*** empty log message ***
[emacs.git] / gc / mark.c
blob33f4ff8843f10916af65d40d8fe18c469455cdd8
2 /*
3 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
4 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
5 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
19 # include <stdio.h>
20 # include "private/gc_pmark.h"
22 /* We put this here to minimize the risk of inlining. */
23 /*VARARGS*/
24 #ifdef __WATCOMC__
25 void GC_noop(void *p, ...) {}
26 #else
27 void GC_noop() {}
28 #endif
30 /* Single argument version, robust against whole program analysis. */
31 void GC_noop1(x)
32 word x;
34 static VOLATILE word sink;
36 sink = x;
39 /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
41 word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
43 /* Initialize GC_obj_kinds properly and standard free lists properly. */
44 /* This must be done statically since they may be accessed before */
45 /* GC_init is called. */
46 /* It's done here, since we need to deal with mark descriptors. */
47 struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
48 /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
49 0 | GC_DS_LENGTH, FALSE, FALSE },
50 /* NORMAL */ { &GC_objfreelist[0], 0,
51 0 | GC_DS_LENGTH, /* Adjusted in GC_init_inner for EXTRA_BYTES */
52 TRUE /* add length to descr */, TRUE },
53 /* UNCOLLECTABLE */
54 { &GC_uobjfreelist[0], 0,
55 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
56 # ifdef ATOMIC_UNCOLLECTABLE
57 /* AUNCOLLECTABLE */
58 { &GC_auobjfreelist[0], 0,
59 0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
60 # endif
61 # ifdef STUBBORN_ALLOC
62 /*STUBBORN*/ { &GC_sobjfreelist[0], 0,
63 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
64 # endif
67 # ifdef ATOMIC_UNCOLLECTABLE
68 # ifdef STUBBORN_ALLOC
69 int GC_n_kinds = 5;
70 # else
71 int GC_n_kinds = 4;
72 # endif
73 # else
74 # ifdef STUBBORN_ALLOC
75 int GC_n_kinds = 4;
76 # else
77 int GC_n_kinds = 3;
78 # endif
79 # endif
82 # ifndef INITIAL_MARK_STACK_SIZE
83 # define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
84 /* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
85 /* multiple of HBLKSIZE. */
86 /* The incremental collector actually likes a larger */
87 /* size, since it want to push all marked dirty objs */
88 /* before marking anything new. Currently we let it */
89 /* grow dynamically. */
90 # endif
93 * Limits of stack for GC_mark routine.
94 * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
95 * need to be marked from.
98 word GC_n_rescuing_pages; /* Number of dirty pages we marked from */
99 /* excludes ptrfree pages, etc. */
101 mse * GC_mark_stack;
103 mse * GC_mark_stack_limit;
105 word GC_mark_stack_size = 0;
107 #ifdef PARALLEL_MARK
108 mse * VOLATILE GC_mark_stack_top;
109 #else
110 mse * GC_mark_stack_top;
111 #endif
113 static struct hblk * scan_ptr;
115 mark_state_t GC_mark_state = MS_NONE;
117 GC_bool GC_mark_stack_too_small = FALSE;
119 GC_bool GC_objects_are_marked = FALSE; /* Are there collectable marked */
120 /* objects in the heap? */
122 /* Is a collection in progress? Note that this can return true in the */
123 /* nonincremental case, if a collection has been abandoned and the */
124 /* mark state is now MS_INVALID. */
125 GC_bool GC_collection_in_progress()
127 return(GC_mark_state != MS_NONE);
130 /* clear all mark bits in the header */
131 void GC_clear_hdr_marks(hhdr)
132 register hdr * hhdr;
134 # ifdef USE_MARK_BYTES
135 BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
136 # else
137 BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
138 # endif
141 /* Set all mark bits in the header. Used for uncollectable blocks. */
142 void GC_set_hdr_marks(hhdr)
143 register hdr * hhdr;
145 register int i;
147 for (i = 0; i < MARK_BITS_SZ; ++i) {
148 # ifdef USE_MARK_BYTES
149 hhdr -> hb_marks[i] = 1;
150 # else
151 hhdr -> hb_marks[i] = ONES;
152 # endif
157 * Clear all mark bits associated with block h.
159 /*ARGSUSED*/
160 # if defined(__STDC__) || defined(__cplusplus)
161 static void clear_marks_for_block(struct hblk *h, word dummy)
162 # else
163 static void clear_marks_for_block(h, dummy)
164 struct hblk *h;
165 word dummy;
166 # endif
168 register hdr * hhdr = HDR(h);
170 if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
171 /* Mark bit for these is cleared only once the object is */
172 /* explicitly deallocated. This either frees the block, or */
173 /* the bit is cleared once the object is on the free list. */
174 GC_clear_hdr_marks(hhdr);
177 /* Slow but general routines for setting/clearing/asking about mark bits */
178 void GC_set_mark_bit(p)
179 ptr_t p;
181 register struct hblk *h = HBLKPTR(p);
182 register hdr * hhdr = HDR(h);
183 register int word_no = (word *)p - (word *)h;
185 set_mark_bit_from_hdr(hhdr, word_no);
188 void GC_clear_mark_bit(p)
189 ptr_t p;
191 register struct hblk *h = HBLKPTR(p);
192 register hdr * hhdr = HDR(h);
193 register int word_no = (word *)p - (word *)h;
195 clear_mark_bit_from_hdr(hhdr, word_no);
198 GC_bool GC_is_marked(p)
199 ptr_t p;
201 register struct hblk *h = HBLKPTR(p);
202 register hdr * hhdr = HDR(h);
203 register int word_no = (word *)p - (word *)h;
205 return(mark_bit_from_hdr(hhdr, word_no));
210 * Clear mark bits in all allocated heap blocks. This invalidates
211 * the marker invariant, and sets GC_mark_state to reflect this.
212 * (This implicitly starts marking to reestablish the invariant.)
214 void GC_clear_marks()
216 GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
217 GC_objects_are_marked = FALSE;
218 GC_mark_state = MS_INVALID;
219 scan_ptr = 0;
220 # ifdef GATHERSTATS
221 /* Counters reflect currently marked objects: reset here */
222 GC_composite_in_use = 0;
223 GC_atomic_in_use = 0;
224 # endif
228 /* Initiate a garbage collection. Initiates a full collection if the */
229 /* mark state is invalid. */
230 /*ARGSUSED*/
231 void GC_initiate_gc()
233 if (GC_dirty_maintained) GC_read_dirty();
234 # ifdef STUBBORN_ALLOC
235 GC_read_changed();
236 # endif
237 # ifdef CHECKSUMS
239 extern void GC_check_dirty();
241 if (GC_dirty_maintained) GC_check_dirty();
243 # endif
244 GC_n_rescuing_pages = 0;
245 if (GC_mark_state == MS_NONE) {
246 GC_mark_state = MS_PUSH_RESCUERS;
247 } else if (GC_mark_state != MS_INVALID) {
248 ABORT("unexpected state");
249 } /* else this is really a full collection, and mark */
250 /* bits are invalid. */
251 scan_ptr = 0;
255 static void alloc_mark_stack();
257 /* Perform a small amount of marking. */
258 /* We try to touch roughly a page of memory. */
259 /* Return TRUE if we just finished a mark phase. */
260 /* Cold_gc_frame is an address inside a GC frame that */
261 /* remains valid until all marking is complete. */
262 /* A zero value indicates that it's OK to miss some */
263 /* register values. */
264 GC_bool GC_mark_some(cold_gc_frame)
265 ptr_t cold_gc_frame;
267 #if defined(MSWIN32) && !defined(__GNUC__)
268 /* Windows 98 appears to asynchronously create and remove writable */
269 /* memory mappings, for reasons we haven't yet understood. Since */
270 /* we look for writable regions to determine the root set, we may */
271 /* try to mark from an address range that disappeared since we */
272 /* started the collection. Thus we have to recover from faults here. */
273 /* This code does not appear to be necessary for Windows 95/NT/2000. */
274 /* Note that this code should never generate an incremental GC write */
275 /* fault. */
276 __try {
277 #endif /* defined(MSWIN32) && !defined(__GNUC__) */
278 switch(GC_mark_state) {
279 case MS_NONE:
280 return(FALSE);
282 case MS_PUSH_RESCUERS:
283 if (GC_mark_stack_top
284 >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
285 /* Go ahead and mark, even though that might cause us to */
286 /* see more marked dirty objects later on. Avoid this */
287 /* in the future. */
288 GC_mark_stack_too_small = TRUE;
289 MARK_FROM_MARK_STACK();
290 return(FALSE);
291 } else {
292 scan_ptr = GC_push_next_marked_dirty(scan_ptr);
293 if (scan_ptr == 0) {
294 # ifdef CONDPRINT
295 if (GC_print_stats) {
296 GC_printf1("Marked from %lu dirty pages\n",
297 (unsigned long)GC_n_rescuing_pages);
299 # endif
300 GC_push_roots(FALSE, cold_gc_frame);
301 GC_objects_are_marked = TRUE;
302 if (GC_mark_state != MS_INVALID) {
303 GC_mark_state = MS_ROOTS_PUSHED;
307 return(FALSE);
309 case MS_PUSH_UNCOLLECTABLE:
310 if (GC_mark_stack_top
311 >= GC_mark_stack + GC_mark_stack_size/4) {
312 # ifdef PARALLEL_MARK
313 /* Avoid this, since we don't parallelize the marker */
314 /* here. */
315 if (GC_parallel) GC_mark_stack_too_small = TRUE;
316 # endif
317 MARK_FROM_MARK_STACK();
318 return(FALSE);
319 } else {
320 scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
321 if (scan_ptr == 0) {
322 GC_push_roots(TRUE, cold_gc_frame);
323 GC_objects_are_marked = TRUE;
324 if (GC_mark_state != MS_INVALID) {
325 GC_mark_state = MS_ROOTS_PUSHED;
329 return(FALSE);
331 case MS_ROOTS_PUSHED:
332 # ifdef PARALLEL_MARK
333 /* In the incremental GC case, this currently doesn't */
334 /* quite do the right thing, since it runs to */
335 /* completion. On the other hand, starting a */
336 /* parallel marker is expensive, so perhaps it is */
337 /* the right thing? */
338 /* Eventually, incremental marking should run */
339 /* asynchronously in multiple threads, without grabbing */
340 /* the allocation lock. */
341 if (GC_parallel) {
342 GC_do_parallel_mark();
343 GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
344 GC_mark_stack_top = GC_mark_stack - 1;
345 if (GC_mark_stack_too_small) {
346 alloc_mark_stack(2*GC_mark_stack_size);
348 if (GC_mark_state == MS_ROOTS_PUSHED) {
349 GC_mark_state = MS_NONE;
350 return(TRUE);
351 } else {
352 return(FALSE);
355 # endif
356 if (GC_mark_stack_top >= GC_mark_stack) {
357 MARK_FROM_MARK_STACK();
358 return(FALSE);
359 } else {
360 GC_mark_state = MS_NONE;
361 if (GC_mark_stack_too_small) {
362 alloc_mark_stack(2*GC_mark_stack_size);
364 return(TRUE);
367 case MS_INVALID:
368 case MS_PARTIALLY_INVALID:
369 if (!GC_objects_are_marked) {
370 GC_mark_state = MS_PUSH_UNCOLLECTABLE;
371 return(FALSE);
373 if (GC_mark_stack_top >= GC_mark_stack) {
374 MARK_FROM_MARK_STACK();
375 return(FALSE);
377 if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
378 /* About to start a heap scan for marked objects. */
379 /* Mark stack is empty. OK to reallocate. */
380 if (GC_mark_stack_too_small) {
381 alloc_mark_stack(2*GC_mark_stack_size);
383 GC_mark_state = MS_PARTIALLY_INVALID;
385 scan_ptr = GC_push_next_marked(scan_ptr);
386 if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
387 GC_push_roots(TRUE, cold_gc_frame);
388 GC_objects_are_marked = TRUE;
389 if (GC_mark_state != MS_INVALID) {
390 GC_mark_state = MS_ROOTS_PUSHED;
393 return(FALSE);
394 default:
395 ABORT("GC_mark_some: bad state");
396 return(FALSE);
398 #if defined(MSWIN32) && !defined(__GNUC__)
399 } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
400 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
401 # ifdef CONDPRINT
402 if (GC_print_stats) {
403 GC_printf0("Caught ACCESS_VIOLATION in marker. "
404 "Memory mapping disappeared.\n");
406 # endif /* CONDPRINT */
407 /* We have bad roots on the stack. Discard mark stack. */
408 /* Rescan from marked objects. Redetermine roots. */
409 GC_invalidate_mark_state();
410 scan_ptr = 0;
411 return FALSE;
413 #endif /* defined(MSWIN32) && !defined(__GNUC__) */
417 GC_bool GC_mark_stack_empty()
419 return(GC_mark_stack_top < GC_mark_stack);
422 #ifdef PROF_MARKER
423 word GC_prof_array[10];
424 # define PROF(n) GC_prof_array[n]++
425 #else
426 # define PROF(n)
427 #endif
429 /* Given a pointer to someplace other than a small object page or the */
430 /* first page of a large object, either: */
431 /* - return a pointer to somewhere in the first page of the large */
432 /* object, if current points to a large object. */
433 /* In this case *hhdr is replaced with a pointer to the header */
434 /* for the large object. */
435 /* - just return current if it does not point to a large object. */
436 /*ARGSUSED*/
437 ptr_t GC_find_start(current, hhdr, new_hdr_p)
438 register ptr_t current;
439 register hdr *hhdr, **new_hdr_p;
441 if (GC_all_interior_pointers) {
442 if (hhdr != 0) {
443 register ptr_t orig = current;
445 current = (ptr_t)HBLKPTR(current);
446 do {
447 current = current - HBLKSIZE*(word)hhdr;
448 hhdr = HDR(current);
449 } while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
450 /* current points to the start of the large object */
451 if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(0);
452 if ((word *)orig - (word *)current
453 >= (ptrdiff_t)(hhdr->hb_sz)) {
454 /* Pointer past the end of the block */
455 return(orig);
457 *new_hdr_p = hhdr;
458 return(current);
459 } else {
460 return(current);
462 } else {
463 return(current);
467 void GC_invalidate_mark_state()
469 GC_mark_state = MS_INVALID;
470 GC_mark_stack_top = GC_mark_stack-1;
473 mse * GC_signal_mark_stack_overflow(msp)
474 mse * msp;
476 GC_mark_state = MS_INVALID;
477 GC_mark_stack_too_small = TRUE;
478 # ifdef CONDPRINT
479 if (GC_print_stats) {
480 GC_printf1("Mark stack overflow; current size = %lu entries\n",
481 GC_mark_stack_size);
483 # endif
484 return(msp - GC_MARK_STACK_DISCARDS);
488 * Mark objects pointed to by the regions described by
489 * mark stack entries between GC_mark_stack and GC_mark_stack_top,
490 * inclusive. Assumes the upper limit of a mark stack entry
491 * is never 0. A mark stack entry never has size 0.
492 * We try to traverse on the order of a hblk of memory before we return.
493 * Caller is responsible for calling this until the mark stack is empty.
494 * Note that this is the most performance critical routine in the
495 * collector. Hence it contains all sorts of ugly hacks to speed
496 * things up. In particular, we avoid procedure calls on the common
497 * path, we take advantage of peculiarities of the mark descriptor
498 * encoding, we optionally maintain a cache for the block address to
499 * header mapping, we prefetch when an object is "grayed", etc.
501 mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
502 mse * mark_stack_top;
503 mse * mark_stack;
504 mse * mark_stack_limit;
506 int credit = HBLKSIZE; /* Remaining credit for marking work */
507 register word * current_p; /* Pointer to current candidate ptr. */
508 register word current; /* Candidate pointer. */
509 register word * limit; /* (Incl) limit of current candidate */
510 /* range */
511 register word descr;
512 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
513 register ptr_t least_ha = GC_least_plausible_heap_addr;
514 DECLARE_HDR_CACHE;
516 # define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
518 GC_objects_are_marked = TRUE;
519 INIT_HDR_CACHE;
520 # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
521 while (mark_stack_top >= mark_stack && credit >= 0) {
522 # else
523 while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
524 >= 0) {
525 # endif
526 current_p = mark_stack_top -> mse_start;
527 descr = mark_stack_top -> mse_descr;
528 retry:
529 /* current_p and descr describe the current object. */
530 /* *mark_stack_top is vacant. */
531 /* The following is 0 only for small objects described by a simple */
532 /* length descriptor. For many applications this is the common */
533 /* case, so we try to detect it quickly. */
534 if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
535 word tag = descr & GC_DS_TAGS;
537 switch(tag) {
538 case GC_DS_LENGTH:
539 /* Large length. */
540 /* Process part of the range to avoid pushing too much on the */
541 /* stack. */
542 GC_ASSERT(descr < (word)GC_greatest_plausible_heap_addr
543 - (word)GC_least_plausible_heap_addr);
544 # ifdef PARALLEL_MARK
545 # define SHARE_BYTES 2048
546 if (descr > SHARE_BYTES && GC_parallel
547 && mark_stack_top < mark_stack_limit - 1) {
548 int new_size = (descr/2) & ~(sizeof(word)-1);
549 mark_stack_top -> mse_start = current_p;
550 mark_stack_top -> mse_descr = new_size + sizeof(word);
551 /* makes sure we handle */
552 /* misaligned pointers. */
553 mark_stack_top++;
554 current_p = (word *) ((char *)current_p + new_size);
555 descr -= new_size;
556 goto retry;
558 # endif /* PARALLEL_MARK */
559 mark_stack_top -> mse_start =
560 limit = current_p + SPLIT_RANGE_WORDS-1;
561 mark_stack_top -> mse_descr =
562 descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
563 /* Make sure that pointers overlapping the two ranges are */
564 /* considered. */
565 limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
566 break;
567 case GC_DS_BITMAP:
568 mark_stack_top--;
569 descr &= ~GC_DS_TAGS;
570 credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
571 while (descr != 0) {
572 if ((signed_word)descr < 0) {
573 current = *current_p;
574 FIXUP_POINTER(current);
575 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
576 PREFETCH(current);
577 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
578 mark_stack_limit, current_p, exit1);
581 descr <<= 1;
582 ++ current_p;
584 continue;
585 case GC_DS_PROC:
586 mark_stack_top--;
587 credit -= GC_PROC_BYTES;
588 mark_stack_top =
589 (*PROC(descr))
590 (current_p, mark_stack_top,
591 mark_stack_limit, ENV(descr));
592 continue;
593 case GC_DS_PER_OBJECT:
594 if ((signed_word)descr >= 0) {
595 /* Descriptor is in the object. */
596 descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
597 } else {
598 /* Descriptor is in type descriptor pointed to by first */
599 /* word in object. */
600 ptr_t type_descr = *(ptr_t *)current_p;
601 /* type_descr is either a valid pointer to the descriptor */
602 /* structure, or this object was on a free list. If it */
603 /* it was anything but the last object on the free list, */
604 /* we will misinterpret the next object on the free list as */
605 /* the type descriptor, and get a 0 GC descriptor, which */
606 /* is ideal. Unfortunately, we need to check for the last */
607 /* object case explicitly. */
608 if (0 == type_descr) {
609 /* Rarely executed. */
610 mark_stack_top--;
611 continue;
613 descr = *(word *)(type_descr
614 - (descr - (GC_DS_PER_OBJECT
615 - GC_INDIR_PER_OBJ_BIAS)));
617 if (0 == descr) {
618 /* Can happen either because we generated a 0 descriptor */
619 /* or we saw a pointer to a free object. */
620 mark_stack_top--;
621 continue;
623 goto retry;
625 } else /* Small object with length descriptor */ {
626 mark_stack_top--;
627 limit = (word *)(((ptr_t)current_p) + (word)descr);
629 /* The simple case in which we're scanning a range. */
630 GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
631 credit -= (ptr_t)limit - (ptr_t)current_p;
632 limit -= 1;
634 # define PREF_DIST 4
636 # ifndef SMALL_CONFIG
637 word deferred;
639 /* Try to prefetch the next pointer to be examined asap. */
640 /* Empirically, this also seems to help slightly without */
641 /* prefetches, at least on linux/X86. Presumably this loop */
642 /* ends up with less register pressure, and gcc thus ends up */
643 /* generating slightly better code. Overall gcc code quality */
644 /* for this loop is still not great. */
645 for(;;) {
646 PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
647 GC_ASSERT(limit >= current_p);
648 deferred = *limit;
649 FIXUP_POINTER(deferred);
650 limit = (word *)((char *)limit - ALIGNMENT);
651 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
652 PREFETCH(deferred);
653 break;
655 if (current_p > limit) goto next_object;
656 /* Unroll once, so we don't do too many of the prefetches */
657 /* based on limit. */
658 deferred = *limit;
659 FIXUP_POINTER(deferred);
660 limit = (word *)((char *)limit - ALIGNMENT);
661 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
662 PREFETCH(deferred);
663 break;
665 if (current_p > limit) goto next_object;
667 # endif
669 while (current_p <= limit) {
670 /* Empirically, unrolling this loop doesn't help a lot. */
671 /* Since HC_PUSH_CONTENTS expands to a lot of code, */
672 /* we don't. */
673 current = *current_p;
674 FIXUP_POINTER(current);
675 PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
676 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
677 /* Prefetch the contents of the object we just pushed. It's */
678 /* likely we will need them soon. */
679 PREFETCH(current);
680 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
681 mark_stack_limit, current_p, exit2);
683 current_p = (word *)((char *)current_p + ALIGNMENT);
686 # ifndef SMALL_CONFIG
687 /* We still need to mark the entry we previously prefetched. */
688 /* We alrady know that it passes the preliminary pointer */
689 /* validity test. */
690 HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
691 mark_stack_limit, current_p, exit4);
692 next_object:;
693 # endif
696 return mark_stack_top;
699 #ifdef PARALLEL_MARK
701 /* We assume we have an ANSI C Compiler. */
702 GC_bool GC_help_wanted = FALSE;
703 unsigned GC_helper_count = 0;
704 unsigned GC_active_count = 0;
705 mse * VOLATILE GC_first_nonempty;
706 word GC_mark_no = 0;
708 #define LOCAL_MARK_STACK_SIZE HBLKSIZE
709 /* Under normal circumstances, this is big enough to guarantee */
710 /* We don't overflow half of it in a single call to */
711 /* GC_mark_from. */
714 /* Steal mark stack entries starting at mse low into mark stack local */
715 /* until we either steal mse high, or we have max entries. */
716 /* Return a pointer to the top of the local mark stack. */
717 /* *next is replaced by a pointer to the next unscanned mark stack */
718 /* entry. */
719 mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
720 unsigned max, mse **next)
722 mse *p;
723 mse *top = local - 1;
724 unsigned i = 0;
726 /* Make sure that prior writes to the mark stack are visible. */
727 /* On some architectures, the fact that the reads are */
728 /* volatile should suffice. */
729 # if !defined(IA64) && !defined(HP_PA) && !defined(I386)
730 GC_memory_barrier();
731 # endif
732 GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
733 for (p = low; p <= high && i <= max; ++p) {
734 word descr = *(volatile word *) &(p -> mse_descr);
735 /* In the IA64 memory model, the following volatile store is */
736 /* ordered after this read of descr. Thus a thread must read */
737 /* the original nonzero value. HP_PA appears to be similar, */
738 /* and if I'm reading the P4 spec correctly, X86 is probably */
739 /* also OK. In some other cases we need a barrier. */
740 # if !defined(IA64) && !defined(HP_PA) && !defined(I386)
741 GC_memory_barrier();
742 # endif
743 if (descr != 0) {
744 *(volatile word *) &(p -> mse_descr) = 0;
745 /* More than one thread may get this entry, but that's only */
746 /* a minor performance problem. */
747 ++top;
748 top -> mse_descr = descr;
749 top -> mse_start = p -> mse_start;
750 GC_ASSERT( top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH ||
751 top -> mse_descr < GC_greatest_plausible_heap_addr
752 - GC_least_plausible_heap_addr);
753 /* If this is a big object, count it as */
754 /* size/256 + 1 objects. */
755 ++i;
756 if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
759 *next = p;
760 return top;
763 /* Copy back a local mark stack. */
764 /* low and high are inclusive bounds. */
765 void GC_return_mark_stack(mse * low, mse * high)
767 mse * my_top;
768 mse * my_start;
769 size_t stack_size;
771 if (high < low) return;
772 stack_size = high - low + 1;
773 GC_acquire_mark_lock();
774 my_top = GC_mark_stack_top;
775 my_start = my_top + 1;
776 if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
777 # ifdef CONDPRINT
778 if (GC_print_stats) {
779 GC_printf0("No room to copy back mark stack.");
781 # endif
782 GC_mark_state = MS_INVALID;
783 GC_mark_stack_too_small = TRUE;
784 /* We drop the local mark stack. We'll fix things later. */
785 } else {
786 BCOPY(low, my_start, stack_size * sizeof(mse));
787 GC_ASSERT(GC_mark_stack_top = my_top);
788 # if !defined(IA64) && !defined(HP_PA)
789 GC_memory_barrier();
790 # endif
791 /* On IA64, the volatile write acts as a release barrier. */
792 GC_mark_stack_top = my_top + stack_size;
794 GC_release_mark_lock();
795 GC_notify_all_marker();
798 /* Mark from the local mark stack. */
799 /* On return, the local mark stack is empty. */
800 /* But this may be achieved by copying the */
801 /* local mark stack back into the global one. */
802 void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
804 unsigned n;
805 # define N_LOCAL_ITERS 1
807 # ifdef GC_ASSERTIONS
808 /* Make sure we don't hold mark lock. */
809 GC_acquire_mark_lock();
810 GC_release_mark_lock();
811 # endif
812 for (;;) {
813 for (n = 0; n < N_LOCAL_ITERS; ++n) {
814 local_top = GC_mark_from(local_top, local_mark_stack,
815 local_mark_stack + LOCAL_MARK_STACK_SIZE);
816 if (local_top < local_mark_stack) return;
817 if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
818 GC_return_mark_stack(local_mark_stack, local_top);
819 return;
822 if (GC_mark_stack_top < GC_first_nonempty &&
823 GC_active_count < GC_helper_count
824 && local_top > local_mark_stack + 1) {
825 /* Try to share the load, since the main stack is empty, */
826 /* and helper threads are waiting for a refill. */
827 /* The entries near the bottom of the stack are likely */
828 /* to require more work. Thus we return those, eventhough */
829 /* it's harder. */
830 mse * p;
831 mse * new_bottom = local_mark_stack
832 + (local_top - local_mark_stack)/2;
833 GC_ASSERT(new_bottom > local_mark_stack
834 && new_bottom < local_top);
835 GC_return_mark_stack(local_mark_stack, new_bottom - 1);
836 memmove(local_mark_stack, new_bottom,
837 (local_top - new_bottom + 1) * sizeof(mse));
838 local_top -= (new_bottom - local_mark_stack);
843 #define ENTRIES_TO_GET 5
845 long GC_markers = 2; /* Normally changed by thread-library- */
846 /* -specific code. */
848 /* Mark using the local mark stack until the global mark stack is empty */
849 /* and there are no active workers. Update GC_first_nonempty to reflect */
850 /* progress. */
851 /* Caller does not hold mark lock. */
852 /* Caller has already incremented GC_helper_count. We decrement it, */
853 /* and maintain GC_active_count. */
854 void GC_mark_local(mse *local_mark_stack, int id)
856 mse * my_first_nonempty;
858 GC_acquire_mark_lock();
859 GC_active_count++;
860 my_first_nonempty = GC_first_nonempty;
861 GC_ASSERT(GC_first_nonempty >= GC_mark_stack &&
862 GC_first_nonempty <= GC_mark_stack_top + 1);
863 # ifdef PRINTSTATS
864 GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
865 # endif
866 GC_release_mark_lock();
867 for (;;) {
868 size_t n_on_stack;
869 size_t n_to_get;
870 mse *next;
871 mse * my_top;
872 mse * local_top;
873 mse * global_first_nonempty = GC_first_nonempty;
875 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
876 my_first_nonempty <= GC_mark_stack_top + 1);
877 GC_ASSERT(global_first_nonempty >= GC_mark_stack &&
878 global_first_nonempty <= GC_mark_stack_top + 1);
879 if (my_first_nonempty < global_first_nonempty) {
880 my_first_nonempty = global_first_nonempty;
881 } else if (global_first_nonempty < my_first_nonempty) {
882 GC_compare_and_exchange((word *)(&GC_first_nonempty),
883 (word) global_first_nonempty,
884 (word) my_first_nonempty);
885 /* If this fails, we just go ahead, without updating */
886 /* GC_first_nonempty. */
888 /* Perhaps we should also update GC_first_nonempty, if it */
889 /* is less. But that would require using atomic updates. */
890 my_top = GC_mark_stack_top;
891 n_on_stack = my_top - my_first_nonempty + 1;
892 if (0 == n_on_stack) {
893 GC_acquire_mark_lock();
894 my_top = GC_mark_stack_top;
895 n_on_stack = my_top - my_first_nonempty + 1;
896 if (0 == n_on_stack) {
897 GC_active_count--;
898 GC_ASSERT(GC_active_count <= GC_helper_count);
899 /* Other markers may redeposit objects */
900 /* on the stack. */
901 if (0 == GC_active_count) GC_notify_all_marker();
902 while (GC_active_count > 0
903 && GC_first_nonempty > GC_mark_stack_top) {
904 /* We will be notified if either GC_active_count */
905 /* reaches zero, or if more objects are pushed on */
906 /* the global mark stack. */
907 GC_wait_marker();
909 if (GC_active_count == 0 &&
910 GC_first_nonempty > GC_mark_stack_top) {
911 GC_bool need_to_notify = FALSE;
912 /* The above conditions can't be falsified while we */
913 /* hold the mark lock, since neither */
914 /* GC_active_count nor GC_mark_stack_top can */
915 /* change. GC_first_nonempty can only be */
916 /* incremented asynchronously. Thus we know that */
917 /* both conditions actually held simultaneously. */
918 GC_helper_count--;
919 if (0 == GC_helper_count) need_to_notify = TRUE;
920 # ifdef PRINTSTATS
921 GC_printf1(
922 "Finished mark helper %lu\n", (unsigned long)id);
923 # endif
924 GC_release_mark_lock();
925 if (need_to_notify) GC_notify_all_marker();
926 return;
928 /* else there's something on the stack again, or */
929 /* another helper may push something. */
930 GC_active_count++;
931 GC_ASSERT(GC_active_count > 0);
932 GC_release_mark_lock();
933 continue;
934 } else {
935 GC_release_mark_lock();
938 n_to_get = ENTRIES_TO_GET;
939 if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
940 local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
941 local_mark_stack, n_to_get,
942 &my_first_nonempty);
943 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
944 my_first_nonempty <= GC_mark_stack_top + 1);
945 GC_do_local_mark(local_mark_stack, local_top);
949 /* Perform Parallel mark. */
950 /* We hold the GC lock, not the mark lock. */
951 /* Currently runs until the mark stack is */
952 /* empty. */
953 void GC_do_parallel_mark()
955 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
956 mse * local_top;
957 mse * my_top;
959 GC_acquire_mark_lock();
960 GC_ASSERT(I_HOLD_LOCK());
961 /* This could be a GC_ASSERT, but it seems safer to keep it on */
962 /* all the time, especially since it's cheap. */
963 if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
964 ABORT("Tried to start parallel mark in bad state");
965 # ifdef PRINTSTATS
966 GC_printf1("Starting marking for mark phase number %lu\n",
967 (unsigned long)GC_mark_no);
968 # endif
969 GC_first_nonempty = GC_mark_stack;
970 GC_active_count = 0;
971 GC_helper_count = 1;
972 GC_help_wanted = TRUE;
973 GC_release_mark_lock();
974 GC_notify_all_marker();
975 /* Wake up potential helpers. */
976 GC_mark_local(local_mark_stack, 0);
977 GC_acquire_mark_lock();
978 GC_help_wanted = FALSE;
979 /* Done; clean up. */
980 while (GC_helper_count > 0) GC_wait_marker();
981 /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
982 # ifdef PRINTSTATS
983 GC_printf1(
984 "Finished marking for mark phase number %lu\n",
985 (unsigned long)GC_mark_no);
986 # endif
987 GC_mark_no++;
988 GC_release_mark_lock();
989 GC_notify_all_marker();
993 /* Try to help out the marker, if it's running. */
994 /* We do not hold the GC lock, but the requestor does. */
995 void GC_help_marker(word my_mark_no)
997 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
998 unsigned my_id;
999 mse * my_first_nonempty;
1001 if (!GC_parallel) return;
1002 GC_acquire_mark_lock();
1003 while (GC_mark_no < my_mark_no
1004 || !GC_help_wanted && GC_mark_no == my_mark_no) {
1005 GC_wait_marker();
1007 my_id = GC_helper_count;
1008 if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
1009 /* Second test is useful only if original threads can also */
1010 /* act as helpers. Under Linux they can't. */
1011 GC_release_mark_lock();
1012 return;
1014 GC_helper_count = my_id + 1;
1015 GC_release_mark_lock();
1016 GC_mark_local(local_mark_stack, my_id);
1017 /* GC_mark_local decrements GC_helper_count. */
1020 #endif /* PARALLEL_MARK */
1022 /* Allocate or reallocate space for mark stack of size s words */
1023 /* May silently fail. */
1024 static void alloc_mark_stack(n)
1025 word n;
1027 mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
1029 GC_mark_stack_too_small = FALSE;
1030 if (GC_mark_stack_size != 0) {
1031 if (new_stack != 0) {
1032 word displ = (word)GC_mark_stack & (GC_page_size - 1);
1033 signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
1035 /* Recycle old space */
1036 if (0 != displ) displ = GC_page_size - displ;
1037 size = (size - displ) & ~(GC_page_size - 1);
1038 if (size > 0) {
1039 GC_add_to_heap((struct hblk *)
1040 ((word)GC_mark_stack + displ), (word)size);
1042 GC_mark_stack = new_stack;
1043 GC_mark_stack_size = n;
1044 GC_mark_stack_limit = new_stack + n;
1045 # ifdef CONDPRINT
1046 if (GC_print_stats) {
1047 GC_printf1("Grew mark stack to %lu frames\n",
1048 (unsigned long) GC_mark_stack_size);
1050 # endif
1051 } else {
1052 # ifdef CONDPRINT
1053 if (GC_print_stats) {
1054 GC_printf1("Failed to grow mark stack to %lu frames\n",
1055 (unsigned long) n);
1057 # endif
1059 } else {
1060 if (new_stack == 0) {
1061 GC_err_printf0("No space for mark stack\n");
1062 EXIT();
1064 GC_mark_stack = new_stack;
1065 GC_mark_stack_size = n;
1066 GC_mark_stack_limit = new_stack + n;
1068 GC_mark_stack_top = GC_mark_stack-1;
1071 void GC_mark_init()
1073 alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
1077 * Push all locations between b and t onto the mark stack.
1078 * b is the first location to be checked. t is one past the last
1079 * location to be checked.
1080 * Should only be used if there is no possibility of mark stack
1081 * overflow.
1083 void GC_push_all(bottom, top)
1084 ptr_t bottom;
1085 ptr_t top;
1087 register word length;
1089 bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1090 top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
1091 if (top == 0 || bottom == top) return;
1092 GC_mark_stack_top++;
1093 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1094 ABORT("unexpected mark stack overflow");
1096 length = top - bottom;
1097 # if GC_DS_TAGS > ALIGNMENT - 1
1098 length += GC_DS_TAGS;
1099 length &= ~GC_DS_TAGS;
1100 # endif
1101 GC_mark_stack_top -> mse_start = (word *)bottom;
1102 GC_mark_stack_top -> mse_descr = length;
1106 * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
1107 * We use push_fn to actually push the block.
1108 * Used both to selectively push dirty pages, or to push a block
1109 * in piecemeal fashion, to allow for more marking concurrency.
1110 * Will not overflow mark stack if push_fn pushes a small fixed number
1111 * of entries. (This is invoked only if push_fn pushes a single entry,
1112 * or if it marks each object before pushing it, thus ensuring progress
1113 * in the event of a stack overflow.)
1115 void GC_push_selected(bottom, top, dirty_fn, push_fn)
1116 ptr_t bottom;
1117 ptr_t top;
1118 int (*dirty_fn) GC_PROTO((struct hblk * h));
1119 void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
1121 register struct hblk * h;
1123 bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1124 top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
1126 if (top == 0 || bottom == top) return;
1127 h = HBLKPTR(bottom + HBLKSIZE);
1128 if (top <= (ptr_t) h) {
1129 if ((*dirty_fn)(h-1)) {
1130 (*push_fn)(bottom, top);
1132 return;
1134 if ((*dirty_fn)(h-1)) {
1135 (*push_fn)(bottom, (ptr_t)h);
1137 while ((ptr_t)(h+1) <= top) {
1138 if ((*dirty_fn)(h)) {
1139 if ((word)(GC_mark_stack_top - GC_mark_stack)
1140 > 3 * GC_mark_stack_size / 4) {
1141 /* Danger of mark stack overflow */
1142 (*push_fn)((ptr_t)h, top);
1143 return;
1144 } else {
1145 (*push_fn)((ptr_t)h, (ptr_t)(h+1));
1148 h++;
1150 if ((ptr_t)h != top) {
1151 if ((*dirty_fn)(h)) {
1152 (*push_fn)((ptr_t)h, top);
1155 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1156 ABORT("unexpected mark stack overflow");
1160 # ifndef SMALL_CONFIG
1162 #ifdef PARALLEL_MARK
1163 /* Break up root sections into page size chunks to better spread */
1164 /* out work. */
1165 GC_bool GC_true_func(struct hblk *h) { return TRUE; }
1166 # define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
1167 #else
1168 # define GC_PUSH_ALL(b,t) GC_push_all(b,t);
1169 #endif
1172 void GC_push_conditional(bottom, top, all)
1173 ptr_t bottom;
1174 ptr_t top;
1175 int all;
1177 if (all) {
1178 if (GC_dirty_maintained) {
1179 # ifdef PROC_VDB
1180 /* Pages that were never dirtied cannot contain pointers */
1181 GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
1182 # else
1183 GC_push_all(bottom, top);
1184 # endif
1185 } else {
1186 GC_push_all(bottom, top);
1188 } else {
1189 GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
1192 #endif
1194 # if defined(MSWIN32) || defined(MSWINCE)
1195 void __cdecl GC_push_one(p)
1196 # else
1197 void GC_push_one(p)
1198 # endif
1199 word p;
1201 GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
1204 struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
1205 GC_PTR obj;
1206 struct GC_ms_entry * mark_stack_ptr;
1207 struct GC_ms_entry * mark_stack_limit;
1208 GC_PTR *src;
1210 PREFETCH(obj);
1211 PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
1212 was_marked /* internally generated exit label */);
1213 return mark_stack_ptr;
1216 # ifdef __STDC__
1217 # define BASE(p) (word)GC_base((void *)(p))
1218 # else
1219 # define BASE(p) (word)GC_base((char *)(p))
1220 # endif
1222 /* Mark and push (i.e. gray) a single object p onto the main */
1223 /* mark stack. Consider p to be valid if it is an interior */
1224 /* pointer. */
1225 /* The object p has passed a preliminary pointer validity */
1226 /* test, but we do not definitely know whether it is valid. */
1227 /* Mark bits are NOT atomically updated. Thus this must be the */
1228 /* only thread setting them. */
1229 # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
1230 void GC_mark_and_push_stack(p, source)
1231 ptr_t source;
1232 # else
1233 void GC_mark_and_push_stack(p)
1234 # define source 0
1235 # endif
1236 register word p;
1238 register word r;
1239 register hdr * hhdr;
1240 register int displ;
1242 GET_HDR(p, hhdr);
1243 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
1244 if (hhdr != 0) {
1245 r = BASE(p);
1246 hhdr = HDR(r);
1247 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1249 } else {
1250 register map_entry_type map_entry;
1252 displ = HBLKDISPL(p);
1253 map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
1254 if (map_entry >= MAX_OFFSET) {
1255 if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
1256 r = BASE(p);
1257 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1258 if (r == 0) hhdr = 0;
1259 } else {
1260 /* Offset invalid, but map reflects interior pointers */
1261 hhdr = 0;
1263 } else {
1264 displ = BYTES_TO_WORDS(displ);
1265 displ -= map_entry;
1266 r = (word)((word *)(HBLKPTR(p)) + displ);
1269 /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
1270 /* displ is the word index within the block. */
1271 if (hhdr == 0) {
1272 # ifdef PRINT_BLACK_LIST
1273 GC_add_to_black_list_stack(p, source);
1274 # else
1275 GC_add_to_black_list_stack(p);
1276 # endif
1277 # undef source /* In case we had to define it. */
1278 } else {
1279 if (!mark_bit_from_hdr(hhdr, displ)) {
1280 set_mark_bit_from_hdr(hhdr, displ);
1281 GC_STORE_BACK_PTR(source, (ptr_t)r);
1282 PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
1283 GC_mark_stack_limit);
1288 # ifdef TRACE_BUF
1290 # define TRACE_ENTRIES 1000
1292 struct trace_entry {
1293 char * kind;
1294 word gc_no;
1295 word words_allocd;
1296 word arg1;
1297 word arg2;
1298 } GC_trace_buf[TRACE_ENTRIES];
1300 int GC_trace_buf_ptr = 0;
1302 void GC_add_trace_entry(char *kind, word arg1, word arg2)
1304 GC_trace_buf[GC_trace_buf_ptr].kind = kind;
1305 GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
1306 GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
1307 GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
1308 GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
1309 GC_trace_buf_ptr++;
1310 if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
1313 void GC_print_trace(word gc_no, GC_bool lock)
1315 int i;
1316 struct trace_entry *p;
1318 if (lock) LOCK();
1319 for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
1320 if (i < 0) i = TRACE_ENTRIES-1;
1321 p = GC_trace_buf + i;
1322 if (p -> gc_no < gc_no || p -> kind == 0) return;
1323 printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
1324 p -> kind, p -> gc_no, p -> words_allocd,
1325 (p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
1327 printf("Trace incomplete\n");
1328 if (lock) UNLOCK();
1331 # endif /* TRACE_BUF */
1334 * A version of GC_push_all that treats all interior pointers as valid
1335 * and scans the entire region immediately, in case the contents
1336 * change.
1338 void GC_push_all_eager(bottom, top)
1339 ptr_t bottom;
1340 ptr_t top;
1342 word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1343 word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
1344 register word *p;
1345 register word q;
1346 register word *lim;
1347 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1348 register ptr_t least_ha = GC_least_plausible_heap_addr;
1349 # define GC_greatest_plausible_heap_addr greatest_ha
1350 # define GC_least_plausible_heap_addr least_ha
1352 if (top == 0) return;
1353 /* check all pointers in range and push if they appear */
1354 /* to be valid. */
1355 lim = t - 1 /* longword */;
1356 for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
1357 q = *p;
1358 GC_PUSH_ONE_STACK(q, p);
1360 # undef GC_greatest_plausible_heap_addr
1361 # undef GC_least_plausible_heap_addr
1364 #ifndef THREADS
1366 * A version of GC_push_all that treats all interior pointers as valid
1367 * and scans part of the area immediately, to make sure that saved
1368 * register values are not lost.
1369 * Cold_gc_frame delimits the stack section that must be scanned
1370 * eagerly. A zero value indicates that no eager scanning is needed.
1372 void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
1373 ptr_t bottom;
1374 ptr_t top;
1375 ptr_t cold_gc_frame;
1377 if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
1378 # define EAGER_BYTES 1024
1379 /* Push the hot end of the stack eagerly, so that register values */
1380 /* saved inside GC frames are marked before they disappear. */
1381 /* The rest of the marking can be deferred until later. */
1382 if (0 == cold_gc_frame) {
1383 GC_push_all_stack(bottom, top);
1384 return;
1386 GC_ASSERT(bottom <= cold_gc_frame && cold_gc_frame <= top);
1387 # ifdef STACK_GROWS_DOWN
1388 GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
1389 GC_push_all_eager(bottom, cold_gc_frame);
1390 # else /* STACK_GROWS_UP */
1391 GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
1392 GC_push_all_eager(cold_gc_frame, top);
1393 # endif /* STACK_GROWS_UP */
1394 } else {
1395 GC_push_all_eager(bottom, top);
1397 # ifdef TRACE_BUF
1398 GC_add_trace_entry("GC_push_all_stack", bottom, top);
1399 # endif
1401 #endif /* !THREADS */
1403 void GC_push_all_stack(bottom, top)
1404 ptr_t bottom;
1405 ptr_t top;
1407 if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
1408 GC_push_all(bottom, top);
1409 } else {
1410 GC_push_all_eager(bottom, top);
1414 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1415 /* Push all objects reachable from marked objects in the given block */
1416 /* of size 1 objects. */
1417 void GC_push_marked1(h, hhdr)
1418 struct hblk *h;
1419 register hdr * hhdr;
1421 word * mark_word_addr = &(hhdr->hb_marks[0]);
1422 register word *p;
1423 word *plim;
1424 register int i;
1425 register word q;
1426 register word mark_word;
1427 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1428 register ptr_t least_ha = GC_least_plausible_heap_addr;
1429 register mse * mark_stack_top = GC_mark_stack_top;
1430 register mse * mark_stack_limit = GC_mark_stack_limit;
1431 # define GC_mark_stack_top mark_stack_top
1432 # define GC_mark_stack_limit mark_stack_limit
1433 # define GC_greatest_plausible_heap_addr greatest_ha
1434 # define GC_least_plausible_heap_addr least_ha
1436 p = (word *)(h->hb_body);
1437 plim = (word *)(((word)h) + HBLKSIZE);
1439 /* go through all words in block */
1440 while( p < plim ) {
1441 mark_word = *mark_word_addr++;
1442 i = 0;
1443 while(mark_word != 0) {
1444 if (mark_word & 1) {
1445 q = p[i];
1446 GC_PUSH_ONE_HEAP(q, p + i);
1448 i++;
1449 mark_word >>= 1;
1451 p += WORDSZ;
1453 # undef GC_greatest_plausible_heap_addr
1454 # undef GC_least_plausible_heap_addr
1455 # undef GC_mark_stack_top
1456 # undef GC_mark_stack_limit
1457 GC_mark_stack_top = mark_stack_top;
1461 #ifndef UNALIGNED
1463 /* Push all objects reachable from marked objects in the given block */
1464 /* of size 2 objects. */
1465 void GC_push_marked2(h, hhdr)
1466 struct hblk *h;
1467 register hdr * hhdr;
1469 word * mark_word_addr = &(hhdr->hb_marks[0]);
1470 register word *p;
1471 word *plim;
1472 register int i;
1473 register word q;
1474 register word mark_word;
1475 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1476 register ptr_t least_ha = GC_least_plausible_heap_addr;
1477 register mse * mark_stack_top = GC_mark_stack_top;
1478 register mse * mark_stack_limit = GC_mark_stack_limit;
1479 # define GC_mark_stack_top mark_stack_top
1480 # define GC_mark_stack_limit mark_stack_limit
1481 # define GC_greatest_plausible_heap_addr greatest_ha
1482 # define GC_least_plausible_heap_addr least_ha
1484 p = (word *)(h->hb_body);
1485 plim = (word *)(((word)h) + HBLKSIZE);
1487 /* go through all words in block */
1488 while( p < plim ) {
1489 mark_word = *mark_word_addr++;
1490 i = 0;
1491 while(mark_word != 0) {
1492 if (mark_word & 1) {
1493 q = p[i];
1494 GC_PUSH_ONE_HEAP(q, p + i);
1495 q = p[i+1];
1496 GC_PUSH_ONE_HEAP(q, p + i);
1498 i += 2;
1499 mark_word >>= 2;
1501 p += WORDSZ;
1503 # undef GC_greatest_plausible_heap_addr
1504 # undef GC_least_plausible_heap_addr
1505 # undef GC_mark_stack_top
1506 # undef GC_mark_stack_limit
1507 GC_mark_stack_top = mark_stack_top;
1510 /* Push all objects reachable from marked objects in the given block */
1511 /* of size 4 objects. */
1512 /* There is a risk of mark stack overflow here. But we handle that. */
1513 /* And only unmarked objects get pushed, so it's not very likely. */
1514 void GC_push_marked4(h, hhdr)
1515 struct hblk *h;
1516 register hdr * hhdr;
1518 word * mark_word_addr = &(hhdr->hb_marks[0]);
1519 register word *p;
1520 word *plim;
1521 register int i;
1522 register word q;
1523 register word mark_word;
1524 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1525 register ptr_t least_ha = GC_least_plausible_heap_addr;
1526 register mse * mark_stack_top = GC_mark_stack_top;
1527 register mse * mark_stack_limit = GC_mark_stack_limit;
1528 # define GC_mark_stack_top mark_stack_top
1529 # define GC_mark_stack_limit mark_stack_limit
1530 # define GC_greatest_plausible_heap_addr greatest_ha
1531 # define GC_least_plausible_heap_addr least_ha
1533 p = (word *)(h->hb_body);
1534 plim = (word *)(((word)h) + HBLKSIZE);
1536 /* go through all words in block */
1537 while( p < plim ) {
1538 mark_word = *mark_word_addr++;
1539 i = 0;
1540 while(mark_word != 0) {
1541 if (mark_word & 1) {
1542 q = p[i];
1543 GC_PUSH_ONE_HEAP(q, p + i);
1544 q = p[i+1];
1545 GC_PUSH_ONE_HEAP(q, p + i + 1);
1546 q = p[i+2];
1547 GC_PUSH_ONE_HEAP(q, p + i + 2);
1548 q = p[i+3];
1549 GC_PUSH_ONE_HEAP(q, p + i + 3);
1551 i += 4;
1552 mark_word >>= 4;
1554 p += WORDSZ;
1556 # undef GC_greatest_plausible_heap_addr
1557 # undef GC_least_plausible_heap_addr
1558 # undef GC_mark_stack_top
1559 # undef GC_mark_stack_limit
1560 GC_mark_stack_top = mark_stack_top;
1563 #endif /* UNALIGNED */
1565 #endif /* SMALL_CONFIG */
1567 /* Push all objects reachable from marked objects in the given block */
1568 void GC_push_marked(h, hhdr)
1569 struct hblk *h;
1570 register hdr * hhdr;
1572 register int sz = hhdr -> hb_sz;
1573 register int descr = hhdr -> hb_descr;
1574 register word * p;
1575 register int word_no;
1576 register word * lim;
1577 register mse * GC_mark_stack_top_reg;
1578 register mse * mark_stack_limit = GC_mark_stack_limit;
1580 /* Some quick shortcuts: */
1581 if ((0 | GC_DS_LENGTH) == descr) return;
1582 if (GC_block_empty(hhdr)/* nothing marked */) return;
1583 GC_n_rescuing_pages++;
1584 GC_objects_are_marked = TRUE;
1585 if (sz > MAXOBJSZ) {
1586 lim = (word *)h;
1587 } else {
1588 lim = (word *)(h + 1) - sz;
1591 switch(sz) {
1592 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1593 case 1:
1594 GC_push_marked1(h, hhdr);
1595 break;
1596 # endif
1597 # if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
1598 !defined(USE_MARK_BYTES)
1599 case 2:
1600 GC_push_marked2(h, hhdr);
1601 break;
1602 case 4:
1603 GC_push_marked4(h, hhdr);
1604 break;
1605 # endif
1606 default:
1607 GC_mark_stack_top_reg = GC_mark_stack_top;
1608 for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
1609 if (mark_bit_from_hdr(hhdr, word_no)) {
1610 /* Mark from fields inside the object */
1611 PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
1612 # ifdef GATHERSTATS
1613 /* Subtract this object from total, since it was */
1614 /* added in twice. */
1615 GC_composite_in_use -= sz;
1616 # endif
1619 GC_mark_stack_top = GC_mark_stack_top_reg;
1623 #ifndef SMALL_CONFIG
1624 /* Test whether any page in the given block is dirty */
1625 GC_bool GC_block_was_dirty(h, hhdr)
1626 struct hblk *h;
1627 register hdr * hhdr;
1629 register int sz = hhdr -> hb_sz;
1631 if (sz < MAXOBJSZ) {
1632 return(GC_page_was_dirty(h));
1633 } else {
1634 register ptr_t p = (ptr_t)h;
1635 sz = WORDS_TO_BYTES(sz);
1636 while (p < (ptr_t)h + sz) {
1637 if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
1638 p += HBLKSIZE;
1640 return(FALSE);
1643 #endif /* SMALL_CONFIG */
1645 /* Similar to GC_push_next_marked, but return address of next block */
1646 struct hblk * GC_push_next_marked(h)
1647 struct hblk *h;
1649 register hdr * hhdr;
1651 h = GC_next_used_block(h);
1652 if (h == 0) return(0);
1653 hhdr = HDR(h);
1654 GC_push_marked(h, hhdr);
1655 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1658 #ifndef SMALL_CONFIG
1659 /* Identical to above, but mark only from dirty pages */
1660 struct hblk * GC_push_next_marked_dirty(h)
1661 struct hblk *h;
1663 register hdr * hhdr;
1665 if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
1666 for (;;) {
1667 h = GC_next_used_block(h);
1668 if (h == 0) return(0);
1669 hhdr = HDR(h);
1670 # ifdef STUBBORN_ALLOC
1671 if (hhdr -> hb_obj_kind == STUBBORN) {
1672 if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
1673 break;
1675 } else {
1676 if (GC_block_was_dirty(h, hhdr)) break;
1678 # else
1679 if (GC_block_was_dirty(h, hhdr)) break;
1680 # endif
1681 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1683 GC_push_marked(h, hhdr);
1684 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1686 #endif
1688 /* Similar to above, but for uncollectable pages. Needed since we */
1689 /* do not clear marks for such pages, even for full collections. */
1690 struct hblk * GC_push_next_marked_uncollectable(h)
1691 struct hblk *h;
1693 register hdr * hhdr = HDR(h);
1695 for (;;) {
1696 h = GC_next_used_block(h);
1697 if (h == 0) return(0);
1698 hhdr = HDR(h);
1699 if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
1700 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1702 GC_push_marked(h, hhdr);
1703 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));