1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 86,87,93,94,97,98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
28 #include "region-cache.h"
30 #include "blockinput.h"
31 #include "intervals.h"
33 #include <sys/types.h>
36 #define min(a, b) ((a) < (b) ? (a) : (b))
37 #define max(a, b) ((a) > (b) ? (a) : (b))
39 #define REGEXP_CACHE_SIZE 20
41 /* If the regexp is non-nil, then the buffer contains the compiled form
42 of that regexp, suitable for searching. */
45 struct regexp_cache
*next
;
47 struct re_pattern_buffer buf
;
49 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 /* The instances of that struct. */
54 struct regexp_cache searchbufs
[REGEXP_CACHE_SIZE
];
56 /* The head of the linked list; points to the most recently used buffer. */
57 struct regexp_cache
*searchbuf_head
;
60 /* Every call to re_match, etc., must pass &search_regs as the regs
61 argument unless you can show it is unnecessary (i.e., if re_match
62 is certainly going to be called again before region-around-match
65 Since the registers are now dynamically allocated, we need to make
66 sure not to refer to the Nth register before checking that it has
67 been allocated by checking search_regs.num_regs.
69 The regex code keeps track of whether it has allocated the search
70 buffer using bits in the re_pattern_buffer. This means that whenever
71 you compile a new pattern, it completely forgets whether it has
72 allocated any registers, and will allocate new registers the next
73 time you call a searching or matching function. Therefore, we need
74 to call re_set_registers after compiling a new pattern or after
75 setting the match registers, so that the regex functions will be
76 able to free or re-allocate it properly. */
77 static struct re_registers search_regs
;
79 /* The buffer in which the last search was performed, or
80 Qt if the last search was done in a string;
81 Qnil if no searching has been done yet. */
82 static Lisp_Object last_thing_searched
;
84 /* error condition signaled when regexp compile_pattern fails */
86 Lisp_Object Qinvalid_regexp
;
88 static void set_search_regs ();
89 static void save_search_regs ();
90 static int simple_search ();
91 static int boyer_moore ();
92 static int search_buffer ();
97 error ("Stack overflow in regexp matcher");
100 /* Compile a regexp and signal a Lisp error if anything goes wrong.
101 PATTERN is the pattern to compile.
102 CP is the place to put the result.
103 TRANSLATE is a translation table for ignoring case, or nil for none.
104 REGP is the structure that says where to store the "register"
105 values that will result from matching this pattern.
106 If it is 0, we should compile the pattern not to record any
107 subexpression bounds.
108 POSIX is nonzero if we want full backtracking (POSIX style)
109 for this pattern. 0 means backtrack only enough to get a valid match.
110 MULTIBYTE is nonzero if we want to handle multibyte characters in
111 PATTERN. 0 means all multibyte characters are recognized just as
112 sequences of binary data. */
115 compile_pattern_1 (cp
, pattern
, translate
, regp
, posix
, multibyte
)
116 struct regexp_cache
*cp
;
118 Lisp_Object translate
;
119 struct re_registers
*regp
;
123 unsigned char *raw_pattern
;
124 int raw_pattern_size
;
128 /* MULTIBYTE says whether the text to be searched is multibyte.
129 We must convert PATTERN to match that, or we will not really
130 find things right. */
132 if (multibyte
== STRING_MULTIBYTE (pattern
))
134 raw_pattern
= (unsigned char *) XSTRING (pattern
)->data
;
135 raw_pattern_size
= STRING_BYTES (XSTRING (pattern
));
139 raw_pattern_size
= count_size_as_multibyte (XSTRING (pattern
)->data
,
140 XSTRING (pattern
)->size
);
141 raw_pattern
= (unsigned char *) alloca (raw_pattern_size
+ 1);
142 copy_text (XSTRING (pattern
)->data
, raw_pattern
,
143 XSTRING (pattern
)->size
, 0, 1);
147 /* Converting multibyte to single-byte.
149 ??? Perhaps this conversion should be done in a special way
150 by subtracting nonascii-insert-offset from each non-ASCII char,
151 so that only the multibyte chars which really correspond to
152 the chosen single-byte character set can possibly match. */
153 raw_pattern_size
= XSTRING (pattern
)->size
;
154 raw_pattern
= (unsigned char *) alloca (raw_pattern_size
+ 1);
155 copy_text (XSTRING (pattern
)->data
, raw_pattern
,
156 STRING_BYTES (XSTRING (pattern
)), 1, 0);
160 cp
->buf
.translate
= (! NILP (translate
) ? translate
: make_number (0));
162 cp
->buf
.multibyte
= multibyte
;
164 old
= re_set_syntax (RE_SYNTAX_EMACS
165 | (posix
? 0 : RE_NO_POSIX_BACKTRACKING
));
166 val
= (char *) re_compile_pattern ((char *)raw_pattern
,
167 raw_pattern_size
, &cp
->buf
);
171 Fsignal (Qinvalid_regexp
, Fcons (build_string (val
), Qnil
));
173 cp
->regexp
= Fcopy_sequence (pattern
);
176 /* Shrink each compiled regexp buffer in the cache
177 to the size actually used right now.
178 This is called from garbage collection. */
181 shrink_regexp_cache ()
183 struct regexp_cache
*cp
, **cpp
;
185 for (cp
= searchbuf_head
; cp
!= 0; cp
= cp
->next
)
187 cp
->buf
.allocated
= cp
->buf
.used
;
189 = (unsigned char *) realloc (cp
->buf
.buffer
, cp
->buf
.used
);
193 /* Compile a regexp if necessary, but first check to see if there's one in
195 PATTERN is the pattern to compile.
196 TRANSLATE is a translation table for ignoring case, or nil for none.
197 REGP is the structure that says where to store the "register"
198 values that will result from matching this pattern.
199 If it is 0, we should compile the pattern not to record any
200 subexpression bounds.
201 POSIX is nonzero if we want full backtracking (POSIX style)
202 for this pattern. 0 means backtrack only enough to get a valid match. */
204 struct re_pattern_buffer
*
205 compile_pattern (pattern
, regp
, translate
, posix
, multibyte
)
207 struct re_registers
*regp
;
208 Lisp_Object translate
;
209 int posix
, multibyte
;
211 struct regexp_cache
*cp
, **cpp
;
213 for (cpp
= &searchbuf_head
; ; cpp
= &cp
->next
)
216 /* Entries are initialized to nil, and may be set to nil by
217 compile_pattern_1 if the pattern isn't valid. Don't apply
218 XSTRING in those cases. However, compile_pattern_1 is only
219 applied to the cache entry we pick here to reuse. So nil
220 should never appear before a non-nil entry. */
221 if (NILP (cp
->regexp
))
223 if (XSTRING (cp
->regexp
)->size
== XSTRING (pattern
)->size
224 && !NILP (Fstring_equal (cp
->regexp
, pattern
))
225 && EQ (cp
->buf
.translate
, (! NILP (translate
) ? translate
: make_number (0)))
226 && cp
->posix
== posix
227 && cp
->buf
.multibyte
== multibyte
)
230 /* If we're at the end of the cache, compile into the nil cell
231 we found, or the last (least recently used) cell with a
236 compile_pattern_1 (cp
, pattern
, translate
, regp
, posix
, multibyte
);
241 /* When we get here, cp (aka *cpp) contains the compiled pattern,
242 either because we found it in the cache or because we just compiled it.
243 Move it to the front of the queue to mark it as most recently used. */
245 cp
->next
= searchbuf_head
;
248 /* Advise the searching functions about the space we have allocated
249 for register data. */
251 re_set_registers (&cp
->buf
, regp
, regp
->num_regs
, regp
->start
, regp
->end
);
256 /* Error condition used for failing searches */
257 Lisp_Object Qsearch_failed
;
263 Fsignal (Qsearch_failed
, Fcons (arg
, Qnil
));
268 looking_at_1 (string
, posix
)
273 unsigned char *p1
, *p2
;
276 struct re_pattern_buffer
*bufp
;
278 if (running_asynch_code
)
281 CHECK_STRING (string
, 0);
282 bufp
= compile_pattern (string
, &search_regs
,
283 (!NILP (current_buffer
->case_fold_search
)
284 ? DOWNCASE_TABLE
: Qnil
),
286 !NILP (current_buffer
->enable_multibyte_characters
));
289 QUIT
; /* Do a pending quit right away, to avoid paradoxical behavior */
291 /* Get pointers and sizes of the two strings
292 that make up the visible portion of the buffer. */
295 s1
= GPT_BYTE
- BEGV_BYTE
;
297 s2
= ZV_BYTE
- GPT_BYTE
;
301 s2
= ZV_BYTE
- BEGV_BYTE
;
306 s1
= ZV_BYTE
- BEGV_BYTE
;
310 re_match_object
= Qnil
;
312 i
= re_match_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
313 PT_BYTE
- BEGV_BYTE
, &search_regs
,
314 ZV_BYTE
- BEGV_BYTE
);
320 val
= (0 <= i
? Qt
: Qnil
);
322 for (i
= 0; i
< search_regs
.num_regs
; i
++)
323 if (search_regs
.start
[i
] >= 0)
326 = BYTE_TO_CHAR (search_regs
.start
[i
] + BEGV_BYTE
);
328 = BYTE_TO_CHAR (search_regs
.end
[i
] + BEGV_BYTE
);
330 XSETBUFFER (last_thing_searched
, current_buffer
);
334 DEFUN ("looking-at", Flooking_at
, Slooking_at
, 1, 1, 0,
335 "Return t if text after point matches regular expression REGEXP.\n\
336 This function modifies the match data that `match-beginning',\n\
337 `match-end' and `match-data' access; save and restore the match\n\
338 data if you want to preserve them.")
342 return looking_at_1 (regexp
, 0);
345 DEFUN ("posix-looking-at", Fposix_looking_at
, Sposix_looking_at
, 1, 1, 0,
346 "Return t if text after point matches regular expression REGEXP.\n\
347 Find the longest match, in accord with Posix regular expression rules.\n\
348 This function modifies the match data that `match-beginning',\n\
349 `match-end' and `match-data' access; save and restore the match\n\
350 data if you want to preserve them.")
354 return looking_at_1 (regexp
, 1);
358 string_match_1 (regexp
, string
, start
, posix
)
359 Lisp_Object regexp
, string
, start
;
363 struct re_pattern_buffer
*bufp
;
367 if (running_asynch_code
)
370 CHECK_STRING (regexp
, 0);
371 CHECK_STRING (string
, 1);
374 pos
= 0, pos_byte
= 0;
377 int len
= XSTRING (string
)->size
;
379 CHECK_NUMBER (start
, 2);
381 if (pos
< 0 && -pos
<= len
)
383 else if (0 > pos
|| pos
> len
)
384 args_out_of_range (string
, start
);
385 pos_byte
= string_char_to_byte (string
, pos
);
388 bufp
= compile_pattern (regexp
, &search_regs
,
389 (!NILP (current_buffer
->case_fold_search
)
390 ? DOWNCASE_TABLE
: Qnil
),
392 STRING_MULTIBYTE (string
));
394 re_match_object
= string
;
396 val
= re_search (bufp
, (char *) XSTRING (string
)->data
,
397 STRING_BYTES (XSTRING (string
)), pos_byte
,
398 STRING_BYTES (XSTRING (string
)) - pos_byte
,
401 last_thing_searched
= Qt
;
404 if (val
< 0) return Qnil
;
406 for (i
= 0; i
< search_regs
.num_regs
; i
++)
407 if (search_regs
.start
[i
] >= 0)
410 = string_byte_to_char (string
, search_regs
.start
[i
]);
412 = string_byte_to_char (string
, search_regs
.end
[i
]);
415 return make_number (string_byte_to_char (string
, val
));
418 DEFUN ("string-match", Fstring_match
, Sstring_match
, 2, 3, 0,
419 "Return index of start of first match for REGEXP in STRING, or nil.\n\
420 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
421 If third arg START is non-nil, start search at that index in STRING.\n\
422 For index of first char beyond the match, do (match-end 0).\n\
423 `match-end' and `match-beginning' also give indices of substrings\n\
424 matched by parenthesis constructs in the pattern.")
425 (regexp
, string
, start
)
426 Lisp_Object regexp
, string
, start
;
428 return string_match_1 (regexp
, string
, start
, 0);
431 DEFUN ("posix-string-match", Fposix_string_match
, Sposix_string_match
, 2, 3, 0,
432 "Return index of start of first match for REGEXP in STRING, or nil.\n\
433 Find the longest match, in accord with Posix regular expression rules.\n\
434 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
435 If third arg START is non-nil, start search at that index in STRING.\n\
436 For index of first char beyond the match, do (match-end 0).\n\
437 `match-end' and `match-beginning' also give indices of substrings\n\
438 matched by parenthesis constructs in the pattern.")
439 (regexp
, string
, start
)
440 Lisp_Object regexp
, string
, start
;
442 return string_match_1 (regexp
, string
, start
, 1);
445 /* Match REGEXP against STRING, searching all of STRING,
446 and return the index of the match, or negative on failure.
447 This does not clobber the match data. */
450 fast_string_match (regexp
, string
)
451 Lisp_Object regexp
, string
;
454 struct re_pattern_buffer
*bufp
;
456 bufp
= compile_pattern (regexp
, 0, Qnil
,
457 0, STRING_MULTIBYTE (string
));
459 re_match_object
= string
;
461 val
= re_search (bufp
, (char *) XSTRING (string
)->data
,
462 STRING_BYTES (XSTRING (string
)), 0,
463 STRING_BYTES (XSTRING (string
)), 0);
468 /* Match REGEXP against STRING, searching all of STRING ignoring case,
469 and return the index of the match, or negative on failure.
470 This does not clobber the match data.
471 We assume that STRING contains single-byte characters. */
473 extern Lisp_Object Vascii_downcase_table
;
476 fast_c_string_match_ignore_case (regexp
, string
)
481 struct re_pattern_buffer
*bufp
;
482 int len
= strlen (string
);
484 regexp
= string_make_unibyte (regexp
);
485 re_match_object
= Qt
;
486 bufp
= compile_pattern (regexp
, 0,
487 Vascii_downcase_table
, 0,
490 val
= re_search (bufp
, string
, len
, 0, len
, 0);
495 /* The newline cache: remembering which sections of text have no newlines. */
497 /* If the user has requested newline caching, make sure it's on.
498 Otherwise, make sure it's off.
499 This is our cheezy way of associating an action with the change of
500 state of a buffer-local variable. */
502 newline_cache_on_off (buf
)
505 if (NILP (buf
->cache_long_line_scans
))
507 /* It should be off. */
508 if (buf
->newline_cache
)
510 free_region_cache (buf
->newline_cache
);
511 buf
->newline_cache
= 0;
516 /* It should be on. */
517 if (buf
->newline_cache
== 0)
518 buf
->newline_cache
= new_region_cache ();
523 /* Search for COUNT instances of the character TARGET between START and END.
525 If COUNT is positive, search forwards; END must be >= START.
526 If COUNT is negative, search backwards for the -COUNTth instance;
527 END must be <= START.
528 If COUNT is zero, do anything you please; run rogue, for all I care.
530 If END is zero, use BEGV or ZV instead, as appropriate for the
531 direction indicated by COUNT.
533 If we find COUNT instances, set *SHORTAGE to zero, and return the
534 position after the COUNTth match. Note that for reverse motion
535 this is not the same as the usual convention for Emacs motion commands.
537 If we don't find COUNT instances before reaching END, set *SHORTAGE
538 to the number of TARGETs left unfound, and return END.
540 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
541 except when inside redisplay. */
544 scan_buffer (target
, start
, end
, count
, shortage
, allow_quit
)
551 struct region_cache
*newline_cache
;
562 if (! end
) end
= BEGV
;
565 newline_cache_on_off (current_buffer
);
566 newline_cache
= current_buffer
->newline_cache
;
571 immediate_quit
= allow_quit
;
576 /* Our innermost scanning loop is very simple; it doesn't know
577 about gaps, buffer ends, or the newline cache. ceiling is
578 the position of the last character before the next such
579 obstacle --- the last character the dumb search loop should
581 int ceiling_byte
= CHAR_TO_BYTE (end
) - 1;
582 int start_byte
= CHAR_TO_BYTE (start
);
585 /* If we're looking for a newline, consult the newline cache
586 to see where we can avoid some scanning. */
587 if (target
== '\n' && newline_cache
)
591 while (region_cache_forward
592 (current_buffer
, newline_cache
, start_byte
, &next_change
))
593 start_byte
= next_change
;
594 immediate_quit
= allow_quit
;
596 /* START should never be after END. */
597 if (start_byte
> ceiling_byte
)
598 start_byte
= ceiling_byte
;
600 /* Now the text after start is an unknown region, and
601 next_change is the position of the next known region. */
602 ceiling_byte
= min (next_change
- 1, ceiling_byte
);
605 /* The dumb loop can only scan text stored in contiguous
606 bytes. BUFFER_CEILING_OF returns the last character
607 position that is contiguous, so the ceiling is the
608 position after that. */
609 tem
= BUFFER_CEILING_OF (start_byte
);
610 ceiling_byte
= min (tem
, ceiling_byte
);
613 /* The termination address of the dumb loop. */
614 register unsigned char *ceiling_addr
615 = BYTE_POS_ADDR (ceiling_byte
) + 1;
616 register unsigned char *cursor
617 = BYTE_POS_ADDR (start_byte
);
618 unsigned char *base
= cursor
;
620 while (cursor
< ceiling_addr
)
622 unsigned char *scan_start
= cursor
;
625 while (*cursor
!= target
&& ++cursor
< ceiling_addr
)
628 /* If we're looking for newlines, cache the fact that
629 the region from start to cursor is free of them. */
630 if (target
== '\n' && newline_cache
)
631 know_region_cache (current_buffer
, newline_cache
,
632 start_byte
+ scan_start
- base
,
633 start_byte
+ cursor
- base
);
635 /* Did we find the target character? */
636 if (cursor
< ceiling_addr
)
641 return BYTE_TO_CHAR (start_byte
+ cursor
- base
+ 1);
647 start
= BYTE_TO_CHAR (start_byte
+ cursor
- base
);
653 /* The last character to check before the next obstacle. */
654 int ceiling_byte
= CHAR_TO_BYTE (end
);
655 int start_byte
= CHAR_TO_BYTE (start
);
658 /* Consult the newline cache, if appropriate. */
659 if (target
== '\n' && newline_cache
)
663 while (region_cache_backward
664 (current_buffer
, newline_cache
, start_byte
, &next_change
))
665 start_byte
= next_change
;
666 immediate_quit
= allow_quit
;
668 /* Start should never be at or before end. */
669 if (start_byte
<= ceiling_byte
)
670 start_byte
= ceiling_byte
+ 1;
672 /* Now the text before start is an unknown region, and
673 next_change is the position of the next known region. */
674 ceiling_byte
= max (next_change
, ceiling_byte
);
677 /* Stop scanning before the gap. */
678 tem
= BUFFER_FLOOR_OF (start_byte
- 1);
679 ceiling_byte
= max (tem
, ceiling_byte
);
682 /* The termination address of the dumb loop. */
683 register unsigned char *ceiling_addr
= BYTE_POS_ADDR (ceiling_byte
);
684 register unsigned char *cursor
= BYTE_POS_ADDR (start_byte
- 1);
685 unsigned char *base
= cursor
;
687 while (cursor
>= ceiling_addr
)
689 unsigned char *scan_start
= cursor
;
691 while (*cursor
!= target
&& --cursor
>= ceiling_addr
)
694 /* If we're looking for newlines, cache the fact that
695 the region from after the cursor to start is free of them. */
696 if (target
== '\n' && newline_cache
)
697 know_region_cache (current_buffer
, newline_cache
,
698 start_byte
+ cursor
- base
,
699 start_byte
+ scan_start
- base
);
701 /* Did we find the target character? */
702 if (cursor
>= ceiling_addr
)
707 return BYTE_TO_CHAR (start_byte
+ cursor
- base
);
713 start
= BYTE_TO_CHAR (start_byte
+ cursor
- base
);
719 *shortage
= count
* direction
;
723 /* Search for COUNT instances of a line boundary, which means either a
724 newline or (if selective display enabled) a carriage return.
725 Start at START. If COUNT is negative, search backwards.
727 We report the resulting position by calling TEMP_SET_PT_BOTH.
729 If we find COUNT instances. we position after (always after,
730 even if scanning backwards) the COUNTth match, and return 0.
732 If we don't find COUNT instances before reaching the end of the
733 buffer (or the beginning, if scanning backwards), we return
734 the number of line boundaries left unfound, and position at
735 the limit we bumped up against.
737 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
738 except in special cases. */
741 scan_newline (start
, start_byte
, limit
, limit_byte
, count
, allow_quit
)
742 int start
, start_byte
;
743 int limit
, limit_byte
;
747 int direction
= ((count
> 0) ? 1 : -1);
749 register unsigned char *cursor
;
752 register int ceiling
;
753 register unsigned char *ceiling_addr
;
755 int old_immediate_quit
= immediate_quit
;
757 /* If we are not in selective display mode,
758 check only for newlines. */
759 int selective_display
= (!NILP (current_buffer
->selective_display
)
760 && !INTEGERP (current_buffer
->selective_display
));
762 /* The code that follows is like scan_buffer
763 but checks for either newline or carriage return. */
768 start_byte
= CHAR_TO_BYTE (start
);
772 while (start_byte
< limit_byte
)
774 ceiling
= BUFFER_CEILING_OF (start_byte
);
775 ceiling
= min (limit_byte
- 1, ceiling
);
776 ceiling_addr
= BYTE_POS_ADDR (ceiling
) + 1;
777 base
= (cursor
= BYTE_POS_ADDR (start_byte
));
780 while (*cursor
!= '\n' && ++cursor
!= ceiling_addr
)
783 if (cursor
!= ceiling_addr
)
787 immediate_quit
= old_immediate_quit
;
788 start_byte
= start_byte
+ cursor
- base
+ 1;
789 start
= BYTE_TO_CHAR (start_byte
);
790 TEMP_SET_PT_BOTH (start
, start_byte
);
794 if (++cursor
== ceiling_addr
)
800 start_byte
+= cursor
- base
;
805 while (start_byte
> limit_byte
)
807 ceiling
= BUFFER_FLOOR_OF (start_byte
- 1);
808 ceiling
= max (limit_byte
, ceiling
);
809 ceiling_addr
= BYTE_POS_ADDR (ceiling
) - 1;
810 base
= (cursor
= BYTE_POS_ADDR (start_byte
- 1) + 1);
813 while (--cursor
!= ceiling_addr
&& *cursor
!= '\n')
816 if (cursor
!= ceiling_addr
)
820 immediate_quit
= old_immediate_quit
;
821 /* Return the position AFTER the match we found. */
822 start_byte
= start_byte
+ cursor
- base
+ 1;
823 start
= BYTE_TO_CHAR (start_byte
);
824 TEMP_SET_PT_BOTH (start
, start_byte
);
831 /* Here we add 1 to compensate for the last decrement
832 of CURSOR, which took it past the valid range. */
833 start_byte
+= cursor
- base
+ 1;
837 TEMP_SET_PT_BOTH (limit
, limit_byte
);
838 immediate_quit
= old_immediate_quit
;
840 return count
* direction
;
844 find_next_newline_no_quit (from
, cnt
)
845 register int from
, cnt
;
847 return scan_buffer ('\n', from
, 0, cnt
, (int *) 0, 0);
850 /* Like find_next_newline, but returns position before the newline,
851 not after, and only search up to TO. This isn't just
852 find_next_newline (...)-1, because you might hit TO. */
855 find_before_next_newline (from
, to
, cnt
)
859 int pos
= scan_buffer ('\n', from
, to
, cnt
, &shortage
, 1);
867 /* Subroutines of Lisp buffer search functions. */
870 search_command (string
, bound
, noerror
, count
, direction
, RE
, posix
)
871 Lisp_Object string
, bound
, noerror
, count
;
882 CHECK_NUMBER (count
, 3);
886 CHECK_STRING (string
, 0);
890 lim
= ZV
, lim_byte
= ZV_BYTE
;
892 lim
= BEGV
, lim_byte
= BEGV_BYTE
;
896 CHECK_NUMBER_COERCE_MARKER (bound
, 1);
898 if (n
> 0 ? lim
< PT
: lim
> PT
)
899 error ("Invalid search bound (wrong side of point)");
901 lim
= ZV
, lim_byte
= ZV_BYTE
;
903 lim
= BEGV
, lim_byte
= BEGV_BYTE
;
905 lim_byte
= CHAR_TO_BYTE (lim
);
908 np
= search_buffer (string
, PT
, PT_BYTE
, lim
, lim_byte
, n
, RE
,
909 (!NILP (current_buffer
->case_fold_search
)
910 ? current_buffer
->case_canon_table
912 (!NILP (current_buffer
->case_fold_search
)
913 ? current_buffer
->case_eqv_table
919 return signal_failure (string
);
920 if (!EQ (noerror
, Qt
))
922 if (lim
< BEGV
|| lim
> ZV
)
924 SET_PT_BOTH (lim
, lim_byte
);
926 #if 0 /* This would be clean, but maybe programs depend on
927 a value of nil here. */
935 if (np
< BEGV
|| np
> ZV
)
940 return make_number (np
);
943 /* Return 1 if REGEXP it matches just one constant string. */
946 trivial_regexp_p (regexp
)
949 int len
= STRING_BYTES (XSTRING (regexp
));
950 unsigned char *s
= XSTRING (regexp
)->data
;
956 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
963 case '|': case '(': case ')': case '`': case '\'': case 'b':
964 case 'B': case '<': case '>': case 'w': case 'W': case 's':
966 case 'c': case 'C': /* for categoryspec and notcategoryspec */
967 case '1': case '2': case '3': case '4': case '5':
968 case '6': case '7': case '8': case '9':
976 /* Search for the n'th occurrence of STRING in the current buffer,
977 starting at position POS and stopping at position LIM,
978 treating STRING as a literal string if RE is false or as
979 a regular expression if RE is true.
981 If N is positive, searching is forward and LIM must be greater than POS.
982 If N is negative, searching is backward and LIM must be less than POS.
984 Returns -x if x occurrences remain to be found (x > 0),
985 or else the position at the beginning of the Nth occurrence
986 (if searching backward) or the end (if searching forward).
988 POSIX is nonzero if we want full backtracking (POSIX style)
989 for this pattern. 0 means backtrack only enough to get a valid match. */
991 #define TRANSLATE(out, trt, d) \
997 temp = Faref (trt, make_number (d)); \
998 if (INTEGERP (temp)) \
1009 search_buffer (string
, pos
, pos_byte
, lim
, lim_byte
, n
,
1010 RE
, trt
, inverse_trt
, posix
)
1019 Lisp_Object inverse_trt
;
1022 int len
= XSTRING (string
)->size
;
1023 int len_byte
= STRING_BYTES (XSTRING (string
));
1026 if (running_asynch_code
)
1027 save_search_regs ();
1029 /* Searching 0 times means don't move. */
1030 /* Null string is found at starting position. */
1031 if (len
== 0 || n
== 0)
1033 set_search_regs (pos
, 0);
1037 if (RE
&& !trivial_regexp_p (string
))
1039 unsigned char *p1
, *p2
;
1041 struct re_pattern_buffer
*bufp
;
1043 bufp
= compile_pattern (string
, &search_regs
, trt
, posix
,
1044 !NILP (current_buffer
->enable_multibyte_characters
));
1046 immediate_quit
= 1; /* Quit immediately if user types ^G,
1047 because letting this function finish
1048 can take too long. */
1049 QUIT
; /* Do a pending quit right away,
1050 to avoid paradoxical behavior */
1051 /* Get pointers and sizes of the two strings
1052 that make up the visible portion of the buffer. */
1055 s1
= GPT_BYTE
- BEGV_BYTE
;
1057 s2
= ZV_BYTE
- GPT_BYTE
;
1061 s2
= ZV_BYTE
- BEGV_BYTE
;
1066 s1
= ZV_BYTE
- BEGV_BYTE
;
1069 re_match_object
= Qnil
;
1074 val
= re_search_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
1075 pos_byte
- BEGV_BYTE
, lim_byte
- pos_byte
,
1077 /* Don't allow match past current point */
1078 pos_byte
- BEGV_BYTE
);
1081 matcher_overflow ();
1085 pos_byte
= search_regs
.start
[0] + BEGV_BYTE
;
1086 for (i
= 0; i
< search_regs
.num_regs
; i
++)
1087 if (search_regs
.start
[i
] >= 0)
1089 search_regs
.start
[i
]
1090 = BYTE_TO_CHAR (search_regs
.start
[i
] + BEGV_BYTE
);
1092 = BYTE_TO_CHAR (search_regs
.end
[i
] + BEGV_BYTE
);
1094 XSETBUFFER (last_thing_searched
, current_buffer
);
1095 /* Set pos to the new position. */
1096 pos
= search_regs
.start
[0];
1108 val
= re_search_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
1109 pos_byte
- BEGV_BYTE
, lim_byte
- pos_byte
,
1111 lim_byte
- BEGV_BYTE
);
1114 matcher_overflow ();
1118 pos_byte
= search_regs
.end
[0] + BEGV_BYTE
;
1119 for (i
= 0; i
< search_regs
.num_regs
; i
++)
1120 if (search_regs
.start
[i
] >= 0)
1122 search_regs
.start
[i
]
1123 = BYTE_TO_CHAR (search_regs
.start
[i
] + BEGV_BYTE
);
1125 = BYTE_TO_CHAR (search_regs
.end
[i
] + BEGV_BYTE
);
1127 XSETBUFFER (last_thing_searched
, current_buffer
);
1128 pos
= search_regs
.end
[0];
1140 else /* non-RE case */
1142 unsigned char *raw_pattern
, *pat
;
1143 int raw_pattern_size
;
1144 int raw_pattern_size_byte
;
1145 unsigned char *patbuf
;
1146 int multibyte
= !NILP (current_buffer
->enable_multibyte_characters
);
1147 unsigned char *base_pat
= XSTRING (string
)->data
;
1148 int charset_base
= -1;
1149 int boyer_moore_ok
= 1;
1151 /* MULTIBYTE says whether the text to be searched is multibyte.
1152 We must convert PATTERN to match that, or we will not really
1153 find things right. */
1155 if (multibyte
== STRING_MULTIBYTE (string
))
1157 raw_pattern
= (unsigned char *) XSTRING (string
)->data
;
1158 raw_pattern_size
= XSTRING (string
)->size
;
1159 raw_pattern_size_byte
= STRING_BYTES (XSTRING (string
));
1163 raw_pattern_size
= XSTRING (string
)->size
;
1164 raw_pattern_size_byte
1165 = count_size_as_multibyte (XSTRING (string
)->data
,
1167 raw_pattern
= (unsigned char *) alloca (raw_pattern_size_byte
+ 1);
1168 copy_text (XSTRING (string
)->data
, raw_pattern
,
1169 XSTRING (string
)->size
, 0, 1);
1173 /* Converting multibyte to single-byte.
1175 ??? Perhaps this conversion should be done in a special way
1176 by subtracting nonascii-insert-offset from each non-ASCII char,
1177 so that only the multibyte chars which really correspond to
1178 the chosen single-byte character set can possibly match. */
1179 raw_pattern_size
= XSTRING (string
)->size
;
1180 raw_pattern_size_byte
= XSTRING (string
)->size
;
1181 raw_pattern
= (unsigned char *) alloca (raw_pattern_size
+ 1);
1182 copy_text (XSTRING (string
)->data
, raw_pattern
,
1183 STRING_BYTES (XSTRING (string
)), 1, 0);
1186 /* Copy and optionally translate the pattern. */
1187 len
= raw_pattern_size
;
1188 len_byte
= raw_pattern_size_byte
;
1189 patbuf
= (unsigned char *) alloca (len_byte
);
1191 base_pat
= raw_pattern
;
1196 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1197 int c
, translated
, inverse
;
1198 int in_charlen
, charlen
;
1200 /* If we got here and the RE flag is set, it's because we're
1201 dealing with a regexp known to be trivial, so the backslash
1202 just quotes the next character. */
1203 if (RE
&& *base_pat
== '\\')
1210 c
= STRING_CHAR_AND_LENGTH (base_pat
, len_byte
, in_charlen
);
1212 /* Translate the character, if requested. */
1213 TRANSLATE (translated
, trt
, c
);
1214 /* If translation changed the byte-length, go back
1215 to the original character. */
1216 charlen
= CHAR_STRING (translated
, str
);
1217 if (in_charlen
!= charlen
)
1220 charlen
= CHAR_STRING (c
, str
);
1223 /* If we are searching for something strange,
1224 an invalid multibyte code, don't use boyer-moore. */
1225 if (! ASCII_BYTE_P (translated
)
1226 && (charlen
== 1 /* 8bit code */
1227 || charlen
!= in_charlen
/* invalid multibyte code */
1231 TRANSLATE (inverse
, inverse_trt
, c
);
1233 /* Did this char actually get translated?
1234 Would any other char get translated into it? */
1235 if (translated
!= c
|| inverse
!= c
)
1237 /* Keep track of which character set row
1238 contains the characters that need translation. */
1239 int charset_base_code
= c
& ~CHAR_FIELD3_MASK
;
1240 if (charset_base
== -1)
1241 charset_base
= charset_base_code
;
1242 else if (charset_base
!= charset_base_code
)
1243 /* If two different rows appear, needing translation,
1244 then we cannot use boyer_moore search. */
1248 /* Store this character into the translated pattern. */
1249 bcopy (str
, pat
, charlen
);
1251 base_pat
+= in_charlen
;
1252 len_byte
-= in_charlen
;
1257 /* Unibyte buffer. */
1263 /* If we got here and the RE flag is set, it's because we're
1264 dealing with a regexp known to be trivial, so the backslash
1265 just quotes the next character. */
1266 if (RE
&& *base_pat
== '\\')
1272 TRANSLATE (translated
, trt
, c
);
1273 *pat
++ = translated
;
1277 len_byte
= pat
- patbuf
;
1278 len
= raw_pattern_size
;
1279 pat
= base_pat
= patbuf
;
1282 return boyer_moore (n
, pat
, len
, len_byte
, trt
, inverse_trt
,
1283 pos
, pos_byte
, lim
, lim_byte
,
1286 return simple_search (n
, pat
, len
, len_byte
, trt
,
1287 pos
, pos_byte
, lim
, lim_byte
);
1291 /* Do a simple string search N times for the string PAT,
1292 whose length is LEN/LEN_BYTE,
1293 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1294 TRT is the translation table.
1296 Return the character position where the match is found.
1297 Otherwise, if M matches remained to be found, return -M.
1299 This kind of search works regardless of what is in PAT and
1300 regardless of what is in TRT. It is used in cases where
1301 boyer_moore cannot work. */
1304 simple_search (n
, pat
, len
, len_byte
, trt
, pos
, pos_byte
, lim
, lim_byte
)
1312 int multibyte
= ! NILP (current_buffer
->enable_multibyte_characters
);
1313 int forward
= n
> 0;
1315 if (lim
> pos
&& multibyte
)
1320 /* Try matching at position POS. */
1322 int this_pos_byte
= pos_byte
;
1324 int this_len_byte
= len_byte
;
1325 unsigned char *p
= pat
;
1326 if (pos
+ len
> lim
)
1329 while (this_len
> 0)
1331 int charlen
, buf_charlen
;
1334 pat_ch
= STRING_CHAR_AND_LENGTH (p
, this_len_byte
, charlen
);
1335 buf_ch
= STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte
),
1336 ZV_BYTE
- this_pos_byte
,
1338 TRANSLATE (buf_ch
, trt
, buf_ch
);
1340 if (buf_ch
!= pat_ch
)
1343 this_len_byte
-= charlen
;
1347 this_pos_byte
+= buf_charlen
;
1354 pos_byte
+= len_byte
;
1358 INC_BOTH (pos
, pos_byte
);
1368 /* Try matching at position POS. */
1371 unsigned char *p
= pat
;
1373 if (pos
+ len
> lim
)
1376 while (this_len
> 0)
1379 int buf_ch
= FETCH_BYTE (this_pos
);
1380 TRANSLATE (buf_ch
, trt
, buf_ch
);
1382 if (buf_ch
!= pat_ch
)
1400 /* Backwards search. */
1401 else if (lim
< pos
&& multibyte
)
1406 /* Try matching at position POS. */
1407 int this_pos
= pos
- len
;
1408 int this_pos_byte
= pos_byte
- len_byte
;
1410 int this_len_byte
= len_byte
;
1411 unsigned char *p
= pat
;
1413 if (pos
- len
< lim
)
1416 while (this_len
> 0)
1418 int charlen
, buf_charlen
;
1421 pat_ch
= STRING_CHAR_AND_LENGTH (p
, this_len_byte
, charlen
);
1422 buf_ch
= STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte
),
1423 ZV_BYTE
- this_pos_byte
,
1425 TRANSLATE (buf_ch
, trt
, buf_ch
);
1427 if (buf_ch
!= pat_ch
)
1430 this_len_byte
-= charlen
;
1433 this_pos_byte
+= buf_charlen
;
1440 pos_byte
-= len_byte
;
1444 DEC_BOTH (pos
, pos_byte
);
1454 /* Try matching at position POS. */
1455 int this_pos
= pos
- len
;
1457 unsigned char *p
= pat
;
1459 if (pos
- len
< lim
)
1462 while (this_len
> 0)
1465 int buf_ch
= FETCH_BYTE (this_pos
);
1466 TRANSLATE (buf_ch
, trt
, buf_ch
);
1468 if (buf_ch
!= pat_ch
)
1490 set_search_regs ((multibyte
? pos_byte
: pos
) - len_byte
, len_byte
);
1492 set_search_regs (multibyte
? pos_byte
: pos
, len_byte
);
1502 /* Do Boyer-Moore search N times for the string PAT,
1503 whose length is LEN/LEN_BYTE,
1504 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1505 DIRECTION says which direction we search in.
1506 TRT and INVERSE_TRT are translation tables.
1508 This kind of search works if all the characters in PAT that have
1509 nontrivial translation are the same aside from the last byte. This
1510 makes it possible to translate just the last byte of a character,
1511 and do so after just a simple test of the context.
1513 If that criterion is not satisfied, do not call this function. */
1516 boyer_moore (n
, base_pat
, len
, len_byte
, trt
, inverse_trt
,
1517 pos
, pos_byte
, lim
, lim_byte
, charset_base
)
1519 unsigned char *base_pat
;
1522 Lisp_Object inverse_trt
;
1527 int direction
= ((n
> 0) ? 1 : -1);
1528 register int dirlen
;
1529 int infinity
, limit
, k
, stride_for_teases
;
1530 register int *BM_tab
;
1532 register unsigned char *cursor
, *p_limit
;
1534 unsigned char *pat
, *pat_end
;
1535 int multibyte
= ! NILP (current_buffer
->enable_multibyte_characters
);
1537 unsigned char simple_translate
[0400];
1538 int translate_prev_byte
;
1539 int translate_anteprev_byte
;
1542 int BM_tab_space
[0400];
1543 BM_tab
= &BM_tab_space
[0];
1545 BM_tab
= (int *) alloca (0400 * sizeof (int));
1547 /* The general approach is that we are going to maintain that we know */
1548 /* the first (closest to the present position, in whatever direction */
1549 /* we're searching) character that could possibly be the last */
1550 /* (furthest from present position) character of a valid match. We */
1551 /* advance the state of our knowledge by looking at that character */
1552 /* and seeing whether it indeed matches the last character of the */
1553 /* pattern. If it does, we take a closer look. If it does not, we */
1554 /* move our pointer (to putative last characters) as far as is */
1555 /* logically possible. This amount of movement, which I call a */
1556 /* stride, will be the length of the pattern if the actual character */
1557 /* appears nowhere in the pattern, otherwise it will be the distance */
1558 /* from the last occurrence of that character to the end of the */
1560 /* As a coding trick, an enormous stride is coded into the table for */
1561 /* characters that match the last character. This allows use of only */
1562 /* a single test, a test for having gone past the end of the */
1563 /* permissible match region, to test for both possible matches (when */
1564 /* the stride goes past the end immediately) and failure to */
1565 /* match (where you get nudged past the end one stride at a time). */
1567 /* Here we make a "mickey mouse" BM table. The stride of the search */
1568 /* is determined only by the last character of the putative match. */
1569 /* If that character does not match, we will stride the proper */
1570 /* distance to propose a match that superimposes it on the last */
1571 /* instance of a character that matches it (per trt), or misses */
1572 /* it entirely if there is none. */
1574 dirlen
= len_byte
* direction
;
1575 infinity
= dirlen
- (lim_byte
+ pos_byte
+ len_byte
+ len_byte
) * direction
;
1577 /* Record position after the end of the pattern. */
1578 pat_end
= base_pat
+ len_byte
;
1579 /* BASE_PAT points to a character that we start scanning from.
1580 It is the first character in a forward search,
1581 the last character in a backward search. */
1583 base_pat
= pat_end
- 1;
1585 BM_tab_base
= BM_tab
;
1587 j
= dirlen
; /* to get it in a register */
1588 /* A character that does not appear in the pattern induces a */
1589 /* stride equal to the pattern length. */
1590 while (BM_tab_base
!= BM_tab
)
1598 /* We use this for translation, instead of TRT itself.
1599 We fill this in to handle the characters that actually
1600 occur in the pattern. Others don't matter anyway! */
1601 bzero (simple_translate
, sizeof simple_translate
);
1602 for (i
= 0; i
< 0400; i
++)
1603 simple_translate
[i
] = i
;
1606 while (i
!= infinity
)
1608 unsigned char *ptr
= base_pat
+ i
;
1616 int this_translated
= 1;
1619 /* Is *PTR the last byte of a character? */
1620 && (pat_end
- ptr
== 1 || CHAR_HEAD_P (ptr
[1])))
1622 unsigned char *charstart
= ptr
;
1623 while (! CHAR_HEAD_P (*charstart
))
1625 untranslated
= STRING_CHAR (charstart
, ptr
- charstart
+ 1);
1626 if (charset_base
== (untranslated
& ~CHAR_FIELD3_MASK
))
1628 TRANSLATE (ch
, trt
, untranslated
);
1629 if (! CHAR_HEAD_P (*ptr
))
1631 translate_prev_byte
= ptr
[-1];
1632 if (! CHAR_HEAD_P (translate_prev_byte
))
1633 translate_anteprev_byte
= ptr
[-2];
1638 this_translated
= 0;
1642 else if (!multibyte
)
1643 TRANSLATE (ch
, trt
, *ptr
);
1647 this_translated
= 0;
1651 j
= ((unsigned char) ch
) | 0200;
1653 j
= (unsigned char) ch
;
1656 stride_for_teases
= BM_tab
[j
];
1658 BM_tab
[j
] = dirlen
- i
;
1659 /* A translation table is accompanied by its inverse -- see */
1660 /* comment following downcase_table for details */
1661 if (this_translated
)
1663 int starting_ch
= ch
;
1667 TRANSLATE (ch
, inverse_trt
, ch
);
1669 j
= ((unsigned char) ch
) | 0200;
1671 j
= (unsigned char) ch
;
1673 /* For all the characters that map into CH,
1674 set up simple_translate to map the last byte
1676 simple_translate
[j
] = starting_j
;
1677 if (ch
== starting_ch
)
1679 BM_tab
[j
] = dirlen
- i
;
1688 stride_for_teases
= BM_tab
[j
];
1689 BM_tab
[j
] = dirlen
- i
;
1691 /* stride_for_teases tells how much to stride if we get a */
1692 /* match on the far character but are subsequently */
1693 /* disappointed, by recording what the stride would have been */
1694 /* for that character if the last character had been */
1697 infinity
= dirlen
- infinity
;
1698 pos_byte
+= dirlen
- ((direction
> 0) ? direction
: 0);
1699 /* loop invariant - POS_BYTE points at where last char (first
1700 char if reverse) of pattern would align in a possible match. */
1704 unsigned char *tail_end_ptr
;
1706 /* It's been reported that some (broken) compiler thinks that
1707 Boolean expressions in an arithmetic context are unsigned.
1708 Using an explicit ?1:0 prevents this. */
1709 if ((lim_byte
- pos_byte
- ((direction
> 0) ? 1 : 0)) * direction
1711 return (n
* (0 - direction
));
1712 /* First we do the part we can by pointers (maybe nothing) */
1715 limit
= pos_byte
- dirlen
+ direction
;
1718 limit
= BUFFER_CEILING_OF (limit
);
1719 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1720 can take on without hitting edge of buffer or the gap. */
1721 limit
= min (limit
, pos_byte
+ 20000);
1722 limit
= min (limit
, lim_byte
- 1);
1726 limit
= BUFFER_FLOOR_OF (limit
);
1727 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1728 can take on without hitting edge of buffer or the gap. */
1729 limit
= max (limit
, pos_byte
- 20000);
1730 limit
= max (limit
, lim_byte
);
1732 tail_end
= BUFFER_CEILING_OF (pos_byte
) + 1;
1733 tail_end_ptr
= BYTE_POS_ADDR (tail_end
);
1735 if ((limit
- pos_byte
) * direction
> 20)
1739 p_limit
= BYTE_POS_ADDR (limit
);
1740 p2
= (cursor
= BYTE_POS_ADDR (pos_byte
));
1741 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1742 while (1) /* use one cursor setting as long as i can */
1744 if (direction
> 0) /* worth duplicating */
1746 /* Use signed comparison if appropriate
1747 to make cursor+infinity sure to be > p_limit.
1748 Assuming that the buffer lies in a range of addresses
1749 that are all "positive" (as ints) or all "negative",
1750 either kind of comparison will work as long
1751 as we don't step by infinity. So pick the kind
1752 that works when we do step by infinity. */
1753 if ((EMACS_INT
) (p_limit
+ infinity
) > (EMACS_INT
) p_limit
)
1754 while ((EMACS_INT
) cursor
<= (EMACS_INT
) p_limit
)
1755 cursor
+= BM_tab
[*cursor
];
1757 while ((EMACS_UINT
) cursor
<= (EMACS_UINT
) p_limit
)
1758 cursor
+= BM_tab
[*cursor
];
1762 if ((EMACS_INT
) (p_limit
+ infinity
) < (EMACS_INT
) p_limit
)
1763 while ((EMACS_INT
) cursor
>= (EMACS_INT
) p_limit
)
1764 cursor
+= BM_tab
[*cursor
];
1766 while ((EMACS_UINT
) cursor
>= (EMACS_UINT
) p_limit
)
1767 cursor
+= BM_tab
[*cursor
];
1769 /* If you are here, cursor is beyond the end of the searched region. */
1770 /* This can happen if you match on the far character of the pattern, */
1771 /* because the "stride" of that character is infinity, a number able */
1772 /* to throw you well beyond the end of the search. It can also */
1773 /* happen if you fail to match within the permitted region and would */
1774 /* otherwise try a character beyond that region */
1775 if ((cursor
- p_limit
) * direction
<= len_byte
)
1776 break; /* a small overrun is genuine */
1777 cursor
-= infinity
; /* large overrun = hit */
1778 i
= dirlen
- direction
;
1781 while ((i
-= direction
) + direction
!= 0)
1784 cursor
-= direction
;
1785 /* Translate only the last byte of a character. */
1787 || ((cursor
== tail_end_ptr
1788 || CHAR_HEAD_P (cursor
[1]))
1789 && (CHAR_HEAD_P (cursor
[0])
1790 || (translate_prev_byte
== cursor
[-1]
1791 && (CHAR_HEAD_P (translate_prev_byte
)
1792 || translate_anteprev_byte
== cursor
[-2])))))
1793 ch
= simple_translate
[*cursor
];
1802 while ((i
-= direction
) + direction
!= 0)
1804 cursor
-= direction
;
1805 if (pat
[i
] != *cursor
)
1809 cursor
+= dirlen
- i
- direction
; /* fix cursor */
1810 if (i
+ direction
== 0)
1814 cursor
-= direction
;
1816 position
= pos_byte
+ cursor
- p2
+ ((direction
> 0)
1817 ? 1 - len_byte
: 0);
1818 set_search_regs (position
, len_byte
);
1820 if ((n
-= direction
) != 0)
1821 cursor
+= dirlen
; /* to resume search */
1823 return ((direction
> 0)
1824 ? search_regs
.end
[0] : search_regs
.start
[0]);
1827 cursor
+= stride_for_teases
; /* <sigh> we lose - */
1829 pos_byte
+= cursor
- p2
;
1832 /* Now we'll pick up a clump that has to be done the hard */
1833 /* way because it covers a discontinuity */
1835 limit
= ((direction
> 0)
1836 ? BUFFER_CEILING_OF (pos_byte
- dirlen
+ 1)
1837 : BUFFER_FLOOR_OF (pos_byte
- dirlen
- 1));
1838 limit
= ((direction
> 0)
1839 ? min (limit
+ len_byte
, lim_byte
- 1)
1840 : max (limit
- len_byte
, lim_byte
));
1841 /* LIMIT is now the last value POS_BYTE can have
1842 and still be valid for a possible match. */
1845 /* This loop can be coded for space rather than */
1846 /* speed because it will usually run only once. */
1847 /* (the reach is at most len + 21, and typically */
1848 /* does not exceed len) */
1849 while ((limit
- pos_byte
) * direction
>= 0)
1850 pos_byte
+= BM_tab
[FETCH_BYTE (pos_byte
)];
1851 /* now run the same tests to distinguish going off the */
1852 /* end, a match or a phony match. */
1853 if ((pos_byte
- limit
) * direction
<= len_byte
)
1854 break; /* ran off the end */
1855 /* Found what might be a match.
1856 Set POS_BYTE back to last (first if reverse) pos. */
1857 pos_byte
-= infinity
;
1858 i
= dirlen
- direction
;
1859 while ((i
-= direction
) + direction
!= 0)
1863 pos_byte
-= direction
;
1864 ptr
= BYTE_POS_ADDR (pos_byte
);
1865 /* Translate only the last byte of a character. */
1867 || ((ptr
== tail_end_ptr
1868 || CHAR_HEAD_P (ptr
[1]))
1869 && (CHAR_HEAD_P (ptr
[0])
1870 || (translate_prev_byte
== ptr
[-1]
1871 && (CHAR_HEAD_P (translate_prev_byte
)
1872 || translate_anteprev_byte
== ptr
[-2])))))
1873 ch
= simple_translate
[*ptr
];
1879 /* Above loop has moved POS_BYTE part or all the way
1880 back to the first pos (last pos if reverse).
1881 Set it once again at the last (first if reverse) char. */
1882 pos_byte
+= dirlen
- i
- direction
;
1883 if (i
+ direction
== 0)
1886 pos_byte
-= direction
;
1888 position
= pos_byte
+ ((direction
> 0) ? 1 - len_byte
: 0);
1890 set_search_regs (position
, len_byte
);
1892 if ((n
-= direction
) != 0)
1893 pos_byte
+= dirlen
; /* to resume search */
1895 return ((direction
> 0)
1896 ? search_regs
.end
[0] : search_regs
.start
[0]);
1899 pos_byte
+= stride_for_teases
;
1902 /* We have done one clump. Can we continue? */
1903 if ((lim_byte
- pos_byte
) * direction
< 0)
1904 return ((0 - n
) * direction
);
1906 return BYTE_TO_CHAR (pos_byte
);
1909 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1910 for the overall match just found in the current buffer.
1911 Also clear out the match data for registers 1 and up. */
1914 set_search_regs (beg_byte
, nbytes
)
1915 int beg_byte
, nbytes
;
1919 /* Make sure we have registers in which to store
1920 the match position. */
1921 if (search_regs
.num_regs
== 0)
1923 search_regs
.start
= (regoff_t
*) xmalloc (2 * sizeof (regoff_t
));
1924 search_regs
.end
= (regoff_t
*) xmalloc (2 * sizeof (regoff_t
));
1925 search_regs
.num_regs
= 2;
1928 /* Clear out the other registers. */
1929 for (i
= 1; i
< search_regs
.num_regs
; i
++)
1931 search_regs
.start
[i
] = -1;
1932 search_regs
.end
[i
] = -1;
1935 search_regs
.start
[0] = BYTE_TO_CHAR (beg_byte
);
1936 search_regs
.end
[0] = BYTE_TO_CHAR (beg_byte
+ nbytes
);
1937 XSETBUFFER (last_thing_searched
, current_buffer
);
1940 /* Given a string of words separated by word delimiters,
1941 compute a regexp that matches those exact words
1942 separated by arbitrary punctuation. */
1948 register unsigned char *p
, *o
;
1949 register int i
, i_byte
, len
, punct_count
= 0, word_count
= 0;
1954 CHECK_STRING (string
, 0);
1955 p
= XSTRING (string
)->data
;
1956 len
= XSTRING (string
)->size
;
1958 for (i
= 0, i_byte
= 0; i
< len
; )
1962 FETCH_STRING_CHAR_ADVANCE (c
, string
, i
, i_byte
);
1964 if (SYNTAX (c
) != Sword
)
1967 if (i
> 0 && SYNTAX (prev_c
) == Sword
)
1974 if (SYNTAX (prev_c
) == Sword
)
1977 return build_string ("");
1979 adjust
= - punct_count
+ 5 * (word_count
- 1) + 4;
1980 if (STRING_MULTIBYTE (string
))
1981 val
= make_uninit_multibyte_string (len
+ adjust
,
1982 STRING_BYTES (XSTRING (string
))
1985 val
= make_uninit_string (len
+ adjust
);
1987 o
= XSTRING (val
)->data
;
1992 for (i
= 0, i_byte
= 0; i
< len
; )
1995 int i_byte_orig
= i_byte
;
1997 FETCH_STRING_CHAR_ADVANCE (c
, string
, i
, i_byte
);
1999 if (SYNTAX (c
) == Sword
)
2001 bcopy (&XSTRING (string
)->data
[i_byte_orig
], o
,
2002 i_byte
- i_byte_orig
);
2003 o
+= i_byte
- i_byte_orig
;
2005 else if (i
> 0 && SYNTAX (prev_c
) == Sword
&& --word_count
)
2023 DEFUN ("search-backward", Fsearch_backward
, Ssearch_backward
, 1, 4,
2024 "MSearch backward: ",
2025 "Search backward from point for STRING.\n\
2026 Set point to the beginning of the occurrence found, and return point.\n\
2027 An optional second argument bounds the search; it is a buffer position.\n\
2028 The match found must not extend before that position.\n\
2029 Optional third argument, if t, means if fail just return nil (no error).\n\
2030 If not nil and not t, position at limit of search and return nil.\n\
2031 Optional fourth argument is repeat count--search for successive occurrences.\n\
2032 See also the functions `match-beginning', `match-end' and `replace-match'.")
2033 (string
, bound
, noerror
, count
)
2034 Lisp_Object string
, bound
, noerror
, count
;
2036 return search_command (string
, bound
, noerror
, count
, -1, 0, 0);
2039 DEFUN ("search-forward", Fsearch_forward
, Ssearch_forward
, 1, 4, "MSearch: ",
2040 "Search forward from point for STRING.\n\
2041 Set point to the end of the occurrence found, and return point.\n\
2042 An optional second argument bounds the search; it is a buffer position.\n\
2043 The match found must not extend after that position. nil is equivalent\n\
2045 Optional third argument, if t, means if fail just return nil (no error).\n\
2046 If not nil and not t, move to limit of search and return nil.\n\
2047 Optional fourth argument is repeat count--search for successive occurrences.\n\
2048 See also the functions `match-beginning', `match-end' and `replace-match'.")
2049 (string
, bound
, noerror
, count
)
2050 Lisp_Object string
, bound
, noerror
, count
;
2052 return search_command (string
, bound
, noerror
, count
, 1, 0, 0);
2055 DEFUN ("word-search-backward", Fword_search_backward
, Sword_search_backward
, 1, 4,
2056 "sWord search backward: ",
2057 "Search backward from point for STRING, ignoring differences in punctuation.\n\
2058 Set point to the beginning of the occurrence found, and return point.\n\
2059 An optional second argument bounds the search; it is a buffer position.\n\
2060 The match found must not extend before that position.\n\
2061 Optional third argument, if t, means if fail just return nil (no error).\n\
2062 If not nil and not t, move to limit of search and return nil.\n\
2063 Optional fourth argument is repeat count--search for successive occurrences.")
2064 (string
, bound
, noerror
, count
)
2065 Lisp_Object string
, bound
, noerror
, count
;
2067 return search_command (wordify (string
), bound
, noerror
, count
, -1, 1, 0);
2070 DEFUN ("word-search-forward", Fword_search_forward
, Sword_search_forward
, 1, 4,
2072 "Search forward from point for STRING, ignoring differences in punctuation.\n\
2073 Set point to the end of the occurrence found, and return point.\n\
2074 An optional second argument bounds the search; it is a buffer position.\n\
2075 The match found must not extend after that position.\n\
2076 Optional third argument, if t, means if fail just return nil (no error).\n\
2077 If not nil and not t, move to limit of search and return nil.\n\
2078 Optional fourth argument is repeat count--search for successive occurrences.")
2079 (string
, bound
, noerror
, count
)
2080 Lisp_Object string
, bound
, noerror
, count
;
2082 return search_command (wordify (string
), bound
, noerror
, count
, 1, 1, 0);
2085 DEFUN ("re-search-backward", Fre_search_backward
, Sre_search_backward
, 1, 4,
2086 "sRE search backward: ",
2087 "Search backward from point for match for regular expression REGEXP.\n\
2088 Set point to the beginning of the match, and return point.\n\
2089 The match found is the one starting last in the buffer\n\
2090 and yet ending before the origin of the search.\n\
2091 An optional second argument bounds the search; it is a buffer position.\n\
2092 The match found must start at or after that position.\n\
2093 Optional third argument, if t, means if fail just return nil (no error).\n\
2094 If not nil and not t, move to limit of search and return nil.\n\
2095 Optional fourth argument is repeat count--search for successive occurrences.\n\
2096 See also the functions `match-beginning', `match-end', `match-string',\n\
2097 and `replace-match'.")
2098 (regexp
, bound
, noerror
, count
)
2099 Lisp_Object regexp
, bound
, noerror
, count
;
2101 return search_command (regexp
, bound
, noerror
, count
, -1, 1, 0);
2104 DEFUN ("re-search-forward", Fre_search_forward
, Sre_search_forward
, 1, 4,
2106 "Search forward from point for regular expression REGEXP.\n\
2107 Set point to the end of the occurrence found, and return point.\n\
2108 An optional second argument bounds the search; it is a buffer position.\n\
2109 The match found must not extend after that position.\n\
2110 Optional third argument, if t, means if fail just return nil (no error).\n\
2111 If not nil and not t, move to limit of search and return nil.\n\
2112 Optional fourth argument is repeat count--search for successive occurrences.\n\
2113 See also the functions `match-beginning', `match-end', `match-string',\n\
2114 and `replace-match'.")
2115 (regexp
, bound
, noerror
, count
)
2116 Lisp_Object regexp
, bound
, noerror
, count
;
2118 return search_command (regexp
, bound
, noerror
, count
, 1, 1, 0);
2121 DEFUN ("posix-search-backward", Fposix_search_backward
, Sposix_search_backward
, 1, 4,
2122 "sPosix search backward: ",
2123 "Search backward from point for match for regular expression REGEXP.\n\
2124 Find the longest match in accord with Posix regular expression rules.\n\
2125 Set point to the beginning of the match, and return point.\n\
2126 The match found is the one starting last in the buffer\n\
2127 and yet ending before the origin of the search.\n\
2128 An optional second argument bounds the search; it is a buffer position.\n\
2129 The match found must start at or after that position.\n\
2130 Optional third argument, if t, means if fail just return nil (no error).\n\
2131 If not nil and not t, move to limit of search and return nil.\n\
2132 Optional fourth argument is repeat count--search for successive occurrences.\n\
2133 See also the functions `match-beginning', `match-end', `match-string',\n\
2134 and `replace-match'.")
2135 (regexp
, bound
, noerror
, count
)
2136 Lisp_Object regexp
, bound
, noerror
, count
;
2138 return search_command (regexp
, bound
, noerror
, count
, -1, 1, 1);
2141 DEFUN ("posix-search-forward", Fposix_search_forward
, Sposix_search_forward
, 1, 4,
2143 "Search forward from point for regular expression REGEXP.\n\
2144 Find the longest match in accord with Posix regular expression rules.\n\
2145 Set point to the end of the occurrence found, and return point.\n\
2146 An optional second argument bounds the search; it is a buffer position.\n\
2147 The match found must not extend after that position.\n\
2148 Optional third argument, if t, means if fail just return nil (no error).\n\
2149 If not nil and not t, move to limit of search and return nil.\n\
2150 Optional fourth argument is repeat count--search for successive occurrences.\n\
2151 See also the functions `match-beginning', `match-end', `match-string',\n\
2152 and `replace-match'.")
2153 (regexp
, bound
, noerror
, count
)
2154 Lisp_Object regexp
, bound
, noerror
, count
;
2156 return search_command (regexp
, bound
, noerror
, count
, 1, 1, 1);
2159 DEFUN ("replace-match", Freplace_match
, Sreplace_match
, 1, 5, 0,
2160 "Replace text matched by last search with NEWTEXT.\n\
2161 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
2162 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
2163 based on the replaced text.\n\
2164 If the replaced text has only capital letters\n\
2165 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
2166 If the replaced text has at least one word starting with a capital letter,\n\
2167 then capitalize each word in NEWTEXT.\n\n\
2168 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
2169 Otherwise treat `\\' as special:\n\
2170 `\\&' in NEWTEXT means substitute original matched text.\n\
2171 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
2172 If Nth parens didn't match, substitute nothing.\n\
2173 `\\\\' means insert one `\\'.\n\
2174 FIXEDCASE and LITERAL are optional arguments.\n\
2175 Leaves point at end of replacement text.\n\
2177 The optional fourth argument STRING can be a string to modify.\n\
2178 In that case, this function creates and returns a new string\n\
2179 which is made by replacing the part of STRING that was matched.\n\
2181 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
2182 It says to replace just that subexpression instead of the whole match.\n\
2183 This is useful only after a regular expression search or match\n\
2184 since only regular expressions have distinguished subexpressions.")
2185 (newtext
, fixedcase
, literal
, string
, subexp
)
2186 Lisp_Object newtext
, fixedcase
, literal
, string
, subexp
;
2188 enum { nochange
, all_caps
, cap_initial
} case_action
;
2189 register int pos
, pos_byte
;
2190 int some_multiletter_word
;
2193 int some_nonuppercase_initial
;
2194 register int c
, prevc
;
2197 int opoint
, newpoint
;
2199 CHECK_STRING (newtext
, 0);
2201 if (! NILP (string
))
2202 CHECK_STRING (string
, 4);
2204 case_action
= nochange
; /* We tried an initialization */
2205 /* but some C compilers blew it */
2207 if (search_regs
.num_regs
<= 0)
2208 error ("replace-match called before any match found");
2214 CHECK_NUMBER (subexp
, 3);
2215 sub
= XINT (subexp
);
2216 if (sub
< 0 || sub
>= search_regs
.num_regs
)
2217 args_out_of_range (subexp
, make_number (search_regs
.num_regs
));
2222 if (search_regs
.start
[sub
] < BEGV
2223 || search_regs
.start
[sub
] > search_regs
.end
[sub
]
2224 || search_regs
.end
[sub
] > ZV
)
2225 args_out_of_range (make_number (search_regs
.start
[sub
]),
2226 make_number (search_regs
.end
[sub
]));
2230 if (search_regs
.start
[sub
] < 0
2231 || search_regs
.start
[sub
] > search_regs
.end
[sub
]
2232 || search_regs
.end
[sub
] > XSTRING (string
)->size
)
2233 args_out_of_range (make_number (search_regs
.start
[sub
]),
2234 make_number (search_regs
.end
[sub
]));
2237 if (NILP (fixedcase
))
2239 /* Decide how to casify by examining the matched text. */
2242 pos
= search_regs
.start
[sub
];
2243 last
= search_regs
.end
[sub
];
2246 pos_byte
= CHAR_TO_BYTE (pos
);
2248 pos_byte
= string_char_to_byte (string
, pos
);
2251 case_action
= all_caps
;
2253 /* some_multiletter_word is set nonzero if any original word
2254 is more than one letter long. */
2255 some_multiletter_word
= 0;
2257 some_nonuppercase_initial
= 0;
2264 c
= FETCH_CHAR (pos_byte
);
2265 INC_BOTH (pos
, pos_byte
);
2268 FETCH_STRING_CHAR_ADVANCE (c
, string
, pos
, pos_byte
);
2272 /* Cannot be all caps if any original char is lower case */
2275 if (SYNTAX (prevc
) != Sword
)
2276 some_nonuppercase_initial
= 1;
2278 some_multiletter_word
= 1;
2280 else if (!NOCASEP (c
))
2283 if (SYNTAX (prevc
) != Sword
)
2286 some_multiletter_word
= 1;
2290 /* If the initial is a caseless word constituent,
2291 treat that like a lowercase initial. */
2292 if (SYNTAX (prevc
) != Sword
)
2293 some_nonuppercase_initial
= 1;
2299 /* Convert to all caps if the old text is all caps
2300 and has at least one multiletter word. */
2301 if (! some_lowercase
&& some_multiletter_word
)
2302 case_action
= all_caps
;
2303 /* Capitalize each word, if the old text has all capitalized words. */
2304 else if (!some_nonuppercase_initial
&& some_multiletter_word
)
2305 case_action
= cap_initial
;
2306 else if (!some_nonuppercase_initial
&& some_uppercase
)
2307 /* Should x -> yz, operating on X, give Yz or YZ?
2308 We'll assume the latter. */
2309 case_action
= all_caps
;
2311 case_action
= nochange
;
2314 /* Do replacement in a string. */
2317 Lisp_Object before
, after
;
2319 before
= Fsubstring (string
, make_number (0),
2320 make_number (search_regs
.start
[sub
]));
2321 after
= Fsubstring (string
, make_number (search_regs
.end
[sub
]), Qnil
);
2323 /* Substitute parts of the match into NEWTEXT
2328 int lastpos_byte
= 0;
2329 /* We build up the substituted string in ACCUM. */
2332 int length
= STRING_BYTES (XSTRING (newtext
));
2336 for (pos_byte
= 0, pos
= 0; pos_byte
< length
;)
2340 int delbackslash
= 0;
2342 FETCH_STRING_CHAR_ADVANCE (c
, newtext
, pos
, pos_byte
);
2346 FETCH_STRING_CHAR_ADVANCE (c
, newtext
, pos
, pos_byte
);
2350 substart
= search_regs
.start
[sub
];
2351 subend
= search_regs
.end
[sub
];
2353 else if (c
>= '1' && c
<= '9' && c
<= search_regs
.num_regs
+ '0')
2355 if (search_regs
.start
[c
- '0'] >= 0)
2357 substart
= search_regs
.start
[c
- '0'];
2358 subend
= search_regs
.end
[c
- '0'];
2364 error ("Invalid use of `\\' in replacement text");
2368 if (pos
- 2 != lastpos
)
2369 middle
= substring_both (newtext
, lastpos
,
2371 pos
- 2, pos_byte
- 2);
2374 accum
= concat3 (accum
, middle
,
2376 make_number (substart
),
2377 make_number (subend
)));
2379 lastpos_byte
= pos_byte
;
2381 else if (delbackslash
)
2383 middle
= substring_both (newtext
, lastpos
,
2385 pos
- 1, pos_byte
- 1);
2387 accum
= concat2 (accum
, middle
);
2389 lastpos_byte
= pos_byte
;
2394 middle
= substring_both (newtext
, lastpos
,
2400 newtext
= concat2 (accum
, middle
);
2403 /* Do case substitution in NEWTEXT if desired. */
2404 if (case_action
== all_caps
)
2405 newtext
= Fupcase (newtext
);
2406 else if (case_action
== cap_initial
)
2407 newtext
= Fupcase_initials (newtext
);
2409 return concat3 (before
, newtext
, after
);
2412 /* Record point, the move (quietly) to the start of the match. */
2413 if (PT
>= search_regs
.end
[sub
])
2415 else if (PT
> search_regs
.start
[sub
])
2416 opoint
= search_regs
.end
[sub
] - ZV
;
2420 TEMP_SET_PT (search_regs
.start
[sub
]);
2422 /* We insert the replacement text before the old text, and then
2423 delete the original text. This means that markers at the
2424 beginning or end of the original will float to the corresponding
2425 position in the replacement. */
2426 if (!NILP (literal
))
2427 Finsert_and_inherit (1, &newtext
);
2430 int length
= STRING_BYTES (XSTRING (newtext
));
2431 unsigned char *substed
;
2432 int substed_alloc_size
, substed_len
;
2433 int buf_multibyte
= !NILP (current_buffer
->enable_multibyte_characters
);
2434 int str_multibyte
= STRING_MULTIBYTE (newtext
);
2435 Lisp_Object rev_tbl
;
2437 rev_tbl
= (!buf_multibyte
&& CHAR_TABLE_P (Vnonascii_translation_table
)
2438 ? Fchar_table_extra_slot (Vnonascii_translation_table
,
2442 substed_alloc_size
= length
* 2 + 100;
2443 substed
= (unsigned char *) xmalloc (substed_alloc_size
+ 1);
2446 /* Go thru NEWTEXT, producing the actual text to insert in
2447 SUBSTED while adjusting multibyteness to that of the current
2450 for (pos_byte
= 0, pos
= 0; pos_byte
< length
;)
2452 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2453 unsigned char *add_stuff
= NULL
;
2459 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, newtext
, pos
, pos_byte
);
2461 c
= multibyte_char_to_unibyte (c
, rev_tbl
);
2465 /* Note that we don't have to increment POS. */
2466 c
= XSTRING (newtext
)->data
[pos_byte
++];
2468 c
= unibyte_char_to_multibyte (c
);
2471 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2472 or set IDX to a match index, which means put that part
2473 of the buffer text into SUBSTED. */
2479 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, newtext
,
2481 if (!buf_multibyte
&& !SINGLE_BYTE_CHAR_P (c
))
2482 c
= multibyte_char_to_unibyte (c
, rev_tbl
);
2486 c
= XSTRING (newtext
)->data
[pos_byte
++];
2488 c
= unibyte_char_to_multibyte (c
);
2493 else if (c
>= '1' && c
<= '9' && c
<= search_regs
.num_regs
+ '0')
2495 if (search_regs
.start
[c
- '0'] >= 1)
2499 add_len
= 1, add_stuff
= "\\";
2503 error ("Invalid use of `\\' in replacement text");
2508 add_len
= CHAR_STRING (c
, str
);
2512 /* If we want to copy part of a previous match,
2513 set up ADD_STUFF and ADD_LEN to point to it. */
2516 int begbyte
= CHAR_TO_BYTE (search_regs
.start
[idx
]);
2517 add_len
= CHAR_TO_BYTE (search_regs
.end
[idx
]) - begbyte
;
2518 if (search_regs
.start
[idx
] < GPT
&& GPT
< search_regs
.end
[idx
])
2519 move_gap (search_regs
.start
[idx
]);
2520 add_stuff
= BYTE_POS_ADDR (begbyte
);
2523 /* Now the stuff we want to add to SUBSTED
2524 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2526 /* Make sure SUBSTED is big enough. */
2527 if (substed_len
+ add_len
>= substed_alloc_size
)
2529 substed_alloc_size
= substed_len
+ add_len
+ 500;
2530 substed
= (unsigned char *) xrealloc (substed
,
2531 substed_alloc_size
+ 1);
2534 /* Now add to the end of SUBSTED. */
2537 bcopy (add_stuff
, substed
+ substed_len
, add_len
);
2538 substed_len
+= add_len
;
2542 /* Now insert what we accumulated. */
2543 insert_and_inherit (substed
, substed_len
);
2548 inslen
= PT
- (search_regs
.start
[sub
]);
2549 del_range (search_regs
.start
[sub
] + inslen
, search_regs
.end
[sub
] + inslen
);
2551 if (case_action
== all_caps
)
2552 Fupcase_region (make_number (PT
- inslen
), make_number (PT
));
2553 else if (case_action
== cap_initial
)
2554 Fupcase_initials_region (make_number (PT
- inslen
), make_number (PT
));
2558 /* Put point back where it was in the text. */
2560 TEMP_SET_PT (opoint
+ ZV
);
2562 TEMP_SET_PT (opoint
);
2564 /* Now move point "officially" to the start of the inserted replacement. */
2565 move_if_not_intangible (newpoint
);
2571 match_limit (num
, beginningp
)
2577 CHECK_NUMBER (num
, 0);
2579 if (n
< 0 || n
>= search_regs
.num_regs
)
2580 args_out_of_range (num
, make_number (search_regs
.num_regs
));
2581 if (search_regs
.num_regs
<= 0
2582 || search_regs
.start
[n
] < 0)
2584 return (make_number ((beginningp
) ? search_regs
.start
[n
]
2585 : search_regs
.end
[n
]));
2588 DEFUN ("match-beginning", Fmatch_beginning
, Smatch_beginning
, 1, 1, 0,
2589 "Return position of start of text matched by last search.\n\
2590 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2592 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2594 Zero means the entire text matched by the whole regexp or whole string.")
2598 return match_limit (subexp
, 1);
2601 DEFUN ("match-end", Fmatch_end
, Smatch_end
, 1, 1, 0,
2602 "Return position of end of text matched by last search.\n\
2603 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2605 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2607 Zero means the entire text matched by the whole regexp or whole string.")
2611 return match_limit (subexp
, 0);
2614 DEFUN ("match-data", Fmatch_data
, Smatch_data
, 0, 2, 0,
2615 "Return a list containing all info on what the last search matched.\n\
2616 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
2617 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
2618 if the last match was on a buffer; integers or nil if a string was matched.\n\
2619 Use `store-match-data' to reinstate the data in this list.\n\
2621 If INTEGERS (the optional first argument) is non-nil, always use integers\n\
2622 \(rather than markers) to represent buffer positions.\n\
2623 If REUSE is a list, reuse it as part of the value. If REUSE is long enough\n\
2624 to hold all the values, and if INTEGERS is non-nil, no consing is done.")
2626 Lisp_Object integers
, reuse
;
2628 Lisp_Object tail
, prev
;
2632 if (NILP (last_thing_searched
))
2635 data
= (Lisp_Object
*) alloca ((2 * search_regs
.num_regs
)
2636 * sizeof (Lisp_Object
));
2639 for (i
= 0; i
< search_regs
.num_regs
; i
++)
2641 int start
= search_regs
.start
[i
];
2644 if (EQ (last_thing_searched
, Qt
)
2645 || ! NILP (integers
))
2647 XSETFASTINT (data
[2 * i
], start
);
2648 XSETFASTINT (data
[2 * i
+ 1], search_regs
.end
[i
]);
2650 else if (BUFFERP (last_thing_searched
))
2652 data
[2 * i
] = Fmake_marker ();
2653 Fset_marker (data
[2 * i
],
2654 make_number (start
),
2655 last_thing_searched
);
2656 data
[2 * i
+ 1] = Fmake_marker ();
2657 Fset_marker (data
[2 * i
+ 1],
2658 make_number (search_regs
.end
[i
]),
2659 last_thing_searched
);
2662 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2668 data
[2 * i
] = data
[2 * i
+ 1] = Qnil
;
2671 /* If REUSE is not usable, cons up the values and return them. */
2672 if (! CONSP (reuse
))
2673 return Flist (2 * len
+ 2, data
);
2675 /* If REUSE is a list, store as many value elements as will fit
2676 into the elements of REUSE. */
2677 for (i
= 0, tail
= reuse
; CONSP (tail
);
2678 i
++, tail
= XCDR (tail
))
2680 if (i
< 2 * len
+ 2)
2681 XCAR (tail
) = data
[i
];
2687 /* If we couldn't fit all value elements into REUSE,
2688 cons up the rest of them and add them to the end of REUSE. */
2689 if (i
< 2 * len
+ 2)
2690 XCDR (prev
) = Flist (2 * len
+ 2 - i
, data
+ i
);
2696 DEFUN ("set-match-data", Fset_match_data
, Sset_match_data
, 1, 1, 0,
2697 "Set internal data on last search match from elements of LIST.\n\
2698 LIST should have been created by calling `match-data' previously.")
2700 register Lisp_Object list
;
2703 register Lisp_Object marker
;
2705 if (running_asynch_code
)
2706 save_search_regs ();
2708 if (!CONSP (list
) && !NILP (list
))
2709 list
= wrong_type_argument (Qconsp
, list
);
2711 /* Unless we find a marker with a buffer in LIST, assume that this
2712 match data came from a string. */
2713 last_thing_searched
= Qt
;
2715 /* Allocate registers if they don't already exist. */
2717 int length
= XFASTINT (Flength (list
)) / 2;
2719 if (length
> search_regs
.num_regs
)
2721 if (search_regs
.num_regs
== 0)
2724 = (regoff_t
*) xmalloc (length
* sizeof (regoff_t
));
2726 = (regoff_t
*) xmalloc (length
* sizeof (regoff_t
));
2731 = (regoff_t
*) xrealloc (search_regs
.start
,
2732 length
* sizeof (regoff_t
));
2734 = (regoff_t
*) xrealloc (search_regs
.end
,
2735 length
* sizeof (regoff_t
));
2738 search_regs
.num_regs
= length
;
2742 for (i
= 0; i
< search_regs
.num_regs
; i
++)
2744 marker
= Fcar (list
);
2747 search_regs
.start
[i
] = -1;
2752 if (MARKERP (marker
))
2754 if (XMARKER (marker
)->buffer
== 0)
2755 XSETFASTINT (marker
, 0);
2757 XSETBUFFER (last_thing_searched
, XMARKER (marker
)->buffer
);
2760 CHECK_NUMBER_COERCE_MARKER (marker
, 0);
2761 search_regs
.start
[i
] = XINT (marker
);
2764 marker
= Fcar (list
);
2765 if (MARKERP (marker
) && XMARKER (marker
)->buffer
== 0)
2766 XSETFASTINT (marker
, 0);
2768 CHECK_NUMBER_COERCE_MARKER (marker
, 0);
2769 search_regs
.end
[i
] = XINT (marker
);
2777 /* If non-zero the match data have been saved in saved_search_regs
2778 during the execution of a sentinel or filter. */
2779 static int search_regs_saved
;
2780 static struct re_registers saved_search_regs
;
2782 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2783 if asynchronous code (filter or sentinel) is running. */
2787 if (!search_regs_saved
)
2789 saved_search_regs
.num_regs
= search_regs
.num_regs
;
2790 saved_search_regs
.start
= search_regs
.start
;
2791 saved_search_regs
.end
= search_regs
.end
;
2792 search_regs
.num_regs
= 0;
2793 search_regs
.start
= 0;
2794 search_regs
.end
= 0;
2796 search_regs_saved
= 1;
2800 /* Called upon exit from filters and sentinels. */
2802 restore_match_data ()
2804 if (search_regs_saved
)
2806 if (search_regs
.num_regs
> 0)
2808 xfree (search_regs
.start
);
2809 xfree (search_regs
.end
);
2811 search_regs
.num_regs
= saved_search_regs
.num_regs
;
2812 search_regs
.start
= saved_search_regs
.start
;
2813 search_regs
.end
= saved_search_regs
.end
;
2815 search_regs_saved
= 0;
2819 /* Quote a string to inactivate reg-expr chars */
2821 DEFUN ("regexp-quote", Fregexp_quote
, Sregexp_quote
, 1, 1, 0,
2822 "Return a regexp string which matches exactly STRING and nothing else.")
2826 register unsigned char *in
, *out
, *end
;
2827 register unsigned char *temp
;
2828 int backslashes_added
= 0;
2830 CHECK_STRING (string
, 0);
2832 temp
= (unsigned char *) alloca (STRING_BYTES (XSTRING (string
)) * 2);
2834 /* Now copy the data into the new string, inserting escapes. */
2836 in
= XSTRING (string
)->data
;
2837 end
= in
+ STRING_BYTES (XSTRING (string
));
2840 for (; in
!= end
; in
++)
2842 if (*in
== '[' || *in
== ']'
2843 || *in
== '*' || *in
== '.' || *in
== '\\'
2844 || *in
== '?' || *in
== '+'
2845 || *in
== '^' || *in
== '$')
2846 *out
++ = '\\', backslashes_added
++;
2850 return make_specified_string (temp
,
2851 XSTRING (string
)->size
+ backslashes_added
,
2853 STRING_MULTIBYTE (string
));
2861 for (i
= 0; i
< REGEXP_CACHE_SIZE
; ++i
)
2863 searchbufs
[i
].buf
.allocated
= 100;
2864 searchbufs
[i
].buf
.buffer
= (unsigned char *) malloc (100);
2865 searchbufs
[i
].buf
.fastmap
= searchbufs
[i
].fastmap
;
2866 searchbufs
[i
].regexp
= Qnil
;
2867 staticpro (&searchbufs
[i
].regexp
);
2868 searchbufs
[i
].next
= (i
== REGEXP_CACHE_SIZE
-1 ? 0 : &searchbufs
[i
+1]);
2870 searchbuf_head
= &searchbufs
[0];
2872 Qsearch_failed
= intern ("search-failed");
2873 staticpro (&Qsearch_failed
);
2874 Qinvalid_regexp
= intern ("invalid-regexp");
2875 staticpro (&Qinvalid_regexp
);
2877 Fput (Qsearch_failed
, Qerror_conditions
,
2878 Fcons (Qsearch_failed
, Fcons (Qerror
, Qnil
)));
2879 Fput (Qsearch_failed
, Qerror_message
,
2880 build_string ("Search failed"));
2882 Fput (Qinvalid_regexp
, Qerror_conditions
,
2883 Fcons (Qinvalid_regexp
, Fcons (Qerror
, Qnil
)));
2884 Fput (Qinvalid_regexp
, Qerror_message
,
2885 build_string ("Invalid regexp"));
2887 last_thing_searched
= Qnil
;
2888 staticpro (&last_thing_searched
);
2890 defsubr (&Slooking_at
);
2891 defsubr (&Sposix_looking_at
);
2892 defsubr (&Sstring_match
);
2893 defsubr (&Sposix_string_match
);
2894 defsubr (&Ssearch_forward
);
2895 defsubr (&Ssearch_backward
);
2896 defsubr (&Sword_search_forward
);
2897 defsubr (&Sword_search_backward
);
2898 defsubr (&Sre_search_forward
);
2899 defsubr (&Sre_search_backward
);
2900 defsubr (&Sposix_search_forward
);
2901 defsubr (&Sposix_search_backward
);
2902 defsubr (&Sreplace_match
);
2903 defsubr (&Smatch_beginning
);
2904 defsubr (&Smatch_end
);
2905 defsubr (&Smatch_data
);
2906 defsubr (&Sset_match_data
);
2907 defsubr (&Sregexp_quote
);