sdata structure points to the Lisp_String it
1034 belongs to. The Lisp_String points back to the `u.data' member of
1035 its sdata structure.
1037 When a Lisp_String is freed during GC, it is put back on
1038 string_free_list, and its `data' member and its sdata's `string'
1039 pointer is set to null. The size of the string is recorded in the
1040 `u.nbytes' member of the sdata. So, sdata structures that are no
1041 longer used, can be easily recognized, and it's easy to compact the
1042 sblocks of small strings which we do in compact_small_strings. */
1044 /* Size in bytes of an sblock structure used for small strings. This
1045 is 8192 minus malloc overhead. */
1047 #define SBLOCK_SIZE 8188
1049 /* Strings larger than this are considered large strings. String data
1050 for large strings is allocated from individual sblocks. */
1052 #define LARGE_STRING_BYTES 1024
1054 /* Structure describing string memory sub-allocated from an sblock.
1055 This is where the contents of Lisp strings are stored. */
1057 struct sdata
1059 /* Back-pointer to the string this sdata belongs to. If null, this
1060 structure is free, and the NBYTES member of the union below
1061 contains the string's byte size (the same value that STRING_BYTES
1062 would return if STRING were non-null). If non-null, STRING_BYTES
1063 (STRING) is the size of the data, and DATA contains the string's
1064 contents. */
1065 struct Lisp_String *string;
1067 #ifdef GC_CHECK_STRING_BYTES
1069 EMACS_INT nbytes;
1070 unsigned char data[1];
1072 #define SDATA_NBYTES(S) (S)->nbytes
1073 #define SDATA_DATA(S) (S)->data
1075 #else /* not GC_CHECK_STRING_BYTES */
1077 union
1079 /* When STRING in non-null. */
1080 unsigned char data[1];
1082 /* When STRING is null. */
1083 EMACS_INT nbytes;
1084 } u;
1087 #define SDATA_NBYTES(S) (S)->u.nbytes
1088 #define SDATA_DATA(S) (S)->u.data
1090 #endif /* not GC_CHECK_STRING_BYTES */
1094 /* Structure describing a block of memory which is sub-allocated to
1095 obtain string data memory for strings. Blocks for small strings
1096 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1097 as large as needed. */
1099 struct sblock
1101 /* Next in list. */
1102 struct sblock *next;
1104 /* Pointer to the next free sdata block. This points past the end
1105 of the sblock if there isn't any space left in this block. */
1106 struct sdata *next_free;
1108 /* Start of data. */
1109 struct sdata first_data;
1112 /* Number of Lisp strings in a string_block structure. The 1020 is
1113 1024 minus malloc overhead. */
1115 #define STRINGS_IN_STRING_BLOCK \
1116 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1118 /* Structure describing a block from which Lisp_String structures
1119 are allocated. */
1121 struct string_block
1123 struct string_block *next;
1124 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1127 /* Head and tail of the list of sblock structures holding Lisp string
1128 data. We always allocate from current_sblock. The NEXT pointers
1129 in the sblock structures go from oldest_sblock to current_sblock. */
1131 static struct sblock *oldest_sblock, *current_sblock;
1133 /* List of sblocks for large strings. */
1135 static struct sblock *large_sblocks;
1137 /* List of string_block structures, and how many there are. */
1139 static struct string_block *string_blocks;
1140 static int n_string_blocks;
1142 /* Free-list of Lisp_Strings. */
1144 static struct Lisp_String *string_free_list;
1146 /* Number of live and free Lisp_Strings. */
1148 static int total_strings, total_free_strings;
1150 /* Number of bytes used by live strings. */
1152 static int total_string_size;
1154 /* Given a pointer to a Lisp_String S which is on the free-list
1155 string_free_list, return a pointer to its successor in the
1156 free-list. */
1158 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1160 /* Return a pointer to the sdata structure belonging to Lisp string S.
1161 S must be live, i.e. S->data must not be null. S->data is actually
1162 a pointer to the `u.data' member of its sdata structure; the
1163 structure starts at a constant offset in front of that. */
1165 #ifdef GC_CHECK_STRING_BYTES
1167 #define SDATA_OF_STRING(S) \
1168 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1169 - sizeof (EMACS_INT)))
1171 #else /* not GC_CHECK_STRING_BYTES */
1173 #define SDATA_OF_STRING(S) \
1174 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1176 #endif /* not GC_CHECK_STRING_BYTES */
1178 /* Value is the size of an sdata structure large enough to hold NBYTES
1179 bytes of string data. The value returned includes a terminating
1180 NUL byte, the size of the sdata structure, and padding. */
1182 #ifdef GC_CHECK_STRING_BYTES
1184 #define SDATA_SIZE(NBYTES) \
1185 ((sizeof (struct Lisp_String *) \
1186 + (NBYTES) + 1 \
1187 + sizeof (EMACS_INT) \
1188 + sizeof (EMACS_INT) - 1) \
1189 & ~(sizeof (EMACS_INT) - 1))
1191 #else /* not GC_CHECK_STRING_BYTES */
1193 #define SDATA_SIZE(NBYTES) \
1194 ((sizeof (struct Lisp_String *) \
1195 + (NBYTES) + 1 \
1196 + sizeof (EMACS_INT) - 1) \
1197 & ~(sizeof (EMACS_INT) - 1))
1199 #endif /* not GC_CHECK_STRING_BYTES */
1201 /* Initialize string allocation. Called from init_alloc_once. */
1203 void
1204 init_strings ()
1206 total_strings = total_free_strings = total_string_size = 0;
1207 oldest_sblock = current_sblock = large_sblocks = NULL;
1208 string_blocks = NULL;
1209 n_string_blocks = 0;
1210 string_free_list = NULL;
1214 #ifdef GC_CHECK_STRING_BYTES
1216 static int check_string_bytes_count;
1218 void check_string_bytes P_ ((int));
1219 void check_sblock P_ ((struct sblock *));
1221 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1224 /* Like GC_STRING_BYTES, but with debugging check. */
1227 string_bytes (s)
1228 struct Lisp_String *s;
1230 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1231 if (!PURE_POINTER_P (s)
1232 && s->data
1233 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1234 abort ();
1235 return nbytes;
1238 /* Check validity Lisp strings' string_bytes member in B. */
1240 void
1241 check_sblock (b)
1242 struct sblock *b;
1244 struct sdata *from, *end, *from_end;
1246 end = b->next_free;
1248 for (from = &b->first_data; from < end; from = from_end)
1250 /* Compute the next FROM here because copying below may
1251 overwrite data we need to compute it. */
1252 int nbytes;
1254 /* Check that the string size recorded in the string is the
1255 same as the one recorded in the sdata structure. */
1256 if (from->string)
1257 CHECK_STRING_BYTES (from->string);
1259 if (from->string)
1260 nbytes = GC_STRING_BYTES (from->string);
1261 else
1262 nbytes = SDATA_NBYTES (from);
1264 nbytes = SDATA_SIZE (nbytes);
1265 from_end = (struct sdata *) ((char *) from + nbytes);
1270 /* Check validity of Lisp strings' string_bytes member. ALL_P
1271 non-zero means check all strings, otherwise check only most
1272 recently allocated strings. Used for hunting a bug. */
1274 void
1275 check_string_bytes (all_p)
1276 int all_p;
1278 if (all_p)
1280 struct sblock *b;
1282 for (b = large_sblocks; b; b = b->next)
1284 struct Lisp_String *s = b->first_data.string;
1285 if (s)
1286 CHECK_STRING_BYTES (s);
1289 for (b = oldest_sblock; b; b = b->next)
1290 check_sblock (b);
1292 else
1293 check_sblock (current_sblock);
1296 #endif /* GC_CHECK_STRING_BYTES */
1299 /* Return a new Lisp_String. */
1301 static struct Lisp_String *
1302 allocate_string ()
1304 struct Lisp_String *s;
1306 /* If the free-list is empty, allocate a new string_block, and
1307 add all the Lisp_Strings in it to the free-list. */
1308 if (string_free_list == NULL)
1310 struct string_block *b;
1311 int i;
1313 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1314 VALIDATE_LISP_STORAGE (b, sizeof *b);
1315 bzero (b, sizeof *b);
1316 b->next = string_blocks;
1317 string_blocks = b;
1318 ++n_string_blocks;
1320 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1322 s = b->strings + i;
1323 NEXT_FREE_LISP_STRING (s) = string_free_list;
1324 string_free_list = s;
1327 total_free_strings += STRINGS_IN_STRING_BLOCK;
1330 /* Pop a Lisp_String off the free-list. */
1331 s = string_free_list;
1332 string_free_list = NEXT_FREE_LISP_STRING (s);
1334 /* Probably not strictly necessary, but play it safe. */
1335 bzero (s, sizeof *s);
1337 --total_free_strings;
1338 ++total_strings;
1339 ++strings_consed;
1340 consing_since_gc += sizeof *s;
1342 #ifdef GC_CHECK_STRING_BYTES
1343 if (!noninteractive
1344 #ifdef macintosh
1345 && current_sblock
1346 #endif
1349 if (++check_string_bytes_count == 200)
1351 check_string_bytes_count = 0;
1352 check_string_bytes (1);
1354 else
1355 check_string_bytes (0);
1357 #endif /* GC_CHECK_STRING_BYTES */
1359 return s;
1363 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1364 plus a NUL byte at the end. Allocate an sdata structure for S, and
1365 set S->data to its `u.data' member. Store a NUL byte at the end of
1366 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1367 S->data if it was initially non-null. */
1369 void
1370 allocate_string_data (s, nchars, nbytes)
1371 struct Lisp_String *s;
1372 int nchars, nbytes;
1374 struct sdata *data, *old_data;
1375 struct sblock *b;
1376 int needed, old_nbytes;
1378 /* Determine the number of bytes needed to store NBYTES bytes
1379 of string data. */
1380 needed = SDATA_SIZE (nbytes);
1382 if (nbytes > LARGE_STRING_BYTES)
1384 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1386 #ifdef DOUG_LEA_MALLOC
1387 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1388 because mapped region contents are not preserved in
1389 a dumped Emacs. */
1390 mallopt (M_MMAP_MAX, 0);
1391 #endif
1393 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1395 #ifdef DOUG_LEA_MALLOC
1396 /* Back to a reasonable maximum of mmap'ed areas. */
1397 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1398 #endif
1400 b->next_free = &b->first_data;
1401 b->first_data.string = NULL;
1402 b->next = large_sblocks;
1403 large_sblocks = b;
1405 else if (current_sblock == NULL
1406 || (((char *) current_sblock + SBLOCK_SIZE
1407 - (char *) current_sblock->next_free)
1408 < needed))
1410 /* Not enough room in the current sblock. */
1411 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1412 b->next_free = &b->first_data;
1413 b->first_data.string = NULL;
1414 b->next = NULL;
1416 if (current_sblock)
1417 current_sblock->next = b;
1418 else
1419 oldest_sblock = b;
1420 current_sblock = b;
1422 else
1423 b = current_sblock;
1425 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1426 old_nbytes = GC_STRING_BYTES (s);
1428 data = b->next_free;
1429 data->string = s;
1430 s->data = SDATA_DATA (data);
1431 #ifdef GC_CHECK_STRING_BYTES
1432 SDATA_NBYTES (data) = nbytes;
1433 #endif
1434 s->size = nchars;
1435 s->size_byte = nbytes;
1436 s->data[nbytes] = '\0';
1437 b->next_free = (struct sdata *) ((char *) data + needed);
1439 /* If S had already data assigned, mark that as free by setting its
1440 string back-pointer to null, and recording the size of the data
1441 in it. */
1442 if (old_data)
1444 SDATA_NBYTES (old_data) = old_nbytes;
1445 old_data->string = NULL;
1448 consing_since_gc += needed;
1452 /* Sweep and compact strings. */
1454 static void
1455 sweep_strings ()
1457 struct string_block *b, *next;
1458 struct string_block *live_blocks = NULL;
1460 string_free_list = NULL;
1461 total_strings = total_free_strings = 0;
1462 total_string_size = 0;
1464 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1465 for (b = string_blocks; b; b = next)
1467 int i, nfree = 0;
1468 struct Lisp_String *free_list_before = string_free_list;
1470 next = b->next;
1472 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1474 struct Lisp_String *s = b->strings + i;
1476 if (s->data)
1478 /* String was not on free-list before. */
1479 if (STRING_MARKED_P (s))
1481 /* String is live; unmark it and its intervals. */
1482 UNMARK_STRING (s);
1484 if (!NULL_INTERVAL_P (s->intervals))
1485 UNMARK_BALANCE_INTERVALS (s->intervals);
1487 ++total_strings;
1488 total_string_size += STRING_BYTES (s);
1490 else
1492 /* String is dead. Put it on the free-list. */
1493 struct sdata *data = SDATA_OF_STRING (s);
1495 /* Save the size of S in its sdata so that we know
1496 how large that is. Reset the sdata's string
1497 back-pointer so that we know it's free. */
1498 #ifdef GC_CHECK_STRING_BYTES
1499 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1500 abort ();
1501 #else
1502 data->u.nbytes = GC_STRING_BYTES (s);
1503 #endif
1504 data->string = NULL;
1506 /* Reset the strings's `data' member so that we
1507 know it's free. */
1508 s->data = NULL;
1510 /* Put the string on the free-list. */
1511 NEXT_FREE_LISP_STRING (s) = string_free_list;
1512 string_free_list = s;
1513 ++nfree;
1516 else
1518 /* S was on the free-list before. Put it there again. */
1519 NEXT_FREE_LISP_STRING (s) = string_free_list;
1520 string_free_list = s;
1521 ++nfree;
1525 /* Free blocks that contain free Lisp_Strings only, except
1526 the first two of them. */
1527 if (nfree == STRINGS_IN_STRING_BLOCK
1528 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1530 lisp_free (b);
1531 --n_string_blocks;
1532 string_free_list = free_list_before;
1534 else
1536 total_free_strings += nfree;
1537 b->next = live_blocks;
1538 live_blocks = b;
1542 string_blocks = live_blocks;
1543 free_large_strings ();
1544 compact_small_strings ();
1548 /* Free dead large strings. */
1550 static void
1551 free_large_strings ()
1553 struct sblock *b, *next;
1554 struct sblock *live_blocks = NULL;
1556 for (b = large_sblocks; b; b = next)
1558 next = b->next;
1560 if (b->first_data.string == NULL)
1561 lisp_free (b);
1562 else
1564 b->next = live_blocks;
1565 live_blocks = b;
1569 large_sblocks = live_blocks;
1573 /* Compact data of small strings. Free sblocks that don't contain
1574 data of live strings after compaction. */
1576 static void
1577 compact_small_strings ()
1579 struct sblock *b, *tb, *next;
1580 struct sdata *from, *to, *end, *tb_end;
1581 struct sdata *to_end, *from_end;
1583 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1584 to, and TB_END is the end of TB. */
1585 tb = oldest_sblock;
1586 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1587 to = &tb->first_data;
1589 /* Step through the blocks from the oldest to the youngest. We
1590 expect that old blocks will stabilize over time, so that less
1591 copying will happen this way. */
1592 for (b = oldest_sblock; b; b = b->next)
1594 end = b->next_free;
1595 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1597 for (from = &b->first_data; from < end; from = from_end)
1599 /* Compute the next FROM here because copying below may
1600 overwrite data we need to compute it. */
1601 int nbytes;
1603 #ifdef GC_CHECK_STRING_BYTES
1604 /* Check that the string size recorded in the string is the
1605 same as the one recorded in the sdata structure. */
1606 if (from->string
1607 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1608 abort ();
1609 #endif /* GC_CHECK_STRING_BYTES */
1611 if (from->string)
1612 nbytes = GC_STRING_BYTES (from->string);
1613 else
1614 nbytes = SDATA_NBYTES (from);
1616 nbytes = SDATA_SIZE (nbytes);
1617 from_end = (struct sdata *) ((char *) from + nbytes);
1619 /* FROM->string non-null means it's alive. Copy its data. */
1620 if (from->string)
1622 /* If TB is full, proceed with the next sblock. */
1623 to_end = (struct sdata *) ((char *) to + nbytes);
1624 if (to_end > tb_end)
1626 tb->next_free = to;
1627 tb = tb->next;
1628 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1629 to = &tb->first_data;
1630 to_end = (struct sdata *) ((char *) to + nbytes);
1633 /* Copy, and update the string's `data' pointer. */
1634 if (from != to)
1636 xassert (tb != b || to <= from);
1637 safe_bcopy ((char *) from, (char *) to, nbytes);
1638 to->string->data = SDATA_DATA (to);
1641 /* Advance past the sdata we copied to. */
1642 to = to_end;
1647 /* The rest of the sblocks following TB don't contain live data, so
1648 we can free them. */
1649 for (b = tb->next; b; b = next)
1651 next = b->next;
1652 lisp_free (b);
1655 tb->next_free = to;
1656 tb->next = NULL;
1657 current_sblock = tb;
1661 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1662 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1663 Both LENGTH and INIT must be numbers. */)
1664 (length, init)
1665 Lisp_Object length, init;
1667 register Lisp_Object val;
1668 register unsigned char *p, *end;
1669 int c, nbytes;
1671 CHECK_NATNUM (length);
1672 CHECK_NUMBER (init);
1674 c = XINT (init);
1675 if (SINGLE_BYTE_CHAR_P (c))
1677 nbytes = XINT (length);
1678 val = make_uninit_string (nbytes);
1679 p = XSTRING (val)->data;
1680 end = p + XSTRING (val)->size;
1681 while (p != end)
1682 *p++ = c;
1684 else
1686 unsigned char str[MAX_MULTIBYTE_LENGTH];
1687 int len = CHAR_STRING (c, str);
1689 nbytes = len * XINT (length);
1690 val = make_uninit_multibyte_string (XINT (length), nbytes);
1691 p = XSTRING (val)->data;
1692 end = p + nbytes;
1693 while (p != end)
1695 bcopy (str, p, len);
1696 p += len;
1700 *p = 0;
1701 return val;
1705 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1706 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1707 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1708 (length, init)
1709 Lisp_Object length, init;
1711 register Lisp_Object val;
1712 struct Lisp_Bool_Vector *p;
1713 int real_init, i;
1714 int length_in_chars, length_in_elts, bits_per_value;
1716 CHECK_NATNUM (length);
1718 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1720 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1721 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1723 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1724 slot `size' of the struct Lisp_Bool_Vector. */
1725 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1726 p = XBOOL_VECTOR (val);
1728 /* Get rid of any bits that would cause confusion. */
1729 p->vector_size = 0;
1730 XSETBOOL_VECTOR (val, p);
1731 p->size = XFASTINT (length);
1733 real_init = (NILP (init) ? 0 : -1);
1734 for (i = 0; i < length_in_chars ; i++)
1735 p->data[i] = real_init;
1737 /* Clear the extraneous bits in the last byte. */
1738 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1739 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1740 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1742 return val;
1746 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1747 of characters from the contents. This string may be unibyte or
1748 multibyte, depending on the contents. */
1750 Lisp_Object
1751 make_string (contents, nbytes)
1752 char *contents;
1753 int nbytes;
1755 register Lisp_Object val;
1756 int nchars, multibyte_nbytes;
1758 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1759 if (nbytes == nchars || nbytes != multibyte_nbytes)
1760 /* CONTENTS contains no multibyte sequences or contains an invalid
1761 multibyte sequence. We must make unibyte string. */
1762 val = make_unibyte_string (contents, nbytes);
1763 else
1764 val = make_multibyte_string (contents, nchars, nbytes);
1765 return val;
1769 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1771 Lisp_Object
1772 make_unibyte_string (contents, length)
1773 char *contents;
1774 int length;
1776 register Lisp_Object val;
1777 val = make_uninit_string (length);
1778 bcopy (contents, XSTRING (val)->data, length);
1779 SET_STRING_BYTES (XSTRING (val), -1);
1780 return val;
1784 /* Make a multibyte string from NCHARS characters occupying NBYTES
1785 bytes at CONTENTS. */
1787 Lisp_Object
1788 make_multibyte_string (contents, nchars, nbytes)
1789 char *contents;
1790 int nchars, nbytes;
1792 register Lisp_Object val;
1793 val = make_uninit_multibyte_string (nchars, nbytes);
1794 bcopy (contents, XSTRING (val)->data, nbytes);
1795 return val;
1799 /* Make a string from NCHARS characters occupying NBYTES bytes at
1800 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1802 Lisp_Object
1803 make_string_from_bytes (contents, nchars, nbytes)
1804 char *contents;
1805 int nchars, nbytes;
1807 register Lisp_Object val;
1808 val = make_uninit_multibyte_string (nchars, nbytes);
1809 bcopy (contents, XSTRING (val)->data, nbytes);
1810 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1811 SET_STRING_BYTES (XSTRING (val), -1);
1812 return val;
1816 /* Make a string from NCHARS characters occupying NBYTES bytes at
1817 CONTENTS. The argument MULTIBYTE controls whether to label the
1818 string as multibyte. */
1820 Lisp_Object
1821 make_specified_string (contents, nchars, nbytes, multibyte)
1822 char *contents;
1823 int nchars, nbytes;
1824 int multibyte;
1826 register Lisp_Object val;
1827 val = make_uninit_multibyte_string (nchars, nbytes);
1828 bcopy (contents, XSTRING (val)->data, nbytes);
1829 if (!multibyte)
1830 SET_STRING_BYTES (XSTRING (val), -1);
1831 return val;
1835 /* Make a string from the data at STR, treating it as multibyte if the
1836 data warrants. */
1838 Lisp_Object
1839 build_string (str)
1840 char *str;
1842 return make_string (str, strlen (str));
1846 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1847 occupying LENGTH bytes. */
1849 Lisp_Object
1850 make_uninit_string (length)
1851 int length;
1853 Lisp_Object val;
1854 val = make_uninit_multibyte_string (length, length);
1855 SET_STRING_BYTES (XSTRING (val), -1);
1856 return val;
1860 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1861 which occupy NBYTES bytes. */
1863 Lisp_Object
1864 make_uninit_multibyte_string (nchars, nbytes)
1865 int nchars, nbytes;
1867 Lisp_Object string;
1868 struct Lisp_String *s;
1870 if (nchars < 0)
1871 abort ();
1873 s = allocate_string ();
1874 allocate_string_data (s, nchars, nbytes);
1875 XSETSTRING (string, s);
1876 string_chars_consed += nbytes;
1877 return string;
1882 /***********************************************************************
1883 Float Allocation
1884 ***********************************************************************/
1886 /* We store float cells inside of float_blocks, allocating a new
1887 float_block with malloc whenever necessary. Float cells reclaimed
1888 by GC are put on a free list to be reallocated before allocating
1889 any new float cells from the latest float_block.
1891 Each float_block is just under 1020 bytes long, since malloc really
1892 allocates in units of powers of two and uses 4 bytes for its own
1893 overhead. */
1895 #define FLOAT_BLOCK_SIZE \
1896 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1898 struct float_block
1900 struct float_block *next;
1901 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1904 /* Current float_block. */
1906 struct float_block *float_block;
1908 /* Index of first unused Lisp_Float in the current float_block. */
1910 int float_block_index;
1912 /* Total number of float blocks now in use. */
1914 int n_float_blocks;
1916 /* Free-list of Lisp_Floats. */
1918 struct Lisp_Float *float_free_list;
1921 /* Initialize float allocation. */
1923 void
1924 init_float ()
1926 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1927 MEM_TYPE_FLOAT);
1928 float_block->next = 0;
1929 bzero ((char *) float_block->floats, sizeof float_block->floats);
1930 float_block_index = 0;
1931 float_free_list = 0;
1932 n_float_blocks = 1;
1936 /* Explicitly free a float cell by putting it on the free-list. */
1938 void
1939 free_float (ptr)
1940 struct Lisp_Float *ptr;
1942 *(struct Lisp_Float **)&ptr->data = float_free_list;
1943 #if GC_MARK_STACK
1944 ptr->type = Vdead;
1945 #endif
1946 float_free_list = ptr;
1950 /* Return a new float object with value FLOAT_VALUE. */
1952 Lisp_Object
1953 make_float (float_value)
1954 double float_value;
1956 register Lisp_Object val;
1958 if (float_free_list)
1960 /* We use the data field for chaining the free list
1961 so that we won't use the same field that has the mark bit. */
1962 XSETFLOAT (val, float_free_list);
1963 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1965 else
1967 if (float_block_index == FLOAT_BLOCK_SIZE)
1969 register struct float_block *new;
1971 new = (struct float_block *) lisp_malloc (sizeof *new,
1972 MEM_TYPE_FLOAT);
1973 VALIDATE_LISP_STORAGE (new, sizeof *new);
1974 new->next = float_block;
1975 float_block = new;
1976 float_block_index = 0;
1977 n_float_blocks++;
1979 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1982 XFLOAT_DATA (val) = float_value;
1983 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1984 consing_since_gc += sizeof (struct Lisp_Float);
1985 floats_consed++;
1986 return val;
1991 /***********************************************************************
1992 Cons Allocation
1993 ***********************************************************************/
1995 /* We store cons cells inside of cons_blocks, allocating a new
1996 cons_block with malloc whenever necessary. Cons cells reclaimed by
1997 GC are put on a free list to be reallocated before allocating
1998 any new cons cells from the latest cons_block.
2000 Each cons_block is just under 1020 bytes long,
2001 since malloc really allocates in units of powers of two
2002 and uses 4 bytes for its own overhead. */
2004 #define CONS_BLOCK_SIZE \
2005 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2007 struct cons_block
2009 struct cons_block *next;
2010 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2013 /* Current cons_block. */
2015 struct cons_block *cons_block;
2017 /* Index of first unused Lisp_Cons in the current block. */
2019 int cons_block_index;
2021 /* Free-list of Lisp_Cons structures. */
2023 struct Lisp_Cons *cons_free_list;
2025 /* Total number of cons blocks now in use. */
2027 int n_cons_blocks;
2030 /* Initialize cons allocation. */
2032 void
2033 init_cons ()
2035 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2036 MEM_TYPE_CONS);
2037 cons_block->next = 0;
2038 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2039 cons_block_index = 0;
2040 cons_free_list = 0;
2041 n_cons_blocks = 1;
2045 /* Explicitly free a cons cell by putting it on the free-list. */
2047 void
2048 free_cons (ptr)
2049 struct Lisp_Cons *ptr;
2051 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2052 #if GC_MARK_STACK
2053 ptr->car = Vdead;
2054 #endif
2055 cons_free_list = ptr;
2059 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2060 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2061 (car, cdr)
2062 Lisp_Object car, cdr;
2064 register Lisp_Object val;
2066 if (cons_free_list)
2068 /* We use the cdr for chaining the free list
2069 so that we won't use the same field that has the mark bit. */
2070 XSETCONS (val, cons_free_list);
2071 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2073 else
2075 if (cons_block_index == CONS_BLOCK_SIZE)
2077 register struct cons_block *new;
2078 new = (struct cons_block *) lisp_malloc (sizeof *new,
2079 MEM_TYPE_CONS);
2080 VALIDATE_LISP_STORAGE (new, sizeof *new);
2081 new->next = cons_block;
2082 cons_block = new;
2083 cons_block_index = 0;
2084 n_cons_blocks++;
2086 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2089 XSETCAR (val, car);
2090 XSETCDR (val, cdr);
2091 consing_since_gc += sizeof (struct Lisp_Cons);
2092 cons_cells_consed++;
2093 return val;
2097 /* Make a list of 2, 3, 4 or 5 specified objects. */
2099 Lisp_Object
2100 list2 (arg1, arg2)
2101 Lisp_Object arg1, arg2;
2103 return Fcons (arg1, Fcons (arg2, Qnil));
2107 Lisp_Object
2108 list3 (arg1, arg2, arg3)
2109 Lisp_Object arg1, arg2, arg3;
2111 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2115 Lisp_Object
2116 list4 (arg1, arg2, arg3, arg4)
2117 Lisp_Object arg1, arg2, arg3, arg4;
2119 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2123 Lisp_Object
2124 list5 (arg1, arg2, arg3, arg4, arg5)
2125 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2127 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2128 Fcons (arg5, Qnil)))));
2132 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2133 doc: /* Return a newly created list with specified arguments as elements.
2134 Any number of arguments, even zero arguments, are allowed.
2135 usage: (list &rest OBJECTS) */)
2136 (nargs, args)
2137 int nargs;
2138 register Lisp_Object *args;
2140 register Lisp_Object val;
2141 val = Qnil;
2143 while (nargs > 0)
2145 nargs--;
2146 val = Fcons (args[nargs], val);
2148 return val;
2152 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2153 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2154 (length, init)
2155 register Lisp_Object length, init;
2157 register Lisp_Object val;
2158 register int size;
2160 CHECK_NATNUM (length);
2161 size = XFASTINT (length);
2163 val = Qnil;
2164 while (size > 0)
2166 val = Fcons (init, val);
2167 --size;
2169 if (size > 0)
2171 val = Fcons (init, val);
2172 --size;
2174 if (size > 0)
2176 val = Fcons (init, val);
2177 --size;
2179 if (size > 0)
2181 val = Fcons (init, val);
2182 --size;
2184 if (size > 0)
2186 val = Fcons (init, val);
2187 --size;
2193 QUIT;
2196 return val;
2201 /***********************************************************************
2202 Vector Allocation
2203 ***********************************************************************/
2205 /* Singly-linked list of all vectors. */
2207 struct Lisp_Vector *all_vectors;
2209 /* Total number of vector-like objects now in use. */
2211 int n_vectors;
2214 /* Value is a pointer to a newly allocated Lisp_Vector structure
2215 with room for LEN Lisp_Objects. */
2217 static struct Lisp_Vector *
2218 allocate_vectorlike (len, type)
2219 EMACS_INT len;
2220 enum mem_type type;
2222 struct Lisp_Vector *p;
2223 size_t nbytes;
2225 #ifdef DOUG_LEA_MALLOC
2226 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2227 because mapped region contents are not preserved in
2228 a dumped Emacs. */
2229 mallopt (M_MMAP_MAX, 0);
2230 #endif
2232 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2233 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2235 #ifdef DOUG_LEA_MALLOC
2236 /* Back to a reasonable maximum of mmap'ed areas. */
2237 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2238 #endif
2240 VALIDATE_LISP_STORAGE (p, 0);
2241 consing_since_gc += nbytes;
2242 vector_cells_consed += len;
2244 p->next = all_vectors;
2245 all_vectors = p;
2246 ++n_vectors;
2247 return p;
2251 /* Allocate a vector with NSLOTS slots. */
2253 struct Lisp_Vector *
2254 allocate_vector (nslots)
2255 EMACS_INT nslots;
2257 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2258 v->size = nslots;
2259 return v;
2263 /* Allocate other vector-like structures. */
2265 struct Lisp_Hash_Table *
2266 allocate_hash_table ()
2268 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2269 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2270 EMACS_INT i;
2272 v->size = len;
2273 for (i = 0; i < len; ++i)
2274 v->contents[i] = Qnil;
2276 return (struct Lisp_Hash_Table *) v;
2280 struct window *
2281 allocate_window ()
2283 EMACS_INT len = VECSIZE (struct window);
2284 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2285 EMACS_INT i;
2287 for (i = 0; i < len; ++i)
2288 v->contents[i] = Qnil;
2289 v->size = len;
2291 return (struct window *) v;
2295 struct frame *
2296 allocate_frame ()
2298 EMACS_INT len = VECSIZE (struct frame);
2299 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2300 EMACS_INT i;
2302 for (i = 0; i < len; ++i)
2303 v->contents[i] = make_number (0);
2304 v->size = len;
2305 return (struct frame *) v;
2309 struct Lisp_Process *
2310 allocate_process ()
2312 EMACS_INT len = VECSIZE (struct Lisp_Process);
2313 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2314 EMACS_INT i;
2316 for (i = 0; i < len; ++i)
2317 v->contents[i] = Qnil;
2318 v->size = len;
2320 return (struct Lisp_Process *) v;
2324 struct Lisp_Vector *
2325 allocate_other_vector (len)
2326 EMACS_INT len;
2328 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2329 EMACS_INT i;
2331 for (i = 0; i < len; ++i)
2332 v->contents[i] = Qnil;
2333 v->size = len;
2335 return v;
2339 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2340 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2341 See also the function `vector'. */)
2342 (length, init)
2343 register Lisp_Object length, init;
2345 Lisp_Object vector;
2346 register EMACS_INT sizei;
2347 register int index;
2348 register struct Lisp_Vector *p;
2350 CHECK_NATNUM (length);
2351 sizei = XFASTINT (length);
2353 p = allocate_vector (sizei);
2354 for (index = 0; index < sizei; index++)
2355 p->contents[index] = init;
2357 XSETVECTOR (vector, p);
2358 return vector;
2362 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2363 doc: /* Return a newly created char-table, with purpose PURPOSE.
2364 Each element is initialized to INIT, which defaults to nil.
2365 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2366 The property's value should be an integer between 0 and 10. */)
2367 (purpose, init)
2368 register Lisp_Object purpose, init;
2370 Lisp_Object vector;
2371 Lisp_Object n;
2372 CHECK_SYMBOL (purpose);
2373 n = Fget (purpose, Qchar_table_extra_slots);
2374 CHECK_NUMBER (n);
2375 if (XINT (n) < 0 || XINT (n) > 10)
2376 args_out_of_range (n, Qnil);
2377 /* Add 2 to the size for the defalt and parent slots. */
2378 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2379 init);
2380 XCHAR_TABLE (vector)->top = Qt;
2381 XCHAR_TABLE (vector)->parent = Qnil;
2382 XCHAR_TABLE (vector)->purpose = purpose;
2383 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2384 return vector;
2388 /* Return a newly created sub char table with default value DEFALT.
2389 Since a sub char table does not appear as a top level Emacs Lisp
2390 object, we don't need a Lisp interface to make it. */
2392 Lisp_Object
2393 make_sub_char_table (defalt)
2394 Lisp_Object defalt;
2396 Lisp_Object vector
2397 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2398 XCHAR_TABLE (vector)->top = Qnil;
2399 XCHAR_TABLE (vector)->defalt = defalt;
2400 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2401 return vector;
2405 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2406 doc: /* Return a newly created vector with specified arguments as elements.
2407 Any number of arguments, even zero arguments, are allowed.
2408 usage: (vector &rest OBJECTS) */)
2409 (nargs, args)
2410 register int nargs;
2411 Lisp_Object *args;
2413 register Lisp_Object len, val;
2414 register int index;
2415 register struct Lisp_Vector *p;
2417 XSETFASTINT (len, nargs);
2418 val = Fmake_vector (len, Qnil);
2419 p = XVECTOR (val);
2420 for (index = 0; index < nargs; index++)
2421 p->contents[index] = args[index];
2422 return val;
2426 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2427 doc: /* Create a byte-code object with specified arguments as elements.
2428 The arguments should be the arglist, bytecode-string, constant vector,
2429 stack size, (optional) doc string, and (optional) interactive spec.
2430 The first four arguments are required; at most six have any
2431 significance.
2432 usage: (make-byte-code &rest ELEMENTS) */)
2433 (nargs, args)
2434 register int nargs;
2435 Lisp_Object *args;
2437 register Lisp_Object len, val;
2438 register int index;
2439 register struct Lisp_Vector *p;
2441 XSETFASTINT (len, nargs);
2442 if (!NILP (Vpurify_flag))
2443 val = make_pure_vector ((EMACS_INT) nargs);
2444 else
2445 val = Fmake_vector (len, Qnil);
2447 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2448 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2449 earlier because they produced a raw 8-bit string for byte-code
2450 and now such a byte-code string is loaded as multibyte while
2451 raw 8-bit characters converted to multibyte form. Thus, now we
2452 must convert them back to the original unibyte form. */
2453 args[1] = Fstring_as_unibyte (args[1]);
2455 p = XVECTOR (val);
2456 for (index = 0; index < nargs; index++)
2458 if (!NILP (Vpurify_flag))
2459 args[index] = Fpurecopy (args[index]);
2460 p->contents[index] = args[index];
2462 XSETCOMPILED (val, p);
2463 return val;
2468 /***********************************************************************
2469 Symbol Allocation
2470 ***********************************************************************/
2472 /* Each symbol_block is just under 1020 bytes long, since malloc
2473 really allocates in units of powers of two and uses 4 bytes for its
2474 own overhead. */
2476 #define SYMBOL_BLOCK_SIZE \
2477 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2479 struct symbol_block
2481 struct symbol_block *next;
2482 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2485 /* Current symbol block and index of first unused Lisp_Symbol
2486 structure in it. */
2488 struct symbol_block *symbol_block;
2489 int symbol_block_index;
2491 /* List of free symbols. */
2493 struct Lisp_Symbol *symbol_free_list;
2495 /* Total number of symbol blocks now in use. */
2497 int n_symbol_blocks;
2500 /* Initialize symbol allocation. */
2502 void
2503 init_symbol ()
2505 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2506 MEM_TYPE_SYMBOL);
2507 symbol_block->next = 0;
2508 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2509 symbol_block_index = 0;
2510 symbol_free_list = 0;
2511 n_symbol_blocks = 1;
2515 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2516 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2517 Its value and function definition are void, and its property list is nil. */)
2518 (name)
2519 Lisp_Object name;
2521 register Lisp_Object val;
2522 register struct Lisp_Symbol *p;
2524 CHECK_STRING (name);
2526 if (symbol_free_list)
2528 XSETSYMBOL (val, symbol_free_list);
2529 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2531 else
2533 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2535 struct symbol_block *new;
2536 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2537 MEM_TYPE_SYMBOL);
2538 VALIDATE_LISP_STORAGE (new, sizeof *new);
2539 new->next = symbol_block;
2540 symbol_block = new;
2541 symbol_block_index = 0;
2542 n_symbol_blocks++;
2544 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2547 p = XSYMBOL (val);
2548 p->name = XSTRING (name);
2549 p->plist = Qnil;
2550 p->value = Qunbound;
2551 p->function = Qunbound;
2552 p->next = NULL;
2553 p->interned = SYMBOL_UNINTERNED;
2554 p->constant = 0;
2555 p->indirect_variable = 0;
2556 consing_since_gc += sizeof (struct Lisp_Symbol);
2557 symbols_consed++;
2558 return val;
2563 /***********************************************************************
2564 Marker (Misc) Allocation
2565 ***********************************************************************/
2567 /* Allocation of markers and other objects that share that structure.
2568 Works like allocation of conses. */
2570 #define MARKER_BLOCK_SIZE \
2571 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2573 struct marker_block
2575 struct marker_block *next;
2576 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2579 struct marker_block *marker_block;
2580 int marker_block_index;
2582 union Lisp_Misc *marker_free_list;
2584 /* Total number of marker blocks now in use. */
2586 int n_marker_blocks;
2588 void
2589 init_marker ()
2591 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2592 MEM_TYPE_MISC);
2593 marker_block->next = 0;
2594 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2595 marker_block_index = 0;
2596 marker_free_list = 0;
2597 n_marker_blocks = 1;
2600 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2602 Lisp_Object
2603 allocate_misc ()
2605 Lisp_Object val;
2607 if (marker_free_list)
2609 XSETMISC (val, marker_free_list);
2610 marker_free_list = marker_free_list->u_free.chain;
2612 else
2614 if (marker_block_index == MARKER_BLOCK_SIZE)
2616 struct marker_block *new;
2617 new = (struct marker_block *) lisp_malloc (sizeof *new,
2618 MEM_TYPE_MISC);
2619 VALIDATE_LISP_STORAGE (new, sizeof *new);
2620 new->next = marker_block;
2621 marker_block = new;
2622 marker_block_index = 0;
2623 n_marker_blocks++;
2625 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2628 consing_since_gc += sizeof (union Lisp_Misc);
2629 misc_objects_consed++;
2630 return val;
2633 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2634 doc: /* Return a newly allocated marker which does not point at any place. */)
2637 register Lisp_Object val;
2638 register struct Lisp_Marker *p;
2640 val = allocate_misc ();
2641 XMISCTYPE (val) = Lisp_Misc_Marker;
2642 p = XMARKER (val);
2643 p->buffer = 0;
2644 p->bytepos = 0;
2645 p->charpos = 0;
2646 p->chain = Qnil;
2647 p->insertion_type = 0;
2648 return val;
2651 /* Put MARKER back on the free list after using it temporarily. */
2653 void
2654 free_marker (marker)
2655 Lisp_Object marker;
2657 unchain_marker (marker);
2659 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2660 XMISC (marker)->u_free.chain = marker_free_list;
2661 marker_free_list = XMISC (marker);
2663 total_free_markers++;
2667 /* Return a newly created vector or string with specified arguments as
2668 elements. If all the arguments are characters that can fit
2669 in a string of events, make a string; otherwise, make a vector.
2671 Any number of arguments, even zero arguments, are allowed. */
2673 Lisp_Object
2674 make_event_array (nargs, args)
2675 register int nargs;
2676 Lisp_Object *args;
2678 int i;
2680 for (i = 0; i < nargs; i++)
2681 /* The things that fit in a string
2682 are characters that are in 0...127,
2683 after discarding the meta bit and all the bits above it. */
2684 if (!INTEGERP (args[i])
2685 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2686 return Fvector (nargs, args);
2688 /* Since the loop exited, we know that all the things in it are
2689 characters, so we can make a string. */
2691 Lisp_Object result;
2693 result = Fmake_string (make_number (nargs), make_number (0));
2694 for (i = 0; i < nargs; i++)
2696 XSTRING (result)->data[i] = XINT (args[i]);
2697 /* Move the meta bit to the right place for a string char. */
2698 if (XINT (args[i]) & CHAR_META)
2699 XSTRING (result)->data[i] |= 0x80;
2702 return result;
2708 /************************************************************************
2709 C Stack Marking
2710 ************************************************************************/
2712 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2714 /* Initialize this part of alloc.c. */
2716 static void
2717 mem_init ()
2719 mem_z.left = mem_z.right = MEM_NIL;
2720 mem_z.parent = NULL;
2721 mem_z.color = MEM_BLACK;
2722 mem_z.start = mem_z.end = NULL;
2723 mem_root = MEM_NIL;
2727 /* Value is a pointer to the mem_node containing START. Value is
2728 MEM_NIL if there is no node in the tree containing START. */
2730 static INLINE struct mem_node *
2731 mem_find (start)
2732 void *start;
2734 struct mem_node *p;
2736 if (start < min_heap_address || start > max_heap_address)
2737 return MEM_NIL;
2739 /* Make the search always successful to speed up the loop below. */
2740 mem_z.start = start;
2741 mem_z.end = (char *) start + 1;
2743 p = mem_root;
2744 while (start < p->start || start >= p->end)
2745 p = start < p->start ? p->left : p->right;
2746 return p;
2750 /* Insert a new node into the tree for a block of memory with start
2751 address START, end address END, and type TYPE. Value is a
2752 pointer to the node that was inserted. */
2754 static struct mem_node *
2755 mem_insert (start, end, type)
2756 void *start, *end;
2757 enum mem_type type;
2759 struct mem_node *c, *parent, *x;
2761 if (start < min_heap_address)
2762 min_heap_address = start;
2763 if (end > max_heap_address)
2764 max_heap_address = end;
2766 /* See where in the tree a node for START belongs. In this
2767 particular application, it shouldn't happen that a node is already
2768 present. For debugging purposes, let's check that. */
2769 c = mem_root;
2770 parent = NULL;
2772 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2774 while (c != MEM_NIL)
2776 if (start >= c->start && start < c->end)
2777 abort ();
2778 parent = c;
2779 c = start < c->start ? c->left : c->right;
2782 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2784 while (c != MEM_NIL)
2786 parent = c;
2787 c = start < c->start ? c->left : c->right;
2790 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2792 /* Create a new node. */
2793 #ifdef GC_MALLOC_CHECK
2794 x = (struct mem_node *) _malloc_internal (sizeof *x);
2795 if (x == NULL)
2796 abort ();
2797 #else
2798 x = (struct mem_node *) xmalloc (sizeof *x);
2799 #endif
2800 x->start = start;
2801 x->end = end;
2802 x->type = type;
2803 x->parent = parent;
2804 x->left = x->right = MEM_NIL;
2805 x->color = MEM_RED;
2807 /* Insert it as child of PARENT or install it as root. */
2808 if (parent)
2810 if (start < parent->start)
2811 parent->left = x;
2812 else
2813 parent->right = x;
2815 else
2816 mem_root = x;
2818 /* Re-establish red-black tree properties. */
2819 mem_insert_fixup (x);
2821 return x;
2825 /* Re-establish the red-black properties of the tree, and thereby
2826 balance the tree, after node X has been inserted; X is always red. */
2828 static void
2829 mem_insert_fixup (x)
2830 struct mem_node *x;
2832 while (x != mem_root && x->parent->color == MEM_RED)
2834 /* X is red and its parent is red. This is a violation of
2835 red-black tree property #3. */
2837 if (x->parent == x->parent->parent->left)
2839 /* We're on the left side of our grandparent, and Y is our
2840 "uncle". */
2841 struct mem_node *y = x->parent->parent->right;
2843 if (y->color == MEM_RED)
2845 /* Uncle and parent are red but should be black because
2846 X is red. Change the colors accordingly and proceed
2847 with the grandparent. */
2848 x->parent->color = MEM_BLACK;
2849 y->color = MEM_BLACK;
2850 x->parent->parent->color = MEM_RED;
2851 x = x->parent->parent;
2853 else
2855 /* Parent and uncle have different colors; parent is
2856 red, uncle is black. */
2857 if (x == x->parent->right)
2859 x = x->parent;
2860 mem_rotate_left (x);
2863 x->parent->color = MEM_BLACK;
2864 x->parent->parent->color = MEM_RED;
2865 mem_rotate_right (x->parent->parent);
2868 else
2870 /* This is the symmetrical case of above. */
2871 struct mem_node *y = x->parent->parent->left;
2873 if (y->color == MEM_RED)
2875 x->parent->color = MEM_BLACK;
2876 y->color = MEM_BLACK;
2877 x->parent->parent->color = MEM_RED;
2878 x = x->parent->parent;
2880 else
2882 if (x == x->parent->left)
2884 x = x->parent;
2885 mem_rotate_right (x);
2888 x->parent->color = MEM_BLACK;
2889 x->parent->parent->color = MEM_RED;
2890 mem_rotate_left (x->parent->parent);
2895 /* The root may have been changed to red due to the algorithm. Set
2896 it to black so that property #5 is satisfied. */
2897 mem_root->color = MEM_BLACK;
2901 /* (x) (y)
2902 / \ / \
2903 a (y) ===> (x) c
2904 / \ / \
2905 b c a b */
2907 static void
2908 mem_rotate_left (x)
2909 struct mem_node *x;
2911 struct mem_node *y;
2913 /* Turn y's left sub-tree into x's right sub-tree. */
2914 y = x->right;
2915 x->right = y->left;
2916 if (y->left != MEM_NIL)
2917 y->left->parent = x;
2919 /* Y's parent was x's parent. */
2920 if (y != MEM_NIL)
2921 y->parent = x->parent;
2923 /* Get the parent to point to y instead of x. */
2924 if (x->parent)
2926 if (x == x->parent->left)
2927 x->parent->left = y;
2928 else
2929 x->parent->right = y;
2931 else
2932 mem_root = y;
2934 /* Put x on y's left. */
2935 y->left = x;
2936 if (x != MEM_NIL)
2937 x->parent = y;
2941 /* (x) (Y)
2942 / \ / \
2943 (y) c ===> a (x)
2944 / \ / \
2945 a b b c */
2947 static void
2948 mem_rotate_right (x)
2949 struct mem_node *x;
2951 struct mem_node *y = x->left;
2953 x->left = y->right;
2954 if (y->right != MEM_NIL)
2955 y->right->parent = x;
2957 if (y != MEM_NIL)
2958 y->parent = x->parent;
2959 if (x->parent)
2961 if (x == x->parent->right)
2962 x->parent->right = y;
2963 else
2964 x->parent->left = y;
2966 else
2967 mem_root = y;
2969 y->right = x;
2970 if (x != MEM_NIL)
2971 x->parent = y;
2975 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2977 static void
2978 mem_delete (z)
2979 struct mem_node *z;
2981 struct mem_node *x, *y;
2983 if (!z || z == MEM_NIL)
2984 return;
2986 if (z->left == MEM_NIL || z->right == MEM_NIL)
2987 y = z;
2988 else
2990 y = z->right;
2991 while (y->left != MEM_NIL)
2992 y = y->left;
2995 if (y->left != MEM_NIL)
2996 x = y->left;
2997 else
2998 x = y->right;
3000 x->parent = y->parent;
3001 if (y->parent)
3003 if (y == y->parent->left)
3004 y->parent->left = x;
3005 else
3006 y->parent->right = x;
3008 else
3009 mem_root = x;
3011 if (y != z)
3013 z->start = y->start;
3014 z->end = y->end;
3015 z->type = y->type;
3018 if (y->color == MEM_BLACK)
3019 mem_delete_fixup (x);
3021 #ifdef GC_MALLOC_CHECK
3022 _free_internal (y);
3023 #else
3024 xfree (y);
3025 #endif
3029 /* Re-establish the red-black properties of the tree, after a
3030 deletion. */
3032 static void
3033 mem_delete_fixup (x)
3034 struct mem_node *x;
3036 while (x != mem_root && x->color == MEM_BLACK)
3038 if (x == x->parent->left)
3040 struct mem_node *w = x->parent->right;
3042 if (w->color == MEM_RED)
3044 w->color = MEM_BLACK;
3045 x->parent->color = MEM_RED;
3046 mem_rotate_left (x->parent);
3047 w = x->parent->right;
3050 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3052 w->color = MEM_RED;
3053 x = x->parent;
3055 else
3057 if (w->right->color == MEM_BLACK)
3059 w->left->color = MEM_BLACK;
3060 w->color = MEM_RED;
3061 mem_rotate_right (w);
3062 w = x->parent->right;
3064 w->color = x->parent->color;
3065 x->parent->color = MEM_BLACK;
3066 w->right->color = MEM_BLACK;
3067 mem_rotate_left (x->parent);
3068 x = mem_root;
3071 else
3073 struct mem_node *w = x->parent->left;
3075 if (w->color == MEM_RED)
3077 w->color = MEM_BLACK;
3078 x->parent->color = MEM_RED;
3079 mem_rotate_right (x->parent);
3080 w = x->parent->left;
3083 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3085 w->color = MEM_RED;
3086 x = x->parent;
3088 else
3090 if (w->left->color == MEM_BLACK)
3092 w->right->color = MEM_BLACK;
3093 w->color = MEM_RED;
3094 mem_rotate_left (w);
3095 w = x->parent->left;
3098 w->color = x->parent->color;
3099 x->parent->color = MEM_BLACK;
3100 w->left->color = MEM_BLACK;
3101 mem_rotate_right (x->parent);
3102 x = mem_root;
3107 x->color = MEM_BLACK;
3111 /* Value is non-zero if P is a pointer to a live Lisp string on
3112 the heap. M is a pointer to the mem_block for P. */
3114 static INLINE int
3115 live_string_p (m, p)
3116 struct mem_node *m;
3117 void *p;
3119 if (m->type == MEM_TYPE_STRING)
3121 struct string_block *b = (struct string_block *) m->start;
3122 int offset = (char *) p - (char *) &b->strings[0];
3124 /* P must point to the start of a Lisp_String structure, and it
3125 must not be on the free-list. */
3126 return (offset >= 0
3127 && offset % sizeof b->strings[0] == 0
3128 && ((struct Lisp_String *) p)->data != NULL);
3130 else
3131 return 0;
3135 /* Value is non-zero if P is a pointer to a live Lisp cons on
3136 the heap. M is a pointer to the mem_block for P. */
3138 static INLINE int
3139 live_cons_p (m, p)
3140 struct mem_node *m;
3141 void *p;
3143 if (m->type == MEM_TYPE_CONS)
3145 struct cons_block *b = (struct cons_block *) m->start;
3146 int offset = (char *) p - (char *) &b->conses[0];
3148 /* P must point to the start of a Lisp_Cons, not be
3149 one of the unused cells in the current cons block,
3150 and not be on the free-list. */
3151 return (offset >= 0
3152 && offset % sizeof b->conses[0] == 0
3153 && (b != cons_block
3154 || offset / sizeof b->conses[0] < cons_block_index)
3155 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3157 else
3158 return 0;
3162 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3163 the heap. M is a pointer to the mem_block for P. */
3165 static INLINE int
3166 live_symbol_p (m, p)
3167 struct mem_node *m;
3168 void *p;
3170 if (m->type == MEM_TYPE_SYMBOL)
3172 struct symbol_block *b = (struct symbol_block *) m->start;
3173 int offset = (char *) p - (char *) &b->symbols[0];
3175 /* P must point to the start of a Lisp_Symbol, not be
3176 one of the unused cells in the current symbol block,
3177 and not be on the free-list. */
3178 return (offset >= 0
3179 && offset % sizeof b->symbols[0] == 0
3180 && (b != symbol_block
3181 || offset / sizeof b->symbols[0] < symbol_block_index)
3182 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3184 else
3185 return 0;
3189 /* Value is non-zero if P is a pointer to a live Lisp float on
3190 the heap. M is a pointer to the mem_block for P. */
3192 static INLINE int
3193 live_float_p (m, p)
3194 struct mem_node *m;
3195 void *p;
3197 if (m->type == MEM_TYPE_FLOAT)
3199 struct float_block *b = (struct float_block *) m->start;
3200 int offset = (char *) p - (char *) &b->floats[0];
3202 /* P must point to the start of a Lisp_Float, not be
3203 one of the unused cells in the current float block,
3204 and not be on the free-list. */
3205 return (offset >= 0
3206 && offset % sizeof b->floats[0] == 0
3207 && (b != float_block
3208 || offset / sizeof b->floats[0] < float_block_index)
3209 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3211 else
3212 return 0;
3216 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3217 the heap. M is a pointer to the mem_block for P. */
3219 static INLINE int
3220 live_misc_p (m, p)
3221 struct mem_node *m;
3222 void *p;
3224 if (m->type == MEM_TYPE_MISC)
3226 struct marker_block *b = (struct marker_block *) m->start;
3227 int offset = (char *) p - (char *) &b->markers[0];
3229 /* P must point to the start of a Lisp_Misc, not be
3230 one of the unused cells in the current misc block,
3231 and not be on the free-list. */
3232 return (offset >= 0
3233 && offset % sizeof b->markers[0] == 0
3234 && (b != marker_block
3235 || offset / sizeof b->markers[0] < marker_block_index)
3236 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3238 else
3239 return 0;
3243 /* Value is non-zero if P is a pointer to a live vector-like object.
3244 M is a pointer to the mem_block for P. */
3246 static INLINE int
3247 live_vector_p (m, p)
3248 struct mem_node *m;
3249 void *p;
3251 return (p == m->start
3252 && m->type >= MEM_TYPE_VECTOR
3253 && m->type <= MEM_TYPE_WINDOW);
3257 /* Value is non-zero of P is a pointer to a live buffer. M is a
3258 pointer to the mem_block for P. */
3260 static INLINE int
3261 live_buffer_p (m, p)
3262 struct mem_node *m;
3263 void *p;
3265 /* P must point to the start of the block, and the buffer
3266 must not have been killed. */
3267 return (m->type == MEM_TYPE_BUFFER
3268 && p == m->start
3269 && !NILP (((struct buffer *) p)->name));
3272 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3274 #if GC_MARK_STACK
3276 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3278 /* Array of objects that are kept alive because the C stack contains
3279 a pattern that looks like a reference to them . */
3281 #define MAX_ZOMBIES 10
3282 static Lisp_Object zombies[MAX_ZOMBIES];
3284 /* Number of zombie objects. */
3286 static int nzombies;
3288 /* Number of garbage collections. */
3290 static int ngcs;
3292 /* Average percentage of zombies per collection. */
3294 static double avg_zombies;
3296 /* Max. number of live and zombie objects. */
3298 static int max_live, max_zombies;
3300 /* Average number of live objects per GC. */
3302 static double avg_live;
3304 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3305 doc: /* Show information about live and zombie objects. */)
3308 Lisp_Object args[7];
3309 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3310 args[1] = make_number (ngcs);
3311 args[2] = make_float (avg_live);
3312 args[3] = make_float (avg_zombies);
3313 args[4] = make_float (avg_zombies / avg_live / 100);
3314 args[5] = make_number (max_live);
3315 args[6] = make_number (max_zombies);
3316 return Fmessage (7, args);
3319 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3322 /* Mark OBJ if we can prove it's a Lisp_Object. */
3324 static INLINE void
3325 mark_maybe_object (obj)
3326 Lisp_Object obj;
3328 void *po = (void *) XPNTR (obj);
3329 struct mem_node *m = mem_find (po);
3331 if (m != MEM_NIL)
3333 int mark_p = 0;
3335 switch (XGCTYPE (obj))
3337 case Lisp_String:
3338 mark_p = (live_string_p (m, po)
3339 && !STRING_MARKED_P ((struct Lisp_String *) po));
3340 break;
3342 case Lisp_Cons:
3343 mark_p = (live_cons_p (m, po)
3344 && !XMARKBIT (XCONS (obj)->car));
3345 break;
3347 case Lisp_Symbol:
3348 mark_p = (live_symbol_p (m, po)
3349 && !XMARKBIT (XSYMBOL (obj)->plist));
3350 break;
3352 case Lisp_Float:
3353 mark_p = (live_float_p (m, po)
3354 && !XMARKBIT (XFLOAT (obj)->type));
3355 break;
3357 case Lisp_Vectorlike:
3358 /* Note: can't check GC_BUFFERP before we know it's a
3359 buffer because checking that dereferences the pointer
3360 PO which might point anywhere. */
3361 if (live_vector_p (m, po))
3362 mark_p = (!GC_SUBRP (obj)
3363 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3364 else if (live_buffer_p (m, po))
3365 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3366 break;
3368 case Lisp_Misc:
3369 if (live_misc_p (m, po))
3371 switch (XMISCTYPE (obj))
3373 case Lisp_Misc_Marker:
3374 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3375 break;
3377 case Lisp_Misc_Buffer_Local_Value:
3378 case Lisp_Misc_Some_Buffer_Local_Value:
3379 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3380 break;
3382 case Lisp_Misc_Overlay:
3383 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3384 break;
3387 break;
3389 case Lisp_Int:
3390 case Lisp_Type_Limit:
3391 break;
3394 if (mark_p)
3396 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3397 if (nzombies < MAX_ZOMBIES)
3398 zombies[nzombies] = *p;
3399 ++nzombies;
3400 #endif
3401 mark_object (&obj);
3407 /* If P points to Lisp data, mark that as live if it isn't already
3408 marked. */
3410 static INLINE void
3411 mark_maybe_pointer (p)
3412 void *p;
3414 struct mem_node *m;
3416 /* Quickly rule out some values which can't point to Lisp data. We
3417 assume that Lisp data is aligned on even addresses. */
3418 if ((EMACS_INT) p & 1)
3419 return;
3421 m = mem_find (p);
3422 if (m != MEM_NIL)
3424 Lisp_Object obj = Qnil;
3426 switch (m->type)
3428 case MEM_TYPE_NON_LISP:
3429 /* Nothing to do; not a pointer to Lisp memory. */
3430 break;
3432 case MEM_TYPE_BUFFER:
3433 if (live_buffer_p (m, p)
3434 && !XMARKBIT (((struct buffer *) p)->name))
3435 XSETVECTOR (obj, p);
3436 break;
3438 case MEM_TYPE_CONS:
3439 if (live_cons_p (m, p)
3440 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3441 XSETCONS (obj, p);
3442 break;
3444 case MEM_TYPE_STRING:
3445 if (live_string_p (m, p)
3446 && !STRING_MARKED_P ((struct Lisp_String *) p))
3447 XSETSTRING (obj, p);
3448 break;
3450 case MEM_TYPE_MISC:
3451 if (live_misc_p (m, p))
3453 Lisp_Object tem;
3454 XSETMISC (tem, p);
3456 switch (XMISCTYPE (tem))
3458 case Lisp_Misc_Marker:
3459 if (!XMARKBIT (XMARKER (tem)->chain))
3460 obj = tem;
3461 break;
3463 case Lisp_Misc_Buffer_Local_Value:
3464 case Lisp_Misc_Some_Buffer_Local_Value:
3465 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3466 obj = tem;
3467 break;
3469 case Lisp_Misc_Overlay:
3470 if (!XMARKBIT (XOVERLAY (tem)->plist))
3471 obj = tem;
3472 break;
3475 break;
3477 case MEM_TYPE_SYMBOL:
3478 if (live_symbol_p (m, p)
3479 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3480 XSETSYMBOL (obj, p);
3481 break;
3483 case MEM_TYPE_FLOAT:
3484 if (live_float_p (m, p)
3485 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3486 XSETFLOAT (obj, p);
3487 break;
3489 case MEM_TYPE_VECTOR:
3490 case MEM_TYPE_PROCESS:
3491 case MEM_TYPE_HASH_TABLE:
3492 case MEM_TYPE_FRAME:
3493 case MEM_TYPE_WINDOW:
3494 if (live_vector_p (m, p))
3496 Lisp_Object tem;
3497 XSETVECTOR (tem, p);
3498 if (!GC_SUBRP (tem)
3499 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3500 obj = tem;
3502 break;
3504 default:
3505 abort ();
3508 if (!GC_NILP (obj))
3509 mark_object (&obj);
3514 /* Mark Lisp objects referenced from the address range START..END. */
3516 static void
3517 mark_memory (start, end)
3518 void *start, *end;
3520 Lisp_Object *p;
3521 void **pp;
3523 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3524 nzombies = 0;
3525 #endif
3527 /* Make START the pointer to the start of the memory region,
3528 if it isn't already. */
3529 if (end < start)
3531 void *tem = start;
3532 start = end;
3533 end = tem;
3536 /* Mark Lisp_Objects. */
3537 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3538 mark_maybe_object (*p);
3540 /* Mark Lisp data pointed to. This is necessary because, in some
3541 situations, the C compiler optimizes Lisp objects away, so that
3542 only a pointer to them remains. Example:
3544 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3547 Lisp_Object obj = build_string ("test");
3548 struct Lisp_String *s = XSTRING (obj);
3549 Fgarbage_collect ();
3550 fprintf (stderr, "test `%s'\n", s->data);
3551 return Qnil;
3554 Here, `obj' isn't really used, and the compiler optimizes it
3555 away. The only reference to the life string is through the
3556 pointer `s'. */
3558 for (pp = (void **) start; (void *) pp < end; ++pp)
3559 mark_maybe_pointer (*pp);
3563 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3565 static int setjmp_tested_p, longjmps_done;
3567 #define SETJMP_WILL_LIKELY_WORK "\
3569 Emacs garbage collector has been changed to use conservative stack\n\
3570 marking. Emacs has determined that the method it uses to do the\n\
3571 marking will likely work on your system, but this isn't sure.\n\
3573 If you are a system-programmer, or can get the help of a local wizard\n\
3574 who is, please take a look at the function mark_stack in alloc.c, and\n\
3575 verify that the methods used are appropriate for your system.\n\
3577 Please mail the result to <gerd@gnu.org>.\n\
3580 #define SETJMP_WILL_NOT_WORK "\
3582 Emacs garbage collector has been changed to use conservative stack\n\
3583 marking. Emacs has determined that the default method it uses to do the\n\
3584 marking will not work on your system. We will need a system-dependent\n\
3585 solution for your system.\n\
3587 Please take a look at the function mark_stack in alloc.c, and\n\
3588 try to find a way to make it work on your system.\n\
3589 Please mail the result to <gerd@gnu.org>.\n\
3593 /* Perform a quick check if it looks like setjmp saves registers in a
3594 jmp_buf. Print a message to stderr saying so. When this test
3595 succeeds, this is _not_ a proof that setjmp is sufficient for
3596 conservative stack marking. Only the sources or a disassembly
3597 can prove that. */
3599 static void
3600 test_setjmp ()
3602 char buf[10];
3603 register int x;
3604 jmp_buf jbuf;
3605 int result = 0;
3607 /* Arrange for X to be put in a register. */
3608 sprintf (buf, "1");
3609 x = strlen (buf);
3610 x = 2 * x - 1;
3612 setjmp (jbuf);
3613 if (longjmps_done == 1)
3615 /* Came here after the longjmp at the end of the function.
3617 If x == 1, the longjmp has restored the register to its
3618 value before the setjmp, and we can hope that setjmp
3619 saves all such registers in the jmp_buf, although that
3620 isn't sure.
3622 For other values of X, either something really strange is
3623 taking place, or the setjmp just didn't save the register. */
3625 if (x == 1)
3626 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3627 else
3629 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3630 exit (1);
3634 ++longjmps_done;
3635 x = 2;
3636 if (longjmps_done == 1)
3637 longjmp (jbuf, 1);
3640 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3643 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3645 /* Abort if anything GCPRO'd doesn't survive the GC. */
3647 static void
3648 check_gcpros ()
3650 struct gcpro *p;
3651 int i;
3653 for (p = gcprolist; p; p = p->next)
3654 for (i = 0; i < p->nvars; ++i)
3655 if (!survives_gc_p (p->var[i]))
3656 abort ();
3659 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3661 static void
3662 dump_zombies ()
3664 int i;
3666 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3667 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3669 fprintf (stderr, " %d = ", i);
3670 debug_print (zombies[i]);
3674 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3677 /* Mark live Lisp objects on the C stack.
3679 There are several system-dependent problems to consider when
3680 porting this to new architectures:
3682 Processor Registers
3684 We have to mark Lisp objects in CPU registers that can hold local
3685 variables or are used to pass parameters.
3687 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3688 something that either saves relevant registers on the stack, or
3689 calls mark_maybe_object passing it each register's contents.
3691 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3692 implementation assumes that calling setjmp saves registers we need
3693 to see in a jmp_buf which itself lies on the stack. This doesn't
3694 have to be true! It must be verified for each system, possibly
3695 by taking a look at the source code of setjmp.
3697 Stack Layout
3699 Architectures differ in the way their processor stack is organized.
3700 For example, the stack might look like this
3702 +----------------+
3703 | Lisp_Object | size = 4
3704 +----------------+
3705 | something else | size = 2
3706 +----------------+
3707 | Lisp_Object | size = 4
3708 +----------------+
3709 | ... |
3711 In such a case, not every Lisp_Object will be aligned equally. To
3712 find all Lisp_Object on the stack it won't be sufficient to walk
3713 the stack in steps of 4 bytes. Instead, two passes will be
3714 necessary, one starting at the start of the stack, and a second
3715 pass starting at the start of the stack + 2. Likewise, if the
3716 minimal alignment of Lisp_Objects on the stack is 1, four passes
3717 would be necessary, each one starting with one byte more offset
3718 from the stack start.
3720 The current code assumes by default that Lisp_Objects are aligned
3721 equally on the stack. */
3723 static void
3724 mark_stack ()
3726 jmp_buf j;
3727 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3728 void *end;
3730 /* This trick flushes the register windows so that all the state of
3731 the process is contained in the stack. */
3732 #ifdef sparc
3733 asm ("ta 3");
3734 #endif
3736 /* Save registers that we need to see on the stack. We need to see
3737 registers used to hold register variables and registers used to
3738 pass parameters. */
3739 #ifdef GC_SAVE_REGISTERS_ON_STACK
3740 GC_SAVE_REGISTERS_ON_STACK (end);
3741 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3743 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3744 setjmp will definitely work, test it
3745 and print a message with the result
3746 of the test. */
3747 if (!setjmp_tested_p)
3749 setjmp_tested_p = 1;
3750 test_setjmp ();
3752 #endif /* GC_SETJMP_WORKS */
3754 setjmp (j);
3755 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3756 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3758 /* This assumes that the stack is a contiguous region in memory. If
3759 that's not the case, something has to be done here to iterate
3760 over the stack segments. */
3761 #if GC_LISP_OBJECT_ALIGNMENT == 1
3762 mark_memory (stack_base, end);
3763 mark_memory ((char *) stack_base + 1, end);
3764 mark_memory ((char *) stack_base + 2, end);
3765 mark_memory ((char *) stack_base + 3, end);
3766 #elif GC_LISP_OBJECT_ALIGNMENT == 2
3767 mark_memory (stack_base, end);
3768 mark_memory ((char *) stack_base + 2, end);
3769 #else
3770 mark_memory (stack_base, end);
3771 #endif
3773 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3774 check_gcpros ();
3775 #endif
3779 #endif /* GC_MARK_STACK != 0 */
3783 /***********************************************************************
3784 Pure Storage Management
3785 ***********************************************************************/
3787 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3788 pointer to it. TYPE is the Lisp type for which the memory is
3789 allocated. TYPE < 0 means it's not used for a Lisp object.
3791 If store_pure_type_info is set and TYPE is >= 0, the type of
3792 the allocated object is recorded in pure_types. */
3794 static POINTER_TYPE *
3795 pure_alloc (size, type)
3796 size_t size;
3797 int type;
3799 size_t nbytes;
3800 POINTER_TYPE *result;
3801 char *beg = purebeg;
3803 /* Give Lisp_Floats an extra alignment. */
3804 if (type == Lisp_Float)
3806 size_t alignment;
3807 #if defined __GNUC__ && __GNUC__ >= 2
3808 alignment = __alignof (struct Lisp_Float);
3809 #else
3810 alignment = sizeof (struct Lisp_Float);
3811 #endif
3812 pure_bytes_used = ALIGN (pure_bytes_used, alignment);
3815 nbytes = ALIGN (size, sizeof (EMACS_INT));
3817 if (pure_bytes_used + nbytes > pure_size)
3819 beg = purebeg = (char *) xmalloc (PURESIZE);
3820 pure_size = PURESIZE;
3821 pure_bytes_used_before_overflow += pure_bytes_used;
3822 pure_bytes_used = 0;
3825 result = (POINTER_TYPE *) (beg + pure_bytes_used);
3826 pure_bytes_used += nbytes;
3827 return result;
3831 /* Signal an error if PURESIZE is too small. */
3833 void
3834 check_pure_size ()
3836 if (pure_bytes_used_before_overflow)
3837 error ("Pure Lisp storage overflow (approx. %d bytes needed)",
3838 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3842 /* Return a string allocated in pure space. DATA is a buffer holding
3843 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3844 non-zero means make the result string multibyte.
3846 Must get an error if pure storage is full, since if it cannot hold
3847 a large string it may be able to hold conses that point to that
3848 string; then the string is not protected from gc. */
3850 Lisp_Object
3851 make_pure_string (data, nchars, nbytes, multibyte)
3852 char *data;
3853 int nchars, nbytes;
3854 int multibyte;
3856 Lisp_Object string;
3857 struct Lisp_String *s;
3859 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3860 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3861 s->size = nchars;
3862 s->size_byte = multibyte ? nbytes : -1;
3863 bcopy (data, s->data, nbytes);
3864 s->data[nbytes] = '\0';
3865 s->intervals = NULL_INTERVAL;
3866 XSETSTRING (string, s);
3867 return string;
3871 /* Return a cons allocated from pure space. Give it pure copies
3872 of CAR as car and CDR as cdr. */
3874 Lisp_Object
3875 pure_cons (car, cdr)
3876 Lisp_Object car, cdr;
3878 register Lisp_Object new;
3879 struct Lisp_Cons *p;
3881 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3882 XSETCONS (new, p);
3883 XSETCAR (new, Fpurecopy (car));
3884 XSETCDR (new, Fpurecopy (cdr));
3885 return new;
3889 /* Value is a float object with value NUM allocated from pure space. */
3891 Lisp_Object
3892 make_pure_float (num)
3893 double num;
3895 register Lisp_Object new;
3896 struct Lisp_Float *p;
3898 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3899 XSETFLOAT (new, p);
3900 XFLOAT_DATA (new) = num;
3901 return new;
3905 /* Return a vector with room for LEN Lisp_Objects allocated from
3906 pure space. */
3908 Lisp_Object
3909 make_pure_vector (len)
3910 EMACS_INT len;
3912 Lisp_Object new;
3913 struct Lisp_Vector *p;
3914 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3916 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3917 XSETVECTOR (new, p);
3918 XVECTOR (new)->size = len;
3919 return new;
3923 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3924 doc: /* Make a copy of OBJECT in pure storage.
3925 Recursively copies contents of vectors and cons cells.
3926 Does not copy symbols. Copies strings without text properties. */)
3927 (obj)
3928 register Lisp_Object obj;
3930 if (NILP (Vpurify_flag))
3931 return obj;
3933 if (PURE_POINTER_P (XPNTR (obj)))
3934 return obj;
3936 if (CONSP (obj))
3937 return pure_cons (XCAR (obj), XCDR (obj));
3938 else if (FLOATP (obj))
3939 return make_pure_float (XFLOAT_DATA (obj));
3940 else if (STRINGP (obj))
3941 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
3942 STRING_BYTES (XSTRING (obj)),
3943 STRING_MULTIBYTE (obj));
3944 else if (COMPILEDP (obj) || VECTORP (obj))
3946 register struct Lisp_Vector *vec;
3947 register int i, size;
3949 size = XVECTOR (obj)->size;
3950 if (size & PSEUDOVECTOR_FLAG)
3951 size &= PSEUDOVECTOR_SIZE_MASK;
3952 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3953 for (i = 0; i < size; i++)
3954 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3955 if (COMPILEDP (obj))
3956 XSETCOMPILED (obj, vec);
3957 else
3958 XSETVECTOR (obj, vec);
3959 return obj;
3961 else if (MARKERP (obj))
3962 error ("Attempt to copy a marker to pure storage");
3964 return obj;
3969 /***********************************************************************
3970 Protection from GC
3971 ***********************************************************************/
3973 /* Put an entry in staticvec, pointing at the variable with address
3974 VARADDRESS. */
3976 void
3977 staticpro (varaddress)
3978 Lisp_Object *varaddress;
3980 staticvec[staticidx++] = varaddress;
3981 if (staticidx >= NSTATICS)
3982 abort ();
3985 struct catchtag
3987 Lisp_Object tag;
3988 Lisp_Object val;
3989 struct catchtag *next;
3992 struct backtrace
3994 struct backtrace *next;
3995 Lisp_Object *function;
3996 Lisp_Object *args; /* Points to vector of args. */
3997 int nargs; /* Length of vector. */
3998 /* If nargs is UNEVALLED, args points to slot holding list of
3999 unevalled args. */
4000 char evalargs;
4005 /***********************************************************************
4006 Protection from GC
4007 ***********************************************************************/
4009 /* Temporarily prevent garbage collection. */
4012 inhibit_garbage_collection ()
4014 int count = specpdl_ptr - specpdl;
4015 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4016 return count;
4020 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4021 doc: /* Reclaim storage for Lisp objects no longer needed.
4022 Returns info on amount of space in use:
4023 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4024 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4025 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4026 (USED-STRINGS . FREE-STRINGS))
4027 Garbage collection happens automatically if you cons more than
4028 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4031 register struct gcpro *tail;
4032 register struct specbinding *bind;
4033 struct catchtag *catch;
4034 struct handler *handler;
4035 register struct backtrace *backlist;
4036 char stack_top_variable;
4037 register int i;
4038 int message_p;
4039 Lisp_Object total[8];
4040 int count = BINDING_STACK_SIZE ();
4042 /* Can't GC if pure storage overflowed because we can't determine
4043 if something is a pure object or not. */
4044 if (pure_bytes_used_before_overflow)
4045 return Qnil;
4047 /* In case user calls debug_print during GC,
4048 don't let that cause a recursive GC. */
4049 consing_since_gc = 0;
4051 /* Save what's currently displayed in the echo area. */
4052 message_p = push_message ();
4053 record_unwind_protect (push_message_unwind, Qnil);
4055 /* Save a copy of the contents of the stack, for debugging. */
4056 #if MAX_SAVE_STACK > 0
4057 if (NILP (Vpurify_flag))
4059 i = &stack_top_variable - stack_bottom;
4060 if (i < 0) i = -i;
4061 if (i < MAX_SAVE_STACK)
4063 if (stack_copy == 0)
4064 stack_copy = (char *) xmalloc (stack_copy_size = i);
4065 else if (stack_copy_size < i)
4066 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4067 if (stack_copy)
4069 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4070 bcopy (stack_bottom, stack_copy, i);
4071 else
4072 bcopy (&stack_top_variable, stack_copy, i);
4076 #endif /* MAX_SAVE_STACK > 0 */
4078 if (garbage_collection_messages)
4079 message1_nolog ("Garbage collecting...");
4081 BLOCK_INPUT;
4083 shrink_regexp_cache ();
4085 /* Don't keep undo information around forever. */
4087 register struct buffer *nextb = all_buffers;
4089 while (nextb)
4091 /* If a buffer's undo list is Qt, that means that undo is
4092 turned off in that buffer. Calling truncate_undo_list on
4093 Qt tends to return NULL, which effectively turns undo back on.
4094 So don't call truncate_undo_list if undo_list is Qt. */
4095 if (! EQ (nextb->undo_list, Qt))
4096 nextb->undo_list
4097 = truncate_undo_list (nextb->undo_list, undo_limit,
4098 undo_strong_limit);
4100 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4101 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4103 /* If a buffer's gap size is more than 10% of the buffer
4104 size, or larger than 2000 bytes, then shrink it
4105 accordingly. Keep a minimum size of 20 bytes. */
4106 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4108 if (nextb->text->gap_size > size)
4110 struct buffer *save_current = current_buffer;
4111 current_buffer = nextb;
4112 make_gap (-(nextb->text->gap_size - size));
4113 current_buffer = save_current;
4117 nextb = nextb->next;
4121 gc_in_progress = 1;
4123 /* clear_marks (); */
4125 /* Mark all the special slots that serve as the roots of accessibility.
4127 Usually the special slots to mark are contained in particular structures.
4128 Then we know no slot is marked twice because the structures don't overlap.
4129 In some cases, the structures point to the slots to be marked.
4130 For these, we use MARKBIT to avoid double marking of the slot. */
4132 for (i = 0; i < staticidx; i++)
4133 mark_object (staticvec[i]);
4135 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4136 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4137 mark_stack ();
4138 #else
4139 for (tail = gcprolist; tail; tail = tail->next)
4140 for (i = 0; i < tail->nvars; i++)
4141 if (!XMARKBIT (tail->var[i]))
4143 /* Explicit casting prevents compiler warning about
4144 discarding the `volatile' qualifier. */
4145 mark_object ((Lisp_Object *)&tail->var[i]);
4146 XMARK (tail->var[i]);
4148 #endif
4150 mark_byte_stack ();
4151 for (bind = specpdl; bind != specpdl_ptr; bind++)
4153 mark_object (&bind->symbol);
4154 mark_object (&bind->old_value);
4156 for (catch = catchlist; catch; catch = catch->next)
4158 mark_object (&catch->tag);
4159 mark_object (&catch->val);
4161 for (handler = handlerlist; handler; handler = handler->next)
4163 mark_object (&handler->handler);
4164 mark_object (&handler->var);
4166 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4168 if (!XMARKBIT (*backlist->function))
4170 mark_object (backlist->function);
4171 XMARK (*backlist->function);
4173 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4174 i = 0;
4175 else
4176 i = backlist->nargs - 1;
4177 for (; i >= 0; i--)
4178 if (!XMARKBIT (backlist->args[i]))
4180 mark_object (&backlist->args[i]);
4181 XMARK (backlist->args[i]);
4184 mark_kboards ();
4186 /* Look thru every buffer's undo list
4187 for elements that update markers that were not marked,
4188 and delete them. */
4190 register struct buffer *nextb = all_buffers;
4192 while (nextb)
4194 /* If a buffer's undo list is Qt, that means that undo is
4195 turned off in that buffer. Calling truncate_undo_list on
4196 Qt tends to return NULL, which effectively turns undo back on.
4197 So don't call truncate_undo_list if undo_list is Qt. */
4198 if (! EQ (nextb->undo_list, Qt))
4200 Lisp_Object tail, prev;
4201 tail = nextb->undo_list;
4202 prev = Qnil;
4203 while (CONSP (tail))
4205 if (GC_CONSP (XCAR (tail))
4206 && GC_MARKERP (XCAR (XCAR (tail)))
4207 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4209 if (NILP (prev))
4210 nextb->undo_list = tail = XCDR (tail);
4211 else
4213 tail = XCDR (tail);
4214 XSETCDR (prev, tail);
4217 else
4219 prev = tail;
4220 tail = XCDR (tail);
4225 nextb = nextb->next;
4229 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4230 mark_stack ();
4231 #endif
4233 gc_sweep ();
4235 /* Clear the mark bits that we set in certain root slots. */
4237 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4238 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4239 for (tail = gcprolist; tail; tail = tail->next)
4240 for (i = 0; i < tail->nvars; i++)
4241 XUNMARK (tail->var[i]);
4242 #endif
4244 unmark_byte_stack ();
4245 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4247 XUNMARK (*backlist->function);
4248 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4249 i = 0;
4250 else
4251 i = backlist->nargs - 1;
4252 for (; i >= 0; i--)
4253 XUNMARK (backlist->args[i]);
4255 XUNMARK (buffer_defaults.name);
4256 XUNMARK (buffer_local_symbols.name);
4258 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4259 dump_zombies ();
4260 #endif
4262 UNBLOCK_INPUT;
4264 /* clear_marks (); */
4265 gc_in_progress = 0;
4267 consing_since_gc = 0;
4268 if (gc_cons_threshold < 10000)
4269 gc_cons_threshold = 10000;
4271 if (garbage_collection_messages)
4273 if (message_p || minibuf_level > 0)
4274 restore_message ();
4275 else
4276 message1_nolog ("Garbage collecting...done");
4279 unbind_to (count, Qnil);
4281 total[0] = Fcons (make_number (total_conses),
4282 make_number (total_free_conses));
4283 total[1] = Fcons (make_number (total_symbols),
4284 make_number (total_free_symbols));
4285 total[2] = Fcons (make_number (total_markers),
4286 make_number (total_free_markers));
4287 total[3] = make_number (total_string_size);
4288 total[4] = make_number (total_vector_size);
4289 total[5] = Fcons (make_number (total_floats),
4290 make_number (total_free_floats));
4291 total[6] = Fcons (make_number (total_intervals),
4292 make_number (total_free_intervals));
4293 total[7] = Fcons (make_number (total_strings),
4294 make_number (total_free_strings));
4296 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4298 /* Compute average percentage of zombies. */
4299 double nlive = 0;
4301 for (i = 0; i < 7; ++i)
4302 nlive += XFASTINT (XCAR (total[i]));
4304 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4305 max_live = max (nlive, max_live);
4306 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4307 max_zombies = max (nzombies, max_zombies);
4308 ++ngcs;
4310 #endif
4312 if (!NILP (Vpost_gc_hook))
4314 int count = inhibit_garbage_collection ();
4315 safe_run_hooks (Qpost_gc_hook);
4316 unbind_to (count, Qnil);
4319 return Flist (sizeof total / sizeof *total, total);
4323 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4324 only interesting objects referenced from glyphs are strings. */
4326 static void
4327 mark_glyph_matrix (matrix)
4328 struct glyph_matrix *matrix;
4330 struct glyph_row *row = matrix->rows;
4331 struct glyph_row *end = row + matrix->nrows;
4333 for (; row < end; ++row)
4334 if (row->enabled_p)
4336 int area;
4337 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4339 struct glyph *glyph = row->glyphs[area];
4340 struct glyph *end_glyph = glyph + row->used[area];
4342 for (; glyph < end_glyph; ++glyph)
4343 if (GC_STRINGP (glyph->object)
4344 && !STRING_MARKED_P (XSTRING (glyph->object)))
4345 mark_object (&glyph->object);
4351 /* Mark Lisp faces in the face cache C. */
4353 static void
4354 mark_face_cache (c)
4355 struct face_cache *c;
4357 if (c)
4359 int i, j;
4360 for (i = 0; i < c->used; ++i)
4362 struct face *face = FACE_FROM_ID (c->f, i);
4364 if (face)
4366 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4367 mark_object (&face->lface[j]);
4374 #ifdef HAVE_WINDOW_SYSTEM
4376 /* Mark Lisp objects in image IMG. */
4378 static void
4379 mark_image (img)
4380 struct image *img;
4382 mark_object (&img->spec);
4384 if (!NILP (img->data.lisp_val))
4385 mark_object (&img->data.lisp_val);
4389 /* Mark Lisp objects in image cache of frame F. It's done this way so
4390 that we don't have to include xterm.h here. */
4392 static void
4393 mark_image_cache (f)
4394 struct frame *f;
4396 forall_images_in_image_cache (f, mark_image);
4399 #endif /* HAVE_X_WINDOWS */
4403 /* Mark reference to a Lisp_Object.
4404 If the object referred to has not been seen yet, recursively mark
4405 all the references contained in it. */
4407 #define LAST_MARKED_SIZE 500
4408 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4409 int last_marked_index;
4411 void
4412 mark_object (argptr)
4413 Lisp_Object *argptr;
4415 Lisp_Object *objptr = argptr;
4416 register Lisp_Object obj;
4417 #ifdef GC_CHECK_MARKED_OBJECTS
4418 void *po;
4419 struct mem_node *m;
4420 #endif
4422 loop:
4423 obj = *objptr;
4424 loop2:
4425 XUNMARK (obj);
4427 if (PURE_POINTER_P (XPNTR (obj)))
4428 return;
4430 last_marked[last_marked_index++] = objptr;
4431 if (last_marked_index == LAST_MARKED_SIZE)
4432 last_marked_index = 0;
4434 /* Perform some sanity checks on the objects marked here. Abort if
4435 we encounter an object we know is bogus. This increases GC time
4436 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4437 #ifdef GC_CHECK_MARKED_OBJECTS
4439 po = (void *) XPNTR (obj);
4441 /* Check that the object pointed to by PO is known to be a Lisp
4442 structure allocated from the heap. */
4443 #define CHECK_ALLOCATED() \
4444 do { \
4445 m = mem_find (po); \
4446 if (m == MEM_NIL) \
4447 abort (); \
4448 } while (0)
4450 /* Check that the object pointed to by PO is live, using predicate
4451 function LIVEP. */
4452 #define CHECK_LIVE(LIVEP) \
4453 do { \
4454 if (!LIVEP (m, po)) \
4455 abort (); \
4456 } while (0)
4458 /* Check both of the above conditions. */
4459 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4460 do { \
4461 CHECK_ALLOCATED (); \
4462 CHECK_LIVE (LIVEP); \
4463 } while (0) \
4465 #else /* not GC_CHECK_MARKED_OBJECTS */
4467 #define CHECK_ALLOCATED() (void) 0
4468 #define CHECK_LIVE(LIVEP) (void) 0
4469 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4471 #endif /* not GC_CHECK_MARKED_OBJECTS */
4473 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4475 case Lisp_String:
4477 register struct Lisp_String *ptr = XSTRING (obj);
4478 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4479 MARK_INTERVAL_TREE (ptr->intervals);
4480 MARK_STRING (ptr);
4481 #ifdef GC_CHECK_STRING_BYTES
4482 /* Check that the string size recorded in the string is the
4483 same as the one recorded in the sdata structure. */
4484 CHECK_STRING_BYTES (ptr);
4485 #endif /* GC_CHECK_STRING_BYTES */
4487 break;
4489 case Lisp_Vectorlike:
4490 #ifdef GC_CHECK_MARKED_OBJECTS
4491 m = mem_find (po);
4492 if (m == MEM_NIL && !GC_SUBRP (obj)
4493 && po != &buffer_defaults
4494 && po != &buffer_local_symbols)
4495 abort ();
4496 #endif /* GC_CHECK_MARKED_OBJECTS */
4498 if (GC_BUFFERP (obj))
4500 if (!XMARKBIT (XBUFFER (obj)->name))
4502 #ifdef GC_CHECK_MARKED_OBJECTS
4503 if (po != &buffer_defaults && po != &buffer_local_symbols)
4505 struct buffer *b;
4506 for (b = all_buffers; b && b != po; b = b->next)
4508 if (b == NULL)
4509 abort ();
4511 #endif /* GC_CHECK_MARKED_OBJECTS */
4512 mark_buffer (obj);
4515 else if (GC_SUBRP (obj))
4516 break;
4517 else if (GC_COMPILEDP (obj))
4518 /* We could treat this just like a vector, but it is better to
4519 save the COMPILED_CONSTANTS element for last and avoid
4520 recursion there. */
4522 register struct Lisp_Vector *ptr = XVECTOR (obj);
4523 register EMACS_INT size = ptr->size;
4524 register int i;
4526 if (size & ARRAY_MARK_FLAG)
4527 break; /* Already marked */
4529 CHECK_LIVE (live_vector_p);
4530 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4531 size &= PSEUDOVECTOR_SIZE_MASK;
4532 for (i = 0; i < size; i++) /* and then mark its elements */
4534 if (i != COMPILED_CONSTANTS)
4535 mark_object (&ptr->contents[i]);
4537 /* This cast should be unnecessary, but some Mips compiler complains
4538 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4539 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4540 goto loop;
4542 else if (GC_FRAMEP (obj))
4544 register struct frame *ptr = XFRAME (obj);
4545 register EMACS_INT size = ptr->size;
4547 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4548 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4550 CHECK_LIVE (live_vector_p);
4551 mark_object (&ptr->name);
4552 mark_object (&ptr->icon_name);
4553 mark_object (&ptr->title);
4554 mark_object (&ptr->focus_frame);
4555 mark_object (&ptr->selected_window);
4556 mark_object (&ptr->minibuffer_window);
4557 mark_object (&ptr->param_alist);
4558 mark_object (&ptr->scroll_bars);
4559 mark_object (&ptr->condemned_scroll_bars);
4560 mark_object (&ptr->menu_bar_items);
4561 mark_object (&ptr->face_alist);
4562 mark_object (&ptr->menu_bar_vector);
4563 mark_object (&ptr->buffer_predicate);
4564 mark_object (&ptr->buffer_list);
4565 mark_object (&ptr->menu_bar_window);
4566 mark_object (&ptr->tool_bar_window);
4567 mark_face_cache (ptr->face_cache);
4568 #ifdef HAVE_WINDOW_SYSTEM
4569 mark_image_cache (ptr);
4570 mark_object (&ptr->tool_bar_items);
4571 mark_object (&ptr->desired_tool_bar_string);
4572 mark_object (&ptr->current_tool_bar_string);
4573 #endif /* HAVE_WINDOW_SYSTEM */
4575 else if (GC_BOOL_VECTOR_P (obj))
4577 register struct Lisp_Vector *ptr = XVECTOR (obj);
4579 if (ptr->size & ARRAY_MARK_FLAG)
4580 break; /* Already marked */
4581 CHECK_LIVE (live_vector_p);
4582 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4584 else if (GC_WINDOWP (obj))
4586 register struct Lisp_Vector *ptr = XVECTOR (obj);
4587 struct window *w = XWINDOW (obj);
4588 register EMACS_INT size = ptr->size;
4589 register int i;
4591 /* Stop if already marked. */
4592 if (size & ARRAY_MARK_FLAG)
4593 break;
4595 /* Mark it. */
4596 CHECK_LIVE (live_vector_p);
4597 ptr->size |= ARRAY_MARK_FLAG;
4599 /* There is no Lisp data above The member CURRENT_MATRIX in
4600 struct WINDOW. Stop marking when that slot is reached. */
4601 for (i = 0;
4602 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4603 i++)
4604 mark_object (&ptr->contents[i]);
4606 /* Mark glyphs for leaf windows. Marking window matrices is
4607 sufficient because frame matrices use the same glyph
4608 memory. */
4609 if (NILP (w->hchild)
4610 && NILP (w->vchild)
4611 && w->current_matrix)
4613 mark_glyph_matrix (w->current_matrix);
4614 mark_glyph_matrix (w->desired_matrix);
4617 else if (GC_HASH_TABLE_P (obj))
4619 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4620 EMACS_INT size = h->size;
4622 /* Stop if already marked. */
4623 if (size & ARRAY_MARK_FLAG)
4624 break;
4626 /* Mark it. */
4627 CHECK_LIVE (live_vector_p);
4628 h->size |= ARRAY_MARK_FLAG;
4630 /* Mark contents. */
4631 mark_object (&h->test);
4632 mark_object (&h->weak);
4633 mark_object (&h->rehash_size);
4634 mark_object (&h->rehash_threshold);
4635 mark_object (&h->hash);
4636 mark_object (&h->next);
4637 mark_object (&h->index);
4638 mark_object (&h->user_hash_function);
4639 mark_object (&h->user_cmp_function);
4641 /* If hash table is not weak, mark all keys and values.
4642 For weak tables, mark only the vector. */
4643 if (GC_NILP (h->weak))
4644 mark_object (&h->key_and_value);
4645 else
4646 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4649 else
4651 register struct Lisp_Vector *ptr = XVECTOR (obj);
4652 register EMACS_INT size = ptr->size;
4653 register int i;
4655 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4656 CHECK_LIVE (live_vector_p);
4657 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4658 if (size & PSEUDOVECTOR_FLAG)
4659 size &= PSEUDOVECTOR_SIZE_MASK;
4661 for (i = 0; i < size; i++) /* and then mark its elements */
4662 mark_object (&ptr->contents[i]);
4664 break;
4666 case Lisp_Symbol:
4668 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4669 struct Lisp_Symbol *ptrx;
4671 if (XMARKBIT (ptr->plist)) break;
4672 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4673 XMARK (ptr->plist);
4674 mark_object ((Lisp_Object *) &ptr->value);
4675 mark_object (&ptr->function);
4676 mark_object (&ptr->plist);
4678 if (!PURE_POINTER_P (ptr->name))
4679 MARK_STRING (ptr->name);
4680 MARK_INTERVAL_TREE (ptr->name->intervals);
4682 /* Note that we do not mark the obarray of the symbol.
4683 It is safe not to do so because nothing accesses that
4684 slot except to check whether it is nil. */
4685 ptr = ptr->next;
4686 if (ptr)
4688 /* For the benefit of the last_marked log. */
4689 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4690 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4691 XSETSYMBOL (obj, ptrx);
4692 /* We can't goto loop here because *objptr doesn't contain an
4693 actual Lisp_Object with valid datatype field. */
4694 goto loop2;
4697 break;
4699 case Lisp_Misc:
4700 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4701 switch (XMISCTYPE (obj))
4703 case Lisp_Misc_Marker:
4704 XMARK (XMARKER (obj)->chain);
4705 /* DO NOT mark thru the marker's chain.
4706 The buffer's markers chain does not preserve markers from gc;
4707 instead, markers are removed from the chain when freed by gc. */
4708 break;
4710 case Lisp_Misc_Buffer_Local_Value:
4711 case Lisp_Misc_Some_Buffer_Local_Value:
4713 register struct Lisp_Buffer_Local_Value *ptr
4714 = XBUFFER_LOCAL_VALUE (obj);
4715 if (XMARKBIT (ptr->realvalue)) break;
4716 XMARK (ptr->realvalue);
4717 /* If the cdr is nil, avoid recursion for the car. */
4718 if (EQ (ptr->cdr, Qnil))
4720 objptr = &ptr->realvalue;
4721 goto loop;
4723 mark_object (&ptr->realvalue);
4724 mark_object (&ptr->buffer);
4725 mark_object (&ptr->frame);
4726 objptr = &ptr->cdr;
4727 goto loop;
4730 case Lisp_Misc_Intfwd:
4731 case Lisp_Misc_Boolfwd:
4732 case Lisp_Misc_Objfwd:
4733 case Lisp_Misc_Buffer_Objfwd:
4734 case Lisp_Misc_Kboard_Objfwd:
4735 /* Don't bother with Lisp_Buffer_Objfwd,
4736 since all markable slots in current buffer marked anyway. */
4737 /* Don't need to do Lisp_Objfwd, since the places they point
4738 are protected with staticpro. */
4739 break;
4741 case Lisp_Misc_Overlay:
4743 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4744 if (!XMARKBIT (ptr->plist))
4746 XMARK (ptr->plist);
4747 mark_object (&ptr->start);
4748 mark_object (&ptr->end);
4749 objptr = &ptr->plist;
4750 goto loop;
4753 break;
4755 default:
4756 abort ();
4758 break;
4760 case Lisp_Cons:
4762 register struct Lisp_Cons *ptr = XCONS (obj);
4763 if (XMARKBIT (ptr->car)) break;
4764 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4765 XMARK (ptr->car);
4766 /* If the cdr is nil, avoid recursion for the car. */
4767 if (EQ (ptr->cdr, Qnil))
4769 objptr = &ptr->car;
4770 goto loop;
4772 mark_object (&ptr->car);
4773 objptr = &ptr->cdr;
4774 goto loop;
4777 case Lisp_Float:
4778 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4779 XMARK (XFLOAT (obj)->type);
4780 break;
4782 case Lisp_Int:
4783 break;
4785 default:
4786 abort ();
4789 #undef CHECK_LIVE
4790 #undef CHECK_ALLOCATED
4791 #undef CHECK_ALLOCATED_AND_LIVE
4794 /* Mark the pointers in a buffer structure. */
4796 static void
4797 mark_buffer (buf)
4798 Lisp_Object buf;
4800 register struct buffer *buffer = XBUFFER (buf);
4801 register Lisp_Object *ptr;
4802 Lisp_Object base_buffer;
4804 /* This is the buffer's markbit */
4805 mark_object (&buffer->name);
4806 XMARK (buffer->name);
4808 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4810 if (CONSP (buffer->undo_list))
4812 Lisp_Object tail;
4813 tail = buffer->undo_list;
4815 while (CONSP (tail))
4817 register struct Lisp_Cons *ptr = XCONS (tail);
4819 if (XMARKBIT (ptr->car))
4820 break;
4821 XMARK (ptr->car);
4822 if (GC_CONSP (ptr->car)
4823 && ! XMARKBIT (XCAR (ptr->car))
4824 && GC_MARKERP (XCAR (ptr->car)))
4826 XMARK (XCAR_AS_LVALUE (ptr->car));
4827 mark_object (&XCDR_AS_LVALUE (ptr->car));
4829 else
4830 mark_object (&ptr->car);
4832 if (CONSP (ptr->cdr))
4833 tail = ptr->cdr;
4834 else
4835 break;
4838 mark_object (&XCDR_AS_LVALUE (tail));
4840 else
4841 mark_object (&buffer->undo_list);
4843 for (ptr = &buffer->name + 1;
4844 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4845 ptr++)
4846 mark_object (ptr);
4848 /* If this is an indirect buffer, mark its base buffer. */
4849 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4851 XSETBUFFER (base_buffer, buffer->base_buffer);
4852 mark_buffer (base_buffer);
4857 /* Mark the pointers in the kboard objects. */
4859 static void
4860 mark_kboards ()
4862 KBOARD *kb;
4863 Lisp_Object *p;
4864 for (kb = all_kboards; kb; kb = kb->next_kboard)
4866 if (kb->kbd_macro_buffer)
4867 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4868 mark_object (p);
4869 mark_object (&kb->Voverriding_terminal_local_map);
4870 mark_object (&kb->Vlast_command);
4871 mark_object (&kb->Vreal_last_command);
4872 mark_object (&kb->Vprefix_arg);
4873 mark_object (&kb->Vlast_prefix_arg);
4874 mark_object (&kb->kbd_queue);
4875 mark_object (&kb->defining_kbd_macro);
4876 mark_object (&kb->Vlast_kbd_macro);
4877 mark_object (&kb->Vsystem_key_alist);
4878 mark_object (&kb->system_key_syms);
4879 mark_object (&kb->Vdefault_minibuffer_frame);
4884 /* Value is non-zero if OBJ will survive the current GC because it's
4885 either marked or does not need to be marked to survive. */
4888 survives_gc_p (obj)
4889 Lisp_Object obj;
4891 int survives_p;
4893 switch (XGCTYPE (obj))
4895 case Lisp_Int:
4896 survives_p = 1;
4897 break;
4899 case Lisp_Symbol:
4900 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4901 break;
4903 case Lisp_Misc:
4904 switch (XMISCTYPE (obj))
4906 case Lisp_Misc_Marker:
4907 survives_p = XMARKBIT (obj);
4908 break;
4910 case Lisp_Misc_Buffer_Local_Value:
4911 case Lisp_Misc_Some_Buffer_Local_Value:
4912 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4913 break;
4915 case Lisp_Misc_Intfwd:
4916 case Lisp_Misc_Boolfwd:
4917 case Lisp_Misc_Objfwd:
4918 case Lisp_Misc_Buffer_Objfwd:
4919 case Lisp_Misc_Kboard_Objfwd:
4920 survives_p = 1;
4921 break;
4923 case Lisp_Misc_Overlay:
4924 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4925 break;
4927 default:
4928 abort ();
4930 break;
4932 case Lisp_String:
4934 struct Lisp_String *s = XSTRING (obj);
4935 survives_p = STRING_MARKED_P (s);
4937 break;
4939 case Lisp_Vectorlike:
4940 if (GC_BUFFERP (obj))
4941 survives_p = XMARKBIT (XBUFFER (obj)->name);
4942 else if (GC_SUBRP (obj))
4943 survives_p = 1;
4944 else
4945 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4946 break;
4948 case Lisp_Cons:
4949 survives_p = XMARKBIT (XCAR (obj));
4950 break;
4952 case Lisp_Float:
4953 survives_p = XMARKBIT (XFLOAT (obj)->type);
4954 break;
4956 default:
4957 abort ();
4960 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
4965 /* Sweep: find all structures not marked, and free them. */
4967 static void
4968 gc_sweep ()
4970 /* Remove or mark entries in weak hash tables.
4971 This must be done before any object is unmarked. */
4972 sweep_weak_hash_tables ();
4974 sweep_strings ();
4975 #ifdef GC_CHECK_STRING_BYTES
4976 if (!noninteractive)
4977 check_string_bytes (1);
4978 #endif
4980 /* Put all unmarked conses on free list */
4982 register struct cons_block *cblk;
4983 struct cons_block **cprev = &cons_block;
4984 register int lim = cons_block_index;
4985 register int num_free = 0, num_used = 0;
4987 cons_free_list = 0;
4989 for (cblk = cons_block; cblk; cblk = *cprev)
4991 register int i;
4992 int this_free = 0;
4993 for (i = 0; i < lim; i++)
4994 if (!XMARKBIT (cblk->conses[i].car))
4996 this_free++;
4997 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
4998 cons_free_list = &cblk->conses[i];
4999 #if GC_MARK_STACK
5000 cons_free_list->car = Vdead;
5001 #endif
5003 else
5005 num_used++;
5006 XUNMARK (cblk->conses[i].car);
5008 lim = CONS_BLOCK_SIZE;
5009 /* If this block contains only free conses and we have already
5010 seen more than two blocks worth of free conses then deallocate
5011 this block. */
5012 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5014 *cprev = cblk->next;
5015 /* Unhook from the free list. */
5016 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5017 lisp_free (cblk);
5018 n_cons_blocks--;
5020 else
5022 num_free += this_free;
5023 cprev = &cblk->next;
5026 total_conses = num_used;
5027 total_free_conses = num_free;
5030 /* Put all unmarked floats on free list */
5032 register struct float_block *fblk;
5033 struct float_block **fprev = &float_block;
5034 register int lim = float_block_index;
5035 register int num_free = 0, num_used = 0;
5037 float_free_list = 0;
5039 for (fblk = float_block; fblk; fblk = *fprev)
5041 register int i;
5042 int this_free = 0;
5043 for (i = 0; i < lim; i++)
5044 if (!XMARKBIT (fblk->floats[i].type))
5046 this_free++;
5047 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5048 float_free_list = &fblk->floats[i];
5049 #if GC_MARK_STACK
5050 float_free_list->type = Vdead;
5051 #endif
5053 else
5055 num_used++;
5056 XUNMARK (fblk->floats[i].type);
5058 lim = FLOAT_BLOCK_SIZE;
5059 /* If this block contains only free floats and we have already
5060 seen more than two blocks worth of free floats then deallocate
5061 this block. */
5062 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5064 *fprev = fblk->next;
5065 /* Unhook from the free list. */
5066 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5067 lisp_free (fblk);
5068 n_float_blocks--;
5070 else
5072 num_free += this_free;
5073 fprev = &fblk->next;
5076 total_floats = num_used;
5077 total_free_floats = num_free;
5080 /* Put all unmarked intervals on free list */
5082 register struct interval_block *iblk;
5083 struct interval_block **iprev = &interval_block;
5084 register int lim = interval_block_index;
5085 register int num_free = 0, num_used = 0;
5087 interval_free_list = 0;
5089 for (iblk = interval_block; iblk; iblk = *iprev)
5091 register int i;
5092 int this_free = 0;
5094 for (i = 0; i < lim; i++)
5096 if (! XMARKBIT (iblk->intervals[i].plist))
5098 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5099 interval_free_list = &iblk->intervals[i];
5100 this_free++;
5102 else
5104 num_used++;
5105 XUNMARK (iblk->intervals[i].plist);
5108 lim = INTERVAL_BLOCK_SIZE;
5109 /* If this block contains only free intervals and we have already
5110 seen more than two blocks worth of free intervals then
5111 deallocate this block. */
5112 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5114 *iprev = iblk->next;
5115 /* Unhook from the free list. */
5116 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5117 lisp_free (iblk);
5118 n_interval_blocks--;
5120 else
5122 num_free += this_free;
5123 iprev = &iblk->next;
5126 total_intervals = num_used;
5127 total_free_intervals = num_free;
5130 /* Put all unmarked symbols on free list */
5132 register struct symbol_block *sblk;
5133 struct symbol_block **sprev = &symbol_block;
5134 register int lim = symbol_block_index;
5135 register int num_free = 0, num_used = 0;
5137 symbol_free_list = NULL;
5139 for (sblk = symbol_block; sblk; sblk = *sprev)
5141 int this_free = 0;
5142 struct Lisp_Symbol *sym = sblk->symbols;
5143 struct Lisp_Symbol *end = sym + lim;
5145 for (; sym < end; ++sym)
5147 /* Check if the symbol was created during loadup. In such a case
5148 it might be pointed to by pure bytecode which we don't trace,
5149 so we conservatively assume that it is live. */
5150 int pure_p = PURE_POINTER_P (sym->name);
5152 if (!XMARKBIT (sym->plist) && !pure_p)
5154 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5155 symbol_free_list = sym;
5156 #if GC_MARK_STACK
5157 symbol_free_list->function = Vdead;
5158 #endif
5159 ++this_free;
5161 else
5163 ++num_used;
5164 if (!pure_p)
5165 UNMARK_STRING (sym->name);
5166 XUNMARK (sym->plist);
5170 lim = SYMBOL_BLOCK_SIZE;
5171 /* If this block contains only free symbols and we have already
5172 seen more than two blocks worth of free symbols then deallocate
5173 this block. */
5174 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5176 *sprev = sblk->next;
5177 /* Unhook from the free list. */
5178 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5179 lisp_free (sblk);
5180 n_symbol_blocks--;
5182 else
5184 num_free += this_free;
5185 sprev = &sblk->next;
5188 total_symbols = num_used;
5189 total_free_symbols = num_free;
5192 /* Put all unmarked misc's on free list.
5193 For a marker, first unchain it from the buffer it points into. */
5195 register struct marker_block *mblk;
5196 struct marker_block **mprev = &marker_block;
5197 register int lim = marker_block_index;
5198 register int num_free = 0, num_used = 0;
5200 marker_free_list = 0;
5202 for (mblk = marker_block; mblk; mblk = *mprev)
5204 register int i;
5205 int this_free = 0;
5206 EMACS_INT already_free = -1;
5208 for (i = 0; i < lim; i++)
5210 Lisp_Object *markword;
5211 switch (mblk->markers[i].u_marker.type)
5213 case Lisp_Misc_Marker:
5214 markword = &mblk->markers[i].u_marker.chain;
5215 break;
5216 case Lisp_Misc_Buffer_Local_Value:
5217 case Lisp_Misc_Some_Buffer_Local_Value:
5218 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5219 break;
5220 case Lisp_Misc_Overlay:
5221 markword = &mblk->markers[i].u_overlay.plist;
5222 break;
5223 case Lisp_Misc_Free:
5224 /* If the object was already free, keep it
5225 on the free list. */
5226 markword = (Lisp_Object *) &already_free;
5227 break;
5228 default:
5229 markword = 0;
5230 break;
5232 if (markword && !XMARKBIT (*markword))
5234 Lisp_Object tem;
5235 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5237 /* tem1 avoids Sun compiler bug */
5238 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5239 XSETMARKER (tem, tem1);
5240 unchain_marker (tem);
5242 /* Set the type of the freed object to Lisp_Misc_Free.
5243 We could leave the type alone, since nobody checks it,
5244 but this might catch bugs faster. */
5245 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5246 mblk->markers[i].u_free.chain = marker_free_list;
5247 marker_free_list = &mblk->markers[i];
5248 this_free++;
5250 else
5252 num_used++;
5253 if (markword)
5254 XUNMARK (*markword);
5257 lim = MARKER_BLOCK_SIZE;
5258 /* If this block contains only free markers and we have already
5259 seen more than two blocks worth of free markers then deallocate
5260 this block. */
5261 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5263 *mprev = mblk->next;
5264 /* Unhook from the free list. */
5265 marker_free_list = mblk->markers[0].u_free.chain;
5266 lisp_free (mblk);
5267 n_marker_blocks--;
5269 else
5271 num_free += this_free;
5272 mprev = &mblk->next;
5276 total_markers = num_used;
5277 total_free_markers = num_free;
5280 /* Free all unmarked buffers */
5282 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5284 while (buffer)
5285 if (!XMARKBIT (buffer->name))
5287 if (prev)
5288 prev->next = buffer->next;
5289 else
5290 all_buffers = buffer->next;
5291 next = buffer->next;
5292 lisp_free (buffer);
5293 buffer = next;
5295 else
5297 XUNMARK (buffer->name);
5298 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5299 prev = buffer, buffer = buffer->next;
5303 /* Free all unmarked vectors */
5305 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5306 total_vector_size = 0;
5308 while (vector)
5309 if (!(vector->size & ARRAY_MARK_FLAG))
5311 if (prev)
5312 prev->next = vector->next;
5313 else
5314 all_vectors = vector->next;
5315 next = vector->next;
5316 lisp_free (vector);
5317 n_vectors--;
5318 vector = next;
5321 else
5323 vector->size &= ~ARRAY_MARK_FLAG;
5324 if (vector->size & PSEUDOVECTOR_FLAG)
5325 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5326 else
5327 total_vector_size += vector->size;
5328 prev = vector, vector = vector->next;
5332 #ifdef GC_CHECK_STRING_BYTES
5333 if (!noninteractive)
5334 check_string_bytes (1);
5335 #endif
5341 /* Debugging aids. */
5343 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5344 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5345 This may be helpful in debugging Emacs's memory usage.
5346 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5349 Lisp_Object end;
5351 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5353 return end;
5356 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5357 doc: /* Return a list of counters that measure how much consing there has been.
5358 Each of these counters increments for a certain kind of object.
5359 The counters wrap around from the largest positive integer to zero.
5360 Garbage collection does not decrease them.
5361 The elements of the value are as follows:
5362 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5363 All are in units of 1 = one object consed
5364 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5365 objects consed.
5366 MISCS include overlays, markers, and some internal types.
5367 Frames, windows, buffers, and subprocesses count as vectors
5368 (but the contents of a buffer's text do not count here). */)
5371 Lisp_Object consed[8];
5373 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5374 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5375 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5376 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5377 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5378 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5379 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5380 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5382 return Flist (8, consed);
5385 int suppress_checking;
5386 void
5387 die (msg, file, line)
5388 const char *msg;
5389 const char *file;
5390 int line;
5392 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5393 file, line, msg);
5394 abort ();
5397 /* Initialization */
5399 void
5400 init_alloc_once ()
5402 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5403 purebeg = PUREBEG;
5404 pure_size = PURESIZE;
5405 pure_bytes_used = 0;
5406 pure_bytes_used_before_overflow = 0;
5408 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5409 mem_init ();
5410 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5411 #endif
5413 all_vectors = 0;
5414 ignore_warnings = 1;
5415 #ifdef DOUG_LEA_MALLOC
5416 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5417 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5418 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5419 #endif
5420 init_strings ();
5421 init_cons ();
5422 init_symbol ();
5423 init_marker ();
5424 init_float ();
5425 init_intervals ();
5427 #ifdef REL_ALLOC
5428 malloc_hysteresis = 32;
5429 #else
5430 malloc_hysteresis = 0;
5431 #endif
5433 spare_memory = (char *) malloc (SPARE_MEMORY);
5435 ignore_warnings = 0;
5436 gcprolist = 0;
5437 byte_stack_list = 0;
5438 staticidx = 0;
5439 consing_since_gc = 0;
5440 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5441 #ifdef VIRT_ADDR_VARIES
5442 malloc_sbrk_unused = 1<<22; /* A large number */
5443 malloc_sbrk_used = 100000; /* as reasonable as any number */
5444 #endif /* VIRT_ADDR_VARIES */
5447 void
5448 init_alloc ()
5450 gcprolist = 0;
5451 byte_stack_list = 0;
5452 #if GC_MARK_STACK
5453 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5454 setjmp_tested_p = longjmps_done = 0;
5455 #endif
5456 #endif
5459 void
5460 syms_of_alloc ()
5462 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5463 doc: /* *Number of bytes of consing between garbage collections.
5464 Garbage collection can happen automatically once this many bytes have been
5465 allocated since the last garbage collection. All data types count.
5467 Garbage collection happens automatically only when `eval' is called.
5469 By binding this temporarily to a large number, you can effectively
5470 prevent garbage collection during a part of the program. */);
5472 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5473 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5475 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5476 doc: /* Number of cons cells that have been consed so far. */);
5478 DEFVAR_INT ("floats-consed", &floats_consed,
5479 doc: /* Number of floats that have been consed so far. */);
5481 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5482 doc: /* Number of vector cells that have been consed so far. */);
5484 DEFVAR_INT ("symbols-consed", &symbols_consed,
5485 doc: /* Number of symbols that have been consed so far. */);
5487 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5488 doc: /* Number of string characters that have been consed so far. */);
5490 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5491 doc: /* Number of miscellaneous objects that have been consed so far. */);
5493 DEFVAR_INT ("intervals-consed", &intervals_consed,
5494 doc: /* Number of intervals that have been consed so far. */);
5496 DEFVAR_INT ("strings-consed", &strings_consed,
5497 doc: /* Number of strings that have been consed so far. */);
5499 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5500 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5501 This means that certain objects should be allocated in shared (pure) space. */);
5503 DEFVAR_INT ("undo-limit", &undo_limit,
5504 doc: /* Keep no more undo information once it exceeds this size.
5505 This limit is applied when garbage collection happens.
5506 The size is counted as the number of bytes occupied,
5507 which includes both saved text and other data. */);
5508 undo_limit = 20000;
5510 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5511 doc: /* Don't keep more than this much size of undo information.
5512 A command which pushes past this size is itself forgotten.
5513 This limit is applied when garbage collection happens.
5514 The size is counted as the number of bytes occupied,
5515 which includes both saved text and other data. */);
5516 undo_strong_limit = 30000;
5518 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5519 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5520 garbage_collection_messages = 0;
5522 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5523 doc: /* Hook run after garbage collection has finished. */);
5524 Vpost_gc_hook = Qnil;
5525 Qpost_gc_hook = intern ("post-gc-hook");
5526 staticpro (&Qpost_gc_hook);
5528 /* We build this in advance because if we wait until we need it, we might
5529 not be able to allocate the memory to hold it. */
5530 memory_signal_data
5531 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
5532 staticpro (&memory_signal_data);
5534 staticpro (&Qgc_cons_threshold);
5535 Qgc_cons_threshold = intern ("gc-cons-threshold");
5537 staticpro (&Qchar_table_extra_slots);
5538 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5540 defsubr (&Scons);
5541 defsubr (&Slist);
5542 defsubr (&Svector);
5543 defsubr (&Smake_byte_code);
5544 defsubr (&Smake_list);
5545 defsubr (&Smake_vector);
5546 defsubr (&Smake_char_table);
5547 defsubr (&Smake_string);
5548 defsubr (&Smake_bool_vector);
5549 defsubr (&Smake_symbol);
5550 defsubr (&Smake_marker);
5551 defsubr (&Spurecopy);
5552 defsubr (&Sgarbage_collect);
5553 defsubr (&Smemory_limit);
5554 defsubr (&Smemory_use_counts);
5556 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5557 defsubr (&Sgc_status);
5558 #endif