Fix maintainer address.
[emacs.git] / lisp / emacs-lisp / byte-opt.el
blobc60ae46a9973e23c69e445719e0d61ef6f7b835a
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Keywords: internal
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
26 ;;; Commentary:
28 ;; ========================================================================
29 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
30 ;; You can, however, make a faster pig."
32 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
33 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34 ;; still not going to make it go faster than 70 mph, but it might be easier
35 ;; to get it there.
38 ;; TO DO:
40 ;; (apply '(lambda (x &rest y) ...) 1 (foo))
42 ;; maintain a list of functions known not to access any global variables
43 ;; (actually, give them a 'dynamically-safe property) and then
44 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46 ;; by recursing on this, we might be able to eliminate the entire let.
47 ;; However certain variables should never have their bindings optimized
48 ;; away, because they affect everything.
49 ;; (put 'debug-on-error 'binding-is-magic t)
50 ;; (put 'debug-on-abort 'binding-is-magic t)
51 ;; (put 'debug-on-next-call 'binding-is-magic t)
52 ;; (put 'mocklisp-arguments 'binding-is-magic t)
53 ;; (put 'inhibit-quit 'binding-is-magic t)
54 ;; (put 'quit-flag 'binding-is-magic t)
55 ;; (put 't 'binding-is-magic t)
56 ;; (put 'nil 'binding-is-magic t)
57 ;; possibly also
58 ;; (put 'gc-cons-threshold 'binding-is-magic t)
59 ;; (put 'track-mouse 'binding-is-magic t)
60 ;; others?
62 ;; Simple defsubsts often produce forms like
63 ;; (let ((v1 (f1)) (v2 (f2)) ...)
64 ;; (FN v1 v2 ...))
65 ;; It would be nice if we could optimize this to
66 ;; (FN (f1) (f2) ...)
67 ;; but we can't unless FN is dynamically-safe (it might be dynamically
68 ;; referring to the bindings that the lambda arglist established.)
69 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;; Maybe there should be a control-structure that says "turn on
72 ;; fast-and-loose type-assumptive optimizations here." Then when
73 ;; we see a form like (car foo) we can from then on assume that
74 ;; the variable foo is of type cons, and optimize based on that.
75 ;; But, this won't win much because of (you guessed it) dynamic
76 ;; scope. Anything down the stack could change the value.
77 ;; (Another reason it doesn't work is that it is perfectly valid
78 ;; to call car with a null argument.) A better approach might
79 ;; be to allow type-specification of the form
80 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
81 ;; (put 'foo 'result-type 'bool)
82 ;; It should be possible to have these types checked to a certain
83 ;; degree.
85 ;; collapse common subexpressions
87 ;; It would be nice if redundant sequences could be factored out as well,
88 ;; when they are known to have no side-effects:
89 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90 ;; but beware of traps like
91 ;; (cons (list x y) (list x y))
93 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
94 ;; Tail-recursion elimination is almost always impossible when all variables
95 ;; have dynamic scope, but given that the "return" byteop requires the
96 ;; binding stack to be empty (rather than emptying it itself), there can be
97 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
98 ;; make any bindings.
100 ;; Here is an example of an Emacs Lisp function which could safely be
101 ;; byte-compiled tail-recursively:
103 ;; (defun tail-map (fn list)
104 ;; (cond (list
105 ;; (funcall fn (car list))
106 ;; (tail-map fn (cdr list)))))
108 ;; However, if there was even a single let-binding around the COND,
109 ;; it could not be byte-compiled, because there would be an "unbind"
110 ;; byte-op between the final "call" and "return." Adding a
111 ;; Bunbind_all byteop would fix this.
113 ;; (defun foo (x y z) ... (foo a b c))
114 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;; this also can be considered tail recursion:
120 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121 ;; could generalize this by doing the optimization
122 ;; (goto X) ... X: (return) --> (return)
124 ;; But this doesn't solve all of the problems: although by doing tail-
125 ;; recursion elimination in this way, the call-stack does not grow, the
126 ;; binding-stack would grow with each recursive step, and would eventually
127 ;; overflow. I don't believe there is any way around this without lexical
128 ;; scope.
130 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;; Idea: the form (lexical-scope) in a file means that the file may be
133 ;; compiled lexically. This proclamation is file-local. Then, within
134 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
135 ;; would do things the old way. (Or we could use CL "declare" forms.)
136 ;; We'd have to notice defvars and defconsts, since those variables should
137 ;; always be dynamic, and attempting to do a lexical binding of them
138 ;; should simply do a dynamic binding instead.
139 ;; But! We need to know about variables that were not necessarily defvarred
140 ;; in the file being compiled (doing a boundp check isn't good enough.)
141 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;; A major disadvantage of this scheme is that the interpreter and compiler
144 ;; would have different semantics for files compiled with (dynamic-scope).
145 ;; Since this would be a file-local optimization, there would be no way to
146 ;; modify the interpreter to obey this (unless the loader was hacked
147 ;; in some grody way, but that's a really bad idea.)
149 ;; Other things to consider:
151 ;;;;; Associative math should recognize subcalls to identical function:
152 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153 ;;;;; This should generate the same as (1+ x) and (1- x)
155 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156 ;;;;; An awful lot of functions always return a non-nil value. If they're
157 ;;;;; error free also they may act as true-constants.
159 ;;;(disassemble (lambda (x) (and (point) (foo))))
160 ;;;;; When
161 ;;;;; - all but one arguments to a function are constant
162 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
163 ;;;;; then the outer function can be distributed. If the guarding
164 ;;;;; condition is side-effect-free [assignment-free] then the other
165 ;;;;; arguments may be any expressions. Since, however, the code size
166 ;;;;; can increase this way they should be "simple". Compare:
168 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171 ;;;;; (car (cons A B)) -> (progn B A)
172 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
174 ;;;;; (cdr (cons A B)) -> (progn A B)
175 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
177 ;;;;; (car (list A B ...)) -> (progn B ... A)
178 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
181 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
184 ;;; Code:
186 (require 'bytecomp)
188 (defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar '(lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
216 (format "(%s %s)" c a))))
217 args)))))
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 (list 'and
221 '(memq byte-optimize-log '(t byte))
222 (cons 'byte-compile-log-lap-1
223 (cons format-string args))))
226 ;;; byte-compile optimizers to support inlining
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 '(lambda (sexp)
235 (let ((fn (car-safe sexp)))
236 (if (and (symbolp fn)
237 (or (cdr (assq fn byte-compile-function-environment))
238 (and (fboundp fn)
239 (not (or (cdr (assq fn byte-compile-macro-environment))
240 (and (consp (setq fn (symbol-function fn)))
241 (eq (car fn) 'macro))
242 (subrp fn))))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
256 (defun byte-compile-inline-expand (form)
257 (let* ((name (car form))
258 (fn (or (cdr (assq name byte-compile-function-environment))
259 (and (fboundp name) (symbol-function name)))))
260 (if (null fn)
261 (progn
262 (byte-compile-warn "attempt to inline %s before it was defined" name)
263 form)
264 ;; else
265 (if (and (consp fn) (eq (car fn) 'autoload))
266 (progn
267 (load (nth 1 fn))
268 (setq fn (or (cdr (assq name byte-compile-function-environment))
269 (and (fboundp name) (symbol-function name))))))
270 (if (and (consp fn) (eq (car fn) 'autoload))
271 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
272 (if (symbolp fn)
273 (byte-compile-inline-expand (cons fn (cdr form)))
274 (if (byte-code-function-p fn)
275 (let (string)
276 (fetch-bytecode fn)
277 (setq string (aref fn 1))
278 (if (fboundp 'string-as-unibyte)
279 (setq string (string-as-unibyte string)))
280 (cons (list 'lambda (aref fn 0)
281 (list 'byte-code string (aref fn 2) (aref fn 3)))
282 (cdr form)))
283 (if (eq (car-safe fn) 'lambda)
284 (cons fn (cdr form))
285 ;; Give up on inlining.
286 form))))))
288 ;;; ((lambda ...) ...)
289 ;;;
290 (defun byte-compile-unfold-lambda (form &optional name)
291 (or name (setq name "anonymous lambda"))
292 (let ((lambda (car form))
293 (values (cdr form)))
294 (if (byte-code-function-p lambda)
295 (setq lambda (list 'lambda (aref lambda 0)
296 (list 'byte-code (aref lambda 1)
297 (aref lambda 2) (aref lambda 3)))))
298 (let ((arglist (nth 1 lambda))
299 (body (cdr (cdr lambda)))
300 optionalp restp
301 bindings)
302 (if (and (stringp (car body)) (cdr body))
303 (setq body (cdr body)))
304 (if (and (consp (car body)) (eq 'interactive (car (car body))))
305 (setq body (cdr body)))
306 (while arglist
307 (cond ((eq (car arglist) '&optional)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp (error "&optional found after &rest in %s" name))
311 (if (null (cdr arglist))
312 (error "nothing after &optional in %s" name))
313 (setq optionalp t))
314 ((eq (car arglist) '&rest)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist))
319 (error "nothing after &rest in %s" name))
320 (if (cdr (cdr arglist))
321 (error "multiple vars after &rest in %s" name))
322 (setq restp t))
323 (restp
324 (setq bindings (cons (list (car arglist)
325 (and values (cons 'list values)))
326 bindings)
327 values nil))
328 ((and (not optionalp) (null values))
329 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
330 (setq arglist nil values 'too-few))
332 (setq bindings (cons (list (car arglist) (car values))
333 bindings)
334 values (cdr values))))
335 (setq arglist (cdr arglist)))
336 (if values
337 (progn
338 (or (eq values 'too-few)
339 (byte-compile-warn
340 "attempt to open-code %s with too many arguments" name))
341 form)
342 (setq body (mapcar 'byte-optimize-form body))
343 (let ((newform
344 (if bindings
345 (cons 'let (cons (nreverse bindings) body))
346 (cons 'progn body))))
347 (byte-compile-log " %s\t==>\t%s" form newform)
348 newform)))))
351 ;;; implementing source-level optimizers
353 (defun byte-optimize-form-code-walker (form for-effect)
355 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
356 ;; we need to have special knowledge of the syntax of the special forms
357 ;; like let and defun (that's why they're special forms :-). (Actually,
358 ;; the important aspect is that they are subrs that don't evaluate all of
359 ;; their args.)
361 (let ((fn (car-safe form))
362 tmp)
363 (cond ((not (consp form))
364 (if (not (and for-effect
365 (or byte-compile-delete-errors
366 (not (symbolp form))
367 (eq form t))))
368 form))
369 ((eq fn 'quote)
370 (if (cdr (cdr form))
371 (byte-compile-warn "malformed quote form: %s"
372 (prin1-to-string form)))
373 ;; map (quote nil) to nil to simplify optimizer logic.
374 ;; map quoted constants to nil if for-effect (just because).
375 (and (nth 1 form)
376 (not for-effect)
377 form))
378 ((or (byte-code-function-p fn)
379 (eq 'lambda (car-safe fn)))
380 (byte-compile-unfold-lambda form))
381 ((memq fn '(let let*))
382 ;; recursively enter the optimizer for the bindings and body
383 ;; of a let or let*. This for depth-firstness: forms that
384 ;; are more deeply nested are optimized first.
385 (cons fn
386 (cons
387 (mapcar '(lambda (binding)
388 (if (symbolp binding)
389 binding
390 (if (cdr (cdr binding))
391 (byte-compile-warn "malformed let binding: %s"
392 (prin1-to-string binding)))
393 (list (car binding)
394 (byte-optimize-form (nth 1 binding) nil))))
395 (nth 1 form))
396 (byte-optimize-body (cdr (cdr form)) for-effect))))
397 ((eq fn 'cond)
398 (cons fn
399 (mapcar '(lambda (clause)
400 (if (consp clause)
401 (cons
402 (byte-optimize-form (car clause) nil)
403 (byte-optimize-body (cdr clause) for-effect))
404 (byte-compile-warn "malformed cond form: %s"
405 (prin1-to-string clause))
406 clause))
407 (cdr form))))
408 ((eq fn 'progn)
409 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
410 (if (cdr (cdr form))
411 (progn
412 (setq tmp (byte-optimize-body (cdr form) for-effect))
413 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
414 (byte-optimize-form (nth 1 form) for-effect)))
415 ((eq fn 'prog1)
416 (if (cdr (cdr form))
417 (cons 'prog1
418 (cons (byte-optimize-form (nth 1 form) for-effect)
419 (byte-optimize-body (cdr (cdr form)) t)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog2)
422 (cons 'prog2
423 (cons (byte-optimize-form (nth 1 form) t)
424 (cons (byte-optimize-form (nth 2 form) for-effect)
425 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
427 ((memq fn '(save-excursion save-restriction save-current-buffer))
428 ;; those subrs which have an implicit progn; it's not quite good
429 ;; enough to treat these like normal function calls.
430 ;; This can turn (save-excursion ...) into (save-excursion) which
431 ;; will be optimized away in the lap-optimize pass.
432 (cons fn (byte-optimize-body (cdr form) for-effect)))
434 ((eq fn 'with-output-to-temp-buffer)
435 ;; this is just like the above, except for the first argument.
436 (cons fn
437 (cons
438 (byte-optimize-form (nth 1 form) nil)
439 (byte-optimize-body (cdr (cdr form)) for-effect))))
441 ((eq fn 'if)
442 (cons fn
443 (cons (byte-optimize-form (nth 1 form) nil)
444 (cons
445 (byte-optimize-form (nth 2 form) for-effect)
446 (byte-optimize-body (nthcdr 3 form) for-effect)))))
448 ((memq fn '(and or)) ; remember, and/or are control structures.
449 ;; take forms off the back until we can't any more.
450 ;; In the future it could conceivably be a problem that the
451 ;; subexpressions of these forms are optimized in the reverse
452 ;; order, but it's ok for now.
453 (if for-effect
454 (let ((backwards (reverse (cdr form))))
455 (while (and backwards
456 (null (setcar backwards
457 (byte-optimize-form (car backwards)
458 for-effect))))
459 (setq backwards (cdr backwards)))
460 (if (and (cdr form) (null backwards))
461 (byte-compile-log
462 " all subforms of %s called for effect; deleted" form))
463 (and backwards
464 (cons fn (nreverse backwards))))
465 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
467 ((eq fn 'interactive)
468 (byte-compile-warn "misplaced interactive spec: %s"
469 (prin1-to-string form))
470 nil)
472 ((memq fn '(defun defmacro function
473 condition-case save-window-excursion))
474 ;; These forms are compiled as constants or by breaking out
475 ;; all the subexpressions and compiling them separately.
476 form)
478 ((eq fn 'unwind-protect)
479 ;; the "protected" part of an unwind-protect is compiled (and thus
480 ;; optimized) as a top-level form, so don't do it here. But the
481 ;; non-protected part has the same for-effect status as the
482 ;; unwind-protect itself. (The protected part is always for effect,
483 ;; but that isn't handled properly yet.)
484 (cons fn
485 (cons (byte-optimize-form (nth 1 form) for-effect)
486 (cdr (cdr form)))))
488 ((eq fn 'catch)
489 ;; the body of a catch is compiled (and thus optimized) as a
490 ;; top-level form, so don't do it here. The tag is never
491 ;; for-effect. The body should have the same for-effect status
492 ;; as the catch form itself, but that isn't handled properly yet.
493 (cons fn
494 (cons (byte-optimize-form (nth 1 form) nil)
495 (cdr (cdr form)))))
497 ;; If optimization is on, this is the only place that macros are
498 ;; expanded. If optimization is off, then macroexpansion happens
499 ;; in byte-compile-form. Otherwise, the macros are already expanded
500 ;; by the time that is reached.
501 ((not (eq form
502 (setq form (macroexpand form
503 byte-compile-macro-environment))))
504 (byte-optimize-form form for-effect))
506 ;; Support compiler macros as in cl.el.
507 ((and (fboundp 'compiler-macroexpand)
508 (symbolp (car-safe form))
509 (get (car-safe form) 'cl-compiler-macro)
510 (not (eq form
511 (setq form (compiler-macroexpand form)))))
512 (byte-optimize-form form for-effect))
514 ((not (symbolp fn))
515 (or (eq 'mocklisp (car-safe fn)) ; ha!
516 (byte-compile-warn "%s is a malformed function"
517 (prin1-to-string fn)))
518 form)
520 ((and for-effect (setq tmp (get fn 'side-effect-free))
521 (or byte-compile-delete-errors
522 (eq tmp 'error-free)
523 (progn
524 (byte-compile-warn "%s called for effect"
525 (prin1-to-string form))
526 nil)))
527 (byte-compile-log " %s called for effect; deleted" fn)
528 ;; appending a nil here might not be necessary, but it can't hurt.
529 (byte-optimize-form
530 (cons 'progn (append (cdr form) '(nil))) t))
533 ;; Otherwise, no args can be considered to be for-effect,
534 ;; even if the called function is for-effect, because we
535 ;; don't know anything about that function.
536 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
539 (defun byte-optimize-form (form &optional for-effect)
540 "The source-level pass of the optimizer."
542 ;; First, optimize all sub-forms of this one.
543 (setq form (byte-optimize-form-code-walker form for-effect))
545 ;; after optimizing all subforms, optimize this form until it doesn't
546 ;; optimize any further. This means that some forms will be passed through
547 ;; the optimizer many times, but that's necessary to make the for-effect
548 ;; processing do as much as possible.
550 (let (opt new)
551 (if (and (consp form)
552 (symbolp (car form))
553 (or (and for-effect
554 ;; we don't have any of these yet, but we might.
555 (setq opt (get (car form) 'byte-for-effect-optimizer)))
556 (setq opt (get (car form) 'byte-optimizer)))
557 (not (eq form (setq new (funcall opt form)))))
558 (progn
559 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
560 (byte-compile-log " %s\t==>\t%s" form new)
561 (setq new (byte-optimize-form new for-effect))
562 new)
563 form)))
566 (defun byte-optimize-body (forms all-for-effect)
567 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
568 ;; forms, all but the last of which are optimized with the assumption that
569 ;; they are being called for effect. the last is for-effect as well if
570 ;; all-for-effect is true. returns a new list of forms.
571 (let ((rest forms)
572 (result nil)
573 fe new)
574 (while rest
575 (setq fe (or all-for-effect (cdr rest)))
576 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
577 (if (or new (not fe))
578 (setq result (cons new result)))
579 (setq rest (cdr rest)))
580 (nreverse result)))
583 ;;; some source-level optimizers
585 ;;; when writing optimizers, be VERY careful that the optimizer returns
586 ;;; something not EQ to its argument if and ONLY if it has made a change.
587 ;;; This implies that you cannot simply destructively modify the list;
588 ;;; you must return something not EQ to it if you make an optimization.
590 ;;; It is now safe to optimize code such that it introduces new bindings.
592 ;; I'd like this to be a defsubst, but let's not be self-referential...
593 (defmacro byte-compile-trueconstp (form)
594 ;; Returns non-nil if FORM is a non-nil constant.
595 (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
596 ((not (symbolp (, form))))
597 ((eq (, form) t)))))
599 ;; If the function is being called with constant numeric args,
600 ;; evaluate as much as possible at compile-time. This optimizer
601 ;; assumes that the function is associative, like + or *.
602 (defun byte-optimize-associative-math (form)
603 (let ((args nil)
604 (constants nil)
605 (rest (cdr form)))
606 (while rest
607 (if (numberp (car rest))
608 (setq constants (cons (car rest) constants))
609 (setq args (cons (car rest) args)))
610 (setq rest (cdr rest)))
611 (if (cdr constants)
612 (if args
613 (list (car form)
614 (apply (car form) constants)
615 (if (cdr args)
616 (cons (car form) (nreverse args))
617 (car args)))
618 (apply (car form) constants))
619 form)))
621 ;; If the function is being called with constant numeric args,
622 ;; evaluate as much as possible at compile-time. This optimizer
623 ;; assumes that the function satisfies
624 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
625 ;; like - and /.
626 (defun byte-optimize-nonassociative-math (form)
627 (if (or (not (numberp (car (cdr form))))
628 (not (numberp (car (cdr (cdr form))))))
629 form
630 (let ((constant (car (cdr form)))
631 (rest (cdr (cdr form))))
632 (while (numberp (car rest))
633 (setq constant (funcall (car form) constant (car rest))
634 rest (cdr rest)))
635 (if rest
636 (cons (car form) (cons constant rest))
637 constant))))
639 ;;(defun byte-optimize-associative-two-args-math (form)
640 ;; (setq form (byte-optimize-associative-math form))
641 ;; (if (consp form)
642 ;; (byte-optimize-two-args-left form)
643 ;; form))
645 ;;(defun byte-optimize-nonassociative-two-args-math (form)
646 ;; (setq form (byte-optimize-nonassociative-math form))
647 ;; (if (consp form)
648 ;; (byte-optimize-two-args-right form)
649 ;; form))
651 (defun byte-optimize-approx-equal (x y)
652 (<= (* (abs (- x y)) 100) (abs (+ x y))))
654 ;; Collect all the constants from FORM, after the STARTth arg,
655 ;; and apply FUN to them to make one argument at the end.
656 ;; For functions that can handle floats, that optimization
657 ;; can be incorrect because reordering can cause an overflow
658 ;; that would otherwise be avoided by encountering an arg that is a float.
659 ;; We avoid this problem by (1) not moving float constants and
660 ;; (2) not moving anything if it would cause an overflow.
661 (defun byte-optimize-delay-constants-math (form start fun)
662 ;; Merge all FORM's constants from number START, call FUN on them
663 ;; and put the result at the end.
664 (let ((rest (nthcdr (1- start) form))
665 (orig form)
666 ;; t means we must check for overflow.
667 (overflow (memq fun '(+ *))))
668 (while (cdr (setq rest (cdr rest)))
669 (if (integerp (car rest))
670 (let (constants)
671 (setq form (copy-sequence form)
672 rest (nthcdr (1- start) form))
673 (while (setq rest (cdr rest))
674 (cond ((integerp (car rest))
675 (setq constants (cons (car rest) constants))
676 (setcar rest nil))))
677 ;; If necessary, check now for overflow
678 ;; that might be caused by reordering.
679 (if (and overflow
680 ;; We have overflow if the result of doing the arithmetic
681 ;; on floats is not even close to the result
682 ;; of doing it on integers.
683 (not (byte-optimize-approx-equal
684 (apply fun (mapcar 'float constants))
685 (float (apply fun constants)))))
686 (setq form orig)
687 (setq form (nconc (delq nil form)
688 (list (apply fun (nreverse constants)))))))))
689 form))
691 (defun byte-optimize-plus (form)
692 (setq form (byte-optimize-delay-constants-math form 1 '+))
693 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
694 ;;(setq form (byte-optimize-associative-two-args-math form))
695 (cond ((null (cdr form))
696 (condition-case ()
697 (eval form)
698 (error form)))
699 ;;; It is not safe to delete the function entirely
700 ;;; (actually, it would be safe if we know the sole arg
701 ;;; is not a marker).
702 ;; ((null (cdr (cdr form))) (nth 1 form))
703 ((null (cddr form))
704 (if (numberp (nth 1 form))
705 (nth 1 form)
706 form))
707 ((and (null (nthcdr 3 form))
708 (or (memq (nth 1 form) '(1 -1))
709 (memq (nth 2 form) '(1 -1))))
710 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
711 (let ((integer
712 (if (memq (nth 1 form) '(1 -1))
713 (nth 1 form)
714 (nth 2 form)))
715 (other
716 (if (memq (nth 1 form) '(1 -1))
717 (nth 2 form)
718 (nth 1 form))))
719 (list (if (eq integer 1) '1+ '1-)
720 other)))
721 (t form)))
723 (defun byte-optimize-minus (form)
724 ;; Put constants at the end, except the last constant.
725 (setq form (byte-optimize-delay-constants-math form 2 '+))
726 ;; Now only first and last element can be a number.
727 (let ((last (car (reverse (nthcdr 3 form)))))
728 (cond ((eq 0 last)
729 ;; (- x y ... 0) --> (- x y ...)
730 (setq form (copy-sequence form))
731 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
732 ((equal (nthcdr 2 form) '(1))
733 (setq form (list '1- (nth 1 form))))
734 ((equal (nthcdr 2 form) '(-1))
735 (setq form (list '1+ (nth 1 form))))
736 ;; If form is (- CONST foo... CONST), merge first and last.
737 ((and (numberp (nth 1 form))
738 (numberp last))
739 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
740 (delq last (copy-sequence (nthcdr 3 form))))))))
741 ;;; It is not safe to delete the function entirely
742 ;;; (actually, it would be safe if we know the sole arg
743 ;;; is not a marker).
744 ;;; (if (eq (nth 2 form) 0)
745 ;;; (nth 1 form) ; (- x 0) --> x
746 (byte-optimize-predicate
747 (if (and (null (cdr (cdr (cdr form))))
748 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
749 (cons (car form) (cdr (cdr form)))
750 form))
751 ;;; )
754 (defun byte-optimize-multiply (form)
755 (setq form (byte-optimize-delay-constants-math form 1 '*))
756 ;; If there is a constant in FORM, it is now the last element.
757 (cond ((null (cdr form)) 1)
758 ;;; It is not safe to delete the function entirely
759 ;;; (actually, it would be safe if we know the sole arg
760 ;;; is not a marker or if it appears in other arithmetic).
761 ;;; ((null (cdr (cdr form))) (nth 1 form))
762 ((let ((last (car (reverse form))))
763 (cond ((eq 0 last) (cons 'progn (cdr form)))
764 ((eq 1 last) (delq 1 (copy-sequence form)))
765 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
766 ((and (eq 2 last)
767 (memq t (mapcar 'symbolp (cdr form))))
768 (prog1 (setq form (delq 2 (copy-sequence form)))
769 (while (not (symbolp (car (setq form (cdr form))))))
770 (setcar form (list '+ (car form) (car form)))))
771 (form))))))
773 (defsubst byte-compile-butlast (form)
774 (nreverse (cdr (reverse form))))
776 (defun byte-optimize-divide (form)
777 (setq form (byte-optimize-delay-constants-math form 2 '*))
778 (let ((last (car (reverse (cdr (cdr form))))))
779 (if (numberp last)
780 (cond ((= (length form) 3)
781 (if (and (numberp (nth 1 form))
782 (not (zerop last))
783 (condition-case nil
784 (/ (nth 1 form) last)
785 (error nil)))
786 (setq form (list 'progn (/ (nth 1 form) last)))))
787 ((= last 1)
788 (setq form (byte-compile-butlast form)))
789 ((numberp (nth 1 form))
790 (setq form (cons (car form)
791 (cons (/ (nth 1 form) last)
792 (byte-compile-butlast (cdr (cdr form)))))
793 last nil))))
794 (cond
795 ;;; ((null (cdr (cdr form)))
796 ;;; (nth 1 form))
797 ((eq (nth 1 form) 0)
798 (append '(progn) (cdr (cdr form)) '(0)))
799 ((eq last -1)
800 (list '- (if (nthcdr 3 form)
801 (byte-compile-butlast form)
802 (nth 1 form))))
803 (form))))
805 (defun byte-optimize-logmumble (form)
806 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
807 (byte-optimize-predicate
808 (cond ((memq 0 form)
809 (setq form (if (eq (car form) 'logand)
810 (cons 'progn (cdr form))
811 (delq 0 (copy-sequence form)))))
812 ((and (eq (car-safe form) 'logior)
813 (memq -1 form))
814 (cons 'progn (cdr form)))
815 (form))))
818 (defun byte-optimize-binary-predicate (form)
819 (if (byte-compile-constp (nth 1 form))
820 (if (byte-compile-constp (nth 2 form))
821 (condition-case ()
822 (list 'quote (eval form))
823 (error form))
824 ;; This can enable some lapcode optimizations.
825 (list (car form) (nth 2 form) (nth 1 form)))
826 form))
828 (defun byte-optimize-predicate (form)
829 (let ((ok t)
830 (rest (cdr form)))
831 (while (and rest ok)
832 (setq ok (byte-compile-constp (car rest))
833 rest (cdr rest)))
834 (if ok
835 (condition-case ()
836 (list 'quote (eval form))
837 (error form))
838 form)))
840 (defun byte-optimize-identity (form)
841 (if (and (cdr form) (null (cdr (cdr form))))
842 (nth 1 form)
843 (byte-compile-warn "identity called with %d arg%s, but requires 1"
844 (length (cdr form))
845 (if (= 1 (length (cdr form))) "" "s"))
846 form))
848 (put 'identity 'byte-optimizer 'byte-optimize-identity)
850 (put '+ 'byte-optimizer 'byte-optimize-plus)
851 (put '* 'byte-optimizer 'byte-optimize-multiply)
852 (put '- 'byte-optimizer 'byte-optimize-minus)
853 (put '/ 'byte-optimizer 'byte-optimize-divide)
854 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
855 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
857 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
858 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
859 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
860 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
861 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
862 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
864 (put '< 'byte-optimizer 'byte-optimize-predicate)
865 (put '> 'byte-optimizer 'byte-optimize-predicate)
866 (put '<= 'byte-optimizer 'byte-optimize-predicate)
867 (put '>= 'byte-optimizer 'byte-optimize-predicate)
868 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
869 (put '1- 'byte-optimizer 'byte-optimize-predicate)
870 (put 'not 'byte-optimizer 'byte-optimize-predicate)
871 (put 'null 'byte-optimizer 'byte-optimize-predicate)
872 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
873 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
874 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
875 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
876 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
877 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
878 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
880 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
881 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
882 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
883 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
885 (put 'car 'byte-optimizer 'byte-optimize-predicate)
886 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
887 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
888 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
891 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
892 ;; take care of this? - Jamie
893 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
894 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
895 (put 'quote 'byte-optimizer 'byte-optimize-quote)
896 (defun byte-optimize-quote (form)
897 (if (or (consp (nth 1 form))
898 (and (symbolp (nth 1 form))
899 (not (memq (nth 1 form) '(nil t)))))
900 form
901 (nth 1 form)))
903 (defun byte-optimize-zerop (form)
904 (cond ((numberp (nth 1 form))
905 (eval form))
906 (byte-compile-delete-errors
907 (list '= (nth 1 form) 0))
908 (form)))
910 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
912 (defun byte-optimize-and (form)
913 ;; Simplify if less than 2 args.
914 ;; if there is a literal nil in the args to `and', throw it and following
915 ;; forms away, and surround the `and' with (progn ... nil).
916 (cond ((null (cdr form)))
917 ((memq nil form)
918 (list 'progn
919 (byte-optimize-and
920 (prog1 (setq form (copy-sequence form))
921 (while (nth 1 form)
922 (setq form (cdr form)))
923 (setcdr form nil)))
924 nil))
925 ((null (cdr (cdr form)))
926 (nth 1 form))
927 ((byte-optimize-predicate form))))
929 (defun byte-optimize-or (form)
930 ;; Throw away nil's, and simplify if less than 2 args.
931 ;; If there is a literal non-nil constant in the args to `or', throw away all
932 ;; following forms.
933 (if (memq nil form)
934 (setq form (delq nil (copy-sequence form))))
935 (let ((rest form))
936 (while (cdr (setq rest (cdr rest)))
937 (if (byte-compile-trueconstp (car rest))
938 (setq form (copy-sequence form)
939 rest (setcdr (memq (car rest) form) nil))))
940 (if (cdr (cdr form))
941 (byte-optimize-predicate form)
942 (nth 1 form))))
944 (defun byte-optimize-cond (form)
945 ;; if any clauses have a literal nil as their test, throw them away.
946 ;; if any clause has a literal non-nil constant as its test, throw
947 ;; away all following clauses.
948 (let (rest)
949 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
950 (while (setq rest (assq nil (cdr form)))
951 (setq form (delq rest (copy-sequence form))))
952 (if (memq nil (cdr form))
953 (setq form (delq nil (copy-sequence form))))
954 (setq rest form)
955 (while (setq rest (cdr rest))
956 (cond ((byte-compile-trueconstp (car-safe (car rest)))
957 (cond ((eq rest (cdr form))
958 (setq form
959 (if (cdr (car rest))
960 (if (cdr (cdr (car rest)))
961 (cons 'progn (cdr (car rest)))
962 (nth 1 (car rest)))
963 (car (car rest)))))
964 ((cdr rest)
965 (setq form (copy-sequence form))
966 (setcdr (memq (car rest) form) nil)))
967 (setq rest nil)))))
969 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
970 (if (eq 'cond (car-safe form))
971 (let ((clauses (cdr form)))
972 (if (and (consp (car clauses))
973 (null (cdr (car clauses))))
974 (list 'or (car (car clauses))
975 (byte-optimize-cond
976 (cons (car form) (cdr (cdr form)))))
977 form))
978 form))
980 (defun byte-optimize-if (form)
981 ;; (if <true-constant> <then> <else...>) ==> <then>
982 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
983 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
984 ;; (if <test> <then> nil) ==> (if <test> <then>)
985 (let ((clause (nth 1 form)))
986 (cond ((byte-compile-trueconstp clause)
987 (nth 2 form))
988 ((null clause)
989 (if (nthcdr 4 form)
990 (cons 'progn (nthcdr 3 form))
991 (nth 3 form)))
992 ((nth 2 form)
993 (if (equal '(nil) (nthcdr 3 form))
994 (list 'if clause (nth 2 form))
995 form))
996 ((or (nth 3 form) (nthcdr 4 form))
997 (list 'if
998 ;; Don't make a double negative;
999 ;; instead, take away the one that is there.
1000 (if (and (consp clause) (memq (car clause) '(not null))
1001 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1002 (nth 1 clause)
1003 (list 'not clause))
1004 (if (nthcdr 4 form)
1005 (cons 'progn (nthcdr 3 form))
1006 (nth 3 form))))
1008 (list 'progn clause nil)))))
1010 (defun byte-optimize-while (form)
1011 (if (nth 1 form)
1012 form))
1014 (put 'and 'byte-optimizer 'byte-optimize-and)
1015 (put 'or 'byte-optimizer 'byte-optimize-or)
1016 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1017 (put 'if 'byte-optimizer 'byte-optimize-if)
1018 (put 'while 'byte-optimizer 'byte-optimize-while)
1020 ;; byte-compile-negation-optimizer lives in bytecomp.el
1021 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1022 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1023 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1026 (defun byte-optimize-funcall (form)
1027 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1028 ;; (funcall 'foo ...) ==> (foo ...)
1029 (let ((fn (nth 1 form)))
1030 (if (memq (car-safe fn) '(quote function))
1031 (cons (nth 1 fn) (cdr (cdr form)))
1032 form)))
1034 (defun byte-optimize-apply (form)
1035 ;; If the last arg is a literal constant, turn this into a funcall.
1036 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1037 (let ((fn (nth 1 form))
1038 (last (nth (1- (length form)) form))) ; I think this really is fastest
1039 (or (if (or (null last)
1040 (eq (car-safe last) 'quote))
1041 (if (listp (nth 1 last))
1042 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1043 (nconc (list 'funcall fn) butlast
1044 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1045 (byte-compile-warn
1046 "last arg to apply can't be a literal atom: %s"
1047 (prin1-to-string last))
1048 nil))
1049 form)))
1051 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1052 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1055 (put 'let 'byte-optimizer 'byte-optimize-letX)
1056 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1057 (defun byte-optimize-letX (form)
1058 (cond ((null (nth 1 form))
1059 ;; No bindings
1060 (cons 'progn (cdr (cdr form))))
1061 ((or (nth 2 form) (nthcdr 3 form))
1062 form)
1063 ;; The body is nil
1064 ((eq (car form) 'let)
1065 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1066 '(nil)))
1068 (let ((binds (reverse (nth 1 form))))
1069 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1072 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1073 (defun byte-optimize-nth (form)
1074 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1075 (list 'car (if (zerop (nth 1 form))
1076 (nth 2 form)
1077 (list 'cdr (nth 2 form))))
1078 (byte-optimize-predicate form)))
1080 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1081 (defun byte-optimize-nthcdr (form)
1082 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1083 (byte-optimize-predicate form)
1084 (let ((count (nth 1 form)))
1085 (setq form (nth 2 form))
1086 (while (>= (setq count (1- count)) 0)
1087 (setq form (list 'cdr form)))
1088 form)))
1090 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1091 (defun byte-optimize-concat (form)
1092 (let ((args (cdr form))
1093 (constant t))
1094 (while (and args constant)
1095 (or (byte-compile-constp (car args))
1096 (setq constant nil))
1097 (setq args (cdr args)))
1098 (if constant
1099 (eval form)
1100 form)))
1102 ;;; enumerating those functions which need not be called if the returned
1103 ;;; value is not used. That is, something like
1104 ;;; (progn (list (something-with-side-effects) (yow))
1105 ;;; (foo))
1106 ;;; may safely be turned into
1107 ;;; (progn (progn (something-with-side-effects) (yow))
1108 ;;; (foo))
1109 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1111 ;;; I wonder if I missed any :-\)
1112 (let ((side-effect-free-fns
1113 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1114 assoc assq
1115 boundp buffer-file-name buffer-local-variables buffer-modified-p
1116 buffer-substring
1117 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
1118 copy-marker cos count-lines
1119 default-boundp default-value documentation downcase
1120 elt exp expt fboundp featurep
1121 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1122 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1123 float floor format
1124 get get-buffer get-buffer-window getenv get-file-buffer
1125 int-to-string
1126 length log log10 logand logb logior lognot logxor lsh
1127 marker-buffer max member memq min mod
1128 next-window nth nthcdr number-to-string
1129 parse-colon-path previous-window
1130 radians-to-degrees rassq regexp-quote reverse round
1131 sin sqrt string< string= string-equal string-lessp string-to-char
1132 string-to-int string-to-number substring symbol-plist
1133 tan upcase user-variable-p vconcat
1134 window-buffer window-dedicated-p window-edges window-height
1135 window-hscroll window-minibuffer-p window-width
1136 zerop))
1137 (side-effect-and-error-free-fns
1138 '(arrayp atom
1139 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1140 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1141 current-buffer
1142 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1143 get-largest-window get-lru-window
1144 identity ignore integerp integer-or-marker-p interactive-p
1145 invocation-directory invocation-name
1146 keymapp list listp
1147 make-marker mark mark-marker markerp memory-limit minibuffer-window
1148 mouse-movement-p
1149 natnump nlistp not null number-or-marker-p numberp
1150 one-window-p overlayp
1151 point point-marker point-min point-max processp
1152 selected-window sequencep stringp subrp symbolp syntax-table-p
1153 user-full-name user-login-name user-original-login-name
1154 user-real-login-name user-real-uid user-uid
1155 vector vectorp
1156 window-configuration-p window-live-p windowp)))
1157 (while side-effect-free-fns
1158 (put (car side-effect-free-fns) 'side-effect-free t)
1159 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1160 (while side-effect-and-error-free-fns
1161 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1162 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1163 nil)
1166 (defun byte-compile-splice-in-already-compiled-code (form)
1167 ;; form is (byte-code "..." [...] n)
1168 (if (not (memq byte-optimize '(t lap)))
1169 (byte-compile-normal-call form)
1170 (byte-inline-lapcode
1171 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1172 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1173 byte-compile-maxdepth))
1174 (setq byte-compile-depth (1+ byte-compile-depth))))
1176 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1179 (defconst byte-constref-ops
1180 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1182 ;;; This function extracts the bitfields from variable-length opcodes.
1183 ;;; Originally defined in disass.el (which no longer uses it.)
1185 (defun disassemble-offset ()
1186 "Don't call this!"
1187 ;; fetch and return the offset for the current opcode.
1188 ;; return NIL if this opcode has no offset
1189 ;; OP, PTR and BYTES are used and set dynamically
1190 (defvar op)
1191 (defvar ptr)
1192 (defvar bytes)
1193 (cond ((< op byte-nth)
1194 (let ((tem (logand op 7)))
1195 (setq op (logand op 248))
1196 (cond ((eq tem 6)
1197 (setq ptr (1+ ptr)) ;offset in next byte
1198 (aref bytes ptr))
1199 ((eq tem 7)
1200 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1201 (+ (aref bytes ptr)
1202 (progn (setq ptr (1+ ptr))
1203 (lsh (aref bytes ptr) 8))))
1204 (t tem)))) ;offset was in opcode
1205 ((>= op byte-constant)
1206 (prog1 (- op byte-constant) ;offset in opcode
1207 (setq op byte-constant)))
1208 ((and (>= op byte-constant2)
1209 (<= op byte-goto-if-not-nil-else-pop))
1210 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1211 (+ (aref bytes ptr)
1212 (progn (setq ptr (1+ ptr))
1213 (lsh (aref bytes ptr) 8))))
1214 ((and (>= op byte-listN)
1215 (<= op byte-insertN))
1216 (setq ptr (1+ ptr)) ;offset in next byte
1217 (aref bytes ptr))))
1220 ;;; This de-compiler is used for inline expansion of compiled functions,
1221 ;;; and by the disassembler.
1223 ;;; This list contains numbers, which are pc values,
1224 ;;; before each instruction.
1225 (defun byte-decompile-bytecode (bytes constvec)
1226 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1227 (let ((byte-compile-constants nil)
1228 (byte-compile-variables nil)
1229 (byte-compile-tag-number 0))
1230 (byte-decompile-bytecode-1 bytes constvec)))
1232 ;; As byte-decompile-bytecode, but updates
1233 ;; byte-compile-{constants, variables, tag-number}.
1234 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1235 ;; with `goto's destined for the end of the code.
1236 ;; That is for use by the compiler.
1237 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1238 ;; In that case, we put a pc value into the list
1239 ;; before each insn (or its label).
1240 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1241 (let ((length (length bytes))
1242 (ptr 0) optr tag tags op offset
1243 lap tmp
1244 endtag
1245 (retcount 0))
1246 (while (not (= ptr length))
1247 (or make-spliceable
1248 (setq lap (cons ptr lap)))
1249 (setq op (aref bytes ptr)
1250 optr ptr
1251 offset (disassemble-offset)) ; this does dynamic-scope magic
1252 (setq op (aref byte-code-vector op))
1253 (cond ((memq op byte-goto-ops)
1254 ;; it's a pc
1255 (setq offset
1256 (cdr (or (assq offset tags)
1257 (car (setq tags
1258 (cons (cons offset
1259 (byte-compile-make-tag))
1260 tags)))))))
1261 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1262 ((memq op byte-constref-ops)))
1263 (setq tmp (if (>= offset (length constvec))
1264 (list 'out-of-range offset)
1265 (aref constvec offset))
1266 offset (if (eq op 'byte-constant)
1267 (byte-compile-get-constant tmp)
1268 (or (assq tmp byte-compile-variables)
1269 (car (setq byte-compile-variables
1270 (cons (list tmp)
1271 byte-compile-variables)))))))
1272 ((and make-spliceable
1273 (eq op 'byte-return))
1274 (if (= ptr (1- length))
1275 (setq op nil)
1276 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1277 op 'byte-goto))))
1278 ;; lap = ( [ (pc . (op . arg)) ]* )
1279 (setq lap (cons (cons optr (cons op (or offset 0)))
1280 lap))
1281 (setq ptr (1+ ptr)))
1282 ;; take off the dummy nil op that we replaced a trailing "return" with.
1283 (let ((rest lap))
1284 (while rest
1285 (cond ((numberp (car rest)))
1286 ((setq tmp (assq (car (car rest)) tags))
1287 ;; this addr is jumped to
1288 (setcdr rest (cons (cons nil (cdr tmp))
1289 (cdr rest)))
1290 (setq tags (delq tmp tags))
1291 (setq rest (cdr rest))))
1292 (setq rest (cdr rest))))
1293 (if tags (error "optimizer error: missed tags %s" tags))
1294 (if (null (car (cdr (car lap))))
1295 (setq lap (cdr lap)))
1296 (if endtag
1297 (setq lap (cons (cons nil endtag) lap)))
1298 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1299 (mapcar (function (lambda (elt)
1300 (if (numberp elt)
1302 (cdr elt))))
1303 (nreverse lap))))
1306 ;;; peephole optimizer
1308 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1310 (defconst byte-conditional-ops
1311 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1312 byte-goto-if-not-nil-else-pop))
1314 (defconst byte-after-unbind-ops
1315 '(byte-constant byte-dup
1316 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1317 byte-eq byte-not
1318 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1319 byte-interactive-p)
1320 ;; How about other side-effect-free-ops? Is it safe to move an
1321 ;; error invocation (such as from nth) out of an unwind-protect?
1322 ;; No, it is not, because the unwind-protect forms can alter
1323 ;; the inside of the object to which nth would apply.
1324 ;; For the same reason, byte-equal was deleted from this list.
1325 "Byte-codes that can be moved past an unbind.")
1327 (defconst byte-compile-side-effect-and-error-free-ops
1328 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1329 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1330 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1331 byte-point-min byte-following-char byte-preceding-char
1332 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1333 byte-current-buffer byte-interactive-p))
1335 (defconst byte-compile-side-effect-free-ops
1336 (nconc
1337 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1338 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1339 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1340 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1341 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1342 byte-member byte-assq byte-quo byte-rem)
1343 byte-compile-side-effect-and-error-free-ops))
1345 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1346 ;;; Consider the code
1348 ;;; (defun foo (flag)
1349 ;;; (let ((old-pop-ups pop-up-windows)
1350 ;;; (pop-up-windows flag))
1351 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1352 ;;; (setq old-pop-ups pop-up-windows)
1353 ;;; ...))))
1355 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1356 ;;; something else. But if we optimize
1358 ;;; varref flag
1359 ;;; varbind pop-up-windows
1360 ;;; varref pop-up-windows
1361 ;;; not
1362 ;;; to
1363 ;;; varref flag
1364 ;;; dup
1365 ;;; varbind pop-up-windows
1366 ;;; not
1368 ;;; we break the program, because it will appear that pop-up-windows and
1369 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1370 ;;; the BOOL variables are, and not perform this optimization on them.
1372 (defconst byte-boolean-vars
1373 '(abbrev-all-caps abbrevs-changed byte-debug-flag byte-metering-on
1374 cannot-suspend check-markers-debug-flag completion-auto-help
1375 completion-ignore-case cursor-in-echo-area debug-on-next-call
1376 debug-on-quit delete-exited-processes enable-recursive-minibuffers
1377 garbage-collection-messages highlight-nonselected-windows
1378 indent-tabs-mode inherit-process-coding-system inhibit-eol-conversion
1379 inhibit-local-menu-bar-menus insert-default-directory inverse-video
1380 keyword-symbols-constant-flag load-convert-to-unibyte
1381 load-force-doc-strings load-in-progress menu-prompting
1382 minibuffer-allow-text-properties minibuffer-auto-raise
1383 mode-line-inverse-video multiple-frames no-redraw-on-reenter
1384 noninteractive parse-sexp-ignore-comments parse-sexp-lookup-properties
1385 pop-up-frames pop-up-windows print-escape-multibyte
1386 print-escape-newlines
1387 print-escape-nonascii print-quoted scroll-preserve-screen-position
1388 system-uses-terminfo truncate-partial-width-windows
1389 unibyte-display-via-language-environment use-dialog-box
1390 visible-bell vms-stmlf-recfm words-include-escapes)
1391 "DEFVAR_BOOL variables. Giving these any non-nil value sets them to t.
1392 If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1393 may generate incorrect code.")
1395 (defun byte-optimize-lapcode (lap &optional for-effect)
1396 "Simple peephole optimizer. LAP is both modified and returned."
1397 (let (lap0 off0
1398 lap1 off1
1399 lap2 off2
1400 (keep-going 'first-time)
1401 (add-depth 0)
1402 rest tmp tmp2 tmp3
1403 (side-effect-free (if byte-compile-delete-errors
1404 byte-compile-side-effect-free-ops
1405 byte-compile-side-effect-and-error-free-ops)))
1406 (while keep-going
1407 (or (eq keep-going 'first-time)
1408 (byte-compile-log-lap " ---- next pass"))
1409 (setq rest lap
1410 keep-going nil)
1411 (while rest
1412 (setq lap0 (car rest)
1413 lap1 (nth 1 rest)
1414 lap2 (nth 2 rest))
1416 ;; You may notice that sequences like "dup varset discard" are
1417 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1418 ;; You may be tempted to change this; resist that temptation.
1419 (cond ;;
1420 ;; <side-effect-free> pop --> <deleted>
1421 ;; ...including:
1422 ;; const-X pop --> <deleted>
1423 ;; varref-X pop --> <deleted>
1424 ;; dup pop --> <deleted>
1426 ((and (eq 'byte-discard (car lap1))
1427 (memq (car lap0) side-effect-free))
1428 (setq keep-going t)
1429 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1430 (setq rest (cdr rest))
1431 (cond ((= tmp 1)
1432 (byte-compile-log-lap
1433 " %s discard\t-->\t<deleted>" lap0)
1434 (setq lap (delq lap0 (delq lap1 lap))))
1435 ((= tmp 0)
1436 (byte-compile-log-lap
1437 " %s discard\t-->\t<deleted> discard" lap0)
1438 (setq lap (delq lap0 lap)))
1439 ((= tmp -1)
1440 (byte-compile-log-lap
1441 " %s discard\t-->\tdiscard discard" lap0)
1442 (setcar lap0 'byte-discard)
1443 (setcdr lap0 0))
1444 ((error "Optimizer error: too much on the stack"))))
1446 ;; goto*-X X: --> X:
1448 ((and (memq (car lap0) byte-goto-ops)
1449 (eq (cdr lap0) lap1))
1450 (cond ((eq (car lap0) 'byte-goto)
1451 (setq lap (delq lap0 lap))
1452 (setq tmp "<deleted>"))
1453 ((memq (car lap0) byte-goto-always-pop-ops)
1454 (setcar lap0 (setq tmp 'byte-discard))
1455 (setcdr lap0 0))
1456 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1457 (and (memq byte-optimize-log '(t byte))
1458 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1459 (nth 1 lap1) (nth 1 lap1)
1460 tmp (nth 1 lap1)))
1461 (setq keep-going t))
1463 ;; varset-X varref-X --> dup varset-X
1464 ;; varbind-X varref-X --> dup varbind-X
1465 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1466 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1467 ;; The latter two can enable other optimizations.
1469 ((and (eq 'byte-varref (car lap2))
1470 (eq (cdr lap1) (cdr lap2))
1471 (memq (car lap1) '(byte-varset byte-varbind)))
1472 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1473 (not (eq (car lap0) 'byte-constant)))
1475 (setq keep-going t)
1476 (if (memq (car lap0) '(byte-constant byte-dup))
1477 (progn
1478 (setq tmp (if (or (not tmp)
1479 (memq (car (cdr lap0)) '(nil t)))
1480 (cdr lap0)
1481 (byte-compile-get-constant t)))
1482 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1483 lap0 lap1 lap2 lap0 lap1
1484 (cons (car lap0) tmp))
1485 (setcar lap2 (car lap0))
1486 (setcdr lap2 tmp))
1487 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1488 (setcar lap2 (car lap1))
1489 (setcar lap1 'byte-dup)
1490 (setcdr lap1 0)
1491 ;; The stack depth gets locally increased, so we will
1492 ;; increase maxdepth in case depth = maxdepth here.
1493 ;; This can cause the third argument to byte-code to
1494 ;; be larger than necessary.
1495 (setq add-depth 1))))
1497 ;; dup varset-X discard --> varset-X
1498 ;; dup varbind-X discard --> varbind-X
1499 ;; (the varbind variant can emerge from other optimizations)
1501 ((and (eq 'byte-dup (car lap0))
1502 (eq 'byte-discard (car lap2))
1503 (memq (car lap1) '(byte-varset byte-varbind)))
1504 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1505 (setq keep-going t
1506 rest (cdr rest))
1507 (setq lap (delq lap0 (delq lap2 lap))))
1509 ;; not goto-X-if-nil --> goto-X-if-non-nil
1510 ;; not goto-X-if-non-nil --> goto-X-if-nil
1512 ;; it is wrong to do the same thing for the -else-pop variants.
1514 ((and (eq 'byte-not (car lap0))
1515 (or (eq 'byte-goto-if-nil (car lap1))
1516 (eq 'byte-goto-if-not-nil (car lap1))))
1517 (byte-compile-log-lap " not %s\t-->\t%s"
1518 lap1
1519 (cons
1520 (if (eq (car lap1) 'byte-goto-if-nil)
1521 'byte-goto-if-not-nil
1522 'byte-goto-if-nil)
1523 (cdr lap1)))
1524 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1525 'byte-goto-if-not-nil
1526 'byte-goto-if-nil))
1527 (setq lap (delq lap0 lap))
1528 (setq keep-going t))
1530 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1531 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1533 ;; it is wrong to do the same thing for the -else-pop variants.
1535 ((and (or (eq 'byte-goto-if-nil (car lap0))
1536 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1537 (eq 'byte-goto (car lap1)) ; gotoY
1538 (eq (cdr lap0) lap2)) ; TAG X
1539 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1540 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1541 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1542 lap0 lap1 lap2
1543 (cons inverse (cdr lap1)) lap2)
1544 (setq lap (delq lap0 lap))
1545 (setcar lap1 inverse)
1546 (setq keep-going t)))
1548 ;; const goto-if-* --> whatever
1550 ((and (eq 'byte-constant (car lap0))
1551 (memq (car lap1) byte-conditional-ops))
1552 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1553 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1554 (car (cdr lap0))
1555 (not (car (cdr lap0))))
1556 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1557 lap0 lap1)
1558 (setq rest (cdr rest)
1559 lap (delq lap0 (delq lap1 lap))))
1561 (if (memq (car lap1) byte-goto-always-pop-ops)
1562 (progn
1563 (byte-compile-log-lap " %s %s\t-->\t%s"
1564 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1565 (setq lap (delq lap0 lap)))
1566 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1567 (cons 'byte-goto (cdr lap1))))
1568 (setcar lap1 'byte-goto)))
1569 (setq keep-going t))
1571 ;; varref-X varref-X --> varref-X dup
1572 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1573 ;; We don't optimize the const-X variations on this here,
1574 ;; because that would inhibit some goto optimizations; we
1575 ;; optimize the const-X case after all other optimizations.
1577 ((and (eq 'byte-varref (car lap0))
1578 (progn
1579 (setq tmp (cdr rest))
1580 (while (eq (car (car tmp)) 'byte-dup)
1581 (setq tmp (cdr tmp)))
1583 (eq (cdr lap0) (cdr (car tmp)))
1584 (eq 'byte-varref (car (car tmp))))
1585 (if (memq byte-optimize-log '(t byte))
1586 (let ((str ""))
1587 (setq tmp2 (cdr rest))
1588 (while (not (eq tmp tmp2))
1589 (setq tmp2 (cdr tmp2)
1590 str (concat str " dup")))
1591 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1592 lap0 str lap0 lap0 str)))
1593 (setq keep-going t)
1594 (setcar (car tmp) 'byte-dup)
1595 (setcdr (car tmp) 0)
1596 (setq rest tmp))
1598 ;; TAG1: TAG2: --> TAG1: <deleted>
1599 ;; (and other references to TAG2 are replaced with TAG1)
1601 ((and (eq (car lap0) 'TAG)
1602 (eq (car lap1) 'TAG))
1603 (and (memq byte-optimize-log '(t byte))
1604 (byte-compile-log " adjacent tags %d and %d merged"
1605 (nth 1 lap1) (nth 1 lap0)))
1606 (setq tmp3 lap)
1607 (while (setq tmp2 (rassq lap0 tmp3))
1608 (setcdr tmp2 lap1)
1609 (setq tmp3 (cdr (memq tmp2 tmp3))))
1610 (setq lap (delq lap0 lap)
1611 keep-going t))
1613 ;; unused-TAG: --> <deleted>
1615 ((and (eq 'TAG (car lap0))
1616 (not (rassq lap0 lap)))
1617 (and (memq byte-optimize-log '(t byte))
1618 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1619 (setq lap (delq lap0 lap)
1620 keep-going t))
1622 ;; goto ... --> goto <delete until TAG or end>
1623 ;; return ... --> return <delete until TAG or end>
1625 ((and (memq (car lap0) '(byte-goto byte-return))
1626 (not (memq (car lap1) '(TAG nil))))
1627 (setq tmp rest)
1628 (let ((i 0)
1629 (opt-p (memq byte-optimize-log '(t lap)))
1630 str deleted)
1631 (while (and (setq tmp (cdr tmp))
1632 (not (eq 'TAG (car (car tmp)))))
1633 (if opt-p (setq deleted (cons (car tmp) deleted)
1634 str (concat str " %s")
1635 i (1+ i))))
1636 (if opt-p
1637 (let ((tagstr
1638 (if (eq 'TAG (car (car tmp)))
1639 (format "%d:" (car (cdr (car tmp))))
1640 (or (car tmp) ""))))
1641 (if (< i 6)
1642 (apply 'byte-compile-log-lap-1
1643 (concat " %s" str
1644 " %s\t-->\t%s <deleted> %s")
1645 lap0
1646 (nconc (nreverse deleted)
1647 (list tagstr lap0 tagstr)))
1648 (byte-compile-log-lap
1649 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1650 lap0 i (if (= i 1) "" "s")
1651 tagstr lap0 tagstr))))
1652 (rplacd rest tmp))
1653 (setq keep-going t))
1655 ;; <safe-op> unbind --> unbind <safe-op>
1656 ;; (this may enable other optimizations.)
1658 ((and (eq 'byte-unbind (car lap1))
1659 (memq (car lap0) byte-after-unbind-ops))
1660 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1661 (setcar rest lap1)
1662 (setcar (cdr rest) lap0)
1663 (setq keep-going t))
1665 ;; varbind-X unbind-N --> discard unbind-(N-1)
1666 ;; save-excursion unbind-N --> unbind-(N-1)
1667 ;; save-restriction unbind-N --> unbind-(N-1)
1669 ((and (eq 'byte-unbind (car lap1))
1670 (memq (car lap0) '(byte-varbind byte-save-excursion
1671 byte-save-restriction))
1672 (< 0 (cdr lap1)))
1673 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1674 (delq lap1 rest))
1675 (if (eq (car lap0) 'byte-varbind)
1676 (setcar rest (cons 'byte-discard 0))
1677 (setq lap (delq lap0 lap)))
1678 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1679 lap0 (cons (car lap1) (1+ (cdr lap1)))
1680 (if (eq (car lap0) 'byte-varbind)
1681 (car rest)
1682 (car (cdr rest)))
1683 (if (and (/= 0 (cdr lap1))
1684 (eq (car lap0) 'byte-varbind))
1685 (car (cdr rest))
1686 ""))
1687 (setq keep-going t))
1689 ;; goto*-X ... X: goto-Y --> goto*-Y
1690 ;; goto-X ... X: return --> return
1692 ((and (memq (car lap0) byte-goto-ops)
1693 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1694 '(byte-goto byte-return)))
1695 (cond ((and (not (eq tmp lap0))
1696 (or (eq (car lap0) 'byte-goto)
1697 (eq (car tmp) 'byte-goto)))
1698 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1699 (car lap0) tmp tmp)
1700 (if (eq (car tmp) 'byte-return)
1701 (setcar lap0 'byte-return))
1702 (setcdr lap0 (cdr tmp))
1703 (setq keep-going t))))
1705 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1706 ;; goto-*-else-pop X ... X: discard --> whatever
1708 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1709 byte-goto-if-not-nil-else-pop))
1710 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1711 (eval-when-compile
1712 (cons 'byte-discard byte-conditional-ops)))
1713 (not (eq lap0 (car tmp))))
1714 (setq tmp2 (car tmp))
1715 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1716 byte-goto-if-nil)
1717 (byte-goto-if-not-nil-else-pop
1718 byte-goto-if-not-nil))))
1719 (if (memq (car tmp2) tmp3)
1720 (progn (setcar lap0 (car tmp2))
1721 (setcdr lap0 (cdr tmp2))
1722 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1723 (car lap0) tmp2 lap0))
1724 ;; Get rid of the -else-pop's and jump one step further.
1725 (or (eq 'TAG (car (nth 1 tmp)))
1726 (setcdr tmp (cons (byte-compile-make-tag)
1727 (cdr tmp))))
1728 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1729 (car lap0) tmp2 (nth 1 tmp3))
1730 (setcar lap0 (nth 1 tmp3))
1731 (setcdr lap0 (nth 1 tmp)))
1732 (setq keep-going t))
1734 ;; const goto-X ... X: goto-if-* --> whatever
1735 ;; const goto-X ... X: discard --> whatever
1737 ((and (eq (car lap0) 'byte-constant)
1738 (eq (car lap1) 'byte-goto)
1739 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1740 (eval-when-compile
1741 (cons 'byte-discard byte-conditional-ops)))
1742 (not (eq lap1 (car tmp))))
1743 (setq tmp2 (car tmp))
1744 (cond ((memq (car tmp2)
1745 (if (null (car (cdr lap0)))
1746 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1747 '(byte-goto-if-not-nil
1748 byte-goto-if-not-nil-else-pop)))
1749 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1750 lap0 tmp2 lap0 tmp2)
1751 (setcar lap1 (car tmp2))
1752 (setcdr lap1 (cdr tmp2))
1753 ;; Let next step fix the (const,goto-if*) sequence.
1754 (setq rest (cons nil rest)))
1756 ;; Jump one step further
1757 (byte-compile-log-lap
1758 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1759 lap0 tmp2)
1760 (or (eq 'TAG (car (nth 1 tmp)))
1761 (setcdr tmp (cons (byte-compile-make-tag)
1762 (cdr tmp))))
1763 (setcdr lap1 (car (cdr tmp)))
1764 (setq lap (delq lap0 lap))))
1765 (setq keep-going t))
1767 ;; X: varref-Y ... varset-Y goto-X -->
1768 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1769 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1770 ;; (This is so usual for while loops that it is worth handling).
1772 ((and (eq (car lap1) 'byte-varset)
1773 (eq (car lap2) 'byte-goto)
1774 (not (memq (cdr lap2) rest)) ;Backwards jump
1775 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1776 'byte-varref)
1777 (eq (cdr (car tmp)) (cdr lap1))
1778 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1779 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1780 (let ((newtag (byte-compile-make-tag)))
1781 (byte-compile-log-lap
1782 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1783 (nth 1 (cdr lap2)) (car tmp)
1784 lap1 lap2
1785 (nth 1 (cdr lap2)) (car tmp)
1786 (nth 1 newtag) 'byte-dup lap1
1787 (cons 'byte-goto newtag)
1789 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1790 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1791 (setq add-depth 1)
1792 (setq keep-going t))
1794 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1795 ;; (This can pull the loop test to the end of the loop)
1797 ((and (eq (car lap0) 'byte-goto)
1798 (eq (car lap1) 'TAG)
1799 (eq lap1
1800 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1801 (memq (car (car tmp))
1802 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1803 byte-goto-if-nil-else-pop)))
1804 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1805 ;; lap0 lap1 (cdr lap0) (car tmp))
1806 (let ((newtag (byte-compile-make-tag)))
1807 (byte-compile-log-lap
1808 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1809 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1810 (cons (cdr (assq (car (car tmp))
1811 '((byte-goto-if-nil . byte-goto-if-not-nil)
1812 (byte-goto-if-not-nil . byte-goto-if-nil)
1813 (byte-goto-if-nil-else-pop .
1814 byte-goto-if-not-nil-else-pop)
1815 (byte-goto-if-not-nil-else-pop .
1816 byte-goto-if-nil-else-pop))))
1817 newtag)
1819 (nth 1 newtag)
1821 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1822 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1823 ;; We can handle this case but not the -if-not-nil case,
1824 ;; because we won't know which non-nil constant to push.
1825 (setcdr rest (cons (cons 'byte-constant
1826 (byte-compile-get-constant nil))
1827 (cdr rest))))
1828 (setcar lap0 (nth 1 (memq (car (car tmp))
1829 '(byte-goto-if-nil-else-pop
1830 byte-goto-if-not-nil
1831 byte-goto-if-nil
1832 byte-goto-if-not-nil
1833 byte-goto byte-goto))))
1835 (setq keep-going t))
1837 (setq rest (cdr rest)))
1839 ;; Cleanup stage:
1840 ;; Rebuild byte-compile-constants / byte-compile-variables.
1841 ;; Simple optimizations that would inhibit other optimizations if they
1842 ;; were done in the optimizing loop, and optimizations which there is no
1843 ;; need to do more than once.
1844 (setq byte-compile-constants nil
1845 byte-compile-variables nil)
1846 (setq rest lap)
1847 (while rest
1848 (setq lap0 (car rest)
1849 lap1 (nth 1 rest))
1850 (if (memq (car lap0) byte-constref-ops)
1851 (if (not (eq (car lap0) 'byte-constant))
1852 (or (memq (cdr lap0) byte-compile-variables)
1853 (setq byte-compile-variables (cons (cdr lap0)
1854 byte-compile-variables)))
1855 (or (memq (cdr lap0) byte-compile-constants)
1856 (setq byte-compile-constants (cons (cdr lap0)
1857 byte-compile-constants)))))
1858 (cond (;;
1859 ;; const-C varset-X const-C --> const-C dup varset-X
1860 ;; const-C varbind-X const-C --> const-C dup varbind-X
1862 (and (eq (car lap0) 'byte-constant)
1863 (eq (car (nth 2 rest)) 'byte-constant)
1864 (eq (cdr lap0) (car (nth 2 rest)))
1865 (memq (car lap1) '(byte-varbind byte-varset)))
1866 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1867 lap0 lap1 lap0 lap0 lap1)
1868 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1869 (setcar (cdr rest) (cons 'byte-dup 0))
1870 (setq add-depth 1))
1872 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1873 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1875 ((memq (car lap0) '(byte-constant byte-varref))
1876 (setq tmp rest
1877 tmp2 nil)
1878 (while (progn
1879 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1880 (and (eq (cdr lap0) (cdr (car tmp)))
1881 (eq (car lap0) (car (car tmp)))))
1882 (setcar tmp (cons 'byte-dup 0))
1883 (setq tmp2 t))
1884 (if tmp2
1885 (byte-compile-log-lap
1886 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1888 ;; unbind-N unbind-M --> unbind-(N+M)
1890 ((and (eq 'byte-unbind (car lap0))
1891 (eq 'byte-unbind (car lap1)))
1892 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1893 (cons 'byte-unbind
1894 (+ (cdr lap0) (cdr lap1))))
1895 (setq keep-going t)
1896 (setq lap (delq lap0 lap))
1897 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1899 (setq rest (cdr rest)))
1900 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1901 lap)
1903 (provide 'byte-opt)
1906 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1907 ;; itself, compile some of its most used recursive functions (at load time).
1909 (eval-when-compile
1910 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1911 (assq 'byte-code (symbol-function 'byte-optimize-form))
1912 (let ((byte-optimize nil)
1913 (byte-compile-warnings nil))
1914 (mapcar '(lambda (x)
1915 (or noninteractive (message "compiling %s..." x))
1916 (byte-compile x)
1917 (or noninteractive (message "compiling %s...done" x)))
1918 '(byte-optimize-form
1919 byte-optimize-body
1920 byte-optimize-predicate
1921 byte-optimize-binary-predicate
1922 ;; Inserted some more than necessary, to speed it up.
1923 byte-optimize-form-code-walker
1924 byte-optimize-lapcode))))
1925 nil)
1927 ;;; byte-opt.el ends here