1 ;;; cl-loaddefs.el --- automatically extracted autoloads
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "d2000926c438cbd72f37587241cab7ed")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce
"cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil
)
22 (autoload 'equalp
"cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
30 (autoload 'cl-mapcar-many
"cl-extra" "\
33 \(fn CL-FUNC CL-SEQS)" nil nil
)
35 (autoload 'map
"cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil
)
41 (autoload 'maplist
"cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil
)
48 (autoload 'mapl
"cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil
)
53 (autoload 'mapcan
"cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil
)
58 (autoload 'mapcon
"cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil
)
63 (autoload 'some
"cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil
)
69 (autoload 'every
"cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil
)
74 (autoload 'notany
"cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil
)
79 (autoload 'notevery
"cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil
)
84 (defalias 'cl-map-keymap
'map-keymap
)
86 (autoload 'cl-map-keymap-recursively
"cl-extra" "\
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil
)
91 (autoload 'cl-map-intervals
"cl-extra" "\
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil
)
96 (autoload 'cl-map-overlays
"cl-extra" "\
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil
)
101 (autoload 'cl-set-frame-visible-p
"cl-extra" "\
104 \(fn FRAME VAL)" nil nil
)
106 (autoload 'cl-progv-before
"cl-extra" "\
109 \(fn SYMS VALUES)" nil nil
)
111 (autoload 'gcd
"cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil
)
116 (autoload 'lcm
"cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil
)
121 (autoload 'isqrt
"cl-extra" "\
122 Return the integer square root of the argument.
126 (autoload 'floor
* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil
)
132 (autoload 'ceiling
* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil
)
138 (autoload 'truncate
* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil
)
144 (autoload 'round
* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil
)
150 (autoload 'mod
* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
155 (autoload 'rem
* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
160 (autoload 'signum
"cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
165 (autoload 'random
* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil
)
171 (autoload 'make-random-state
"cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil
)
177 (autoload 'random-state-p
"cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil
)
182 (autoload 'cl-float-limits
"cl-extra" "\
187 (autoload 'subseq
"cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil
)
194 (autoload 'concatenate
"cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil
)
199 (autoload 'revappend
"cl-extra" "\
200 Equivalent to (append (reverse X) Y).
204 (autoload 'nreconc
"cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
209 (autoload 'list-length
"cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
214 (autoload 'tailp
"cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil
)
219 (autoload 'get
* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil
)
224 (autoload 'getf
"cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil
)
230 (autoload 'cl-set-getf
"cl-extra" "\
233 \(fn PLIST TAG VAL)" nil nil
)
235 (autoload 'cl-do-remf
"cl-extra" "\
238 \(fn PLIST TAG)" nil nil
)
240 (autoload 'cl-remprop
"cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil
)
245 (defalias 'remprop
'cl-remprop
)
247 (defalias 'cl-gethash
'gethash
)
249 (defalias 'cl-puthash
'puthash
)
251 (defalias 'cl-remhash
'remhash
)
253 (defalias 'cl-clrhash
'clrhash
)
255 (defalias 'cl-maphash
'maphash
)
257 (defalias 'cl-make-hash-table
'make-hash-table
)
259 (defalias 'cl-hash-table-p
'hash-table-p
)
261 (defalias 'cl-hash-table-count
'hash-table-count
)
263 (autoload 'cl-macroexpand-all
"cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil
)
269 (autoload 'cl-prettyexpand
"cl-extra" "\
272 \(fn FORM &optional FULL)" nil nil
)
276 ;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
277 ;;;;;; check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
281 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283 ;;;;;; do* do loop return-from return block etypecase typecase ecase
284 ;;;;;; case load-time-value eval-when destructuring-bind function*
285 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "f6bd68f91847390d47f57b6aac6be023")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'gensym
"cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
292 \(fn &optional PREFIX)" nil nil
)
294 (autoload 'gentemp
"cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
298 \(fn &optional PREFIX)" nil nil
)
300 (autoload 'defun
* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil
(quote macro
))
307 (autoload 'defmacro
* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil
(quote macro
))
314 (autoload 'function
* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
319 \(fn FUNC)" nil
(quote macro
))
321 (autoload 'destructuring-bind
"cl-macs" "\
324 \(fn ARGS EXPR &rest BODY)" nil
(quote macro
))
326 (autoload 'eval-when
"cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
332 \(fn (WHEN...) BODY...)" nil
(quote macro
))
334 (autoload 'load-time-value
"cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
338 \(fn FORM &optional READ-ONLY)" nil
(quote macro
))
340 (autoload 'case
"cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
349 \(fn EXPR (KEYLIST BODY...)...)" nil
(quote macro
))
351 (autoload 'ecase
"cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
355 \(fn EXPR (KEYLIST BODY...)...)" nil
(quote macro
))
357 (autoload 'typecase
"cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
364 \(fn EXPR (TYPE BODY...)...)" nil
(quote macro
))
366 (autoload 'etypecase
"cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
370 \(fn EXPR (TYPE BODY...)...)" nil
(quote macro
))
372 (autoload 'block
"cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
382 \(fn NAME &rest BODY)" nil
(quote macro
))
384 (autoload 'return
"cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil
(quote macro
))
390 (autoload 'return-from
"cl-macs" "\
391 Return from the block named NAME.
392 This jump out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil
(quote macro
))
399 (autoload 'loop
"cl-macs" "\
400 The Common Lisp `loop' macro.
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
413 \(fn CLAUSE...)" nil
(quote macro
))
415 (autoload 'do
"cl-macs" "\
416 The Common Lisp `do' loop.
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil
(quote macro
))
420 (autoload 'do
* "cl-macs" "\
421 The Common Lisp `do*' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil
(quote macro
))
425 (autoload 'dolist
"cl-macs" "\
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
430 \(fn (VAR LIST [RESULT]) BODY...)" nil
(quote macro
))
432 (autoload 'dotimes
"cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil
(quote macro
))
440 (autoload 'do-symbols
"cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil
(quote macro
))
447 (autoload 'do-all-symbols
"cl-macs" "\
450 \(fn SPEC &rest BODY)" nil
(quote macro
))
452 (autoload 'psetq
"cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
457 \(fn SYM VAL SYM VAL ...)" nil
(quote macro
))
459 (autoload 'progv
"cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
467 \(fn SYMBOLS VALUES &rest BODY)" nil
(quote macro
))
469 (autoload 'flet
"cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil
(quote macro
))
478 (autoload 'labels
"cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil
(quote macro
))
485 (autoload 'macrolet
"cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil
(quote macro
))
491 (autoload 'symbol-macrolet
"cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil
(quote macro
))
498 (autoload 'lexical-let
"cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
503 \(fn VARLIST BODY)" nil
(quote macro
))
505 (autoload 'lexical-let
* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY, and in
508 successive bindings within BINDINGS, will create lexical closures
509 as in Common Lisp. This is similar to the behavior of `let*' in
512 \(fn VARLIST BODY)" nil
(quote macro
))
514 (autoload 'multiple-value-bind
"cl-macs" "\
515 Collect multiple return values.
516 FORM must return a list; the BODY is then executed with the first N elements
517 of this list bound (`let'-style) to each of the symbols SYM in turn. This
518 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
519 simulate true multiple return values. For compatibility, (values A B C) is
520 a synonym for (list A B C).
522 \(fn (SYM...) FORM BODY)" nil
(quote macro
))
524 (autoload 'multiple-value-setq
"cl-macs" "\
525 Collect multiple return values.
526 FORM must return a list; the first N elements of this list are stored in
527 each of the symbols SYM in turn. This is analogous to the Common Lisp
528 `multiple-value-setq' macro, using lists to simulate true multiple return
529 values. For compatibility, (values A B C) is a synonym for (list A B C).
531 \(fn (SYM...) FORM)" nil
(quote macro
))
533 (autoload 'locally
"cl-macs" "\
536 \(fn &rest BODY)" nil
(quote macro
))
538 (autoload 'the
"cl-macs" "\
541 \(fn TYPE FORM)" nil
(quote macro
))
543 (autoload 'declare
"cl-macs" "\
546 \(fn &rest SPECS)" nil
(quote macro
))
548 (autoload 'define-setf-method
"cl-macs" "\
549 Define a `setf' method.
550 This method shows how to handle `setf's to places of the form (NAME ARGS...).
551 The argument forms ARGS are bound according to ARGLIST, as if NAME were
552 going to be expanded as a macro, then the BODY forms are executed and must
553 return a list of five elements: a temporary-variables list, a value-forms
554 list, a store-variables list (of length one), a store-form, and an access-
555 form. See `defsetf' for a simpler way to define most setf-methods.
557 \(fn NAME ARGLIST BODY...)" nil
(quote macro
))
559 (autoload 'defsetf
"cl-macs" "\
560 Define a `setf' method.
561 This macro is an easy-to-use substitute for `define-setf-method' that works
562 well for simple place forms. In the simple `defsetf' form, `setf's of
563 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
564 calls of the form (FUNC ARGS... VAL). Example:
568 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
569 Here, the above `setf' call is expanded by binding the argument forms ARGS
570 according to ARGLIST, binding the value form VAL to STORE, then executing
571 BODY, which must return a Lisp form that does the necessary `setf' operation.
572 Actually, ARGLIST and STORE may be bound to temporary variables which are
573 introduced automatically to preserve proper execution order of the arguments.
576 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
578 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil
(quote macro
))
580 (autoload 'get-setf-method
"cl-macs" "\
581 Return a list of five values describing the setf-method for PLACE.
582 PLACE may be any Lisp form which can appear as the PLACE argument to
583 a macro like `setf' or `incf'.
585 \(fn PLACE &optional ENV)" nil nil
)
587 (autoload 'setf
"cl-macs" "\
588 Set each PLACE to the value of its VAL.
589 This is a generalized version of `setq'; the PLACEs may be symbolic
590 references such as (car x) or (aref x i), as well as plain symbols.
591 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
592 The return value is the last VAL in the list.
594 \(fn PLACE VAL PLACE VAL ...)" nil
(quote macro
))
596 (autoload 'psetf
"cl-macs" "\
597 Set PLACEs to the values VALs in parallel.
598 This is like `setf', except that all VAL forms are evaluated (in order)
599 before assigning any PLACEs to the corresponding values.
601 \(fn PLACE VAL PLACE VAL ...)" nil
(quote macro
))
603 (autoload 'cl-do-pop
"cl-macs" "\
606 \(fn PLACE)" nil nil
)
608 (autoload 'remf
"cl-macs" "\
609 Remove TAG from property list PLACE.
610 PLACE may be a symbol, or any generalized variable allowed by `setf'.
611 The form returns true if TAG was found and removed, nil otherwise.
613 \(fn PLACE TAG)" nil
(quote macro
))
615 (autoload 'shiftf
"cl-macs" "\
616 Shift left among PLACEs.
617 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
618 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
620 \(fn PLACE... VAL)" nil
(quote macro
))
622 (autoload 'rotatef
"cl-macs" "\
623 Rotate left among PLACEs.
624 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
625 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
627 \(fn PLACE...)" nil
(quote macro
))
629 (autoload 'letf
"cl-macs" "\
630 Temporarily bind to PLACEs.
631 This is the analogue of `let', but with generalized variables (in the
632 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
633 VALUE, then the BODY forms are executed. On exit, either normally or
634 because of a `throw' or error, the PLACEs are set back to their original
635 values. Note that this macro is *not* available in Common Lisp.
636 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
637 the PLACE is not modified before executing BODY.
639 \(fn ((PLACE VALUE) ...) BODY...)" nil
(quote macro
))
641 (autoload 'letf
* "cl-macs" "\
642 Temporarily bind to PLACEs.
643 This is the analogue of `let*', but with generalized variables (in the
644 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
645 VALUE, then the BODY forms are executed. On exit, either normally or
646 because of a `throw' or error, the PLACEs are set back to their original
647 values. Note that this macro is *not* available in Common Lisp.
648 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
649 the PLACE is not modified before executing BODY.
651 \(fn ((PLACE VALUE) ...) BODY...)" nil
(quote macro
))
653 (autoload 'callf
"cl-macs" "\
654 Set PLACE to (FUNC PLACE ARGS...).
655 FUNC should be an unquoted function name. PLACE may be a symbol,
656 or any generalized variable allowed by `setf'.
658 \(fn FUNC PLACE ARGS...)" nil
(quote macro
))
660 (autoload 'callf2
"cl-macs" "\
661 Set PLACE to (FUNC ARG1 PLACE ARGS...).
662 Like `callf', but PLACE is the second argument of FUNC, not the first.
664 \(fn FUNC ARG1 PLACE ARGS...)" nil
(quote macro
))
666 (autoload 'define-modify-macro
"cl-macs" "\
667 Define a `setf'-like modify macro.
668 If NAME is called, it combines its PLACE argument with the other arguments
669 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
671 \(fn NAME ARGLIST FUNC &optional DOC)" nil
(quote macro
))
673 (autoload 'defstruct
"cl-macs" "\
674 Define a struct type.
675 This macro defines a new Lisp data type called NAME, which contains data
676 stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
677 copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
679 \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil
(quote macro
))
681 (autoload 'cl-struct-setf-expander
"cl-macs" "\
684 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil
)
686 (autoload 'deftype
"cl-macs" "\
687 Define NAME as a new data type.
688 The type name can then be used in `typecase', `check-type', etc.
690 \(fn NAME ARGLIST &rest BODY)" nil
(quote macro
))
692 (autoload 'typep
"cl-macs" "\
693 Check that OBJECT is of type TYPE.
694 TYPE is a Common Lisp-style type specifier.
696 \(fn OBJECT TYPE)" nil nil
)
698 (autoload 'check-type
"cl-macs" "\
699 Verify that FORM is of type TYPE; signal an error if not.
700 STRING is an optional description of the desired type.
702 \(fn FORM TYPE &optional STRING)" nil
(quote macro
))
704 (autoload 'assert
"cl-macs" "\
705 Verify that FORM returns non-nil; signal an error if not.
706 Second arg SHOW-ARGS means to include arguments of FORM in message.
707 Other args STRING and ARGS... are arguments to be passed to `error'.
708 They are not evaluated unless the assertion fails. If STRING is
709 omitted, a default message listing FORM itself is used.
711 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil
(quote macro
))
713 (autoload 'define-compiler-macro
"cl-macs" "\
714 Define a compiler-only macro.
715 This is like `defmacro', but macro expansion occurs only if the call to
716 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
717 for optimizing the way calls to FUNC are compiled; the form returned by
718 BODY should do the same thing as a call to the normal function called
719 FUNC, though possibly more efficiently. Note that, like regular macros,
720 compiler macros are expanded repeatedly until no further expansions are
721 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
722 original function call alone by declaring an initial `&whole foo' parameter
723 and then returning foo.
725 \(fn FUNC ARGS &rest BODY)" nil
(quote macro
))
727 (autoload 'compiler-macroexpand
"cl-macs" "\
734 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
735 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
736 ;;;;;; nset-difference set-difference nintersection intersection
737 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
738 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
739 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
740 ;;;;;; count position-if-not position-if position find-if-not find-if
741 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
742 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
743 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
744 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "b6529074e320e8a9f65b2461474d0c6a")
745 ;;; Generated autoloads from cl-seq.el
747 (autoload 'reduce
"cl-seq" "\
748 Reduce two-argument FUNCTION across SEQ.
750 Keywords supported: :start :end :from-end :initial-value :key
752 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil
)
754 (autoload 'fill
"cl-seq" "\
755 Fill the elements of SEQ with ITEM.
757 Keywords supported: :start :end
759 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil
)
761 (autoload 'replace
"cl-seq" "\
762 Replace the elements of SEQ1 with the elements of SEQ2.
763 SEQ1 is destructively modified, then returned.
765 Keywords supported: :start1 :end1 :start2 :end2
767 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil
)
769 (autoload 'remove
* "cl-seq" "\
770 Remove all occurrences of ITEM in SEQ.
771 This is a non-destructive function; it makes a copy of SEQ if necessary
772 to avoid corrupting the original SEQ.
774 Keywords supported: :test :test-not :key :count :start :end :from-end
776 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil
)
778 (autoload 'remove-if
"cl-seq" "\
779 Remove all items satisfying PREDICATE in SEQ.
780 This is a non-destructive function; it makes a copy of SEQ if necessary
781 to avoid corrupting the original SEQ.
783 Keywords supported: :key :count :start :end :from-end
785 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
787 (autoload 'remove-if-not
"cl-seq" "\
788 Remove all items not satisfying PREDICATE in SEQ.
789 This is a non-destructive function; it makes a copy of SEQ if necessary
790 to avoid corrupting the original SEQ.
792 Keywords supported: :key :count :start :end :from-end
794 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
796 (autoload 'delete
* "cl-seq" "\
797 Remove all occurrences of ITEM in SEQ.
798 This is a destructive function; it reuses the storage of SEQ whenever possible.
800 Keywords supported: :test :test-not :key :count :start :end :from-end
802 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil
)
804 (autoload 'delete-if
"cl-seq" "\
805 Remove all items satisfying PREDICATE in SEQ.
806 This is a destructive function; it reuses the storage of SEQ whenever possible.
808 Keywords supported: :key :count :start :end :from-end
810 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
812 (autoload 'delete-if-not
"cl-seq" "\
813 Remove all items not satisfying PREDICATE in SEQ.
814 This is a destructive function; it reuses the storage of SEQ whenever possible.
816 Keywords supported: :key :count :start :end :from-end
818 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
820 (autoload 'remove-duplicates
"cl-seq" "\
821 Return a copy of SEQ with all duplicate elements removed.
823 Keywords supported: :test :test-not :key :start :end :from-end
825 \(fn SEQ [KEYWORD VALUE]...)" nil nil
)
827 (autoload 'delete-duplicates
"cl-seq" "\
828 Remove all duplicate elements from SEQ (destructively).
830 Keywords supported: :test :test-not :key :start :end :from-end
832 \(fn SEQ [KEYWORD VALUE]...)" nil nil
)
834 (autoload 'substitute
"cl-seq" "\
835 Substitute NEW for OLD in SEQ.
836 This is a non-destructive function; it makes a copy of SEQ if necessary
837 to avoid corrupting the original SEQ.
839 Keywords supported: :test :test-not :key :count :start :end :from-end
841 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil
)
843 (autoload 'substitute-if
"cl-seq" "\
844 Substitute NEW for all items satisfying PREDICATE in SEQ.
845 This is a non-destructive function; it makes a copy of SEQ if necessary
846 to avoid corrupting the original SEQ.
848 Keywords supported: :key :count :start :end :from-end
850 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
852 (autoload 'substitute-if-not
"cl-seq" "\
853 Substitute NEW for all items not satisfying PREDICATE in SEQ.
854 This is a non-destructive function; it makes a copy of SEQ if necessary
855 to avoid corrupting the original SEQ.
857 Keywords supported: :key :count :start :end :from-end
859 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
861 (autoload 'nsubstitute
"cl-seq" "\
862 Substitute NEW for OLD in SEQ.
863 This is a destructive function; it reuses the storage of SEQ whenever possible.
865 Keywords supported: :test :test-not :key :count :start :end :from-end
867 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil
)
869 (autoload 'nsubstitute-if
"cl-seq" "\
870 Substitute NEW for all items satisfying PREDICATE in SEQ.
871 This is a destructive function; it reuses the storage of SEQ whenever possible.
873 Keywords supported: :key :count :start :end :from-end
875 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
877 (autoload 'nsubstitute-if-not
"cl-seq" "\
878 Substitute NEW for all items not satisfying PREDICATE in SEQ.
879 This is a destructive function; it reuses the storage of SEQ whenever possible.
881 Keywords supported: :key :count :start :end :from-end
883 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
885 (autoload 'find
"cl-seq" "\
886 Find the first occurrence of ITEM in SEQ.
887 Return the matching ITEM, or nil if not found.
889 Keywords supported: :test :test-not :key :start :end :from-end
891 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil
)
893 (autoload 'find-if
"cl-seq" "\
894 Find the first item satisfying PREDICATE in SEQ.
895 Return the matching item, or nil if not found.
897 Keywords supported: :key :start :end :from-end
899 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
901 (autoload 'find-if-not
"cl-seq" "\
902 Find the first item not satisfying PREDICATE in SEQ.
903 Return the matching item, or nil if not found.
905 Keywords supported: :key :start :end :from-end
907 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
909 (autoload 'position
"cl-seq" "\
910 Find the first occurrence of ITEM in SEQ.
911 Return the index of the matching item, or nil if not found.
913 Keywords supported: :test :test-not :key :start :end :from-end
915 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil
)
917 (autoload 'position-if
"cl-seq" "\
918 Find the first item satisfying PREDICATE in SEQ.
919 Return the index of the matching item, or nil if not found.
921 Keywords supported: :key :start :end :from-end
923 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
925 (autoload 'position-if-not
"cl-seq" "\
926 Find the first item not satisfying PREDICATE in SEQ.
927 Return the index of the matching item, or nil if not found.
929 Keywords supported: :key :start :end :from-end
931 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
933 (autoload 'count
"cl-seq" "\
934 Count the number of occurrences of ITEM in SEQ.
936 Keywords supported: :test :test-not :key :start :end
938 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil
)
940 (autoload 'count-if
"cl-seq" "\
941 Count the number of items satisfying PREDICATE in SEQ.
943 Keywords supported: :key :start :end
945 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
947 (autoload 'count-if-not
"cl-seq" "\
948 Count the number of items not satisfying PREDICATE in SEQ.
950 Keywords supported: :key :start :end
952 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil
)
954 (autoload 'mismatch
"cl-seq" "\
955 Compare SEQ1 with SEQ2, return index of first mismatching element.
956 Return nil if the sequences match. If one sequence is a prefix of the
957 other, the return value indicates the end of the shorter sequence.
959 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
961 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil
)
963 (autoload 'search
"cl-seq" "\
964 Search for SEQ1 as a subsequence of SEQ2.
965 Return the index of the leftmost element of the first match found;
966 return nil if there are no matches.
968 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
970 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil
)
972 (autoload 'sort
* "cl-seq" "\
973 Sort the argument SEQ according to PREDICATE.
974 This is a destructive function; it reuses the storage of SEQ if possible.
976 Keywords supported: :key
978 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil
)
980 (autoload 'stable-sort
"cl-seq" "\
981 Sort the argument SEQ stably according to PREDICATE.
982 This is a destructive function; it reuses the storage of SEQ if possible.
984 Keywords supported: :key
986 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil
)
988 (autoload 'merge
"cl-seq" "\
989 Destructively merge the two sequences to produce a new sequence.
990 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
991 sequences, and PREDICATE is a `less-than' predicate on the elements.
993 Keywords supported: :key
995 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil
)
997 (autoload 'member
* "cl-seq" "\
998 Find the first occurrence of ITEM in LIST.
999 Return the sublist of LIST whose car is ITEM.
1001 Keywords supported: :test :test-not :key
1003 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil
)
1005 (autoload 'member-if
"cl-seq" "\
1006 Find the first item satisfying PREDICATE in LIST.
1007 Return the sublist of LIST whose car matches.
1009 Keywords supported: :key
1011 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1013 (autoload 'member-if-not
"cl-seq" "\
1014 Find the first item not satisfying PREDICATE in LIST.
1015 Return the sublist of LIST whose car matches.
1017 Keywords supported: :key
1019 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1021 (autoload 'cl-adjoin
"cl-seq" "\
1024 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil
)
1026 (autoload 'assoc
* "cl-seq" "\
1027 Find the first item whose car matches ITEM in LIST.
1029 Keywords supported: :test :test-not :key
1031 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil
)
1033 (autoload 'assoc-if
"cl-seq" "\
1034 Find the first item whose car satisfies PREDICATE in LIST.
1036 Keywords supported: :key
1038 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1040 (autoload 'assoc-if-not
"cl-seq" "\
1041 Find the first item whose car does not satisfy PREDICATE in LIST.
1043 Keywords supported: :key
1045 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1047 (autoload 'rassoc
* "cl-seq" "\
1048 Find the first item whose cdr matches ITEM in LIST.
1050 Keywords supported: :test :test-not :key
1052 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil
)
1054 (autoload 'rassoc-if
"cl-seq" "\
1055 Find the first item whose cdr satisfies PREDICATE in LIST.
1057 Keywords supported: :key
1059 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1061 (autoload 'rassoc-if-not
"cl-seq" "\
1062 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1064 Keywords supported: :key
1066 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil
)
1068 (autoload 'union
"cl-seq" "\
1069 Combine LIST1 and LIST2 using a set-union operation.
1070 The result list contains all items that appear in either LIST1 or LIST2.
1071 This is a non-destructive function; it makes a copy of the data if necessary
1072 to avoid corrupting the original LIST1 and LIST2.
1074 Keywords supported: :test :test-not :key
1076 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1078 (autoload 'nunion
"cl-seq" "\
1079 Combine LIST1 and LIST2 using a set-union operation.
1080 The result list contains all items that appear in either LIST1 or LIST2.
1081 This is a destructive function; it reuses the storage of LIST1 and LIST2
1084 Keywords supported: :test :test-not :key
1086 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1088 (autoload 'intersection
"cl-seq" "\
1089 Combine LIST1 and LIST2 using a set-intersection operation.
1090 The result list contains all items that appear in both LIST1 and LIST2.
1091 This is a non-destructive function; it makes a copy of the data if necessary
1092 to avoid corrupting the original LIST1 and LIST2.
1094 Keywords supported: :test :test-not :key
1096 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1098 (autoload 'nintersection
"cl-seq" "\
1099 Combine LIST1 and LIST2 using a set-intersection operation.
1100 The result list contains all items that appear in both LIST1 and LIST2.
1101 This is a destructive function; it reuses the storage of LIST1 and LIST2
1104 Keywords supported: :test :test-not :key
1106 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1108 (autoload 'set-difference
"cl-seq" "\
1109 Combine LIST1 and LIST2 using a set-difference operation.
1110 The result list contains all items that appear in LIST1 but not LIST2.
1111 This is a non-destructive function; it makes a copy of the data if necessary
1112 to avoid corrupting the original LIST1 and LIST2.
1114 Keywords supported: :test :test-not :key
1116 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1118 (autoload 'nset-difference
"cl-seq" "\
1119 Combine LIST1 and LIST2 using a set-difference operation.
1120 The result list contains all items that appear in LIST1 but not LIST2.
1121 This is a destructive function; it reuses the storage of LIST1 and LIST2
1124 Keywords supported: :test :test-not :key
1126 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1128 (autoload 'set-exclusive-or
"cl-seq" "\
1129 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1130 The result list contains all items that appear in exactly one of LIST1, LIST2.
1131 This is a non-destructive function; it makes a copy of the data if necessary
1132 to avoid corrupting the original LIST1 and LIST2.
1134 Keywords supported: :test :test-not :key
1136 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1138 (autoload 'nset-exclusive-or
"cl-seq" "\
1139 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1140 The result list contains all items that appear in exactly one of LIST1, LIST2.
1141 This is a destructive function; it reuses the storage of LIST1 and LIST2
1144 Keywords supported: :test :test-not :key
1146 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1148 (autoload 'subsetp
"cl-seq" "\
1149 Return true if LIST1 is a subset of LIST2.
1150 I.e., if every element of LIST1 also appears in LIST2.
1152 Keywords supported: :test :test-not :key
1154 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil
)
1156 (autoload 'subst-if
"cl-seq" "\
1157 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1158 Return a copy of TREE with all matching elements replaced by NEW.
1160 Keywords supported: :key
1162 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil
)
1164 (autoload 'subst-if-not
"cl-seq" "\
1165 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1166 Return a copy of TREE with all non-matching elements replaced by NEW.
1168 Keywords supported: :key
1170 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil
)
1172 (autoload 'nsubst
"cl-seq" "\
1173 Substitute NEW for OLD everywhere in TREE (destructively).
1174 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1177 Keywords supported: :test :test-not :key
1179 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil
)
1181 (autoload 'nsubst-if
"cl-seq" "\
1182 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1183 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1185 Keywords supported: :key
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil
)
1189 (autoload 'nsubst-if-not
"cl-seq" "\
1190 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1191 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1193 Keywords supported: :key
1195 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil
)
1197 (autoload 'sublis
"cl-seq" "\
1198 Perform substitutions indicated by ALIST in TREE (non-destructively).
1199 Return a copy of TREE with all matching elements replaced.
1201 Keywords supported: :test :test-not :key
1203 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil
)
1205 (autoload 'nsublis
"cl-seq" "\
1206 Perform substitutions indicated by ALIST in TREE (destructively).
1207 Any matching element of TREE is changed via a call to `setcar'.
1209 Keywords supported: :test :test-not :key
1211 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil
)
1213 (autoload 'tree-equal
"cl-seq" "\
1214 Return t if trees TREE1 and TREE2 have `eql' leaves.
1215 Atoms are compared by `eql'; cons cells are compared recursively.
1217 Keywords supported: :test :test-not :key
1219 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil
)
1224 ;; version-control: never
1225 ;; no-byte-compile: t
1226 ;; no-update-autoloads: t
1229 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1230 ;;; cl-loaddefs.el ends here