*** empty log message ***
[emacs.git] / lisp / calc / calc-poly.el
blob213b7dc447415ad0697e1cbd077920100a92eb9c
1 ;;; calc-poly.el --- polynomial functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc.
5 ;; Author: David Gillespie <daveg@synaptics.com>
6 ;; Maintainers: D. Goel <deego@gnufans.org>
7 ;; Colin Walters <walters@debian.org>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is distributed in the hope that it will be useful,
12 ;; but WITHOUT ANY WARRANTY. No author or distributor
13 ;; accepts responsibility to anyone for the consequences of using it
14 ;; or for whether it serves any particular purpose or works at all,
15 ;; unless he says so in writing. Refer to the GNU Emacs General Public
16 ;; License for full details.
18 ;; Everyone is granted permission to copy, modify and redistribute
19 ;; GNU Emacs, but only under the conditions described in the
20 ;; GNU Emacs General Public License. A copy of this license is
21 ;; supposed to have been given to you along with GNU Emacs so you
22 ;; can know your rights and responsibilities. It should be in a
23 ;; file named COPYING. Among other things, the copyright notice
24 ;; and this notice must be preserved on all copies.
26 ;;; Commentary:
28 ;;; Code:
30 ;; This file is autoloaded from calc-ext.el.
31 (require 'calc-ext)
33 (require 'calc-macs)
35 (defun calc-Need-calc-poly () nil)
38 (defun calcFunc-pcont (expr &optional var)
39 (cond ((Math-primp expr)
40 (cond ((Math-zerop expr) 1)
41 ((Math-messy-integerp expr) (math-trunc expr))
42 ((Math-objectp expr) expr)
43 ((or (equal expr var) (not var)) 1)
44 (t expr)))
45 ((eq (car expr) '*)
46 (math-mul (calcFunc-pcont (nth 1 expr) var)
47 (calcFunc-pcont (nth 2 expr) var)))
48 ((eq (car expr) '/)
49 (math-div (calcFunc-pcont (nth 1 expr) var)
50 (calcFunc-pcont (nth 2 expr) var)))
51 ((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
52 (math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
53 ((memq (car expr) '(neg polar))
54 (calcFunc-pcont (nth 1 expr) var))
55 ((consp var)
56 (let ((p (math-is-polynomial expr var)))
57 (if p
58 (let ((lead (nth (1- (length p)) p))
59 (cont (math-poly-gcd-list p)))
60 (if (math-guess-if-neg lead)
61 (math-neg cont)
62 cont))
63 1)))
64 ((memq (car expr) '(+ - cplx sdev))
65 (let ((cont (calcFunc-pcont (nth 1 expr) var)))
66 (if (eq cont 1)
68 (let ((c2 (calcFunc-pcont (nth 2 expr) var)))
69 (if (and (math-negp cont)
70 (if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
71 (math-neg (math-poly-gcd cont c2))
72 (math-poly-gcd cont c2))))))
73 (var expr)
74 (t 1)))
76 (defun calcFunc-pprim (expr &optional var)
77 (let ((cont (calcFunc-pcont expr var)))
78 (if (math-equal-int cont 1)
79 expr
80 (math-poly-div-exact expr cont var))))
82 (defun math-div-poly-const (expr c)
83 (cond ((memq (car-safe expr) '(+ -))
84 (list (car expr)
85 (math-div-poly-const (nth 1 expr) c)
86 (math-div-poly-const (nth 2 expr) c)))
87 (t (math-div expr c))))
89 (defun calcFunc-pdeg (expr &optional var)
90 (if (Math-zerop expr)
91 '(neg (var inf var-inf))
92 (if var
93 (or (math-polynomial-p expr var)
94 (math-reject-arg expr "Expected a polynomial"))
95 (math-poly-degree expr))))
97 (defun math-poly-degree (expr)
98 (cond ((Math-primp expr)
99 (if (eq (car-safe expr) 'var) 1 0))
100 ((eq (car expr) 'neg)
101 (math-poly-degree (nth 1 expr)))
102 ((eq (car expr) '*)
103 (+ (math-poly-degree (nth 1 expr))
104 (math-poly-degree (nth 2 expr))))
105 ((eq (car expr) '/)
106 (- (math-poly-degree (nth 1 expr))
107 (math-poly-degree (nth 2 expr))))
108 ((and (eq (car expr) '^) (natnump (nth 2 expr)))
109 (* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
110 ((memq (car expr) '(+ -))
111 (max (math-poly-degree (nth 1 expr))
112 (math-poly-degree (nth 2 expr))))
113 (t 1)))
115 (defun calcFunc-plead (expr var)
116 (cond ((eq (car-safe expr) '*)
117 (math-mul (calcFunc-plead (nth 1 expr) var)
118 (calcFunc-plead (nth 2 expr) var)))
119 ((eq (car-safe expr) '/)
120 (math-div (calcFunc-plead (nth 1 expr) var)
121 (calcFunc-plead (nth 2 expr) var)))
122 ((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
123 (math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
124 ((Math-primp expr)
125 (if (equal expr var)
127 expr))
129 (let ((p (math-is-polynomial expr var)))
130 (if (cdr p)
131 (nth (1- (length p)) p)
132 1)))))
138 ;;; Polynomial quotient, remainder, and GCD.
139 ;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
140 ;;; Modifications and simplifications by daveg.
142 (defvar math-poly-modulus 1)
144 ;;; Return gcd of two polynomials
145 (defun calcFunc-pgcd (pn pd)
146 (if (math-any-floats pn)
147 (math-reject-arg pn "Coefficients must be rational"))
148 (if (math-any-floats pd)
149 (math-reject-arg pd "Coefficients must be rational"))
150 (let ((calc-prefer-frac t)
151 (math-poly-modulus (math-poly-modulus pn pd)))
152 (math-poly-gcd pn pd)))
154 ;;; Return only quotient to top of stack (nil if zero)
155 (defun calcFunc-pdiv (pn pd &optional base)
156 (let* ((calc-prefer-frac t)
157 (math-poly-modulus (math-poly-modulus pn pd))
158 (res (math-poly-div pn pd base)))
159 (setq calc-poly-div-remainder (cdr res))
160 (car res)))
162 ;;; Return only remainder to top of stack
163 (defun calcFunc-prem (pn pd &optional base)
164 (let ((calc-prefer-frac t)
165 (math-poly-modulus (math-poly-modulus pn pd)))
166 (cdr (math-poly-div pn pd base))))
168 (defun calcFunc-pdivrem (pn pd &optional base)
169 (let* ((calc-prefer-frac t)
170 (math-poly-modulus (math-poly-modulus pn pd))
171 (res (math-poly-div pn pd base)))
172 (list 'vec (car res) (cdr res))))
174 (defun calcFunc-pdivide (pn pd &optional base)
175 (let* ((calc-prefer-frac t)
176 (math-poly-modulus (math-poly-modulus pn pd))
177 (res (math-poly-div pn pd base)))
178 (math-add (car res) (math-div (cdr res) pd))))
181 ;;; Multiply two terms, expanding out products of sums.
182 (defun math-mul-thru (lhs rhs)
183 (if (memq (car-safe lhs) '(+ -))
184 (list (car lhs)
185 (math-mul-thru (nth 1 lhs) rhs)
186 (math-mul-thru (nth 2 lhs) rhs))
187 (if (memq (car-safe rhs) '(+ -))
188 (list (car rhs)
189 (math-mul-thru lhs (nth 1 rhs))
190 (math-mul-thru lhs (nth 2 rhs)))
191 (math-mul lhs rhs))))
193 (defun math-div-thru (num den)
194 (if (memq (car-safe num) '(+ -))
195 (list (car num)
196 (math-div-thru (nth 1 num) den)
197 (math-div-thru (nth 2 num) den))
198 (math-div num den)))
201 ;;; Sort the terms of a sum into canonical order.
202 (defun math-sort-terms (expr)
203 (if (memq (car-safe expr) '(+ -))
204 (math-list-to-sum
205 (sort (math-sum-to-list expr)
206 (function (lambda (a b) (math-beforep (car a) (car b))))))
207 expr))
209 (defun math-list-to-sum (lst)
210 (if (cdr lst)
211 (list (if (cdr (car lst)) '- '+)
212 (math-list-to-sum (cdr lst))
213 (car (car lst)))
214 (if (cdr (car lst))
215 (math-neg (car (car lst)))
216 (car (car lst)))))
218 (defun math-sum-to-list (tree &optional neg)
219 (cond ((eq (car-safe tree) '+)
220 (nconc (math-sum-to-list (nth 1 tree) neg)
221 (math-sum-to-list (nth 2 tree) neg)))
222 ((eq (car-safe tree) '-)
223 (nconc (math-sum-to-list (nth 1 tree) neg)
224 (math-sum-to-list (nth 2 tree) (not neg))))
225 (t (list (cons tree neg)))))
227 ;;; Check if the polynomial coefficients are modulo forms.
228 (defun math-poly-modulus (expr &optional expr2)
229 (or (math-poly-modulus-rec expr)
230 (and expr2 (math-poly-modulus-rec expr2))
233 (defun math-poly-modulus-rec (expr)
234 (if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
235 (list 'mod 1 (nth 2 expr))
236 (and (memq (car-safe expr) '(+ - * /))
237 (or (math-poly-modulus-rec (nth 1 expr))
238 (math-poly-modulus-rec (nth 2 expr))))))
241 ;;; Divide two polynomials. Return (quotient . remainder).
242 (defvar math-poly-div-base nil)
243 (defun math-poly-div (u v &optional math-poly-div-base)
244 (if math-poly-div-base
245 (math-do-poly-div u v)
246 (math-do-poly-div (calcFunc-expand u) (calcFunc-expand v))))
248 (defun math-poly-div-exact (u v &optional base)
249 (let ((res (math-poly-div u v base)))
250 (if (eq (cdr res) 0)
251 (car res)
252 (math-reject-arg (list 'vec u v) "Argument is not a polynomial"))))
254 (defun math-do-poly-div (u v)
255 (cond ((math-constp u)
256 (if (math-constp v)
257 (cons (math-div u v) 0)
258 (cons 0 u)))
259 ((math-constp v)
260 (cons (if (eq v 1)
262 (if (memq (car-safe u) '(+ -))
263 (math-add-or-sub (math-poly-div-exact (nth 1 u) v)
264 (math-poly-div-exact (nth 2 u) v)
265 nil (eq (car u) '-))
266 (math-div u v)))
268 ((Math-equal u v)
269 (cons math-poly-modulus 0))
270 ((and (math-atomic-factorp u) (math-atomic-factorp v))
271 (cons (math-simplify (math-div u v)) 0))
273 (let ((base (or math-poly-div-base
274 (math-poly-div-base u v)))
275 vp up res)
276 (if (or (null base)
277 (null (setq vp (math-is-polynomial v base nil 'gen))))
278 (cons 0 u)
279 (setq up (math-is-polynomial u base nil 'gen)
280 res (math-poly-div-coefs up vp))
281 (cons (math-build-polynomial-expr (car res) base)
282 (math-build-polynomial-expr (cdr res) base)))))))
284 (defun math-poly-div-rec (u v)
285 (cond ((math-constp u)
286 (math-div u v))
287 ((math-constp v)
288 (if (eq v 1)
290 (if (memq (car-safe u) '(+ -))
291 (math-add-or-sub (math-poly-div-rec (nth 1 u) v)
292 (math-poly-div-rec (nth 2 u) v)
293 nil (eq (car u) '-))
294 (math-div u v))))
295 ((Math-equal u v) math-poly-modulus)
296 ((and (math-atomic-factorp u) (math-atomic-factorp v))
297 (math-simplify (math-div u v)))
298 (math-poly-div-base
299 (math-div u v))
301 (let ((base (math-poly-div-base u v))
302 vp up res)
303 (if (or (null base)
304 (null (setq vp (math-is-polynomial v base nil 'gen))))
305 (math-div u v)
306 (setq up (math-is-polynomial u base nil 'gen)
307 res (math-poly-div-coefs up vp))
308 (math-add (math-build-polynomial-expr (car res) base)
309 (math-div (math-build-polynomial-expr (cdr res) base)
310 v)))))))
312 ;;; Divide two polynomials in coefficient-list form. Return (quot . rem).
313 (defun math-poly-div-coefs (u v)
314 (cond ((null v) (math-reject-arg nil "Division by zero"))
315 ((< (length u) (length v)) (cons nil u))
316 ((cdr u)
317 (let ((q nil)
318 (urev (reverse u))
319 (vrev (reverse v)))
320 (while
321 (let ((qk (math-poly-div-rec (math-simplify (car urev))
322 (car vrev)))
323 (up urev)
324 (vp vrev))
325 (if (or q (not (math-zerop qk)))
326 (setq q (cons qk q)))
327 (while (setq up (cdr up) vp (cdr vp))
328 (setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
329 (setq urev (cdr urev))
330 up))
331 (while (and urev (Math-zerop (car urev)))
332 (setq urev (cdr urev)))
333 (cons q (nreverse (mapcar 'math-simplify urev)))))
335 (cons (list (math-poly-div-rec (car u) (car v)))
336 nil))))
338 ;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
339 ;;; This returns only the remainder from the pseudo-division.
340 (defun math-poly-pseudo-div (u v)
341 (cond ((null v) nil)
342 ((< (length u) (length v)) u)
343 ((or (cdr u) (cdr v))
344 (let ((urev (reverse u))
345 (vrev (reverse v))
347 (while
348 (let ((vp vrev))
349 (setq up urev)
350 (while (setq up (cdr up) vp (cdr vp))
351 (setcar up (math-sub (math-mul-thru (car vrev) (car up))
352 (math-mul-thru (car urev) (car vp)))))
353 (setq urev (cdr urev))
355 (while up
356 (setcar up (math-mul-thru (car vrev) (car up)))
357 (setq up (cdr up))))
358 (while (and urev (Math-zerop (car urev)))
359 (setq urev (cdr urev)))
360 (nreverse (mapcar 'math-simplify urev))))
361 (t nil)))
363 ;;; Compute the GCD of two multivariate polynomials.
364 (defun math-poly-gcd (u v)
365 (cond ((Math-equal u v) u)
366 ((math-constp u)
367 (if (Math-zerop u)
369 (calcFunc-gcd u (calcFunc-pcont v))))
370 ((math-constp v)
371 (if (Math-zerop v)
373 (calcFunc-gcd v (calcFunc-pcont u))))
375 (let ((base (math-poly-gcd-base u v)))
376 (if base
377 (math-simplify
378 (calcFunc-expand
379 (math-build-polynomial-expr
380 (math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
381 (math-is-polynomial v base nil 'gen))
382 base)))
383 (calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u)))))))
385 (defun math-poly-div-list (lst a)
386 (if (eq a 1)
388 (if (eq a -1)
389 (math-mul-list lst a)
390 (mapcar (function (lambda (x) (math-poly-div-exact x a))) lst))))
392 (defun math-mul-list (lst a)
393 (if (eq a 1)
395 (if (eq a -1)
396 (mapcar 'math-neg lst)
397 (and (not (eq a 0))
398 (mapcar (function (lambda (x) (math-mul x a))) lst)))))
400 ;;; Run GCD on all elements in a list.
401 (defun math-poly-gcd-list (lst)
402 (if (or (memq 1 lst) (memq -1 lst))
403 (math-poly-gcd-frac-list lst)
404 (let ((gcd (car lst)))
405 (while (and (setq lst (cdr lst)) (not (eq gcd 1)))
406 (or (eq (car lst) 0)
407 (setq gcd (math-poly-gcd gcd (car lst)))))
408 (if lst (setq lst (math-poly-gcd-frac-list lst)))
409 gcd)))
411 (defun math-poly-gcd-frac-list (lst)
412 (while (and lst (not (eq (car-safe (car lst)) 'frac)))
413 (setq lst (cdr lst)))
414 (if lst
415 (let ((denom (nth 2 (car lst))))
416 (while (setq lst (cdr lst))
417 (if (eq (car-safe (car lst)) 'frac)
418 (setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
419 (list 'frac 1 denom))
422 ;;; Compute the GCD of two monovariate polynomial lists.
423 ;;; Knuth section 4.6.1, algorithm C.
424 (defun math-poly-gcd-coefs (u v)
425 (let ((d (math-poly-gcd (math-poly-gcd-list u)
426 (math-poly-gcd-list v)))
427 (g 1) (h 1) (z 0) hh r delta ghd)
428 (while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
429 (setq u (cdr u) v (cdr v) z (1+ z)))
430 (or (eq d 1)
431 (setq u (math-poly-div-list u d)
432 v (math-poly-div-list v d)))
433 (while (progn
434 (setq delta (- (length u) (length v)))
435 (if (< delta 0)
436 (setq r u u v v r delta (- delta)))
437 (setq r (math-poly-pseudo-div u v))
438 (cdr r))
439 (setq u v
440 v (math-poly-div-list r (math-mul g (math-pow h delta)))
441 g (nth (1- (length u)) u)
442 h (if (<= delta 1)
443 (math-mul (math-pow g delta) (math-pow h (- 1 delta)))
444 (math-poly-div-exact (math-pow g delta)
445 (math-pow h (1- delta))))))
446 (setq v (if r
447 (list d)
448 (math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
449 (if (math-guess-if-neg (nth (1- (length v)) v))
450 (setq v (math-mul-list v -1)))
451 (while (>= (setq z (1- z)) 0)
452 (setq v (cons 0 v)))
456 ;;; Return true if is a factor containing no sums or quotients.
457 (defun math-atomic-factorp (expr)
458 (cond ((eq (car-safe expr) '*)
459 (and (math-atomic-factorp (nth 1 expr))
460 (math-atomic-factorp (nth 2 expr))))
461 ((memq (car-safe expr) '(+ - /))
462 nil)
463 ((memq (car-safe expr) '(^ neg))
464 (math-atomic-factorp (nth 1 expr)))
465 (t t)))
467 ;;; Find a suitable base for dividing a by b.
468 ;;; The base must exist in both expressions.
469 ;;; The degree in the numerator must be higher or equal than the
470 ;;; degree in the denominator.
471 ;;; If the above conditions are not met the quotient is just a remainder.
472 ;;; Return nil if this is the case.
474 (defun math-poly-div-base (a b)
475 (let (a-base b-base)
476 (and (setq a-base (math-total-polynomial-base a))
477 (setq b-base (math-total-polynomial-base b))
478 (catch 'return
479 (while a-base
480 (let ((maybe (assoc (car (car a-base)) b-base)))
481 (if maybe
482 (if (>= (nth 1 (car a-base)) (nth 1 maybe))
483 (throw 'return (car (car a-base))))))
484 (setq a-base (cdr a-base)))))))
486 ;;; Same as above but for gcd algorithm.
487 ;;; Here there is no requirement that degree(a) > degree(b).
488 ;;; Take the base that has the highest degree considering both a and b.
489 ;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22)
491 (defun math-poly-gcd-base (a b)
492 (let (a-base b-base)
493 (and (setq a-base (math-total-polynomial-base a))
494 (setq b-base (math-total-polynomial-base b))
495 (catch 'return
496 (while (and a-base b-base)
497 (if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
498 (if (assoc (car (car a-base)) b-base)
499 (throw 'return (car (car a-base)))
500 (setq a-base (cdr a-base)))
501 (if (assoc (car (car b-base)) a-base)
502 (throw 'return (car (car b-base)))
503 (setq b-base (cdr b-base)))))))))
505 ;;; Sort a list of polynomial bases.
506 (defun math-sort-poly-base-list (lst)
507 (sort lst (function (lambda (a b)
508 (or (> (nth 1 a) (nth 1 b))
509 (and (= (nth 1 a) (nth 1 b))
510 (math-beforep (car a) (car b))))))))
512 ;;; Given an expression find all variables that are polynomial bases.
513 ;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
514 ;;; Note dynamic scope of mpb-total-base.
515 (defun math-total-polynomial-base (expr)
516 (let ((mpb-total-base nil))
517 (math-polynomial-base expr 'math-polynomial-p1)
518 (math-sort-poly-base-list mpb-total-base)))
520 (defun math-polynomial-p1 (subexpr)
521 (or (assoc subexpr mpb-total-base)
522 (memq (car subexpr) '(+ - * / neg))
523 (and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
524 (let* ((math-poly-base-variable subexpr)
525 (exponent (math-polynomial-p mpb-top-expr subexpr)))
526 (if exponent
527 (setq mpb-total-base (cons (list subexpr exponent)
528 mpb-total-base)))))
529 nil)
534 (defun calcFunc-factors (expr &optional var)
535 (let ((math-factored-vars (if var t nil))
536 (math-to-list t)
537 (calc-prefer-frac t))
538 (or var
539 (setq var (math-polynomial-base expr)))
540 (let ((res (math-factor-finish
541 (or (catch 'factor (math-factor-expr-try var))
542 expr))))
543 (math-simplify (if (math-vectorp res)
545 (list 'vec (list 'vec res 1)))))))
547 (defun calcFunc-factor (expr &optional var)
548 (let ((math-factored-vars nil)
549 (math-to-list nil)
550 (calc-prefer-frac t))
551 (math-simplify (math-factor-finish
552 (if var
553 (let ((math-factored-vars t))
554 (or (catch 'factor (math-factor-expr-try var)) expr))
555 (math-factor-expr expr))))))
557 (defun math-factor-finish (x)
558 (if (Math-primp x)
560 (if (eq (car x) 'calcFunc-Fac-Prot)
561 (math-factor-finish (nth 1 x))
562 (cons (car x) (mapcar 'math-factor-finish (cdr x))))))
564 (defun math-factor-protect (x)
565 (if (memq (car-safe x) '(+ -))
566 (list 'calcFunc-Fac-Prot x)
569 (defun math-factor-expr (expr)
570 (cond ((eq math-factored-vars t) expr)
571 ((or (memq (car-safe expr) '(* / ^ neg))
572 (assq (car-safe expr) calc-tweak-eqn-table))
573 (cons (car expr) (mapcar 'math-factor-expr (cdr expr))))
574 ((memq (car-safe expr) '(+ -))
575 (let* ((math-factored-vars math-factored-vars)
576 (y (catch 'factor (math-factor-expr-part expr))))
577 (if y
578 (math-factor-expr y)
579 expr)))
580 (t expr)))
582 (defun math-factor-expr-part (x) ; uses "expr"
583 (if (memq (car-safe x) '(+ - * / ^ neg))
584 (while (setq x (cdr x))
585 (math-factor-expr-part (car x)))
586 (and (not (Math-objvecp x))
587 (not (assoc x math-factored-vars))
588 (> (math-factor-contains expr x) 1)
589 (setq math-factored-vars (cons (list x) math-factored-vars))
590 (math-factor-expr-try x))))
592 (defun math-factor-expr-try (x)
593 (if (eq (car-safe expr) '*)
594 (let ((res1 (catch 'factor (let ((expr (nth 1 expr)))
595 (math-factor-expr-try x))))
596 (res2 (catch 'factor (let ((expr (nth 2 expr)))
597 (math-factor-expr-try x)))))
598 (and (or res1 res2)
599 (throw 'factor (math-accum-factors (or res1 (nth 1 expr)) 1
600 (or res2 (nth 2 expr))))))
601 (let* ((p (math-is-polynomial expr x 30 'gen))
602 (math-poly-modulus (math-poly-modulus expr))
603 res)
604 (and (cdr p)
605 (setq res (math-factor-poly-coefs p))
606 (throw 'factor res)))))
608 (defun math-accum-factors (fac pow facs)
609 (if math-to-list
610 (if (math-vectorp fac)
611 (progn
612 (while (setq fac (cdr fac))
613 (setq facs (math-accum-factors (nth 1 (car fac))
614 (* pow (nth 2 (car fac)))
615 facs)))
616 facs)
617 (if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
618 (setq pow (* pow (nth 2 fac))
619 fac (nth 1 fac)))
620 (if (eq fac 1)
621 facs
622 (or (math-vectorp facs)
623 (setq facs (if (eq facs 1) '(vec)
624 (list 'vec (list 'vec facs 1)))))
625 (let ((found facs))
626 (while (and (setq found (cdr found))
627 (not (equal fac (nth 1 (car found))))))
628 (if found
629 (progn
630 (setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
631 facs)
632 ;; Put constant term first.
633 (if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
634 (cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
635 (cdr (cdr facs)))))
636 (cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
637 (math-mul (math-pow fac pow) facs)))
639 (defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
640 (let (t1 t2)
641 (cond ((not (cdr p))
642 (or (car p) 0))
644 ;; Strip off multiples of x.
645 ((Math-zerop (car p))
646 (let ((z 0))
647 (while (and p (Math-zerop (car p)))
648 (setq z (1+ z) p (cdr p)))
649 (if (cdr p)
650 (setq p (math-factor-poly-coefs p square-free))
651 (setq p (math-sort-terms (math-factor-expr (car p)))))
652 (math-accum-factors x z (math-factor-protect p))))
654 ;; Factor out content.
655 ((and (not square-free)
656 (not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
657 (if (math-guess-if-neg
658 (nth (1- (length p)) p))
659 -1 1))))))
660 (math-accum-factors t1 1 (math-factor-poly-coefs
661 (math-poly-div-list p t1) 'cont)))
663 ;; Check if linear in x.
664 ((not (cdr (cdr p)))
665 (math-add (math-factor-protect
666 (math-sort-terms
667 (math-factor-expr (car p))))
668 (math-mul x (math-factor-protect
669 (math-sort-terms
670 (math-factor-expr (nth 1 p)))))))
672 ;; If symbolic coefficients, use FactorRules.
673 ((let ((pp p))
674 (while (and pp (or (Math-ratp (car pp))
675 (and (eq (car (car pp)) 'mod)
676 (Math-integerp (nth 1 (car pp)))
677 (Math-integerp (nth 2 (car pp))))))
678 (setq pp (cdr pp)))
680 (let ((res (math-rewrite
681 (list 'calcFunc-thecoefs x (cons 'vec p))
682 '(var FactorRules var-FactorRules))))
683 (or (and (eq (car-safe res) 'calcFunc-thefactors)
684 (= (length res) 3)
685 (math-vectorp (nth 2 res))
686 (let ((facs 1)
687 (vec (nth 2 res)))
688 (while (setq vec (cdr vec))
689 (setq facs (math-accum-factors (car vec) 1 facs)))
690 facs))
691 (math-build-polynomial-expr p x))))
693 ;; Check if rational coefficients (i.e., not modulo a prime).
694 ((eq math-poly-modulus 1)
696 ;; Check if there are any squared terms, or a content not = 1.
697 (if (or (eq square-free t)
698 (equal (setq t1 (math-poly-gcd-coefs
699 p (setq t2 (math-poly-deriv-coefs p))))
700 '(1)))
702 ;; We now have a square-free polynomial with integer coefs.
703 ;; For now, we use a kludgey method that finds linear and
704 ;; quadratic terms using floating-point root-finding.
705 (if (setq t1 (let ((calc-symbolic-mode nil))
706 (math-poly-all-roots nil p t)))
707 (let ((roots (car t1))
708 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
709 (expr 1)
710 (unfac (nth 1 t1))
711 (scale (nth 2 t1)))
712 (while roots
713 (let ((coef0 (car (car roots)))
714 (coef1 (cdr (car roots))))
715 (setq expr (math-accum-factors
716 (if coef1
717 (let ((den (math-lcm-denoms
718 coef0 coef1)))
719 (setq scale (math-div scale den))
720 (math-add
721 (math-add
722 (math-mul den (math-pow x 2))
723 (math-mul (math-mul coef1 den) x))
724 (math-mul coef0 den)))
725 (let ((den (math-lcm-denoms coef0)))
726 (setq scale (math-div scale den))
727 (math-add (math-mul den x)
728 (math-mul coef0 den))))
729 1 expr)
730 roots (cdr roots))))
731 (setq expr (math-accum-factors
732 expr 1
733 (math-mul csign
734 (math-build-polynomial-expr
735 (math-mul-list (nth 1 t1) scale)
736 x)))))
737 (math-build-polynomial-expr p x)) ; can't factor it.
739 ;; Separate out the squared terms (Knuth exercise 4.6.2-34).
740 ;; This step also divides out the content of the polynomial.
741 (let* ((cabs (math-poly-gcd-list p))
742 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
743 (t1s (math-mul-list t1 csign))
744 (uu nil)
745 (v (car (math-poly-div-coefs p t1s)))
746 (w (car (math-poly-div-coefs t2 t1s))))
747 (while
748 (not (math-poly-zerop
749 (setq t2 (math-poly-simplify
750 (math-poly-mix
751 w 1 (math-poly-deriv-coefs v) -1)))))
752 (setq t1 (math-poly-gcd-coefs v t2)
753 uu (cons t1 uu)
754 v (car (math-poly-div-coefs v t1))
755 w (car (math-poly-div-coefs t2 t1))))
756 (setq t1 (length uu)
757 t2 (math-accum-factors (math-factor-poly-coefs v t)
758 (1+ t1) 1))
759 (while uu
760 (setq t2 (math-accum-factors (math-factor-poly-coefs
761 (car uu) t)
762 t1 t2)
763 t1 (1- t1)
764 uu (cdr uu)))
765 (math-accum-factors (math-mul cabs csign) 1 t2))))
767 ;; Factoring modulo a prime.
768 ((and (= (length (setq temp (math-poly-gcd-coefs
769 p (math-poly-deriv-coefs p))))
770 (length p)))
771 (setq p (car temp))
772 (while (cdr temp)
773 (setq temp (nthcdr (nth 2 math-poly-modulus) temp)
774 p (cons (car temp) p)))
775 (and (setq temp (math-factor-poly-coefs p))
776 (math-pow temp (nth 2 math-poly-modulus))))
778 (math-reject-arg nil "*Modulo factorization not yet implemented")))))
780 (defun math-poly-deriv-coefs (p)
781 (let ((n 1)
782 (dp nil))
783 (while (setq p (cdr p))
784 (setq dp (cons (math-mul (car p) n) dp)
785 n (1+ n)))
786 (nreverse dp)))
788 (defun math-factor-contains (x a)
789 (if (equal x a)
791 (if (memq (car-safe x) '(+ - * / neg))
792 (let ((sum 0))
793 (while (setq x (cdr x))
794 (setq sum (+ sum (math-factor-contains (car x) a))))
795 sum)
796 (if (and (eq (car-safe x) '^)
797 (natnump (nth 2 x)))
798 (* (math-factor-contains (nth 1 x) a) (nth 2 x))
799 0))))
805 ;;; Merge all quotients and expand/simplify the numerator
806 (defun calcFunc-nrat (expr)
807 (if (math-any-floats expr)
808 (setq expr (calcFunc-pfrac expr)))
809 (if (or (math-vectorp expr)
810 (assq (car-safe expr) calc-tweak-eqn-table))
811 (cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
812 (let* ((calc-prefer-frac t)
813 (res (math-to-ratpoly expr))
814 (num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
815 (den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
816 (g (math-poly-gcd num den)))
817 (or (eq g 1)
818 (let ((num2 (math-poly-div num g))
819 (den2 (math-poly-div den g)))
820 (and (eq (cdr num2) 0) (eq (cdr den2) 0)
821 (setq num (car num2) den (car den2)))))
822 (math-simplify (math-div num den)))))
824 ;;; Returns expressions (num . denom).
825 (defun math-to-ratpoly (expr)
826 (let ((res (math-to-ratpoly-rec expr)))
827 (cons (math-simplify (car res)) (math-simplify (cdr res)))))
829 (defun math-to-ratpoly-rec (expr)
830 (cond ((Math-primp expr)
831 (cons expr 1))
832 ((memq (car expr) '(+ -))
833 (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
834 (r2 (math-to-ratpoly-rec (nth 2 expr))))
835 (if (equal (cdr r1) (cdr r2))
836 (cons (list (car expr) (car r1) (car r2)) (cdr r1))
837 (if (eq (cdr r1) 1)
838 (cons (list (car expr)
839 (math-mul (car r1) (cdr r2))
840 (car r2))
841 (cdr r2))
842 (if (eq (cdr r2) 1)
843 (cons (list (car expr)
844 (car r1)
845 (math-mul (car r2) (cdr r1)))
846 (cdr r1))
847 (let ((g (math-poly-gcd (cdr r1) (cdr r2))))
848 (let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
849 (d2 (and (not (eq g 1)) (math-poly-div
850 (math-mul (car r1) (cdr r2))
851 g))))
852 (if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
853 (cons (list (car expr) (car d2)
854 (math-mul (car r2) (car d1)))
855 (math-mul (car d1) (cdr r2)))
856 (cons (list (car expr)
857 (math-mul (car r1) (cdr r2))
858 (math-mul (car r2) (cdr r1)))
859 (math-mul (cdr r1) (cdr r2)))))))))))
860 ((eq (car expr) '*)
861 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
862 (r2 (math-to-ratpoly-rec (nth 2 expr)))
863 (g (math-mul (math-poly-gcd (car r1) (cdr r2))
864 (math-poly-gcd (cdr r1) (car r2)))))
865 (if (eq g 1)
866 (cons (math-mul (car r1) (car r2))
867 (math-mul (cdr r1) (cdr r2)))
868 (cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
869 (math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
870 ((eq (car expr) '/)
871 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
872 (r2 (math-to-ratpoly-rec (nth 2 expr))))
873 (if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
874 (cons (car r1) (car r2))
875 (let ((g (math-mul (math-poly-gcd (car r1) (car r2))
876 (math-poly-gcd (cdr r1) (cdr r2)))))
877 (if (eq g 1)
878 (cons (math-mul (car r1) (cdr r2))
879 (math-mul (cdr r1) (car r2)))
880 (cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
881 (math-poly-div-exact (math-mul (cdr r1) (car r2))
882 g)))))))
883 ((and (eq (car expr) '^) (integerp (nth 2 expr)))
884 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
885 (if (> (nth 2 expr) 0)
886 (cons (math-pow (car r1) (nth 2 expr))
887 (math-pow (cdr r1) (nth 2 expr)))
888 (cons (math-pow (cdr r1) (- (nth 2 expr)))
889 (math-pow (car r1) (- (nth 2 expr)))))))
890 ((eq (car expr) 'neg)
891 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
892 (cons (math-neg (car r1)) (cdr r1))))
893 (t (cons expr 1))))
896 (defun math-ratpoly-p (expr &optional var)
897 (cond ((equal expr var) 1)
898 ((Math-primp expr) 0)
899 ((memq (car expr) '(+ -))
900 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
902 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
903 (max p1 p2))))
904 ((eq (car expr) '*)
905 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
907 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
908 (+ p1 p2))))
909 ((eq (car expr) 'neg)
910 (math-ratpoly-p (nth 1 expr) var))
911 ((eq (car expr) '/)
912 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
914 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
915 (- p1 p2))))
916 ((and (eq (car expr) '^)
917 (integerp (nth 2 expr)))
918 (let ((p1 (math-ratpoly-p (nth 1 expr) var)))
919 (and p1 (* p1 (nth 2 expr)))))
920 ((not var) 1)
921 ((math-poly-depends expr var) nil)
922 (t 0)))
925 (defun calcFunc-apart (expr &optional var)
926 (cond ((Math-primp expr) expr)
927 ((eq (car expr) '+)
928 (math-add (calcFunc-apart (nth 1 expr) var)
929 (calcFunc-apart (nth 2 expr) var)))
930 ((eq (car expr) '-)
931 (math-sub (calcFunc-apart (nth 1 expr) var)
932 (calcFunc-apart (nth 2 expr) var)))
933 ((not (math-ratpoly-p expr var))
934 (math-reject-arg expr "Expected a rational function"))
936 (let* ((calc-prefer-frac t)
937 (rat (math-to-ratpoly expr))
938 (num (car rat))
939 (den (cdr rat))
940 (qr (math-poly-div num den))
941 (q (car qr))
942 (r (cdr qr)))
943 (or var
944 (setq var (math-polynomial-base den)))
945 (math-add q (or (and var
946 (math-expr-contains den var)
947 (math-partial-fractions r den var))
948 (math-div r den)))))))
951 (defun math-padded-polynomial (expr var deg)
952 (let ((p (math-is-polynomial expr var deg)))
953 (append p (make-list (- deg (length p)) 0))))
955 (defun math-partial-fractions (r den var)
956 (let* ((fden (calcFunc-factors den var))
957 (tdeg (math-polynomial-p den var))
958 (fp fden)
959 (dlist nil)
960 (eqns 0)
961 (lz nil)
962 (tz (make-list (1- tdeg) 0))
963 (calc-matrix-mode 'scalar))
964 (and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
965 (progn
966 (while (setq fp (cdr fp))
967 (let ((rpt (nth 2 (car fp)))
968 (deg (math-polynomial-p (nth 1 (car fp)) var))
969 dnum dvar deg2)
970 (while (> rpt 0)
971 (setq deg2 deg
972 dnum 0)
973 (while (> deg2 0)
974 (setq dvar (append '(vec) lz '(1) tz)
975 lz (cons 0 lz)
976 tz (cdr tz)
977 deg2 (1- deg2)
978 dnum (math-add dnum (math-mul dvar
979 (math-pow var deg2)))
980 dlist (cons (and (= deg2 (1- deg))
981 (math-pow (nth 1 (car fp)) rpt))
982 dlist)))
983 (let ((fpp fden)
984 (mult 1))
985 (while (setq fpp (cdr fpp))
986 (or (eq fpp fp)
987 (setq mult (math-mul mult
988 (math-pow (nth 1 (car fpp))
989 (nth 2 (car fpp)))))))
990 (setq dnum (math-mul dnum mult)))
991 (setq eqns (math-add eqns (math-mul dnum
992 (math-pow
993 (nth 1 (car fp))
994 (- (nth 2 (car fp))
995 rpt))))
996 rpt (1- rpt)))))
997 (setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
998 (math-transpose
999 (cons 'vec
1000 (mapcar
1001 (function
1002 (lambda (x)
1003 (cons 'vec (math-padded-polynomial
1004 x var tdeg))))
1005 (cdr eqns))))))
1006 (and (math-vectorp eqns)
1007 (let ((res 0)
1008 (num nil))
1009 (setq eqns (nreverse eqns))
1010 (while eqns
1011 (setq num (cons (car eqns) num)
1012 eqns (cdr eqns))
1013 (if (car dlist)
1014 (setq num (math-build-polynomial-expr
1015 (nreverse num) var)
1016 res (math-add res (math-div num (car dlist)))
1017 num nil))
1018 (setq dlist (cdr dlist)))
1019 (math-normalize res)))))))
1023 (defun math-expand-term (expr)
1024 (cond ((and (eq (car-safe expr) '*)
1025 (memq (car-safe (nth 1 expr)) '(+ -)))
1026 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
1027 (list '* (nth 2 (nth 1 expr)) (nth 2 expr))
1028 nil (eq (car (nth 1 expr)) '-)))
1029 ((and (eq (car-safe expr) '*)
1030 (memq (car-safe (nth 2 expr)) '(+ -)))
1031 (math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
1032 (list '* (nth 1 expr) (nth 2 (nth 2 expr)))
1033 nil (eq (car (nth 2 expr)) '-)))
1034 ((and (eq (car-safe expr) '/)
1035 (memq (car-safe (nth 1 expr)) '(+ -)))
1036 (math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
1037 (list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
1038 nil (eq (car (nth 1 expr)) '-)))
1039 ((and (eq (car-safe expr) '^)
1040 (memq (car-safe (nth 1 expr)) '(+ -))
1041 (integerp (nth 2 expr))
1042 (if (> (nth 2 expr) 0)
1043 (or (and (or (> mmt-many 500000) (< mmt-many -500000))
1044 (math-expand-power (nth 1 expr) (nth 2 expr)
1045 nil t))
1046 (list '*
1047 (nth 1 expr)
1048 (list '^ (nth 1 expr) (1- (nth 2 expr)))))
1049 (if (< (nth 2 expr) 0)
1050 (list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr))))))))
1051 (t expr)))
1053 (defun calcFunc-expand (expr &optional many)
1054 (math-normalize (math-map-tree 'math-expand-term expr many)))
1056 (defun math-expand-power (x n &optional var else-nil)
1057 (or (and (natnump n)
1058 (memq (car-safe x) '(+ -))
1059 (let ((terms nil)
1060 (cterms nil))
1061 (while (memq (car-safe x) '(+ -))
1062 (setq terms (cons (if (eq (car x) '-)
1063 (math-neg (nth 2 x))
1064 (nth 2 x))
1065 terms)
1066 x (nth 1 x)))
1067 (setq terms (cons x terms))
1068 (if var
1069 (let ((p terms))
1070 (while p
1071 (or (math-expr-contains (car p) var)
1072 (setq terms (delq (car p) terms)
1073 cterms (cons (car p) cterms)))
1074 (setq p (cdr p)))
1075 (if cterms
1076 (setq terms (cons (apply 'calcFunc-add cterms)
1077 terms)))))
1078 (if (= (length terms) 2)
1079 (let ((i 0)
1080 (accum 0))
1081 (while (<= i n)
1082 (setq accum (list '+ accum
1083 (list '* (calcFunc-choose n i)
1084 (list '*
1085 (list '^ (nth 1 terms) i)
1086 (list '^ (car terms)
1087 (- n i)))))
1088 i (1+ i)))
1089 accum)
1090 (if (= n 2)
1091 (let ((accum 0)
1092 (p1 terms)
1094 (while p1
1095 (setq accum (list '+ accum
1096 (list '^ (car p1) 2))
1097 p2 p1)
1098 (while (setq p2 (cdr p2))
1099 (setq accum (list '+ accum
1100 (list '* 2 (list '*
1101 (car p1)
1102 (car p2))))))
1103 (setq p1 (cdr p1)))
1104 accum)
1105 (if (= n 3)
1106 (let ((accum 0)
1107 (p1 terms)
1108 p2 p3)
1109 (while p1
1110 (setq accum (list '+ accum (list '^ (car p1) 3))
1111 p2 p1)
1112 (while (setq p2 (cdr p2))
1113 (setq accum (list '+
1114 (list '+
1115 accum
1116 (list '* 3
1117 (list
1119 (list '^ (car p1) 2)
1120 (car p2))))
1121 (list '* 3
1122 (list
1123 '* (car p1)
1124 (list '^ (car p2) 2))))
1125 p3 p2)
1126 (while (setq p3 (cdr p3))
1127 (setq accum (list '+ accum
1128 (list '* 6
1129 (list '*
1130 (car p1)
1131 (list
1132 '* (car p2)
1133 (car p3))))))))
1134 (setq p1 (cdr p1)))
1135 accum))))))
1136 (and (not else-nil)
1137 (list '^ x n))))
1139 (defun calcFunc-expandpow (x n)
1140 (math-normalize (math-expand-power x n)))
1142 ;;; arch-tag: d2566c51-2ccc-45f1-8c50-f3462c2953ff
1143 ;;; calc-poly.el ends here