2004-06-03 Karl Fogel <kfogel@red-bean.com>
[emacs.git] / src / unexmacosx.c
blobb41c586d2e03999e315dc4001babe87c1528333d
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* Contributed by Andrew Choi (akochoi@mac.com). */
23 /* Documentation note.
25 Consult the following documents/files for a description of the
26 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
27 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
28 mach header (-h option) and the load commands (-l option) in a
29 Mach-O file. The tool nm on Mac OS X displays the symbol table in
30 a Mach-O file. For examples of unexec for the Mach-O format, see
31 the file unexnext.c in the GNU Emacs distribution, the file
32 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
33 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
34 contains the source code for malloc_freezedry and malloc_jumpstart.
35 Read that to see what they do. This file was written completely
36 from scratch, making use of information from the above sources. */
38 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
39 memory allocator. All calls to malloc, realloc, and free in Emacs
40 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
41 this file. When temacs is run, all memory requests are handled in
42 the zone EmacsZone. The Darwin memory allocator library calls
43 maintain the data structures to manage this zone. Dumping writes
44 its contents to data segments of the executable file. When emacs
45 is run, the loader recreates the contents of the zone in memory.
46 However since the initialization routine of the zone memory
47 allocator is run again, this `zone' can no longer be used as a
48 heap. That is why emacs uses the ordinary malloc system call to
49 allocate memory. Also, when a block of memory needs to be
50 reallocated and the new size is larger than the old one, a new
51 block must be obtained by malloc and the old contents copied to
52 it. */
54 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
55 (possible causes of future bugs if changed).
57 The file offset of the start of the __TEXT segment is zero. Since
58 the Mach header and load commands are located at the beginning of a
59 Mach-O file, copying the contents of the __TEXT segment from the
60 input file overwrites them in the output file. Despite this,
61 unexec works fine as written below because the segment load command
62 for __TEXT appears, and is therefore processed, before all other
63 load commands except the segment load command for __PAGEZERO, which
64 remains unchanged.
66 Although the file offset of the start of the __TEXT segment is
67 zero, none of the sections it contains actually start there. In
68 fact, the earliest one starts a few hundred bytes beyond the end of
69 the last load command. The linker option -headerpad controls the
70 minimum size of this padding. Its setting can be changed in
71 s/darwin.h. A value of 0x300, e.g., leaves room for about 15
72 additional load commands for the newly created __DATA segments (at
73 56 bytes each). Unexec fails if there is not enough room for these
74 new segments.
76 The __TEXT segment contains the sections __text, __cstring,
77 __picsymbol_stub, and __const and the __DATA segment contains the
78 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
79 and __common. The other segments do not contain any sections.
80 These sections are copied from the input file to the output file,
81 except for __data, __bss, and __common, which are dumped from
82 memory. The types of the sections __bss and __common are changed
83 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
84 their relative order in the input and output files remain
85 unchanged. Otherwise all n_sect fields in the nlist records in the
86 symbol table (specified by the LC_SYMTAB load command) will have to
87 be changed accordingly.
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <fcntl.h>
93 #include <stdarg.h>
94 #include <sys/types.h>
95 #include <unistd.h>
96 #include <mach/mach.h>
97 #include <mach-o/loader.h>
98 #include <mach-o/reloc.h>
99 #if defined (__ppc__)
100 #include <mach-o/ppc/reloc.h>
101 #endif
102 #include <objc/malloc.h>
104 #define VERBOSE 1
106 /* Size of buffer used to copy data from the input file to the output
107 file in function unexec_copy. */
108 #define UNEXEC_COPY_BUFSZ 1024
110 /* Regions with memory addresses above this value are assumed to be
111 mapped to dynamically loaded libraries and will not be dumped. */
112 #define VM_DATA_TOP (20 * 1024 * 1024)
114 /* Used by malloc_freezedry and malloc_jumpstart. */
115 int malloc_cookie;
117 /* Type of an element on the list of regions to be dumped. */
118 struct region_t {
119 vm_address_t address;
120 vm_size_t size;
121 vm_prot_t protection;
122 vm_prot_t max_protection;
124 struct region_t *next;
127 /* Head and tail of the list of regions to be dumped. */
128 struct region_t *region_list_head = 0;
129 struct region_t *region_list_tail = 0;
131 /* Pointer to array of load commands. */
132 struct load_command **lca;
134 /* Number of load commands. */
135 int nlc;
137 /* The highest VM address of segments loaded by the input file.
138 Regions with addresses beyond this are assumed to be allocated
139 dynamically and thus require dumping. */
140 vm_address_t infile_lc_highest_addr = 0;
142 /* The lowest file offset used by the all sections in the __TEXT
143 segments. This leaves room at the beginning of the file to store
144 the Mach-O header. Check this value against header size to ensure
145 the added load commands for the new __DATA segments did not
146 overwrite any of the sections in the __TEXT segment. */
147 unsigned long text_seg_lowest_offset = 0x10000000;
149 /* Mach header. */
150 struct mach_header mh;
152 /* Offset at which the next load command should be written. */
153 unsigned long curr_header_offset = sizeof (struct mach_header);
155 /* Current adjustment that needs to be made to offset values because
156 of additional data segments. */
157 unsigned long delta = 0;
159 int infd, outfd;
161 int in_dumped_exec = 0;
163 malloc_zone_t *emacs_zone;
165 /* file offset of input file's data segment */
166 off_t data_segment_old_fileoff;
168 struct segment_command *data_segment_scp;
170 /* Read n bytes from infd into memory starting at address dest.
171 Return true if successful, false otherwise. */
172 static int
173 unexec_read (void *dest, size_t n)
175 return n == read (infd, dest, n);
178 /* Write n bytes from memory starting at address src to outfd starting
179 at offset dest. Return true if successful, false otherwise. */
180 static int
181 unexec_write (off_t dest, const void *src, size_t count)
183 if (lseek (outfd, dest, SEEK_SET) != dest)
184 return 0;
186 return write (outfd, src, count) == count;
189 /* Copy n bytes from starting offset src in infd to starting offset
190 dest in outfd. Return true if successful, false otherwise. */
191 static int
192 unexec_copy (off_t dest, off_t src, ssize_t count)
194 ssize_t bytes_read;
195 ssize_t bytes_to_read;
197 char buf[UNEXEC_COPY_BUFSZ];
199 if (lseek (infd, src, SEEK_SET) != src)
200 return 0;
202 if (lseek (outfd, dest, SEEK_SET) != dest)
203 return 0;
205 while (count > 0)
207 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
208 bytes_read = read (infd, buf, bytes_to_read);
209 if (bytes_read <= 0)
210 return 0;
211 if (write (outfd, buf, bytes_read) != bytes_read)
212 return 0;
213 count -= bytes_read;
216 return 1;
219 /* Debugging and informational messages routines. */
221 static void
222 unexec_error (char *format, ...)
224 va_list ap;
226 va_start (ap, format);
227 fprintf (stderr, "unexec: ");
228 vfprintf (stderr, format, ap);
229 fprintf (stderr, "\n");
230 va_end (ap);
231 exit (1);
234 static void
235 print_prot (vm_prot_t prot)
237 if (prot == VM_PROT_NONE)
238 printf ("none");
239 else
241 putchar (prot & VM_PROT_READ ? 'r' : ' ');
242 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
243 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
244 putchar (' ');
248 static void
249 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
250 vm_prot_t max_prot)
252 printf ("%#10x %#8x ", address, size);
253 print_prot (prot);
254 putchar (' ');
255 print_prot (max_prot);
256 putchar ('\n');
259 static void
260 print_region_list ()
262 struct region_t *r;
264 printf (" address size prot maxp\n");
266 for (r = region_list_head; r; r = r->next)
267 print_region (r->address, r->size, r->protection, r->max_protection);
270 void
271 print_regions ()
273 task_t target_task = mach_task_self ();
274 vm_address_t address = (vm_address_t) 0;
275 vm_size_t size;
276 struct vm_region_basic_info info;
277 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
278 mach_port_t object_name;
280 printf (" address size prot maxp\n");
282 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
283 (vm_region_info_t) &info, &info_count, &object_name)
284 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
286 print_region (address, size, info.protection, info.max_protection);
288 if (object_name != MACH_PORT_NULL)
289 mach_port_deallocate (target_task, object_name);
291 address += size;
295 /* Build the list of regions that need to be dumped. Regions with
296 addresses above VM_DATA_TOP are omitted. Adjacent regions with
297 identical protection are merged. Note that non-writable regions
298 cannot be omitted because they some regions created at run time are
299 read-only. */
300 static void
301 build_region_list ()
303 task_t target_task = mach_task_self ();
304 vm_address_t address = (vm_address_t) 0;
305 vm_size_t size;
306 struct vm_region_basic_info info;
307 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
308 mach_port_t object_name;
309 struct region_t *r;
311 #if VERBOSE
312 printf ("--- List of All Regions ---\n");
313 printf (" address size prot maxp\n");
314 #endif
316 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
317 (vm_region_info_t) &info, &info_count, &object_name)
318 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
320 /* Done when we reach addresses of shared libraries, which are
321 loaded in high memory. */
322 if (address >= VM_DATA_TOP)
323 break;
325 #if VERBOSE
326 print_region (address, size, info.protection, info.max_protection);
327 #endif
329 /* If a region immediately follows the previous one (the one
330 most recently added to the list) and has identical
331 protection, merge it with the latter. Otherwise create a
332 new list element for it. */
333 if (region_list_tail
334 && info.protection == region_list_tail->protection
335 && info.max_protection == region_list_tail->max_protection
336 && region_list_tail->address + region_list_tail->size == address)
338 region_list_tail->size += size;
340 else
342 r = (struct region_t *) malloc (sizeof (struct region_t));
344 if (!r)
345 unexec_error ("cannot allocate region structure");
347 r->address = address;
348 r->size = size;
349 r->protection = info.protection;
350 r->max_protection = info.max_protection;
352 r->next = 0;
353 if (region_list_head == 0)
355 region_list_head = r;
356 region_list_tail = r;
358 else
360 region_list_tail->next = r;
361 region_list_tail = r;
364 /* Deallocate (unused) object name returned by
365 vm_region. */
366 if (object_name != MACH_PORT_NULL)
367 mach_port_deallocate (target_task, object_name);
370 address += size;
373 printf ("--- List of Regions to be Dumped ---\n");
374 print_region_list ();
378 #define MAX_UNEXEC_REGIONS 200
380 int num_unexec_regions;
381 vm_range_t unexec_regions[MAX_UNEXEC_REGIONS];
383 static void
384 unexec_regions_recorder (task_t task, void *rr, unsigned type,
385 vm_range_t *ranges, unsigned num)
387 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
389 unexec_regions[num_unexec_regions++] = *ranges;
390 printf ("%#8x (sz: %#8x)\n", ranges->address, ranges->size);
391 ranges++; num--;
393 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
394 fprintf (stderr, "malloc_freezedry_recorder: too many regions\n");
397 static kern_return_t
398 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
400 *ptr = (void *) address;
401 return KERN_SUCCESS;
404 void
405 find_emacs_zone_regions ()
407 num_unexec_regions = 0;
409 emacs_zone->introspect->enumerator (mach_task_self(), 0,
410 MALLOC_PTR_REGION_RANGE_TYPE
411 | MALLOC_ADMIN_REGION_RANGE_TYPE,
412 (vm_address_t) emacs_zone,
413 unexec_reader,
414 unexec_regions_recorder);
417 static int
418 unexec_regions_sort_compare (const void *a, const void *b)
420 vm_address_t aa = ((vm_range_t *) a)->address;
421 vm_address_t bb = ((vm_range_t *) b)->address;
423 if (aa < bb)
424 return -1;
425 else if (aa > bb)
426 return 1;
427 else
428 return 0;
431 static void
432 unexec_regions_merge ()
434 int i, n;
435 vm_range_t r;
437 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
438 &unexec_regions_sort_compare);
439 n = 0;
440 r = unexec_regions[0];
441 for (i = 1; i < num_unexec_regions; i++)
443 if (r.address + r.size == unexec_regions[i].address)
445 r.size += unexec_regions[i].size;
447 else
449 unexec_regions[n++] = r;
450 r = unexec_regions[i];
453 unexec_regions[n++] = r;
454 num_unexec_regions = n;
458 /* More informational messages routines. */
460 static void
461 print_load_command_name (int lc)
463 switch (lc)
465 case LC_SEGMENT:
466 printf ("LC_SEGMENT ");
467 break;
468 case LC_LOAD_DYLINKER:
469 printf ("LC_LOAD_DYLINKER ");
470 break;
471 case LC_LOAD_DYLIB:
472 printf ("LC_LOAD_DYLIB ");
473 break;
474 case LC_SYMTAB:
475 printf ("LC_SYMTAB ");
476 break;
477 case LC_DYSYMTAB:
478 printf ("LC_DYSYMTAB ");
479 break;
480 case LC_UNIXTHREAD:
481 printf ("LC_UNIXTHREAD ");
482 break;
483 case LC_PREBOUND_DYLIB:
484 printf ("LC_PREBOUND_DYLIB");
485 break;
486 case LC_TWOLEVEL_HINTS:
487 printf ("LC_TWOLEVEL_HINTS");
488 break;
489 default:
490 printf ("unknown ");
494 static void
495 print_load_command (struct load_command *lc)
497 print_load_command_name (lc->cmd);
498 printf ("%8d", lc->cmdsize);
500 if (lc->cmd == LC_SEGMENT)
502 struct segment_command *scp;
503 struct section *sectp;
504 int j;
506 scp = (struct segment_command *) lc;
507 printf (" %-16.16s %#10x %#8x\n",
508 scp->segname, scp->vmaddr, scp->vmsize);
510 sectp = (struct section *) (scp + 1);
511 for (j = 0; j < scp->nsects; j++)
513 printf (" %-16.16s %#10x %#8x\n",
514 sectp->sectname, sectp->addr, sectp->size);
515 sectp++;
518 else
519 printf ("\n");
522 /* Read header and load commands from input file. Store the latter in
523 the global array lca. Store the total number of load commands in
524 global variable nlc. */
525 static void
526 read_load_commands ()
528 int n, i, j;
530 if (!unexec_read (&mh, sizeof (struct mach_header)))
531 unexec_error ("cannot read mach-o header");
533 if (mh.magic != MH_MAGIC)
534 unexec_error ("input file not in Mach-O format");
536 if (mh.filetype != MH_EXECUTE)
537 unexec_error ("input Mach-O file is not an executable object file");
539 #if VERBOSE
540 printf ("--- Header Information ---\n");
541 printf ("Magic = 0x%08x\n", mh.magic);
542 printf ("CPUType = %d\n", mh.cputype);
543 printf ("CPUSubType = %d\n", mh.cpusubtype);
544 printf ("FileType = 0x%x\n", mh.filetype);
545 printf ("NCmds = %d\n", mh.ncmds);
546 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
547 printf ("Flags = 0x%08x\n", mh.flags);
548 #endif
550 nlc = mh.ncmds;
551 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
553 for (i = 0; i < nlc; i++)
555 struct load_command lc;
556 /* Load commands are variable-size: so read the command type and
557 size first and then read the rest. */
558 if (!unexec_read (&lc, sizeof (struct load_command)))
559 unexec_error ("cannot read load command");
560 lca[i] = (struct load_command *) malloc (lc.cmdsize);
561 memcpy (lca[i], &lc, sizeof (struct load_command));
562 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
563 unexec_error ("cannot read content of load command");
564 if (lc.cmd == LC_SEGMENT)
566 struct segment_command *scp = (struct segment_command *) lca[i];
568 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
569 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
571 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
573 struct section *sectp = (struct section *) (scp + 1);
574 int j;
576 for (j = 0; j < scp->nsects; j++)
577 if (sectp->offset < text_seg_lowest_offset)
578 text_seg_lowest_offset = sectp->offset;
583 printf ("Highest address of load commands in input file: %#8x\n",
584 infile_lc_highest_addr);
586 printf ("Lowest offset of all sections in __TEXT segment: %#8x\n",
587 text_seg_lowest_offset);
589 printf ("--- List of Load Commands in Input File ---\n");
590 printf ("# cmd cmdsize name address size\n");
592 for (i = 0; i < nlc; i++)
594 printf ("%1d ", i);
595 print_load_command (lca[i]);
599 /* Copy a LC_SEGMENT load command other than the __DATA segment from
600 the input file to the output file, adjusting the file offset of the
601 segment and the file offsets of sections contained in it. */
602 static void
603 copy_segment (struct load_command *lc)
605 struct segment_command *scp = (struct segment_command *) lc;
606 unsigned long old_fileoff = scp->fileoff;
607 struct section *sectp;
608 int j;
610 scp->fileoff += delta;
612 sectp = (struct section *) (scp + 1);
613 for (j = 0; j < scp->nsects; j++)
615 sectp->offset += delta;
616 sectp++;
619 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
620 scp->segname, scp->fileoff, scp->fileoff + scp->filesize,
621 scp->filesize);
623 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
624 unexec_error ("cannot copy segment from input to output file");
625 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
626 unexec_error ("cannot write load command to header");
628 curr_header_offset += lc->cmdsize;
631 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
632 file to the output file. We assume that only one such segment load
633 command exists in the input file and it contains the sections
634 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
635 __dyld. The first three of these should be dumped from memory and
636 the rest should be copied from the input file. Note that the
637 sections __bss and __common contain no data in the input file
638 because their flag fields have the value S_ZEROFILL. Dumping these
639 from memory makes it necessary to adjust file offset fields in
640 subsequently dumped load commands. Then, create new __DATA segment
641 load commands for regions on the region list other than the one
642 corresponding to the __DATA segment in the input file. */
643 static void
644 copy_data_segment (struct load_command *lc)
646 struct segment_command *scp = (struct segment_command *) lc;
647 struct section *sectp;
648 int j;
649 unsigned long header_offset, file_offset, old_file_offset;
650 struct region_t *r;
652 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
653 scp->segname, scp->fileoff, scp->fileoff + scp->filesize,
654 scp->filesize);
656 if (delta != 0)
657 unexec_error ("cannot handle multiple DATA segments in input file");
659 /* Offsets in the output file for writing the next section structure
660 and segment data block, respectively. */
661 header_offset = curr_header_offset + sizeof (struct segment_command);
663 sectp = (struct section *) (scp + 1);
664 for (j = 0; j < scp->nsects; j++)
666 old_file_offset = sectp->offset;
667 sectp->offset = sectp->addr - scp->vmaddr + scp->fileoff;
668 /* The __data section is dumped from memory. The __bss and
669 __common sections are also dumped from memory but their flag
670 fields require changing (from S_ZEROFILL to S_REGULAR). The
671 other three kinds of sections are just copied from the input
672 file. */
673 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
675 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
676 unexec_error ("cannot write section %s", SECT_DATA);
677 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
678 unexec_error ("cannot write section %s's header", SECT_DATA);
680 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0
681 || strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
683 sectp->flags = S_REGULAR;
684 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
685 unexec_error ("cannot write section %s", SECT_DATA);
686 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
687 unexec_error ("cannot write section %s's header", SECT_DATA);
689 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
690 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
691 || strncmp (sectp->sectname, "__dyld", 16) == 0
692 || strncmp (sectp->sectname, "__const", 16) == 0
693 || strncmp (sectp->sectname, "__cfstring", 16) == 0)
695 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
696 unexec_error ("cannot copy section %s", sectp->sectname);
697 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
698 unexec_error ("cannot write section %s's header", sectp->sectname);
700 else
701 unexec_error ("unrecognized section name in __DATA segment");
703 printf (" section %-16.16s at %#8x - %#8x (sz: %#8x)\n",
704 sectp->sectname, sectp->offset, sectp->offset + sectp->size,
705 sectp->size);
707 header_offset += sizeof (struct section);
708 sectp++;
711 /* The new filesize of the segment is set to its vmsize because data
712 blocks for segments must start at region boundaries. Note that
713 this may leave unused locations at the end of the segment data
714 block because the total of the sizes of all sections in the
715 segment is generally smaller than vmsize. */
716 delta = scp->vmsize - scp->filesize;
717 scp->filesize = scp->vmsize;
718 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
719 unexec_error ("cannot write header of __DATA segment");
720 curr_header_offset += lc->cmdsize;
722 /* Create new __DATA segment load commands for regions on the region
723 list that do not corresponding to any segment load commands in
724 the input file.
726 file_offset = scp->fileoff + scp->filesize;
727 for (j = 0; j < num_unexec_regions; j++)
729 struct segment_command sc;
731 sc.cmd = LC_SEGMENT;
732 sc.cmdsize = sizeof (struct segment_command);
733 strncpy (sc.segname, SEG_DATA, 16);
734 sc.vmaddr = unexec_regions[j].address;
735 sc.vmsize = unexec_regions[j].size;
736 sc.fileoff = file_offset;
737 sc.filesize = unexec_regions[j].size;
738 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
739 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
740 sc.nsects = 0;
741 sc.flags = 0;
743 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
744 sc.segname, sc.fileoff, sc.fileoff + sc.filesize,
745 sc.filesize);
747 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.vmsize))
748 unexec_error ("cannot write new __DATA segment");
749 delta += sc.filesize;
750 file_offset += sc.filesize;
752 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
753 unexec_error ("cannot write new __DATA segment's header");
754 curr_header_offset += sc.cmdsize;
755 mh.ncmds++;
759 /* Copy a LC_SYMTAB load command from the input file to the output
760 file, adjusting the file offset fields. */
761 static void
762 copy_symtab (struct load_command *lc)
764 struct symtab_command *stp = (struct symtab_command *) lc;
766 stp->symoff += delta;
767 stp->stroff += delta;
769 printf ("Writing LC_SYMTAB command\n");
771 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
772 unexec_error ("cannot write symtab command to header");
774 curr_header_offset += lc->cmdsize;
777 /* Fix up relocation entries. */
778 static void
779 unrelocate (const char *name, off_t reloff, int nrel)
781 int i, unreloc_count;
782 struct relocation_info reloc_info;
783 struct scattered_relocation_info *sc_reloc_info
784 = (struct scattered_relocation_info *) &reloc_info;
786 for (unreloc_count = 0, i = 0; i < nrel; i++)
788 if (lseek (infd, reloff, L_SET) != reloff)
789 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
790 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
791 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
792 reloff += sizeof (reloc_info);
794 if (sc_reloc_info->r_scattered == 0)
795 switch (reloc_info.r_type)
797 case GENERIC_RELOC_VANILLA:
798 if (reloc_info.r_address >= data_segment_scp->vmaddr
799 && reloc_info.r_address < (data_segment_scp->vmaddr
800 + data_segment_scp->vmsize))
802 off_t src_off = data_segment_old_fileoff
803 + reloc_info.r_address - data_segment_scp->vmaddr;
804 off_t dst_off = data_segment_scp->fileoff
805 + reloc_info.r_address - data_segment_scp->vmaddr;
807 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
808 unexec_error ("unrelocate: %s:%d cannot copy original value",
809 name, i);
810 unreloc_count++;
812 break;
813 default:
814 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
815 name, i, reloc_info.r_type);
817 else
818 switch (sc_reloc_info->r_type)
820 #if defined (__ppc__)
821 case PPC_RELOC_PB_LA_PTR:
822 /* nothing to do for prebound lazy pointer */
823 break;
824 #endif
825 default:
826 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
827 name, i, sc_reloc_info->r_type);
831 if (nrel > 0)
832 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
833 unreloc_count, nrel, name);
836 /* Copy a LC_DYSYMTAB load command from the input file to the output
837 file, adjusting the file offset fields. */
838 static void
839 copy_dysymtab (struct load_command *lc)
841 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
843 unrelocate ("local", dstp->locreloff, dstp->nlocrel);
844 unrelocate ("external", dstp->extreloff, dstp->nextrel);
846 if (dstp->nextrel > 0) {
847 dstp->extreloff += delta;
850 if (dstp->nlocrel > 0) {
851 dstp->locreloff += delta;
854 if (dstp->nindirectsyms > 0)
855 dstp->indirectsymoff += delta;
857 printf ("Writing LC_DYSYMTAB command\n");
859 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
860 unexec_error ("cannot write symtab command to header");
862 curr_header_offset += lc->cmdsize;
865 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
866 file, adjusting the file offset fields. */
867 static void
868 copy_twolevelhints (struct load_command *lc)
870 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
872 if (tlhp->nhints > 0) {
873 tlhp->offset += delta;
876 printf ("Writing LC_TWOLEVEL_HINTS command\n");
878 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
879 unexec_error ("cannot write two level hint command to header");
881 curr_header_offset += lc->cmdsize;
884 /* Copy other kinds of load commands from the input file to the output
885 file, ones that do not require adjustments of file offsets. */
886 static void
887 copy_other (struct load_command *lc)
889 printf ("Writing ");
890 print_load_command_name (lc->cmd);
891 printf (" command\n");
893 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
894 unexec_error ("cannot write symtab command to header");
896 curr_header_offset += lc->cmdsize;
899 /* Loop through all load commands and dump them. Then write the Mach
900 header. */
901 static void
902 dump_it ()
904 int i;
906 printf ("--- Load Commands written to Output File ---\n");
908 for (i = 0; i < nlc; i++)
909 switch (lca[i]->cmd)
911 case LC_SEGMENT:
913 struct segment_command *scp = (struct segment_command *) lca[i];
914 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
916 /* save data segment file offset and segment_command for
917 unrelocate */
918 data_segment_old_fileoff = scp->fileoff;
919 data_segment_scp = scp;
921 copy_data_segment (lca[i]);
923 else
925 copy_segment (lca[i]);
928 break;
929 case LC_SYMTAB:
930 copy_symtab (lca[i]);
931 break;
932 case LC_DYSYMTAB:
933 copy_dysymtab (lca[i]);
934 break;
935 case LC_TWOLEVEL_HINTS:
936 copy_twolevelhints (lca[i]);
937 break;
938 default:
939 copy_other (lca[i]);
940 break;
943 if (curr_header_offset > text_seg_lowest_offset)
944 unexec_error ("not enough room for load commands for new __DATA segments");
946 printf ("%d unused bytes follow Mach-O header\n",
947 text_seg_lowest_offset - curr_header_offset);
949 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
950 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
951 unexec_error ("cannot write final header contents");
954 /* Take a snapshot of Emacs and make a Mach-O format executable file
955 from it. The file names of the output and input files are outfile
956 and infile, respectively. The three other parameters are
957 ignored. */
958 void
959 unexec (char *outfile, char *infile, void *start_data, void *start_bss,
960 void *entry_address)
962 infd = open (infile, O_RDONLY, 0);
963 if (infd < 0)
965 unexec_error ("cannot open input file `%s'", infile);
968 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
969 if (outfd < 0)
971 close (infd);
972 unexec_error ("cannot open output file `%s'", outfile);
975 build_region_list ();
976 read_load_commands ();
978 find_emacs_zone_regions ();
979 unexec_regions_merge ();
981 in_dumped_exec = 1;
983 dump_it ();
985 close (outfd);
989 void
990 unexec_init_emacs_zone ()
992 emacs_zone = malloc_create_zone (0, 0);
993 malloc_set_zone_name (emacs_zone, "EmacsZone");
997 ptr_in_unexec_regions (void *ptr)
999 int i;
1001 for (i = 0; i < num_unexec_regions; i++)
1002 if ((vm_address_t) ptr - unexec_regions[i].address
1003 < unexec_regions[i].size)
1004 return 1;
1006 return 0;
1009 void *
1010 unexec_malloc (size_t size)
1012 if (in_dumped_exec)
1013 return malloc (size);
1014 else
1015 return malloc_zone_malloc (emacs_zone, size);
1018 void *
1019 unexec_realloc (void *old_ptr, size_t new_size)
1021 if (in_dumped_exec)
1022 if (ptr_in_unexec_regions (old_ptr))
1024 char *p = malloc (new_size);
1025 /* 2002-04-15 T. Ikegami <ikegami@adam.uprr.pr>. The original
1026 code to get size failed to reallocate read_buffer
1027 (lread.c). */
1028 int old_size = malloc_default_zone()->size (emacs_zone, old_ptr);
1029 int size = new_size > old_size ? old_size : new_size;
1031 if (size)
1032 memcpy (p, old_ptr, size);
1033 return p;
1035 else
1036 return realloc (old_ptr, new_size);
1037 else
1038 return malloc_zone_realloc (emacs_zone, old_ptr, new_size);
1041 void
1042 unexec_free (void *ptr)
1044 if (in_dumped_exec)
1046 if (!ptr_in_unexec_regions (ptr))
1047 free (ptr);
1049 else
1050 malloc_zone_free (emacs_zone, ptr);
1053 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1054 (do not change this comment) */