(Fcall_interactively): Prevent a compiler warning.
[emacs.git] / lispref / lists.texi
blob222f723944f1d7e425fe273b80fac62575722dcf
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
4 @c   Free Software Foundation, Inc. 
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/lists
7 @node Lists, Sequences Arrays Vectors, Strings and Characters, Top
8 @chapter Lists
9 @cindex list
10 @cindex element (of list)
12   A @dfn{list} represents a sequence of zero or more elements (which may
13 be any Lisp objects).  The important difference between lists and
14 vectors is that two or more lists can share part of their structure; in
15 addition, you can insert or delete elements in a list without copying
16 the whole list.
18 @menu
19 * Cons Cells::          How lists are made out of cons cells.
20 * Lists as Boxes::                 Graphical notation to explain lists.
21 * List-related Predicates::        Is this object a list?  Comparing two lists.
22 * List Elements::       Extracting the pieces of a list.
23 * Building Lists::      Creating list structure.
24 * Modifying Lists::     Storing new pieces into an existing list.
25 * Sets And Lists::      A list can represent a finite mathematical set.
26 * Association Lists::   A list can represent a finite relation or mapping.
27 @end menu
29 @node Cons Cells
30 @section Lists and Cons Cells
31 @cindex lists and cons cells
32 @cindex @code{nil} and lists
34   Lists in Lisp are not a primitive data type; they are built up from
35 @dfn{cons cells}.  A cons cell is a data object that represents an
36 ordered pair.  That is, it has two slots, and each slot @dfn{holds}, or
37 @dfn{refers to}, some Lisp object.  One slot is known as the @sc{car},
38 and the other is known as the @sc{cdr}.  (These names are traditional;
39 see @ref{Cons Cell Type}.)  @sc{cdr} is pronounced ``could-er.''
41   We say that ``the @sc{car} of this cons cell is'' whatever object
42 its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
44   A list is a series of cons cells ``chained together,'' so that each
45 cell refers to the next one.  There is one cons cell for each element of
46 the list.  By convention, the @sc{car}s of the cons cells hold the
47 elements of the list, and the @sc{cdr}s are used to chain the list: the
48 @sc{cdr} slot of each cons cell refers to the following cons cell.  The
49 @sc{cdr} of the last cons cell is @code{nil}.  This asymmetry between
50 the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
51 level of cons cells, the @sc{car} and @sc{cdr} slots have the same
52 characteristics.
54 @cindex list structure
55   Because most cons cells are used as part of lists, the phrase
56 @dfn{list structure} has come to mean any structure made out of cons
57 cells.
59   The symbol @code{nil} is considered a list as well as a symbol; it is
60 the list with no elements.  For convenience, the symbol @code{nil} is
61 considered to have @code{nil} as its @sc{cdr} (and also as its
62 @sc{car}).
64   The @sc{cdr} of any nonempty list @var{l} is a list containing all the
65 elements of @var{l} except the first.
67 @node Lists as Boxes
68 @comment  node-name,  next,  previous,  up
69 @section Lists as Linked Pairs of Boxes
70 @cindex box representation for lists
71 @cindex lists represented as boxes
72 @cindex cons cell as box
74   A cons cell can be illustrated as a pair of boxes.  The first box
75 represents the @sc{car} and the second box represents the @sc{cdr}.
76 Here is an illustration of the two-element list, @code{(tulip lily)},
77 made from two cons cells:
79 @example
80 @group
81  ---------------         ---------------
82 | car   | cdr   |       | car   | cdr   |
83 | tulip |   o---------->| lily  |  nil  |
84 |       |       |       |       |       |
85  ---------------         ---------------
86 @end group
87 @end example
89   Each pair of boxes represents a cons cell.  Each box ``refers to'',
90 ``points to'' or ``holds'' a Lisp object.  (These terms are
91 synonymous.)  The first box, which describes the @sc{car} of the first
92 cons cell, contains the symbol @code{tulip}.  The arrow from the
93 @sc{cdr} box of the first cons cell to the second cons cell indicates
94 that the @sc{cdr} of the first cons cell is the second cons cell.
96   The same list can be illustrated in a different sort of box notation
97 like this:
99 @example
100 @group
101     --- ---      --- ---
102    |   |   |--> |   |   |--> nil
103     --- ---      --- ---
104      |            |
105      |            |
106       --> tulip    --> lily
107 @end group
108 @end example
110   Here is a more complex illustration, showing the three-element list,
111 @code{((pine needles) oak maple)}, the first element of which is a
112 two-element list:
114 @example
115 @group
116     --- ---      --- ---      --- ---
117    |   |   |--> |   |   |--> |   |   |--> nil
118     --- ---      --- ---      --- ---
119      |            |            |
120      |            |            |
121      |             --> oak      --> maple
122      |
123      |     --- ---      --- ---
124       --> |   |   |--> |   |   |--> nil
125            --- ---      --- ---
126             |            |
127             |            |
128              --> pine     --> needles
129 @end group
130 @end example
132   The same list represented in the first box notation looks like this:
134 @example
135 @group
136  --------------       --------------       --------------
137 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
138 |   o   |   o------->| oak   |   o------->| maple |  nil |
139 |   |   |      |     |       |      |     |       |      |
140  -- | ---------       --------------       --------------
141     |
142     |
143     |        --------------       ----------------
144     |       | car   | cdr  |     | car     | cdr  |
145      ------>| pine  |   o------->| needles |  nil |
146             |       |      |     |         |      |
147              --------------       ----------------
148 @end group
149 @end example
151   @xref{Cons Cell Type}, for the read and print syntax of cons cells and
152 lists, and for more ``box and arrow'' illustrations of lists.
154 @node List-related Predicates
155 @section Predicates on Lists
157   The following predicates test whether a Lisp object is an atom, is a
158 cons cell or is a list, or whether it is the distinguished object
159 @code{nil}.  (Many of these predicates can be defined in terms of the
160 others, but they are used so often that it is worth having all of them.)
162 @defun consp object
163 This function returns @code{t} if @var{object} is a cons cell, @code{nil}
164 otherwise.  @code{nil} is not a cons cell, although it @emph{is} a list.
165 @end defun
167 @defun atom object
168 @cindex atoms
169 This function returns @code{t} if @var{object} is an atom, @code{nil}
170 otherwise.  All objects except cons cells are atoms.  The symbol
171 @code{nil} is an atom and is also a list; it is the only Lisp object
172 that is both.
174 @example
175 (atom @var{object}) @equiv{} (not (consp @var{object}))
176 @end example
177 @end defun
179 @defun listp object
180 This function returns @code{t} if @var{object} is a cons cell or
181 @code{nil}.  Otherwise, it returns @code{nil}.
183 @example
184 @group
185 (listp '(1))
186      @result{} t
187 @end group
188 @group
189 (listp '())
190      @result{} t
191 @end group
192 @end example
193 @end defun
195 @defun nlistp object
196 This function is the opposite of @code{listp}: it returns @code{t} if
197 @var{object} is not a list.  Otherwise, it returns @code{nil}.
199 @example
200 (listp @var{object}) @equiv{} (not (nlistp @var{object}))
201 @end example
202 @end defun
204 @defun null object
205 This function returns @code{t} if @var{object} is @code{nil}, and
206 returns @code{nil} otherwise.  This function is identical to @code{not},
207 but as a matter of clarity we use @code{null} when @var{object} is
208 considered a list and @code{not} when it is considered a truth value
209 (see @code{not} in @ref{Combining Conditions}).
211 @example
212 @group
213 (null '(1))
214      @result{} nil
215 @end group
216 @group
217 (null '())
218      @result{} t
219 @end group
220 @end example
221 @end defun
223 @need 2000
225 @node List Elements
226 @section Accessing Elements of Lists
227 @cindex list elements
229 @defun car cons-cell
230 This function returns the value referred to by the first slot of the
231 cons cell @var{cons-cell}.  Expressed another way, this function
232 returns the @sc{car} of @var{cons-cell}.
234 As a special case, if @var{cons-cell} is @code{nil}, then @code{car}
235 is defined to return @code{nil}; therefore, any list is a valid argument
236 for @code{car}.  An error is signaled if the argument is not a cons cell
237 or @code{nil}.
239 @example
240 @group
241 (car '(a b c))
242      @result{} a
243 @end group
244 @group
245 (car '())
246      @result{} nil
247 @end group
248 @end example
249 @end defun
251 @defun cdr cons-cell
252 This function returns the value referred to by the second slot of
253 the cons cell @var{cons-cell}.  Expressed another way, this function
254 returns the @sc{cdr} of @var{cons-cell}.
256 As a special case, if @var{cons-cell} is @code{nil}, then @code{cdr}
257 is defined to return @code{nil}; therefore, any list is a valid argument
258 for @code{cdr}.  An error is signaled if the argument is not a cons cell
259 or @code{nil}.
261 @example
262 @group
263 (cdr '(a b c))
264      @result{} (b c)
265 @end group
266 @group
267 (cdr '())
268      @result{} nil
269 @end group
270 @end example
271 @end defun
273 @defun car-safe object
274 This function lets you take the @sc{car} of a cons cell while avoiding
275 errors for other data types.  It returns the @sc{car} of @var{object} if
276 @var{object} is a cons cell, @code{nil} otherwise.  This is in contrast
277 to @code{car}, which signals an error if @var{object} is not a list.
279 @example
280 @group
281 (car-safe @var{object})
282 @equiv{}
283 (let ((x @var{object}))
284   (if (consp x)
285       (car x)
286     nil))
287 @end group
288 @end example
289 @end defun
291 @defun cdr-safe object
292 This function lets you take the @sc{cdr} of a cons cell while
293 avoiding errors for other data types.  It returns the @sc{cdr} of
294 @var{object} if @var{object} is a cons cell, @code{nil} otherwise.
295 This is in contrast to @code{cdr}, which signals an error if
296 @var{object} is not a list.
298 @example
299 @group
300 (cdr-safe @var{object})
301 @equiv{}
302 (let ((x @var{object}))
303   (if (consp x)
304       (cdr x)
305     nil))
306 @end group
307 @end example
308 @end defun
310 @tindex pop
311 @defmac pop listname
312 This macro is a way of examining the @sc{car} of a list,
313 and taking it off the list, all at once.  It is new in Emacs 21.
315 It operates on the list which is stored in the symbol @var{listname}.
316 It removes this element from the list by setting @var{listname}
317 to the @sc{cdr} of its old value---but it also returns the @sc{car}
318 of that list, which is the element being removed.
320 @example
322      @result{} (a b c)
323 (pop x)
324      @result{} a
326      @result{} (b c)
327 @end example
328 @end defmac
330 @defun nth n list
331 This function returns the @var{n}th element of @var{list}.  Elements
332 are numbered starting with zero, so the @sc{car} of @var{list} is
333 element number zero.  If the length of @var{list} is @var{n} or less,
334 the value is @code{nil}.
336 If @var{n} is negative, @code{nth} returns the first element of
337 @var{list}.
339 @example
340 @group
341 (nth 2 '(1 2 3 4))
342      @result{} 3
343 @end group
344 @group
345 (nth 10 '(1 2 3 4))
346      @result{} nil
347 @end group
348 @group
349 (nth -3 '(1 2 3 4))
350      @result{} 1
352 (nth n x) @equiv{} (car (nthcdr n x))
353 @end group
354 @end example
356 The function @code{elt} is similar, but applies to any kind of sequence.
357 For historical reasons, it takes its arguments in the opposite order.
358 @xref{Sequence Functions}.
359 @end defun
361 @defun nthcdr n list
362 This function returns the @var{n}th @sc{cdr} of @var{list}.  In other
363 words, it skips past the first @var{n} links of @var{list} and returns
364 what follows.
366 If @var{n} is zero or negative, @code{nthcdr} returns all of
367 @var{list}.  If the length of @var{list} is @var{n} or less,
368 @code{nthcdr} returns @code{nil}.
370 @example
371 @group
372 (nthcdr 1 '(1 2 3 4))
373      @result{} (2 3 4)
374 @end group
375 @group
376 (nthcdr 10 '(1 2 3 4))
377      @result{} nil
378 @end group
379 @group
380 (nthcdr -3 '(1 2 3 4))
381      @result{} (1 2 3 4)
382 @end group
383 @end example
384 @end defun
386 @defun last list &optional n
387 This function reruns the last link of the given @var{list}.  The
388 @code{car} of this link is the list's last element.  If @var{list} is
389 null, @code{nil} is returned.  If @var{n} is non-nil the
390 @var{n}-th-to-last link is returned instead, or the whole @var{list} if
391 @var{n} is bigger than @var{list}'s length.
392 @end defun
394 @defun safe-length list
395 This function returns the length of @var{list}, with no risk
396 of either an error or an infinite loop.
398 If @var{list} is not really a list, @code{safe-length} returns 0.  If
399 @var{list} is circular, it returns a finite value which is at least the
400 number of distinct elements.
401 @end defun
403   The most common way to compute the length of a list, when you are not
404 worried that it may be circular, is with @code{length}.  @xref{Sequence
405 Functions}.
407 @defun caar cons-cell
408 This is the same as @code{(car (car @var{cons-cell}))}.
409 @end defun
411 @defun cadr cons-cell
412 This is the same as @code{(car (cdr @var{cons-cell}))}
413 or @code{(nth 1 @var{cons-cell})}.
414 @end defun
416 @defun cdar cons-cell
417 This is the same as @code{(cdr (car @var{cons-cell}))}.
418 @end defun
420 @defun cddr cons-cell
421 This is the same as @code{(cdr (cdr @var{cons-cell}))}
422 or @code{(nthcdr 2 @var{cons-cell})}.
423 @end defun
425 @node Building Lists
426 @comment  node-name,  next,  previous,  up
427 @section Building Cons Cells and Lists
428 @cindex cons cells
429 @cindex building lists
431   Many functions build lists, as lists reside at the very heart of Lisp.
432 @code{cons} is the fundamental list-building function; however, it is
433 interesting to note that @code{list} is used more times in the source
434 code for Emacs than @code{cons}.
436 @defun cons object1 object2
437 This function is the fundamental function used to build new list
438 structure.  It creates a new cons cell, making @var{object1} the
439 @sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new cons
440 cell.  The arguments @var{object1} and @var{object2} may be any Lisp
441 objects, but most often @var{object2} is a list.
443 @example
444 @group
445 (cons 1 '(2))
446      @result{} (1 2)
447 @end group
448 @group
449 (cons 1 '())
450      @result{} (1)
451 @end group
452 @group
453 (cons 1 2)
454      @result{} (1 . 2)
455 @end group
456 @end example
458 @cindex consing
459 @code{cons} is often used to add a single element to the front of a
460 list.  This is called @dfn{consing the element onto the list}.
461 @footnote{There is no strictly equivalent way to add an element to
462 the end of a list.  You can use @code{(append @var{listname} (list
463 @var{newelt}))}, which creates a whole new list by copying @var{listname}
464 and adding @var{newelt} to its end.  Or you can use @code{(nconc
465 @var{listname} (list @var{newelt}))}, which modifies @var{listname}
466 by following all the @sc{cdr}s and then replacing the terminating
467 @code{nil}.  Compare this to adding an element to the beginning of a
468 list with @code{cons}, which neither copies nor modifies the list.}
469 For example:
471 @example
472 (setq list (cons newelt list))
473 @end example
475 Note that there is no conflict between the variable named @code{list}
476 used in this example and the function named @code{list} described below;
477 any symbol can serve both purposes.
478 @end defun
480 @tindex push
481 @defmac push newelt listname
482 This macro provides an alternative way to write
483 @code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
484 It is new in Emacs 21.
485 @end defmac
487 @defun list &rest objects
488 This function creates a list with @var{objects} as its elements.  The
489 resulting list is always @code{nil}-terminated.  If no @var{objects}
490 are given, the empty list is returned.
492 @example
493 @group
494 (list 1 2 3 4 5)
495      @result{} (1 2 3 4 5)
496 @end group
497 @group
498 (list 1 2 '(3 4 5) 'foo)
499      @result{} (1 2 (3 4 5) foo)
500 @end group
501 @group
502 (list)
503      @result{} nil
504 @end group
505 @end example
506 @end defun
508 @defun make-list length object
509 This function creates a list of length @var{length}, in which all the
510 elements have the identical value @var{object}.  Compare
511 @code{make-list} with @code{make-string} (@pxref{Creating Strings}).
513 @example
514 @group
515 (make-list 3 'pigs)
516      @result{} (pigs pigs pigs)
517 @end group
518 @group
519 (make-list 0 'pigs)
520      @result{} nil
521 @end group
522 @end example
523 @end defun
525 @defun append &rest sequences
526 @cindex copying lists
527 This function returns a list containing all the elements of
528 @var{sequences}.  The @var{sequences} may be lists, vectors,
529 bool-vectors, or strings, but the last one should usually be a list.
530 All arguments except the last one are copied, so none of the arguments
531 is altered.  (See @code{nconc} in @ref{Rearrangement}, for a way to join
532 lists with no copying.)
534 More generally, the final argument to @code{append} may be any Lisp
535 object.  The final argument is not copied or converted; it becomes the
536 @sc{cdr} of the last cons cell in the new list.  If the final argument
537 is itself a list, then its elements become in effect elements of the
538 result list.  If the final element is not a list, the result is a
539 ``dotted list'' since its final @sc{cdr} is not @code{nil} as required
540 in a true list.
542 The @code{append} function also allows integers as arguments.  It
543 converts them to strings of digits, making up the decimal print
544 representation of the integer, and then uses the strings instead of the
545 original integers.  @strong{Don't use this feature; we plan to eliminate
546 it.  If you already use this feature, change your programs now!}  The
547 proper way to convert an integer to a decimal number in this way is with
548 @code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
549 (@pxref{String Conversion}).
550 @end defun
552   Here is an example of using @code{append}:
554 @example
555 @group
556 (setq trees '(pine oak))
557      @result{} (pine oak)
558 (setq more-trees (append '(maple birch) trees))
559      @result{} (maple birch pine oak)
560 @end group
562 @group
563 trees
564      @result{} (pine oak)
565 more-trees
566      @result{} (maple birch pine oak)
567 @end group
568 @group
569 (eq trees (cdr (cdr more-trees)))
570      @result{} t
571 @end group
572 @end example
574   You can see how @code{append} works by looking at a box diagram.  The
575 variable @code{trees} is set to the list @code{(pine oak)} and then the
576 variable @code{more-trees} is set to the list @code{(maple birch pine
577 oak)}.  However, the variable @code{trees} continues to refer to the
578 original list:
580 @smallexample
581 @group
582 more-trees                trees
583 |                           |
584 |     --- ---      --- ---   -> --- ---      --- ---
585  --> |   |   |--> |   |   |--> |   |   |--> |   |   |--> nil
586       --- ---      --- ---      --- ---      --- ---
587        |            |            |            |
588        |            |            |            |
589         --> maple    -->birch     --> pine     --> oak
590 @end group
591 @end smallexample
593   An empty sequence contributes nothing to the value returned by
594 @code{append}.  As a consequence of this, a final @code{nil} argument
595 forces a copy of the previous argument:
597 @example
598 @group
599 trees
600      @result{} (pine oak)
601 @end group
602 @group
603 (setq wood (append trees nil))
604      @result{} (pine oak)
605 @end group
606 @group
607 wood
608      @result{} (pine oak)
609 @end group
610 @group
611 (eq wood trees)
612      @result{} nil
613 @end group
614 @end example
616 @noindent
617 This once was the usual way to copy a list, before the function
618 @code{copy-sequence} was invented.  @xref{Sequences Arrays Vectors}.
620   Here we show the use of vectors and strings as arguments to @code{append}:
622 @example
623 @group
624 (append [a b] "cd" nil)
625      @result{} (a b 99 100)
626 @end group
627 @end example
629   With the help of @code{apply} (@pxref{Calling Functions}), we can append
630 all the lists in a list of lists:
632 @example
633 @group
634 (apply 'append '((a b c) nil (x y z) nil))
635      @result{} (a b c x y z)
636 @end group
637 @end example
639   If no @var{sequences} are given, @code{nil} is returned:
641 @example
642 @group
643 (append)
644      @result{} nil
645 @end group
646 @end example
648   Here are some examples where the final argument is not a list:
650 @example
651 (append '(x y) 'z)
652      @result{} (x y . z)
653 (append '(x y) [z])
654      @result{} (x y . [z])
655 @end example
657 @noindent
658 The second example shows that when the final argument is a sequence but
659 not a list, the sequence's elements do not become elements of the
660 resulting list.  Instead, the sequence becomes the final @sc{cdr}, like
661 any other non-list final argument.
663 @defun reverse list
664 This function creates a new list whose elements are the elements of
665 @var{list}, but in reverse order.  The original argument @var{list} is
666 @emph{not} altered.
668 @example
669 @group
670 (setq x '(1 2 3 4))
671      @result{} (1 2 3 4)
672 @end group
673 @group
674 (reverse x)
675      @result{} (4 3 2 1)
677      @result{} (1 2 3 4)
678 @end group
679 @end example
680 @end defun
682 @defun remq object list
683 This function returns a copy of @var{list}, with all elements removed
684 which are @code{eq} to @var{object}.  The letter @samp{q} in @code{remq}
685 says that it uses @code{eq} to compare @var{object} against the elements
686 of @code{list}.
688 @example
689 @group
690 (setq sample-list '(a b c a b c))
691      @result{} (a b c a b c)
692 @end group
693 @group
694 (remq 'a sample-list)
695      @result{} (b c b c)
696 @end group
697 @group
698 sample-list
699      @result{} (a b c a b c)
700 @end group
701 @end example
702 @noindent
703 The function @code{delq} offers a way to perform this operation
704 destructively.  See @ref{Sets And Lists}.
705 @end defun
707 @node Modifying Lists
708 @section Modifying Existing List Structure
709 @cindex destructive list operations
711   You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
712 primitives @code{setcar} and @code{setcdr}.  We call these ``destructive'' 
713 operations because they change existing list structure.
715 @cindex CL note---@code{rplaca} vrs @code{setcar}
716 @quotation
717 @findex rplaca
718 @findex rplacd
719 @b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
720 @code{rplacd} to alter list structure; they change structure the same
721 way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
722 return the cons cell while @code{setcar} and @code{setcdr} return the
723 new @sc{car} or @sc{cdr}.
724 @end quotation
726 @menu
727 * Setcar::          Replacing an element in a list.
728 * Setcdr::          Replacing part of the list backbone.
729                       This can be used to remove or add elements.
730 * Rearrangement::   Reordering the elements in a list; combining lists.
731 @end menu
733 @node Setcar
734 @subsection Altering List Elements with @code{setcar}
736   Changing the @sc{car} of a cons cell is done with @code{setcar}.  When
737 used on a list, @code{setcar} replaces one element of a list with a
738 different element.
740 @defun setcar cons object
741 This function stores @var{object} as the new @sc{car} of @var{cons},
742 replacing its previous @sc{car}.  In other words, it changes the
743 @sc{car} slot of @var{cons} to refer to @var{object}.  It returns the
744 value @var{object}.  For example:
746 @example
747 @group
748 (setq x '(1 2))
749      @result{} (1 2)
750 @end group
751 @group
752 (setcar x 4)
753      @result{} 4
754 @end group
755 @group
757      @result{} (4 2)
758 @end group
759 @end example
760 @end defun
762   When a cons cell is part of the shared structure of several lists,
763 storing a new @sc{car} into the cons changes one element of each of
764 these lists.  Here is an example:
766 @example
767 @group
768 ;; @r{Create two lists that are partly shared.}
769 (setq x1 '(a b c))
770      @result{} (a b c)
771 (setq x2 (cons 'z (cdr x1)))
772      @result{} (z b c)
773 @end group
775 @group
776 ;; @r{Replace the @sc{car} of a shared link.}
777 (setcar (cdr x1) 'foo)
778      @result{} foo
779 x1                           ; @r{Both lists are changed.}
780      @result{} (a foo c)
782      @result{} (z foo c)
783 @end group
785 @group
786 ;; @r{Replace the @sc{car} of a link that is not shared.}
787 (setcar x1 'baz)
788      @result{} baz
789 x1                           ; @r{Only one list is changed.}
790      @result{} (baz foo c)
792      @result{} (z foo c)
793 @end group
794 @end example
796   Here is a graphical depiction of the shared structure of the two lists
797 in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
798 changes them both:
800 @example
801 @group
802         --- ---        --- ---      --- ---
803 x1---> |   |   |----> |   |   |--> |   |   |--> nil
804         --- ---        --- ---      --- ---
805          |        -->   |            |
806          |       |      |            |
807           --> a  |       --> b        --> c
808                  |
809        --- ---   |
810 x2--> |   |   |--
811        --- ---
812         |
813         |
814          --> z
815 @end group
816 @end example
818   Here is an alternative form of box diagram, showing the same relationship:
820 @example
821 @group
823  --------------       --------------       --------------
824 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
825 |   a   |   o------->|   b   |   o------->|   c   |  nil |
826 |       |      |  -->|       |      |     |       |      |
827  --------------  |    --------------       --------------
828                  |
829 x2:              |
830  --------------  |
831 | car   | cdr  | |
832 |   z   |   o----
833 |       |      |
834  --------------
835 @end group
836 @end example
838 @node Setcdr
839 @subsection Altering the CDR of a List
841   The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
843 @defun setcdr cons object
844 This function stores @var{object} as the new @sc{cdr} of @var{cons},
845 replacing its previous @sc{cdr}.  In other words, it changes the
846 @sc{cdr} slot of @var{cons} to refer to @var{object}.  It returns the
847 value @var{object}.
848 @end defun
850   Here is an example of replacing the @sc{cdr} of a list with a
851 different list.  All but the first element of the list are removed in
852 favor of a different sequence of elements.  The first element is
853 unchanged, because it resides in the @sc{car} of the list, and is not
854 reached via the @sc{cdr}.
856 @example
857 @group
858 (setq x '(1 2 3))
859      @result{} (1 2 3)
860 @end group
861 @group
862 (setcdr x '(4))
863      @result{} (4)
864 @end group
865 @group
867      @result{} (1 4)
868 @end group
869 @end example
871   You can delete elements from the middle of a list by altering the
872 @sc{cdr}s of the cons cells in the list.  For example, here we delete
873 the second element, @code{b}, from the list @code{(a b c)}, by changing
874 the @sc{cdr} of the first cons cell:
876 @example
877 @group
878 (setq x1 '(a b c))
879      @result{} (a b c)
880 (setcdr x1 (cdr (cdr x1)))
881      @result{} (c)
883      @result{} (a c)
884 @end group
885 @end example
887 @need 4000
888   Here is the result in box notation:
890 @example
891 @group
892                    --------------------
893                   |                    |
894  --------------   |   --------------   |    --------------
895 | car   | cdr  |  |  | car   | cdr  |   -->| car   | cdr  |
896 |   a   |   o-----   |   b   |   o-------->|   c   |  nil |
897 |       |      |     |       |      |      |       |      |
898  --------------       --------------        --------------
899 @end group
900 @end example
902 @noindent
903 The second cons cell, which previously held the element @code{b}, still
904 exists and its @sc{car} is still @code{b}, but it no longer forms part
905 of this list.
907   It is equally easy to insert a new element by changing @sc{cdr}s:
909 @example
910 @group
911 (setq x1 '(a b c))
912      @result{} (a b c)
913 (setcdr x1 (cons 'd (cdr x1)))
914      @result{} (d b c)
916      @result{} (a d b c)
917 @end group
918 @end example
920   Here is this result in box notation:
922 @smallexample
923 @group
924  --------------        -------------       -------------
925 | car  | cdr   |      | car  | cdr  |     | car  | cdr  |
926 |   a  |   o   |   -->|   b  |   o------->|   c  |  nil |
927 |      |   |   |  |   |      |      |     |      |      |
928  --------- | --   |    -------------       -------------
929            |      |
930      -----         --------
931     |                      |
932     |    ---------------   |
933     |   | car   | cdr   |  |
934      -->|   d   |   o------
935         |       |       |
936          ---------------
937 @end group
938 @end smallexample
940 @node Rearrangement
941 @subsection Functions that Rearrange Lists
942 @cindex rearrangement of lists
943 @cindex modification of lists
945   Here are some functions that rearrange lists ``destructively'' by
946 modifying the @sc{cdr}s of their component cons cells.  We call these
947 functions ``destructive'' because they chew up the original lists passed
948 to them as arguments, relinking their cons cells to form a new list that
949 is the returned value.
951 @ifnottex
952   See @code{delq}, in @ref{Sets And Lists}, for another function
953 that modifies cons cells.
954 @end ifnottex
955 @iftex
956    The function @code{delq} in the following section is another example
957 of destructive list manipulation.
958 @end iftex
960 @defun nconc &rest lists
961 @cindex concatenating lists
962 @cindex joining lists
963 This function returns a list containing all the elements of @var{lists}.
964 Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
965 @emph{not} copied.  Instead, the last @sc{cdr} of each of the
966 @var{lists} is changed to refer to the following list.  The last of the
967 @var{lists} is not altered.  For example:
969 @example
970 @group
971 (setq x '(1 2 3))
972      @result{} (1 2 3)
973 @end group
974 @group
975 (nconc x '(4 5))
976      @result{} (1 2 3 4 5)
977 @end group
978 @group
980      @result{} (1 2 3 4 5)
981 @end group
982 @end example
984    Since the last argument of @code{nconc} is not itself modified, it is
985 reasonable to use a constant list, such as @code{'(4 5)}, as in the
986 above example.  For the same reason, the last argument need not be a
987 list:
989 @example
990 @group
991 (setq x '(1 2 3))
992      @result{} (1 2 3)
993 @end group
994 @group
995 (nconc x 'z)
996      @result{} (1 2 3 . z)
997 @end group
998 @group
1000      @result{} (1 2 3 . z)
1001 @end group
1002 @end example
1004 However, the other arguments (all but the last) must be lists.
1006 A common pitfall is to use a quoted constant list as a non-last
1007 argument to @code{nconc}.  If you do this, your program will change
1008 each time you run it!  Here is what happens:
1010 @smallexample
1011 @group
1012 (defun add-foo (x)            ; @r{We want this function to add}
1013   (nconc '(foo) x))           ;   @r{@code{foo} to the front of its arg.}
1014 @end group
1016 @group
1017 (symbol-function 'add-foo)
1018      @result{} (lambda (x) (nconc (quote (foo)) x))
1019 @end group
1021 @group
1022 (setq xx (add-foo '(1 2)))    ; @r{It seems to work.}
1023      @result{} (foo 1 2)
1024 @end group
1025 @group
1026 (setq xy (add-foo '(3 4)))    ; @r{What happened?}
1027      @result{} (foo 1 2 3 4)
1028 @end group
1029 @group
1030 (eq xx xy)
1031      @result{} t
1032 @end group
1034 @group
1035 (symbol-function 'add-foo)
1036      @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1037 @end group
1038 @end smallexample
1039 @end defun
1041 @defun nreverse list
1042 @cindex reversing a list
1043   This function reverses the order of the elements of @var{list}.
1044 Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1045 the @sc{cdr}s in the cons cells forming the list.  The cons cell that
1046 used to be the last one in @var{list} becomes the first cons cell of the
1047 value.
1049   For example:
1051 @example
1052 @group
1053 (setq x '(1 2 3 4))
1054      @result{} (1 2 3 4)
1055 @end group
1056 @group
1058      @result{} (1 2 3 4)
1059 (nreverse x)
1060      @result{} (4 3 2 1)
1061 @end group
1062 @group
1063 ;; @r{The cons cell that was first is now last.}
1065      @result{} (1)
1066 @end group
1067 @end example
1069   To avoid confusion, we usually store the result of @code{nreverse}
1070 back in the same variable which held the original list:
1072 @example
1073 (setq x (nreverse x))
1074 @end example
1076   Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1077 presented graphically:
1079 @smallexample
1080 @group
1081 @r{Original list head:}                       @r{Reversed list:}
1082  -------------        -------------        ------------
1083 | car  | cdr  |      | car  | cdr  |      | car | cdr  |
1084 |   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
1085 |      |      |   |  |      |   |  |   |  |     |   |  |
1086  -------------    |   --------- | -    |   -------- | -
1087                   |             |      |            |
1088                    -------------        ------------
1089 @end group
1090 @end smallexample
1091 @end defun
1093 @defun sort list predicate
1094 @cindex stable sort
1095 @cindex sorting lists
1096 This function sorts @var{list} stably, though destructively, and
1097 returns the sorted list.  It compares elements using @var{predicate}.  A
1098 stable sort is one in which elements with equal sort keys maintain their
1099 relative order before and after the sort.  Stability is important when
1100 successive sorts are used to order elements according to different
1101 criteria.
1103 The argument @var{predicate} must be a function that accepts two
1104 arguments.  It is called with two elements of @var{list}.  To get an
1105 increasing order sort, the @var{predicate} should return @code{t} if the
1106 first element is ``less than'' the second, or @code{nil} if not.
1108 The comparison function @var{predicate} must give reliable results for
1109 any given pair of arguments, at least within a single call to
1110 @code{sort}.  It must be @dfn{antisymmetric}; that is, if @var{a} is
1111 less than @var{b}, @var{b} must not be less than @var{a}.  It must be
1112 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1113 is less than @var{c}, then @var{a} must be less than @var{c}.  If you
1114 use a comparison function which does not meet these requirements, the
1115 result of @code{sort} is unpredictable.
1117 The destructive aspect of @code{sort} is that it rearranges the cons
1118 cells forming @var{list} by changing @sc{cdr}s.  A nondestructive sort
1119 function would create new cons cells to store the elements in their
1120 sorted order.  If you wish to make a sorted copy without destroying the
1121 original, copy it first with @code{copy-sequence} and then sort.
1123 Sorting does not change the @sc{car}s of the cons cells in @var{list};
1124 the cons cell that originally contained the element @code{a} in
1125 @var{list} still has @code{a} in its @sc{car} after sorting, but it now
1126 appears in a different position in the list due to the change of
1127 @sc{cdr}s.  For example:
1129 @example
1130 @group
1131 (setq nums '(1 3 2 6 5 4 0))
1132      @result{} (1 3 2 6 5 4 0)
1133 @end group
1134 @group
1135 (sort nums '<)
1136      @result{} (0 1 2 3 4 5 6)
1137 @end group
1138 @group
1139 nums
1140      @result{} (1 2 3 4 5 6)
1141 @end group
1142 @end example
1144 @noindent
1145 @strong{Warning}: Note that the list in @code{nums} no longer contains
1146 0; this is the same cons cell that it was before, but it is no longer
1147 the first one in the list.  Don't assume a variable that formerly held
1148 the argument now holds the entire sorted list!  Instead, save the result
1149 of @code{sort} and use that.  Most often we store the result back into
1150 the variable that held the original list:
1152 @example
1153 (setq nums (sort nums '<))
1154 @end example
1156 @xref{Sorting}, for more functions that perform sorting.
1157 See @code{documentation} in @ref{Accessing Documentation}, for a
1158 useful example of @code{sort}.
1159 @end defun
1161 @node Sets And Lists
1162 @section Using Lists as Sets
1163 @cindex lists as sets
1164 @cindex sets
1166   A list can represent an unordered mathematical set---simply consider a
1167 value an element of a set if it appears in the list, and ignore the
1168 order of the list.  To form the union of two sets, use @code{append} (as
1169 long as you don't mind having duplicate elements).  Other useful
1170 functions for sets include @code{memq} and @code{delq}, and their
1171 @code{equal} versions, @code{member} and @code{delete}.
1173 @cindex CL note---lack @code{union}, @code{intersection}
1174 @quotation
1175 @b{Common Lisp note:} Common Lisp has functions @code{union} (which
1176 avoids duplicate elements) and @code{intersection} for set operations,
1177 but GNU Emacs Lisp does not have them.  You can write them in Lisp if
1178 you wish.
1179 @end quotation
1181 @defun memq object list
1182 @cindex membership in a list
1183 This function tests to see whether @var{object} is a member of
1184 @var{list}.  If it is, @code{memq} returns a list starting with the
1185 first occurrence of @var{object}.  Otherwise, it returns @code{nil}.
1186 The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1187 compare @var{object} against the elements of the list.  For example:
1189 @example
1190 @group
1191 (memq 'b '(a b c b a))
1192      @result{} (b c b a)
1193 @end group
1194 @group
1195 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1196      @result{} nil
1197 @end group
1198 @end example
1199 @end defun
1201 @defun delq object list
1202 @cindex deletion of elements
1203 This function destructively removes all elements @code{eq} to
1204 @var{object} from @var{list}.  The letter @samp{q} in @code{delq} says
1205 that it uses @code{eq} to compare @var{object} against the elements of
1206 the list, like @code{memq} and @code{remq}.
1207 @end defun
1209 When @code{delq} deletes elements from the front of the list, it does so
1210 simply by advancing down the list and returning a sublist that starts
1211 after those elements:
1213 @example
1214 @group
1215 (delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1216 @end group
1217 @end example
1219 When an element to be deleted appears in the middle of the list,
1220 removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1222 @example
1223 @group
1224 (setq sample-list '(a b c (4)))
1225      @result{} (a b c (4))
1226 @end group
1227 @group
1228 (delq 'a sample-list)
1229      @result{} (b c (4))
1230 @end group
1231 @group
1232 sample-list
1233      @result{} (a b c (4))
1234 @end group
1235 @group
1236 (delq 'c sample-list)
1237      @result{} (a b (4))
1238 @end group
1239 @group
1240 sample-list
1241      @result{} (a b (4))
1242 @end group
1243 @end example
1245 Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1246 splice out the third element, but @code{(delq 'a sample-list)} does not
1247 splice anything---it just returns a shorter list.  Don't assume that a
1248 variable which formerly held the argument @var{list} now has fewer
1249 elements, or that it still holds the original list!  Instead, save the
1250 result of @code{delq} and use that.  Most often we store the result back
1251 into the variable that held the original list:
1253 @example
1254 (setq flowers (delq 'rose flowers))
1255 @end example
1257 In the following example, the @code{(4)} that @code{delq} attempts to match
1258 and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1260 @example
1261 @group
1262 (delq '(4) sample-list)
1263      @result{} (a c (4))
1264 @end group
1265 @end example
1267 The following two functions are like @code{memq} and @code{delq} but use
1268 @code{equal} rather than @code{eq} to compare elements.  @xref{Equality
1269 Predicates}.
1271 @defun member object list
1272 The function @code{member} tests to see whether @var{object} is a member
1273 of @var{list}, comparing members with @var{object} using @code{equal}.
1274 If @var{object} is a member, @code{member} returns a list starting with
1275 its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.
1277 Compare this with @code{memq}:
1279 @example
1280 @group
1281 (member '(2) '((1) (2)))  ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1282      @result{} ((2))
1283 @end group
1284 @group
1285 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1286      @result{} nil
1287 @end group
1288 @group
1289 ;; @r{Two strings with the same contents are @code{equal}.}
1290 (member "foo" '("foo" "bar"))
1291      @result{} ("foo" "bar")
1292 @end group
1293 @end example
1294 @end defun
1296 @defun delete object sequence
1297 If @code{sequence} is a list, this function destructively removes all
1298 elements @code{equal} to @var{object} from @var{sequence}.  For lists,
1299 @code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1300 uses @code{equal} to compare elements with @var{object}, like
1301 @code{member}; when it finds an element that matches, it removes the
1302 element just as @code{delq} would.
1304 If @code{sequence} is a vector or string, @code{delete} returns a copy
1305 of @code{sequence} with all elements @code{equal} to @code{object}
1306 removed.
1308 For example:
1310 @example
1311 @group
1312 (delete '(2) '((2) (1) (2)))
1313      @result{} ((1))
1314 @end group
1315 @group
1316 (delete '(2) [(2) (1) (2)])
1317      @result{} [(1)]
1318 @end group
1319 @end example
1320 @end defun
1322 @defun remove object sequence
1323 This function is the non-destructive counterpart of @code{delete}.  If
1324 returns a copy of @code{sequence}, a list, vector, or string, with
1325 elements @code{equal} to @code{object} removed.  For example:
1327 @example
1328 @group
1329 (remove '(2) '((2) (1) (2)))
1330      @result{} ((1))
1331 @end group
1332 @group
1333 (remove '(2) [(2) (1) (2)])
1334      @result{} [(1)]
1335 @end group
1336 @end example
1337 @end defun
1339 @quotation
1340 @b{Common Lisp note:} The functions @code{member}, @code{delete} and
1341 @code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1342 Lisp.  The Common Lisp versions do not use @code{equal} to compare
1343 elements.
1344 @end quotation
1346   See also the function @code{add-to-list}, in @ref{Setting Variables},
1347 for another way to add an element to a list stored in a variable.
1349 @node Association Lists
1350 @section Association Lists
1351 @cindex association list
1352 @cindex alist
1354   An @dfn{association list}, or @dfn{alist} for short, records a mapping
1355 from keys to values.  It is a list of cons cells called
1356 @dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1357 @sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1358 is not related to the term ``key sequence''; it means a value used to
1359 look up an item in a table.  In this case, the table is the alist, and
1360 the alist associations are the items.}
1362   Here is an example of an alist.  The key @code{pine} is associated with
1363 the value @code{cones}; the key @code{oak} is associated with
1364 @code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1366 @example
1367 @group
1368 '((pine . cones)
1369   (oak . acorns)
1370   (maple . seeds))
1371 @end group
1372 @end example
1374   The associated values in an alist may be any Lisp objects; so may the
1375 keys.  For example, in the following alist, the symbol @code{a} is
1376 associated with the number @code{1}, and the string @code{"b"} is
1377 associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1378 the alist element:
1380 @example
1381 ((a . 1) ("b" 2 3))
1382 @end example
1384   Sometimes it is better to design an alist to store the associated
1385 value in the @sc{car} of the @sc{cdr} of the element.  Here is an
1386 example:
1388 @example
1389 '((rose red) (lily white) (buttercup yellow))
1390 @end example
1392 @noindent
1393 Here we regard @code{red} as the value associated with @code{rose}.  One
1394 advantage of this kind of alist is that you can store other related
1395 information---even a list of other items---in the @sc{cdr} of the
1396 @sc{cdr}.  One disadvantage is that you cannot use @code{rassq} (see
1397 below) to find the element containing a given value.  When neither of
1398 these considerations is important, the choice is a matter of taste, as
1399 long as you are consistent about it for any given alist.
1401   Note that the same alist shown above could be regarded as having the
1402 associated value in the @sc{cdr} of the element; the value associated
1403 with @code{rose} would be the list @code{(red)}.
1405   Association lists are often used to record information that you might
1406 otherwise keep on a stack, since new associations may be added easily to
1407 the front of the list.  When searching an association list for an
1408 association with a given key, the first one found is returned, if there
1409 is more than one.
1411   In Emacs Lisp, it is @emph{not} an error if an element of an
1412 association list is not a cons cell.  The alist search functions simply
1413 ignore such elements.  Many other versions of Lisp signal errors in such
1414 cases.
1416   Note that property lists are similar to association lists in several
1417 respects.  A property list behaves like an association list in which
1418 each key can occur only once.  @xref{Property Lists}, for a comparison
1419 of property lists and association lists.
1421 @defun assoc key alist
1422 This function returns the first association for @var{key} in
1423 @var{alist}.  It compares @var{key} against the alist elements using
1424 @code{equal} (@pxref{Equality Predicates}).  It returns @code{nil} if no
1425 association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1426 For example:
1428 @smallexample
1429 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1430      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1431 (assoc 'oak trees)
1432      @result{} (oak . acorns)
1433 (cdr (assoc 'oak trees))
1434      @result{} acorns
1435 (assoc 'birch trees)
1436      @result{} nil
1437 @end smallexample
1439 Here is another example, in which the keys and values are not symbols:
1441 @smallexample
1442 (setq needles-per-cluster
1443       '((2 "Austrian Pine" "Red Pine")
1444         (3 "Pitch Pine")
1445         (5 "White Pine")))
1447 (cdr (assoc 3 needles-per-cluster))
1448      @result{} ("Pitch Pine")
1449 (cdr (assoc 2 needles-per-cluster))
1450      @result{} ("Austrian Pine" "Red Pine")
1451 @end smallexample
1452 @end defun
1454   The functions @code{assoc-ignore-representation} and
1455 @code{assoc-ignore-case} are much like @code{assoc} except using
1456 @code{compare-strings} to do the comparison.  @xref{Text Comparison}.
1458 @defun rassoc value alist
1459 This function returns the first association with value @var{value} in
1460 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1461 a @sc{cdr} @code{equal} to @var{value}.
1463 @code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1464 each @var{alist} association instead of the @sc{car}.  You can think of
1465 this as ``reverse @code{assoc}'', finding the key for a given value.
1466 @end defun
1468 @defun assq key alist
1469 This function is like @code{assoc} in that it returns the first
1470 association for @var{key} in @var{alist}, but it makes the comparison
1471 using @code{eq} instead of @code{equal}.  @code{assq} returns @code{nil}
1472 if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1473 This function is used more often than @code{assoc}, since @code{eq} is
1474 faster than @code{equal} and most alists use symbols as keys.
1475 @xref{Equality Predicates}.
1477 @smallexample
1478 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1479      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1480 (assq 'pine trees)
1481      @result{} (pine . cones)
1482 @end smallexample
1484 On the other hand, @code{assq} is not usually useful in alists where the
1485 keys may not be symbols:
1487 @smallexample
1488 (setq leaves
1489       '(("simple leaves" . oak)
1490         ("compound leaves" . horsechestnut)))
1492 (assq "simple leaves" leaves)
1493      @result{} nil
1494 (assoc "simple leaves" leaves)
1495      @result{} ("simple leaves" . oak)
1496 @end smallexample
1497 @end defun
1499 @defun rassq value alist
1500 This function returns the first association with value @var{value} in
1501 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1502 a @sc{cdr} @code{eq} to @var{value}.
1504 @code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1505 each @var{alist} association instead of the @sc{car}.  You can think of
1506 this as ``reverse @code{assq}'', finding the key for a given value.
1508 For example:
1510 @smallexample
1511 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1513 (rassq 'acorns trees)
1514      @result{} (oak . acorns)
1515 (rassq 'spores trees)
1516      @result{} nil
1517 @end smallexample
1519 Note that @code{rassq} cannot search for a value stored in the @sc{car}
1520 of the @sc{cdr} of an element:
1522 @smallexample
1523 (setq colors '((rose red) (lily white) (buttercup yellow)))
1525 (rassq 'white colors)
1526      @result{} nil
1527 @end smallexample
1529 In this case, the @sc{cdr} of the association @code{(lily white)} is not
1530 the symbol @code{white}, but rather the list @code{(white)}.  This
1531 becomes clearer if the association is written in dotted pair notation:
1533 @smallexample
1534 (lily white) @equiv{} (lily . (white))
1535 @end smallexample
1536 @end defun
1538 @defun assoc-default key alist test default
1539 This function searches @var{alist} for a match for @var{key}.  For each
1540 element of @var{alist}, it compares the element (if it is an atom) or
1541 the element's @sc{car} (if it is a cons) against @var{key}, by calling
1542 @var{test} with two arguments: the element or its @sc{car}, and
1543 @var{key}.  The arguments are passed in that order so that you can get
1544 useful results using @code{string-match} with an alist that contains
1545 regular expressions (@pxref{Regexp Search}).  If @var{test} is omitted
1546 or @code{nil}, @code{equal} is used for comparison.
1548 If an alist element matches @var{key} by this criterion,
1549 then @code{assoc-default} returns a value based on this element.
1550 If the element is a cons, then the value is the element's @sc{cdr}.
1551 Otherwise, the return value is @var{default}.
1553 If no alist element matches @var{key}, @code{assoc-default} returns
1554 @code{nil}.
1555 @end defun
1557 @defun copy-alist alist
1558 @cindex copying alists
1559 This function returns a two-level deep copy of @var{alist}: it creates a
1560 new copy of each association, so that you can alter the associations of
1561 the new alist without changing the old one.
1563 @smallexample
1564 @group
1565 (setq needles-per-cluster
1566       '((2 . ("Austrian Pine" "Red Pine"))
1567         (3 . ("Pitch Pine"))
1568 @end group
1569         (5 . ("White Pine"))))
1570 @result{}
1571 ((2 "Austrian Pine" "Red Pine")
1572  (3 "Pitch Pine")
1573  (5 "White Pine"))
1575 (setq copy (copy-alist needles-per-cluster))
1576 @result{}
1577 ((2 "Austrian Pine" "Red Pine")
1578  (3 "Pitch Pine")
1579  (5 "White Pine"))
1581 (eq needles-per-cluster copy)
1582      @result{} nil
1583 (equal needles-per-cluster copy)
1584      @result{} t
1585 (eq (car needles-per-cluster) (car copy))
1586      @result{} nil
1587 (cdr (car (cdr needles-per-cluster)))
1588      @result{} ("Pitch Pine")
1589 @group
1590 (eq (cdr (car (cdr needles-per-cluster)))
1591     (cdr (car (cdr copy))))
1592      @result{} t
1593 @end group
1594 @end smallexample
1596   This example shows how @code{copy-alist} makes it possible to change
1597 the associations of one copy without affecting the other:
1599 @smallexample
1600 @group
1601 (setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1602 (cdr (assq 3 needles-per-cluster))
1603      @result{} ("Pitch Pine")
1604 @end group
1605 @end smallexample
1606 @end defun
1608 @defun assoc-delete-all key alist
1609 @tindex assoc-delete-all
1610 This function deletes from @var{alist} all the elements whose @sc{car}
1611 is @var{key}.  It returns the modified alist.
1613 @example
1614 (assoc-delete-all 'foo
1615                   '((foo 1) (bar 2) (foo 3) (lose 4)))
1616      @result{} ((bar 2) (lose 4))
1617 @end example
1618 @end defun