Add new tests for eieio persistence
[emacs.git] / src / alloc.c
blobc3f7920ed87c730bac7e1f11bbb1fbfa38c584ee
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2018 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
84 #endif
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
88 marked objects. */
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
93 #endif
95 #include <unistd.h>
96 #include <fcntl.h>
98 #ifdef USE_GTK
99 # include "gtkutil.h"
100 #endif
101 #ifdef WINDOWSNT
102 #include "w32.h"
103 #include "w32heap.h" /* for sbrk */
104 #endif
106 #ifdef GNU_LINUX
107 /* The address where the heap starts. */
108 void *
109 my_heap_start (void)
111 static void *start;
112 if (! start)
113 start = sbrk (0);
114 return start;
116 #endif
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
132 static void
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking;
137 if (! initialized)
139 #ifdef GNU_LINUX
140 my_heap_start ();
141 #endif
142 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 else
146 if (!malloc_using_checking)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
151 char **p = environ;
152 if (p)
153 for (; *p; p++)
154 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
157 *p = p[1];
158 while (*++p);
160 break;
164 if (malloc_set_state (malloc_state_ptr) != 0)
165 emacs_abort ();
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
176 # endif
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook;
180 #endif
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
186 void
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr = malloc_get_state ();
191 if (!malloc_state_ptr)
192 fatal ("malloc_get_state: %s", strerror (errno));
193 # endif
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec = true;
196 # endif
199 void
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr);
204 # endif
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec = false;
207 # endif
209 #endif
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->u.s.size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->u.s.size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->u.s.size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold;
242 /* True during GC. */
244 bool gc_in_progress;
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
249 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
250 static EMACS_INT total_free_floats, total_floats;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg;
275 static ptrdiff_t pure_size;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp;
290 /* If nonzero, this is a warning delivered by malloc and not yet
291 displayed. */
293 const char *pending_malloc_warning;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
298 #endif
299 #endif
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object;
309 void *backtrace[128];
311 static void *suspicious_objects[32];
312 static int suspicious_object_index;
313 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
314 static int suspicious_free_history_index;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin, void *end);
318 static void detect_suspicious_free (void *ptr);
319 #else
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
322 #endif
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
328 #endif
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy;
334 static ptrdiff_t stack_copy_size;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest, void const *src, size_t size)
342 if (! ADDRESS_SANITIZER)
343 return memcpy (dest, src, size);
344 else
346 size_t i;
347 char *d = dest;
348 char const *s = src;
349 for (i = 0; i < size; i++)
350 d[i] = s[i];
351 return dest;
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer *);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
364 #endif
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
373 enum mem_type
375 MEM_TYPE_NON_LISP,
376 MEM_TYPE_BUFFER,
377 MEM_TYPE_CONS,
378 MEM_TYPE_STRING,
379 MEM_TYPE_MISC,
380 MEM_TYPE_SYMBOL,
381 MEM_TYPE_FLOAT,
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
385 MEM_TYPE_VECTORLIKE,
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK,
388 /* Special type to denote reserved memory. */
389 MEM_TYPE_SPARE
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
407 is freed.
409 A red-black tree is a balanced binary tree with the following
410 properties:
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
426 describe them. */
428 struct mem_node
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node *left, *right;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node *parent;
437 /* Start and end of allocated region. */
438 void *start, *end;
440 /* Node color. */
441 enum {MEM_BLACK, MEM_RED} color;
443 /* Memory type. */
444 enum mem_type type;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node *mem_root;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address, *max_heap_address;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z;
458 #define MEM_NIL &mem_z
460 static struct mem_node *mem_insert (void *, void *, enum mem_type);
461 static void mem_insert_fixup (struct mem_node *);
462 static void mem_rotate_left (struct mem_node *);
463 static void mem_rotate_right (struct mem_node *);
464 static void mem_delete (struct mem_node *);
465 static void mem_delete_fixup (struct mem_node *);
466 static struct mem_node *mem_find (void *);
468 #ifndef DEADP
469 # define DEADP(x) 0
470 #endif
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS = 2048 };
476 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
491 power of 2. */
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
499 static void *
500 pointer_align (void *ptr, int alignment)
502 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
529 static ATTRIBUTE_UNUSED void *
530 XPNTR (Lisp_Object a)
532 return macro_XPNTR (a);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
538 #endif
540 static void
541 XFLOAT_INIT (Lisp_Object f, double n)
543 XFLOAT (f)->u.data = n;
546 #ifdef DOUG_LEA_MALLOC
547 static bool
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
553 static bool
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
560 regions. */
561 return pointers_fit_in_lispobj_p () && !might_dump;
563 #endif
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers;
575 /************************************************************************
576 Malloc
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
583 void
584 malloc_warning (const char *str)
586 pending_malloc_warning = str;
589 #endif
591 /* Display an already-pending malloc warning. */
593 void
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
597 intern ("alloc"),
598 build_string (pending_malloc_warning),
599 intern ("emergency"));
600 pending_malloc_warning = 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
605 void
606 buffer_memory_full (ptrdiff_t nbytes)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
613 malloc. */
615 #ifndef REL_ALLOC
616 memory_full (nbytes);
617 #else
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil, Vmemory_signal_data);
621 #endif
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
632 #else
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
635 around each block.
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
678 static void
679 xmalloc_put_size (unsigned char *ptr, size_t size)
681 int i;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
684 *--ptr = size & ((1 << CHAR_BIT) - 1);
685 size >>= CHAR_BIT;
689 static size_t
690 xmalloc_get_size (unsigned char *ptr)
692 size_t size = 0;
693 int i;
694 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
695 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
697 size <<= CHAR_BIT;
698 size += *ptr++;
700 return size;
704 /* Like malloc, but wraps allocated block with header and trailer. */
706 static void *
707 overrun_check_malloc (size_t size)
709 register unsigned char *val;
710 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
711 emacs_abort ();
713 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
714 if (val)
716 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
717 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
718 xmalloc_put_size (val, size);
719 memcpy (val + size, xmalloc_overrun_check_trailer,
720 XMALLOC_OVERRUN_CHECK_SIZE);
722 return val;
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
729 static void *
730 overrun_check_realloc (void *block, size_t size)
732 register unsigned char *val = (unsigned char *) block;
733 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
734 emacs_abort ();
736 if (val
737 && memcmp (xmalloc_overrun_check_header,
738 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
739 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
741 size_t osize = xmalloc_get_size (val);
742 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
743 XMALLOC_OVERRUN_CHECK_SIZE))
744 emacs_abort ();
745 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
746 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
750 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 if (val)
754 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
755 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 xmalloc_put_size (val, size);
757 memcpy (val + size, xmalloc_overrun_check_trailer,
758 XMALLOC_OVERRUN_CHECK_SIZE);
760 return val;
763 /* Like free, but checks block for overrun. */
765 static void
766 overrun_check_free (void *block)
768 unsigned char *val = (unsigned char *) block;
770 if (val
771 && memcmp (xmalloc_overrun_check_header,
772 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
773 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
775 size_t osize = xmalloc_get_size (val);
776 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
777 XMALLOC_OVERRUN_CHECK_SIZE))
778 emacs_abort ();
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
781 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
782 #else
783 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
784 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
785 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
786 #endif
789 free (val);
792 #undef malloc
793 #undef realloc
794 #undef free
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
798 #endif
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
807 ugly head again. */
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
810 static void
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators)
814 block_input ();
816 static void
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators)
820 unblock_input ();
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
824 #else
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
827 #endif
829 #define MALLOC_PROBE(size) \
830 do { \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
833 } while (0)
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
840 void *
841 xmalloc (size_t size)
843 void *val;
845 MALLOC_BLOCK_INPUT;
846 val = lmalloc (size);
847 MALLOC_UNBLOCK_INPUT;
849 if (!val && size)
850 memory_full (size);
851 MALLOC_PROBE (size);
852 return val;
855 /* Like the above, but zeroes out the memory just allocated. */
857 void *
858 xzalloc (size_t size)
860 void *val;
862 MALLOC_BLOCK_INPUT;
863 val = lmalloc (size);
864 MALLOC_UNBLOCK_INPUT;
866 if (!val && size)
867 memory_full (size);
868 memset (val, 0, size);
869 MALLOC_PROBE (size);
870 return val;
873 /* Like realloc but check for no memory and block interrupt input.. */
875 void *
876 xrealloc (void *block, size_t size)
878 void *val;
880 MALLOC_BLOCK_INPUT;
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
883 if (! block)
884 val = lmalloc (size);
885 else
886 val = lrealloc (block, size);
887 MALLOC_UNBLOCK_INPUT;
889 if (!val && size)
890 memory_full (size);
891 MALLOC_PROBE (size);
892 return val;
896 /* Like free but block interrupt input. */
898 void
899 xfree (void *block)
901 if (!block)
902 return;
903 MALLOC_BLOCK_INPUT;
904 free (block);
905 MALLOC_UNBLOCK_INPUT;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
913 be safe. */
914 verify (INT_MAX <= PTRDIFF_MAX);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
920 void *
921 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
923 eassert (0 <= nitems && 0 < item_size);
924 ptrdiff_t nbytes;
925 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
926 memory_full (SIZE_MAX);
927 return xmalloc (nbytes);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
934 void *
935 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
937 eassert (0 <= nitems && 0 < item_size);
938 ptrdiff_t nbytes;
939 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
940 memory_full (SIZE_MAX);
941 return xrealloc (pa, nbytes);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
953 infinity.
955 If PA is null, then allocate a new array instead of reallocating
956 the old one.
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
960 return).
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
968 void *
969 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
970 ptrdiff_t nitems_max, ptrdiff_t item_size)
972 ptrdiff_t n0 = *nitems;
973 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
977 library malloc. */
978 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
985 ptrdiff_t n, nbytes;
986 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
987 n = PTRDIFF_MAX;
988 if (0 <= nitems_max && nitems_max < n)
989 n = nitems_max;
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
993 ? min (PTRDIFF_MAX, SIZE_MAX)
994 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
995 if (adjusted_nbytes)
997 n = adjusted_nbytes / item_size;
998 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
1001 if (! pa)
1002 *nitems = 0;
1003 if (n - n0 < nitems_incr_min
1004 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
1005 || (0 <= nitems_max && nitems_max < n)
1006 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1007 memory_full (SIZE_MAX);
1008 pa = xrealloc (pa, nbytes);
1009 *nitems = n;
1010 return pa;
1014 /* Like strdup, but uses xmalloc. */
1016 char *
1017 xstrdup (const char *s)
1019 ptrdiff_t size;
1020 eassert (s);
1021 size = strlen (s) + 1;
1022 return memcpy (xmalloc (size), s, size);
1025 /* Like above, but duplicates Lisp string to C string. */
1027 char *
1028 xlispstrdup (Lisp_Object string)
1030 ptrdiff_t size = SBYTES (string) + 1;
1031 return memcpy (xmalloc (size), SSDATA (string), size);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1037 fails. */
1039 void
1040 dupstring (char **ptr, char const *string)
1042 char *old = *ptr;
1043 *ptr = string ? xstrdup (string) : 0;
1044 xfree (old);
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1051 void
1052 xputenv (char const *string)
1054 if (putenv ((char *) string) != 0)
1055 memory_full (0);
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1060 void *
1061 record_xmalloc (size_t size)
1063 void *p = xmalloc (size);
1064 record_unwind_protect_ptr (xfree, p);
1065 return p;
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1073 #if ! USE_LSB_TAG
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1075 #endif
1077 static void *
1078 lisp_malloc (size_t nbytes, enum mem_type type)
1080 register void *val;
1082 MALLOC_BLOCK_INPUT;
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type = type;
1086 #endif
1088 val = lmalloc (nbytes);
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val && type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 XSETCONS (tem, (char *) val + nbytes - 1);
1098 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1100 lisp_malloc_loser = val;
1101 free (val);
1102 val = 0;
1105 #endif
1107 #ifndef GC_MALLOC_CHECK
1108 if (val && type != MEM_TYPE_NON_LISP)
1109 mem_insert (val, (char *) val + nbytes, type);
1110 #endif
1112 MALLOC_UNBLOCK_INPUT;
1113 if (!val && nbytes)
1114 memory_full (nbytes);
1115 MALLOC_PROBE (nbytes);
1116 return val;
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1122 static void
1123 lisp_free (void *block)
1125 MALLOC_BLOCK_INPUT;
1126 free (block);
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block));
1129 #endif
1130 MALLOC_UNBLOCK_INPUT;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1156 static void *
1157 aligned_alloc (size_t alignment, size_t size)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN % sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1163 verify (GCALIGNMENT % sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1165 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1167 void *p;
1168 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1170 # endif
1171 #endif
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1182 nothing else. */
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1192 struct ablock
1194 union
1196 char payload[BLOCK_BYTES];
1197 struct ablock *next_free;
1198 } x;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks *abase;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1213 #if BLOCK_PADDING
1214 char padding[BLOCK_PADDING];
1215 #endif
1218 /* A bunch of consecutive aligned blocks. */
1219 struct ablocks
1221 struct ablock blocks[ABLOCKS_SIZE];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1230 : (block)->abase)
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1238 #else
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1241 #endif
1243 /* The list of free ablock. */
1244 static struct ablock *free_ablock;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1249 static void *
1250 lisp_align_malloc (size_t nbytes, enum mem_type type)
1252 void *base, *val;
1253 struct ablocks *abase;
1255 eassert (nbytes <= BLOCK_BYTES);
1257 MALLOC_BLOCK_INPUT;
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type = type;
1261 #endif
1263 if (!free_ablock)
1265 int i;
1266 bool aligned;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX, 0);
1271 #endif
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1275 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1276 #else
1277 base = malloc (ABLOCKS_BYTES);
1278 abase = pointer_align (base, BLOCK_ALIGN);
1279 #endif
1281 if (base == 0)
1283 MALLOC_UNBLOCK_INPUT;
1284 memory_full (ABLOCKS_BYTES);
1287 aligned = (base == abase);
1288 if (!aligned)
1289 ((void **) abase)[-1] = base;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1294 #endif
1296 #if ! USE_LSB_TAG
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type != MEM_TYPE_NON_LISP)
1302 Lisp_Object tem;
1303 char *end = (char *) base + ABLOCKS_BYTES - 1;
1304 XSETCONS (tem, end);
1305 if ((char *) XCONS (tem) != end)
1307 lisp_malloc_loser = base;
1308 free (base);
1309 MALLOC_UNBLOCK_INPUT;
1310 memory_full (SIZE_MAX);
1313 #endif
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1319 abase->blocks[i].abase = abase;
1320 abase->blocks[i].x.next_free = free_ablock;
1321 free_ablock = &abase->blocks[i];
1323 intptr_t ialigned = aligned;
1324 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1326 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1327 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1329 eassert (ABLOCKS_BASE (abase) == base);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1333 abase = ABLOCK_ABASE (free_ablock);
1334 ABLOCKS_BUSY (abase)
1335 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1336 val = free_ablock;
1337 free_ablock = free_ablock->x.next_free;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type != MEM_TYPE_NON_LISP)
1341 mem_insert (val, (char *) val + nbytes, type);
1342 #endif
1344 MALLOC_UNBLOCK_INPUT;
1346 MALLOC_PROBE (nbytes);
1348 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1349 return val;
1352 static void
1353 lisp_align_free (void *block)
1355 struct ablock *ablock = block;
1356 struct ablocks *abase = ABLOCK_ABASE (ablock);
1358 MALLOC_BLOCK_INPUT;
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block));
1361 #endif
1362 /* Put on free list. */
1363 ablock->x.next_free = free_ablock;
1364 free_ablock = ablock;
1365 /* Update busy count. */
1366 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1367 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1368 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1370 if (busy < 2)
1371 { /* All the blocks are free. */
1372 int i = 0;
1373 bool aligned = busy;
1374 struct ablock **tem = &free_ablock;
1375 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1377 while (*tem)
1379 if (*tem >= (struct ablock *) abase && *tem < atop)
1381 i++;
1382 *tem = (*tem)->x.next_free;
1384 else
1385 tem = &(*tem)->x.next_free;
1387 eassert ((aligned & 1) == aligned);
1388 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1391 #endif
1392 free (ABLOCKS_BASE (abase));
1394 MALLOC_UNBLOCK_INPUT;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1399 #endif
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1417 static bool
1418 laligned (void *p, size_t size)
1420 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1421 || size % GCALIGNMENT != 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1440 static void *
1441 lmalloc (size_t size)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1445 return aligned_alloc (GCALIGNMENT, size);
1446 #endif
1448 while (true)
1450 void *p = malloc (size);
1451 if (laligned (p, size))
1452 return p;
1453 free (p);
1454 size_t bigger = size + GCALIGNMENT;
1455 if (size < bigger)
1456 size = bigger;
1460 static void *
1461 lrealloc (void *p, size_t size)
1463 while (true)
1465 p = realloc (p, size);
1466 if (laligned (p, size))
1467 return p;
1468 size_t bigger = size + GCALIGNMENT;
1469 if (size < bigger)
1470 size = bigger;
1475 /***********************************************************************
1476 Interval Allocation
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1486 structure. */
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals[INTERVAL_BLOCK_SIZE];
1492 struct interval_block *next;
1495 /* Current interval block. Its `next' pointer points to older
1496 blocks. */
1498 static struct interval_block *interval_block;
1500 /* Index in interval_block above of the next unused interval
1501 structure. */
1503 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals, total_intervals;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list;
1513 /* Return a new interval. */
1515 INTERVAL
1516 make_interval (void)
1518 INTERVAL val;
1520 MALLOC_BLOCK_INPUT;
1522 if (interval_free_list)
1524 val = interval_free_list;
1525 interval_free_list = INTERVAL_PARENT (interval_free_list);
1527 else
1529 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1531 struct interval_block *newi
1532 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1534 newi->next = interval_block;
1535 interval_block = newi;
1536 interval_block_index = 0;
1537 total_free_intervals += INTERVAL_BLOCK_SIZE;
1539 val = &interval_block->intervals[interval_block_index++];
1542 MALLOC_UNBLOCK_INPUT;
1544 consing_since_gc += sizeof (struct interval);
1545 intervals_consed++;
1546 total_free_intervals--;
1547 RESET_INTERVAL (val);
1548 val->gcmarkbit = 0;
1549 return val;
1553 /* Mark Lisp objects in interval I. */
1555 static void
1556 mark_interval (INTERVAL i, void *dummy)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i->gcmarkbit);
1561 i->gcmarkbit = 1;
1562 mark_object (i->plist);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1568 do { \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1571 } while (0)
1573 /***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The SDATA typedef is a struct or union describing string memory
1611 sub-allocated from an sblock. This is where the contents of Lisp
1612 strings are stored. */
1614 struct sdata
1616 /* Back-pointer to the string this sdata belongs to. If null, this
1617 structure is free, and NBYTES (in this structure or in the union below)
1618 contains the string's byte size (the same value that STRING_BYTES
1619 would return if STRING were non-null). If non-null, STRING_BYTES
1620 (STRING) is the size of the data, and DATA contains the string's
1621 contents. */
1622 struct Lisp_String *string;
1624 #ifdef GC_CHECK_STRING_BYTES
1625 ptrdiff_t nbytes;
1626 #endif
1628 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1631 #ifdef GC_CHECK_STRING_BYTES
1633 typedef struct sdata sdata;
1634 #define SDATA_NBYTES(S) (S)->nbytes
1635 #define SDATA_DATA(S) (S)->data
1637 #else
1639 typedef union
1641 struct Lisp_String *string;
1643 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1644 which has a flexible array member. However, if implemented by
1645 giving this union a member of type 'struct sdata', the union
1646 could not be the last (flexible) member of 'struct sblock',
1647 because C99 prohibits a flexible array member from having a type
1648 that is itself a flexible array. So, comment this member out here,
1649 but remember that the option's there when using this union. */
1650 #if 0
1651 struct sdata u;
1652 #endif
1654 /* When STRING is null. */
1655 struct
1657 struct Lisp_String *string;
1658 ptrdiff_t nbytes;
1659 } n;
1660 } sdata;
1662 #define SDATA_NBYTES(S) (S)->n.nbytes
1663 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1665 #endif /* not GC_CHECK_STRING_BYTES */
1667 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1669 /* Structure describing a block of memory which is sub-allocated to
1670 obtain string data memory for strings. Blocks for small strings
1671 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1672 as large as needed. */
1674 struct sblock
1676 /* Next in list. */
1677 struct sblock *next;
1679 /* Pointer to the next free sdata block. This points past the end
1680 of the sblock if there isn't any space left in this block. */
1681 sdata *next_free;
1683 /* String data. */
1684 sdata data[FLEXIBLE_ARRAY_MEMBER];
1687 /* Number of Lisp strings in a string_block structure. The 1020 is
1688 1024 minus malloc overhead. */
1690 #define STRING_BLOCK_SIZE \
1691 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1693 /* Structure describing a block from which Lisp_String structures
1694 are allocated. */
1696 struct string_block
1698 /* Place `strings' first, to preserve alignment. */
1699 struct Lisp_String strings[STRING_BLOCK_SIZE];
1700 struct string_block *next;
1703 /* Head and tail of the list of sblock structures holding Lisp string
1704 data. We always allocate from current_sblock. The NEXT pointers
1705 in the sblock structures go from oldest_sblock to current_sblock. */
1707 static struct sblock *oldest_sblock, *current_sblock;
1709 /* List of sblocks for large strings. */
1711 static struct sblock *large_sblocks;
1713 /* List of string_block structures. */
1715 static struct string_block *string_blocks;
1717 /* Free-list of Lisp_Strings. */
1719 static struct Lisp_String *string_free_list;
1721 /* Number of live and free Lisp_Strings. */
1723 static EMACS_INT total_strings, total_free_strings;
1725 /* Number of bytes used by live strings. */
1727 static EMACS_INT total_string_bytes;
1729 /* Given a pointer to a Lisp_String S which is on the free-list
1730 string_free_list, return a pointer to its successor in the
1731 free-list. */
1733 #define NEXT_FREE_LISP_STRING(S) ((S)->u.next)
1735 /* Return a pointer to the sdata structure belonging to Lisp string S.
1736 S must be live, i.e. S->data must not be null. S->data is actually
1737 a pointer to the `u.data' member of its sdata structure; the
1738 structure starts at a constant offset in front of that. */
1740 #define SDATA_OF_STRING(S) ((sdata *) ((S)->u.s.data - SDATA_DATA_OFFSET))
1743 #ifdef GC_CHECK_STRING_OVERRUN
1745 /* We check for overrun in string data blocks by appending a small
1746 "cookie" after each allocated string data block, and check for the
1747 presence of this cookie during GC. */
1749 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1750 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1751 { '\xde', '\xad', '\xbe', '\xef' };
1753 #else
1754 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1755 #endif
1757 /* Value is the size of an sdata structure large enough to hold NBYTES
1758 bytes of string data. The value returned includes a terminating
1759 NUL byte, the size of the sdata structure, and padding. */
1761 #ifdef GC_CHECK_STRING_BYTES
1763 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, (NBYTES) + 1)
1765 #else /* not GC_CHECK_STRING_BYTES */
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1770 because then the alignment code reserves enough space. */
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1777 + 1 \
1778 + FLEXALIGNOF (struct sdata) - 1) \
1779 & ~(FLEXALIGNOF (struct sdata) - 1))
1781 #endif /* not GC_CHECK_STRING_BYTES */
1783 /* Extra bytes to allocate for each string. */
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 static ptrdiff_t const STRING_BYTES_MAX =
1793 min (STRING_BYTES_BOUND,
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1795 - GC_STRING_EXTRA
1796 - offsetof (struct sblock, data)
1797 - SDATA_DATA_OFFSET)
1798 & ~(sizeof (EMACS_INT) - 1)));
1800 /* Initialize string allocation. Called from init_alloc_once. */
1802 static void
1803 init_strings (void)
1805 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1806 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1810 #ifdef GC_CHECK_STRING_BYTES
1812 static int check_string_bytes_count;
1814 /* Like STRING_BYTES, but with debugging check. Can be
1815 called during GC, so pay attention to the mark bit. */
1817 ptrdiff_t
1818 string_bytes (struct Lisp_String *s)
1820 ptrdiff_t nbytes =
1821 (s->u.s.size_byte < 0 ? s->u.s.size & ~ARRAY_MARK_FLAG : s->u.s.size_byte);
1823 if (!PURE_P (s) && s->u.s.data
1824 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1825 emacs_abort ();
1826 return nbytes;
1829 /* Check validity of Lisp strings' string_bytes member in B. */
1831 static void
1832 check_sblock (struct sblock *b)
1834 sdata *from, *end, *from_end;
1836 end = b->next_free;
1838 for (from = b->data; from < end; from = from_end)
1840 /* Compute the next FROM here because copying below may
1841 overwrite data we need to compute it. */
1842 ptrdiff_t nbytes;
1844 /* Check that the string size recorded in the string is the
1845 same as the one recorded in the sdata structure. */
1846 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1847 : SDATA_NBYTES (from));
1848 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1853 /* Check validity of Lisp strings' string_bytes member. ALL_P
1854 means check all strings, otherwise check only most
1855 recently allocated strings. Used for hunting a bug. */
1857 static void
1858 check_string_bytes (bool all_p)
1860 if (all_p)
1862 struct sblock *b;
1864 for (b = large_sblocks; b; b = b->next)
1866 struct Lisp_String *s = b->data[0].string;
1867 if (s)
1868 string_bytes (s);
1871 for (b = oldest_sblock; b; b = b->next)
1872 check_sblock (b);
1874 else if (current_sblock)
1875 check_sblock (current_sblock);
1878 #else /* not GC_CHECK_STRING_BYTES */
1880 #define check_string_bytes(all) ((void) 0)
1882 #endif /* GC_CHECK_STRING_BYTES */
1884 #ifdef GC_CHECK_STRING_FREE_LIST
1886 /* Walk through the string free list looking for bogus next pointers.
1887 This may catch buffer overrun from a previous string. */
1889 static void
1890 check_string_free_list (void)
1892 struct Lisp_String *s;
1894 /* Pop a Lisp_String off the free-list. */
1895 s = string_free_list;
1896 while (s != NULL)
1898 if ((uintptr_t) s < 1024)
1899 emacs_abort ();
1900 s = NEXT_FREE_LISP_STRING (s);
1903 #else
1904 #define check_string_free_list()
1905 #endif
1907 /* Return a new Lisp_String. */
1909 static struct Lisp_String *
1910 allocate_string (void)
1912 struct Lisp_String *s;
1914 MALLOC_BLOCK_INPUT;
1916 /* If the free-list is empty, allocate a new string_block, and
1917 add all the Lisp_Strings in it to the free-list. */
1918 if (string_free_list == NULL)
1920 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1921 int i;
1923 b->next = string_blocks;
1924 string_blocks = b;
1926 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1928 s = b->strings + i;
1929 /* Every string on a free list should have NULL data pointer. */
1930 s->u.s.data = NULL;
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1935 total_free_strings += STRING_BLOCK_SIZE;
1938 check_string_free_list ();
1940 /* Pop a Lisp_String off the free-list. */
1941 s = string_free_list;
1942 string_free_list = NEXT_FREE_LISP_STRING (s);
1944 MALLOC_UNBLOCK_INPUT;
1946 --total_free_strings;
1947 ++total_strings;
1948 ++strings_consed;
1949 consing_since_gc += sizeof *s;
1951 #ifdef GC_CHECK_STRING_BYTES
1952 if (!noninteractive)
1954 if (++check_string_bytes_count == 200)
1956 check_string_bytes_count = 0;
1957 check_string_bytes (1);
1959 else
1960 check_string_bytes (0);
1962 #endif /* GC_CHECK_STRING_BYTES */
1964 return s;
1968 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1969 plus a NUL byte at the end. Allocate an sdata structure DATA for
1970 S, and set S->u.s.data to SDATA->u.data. Store a NUL byte at the
1971 end of S->u.s.data. Set S->u.s.size to NCHARS and S->u.s.size_byte
1972 to NBYTES. Free S->u.s.data if it was initially non-null. */
1974 void
1975 allocate_string_data (struct Lisp_String *s,
1976 EMACS_INT nchars, EMACS_INT nbytes)
1978 sdata *data, *old_data;
1979 struct sblock *b;
1980 ptrdiff_t needed, old_nbytes;
1982 if (STRING_BYTES_MAX < nbytes)
1983 string_overflow ();
1985 /* Determine the number of bytes needed to store NBYTES bytes
1986 of string data. */
1987 needed = SDATA_SIZE (nbytes);
1988 if (s->u.s.data)
1990 old_data = SDATA_OF_STRING (s);
1991 old_nbytes = STRING_BYTES (s);
1993 else
1994 old_data = NULL;
1996 MALLOC_BLOCK_INPUT;
1998 if (nbytes > LARGE_STRING_BYTES)
2000 size_t size = FLEXSIZEOF (struct sblock, data, needed);
2002 #ifdef DOUG_LEA_MALLOC
2003 if (!mmap_lisp_allowed_p ())
2004 mallopt (M_MMAP_MAX, 0);
2005 #endif
2007 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2009 #ifdef DOUG_LEA_MALLOC
2010 if (!mmap_lisp_allowed_p ())
2011 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2012 #endif
2014 data = b->data;
2015 b->next = large_sblocks;
2016 b->next_free = data;
2017 large_sblocks = b;
2019 else if (current_sblock == NULL
2020 || (((char *) current_sblock + SBLOCK_SIZE
2021 - (char *) current_sblock->next_free)
2022 < (needed + GC_STRING_EXTRA)))
2024 /* Not enough room in the current sblock. */
2025 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2026 data = b->data;
2027 b->next = NULL;
2028 b->next_free = data;
2030 if (current_sblock)
2031 current_sblock->next = b;
2032 else
2033 oldest_sblock = b;
2034 current_sblock = b;
2036 else
2038 b = current_sblock;
2039 data = b->next_free;
2042 data->string = s;
2043 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2045 MALLOC_UNBLOCK_INPUT;
2047 s->u.s.data = SDATA_DATA (data);
2048 #ifdef GC_CHECK_STRING_BYTES
2049 SDATA_NBYTES (data) = nbytes;
2050 #endif
2051 s->u.s.size = nchars;
2052 s->u.s.size_byte = nbytes;
2053 s->u.s.data[nbytes] = '\0';
2054 #ifdef GC_CHECK_STRING_OVERRUN
2055 memcpy ((char *) data + needed, string_overrun_cookie,
2056 GC_STRING_OVERRUN_COOKIE_SIZE);
2057 #endif
2059 /* Note that Faset may call to this function when S has already data
2060 assigned. In this case, mark data as free by setting it's string
2061 back-pointer to null, and record the size of the data in it. */
2062 if (old_data)
2064 SDATA_NBYTES (old_data) = old_nbytes;
2065 old_data->string = NULL;
2068 consing_since_gc += needed;
2072 /* Sweep and compact strings. */
2074 NO_INLINE /* For better stack traces */
2075 static void
2076 sweep_strings (void)
2078 struct string_block *b, *next;
2079 struct string_block *live_blocks = NULL;
2081 string_free_list = NULL;
2082 total_strings = total_free_strings = 0;
2083 total_string_bytes = 0;
2085 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2086 for (b = string_blocks; b; b = next)
2088 int i, nfree = 0;
2089 struct Lisp_String *free_list_before = string_free_list;
2091 next = b->next;
2093 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2095 struct Lisp_String *s = b->strings + i;
2097 if (s->u.s.data)
2099 /* String was not on free-list before. */
2100 if (STRING_MARKED_P (s))
2102 /* String is live; unmark it and its intervals. */
2103 UNMARK_STRING (s);
2105 /* Do not use string_(set|get)_intervals here. */
2106 s->u.s.intervals = balance_intervals (s->u.s.intervals);
2108 ++total_strings;
2109 total_string_bytes += STRING_BYTES (s);
2111 else
2113 /* String is dead. Put it on the free-list. */
2114 sdata *data = SDATA_OF_STRING (s);
2116 /* Save the size of S in its sdata so that we know
2117 how large that is. Reset the sdata's string
2118 back-pointer so that we know it's free. */
2119 #ifdef GC_CHECK_STRING_BYTES
2120 if (string_bytes (s) != SDATA_NBYTES (data))
2121 emacs_abort ();
2122 #else
2123 data->n.nbytes = STRING_BYTES (s);
2124 #endif
2125 data->string = NULL;
2127 /* Reset the strings's `data' member so that we
2128 know it's free. */
2129 s->u.s.data = NULL;
2131 /* Put the string on the free-list. */
2132 NEXT_FREE_LISP_STRING (s) = string_free_list;
2133 string_free_list = s;
2134 ++nfree;
2137 else
2139 /* S was on the free-list before. Put it there again. */
2140 NEXT_FREE_LISP_STRING (s) = string_free_list;
2141 string_free_list = s;
2142 ++nfree;
2146 /* Free blocks that contain free Lisp_Strings only, except
2147 the first two of them. */
2148 if (nfree == STRING_BLOCK_SIZE
2149 && total_free_strings > STRING_BLOCK_SIZE)
2151 lisp_free (b);
2152 string_free_list = free_list_before;
2154 else
2156 total_free_strings += nfree;
2157 b->next = live_blocks;
2158 live_blocks = b;
2162 check_string_free_list ();
2164 string_blocks = live_blocks;
2165 free_large_strings ();
2166 compact_small_strings ();
2168 check_string_free_list ();
2172 /* Free dead large strings. */
2174 static void
2175 free_large_strings (void)
2177 struct sblock *b, *next;
2178 struct sblock *live_blocks = NULL;
2180 for (b = large_sblocks; b; b = next)
2182 next = b->next;
2184 if (b->data[0].string == NULL)
2185 lisp_free (b);
2186 else
2188 b->next = live_blocks;
2189 live_blocks = b;
2193 large_sblocks = live_blocks;
2197 /* Compact data of small strings. Free sblocks that don't contain
2198 data of live strings after compaction. */
2200 static void
2201 compact_small_strings (void)
2203 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2204 to, and TB_END is the end of TB. */
2205 struct sblock *tb = oldest_sblock;
2206 if (tb)
2208 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2209 sdata *to = tb->data;
2211 /* Step through the blocks from the oldest to the youngest. We
2212 expect that old blocks will stabilize over time, so that less
2213 copying will happen this way. */
2214 struct sblock *b = tb;
2217 sdata *end = b->next_free;
2218 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2220 for (sdata *from = b->data; from < end; )
2222 /* Compute the next FROM here because copying below may
2223 overwrite data we need to compute it. */
2224 ptrdiff_t nbytes;
2225 struct Lisp_String *s = from->string;
2227 #ifdef GC_CHECK_STRING_BYTES
2228 /* Check that the string size recorded in the string is the
2229 same as the one recorded in the sdata structure. */
2230 if (s && string_bytes (s) != SDATA_NBYTES (from))
2231 emacs_abort ();
2232 #endif /* GC_CHECK_STRING_BYTES */
2234 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2235 eassert (nbytes <= LARGE_STRING_BYTES);
2237 nbytes = SDATA_SIZE (nbytes);
2238 sdata *from_end = (sdata *) ((char *) from
2239 + nbytes + GC_STRING_EXTRA);
2241 #ifdef GC_CHECK_STRING_OVERRUN
2242 if (memcmp (string_overrun_cookie,
2243 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2244 GC_STRING_OVERRUN_COOKIE_SIZE))
2245 emacs_abort ();
2246 #endif
2248 /* Non-NULL S means it's alive. Copy its data. */
2249 if (s)
2251 /* If TB is full, proceed with the next sblock. */
2252 sdata *to_end = (sdata *) ((char *) to
2253 + nbytes + GC_STRING_EXTRA);
2254 if (to_end > tb_end)
2256 tb->next_free = to;
2257 tb = tb->next;
2258 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2259 to = tb->data;
2260 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2263 /* Copy, and update the string's `data' pointer. */
2264 if (from != to)
2266 eassert (tb != b || to < from);
2267 memmove (to, from, nbytes + GC_STRING_EXTRA);
2268 to->string->u.s.data = SDATA_DATA (to);
2271 /* Advance past the sdata we copied to. */
2272 to = to_end;
2274 from = from_end;
2276 b = b->next;
2278 while (b);
2280 /* The rest of the sblocks following TB don't contain live data, so
2281 we can free them. */
2282 for (b = tb->next; b; )
2284 struct sblock *next = b->next;
2285 lisp_free (b);
2286 b = next;
2289 tb->next_free = to;
2290 tb->next = NULL;
2293 current_sblock = tb;
2296 void
2297 string_overflow (void)
2299 error ("Maximum string size exceeded");
2302 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2303 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2304 LENGTH must be an integer.
2305 INIT must be an integer that represents a character. */)
2306 (Lisp_Object length, Lisp_Object init)
2308 register Lisp_Object val;
2309 int c;
2310 EMACS_INT nbytes;
2312 CHECK_NATNUM (length);
2313 CHECK_CHARACTER (init);
2315 c = XFASTINT (init);
2316 if (ASCII_CHAR_P (c))
2318 nbytes = XINT (length);
2319 val = make_uninit_string (nbytes);
2320 if (nbytes)
2322 memset (SDATA (val), c, nbytes);
2323 SDATA (val)[nbytes] = 0;
2326 else
2328 unsigned char str[MAX_MULTIBYTE_LENGTH];
2329 ptrdiff_t len = CHAR_STRING (c, str);
2330 EMACS_INT string_len = XINT (length);
2331 unsigned char *p, *beg, *end;
2333 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2334 string_overflow ();
2335 val = make_uninit_multibyte_string (string_len, nbytes);
2336 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2338 /* First time we just copy `str' to the data of `val'. */
2339 if (p == beg)
2340 memcpy (p, str, len);
2341 else
2343 /* Next time we copy largest possible chunk from
2344 initialized to uninitialized part of `val'. */
2345 len = min (p - beg, end - p);
2346 memcpy (p, beg, len);
2349 if (nbytes)
2350 *p = 0;
2353 return val;
2356 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2357 Return A. */
2359 Lisp_Object
2360 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2362 EMACS_INT nbits = bool_vector_size (a);
2363 if (0 < nbits)
2365 unsigned char *data = bool_vector_uchar_data (a);
2366 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2367 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2368 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2369 memset (data, pattern, nbytes - 1);
2370 data[nbytes - 1] = pattern & last_mask;
2372 return a;
2375 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2377 Lisp_Object
2378 make_uninit_bool_vector (EMACS_INT nbits)
2380 Lisp_Object val;
2381 EMACS_INT words = bool_vector_words (nbits);
2382 EMACS_INT word_bytes = words * sizeof (bits_word);
2383 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2384 + word_size - 1)
2385 / word_size);
2386 struct Lisp_Bool_Vector *p
2387 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2388 XSETVECTOR (val, p);
2389 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2390 p->size = nbits;
2392 /* Clear padding at the end. */
2393 if (words)
2394 p->data[words - 1] = 0;
2396 return val;
2399 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2400 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2401 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2402 (Lisp_Object length, Lisp_Object init)
2404 Lisp_Object val;
2406 CHECK_NATNUM (length);
2407 val = make_uninit_bool_vector (XFASTINT (length));
2408 return bool_vector_fill (val, init);
2411 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2412 doc: /* Return a new bool-vector with specified arguments as elements.
2413 Any number of arguments, even zero arguments, are allowed.
2414 usage: (bool-vector &rest OBJECTS) */)
2415 (ptrdiff_t nargs, Lisp_Object *args)
2417 ptrdiff_t i;
2418 Lisp_Object vector;
2420 vector = make_uninit_bool_vector (nargs);
2421 for (i = 0; i < nargs; i++)
2422 bool_vector_set (vector, i, !NILP (args[i]));
2424 return vector;
2427 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2428 of characters from the contents. This string may be unibyte or
2429 multibyte, depending on the contents. */
2431 Lisp_Object
2432 make_string (const char *contents, ptrdiff_t nbytes)
2434 register Lisp_Object val;
2435 ptrdiff_t nchars, multibyte_nbytes;
2437 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2438 &nchars, &multibyte_nbytes);
2439 if (nbytes == nchars || nbytes != multibyte_nbytes)
2440 /* CONTENTS contains no multibyte sequences or contains an invalid
2441 multibyte sequence. We must make unibyte string. */
2442 val = make_unibyte_string (contents, nbytes);
2443 else
2444 val = make_multibyte_string (contents, nchars, nbytes);
2445 return val;
2448 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2450 Lisp_Object
2451 make_unibyte_string (const char *contents, ptrdiff_t length)
2453 register Lisp_Object val;
2454 val = make_uninit_string (length);
2455 memcpy (SDATA (val), contents, length);
2456 return val;
2460 /* Make a multibyte string from NCHARS characters occupying NBYTES
2461 bytes at CONTENTS. */
2463 Lisp_Object
2464 make_multibyte_string (const char *contents,
2465 ptrdiff_t nchars, ptrdiff_t nbytes)
2467 register Lisp_Object val;
2468 val = make_uninit_multibyte_string (nchars, nbytes);
2469 memcpy (SDATA (val), contents, nbytes);
2470 return val;
2474 /* Make a string from NCHARS characters occupying NBYTES bytes at
2475 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2477 Lisp_Object
2478 make_string_from_bytes (const char *contents,
2479 ptrdiff_t nchars, ptrdiff_t nbytes)
2481 register Lisp_Object val;
2482 val = make_uninit_multibyte_string (nchars, nbytes);
2483 memcpy (SDATA (val), contents, nbytes);
2484 if (SBYTES (val) == SCHARS (val))
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2490 /* Make a string from NCHARS characters occupying NBYTES bytes at
2491 CONTENTS. The argument MULTIBYTE controls whether to label the
2492 string as multibyte. If NCHARS is negative, it counts the number of
2493 characters by itself. */
2495 Lisp_Object
2496 make_specified_string (const char *contents,
2497 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2499 Lisp_Object val;
2501 if (nchars < 0)
2503 if (multibyte)
2504 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2505 nbytes);
2506 else
2507 nchars = nbytes;
2509 val = make_uninit_multibyte_string (nchars, nbytes);
2510 memcpy (SDATA (val), contents, nbytes);
2511 if (!multibyte)
2512 STRING_SET_UNIBYTE (val);
2513 return val;
2517 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2518 occupying LENGTH bytes. */
2520 Lisp_Object
2521 make_uninit_string (EMACS_INT length)
2523 Lisp_Object val;
2525 if (!length)
2526 return empty_unibyte_string;
2527 val = make_uninit_multibyte_string (length, length);
2528 STRING_SET_UNIBYTE (val);
2529 return val;
2533 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2534 which occupy NBYTES bytes. */
2536 Lisp_Object
2537 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2539 Lisp_Object string;
2540 struct Lisp_String *s;
2542 if (nchars < 0)
2543 emacs_abort ();
2544 if (!nbytes)
2545 return empty_multibyte_string;
2547 s = allocate_string ();
2548 s->u.s.intervals = NULL;
2549 allocate_string_data (s, nchars, nbytes);
2550 XSETSTRING (string, s);
2551 string_chars_consed += nbytes;
2552 return string;
2555 /* Print arguments to BUF according to a FORMAT, then return
2556 a Lisp_String initialized with the data from BUF. */
2558 Lisp_Object
2559 make_formatted_string (char *buf, const char *format, ...)
2561 va_list ap;
2562 int length;
2564 va_start (ap, format);
2565 length = vsprintf (buf, format, ap);
2566 va_end (ap);
2567 return make_string (buf, length);
2571 /***********************************************************************
2572 Float Allocation
2573 ***********************************************************************/
2575 /* We store float cells inside of float_blocks, allocating a new
2576 float_block with malloc whenever necessary. Float cells reclaimed
2577 by GC are put on a free list to be reallocated before allocating
2578 any new float cells from the latest float_block. */
2580 #define FLOAT_BLOCK_SIZE \
2581 (((BLOCK_BYTES - sizeof (struct float_block *) \
2582 /* The compiler might add padding at the end. */ \
2583 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2584 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2586 #define GETMARKBIT(block,n) \
2587 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2588 >> ((n) % BITS_PER_BITS_WORD)) \
2589 & 1)
2591 #define SETMARKBIT(block,n) \
2592 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2593 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2595 #define UNSETMARKBIT(block,n) \
2596 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2597 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2599 #define FLOAT_BLOCK(fptr) \
2600 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2602 #define FLOAT_INDEX(fptr) \
2603 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2605 struct float_block
2607 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2608 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2609 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2610 struct float_block *next;
2613 #define FLOAT_MARKED_P(fptr) \
2614 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2616 #define FLOAT_MARK(fptr) \
2617 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2619 #define FLOAT_UNMARK(fptr) \
2620 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2622 /* Current float_block. */
2624 static struct float_block *float_block;
2626 /* Index of first unused Lisp_Float in the current float_block. */
2628 static int float_block_index = FLOAT_BLOCK_SIZE;
2630 /* Free-list of Lisp_Floats. */
2632 static struct Lisp_Float *float_free_list;
2634 /* Return a new float object with value FLOAT_VALUE. */
2636 Lisp_Object
2637 make_float (double float_value)
2639 register Lisp_Object val;
2641 MALLOC_BLOCK_INPUT;
2643 if (float_free_list)
2645 /* We use the data field for chaining the free list
2646 so that we won't use the same field that has the mark bit. */
2647 XSETFLOAT (val, float_free_list);
2648 float_free_list = float_free_list->u.chain;
2650 else
2652 if (float_block_index == FLOAT_BLOCK_SIZE)
2654 struct float_block *new
2655 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2656 new->next = float_block;
2657 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2658 float_block = new;
2659 float_block_index = 0;
2660 total_free_floats += FLOAT_BLOCK_SIZE;
2662 XSETFLOAT (val, &float_block->floats[float_block_index]);
2663 float_block_index++;
2666 MALLOC_UNBLOCK_INPUT;
2668 XFLOAT_INIT (val, float_value);
2669 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2670 consing_since_gc += sizeof (struct Lisp_Float);
2671 floats_consed++;
2672 total_free_floats--;
2673 return val;
2678 /***********************************************************************
2679 Cons Allocation
2680 ***********************************************************************/
2682 /* We store cons cells inside of cons_blocks, allocating a new
2683 cons_block with malloc whenever necessary. Cons cells reclaimed by
2684 GC are put on a free list to be reallocated before allocating
2685 any new cons cells from the latest cons_block. */
2687 #define CONS_BLOCK_SIZE \
2688 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2689 /* The compiler might add padding at the end. */ \
2690 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2691 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2693 #define CONS_BLOCK(fptr) \
2694 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2696 #define CONS_INDEX(fptr) \
2697 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2699 struct cons_block
2701 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2702 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2703 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2704 struct cons_block *next;
2707 #define CONS_MARKED_P(fptr) \
2708 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2710 #define CONS_MARK(fptr) \
2711 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2713 #define CONS_UNMARK(fptr) \
2714 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2716 /* Current cons_block. */
2718 static struct cons_block *cons_block;
2720 /* Index of first unused Lisp_Cons in the current block. */
2722 static int cons_block_index = CONS_BLOCK_SIZE;
2724 /* Free-list of Lisp_Cons structures. */
2726 static struct Lisp_Cons *cons_free_list;
2728 /* Explicitly free a cons cell by putting it on the free-list. */
2730 void
2731 free_cons (struct Lisp_Cons *ptr)
2733 ptr->u.s.u.chain = cons_free_list;
2734 ptr->u.s.car = Vdead;
2735 cons_free_list = ptr;
2736 consing_since_gc -= sizeof *ptr;
2737 total_free_conses++;
2740 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2741 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2742 (Lisp_Object car, Lisp_Object cdr)
2744 register Lisp_Object val;
2746 MALLOC_BLOCK_INPUT;
2748 if (cons_free_list)
2750 /* We use the cdr for chaining the free list
2751 so that we won't use the same field that has the mark bit. */
2752 XSETCONS (val, cons_free_list);
2753 cons_free_list = cons_free_list->u.s.u.chain;
2755 else
2757 if (cons_block_index == CONS_BLOCK_SIZE)
2759 struct cons_block *new
2760 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2761 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2762 new->next = cons_block;
2763 cons_block = new;
2764 cons_block_index = 0;
2765 total_free_conses += CONS_BLOCK_SIZE;
2767 XSETCONS (val, &cons_block->conses[cons_block_index]);
2768 cons_block_index++;
2771 MALLOC_UNBLOCK_INPUT;
2773 XSETCAR (val, car);
2774 XSETCDR (val, cdr);
2775 eassert (!CONS_MARKED_P (XCONS (val)));
2776 consing_since_gc += sizeof (struct Lisp_Cons);
2777 total_free_conses--;
2778 cons_cells_consed++;
2779 return val;
2782 #ifdef GC_CHECK_CONS_LIST
2783 /* Get an error now if there's any junk in the cons free list. */
2784 void
2785 check_cons_list (void)
2787 struct Lisp_Cons *tail = cons_free_list;
2789 while (tail)
2790 tail = tail->u.s.u.chain;
2792 #endif
2794 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2796 Lisp_Object
2797 list1 (Lisp_Object arg1)
2799 return Fcons (arg1, Qnil);
2802 Lisp_Object
2803 list2 (Lisp_Object arg1, Lisp_Object arg2)
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2809 Lisp_Object
2810 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2812 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2816 Lisp_Object
2817 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2823 Lisp_Object
2824 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2830 /* Make a list of COUNT Lisp_Objects, where ARG is the
2831 first one. Allocate conses from pure space if TYPE
2832 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2834 Lisp_Object
2835 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2837 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2838 switch (type)
2840 case CONSTYPE_PURE: cons = pure_cons; break;
2841 case CONSTYPE_HEAP: cons = Fcons; break;
2842 default: emacs_abort ();
2845 eassume (0 < count);
2846 Lisp_Object val = cons (arg, Qnil);
2847 Lisp_Object tail = val;
2849 va_list ap;
2850 va_start (ap, arg);
2851 for (ptrdiff_t i = 1; i < count; i++)
2853 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2854 XSETCDR (tail, elem);
2855 tail = elem;
2857 va_end (ap);
2859 return val;
2862 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2863 doc: /* Return a newly created list with specified arguments as elements.
2864 Any number of arguments, even zero arguments, are allowed.
2865 usage: (list &rest OBJECTS) */)
2866 (ptrdiff_t nargs, Lisp_Object *args)
2868 register Lisp_Object val;
2869 val = Qnil;
2871 while (nargs > 0)
2873 nargs--;
2874 val = Fcons (args[nargs], val);
2876 return val;
2880 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2881 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2882 (Lisp_Object length, Lisp_Object init)
2884 Lisp_Object val = Qnil;
2885 CHECK_NATNUM (length);
2887 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2889 val = Fcons (init, val);
2890 rarely_quit (size);
2893 return val;
2898 /***********************************************************************
2899 Vector Allocation
2900 ***********************************************************************/
2902 /* Sometimes a vector's contents are merely a pointer internally used
2903 in vector allocation code. On the rare platforms where a null
2904 pointer cannot be tagged, represent it with a Lisp 0.
2905 Usually you don't want to touch this. */
2907 static struct Lisp_Vector *
2908 next_vector (struct Lisp_Vector *v)
2910 return XUNTAG (v->contents[0], Lisp_Int0);
2913 static void
2914 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2916 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2919 /* This value is balanced well enough to avoid too much internal overhead
2920 for the most common cases; it's not required to be a power of two, but
2921 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2923 #define VECTOR_BLOCK_SIZE 4096
2925 /* Alignment of struct Lisp_Vector objects. Because pseudovectors
2926 can contain any C type, align at least as strictly as
2927 max_align_t. On x86 and x86-64 this can waste up to 8 bytes
2928 for typical vectors, since alignof (max_align_t) is 16 but
2929 typical vectors need only an alignment of 8. However, it is
2930 not worth the hassle to avoid wasting those bytes. */
2931 enum {vector_alignment = COMMON_MULTIPLE (alignof (max_align_t), GCALIGNMENT)};
2933 /* Vector size requests are a multiple of this. */
2934 enum { roundup_size = COMMON_MULTIPLE (vector_alignment, word_size) };
2936 /* Verify assumptions described above. */
2937 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2938 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2940 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2941 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2942 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2943 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2945 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2947 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2949 /* Size of the minimal vector allocated from block. */
2951 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2953 /* Size of the largest vector allocated from block. */
2955 #define VBLOCK_BYTES_MAX \
2956 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2958 /* We maintain one free list for each possible block-allocated
2959 vector size, and this is the number of free lists we have. */
2961 #define VECTOR_MAX_FREE_LIST_INDEX \
2962 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2964 /* Common shortcut to advance vector pointer over a block data. */
2966 static struct Lisp_Vector *
2967 ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
2969 void *vv = v;
2970 char *cv = vv;
2971 void *p = cv + nbytes;
2972 return p;
2975 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2977 static ptrdiff_t
2978 VINDEX (ptrdiff_t nbytes)
2980 eassume (VBLOCK_BYTES_MIN <= nbytes);
2981 return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
2984 /* This internal type is used to maintain the list of large vectors
2985 which are allocated at their own, e.g. outside of vector blocks.
2987 struct large_vector itself cannot contain a struct Lisp_Vector, as
2988 the latter contains a flexible array member and C99 does not allow
2989 such structs to be nested. Instead, each struct large_vector
2990 object LV is followed by a struct Lisp_Vector, which is at offset
2991 large_vector_offset from LV, and whose address is therefore
2992 large_vector_vec (&LV). */
2994 struct large_vector
2996 struct large_vector *next;
2999 enum
3001 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3004 static struct Lisp_Vector *
3005 large_vector_vec (struct large_vector *p)
3007 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3010 /* This internal type is used to maintain an underlying storage
3011 for small vectors. */
3013 struct vector_block
3015 char data[VECTOR_BLOCK_BYTES];
3016 struct vector_block *next;
3019 /* Chain of vector blocks. */
3021 static struct vector_block *vector_blocks;
3023 /* Vector free lists, where NTH item points to a chain of free
3024 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3026 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3028 /* Singly-linked list of large vectors. */
3030 static struct large_vector *large_vectors;
3032 /* The only vector with 0 slots, allocated from pure space. */
3034 Lisp_Object zero_vector;
3036 /* Number of live vectors. */
3038 static EMACS_INT total_vectors;
3040 /* Total size of live and free vectors, in Lisp_Object units. */
3042 static EMACS_INT total_vector_slots, total_free_vector_slots;
3044 /* Common shortcut to setup vector on a free list. */
3046 static void
3047 setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
3049 eassume (header_size <= nbytes);
3050 ptrdiff_t nwords = (nbytes - header_size) / word_size;
3051 XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
3052 eassert (nbytes % roundup_size == 0);
3053 ptrdiff_t vindex = VINDEX (nbytes);
3054 eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
3055 set_next_vector (v, vector_free_lists[vindex]);
3056 vector_free_lists[vindex] = v;
3057 total_free_vector_slots += nbytes / word_size;
3060 /* Get a new vector block. */
3062 static struct vector_block *
3063 allocate_vector_block (void)
3065 struct vector_block *block = xmalloc (sizeof *block);
3067 #ifndef GC_MALLOC_CHECK
3068 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3069 MEM_TYPE_VECTOR_BLOCK);
3070 #endif
3072 block->next = vector_blocks;
3073 vector_blocks = block;
3074 return block;
3077 /* Called once to initialize vector allocation. */
3079 static void
3080 init_vectors (void)
3082 zero_vector = make_pure_vector (0);
3085 /* Allocate vector from a vector block. */
3087 static struct Lisp_Vector *
3088 allocate_vector_from_block (size_t nbytes)
3090 struct Lisp_Vector *vector;
3091 struct vector_block *block;
3092 size_t index, restbytes;
3094 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3095 eassert (nbytes % roundup_size == 0);
3097 /* First, try to allocate from a free list
3098 containing vectors of the requested size. */
3099 index = VINDEX (nbytes);
3100 if (vector_free_lists[index])
3102 vector = vector_free_lists[index];
3103 vector_free_lists[index] = next_vector (vector);
3104 total_free_vector_slots -= nbytes / word_size;
3105 return vector;
3108 /* Next, check free lists containing larger vectors. Since
3109 we will split the result, we should have remaining space
3110 large enough to use for one-slot vector at least. */
3111 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3112 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3113 if (vector_free_lists[index])
3115 /* This vector is larger than requested. */
3116 vector = vector_free_lists[index];
3117 vector_free_lists[index] = next_vector (vector);
3118 total_free_vector_slots -= nbytes / word_size;
3120 /* Excess bytes are used for the smaller vector,
3121 which should be set on an appropriate free list. */
3122 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3123 eassert (restbytes % roundup_size == 0);
3124 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3125 return vector;
3128 /* Finally, need a new vector block. */
3129 block = allocate_vector_block ();
3131 /* New vector will be at the beginning of this block. */
3132 vector = (struct Lisp_Vector *) block->data;
3134 /* If the rest of space from this block is large enough
3135 for one-slot vector at least, set up it on a free list. */
3136 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3137 if (restbytes >= VBLOCK_BYTES_MIN)
3139 eassert (restbytes % roundup_size == 0);
3140 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3142 return vector;
3145 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3147 #define VECTOR_IN_BLOCK(vector, block) \
3148 ((char *) (vector) <= (block)->data \
3149 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3151 /* Return the memory footprint of V in bytes. */
3153 static ptrdiff_t
3154 vector_nbytes (struct Lisp_Vector *v)
3156 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3157 ptrdiff_t nwords;
3159 if (size & PSEUDOVECTOR_FLAG)
3161 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3163 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3164 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3165 * sizeof (bits_word));
3166 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3167 verify (header_size <= bool_header_size);
3168 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3170 else
3171 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3172 + ((size & PSEUDOVECTOR_REST_MASK)
3173 >> PSEUDOVECTOR_SIZE_BITS));
3175 else
3176 nwords = size;
3177 return vroundup (header_size + word_size * nwords);
3180 /* Release extra resources still in use by VECTOR, which may be any
3181 vector-like object. */
3183 static void
3184 cleanup_vector (struct Lisp_Vector *vector)
3186 detect_suspicious_free (vector);
3187 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3188 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3189 == FONT_OBJECT_MAX))
3191 struct font_driver const *drv = ((struct font *) vector)->driver;
3193 /* The font driver might sometimes be NULL, e.g. if Emacs was
3194 interrupted before it had time to set it up. */
3195 if (drv)
3197 /* Attempt to catch subtle bugs like Bug#16140. */
3198 eassert (valid_font_driver (drv));
3199 drv->close ((struct font *) vector);
3203 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3204 finalize_one_thread ((struct thread_state *) vector);
3205 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3206 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3207 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3208 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3211 /* Reclaim space used by unmarked vectors. */
3213 NO_INLINE /* For better stack traces */
3214 static void
3215 sweep_vectors (void)
3217 struct vector_block *block, **bprev = &vector_blocks;
3218 struct large_vector *lv, **lvprev = &large_vectors;
3219 struct Lisp_Vector *vector, *next;
3221 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3222 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3224 /* Looking through vector blocks. */
3226 for (block = vector_blocks; block; block = *bprev)
3228 bool free_this_block = 0;
3229 ptrdiff_t nbytes;
3231 for (vector = (struct Lisp_Vector *) block->data;
3232 VECTOR_IN_BLOCK (vector, block); vector = next)
3234 if (VECTOR_MARKED_P (vector))
3236 VECTOR_UNMARK (vector);
3237 total_vectors++;
3238 nbytes = vector_nbytes (vector);
3239 total_vector_slots += nbytes / word_size;
3240 next = ADVANCE (vector, nbytes);
3242 else
3244 ptrdiff_t total_bytes;
3246 cleanup_vector (vector);
3247 nbytes = vector_nbytes (vector);
3248 total_bytes = nbytes;
3249 next = ADVANCE (vector, nbytes);
3251 /* While NEXT is not marked, try to coalesce with VECTOR,
3252 thus making VECTOR of the largest possible size. */
3254 while (VECTOR_IN_BLOCK (next, block))
3256 if (VECTOR_MARKED_P (next))
3257 break;
3258 cleanup_vector (next);
3259 nbytes = vector_nbytes (next);
3260 total_bytes += nbytes;
3261 next = ADVANCE (next, nbytes);
3264 eassert (total_bytes % roundup_size == 0);
3266 if (vector == (struct Lisp_Vector *) block->data
3267 && !VECTOR_IN_BLOCK (next, block))
3268 /* This block should be freed because all of its
3269 space was coalesced into the only free vector. */
3270 free_this_block = 1;
3271 else
3272 setup_on_free_list (vector, total_bytes);
3276 if (free_this_block)
3278 *bprev = block->next;
3279 #ifndef GC_MALLOC_CHECK
3280 mem_delete (mem_find (block->data));
3281 #endif
3282 xfree (block);
3284 else
3285 bprev = &block->next;
3288 /* Sweep large vectors. */
3290 for (lv = large_vectors; lv; lv = *lvprev)
3292 vector = large_vector_vec (lv);
3293 if (VECTOR_MARKED_P (vector))
3295 VECTOR_UNMARK (vector);
3296 total_vectors++;
3297 if (vector->header.size & PSEUDOVECTOR_FLAG)
3298 total_vector_slots += vector_nbytes (vector) / word_size;
3299 else
3300 total_vector_slots
3301 += header_size / word_size + vector->header.size;
3302 lvprev = &lv->next;
3304 else
3306 *lvprev = lv->next;
3307 lisp_free (lv);
3312 /* Value is a pointer to a newly allocated Lisp_Vector structure
3313 with room for LEN Lisp_Objects. */
3315 static struct Lisp_Vector *
3316 allocate_vectorlike (ptrdiff_t len)
3318 struct Lisp_Vector *p;
3320 MALLOC_BLOCK_INPUT;
3322 if (len == 0)
3323 p = XVECTOR (zero_vector);
3324 else
3326 size_t nbytes = header_size + len * word_size;
3328 #ifdef DOUG_LEA_MALLOC
3329 if (!mmap_lisp_allowed_p ())
3330 mallopt (M_MMAP_MAX, 0);
3331 #endif
3333 if (nbytes <= VBLOCK_BYTES_MAX)
3334 p = allocate_vector_from_block (vroundup (nbytes));
3335 else
3337 struct large_vector *lv
3338 = lisp_malloc ((large_vector_offset + header_size
3339 + len * word_size),
3340 MEM_TYPE_VECTORLIKE);
3341 lv->next = large_vectors;
3342 large_vectors = lv;
3343 p = large_vector_vec (lv);
3346 #ifdef DOUG_LEA_MALLOC
3347 if (!mmap_lisp_allowed_p ())
3348 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3349 #endif
3351 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3352 emacs_abort ();
3354 consing_since_gc += nbytes;
3355 vector_cells_consed += len;
3358 MALLOC_UNBLOCK_INPUT;
3360 return p;
3364 /* Allocate a vector with LEN slots. */
3366 struct Lisp_Vector *
3367 allocate_vector (EMACS_INT len)
3369 struct Lisp_Vector *v;
3370 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3372 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3373 memory_full (SIZE_MAX);
3374 v = allocate_vectorlike (len);
3375 if (len)
3376 v->header.size = len;
3377 return v;
3381 /* Allocate other vector-like structures. */
3383 struct Lisp_Vector *
3384 allocate_pseudovector (int memlen, int lisplen,
3385 int zerolen, enum pvec_type tag)
3387 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3389 /* Catch bogus values. */
3390 eassert (0 <= tag && tag <= PVEC_FONT);
3391 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3392 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3393 eassert (lisplen <= PSEUDOVECTOR_SIZE_MASK);
3395 /* Only the first LISPLEN slots will be traced normally by the GC. */
3396 memclear (v->contents, zerolen * word_size);
3397 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3398 return v;
3401 struct buffer *
3402 allocate_buffer (void)
3404 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3406 BUFFER_PVEC_INIT (b);
3407 /* Put B on the chain of all buffers including killed ones. */
3408 b->next = all_buffers;
3409 all_buffers = b;
3410 /* Note that the rest fields of B are not initialized. */
3411 return b;
3415 /* Allocate a record with COUNT slots. COUNT must be positive, and
3416 includes the type slot. */
3418 static struct Lisp_Vector *
3419 allocate_record (EMACS_INT count)
3421 if (count > PSEUDOVECTOR_SIZE_MASK)
3422 error ("Attempt to allocate a record of %"pI"d slots; max is %d",
3423 count, PSEUDOVECTOR_SIZE_MASK);
3424 struct Lisp_Vector *p = allocate_vectorlike (count);
3425 p->header.size = count;
3426 XSETPVECTYPE (p, PVEC_RECORD);
3427 return p;
3431 DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
3432 doc: /* Create a new record.
3433 TYPE is its type as returned by `type-of'; it should be either a
3434 symbol or a type descriptor. SLOTS is the number of non-type slots,
3435 each initialized to INIT. */)
3436 (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
3438 CHECK_NATNUM (slots);
3439 EMACS_INT size = XFASTINT (slots) + 1;
3440 struct Lisp_Vector *p = allocate_record (size);
3441 p->contents[0] = type;
3442 for (ptrdiff_t i = 1; i < size; i++)
3443 p->contents[i] = init;
3444 return make_lisp_ptr (p, Lisp_Vectorlike);
3448 DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
3449 doc: /* Create a new record.
3450 TYPE is its type as returned by `type-of'; it should be either a
3451 symbol or a type descriptor. SLOTS is used to initialize the record
3452 slots with shallow copies of the arguments.
3453 usage: (record TYPE &rest SLOTS) */)
3454 (ptrdiff_t nargs, Lisp_Object *args)
3456 struct Lisp_Vector *p = allocate_record (nargs);
3457 memcpy (p->contents, args, nargs * sizeof *args);
3458 return make_lisp_ptr (p, Lisp_Vectorlike);
3462 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3463 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3464 See also the function `vector'. */)
3465 (Lisp_Object length, Lisp_Object init)
3467 CHECK_NATNUM (length);
3468 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3469 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3470 p->contents[i] = init;
3471 return make_lisp_ptr (p, Lisp_Vectorlike);
3474 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3475 doc: /* Return a newly created vector with specified arguments as elements.
3476 Any number of arguments, even zero arguments, are allowed.
3477 usage: (vector &rest OBJECTS) */)
3478 (ptrdiff_t nargs, Lisp_Object *args)
3480 Lisp_Object val = make_uninit_vector (nargs);
3481 struct Lisp_Vector *p = XVECTOR (val);
3482 memcpy (p->contents, args, nargs * sizeof *args);
3483 return val;
3486 void
3487 make_byte_code (struct Lisp_Vector *v)
3489 /* Don't allow the global zero_vector to become a byte code object. */
3490 eassert (0 < v->header.size);
3492 if (v->header.size > 1 && STRINGP (v->contents[1])
3493 && STRING_MULTIBYTE (v->contents[1]))
3494 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3495 earlier because they produced a raw 8-bit string for byte-code
3496 and now such a byte-code string is loaded as multibyte while
3497 raw 8-bit characters converted to multibyte form. Thus, now we
3498 must convert them back to the original unibyte form. */
3499 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3500 XSETPVECTYPE (v, PVEC_COMPILED);
3503 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3504 doc: /* Create a byte-code object with specified arguments as elements.
3505 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3506 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3507 and (optional) INTERACTIVE-SPEC.
3508 The first four arguments are required; at most six have any
3509 significance.
3510 The ARGLIST can be either like the one of `lambda', in which case the arguments
3511 will be dynamically bound before executing the byte code, or it can be an
3512 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3513 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3514 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3515 argument to catch the left-over arguments. If such an integer is used, the
3516 arguments will not be dynamically bound but will be instead pushed on the
3517 stack before executing the byte-code.
3518 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3519 (ptrdiff_t nargs, Lisp_Object *args)
3521 Lisp_Object val = make_uninit_vector (nargs);
3522 struct Lisp_Vector *p = XVECTOR (val);
3524 /* We used to purecopy everything here, if purify-flag was set. This worked
3525 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3526 dangerous, since make-byte-code is used during execution to build
3527 closures, so any closure built during the preload phase would end up
3528 copied into pure space, including its free variables, which is sometimes
3529 just wasteful and other times plainly wrong (e.g. those free vars may want
3530 to be setcar'd). */
3532 memcpy (p->contents, args, nargs * sizeof *args);
3533 make_byte_code (p);
3534 XSETCOMPILED (val, p);
3535 return val;
3540 /***********************************************************************
3541 Symbol Allocation
3542 ***********************************************************************/
3544 /* Each symbol_block is just under 1020 bytes long, since malloc
3545 really allocates in units of powers of two and uses 4 bytes for its
3546 own overhead. */
3548 #define SYMBOL_BLOCK_SIZE \
3549 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3551 struct symbol_block
3553 /* Place `symbols' first, to preserve alignment. */
3554 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3555 struct symbol_block *next;
3558 /* Current symbol block and index of first unused Lisp_Symbol
3559 structure in it. */
3561 static struct symbol_block *symbol_block;
3562 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3563 /* Pointer to the first symbol_block that contains pinned symbols.
3564 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3565 10K of which are pinned (and all but 250 of them are interned in obarray),
3566 whereas a "typical session" has in the order of 30K symbols.
3567 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3568 than 30K to find the 10K symbols we need to mark. */
3569 static struct symbol_block *symbol_block_pinned;
3571 /* List of free symbols. */
3573 static struct Lisp_Symbol *symbol_free_list;
3575 static void
3576 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3578 XSYMBOL (sym)->u.s.name = name;
3581 void
3582 init_symbol (Lisp_Object val, Lisp_Object name)
3584 struct Lisp_Symbol *p = XSYMBOL (val);
3585 set_symbol_name (val, name);
3586 set_symbol_plist (val, Qnil);
3587 p->u.s.redirect = SYMBOL_PLAINVAL;
3588 SET_SYMBOL_VAL (p, Qunbound);
3589 set_symbol_function (val, Qnil);
3590 set_symbol_next (val, NULL);
3591 p->u.s.gcmarkbit = false;
3592 p->u.s.interned = SYMBOL_UNINTERNED;
3593 p->u.s.trapped_write = SYMBOL_UNTRAPPED_WRITE;
3594 p->u.s.declared_special = false;
3595 p->u.s.pinned = false;
3598 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3599 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3600 Its value is void, and its function definition and property list are nil. */)
3601 (Lisp_Object name)
3603 Lisp_Object val;
3605 CHECK_STRING (name);
3607 MALLOC_BLOCK_INPUT;
3609 if (symbol_free_list)
3611 XSETSYMBOL (val, symbol_free_list);
3612 symbol_free_list = symbol_free_list->u.s.next;
3614 else
3616 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3618 struct symbol_block *new
3619 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3620 new->next = symbol_block;
3621 symbol_block = new;
3622 symbol_block_index = 0;
3623 total_free_symbols += SYMBOL_BLOCK_SIZE;
3625 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3626 symbol_block_index++;
3629 MALLOC_UNBLOCK_INPUT;
3631 init_symbol (val, name);
3632 consing_since_gc += sizeof (struct Lisp_Symbol);
3633 symbols_consed++;
3634 total_free_symbols--;
3635 return val;
3640 /***********************************************************************
3641 Marker (Misc) Allocation
3642 ***********************************************************************/
3644 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3645 the required alignment. */
3647 union aligned_Lisp_Misc
3649 union Lisp_Misc m;
3650 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3651 & -GCALIGNMENT];
3654 /* Allocation of markers and other objects that share that structure.
3655 Works like allocation of conses. */
3657 #define MARKER_BLOCK_SIZE \
3658 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3660 struct marker_block
3662 /* Place `markers' first, to preserve alignment. */
3663 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3664 struct marker_block *next;
3667 static struct marker_block *marker_block;
3668 static int marker_block_index = MARKER_BLOCK_SIZE;
3670 static union Lisp_Misc *marker_free_list;
3672 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3674 static Lisp_Object
3675 allocate_misc (enum Lisp_Misc_Type type)
3677 Lisp_Object val;
3679 MALLOC_BLOCK_INPUT;
3681 if (marker_free_list)
3683 XSETMISC (val, marker_free_list);
3684 marker_free_list = marker_free_list->u_free.chain;
3686 else
3688 if (marker_block_index == MARKER_BLOCK_SIZE)
3690 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3691 new->next = marker_block;
3692 marker_block = new;
3693 marker_block_index = 0;
3694 total_free_markers += MARKER_BLOCK_SIZE;
3696 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3697 marker_block_index++;
3700 MALLOC_UNBLOCK_INPUT;
3702 --total_free_markers;
3703 consing_since_gc += sizeof (union Lisp_Misc);
3704 misc_objects_consed++;
3705 XMISCANY (val)->type = type;
3706 XMISCANY (val)->gcmarkbit = 0;
3707 return val;
3710 /* Free a Lisp_Misc object. */
3712 void
3713 free_misc (Lisp_Object misc)
3715 XMISCANY (misc)->type = Lisp_Misc_Free;
3716 XMISC (misc)->u_free.chain = marker_free_list;
3717 marker_free_list = XMISC (misc);
3718 consing_since_gc -= sizeof (union Lisp_Misc);
3719 total_free_markers++;
3722 /* Verify properties of Lisp_Save_Value's representation
3723 that are assumed here and elsewhere. */
3725 verify (SAVE_UNUSED == 0);
3726 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3727 >> SAVE_SLOT_BITS)
3728 == 0);
3730 /* Return Lisp_Save_Value objects for the various combinations
3731 that callers need. */
3733 Lisp_Object
3734 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3736 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3737 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3738 p->save_type = SAVE_TYPE_INT_INT_INT;
3739 p->data[0].integer = a;
3740 p->data[1].integer = b;
3741 p->data[2].integer = c;
3742 return val;
3745 Lisp_Object
3746 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3747 Lisp_Object d)
3749 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3750 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3751 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3752 p->data[0].object = a;
3753 p->data[1].object = b;
3754 p->data[2].object = c;
3755 p->data[3].object = d;
3756 return val;
3759 Lisp_Object
3760 make_save_ptr (void *a)
3762 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3763 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3764 p->save_type = SAVE_POINTER;
3765 p->data[0].pointer = a;
3766 return val;
3769 Lisp_Object
3770 make_save_ptr_int (void *a, ptrdiff_t b)
3772 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3773 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3774 p->save_type = SAVE_TYPE_PTR_INT;
3775 p->data[0].pointer = a;
3776 p->data[1].integer = b;
3777 return val;
3780 Lisp_Object
3781 make_save_ptr_ptr (void *a, void *b)
3783 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3784 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3785 p->save_type = SAVE_TYPE_PTR_PTR;
3786 p->data[0].pointer = a;
3787 p->data[1].pointer = b;
3788 return val;
3791 Lisp_Object
3792 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3794 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3795 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3796 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3797 p->data[0].funcpointer = a;
3798 p->data[1].pointer = b;
3799 p->data[2].object = c;
3800 return val;
3803 /* Return a Lisp_Save_Value object that represents an array A
3804 of N Lisp objects. */
3806 Lisp_Object
3807 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3809 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3810 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3811 p->save_type = SAVE_TYPE_MEMORY;
3812 p->data[0].pointer = a;
3813 p->data[1].integer = n;
3814 return val;
3817 /* Free a Lisp_Save_Value object. Do not use this function
3818 if SAVE contains pointer other than returned by xmalloc. */
3820 void
3821 free_save_value (Lisp_Object save)
3823 xfree (XSAVE_POINTER (save, 0));
3824 free_misc (save);
3827 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3829 Lisp_Object
3830 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3832 register Lisp_Object overlay;
3834 overlay = allocate_misc (Lisp_Misc_Overlay);
3835 OVERLAY_START (overlay) = start;
3836 OVERLAY_END (overlay) = end;
3837 set_overlay_plist (overlay, plist);
3838 XOVERLAY (overlay)->next = NULL;
3839 return overlay;
3842 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3843 doc: /* Return a newly allocated marker which does not point at any place. */)
3844 (void)
3846 register Lisp_Object val;
3847 register struct Lisp_Marker *p;
3849 val = allocate_misc (Lisp_Misc_Marker);
3850 p = XMARKER (val);
3851 p->buffer = 0;
3852 p->bytepos = 0;
3853 p->charpos = 0;
3854 p->next = NULL;
3855 p->insertion_type = 0;
3856 p->need_adjustment = 0;
3857 return val;
3860 /* Return a newly allocated marker which points into BUF
3861 at character position CHARPOS and byte position BYTEPOS. */
3863 Lisp_Object
3864 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3866 Lisp_Object obj;
3867 struct Lisp_Marker *m;
3869 /* No dead buffers here. */
3870 eassert (BUFFER_LIVE_P (buf));
3872 /* Every character is at least one byte. */
3873 eassert (charpos <= bytepos);
3875 obj = allocate_misc (Lisp_Misc_Marker);
3876 m = XMARKER (obj);
3877 m->buffer = buf;
3878 m->charpos = charpos;
3879 m->bytepos = bytepos;
3880 m->insertion_type = 0;
3881 m->need_adjustment = 0;
3882 m->next = BUF_MARKERS (buf);
3883 BUF_MARKERS (buf) = m;
3884 return obj;
3887 /* Put MARKER back on the free list after using it temporarily. */
3889 void
3890 free_marker (Lisp_Object marker)
3892 unchain_marker (XMARKER (marker));
3893 free_misc (marker);
3897 /* Return a newly created vector or string with specified arguments as
3898 elements. If all the arguments are characters that can fit
3899 in a string of events, make a string; otherwise, make a vector.
3901 Any number of arguments, even zero arguments, are allowed. */
3903 Lisp_Object
3904 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3906 ptrdiff_t i;
3908 for (i = 0; i < nargs; i++)
3909 /* The things that fit in a string
3910 are characters that are in 0...127,
3911 after discarding the meta bit and all the bits above it. */
3912 if (!INTEGERP (args[i])
3913 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3914 return Fvector (nargs, args);
3916 /* Since the loop exited, we know that all the things in it are
3917 characters, so we can make a string. */
3919 Lisp_Object result;
3921 result = Fmake_string (make_number (nargs), make_number (0));
3922 for (i = 0; i < nargs; i++)
3924 SSET (result, i, XINT (args[i]));
3925 /* Move the meta bit to the right place for a string char. */
3926 if (XINT (args[i]) & CHAR_META)
3927 SSET (result, i, SREF (result, i) | 0x80);
3930 return result;
3934 #ifdef HAVE_MODULES
3935 /* Create a new module user ptr object. */
3936 Lisp_Object
3937 make_user_ptr (void (*finalizer) (void *), void *p)
3939 Lisp_Object obj;
3940 struct Lisp_User_Ptr *uptr;
3942 obj = allocate_misc (Lisp_Misc_User_Ptr);
3943 uptr = XUSER_PTR (obj);
3944 uptr->finalizer = finalizer;
3945 uptr->p = p;
3946 return obj;
3948 #endif
3950 static void
3951 init_finalizer_list (struct Lisp_Finalizer *head)
3953 head->prev = head->next = head;
3956 /* Insert FINALIZER before ELEMENT. */
3958 static void
3959 finalizer_insert (struct Lisp_Finalizer *element,
3960 struct Lisp_Finalizer *finalizer)
3962 eassert (finalizer->prev == NULL);
3963 eassert (finalizer->next == NULL);
3964 finalizer->next = element;
3965 finalizer->prev = element->prev;
3966 finalizer->prev->next = finalizer;
3967 element->prev = finalizer;
3970 static void
3971 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3973 if (finalizer->prev != NULL)
3975 eassert (finalizer->next != NULL);
3976 finalizer->prev->next = finalizer->next;
3977 finalizer->next->prev = finalizer->prev;
3978 finalizer->prev = finalizer->next = NULL;
3982 static void
3983 mark_finalizer_list (struct Lisp_Finalizer *head)
3985 for (struct Lisp_Finalizer *finalizer = head->next;
3986 finalizer != head;
3987 finalizer = finalizer->next)
3989 finalizer->base.gcmarkbit = true;
3990 mark_object (finalizer->function);
3994 /* Move doomed finalizers to list DEST from list SRC. A doomed
3995 finalizer is one that is not GC-reachable and whose
3996 finalizer->function is non-nil. */
3998 static void
3999 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
4000 struct Lisp_Finalizer *src)
4002 struct Lisp_Finalizer *finalizer = src->next;
4003 while (finalizer != src)
4005 struct Lisp_Finalizer *next = finalizer->next;
4006 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
4008 unchain_finalizer (finalizer);
4009 finalizer_insert (dest, finalizer);
4012 finalizer = next;
4016 static Lisp_Object
4017 run_finalizer_handler (Lisp_Object args)
4019 add_to_log ("finalizer failed: %S", args);
4020 return Qnil;
4023 static void
4024 run_finalizer_function (Lisp_Object function)
4026 ptrdiff_t count = SPECPDL_INDEX ();
4028 specbind (Qinhibit_quit, Qt);
4029 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
4030 unbind_to (count, Qnil);
4033 static void
4034 run_finalizers (struct Lisp_Finalizer *finalizers)
4036 struct Lisp_Finalizer *finalizer;
4037 Lisp_Object function;
4039 while (finalizers->next != finalizers)
4041 finalizer = finalizers->next;
4042 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4043 unchain_finalizer (finalizer);
4044 function = finalizer->function;
4045 if (!NILP (function))
4047 finalizer->function = Qnil;
4048 run_finalizer_function (function);
4053 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4054 doc: /* Make a finalizer that will run FUNCTION.
4055 FUNCTION will be called after garbage collection when the returned
4056 finalizer object becomes unreachable. If the finalizer object is
4057 reachable only through references from finalizer objects, it does not
4058 count as reachable for the purpose of deciding whether to run
4059 FUNCTION. FUNCTION will be run once per finalizer object. */)
4060 (Lisp_Object function)
4062 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4063 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4064 finalizer->function = function;
4065 finalizer->prev = finalizer->next = NULL;
4066 finalizer_insert (&finalizers, finalizer);
4067 return val;
4071 /************************************************************************
4072 Memory Full Handling
4073 ************************************************************************/
4076 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4077 there may have been size_t overflow so that malloc was never
4078 called, or perhaps malloc was invoked successfully but the
4079 resulting pointer had problems fitting into a tagged EMACS_INT. In
4080 either case this counts as memory being full even though malloc did
4081 not fail. */
4083 void
4084 memory_full (size_t nbytes)
4086 /* Do not go into hysterics merely because a large request failed. */
4087 bool enough_free_memory = 0;
4088 if (SPARE_MEMORY < nbytes)
4090 void *p;
4092 MALLOC_BLOCK_INPUT;
4093 p = malloc (SPARE_MEMORY);
4094 if (p)
4096 free (p);
4097 enough_free_memory = 1;
4099 MALLOC_UNBLOCK_INPUT;
4102 if (! enough_free_memory)
4104 int i;
4106 Vmemory_full = Qt;
4108 memory_full_cons_threshold = sizeof (struct cons_block);
4110 /* The first time we get here, free the spare memory. */
4111 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4112 if (spare_memory[i])
4114 if (i == 0)
4115 free (spare_memory[i]);
4116 else if (i >= 1 && i <= 4)
4117 lisp_align_free (spare_memory[i]);
4118 else
4119 lisp_free (spare_memory[i]);
4120 spare_memory[i] = 0;
4124 /* This used to call error, but if we've run out of memory, we could
4125 get infinite recursion trying to build the string. */
4126 xsignal (Qnil, Vmemory_signal_data);
4129 /* If we released our reserve (due to running out of memory),
4130 and we have a fair amount free once again,
4131 try to set aside another reserve in case we run out once more.
4133 This is called when a relocatable block is freed in ralloc.c,
4134 and also directly from this file, in case we're not using ralloc.c. */
4136 void
4137 refill_memory_reserve (void)
4139 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4140 if (spare_memory[0] == 0)
4141 spare_memory[0] = malloc (SPARE_MEMORY);
4142 if (spare_memory[1] == 0)
4143 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4144 MEM_TYPE_SPARE);
4145 if (spare_memory[2] == 0)
4146 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4147 MEM_TYPE_SPARE);
4148 if (spare_memory[3] == 0)
4149 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4150 MEM_TYPE_SPARE);
4151 if (spare_memory[4] == 0)
4152 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4153 MEM_TYPE_SPARE);
4154 if (spare_memory[5] == 0)
4155 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4156 MEM_TYPE_SPARE);
4157 if (spare_memory[6] == 0)
4158 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4159 MEM_TYPE_SPARE);
4160 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4161 Vmemory_full = Qnil;
4162 #endif
4165 /************************************************************************
4166 C Stack Marking
4167 ************************************************************************/
4169 /* Conservative C stack marking requires a method to identify possibly
4170 live Lisp objects given a pointer value. We do this by keeping
4171 track of blocks of Lisp data that are allocated in a red-black tree
4172 (see also the comment of mem_node which is the type of nodes in
4173 that tree). Function lisp_malloc adds information for an allocated
4174 block to the red-black tree with calls to mem_insert, and function
4175 lisp_free removes it with mem_delete. Functions live_string_p etc
4176 call mem_find to lookup information about a given pointer in the
4177 tree, and use that to determine if the pointer points into a Lisp
4178 object or not. */
4180 /* Initialize this part of alloc.c. */
4182 static void
4183 mem_init (void)
4185 mem_z.left = mem_z.right = MEM_NIL;
4186 mem_z.parent = NULL;
4187 mem_z.color = MEM_BLACK;
4188 mem_z.start = mem_z.end = NULL;
4189 mem_root = MEM_NIL;
4193 /* Value is a pointer to the mem_node containing START. Value is
4194 MEM_NIL if there is no node in the tree containing START. */
4196 static struct mem_node *
4197 mem_find (void *start)
4199 struct mem_node *p;
4201 if (start < min_heap_address || start > max_heap_address)
4202 return MEM_NIL;
4204 /* Make the search always successful to speed up the loop below. */
4205 mem_z.start = start;
4206 mem_z.end = (char *) start + 1;
4208 p = mem_root;
4209 while (start < p->start || start >= p->end)
4210 p = start < p->start ? p->left : p->right;
4211 return p;
4215 /* Insert a new node into the tree for a block of memory with start
4216 address START, end address END, and type TYPE. Value is a
4217 pointer to the node that was inserted. */
4219 static struct mem_node *
4220 mem_insert (void *start, void *end, enum mem_type type)
4222 struct mem_node *c, *parent, *x;
4224 if (min_heap_address == NULL || start < min_heap_address)
4225 min_heap_address = start;
4226 if (max_heap_address == NULL || end > max_heap_address)
4227 max_heap_address = end;
4229 /* See where in the tree a node for START belongs. In this
4230 particular application, it shouldn't happen that a node is already
4231 present. For debugging purposes, let's check that. */
4232 c = mem_root;
4233 parent = NULL;
4235 while (c != MEM_NIL)
4237 parent = c;
4238 c = start < c->start ? c->left : c->right;
4241 /* Create a new node. */
4242 #ifdef GC_MALLOC_CHECK
4243 x = malloc (sizeof *x);
4244 if (x == NULL)
4245 emacs_abort ();
4246 #else
4247 x = xmalloc (sizeof *x);
4248 #endif
4249 x->start = start;
4250 x->end = end;
4251 x->type = type;
4252 x->parent = parent;
4253 x->left = x->right = MEM_NIL;
4254 x->color = MEM_RED;
4256 /* Insert it as child of PARENT or install it as root. */
4257 if (parent)
4259 if (start < parent->start)
4260 parent->left = x;
4261 else
4262 parent->right = x;
4264 else
4265 mem_root = x;
4267 /* Re-establish red-black tree properties. */
4268 mem_insert_fixup (x);
4270 return x;
4274 /* Re-establish the red-black properties of the tree, and thereby
4275 balance the tree, after node X has been inserted; X is always red. */
4277 static void
4278 mem_insert_fixup (struct mem_node *x)
4280 while (x != mem_root && x->parent->color == MEM_RED)
4282 /* X is red and its parent is red. This is a violation of
4283 red-black tree property #3. */
4285 if (x->parent == x->parent->parent->left)
4287 /* We're on the left side of our grandparent, and Y is our
4288 "uncle". */
4289 struct mem_node *y = x->parent->parent->right;
4291 if (y->color == MEM_RED)
4293 /* Uncle and parent are red but should be black because
4294 X is red. Change the colors accordingly and proceed
4295 with the grandparent. */
4296 x->parent->color = MEM_BLACK;
4297 y->color = MEM_BLACK;
4298 x->parent->parent->color = MEM_RED;
4299 x = x->parent->parent;
4301 else
4303 /* Parent and uncle have different colors; parent is
4304 red, uncle is black. */
4305 if (x == x->parent->right)
4307 x = x->parent;
4308 mem_rotate_left (x);
4311 x->parent->color = MEM_BLACK;
4312 x->parent->parent->color = MEM_RED;
4313 mem_rotate_right (x->parent->parent);
4316 else
4318 /* This is the symmetrical case of above. */
4319 struct mem_node *y = x->parent->parent->left;
4321 if (y->color == MEM_RED)
4323 x->parent->color = MEM_BLACK;
4324 y->color = MEM_BLACK;
4325 x->parent->parent->color = MEM_RED;
4326 x = x->parent->parent;
4328 else
4330 if (x == x->parent->left)
4332 x = x->parent;
4333 mem_rotate_right (x);
4336 x->parent->color = MEM_BLACK;
4337 x->parent->parent->color = MEM_RED;
4338 mem_rotate_left (x->parent->parent);
4343 /* The root may have been changed to red due to the algorithm. Set
4344 it to black so that property #5 is satisfied. */
4345 mem_root->color = MEM_BLACK;
4349 /* (x) (y)
4350 / \ / \
4351 a (y) ===> (x) c
4352 / \ / \
4353 b c a b */
4355 static void
4356 mem_rotate_left (struct mem_node *x)
4358 struct mem_node *y;
4360 /* Turn y's left sub-tree into x's right sub-tree. */
4361 y = x->right;
4362 x->right = y->left;
4363 if (y->left != MEM_NIL)
4364 y->left->parent = x;
4366 /* Y's parent was x's parent. */
4367 if (y != MEM_NIL)
4368 y->parent = x->parent;
4370 /* Get the parent to point to y instead of x. */
4371 if (x->parent)
4373 if (x == x->parent->left)
4374 x->parent->left = y;
4375 else
4376 x->parent->right = y;
4378 else
4379 mem_root = y;
4381 /* Put x on y's left. */
4382 y->left = x;
4383 if (x != MEM_NIL)
4384 x->parent = y;
4388 /* (x) (Y)
4389 / \ / \
4390 (y) c ===> a (x)
4391 / \ / \
4392 a b b c */
4394 static void
4395 mem_rotate_right (struct mem_node *x)
4397 struct mem_node *y = x->left;
4399 x->left = y->right;
4400 if (y->right != MEM_NIL)
4401 y->right->parent = x;
4403 if (y != MEM_NIL)
4404 y->parent = x->parent;
4405 if (x->parent)
4407 if (x == x->parent->right)
4408 x->parent->right = y;
4409 else
4410 x->parent->left = y;
4412 else
4413 mem_root = y;
4415 y->right = x;
4416 if (x != MEM_NIL)
4417 x->parent = y;
4421 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4423 static void
4424 mem_delete (struct mem_node *z)
4426 struct mem_node *x, *y;
4428 if (!z || z == MEM_NIL)
4429 return;
4431 if (z->left == MEM_NIL || z->right == MEM_NIL)
4432 y = z;
4433 else
4435 y = z->right;
4436 while (y->left != MEM_NIL)
4437 y = y->left;
4440 if (y->left != MEM_NIL)
4441 x = y->left;
4442 else
4443 x = y->right;
4445 x->parent = y->parent;
4446 if (y->parent)
4448 if (y == y->parent->left)
4449 y->parent->left = x;
4450 else
4451 y->parent->right = x;
4453 else
4454 mem_root = x;
4456 if (y != z)
4458 z->start = y->start;
4459 z->end = y->end;
4460 z->type = y->type;
4463 if (y->color == MEM_BLACK)
4464 mem_delete_fixup (x);
4466 #ifdef GC_MALLOC_CHECK
4467 free (y);
4468 #else
4469 xfree (y);
4470 #endif
4474 /* Re-establish the red-black properties of the tree, after a
4475 deletion. */
4477 static void
4478 mem_delete_fixup (struct mem_node *x)
4480 while (x != mem_root && x->color == MEM_BLACK)
4482 if (x == x->parent->left)
4484 struct mem_node *w = x->parent->right;
4486 if (w->color == MEM_RED)
4488 w->color = MEM_BLACK;
4489 x->parent->color = MEM_RED;
4490 mem_rotate_left (x->parent);
4491 w = x->parent->right;
4494 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4496 w->color = MEM_RED;
4497 x = x->parent;
4499 else
4501 if (w->right->color == MEM_BLACK)
4503 w->left->color = MEM_BLACK;
4504 w->color = MEM_RED;
4505 mem_rotate_right (w);
4506 w = x->parent->right;
4508 w->color = x->parent->color;
4509 x->parent->color = MEM_BLACK;
4510 w->right->color = MEM_BLACK;
4511 mem_rotate_left (x->parent);
4512 x = mem_root;
4515 else
4517 struct mem_node *w = x->parent->left;
4519 if (w->color == MEM_RED)
4521 w->color = MEM_BLACK;
4522 x->parent->color = MEM_RED;
4523 mem_rotate_right (x->parent);
4524 w = x->parent->left;
4527 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4529 w->color = MEM_RED;
4530 x = x->parent;
4532 else
4534 if (w->left->color == MEM_BLACK)
4536 w->right->color = MEM_BLACK;
4537 w->color = MEM_RED;
4538 mem_rotate_left (w);
4539 w = x->parent->left;
4542 w->color = x->parent->color;
4543 x->parent->color = MEM_BLACK;
4544 w->left->color = MEM_BLACK;
4545 mem_rotate_right (x->parent);
4546 x = mem_root;
4551 x->color = MEM_BLACK;
4555 /* If P is a pointer into a live Lisp string object on the heap,
4556 return the object. Otherwise, return nil. M is a pointer to the
4557 mem_block for P.
4559 This and other *_holding functions look for a pointer anywhere into
4560 the object, not merely for a pointer to the start of the object,
4561 because some compilers sometimes optimize away the latter. See
4562 Bug#28213. */
4564 static Lisp_Object
4565 live_string_holding (struct mem_node *m, void *p)
4567 if (m->type == MEM_TYPE_STRING)
4569 struct string_block *b = m->start;
4570 char *cp = p;
4571 ptrdiff_t offset = cp - (char *) &b->strings[0];
4573 /* P must point into a Lisp_String structure, and it
4574 must not be on the free-list. */
4575 if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
4577 struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
4578 if (s->u.s.data)
4579 return make_lisp_ptr (s, Lisp_String);
4582 return Qnil;
4585 static bool
4586 live_string_p (struct mem_node *m, void *p)
4588 return !NILP (live_string_holding (m, p));
4591 /* If P is a pointer into a live Lisp cons object on the heap, return
4592 the object. Otherwise, return nil. M is a pointer to the
4593 mem_block for P. */
4595 static Lisp_Object
4596 live_cons_holding (struct mem_node *m, void *p)
4598 if (m->type == MEM_TYPE_CONS)
4600 struct cons_block *b = m->start;
4601 char *cp = p;
4602 ptrdiff_t offset = cp - (char *) &b->conses[0];
4604 /* P must point into a Lisp_Cons, not be
4605 one of the unused cells in the current cons block,
4606 and not be on the free-list. */
4607 if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
4608 && (b != cons_block
4609 || offset / sizeof b->conses[0] < cons_block_index))
4611 struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
4612 if (!EQ (s->u.s.car, Vdead))
4613 return make_lisp_ptr (s, Lisp_Cons);
4616 return Qnil;
4619 static bool
4620 live_cons_p (struct mem_node *m, void *p)
4622 return !NILP (live_cons_holding (m, p));
4626 /* If P is a pointer into a live Lisp symbol object on the heap,
4627 return the object. Otherwise, return nil. M is a pointer to the
4628 mem_block for P. */
4630 static Lisp_Object
4631 live_symbol_holding (struct mem_node *m, void *p)
4633 if (m->type == MEM_TYPE_SYMBOL)
4635 struct symbol_block *b = m->start;
4636 char *cp = p;
4637 ptrdiff_t offset = cp - (char *) &b->symbols[0];
4639 /* P must point into the Lisp_Symbol, not be
4640 one of the unused cells in the current symbol block,
4641 and not be on the free-list. */
4642 if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
4643 && (b != symbol_block
4644 || offset / sizeof b->symbols[0] < symbol_block_index))
4646 struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
4647 if (!EQ (s->u.s.function, Vdead))
4648 return make_lisp_symbol (s);
4651 return Qnil;
4654 static bool
4655 live_symbol_p (struct mem_node *m, void *p)
4657 return !NILP (live_symbol_holding (m, p));
4661 /* Return true if P is a pointer to a live Lisp float on
4662 the heap. M is a pointer to the mem_block for P. */
4664 static bool
4665 live_float_p (struct mem_node *m, void *p)
4667 if (m->type == MEM_TYPE_FLOAT)
4669 struct float_block *b = m->start;
4670 char *cp = p;
4671 ptrdiff_t offset = cp - (char *) &b->floats[0];
4673 /* P must point to the start of a Lisp_Float and not be
4674 one of the unused cells in the current float block. */
4675 return (offset >= 0
4676 && offset % sizeof b->floats[0] == 0
4677 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4678 && (b != float_block
4679 || offset / sizeof b->floats[0] < float_block_index));
4681 else
4682 return 0;
4686 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4687 Otherwise, return nil. M is a pointer to the mem_block for P. */
4689 static Lisp_Object
4690 live_misc_holding (struct mem_node *m, void *p)
4692 if (m->type == MEM_TYPE_MISC)
4694 struct marker_block *b = m->start;
4695 char *cp = p;
4696 ptrdiff_t offset = cp - (char *) &b->markers[0];
4698 /* P must point into a Lisp_Misc, not be
4699 one of the unused cells in the current misc block,
4700 and not be on the free-list. */
4701 if (0 <= offset && offset < MARKER_BLOCK_SIZE * sizeof b->markers[0]
4702 && (b != marker_block
4703 || offset / sizeof b->markers[0] < marker_block_index))
4705 union Lisp_Misc *s = p = cp -= offset % sizeof b->markers[0];
4706 if (s->u_any.type != Lisp_Misc_Free)
4707 return make_lisp_ptr (s, Lisp_Misc);
4710 return Qnil;
4713 static bool
4714 live_misc_p (struct mem_node *m, void *p)
4716 return !NILP (live_misc_holding (m, p));
4719 /* If P is a pointer to a live vector-like object, return the object.
4720 Otherwise, return nil.
4721 M is a pointer to the mem_block for P. */
4723 static Lisp_Object
4724 live_vector_holding (struct mem_node *m, void *p)
4726 struct Lisp_Vector *vp = p;
4728 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4730 /* This memory node corresponds to a vector block. */
4731 struct vector_block *block = m->start;
4732 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4734 /* P is in the block's allocation range. Scan the block
4735 up to P and see whether P points to the start of some
4736 vector which is not on a free list. FIXME: check whether
4737 some allocation patterns (probably a lot of short vectors)
4738 may cause a substantial overhead of this loop. */
4739 while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
4741 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4742 if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4743 return make_lisp_ptr (vector, Lisp_Vectorlike);
4744 vector = next;
4747 else if (m->type == MEM_TYPE_VECTORLIKE)
4749 /* This memory node corresponds to a large vector. */
4750 struct Lisp_Vector *vector = large_vector_vec (m->start);
4751 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4752 if (vector <= vp && vp < next)
4753 return make_lisp_ptr (vector, Lisp_Vectorlike);
4755 return Qnil;
4758 static bool
4759 live_vector_p (struct mem_node *m, void *p)
4761 return !NILP (live_vector_holding (m, p));
4764 /* If P is a pointer into a live buffer, return the buffer.
4765 Otherwise, return nil. M is a pointer to the mem_block for P. */
4767 static Lisp_Object
4768 live_buffer_holding (struct mem_node *m, void *p)
4770 /* P must point into the block, and the buffer
4771 must not have been killed. */
4772 if (m->type == MEM_TYPE_BUFFER)
4774 struct buffer *b = m->start;
4775 char *cb = m->start;
4776 char *cp = p;
4777 ptrdiff_t offset = cp - cb;
4778 if (0 <= offset && offset < sizeof *b && !NILP (b->name_))
4780 Lisp_Object obj;
4781 XSETBUFFER (obj, b);
4782 return obj;
4785 return Qnil;
4788 static bool
4789 live_buffer_p (struct mem_node *m, void *p)
4791 return !NILP (live_buffer_holding (m, p));
4794 /* Mark OBJ if we can prove it's a Lisp_Object. */
4796 static void
4797 mark_maybe_object (Lisp_Object obj)
4799 #if USE_VALGRIND
4800 if (valgrind_p)
4801 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4802 #endif
4804 if (INTEGERP (obj))
4805 return;
4807 void *po = XPNTR (obj);
4808 struct mem_node *m = mem_find (po);
4810 if (m != MEM_NIL)
4812 bool mark_p = false;
4814 switch (XTYPE (obj))
4816 case Lisp_String:
4817 mark_p = EQ (obj, live_string_holding (m, po));
4818 break;
4820 case Lisp_Cons:
4821 mark_p = EQ (obj, live_cons_holding (m, po));
4822 break;
4824 case Lisp_Symbol:
4825 mark_p = EQ (obj, live_symbol_holding (m, po));
4826 break;
4828 case Lisp_Float:
4829 mark_p = live_float_p (m, po);
4830 break;
4832 case Lisp_Vectorlike:
4833 mark_p = (EQ (obj, live_vector_holding (m, po))
4834 || EQ (obj, live_buffer_holding (m, po)));
4835 break;
4837 case Lisp_Misc:
4838 mark_p = EQ (obj, live_misc_holding (m, po));
4839 break;
4841 default:
4842 break;
4845 if (mark_p)
4846 mark_object (obj);
4850 /* Return true if P can point to Lisp data, and false otherwise.
4851 Symbols are implemented via offsets not pointers, but the offsets
4852 are also multiples of GCALIGNMENT. */
4854 static bool
4855 maybe_lisp_pointer (void *p)
4857 return (uintptr_t) p % GCALIGNMENT == 0;
4860 #ifndef HAVE_MODULES
4861 enum { HAVE_MODULES = false };
4862 #endif
4864 /* If P points to Lisp data, mark that as live if it isn't already
4865 marked. */
4867 static void
4868 mark_maybe_pointer (void *p)
4870 struct mem_node *m;
4872 #if USE_VALGRIND
4873 if (valgrind_p)
4874 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4875 #endif
4877 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4879 if (!maybe_lisp_pointer (p))
4880 return;
4882 else
4884 /* For the wide-int case, also mark emacs_value tagged pointers,
4885 which can be generated by emacs-module.c's value_to_lisp. */
4886 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4889 m = mem_find (p);
4890 if (m != MEM_NIL)
4892 Lisp_Object obj = Qnil;
4894 switch (m->type)
4896 case MEM_TYPE_NON_LISP:
4897 case MEM_TYPE_SPARE:
4898 /* Nothing to do; not a pointer to Lisp memory. */
4899 break;
4901 case MEM_TYPE_BUFFER:
4902 obj = live_buffer_holding (m, p);
4903 break;
4905 case MEM_TYPE_CONS:
4906 obj = live_cons_holding (m, p);
4907 break;
4909 case MEM_TYPE_STRING:
4910 obj = live_string_holding (m, p);
4911 break;
4913 case MEM_TYPE_MISC:
4914 obj = live_misc_holding (m, p);
4915 break;
4917 case MEM_TYPE_SYMBOL:
4918 obj = live_symbol_holding (m, p);
4919 break;
4921 case MEM_TYPE_FLOAT:
4922 if (live_float_p (m, p))
4923 obj = make_lisp_ptr (p, Lisp_Float);
4924 break;
4926 case MEM_TYPE_VECTORLIKE:
4927 case MEM_TYPE_VECTOR_BLOCK:
4928 obj = live_vector_holding (m, p);
4929 break;
4931 default:
4932 emacs_abort ();
4935 if (!NILP (obj))
4936 mark_object (obj);
4941 /* Alignment of pointer values. Use alignof, as it sometimes returns
4942 a smaller alignment than GCC's __alignof__ and mark_memory might
4943 miss objects if __alignof__ were used. */
4944 #define GC_POINTER_ALIGNMENT alignof (void *)
4946 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4947 or END+OFFSET..START. */
4949 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4950 mark_memory (void *start, void *end)
4952 char *pp;
4954 /* Make START the pointer to the start of the memory region,
4955 if it isn't already. */
4956 if (end < start)
4958 void *tem = start;
4959 start = end;
4960 end = tem;
4963 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4965 /* Mark Lisp data pointed to. This is necessary because, in some
4966 situations, the C compiler optimizes Lisp objects away, so that
4967 only a pointer to them remains. Example:
4969 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4972 Lisp_Object obj = build_string ("test");
4973 struct Lisp_String *s = XSTRING (obj);
4974 Fgarbage_collect ();
4975 fprintf (stderr, "test '%s'\n", s->u.s.data);
4976 return Qnil;
4979 Here, `obj' isn't really used, and the compiler optimizes it
4980 away. The only reference to the life string is through the
4981 pointer `s'. */
4983 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4985 mark_maybe_pointer (*(void **) pp);
4987 verify (alignof (Lisp_Object) % GC_POINTER_ALIGNMENT == 0);
4988 if (alignof (Lisp_Object) == GC_POINTER_ALIGNMENT
4989 || (uintptr_t) pp % alignof (Lisp_Object) == 0)
4990 mark_maybe_object (*(Lisp_Object *) pp);
4994 #ifndef HAVE___BUILTIN_UNWIND_INIT
4996 # ifdef GC_SETJMP_WORKS
4997 static void
4998 test_setjmp (void)
5001 # else
5003 static bool setjmp_tested_p;
5004 static int longjmps_done;
5006 # define SETJMP_WILL_LIKELY_WORK "\
5008 Emacs garbage collector has been changed to use conservative stack\n\
5009 marking. Emacs has determined that the method it uses to do the\n\
5010 marking will likely work on your system, but this isn't sure.\n\
5012 If you are a system-programmer, or can get the help of a local wizard\n\
5013 who is, please take a look at the function mark_stack in alloc.c, and\n\
5014 verify that the methods used are appropriate for your system.\n\
5016 Please mail the result to <emacs-devel@gnu.org>.\n\
5019 # define SETJMP_WILL_NOT_WORK "\
5021 Emacs garbage collector has been changed to use conservative stack\n\
5022 marking. Emacs has determined that the default method it uses to do the\n\
5023 marking will not work on your system. We will need a system-dependent\n\
5024 solution for your system.\n\
5026 Please take a look at the function mark_stack in alloc.c, and\n\
5027 try to find a way to make it work on your system.\n\
5029 Note that you may get false negatives, depending on the compiler.\n\
5030 In particular, you need to use -O with GCC for this test.\n\
5032 Please mail the result to <emacs-devel@gnu.org>.\n\
5036 /* Perform a quick check if it looks like setjmp saves registers in a
5037 jmp_buf. Print a message to stderr saying so. When this test
5038 succeeds, this is _not_ a proof that setjmp is sufficient for
5039 conservative stack marking. Only the sources or a disassembly
5040 can prove that. */
5042 static void
5043 test_setjmp (void)
5045 if (setjmp_tested_p)
5046 return;
5047 setjmp_tested_p = true;
5048 char buf[10];
5049 register int x;
5050 sys_jmp_buf jbuf;
5052 /* Arrange for X to be put in a register. */
5053 sprintf (buf, "1");
5054 x = strlen (buf);
5055 x = 2 * x - 1;
5057 sys_setjmp (jbuf);
5058 if (longjmps_done == 1)
5060 /* Came here after the longjmp at the end of the function.
5062 If x == 1, the longjmp has restored the register to its
5063 value before the setjmp, and we can hope that setjmp
5064 saves all such registers in the jmp_buf, although that
5065 isn't sure.
5067 For other values of X, either something really strange is
5068 taking place, or the setjmp just didn't save the register. */
5070 if (x == 1)
5071 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
5072 else
5074 fprintf (stderr, SETJMP_WILL_NOT_WORK);
5075 exit (1);
5079 ++longjmps_done;
5080 x = 2;
5081 if (longjmps_done == 1)
5082 sys_longjmp (jbuf, 1);
5084 # endif /* ! GC_SETJMP_WORKS */
5085 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5087 /* The type of an object near the stack top, whose address can be used
5088 as a stack scan limit. */
5089 typedef union
5091 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5092 jmp_buf may not be aligned enough on darwin-ppc64. */
5093 max_align_t o;
5094 #ifndef HAVE___BUILTIN_UNWIND_INIT
5095 sys_jmp_buf j;
5096 char c;
5097 #endif
5098 } stacktop_sentry;
5100 /* Force callee-saved registers and register windows onto the stack.
5101 Use the platform-defined __builtin_unwind_init if available,
5102 obviating the need for machine dependent methods. */
5103 #ifndef HAVE___BUILTIN_UNWIND_INIT
5104 # ifdef __sparc__
5105 /* This trick flushes the register windows so that all the state of
5106 the process is contained in the stack.
5107 FreeBSD does not have a ta 3 handler, so handle it specially.
5108 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5109 needed on ia64 too. See mach_dep.c, where it also says inline
5110 assembler doesn't work with relevant proprietary compilers. */
5111 # if defined __sparc64__ && defined __FreeBSD__
5112 # define __builtin_unwind_init() asm ("flushw")
5113 # else
5114 # define __builtin_unwind_init() asm ("ta 3")
5115 # endif
5116 # else
5117 # define __builtin_unwind_init() ((void) 0)
5118 # endif
5119 #endif
5121 /* Yield an address close enough to the top of the stack that the
5122 garbage collector need not scan above it. Callers should be
5123 declared NO_INLINE. */
5124 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5125 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5126 #else
5127 # define NEAR_STACK_TOP(addr) (addr)
5128 #endif
5130 /* Set *P to the address of the top of the stack. This must be a
5131 macro, not a function, so that it is executed in the caller's
5132 environment. It is not inside a do-while so that its storage
5133 survives the macro. Callers should be declared NO_INLINE. */
5134 #ifdef HAVE___BUILTIN_UNWIND_INIT
5135 # define SET_STACK_TOP_ADDRESS(p) \
5136 stacktop_sentry sentry; \
5137 __builtin_unwind_init (); \
5138 *(p) = NEAR_STACK_TOP (&sentry)
5139 #else
5140 # define SET_STACK_TOP_ADDRESS(p) \
5141 stacktop_sentry sentry; \
5142 __builtin_unwind_init (); \
5143 test_setjmp (); \
5144 sys_setjmp (sentry.j); \
5145 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5146 #endif
5148 /* Mark live Lisp objects on the C stack.
5150 There are several system-dependent problems to consider when
5151 porting this to new architectures:
5153 Processor Registers
5155 We have to mark Lisp objects in CPU registers that can hold local
5156 variables or are used to pass parameters.
5158 This code assumes that calling setjmp saves registers we need
5159 to see in a jmp_buf which itself lies on the stack. This doesn't
5160 have to be true! It must be verified for each system, possibly
5161 by taking a look at the source code of setjmp.
5163 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5164 can use it as a machine independent method to store all registers
5165 to the stack. In this case the macros described in the previous
5166 two paragraphs are not used.
5168 Stack Layout
5170 Architectures differ in the way their processor stack is organized.
5171 For example, the stack might look like this
5173 +----------------+
5174 | Lisp_Object | size = 4
5175 +----------------+
5176 | something else | size = 2
5177 +----------------+
5178 | Lisp_Object | size = 4
5179 +----------------+
5180 | ... |
5182 In such a case, not every Lisp_Object will be aligned equally. To
5183 find all Lisp_Object on the stack it won't be sufficient to walk
5184 the stack in steps of 4 bytes. Instead, two passes will be
5185 necessary, one starting at the start of the stack, and a second
5186 pass starting at the start of the stack + 2. Likewise, if the
5187 minimal alignment of Lisp_Objects on the stack is 1, four passes
5188 would be necessary, each one starting with one byte more offset
5189 from the stack start. */
5191 void
5192 mark_stack (char *bottom, char *end)
5194 /* This assumes that the stack is a contiguous region in memory. If
5195 that's not the case, something has to be done here to iterate
5196 over the stack segments. */
5197 mark_memory (bottom, end);
5199 /* Allow for marking a secondary stack, like the register stack on the
5200 ia64. */
5201 #ifdef GC_MARK_SECONDARY_STACK
5202 GC_MARK_SECONDARY_STACK ();
5203 #endif
5206 /* This is a trampoline function that flushes registers to the stack,
5207 and then calls FUNC. ARG is passed through to FUNC verbatim.
5209 This function must be called whenever Emacs is about to release the
5210 global interpreter lock. This lets the garbage collector easily
5211 find roots in registers on threads that are not actively running
5212 Lisp.
5214 It is invalid to run any Lisp code or to allocate any GC memory
5215 from FUNC. */
5217 NO_INLINE void
5218 flush_stack_call_func (void (*func) (void *arg), void *arg)
5220 void *end;
5221 struct thread_state *self = current_thread;
5222 SET_STACK_TOP_ADDRESS (&end);
5223 self->stack_top = end;
5224 func (arg);
5225 eassert (current_thread == self);
5228 static bool
5229 c_symbol_p (struct Lisp_Symbol *sym)
5231 char *lispsym_ptr = (char *) lispsym;
5232 char *sym_ptr = (char *) sym;
5233 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5234 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5237 /* Determine whether it is safe to access memory at address P. */
5238 static int
5239 valid_pointer_p (void *p)
5241 #ifdef WINDOWSNT
5242 return w32_valid_pointer_p (p, 16);
5243 #else
5245 if (ADDRESS_SANITIZER)
5246 return p ? -1 : 0;
5248 int fd[2];
5250 /* Obviously, we cannot just access it (we would SEGV trying), so we
5251 trick the o/s to tell us whether p is a valid pointer.
5252 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5253 not validate p in that case. */
5255 if (emacs_pipe (fd) == 0)
5257 bool valid = emacs_write (fd[1], p, 16) == 16;
5258 emacs_close (fd[1]);
5259 emacs_close (fd[0]);
5260 return valid;
5263 return -1;
5264 #endif
5267 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5268 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5269 cannot validate OBJ. This function can be quite slow, so its primary
5270 use is the manual debugging. The only exception is print_object, where
5271 we use it to check whether the memory referenced by the pointer of
5272 Lisp_Save_Value object contains valid objects. */
5275 valid_lisp_object_p (Lisp_Object obj)
5277 if (INTEGERP (obj))
5278 return 1;
5280 void *p = XPNTR (obj);
5281 if (PURE_P (p))
5282 return 1;
5284 if (SYMBOLP (obj) && c_symbol_p (p))
5285 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5287 if (p == &buffer_defaults || p == &buffer_local_symbols)
5288 return 2;
5290 struct mem_node *m = mem_find (p);
5292 if (m == MEM_NIL)
5294 int valid = valid_pointer_p (p);
5295 if (valid <= 0)
5296 return valid;
5298 if (SUBRP (obj))
5299 return 1;
5301 return 0;
5304 switch (m->type)
5306 case MEM_TYPE_NON_LISP:
5307 case MEM_TYPE_SPARE:
5308 return 0;
5310 case MEM_TYPE_BUFFER:
5311 return live_buffer_p (m, p) ? 1 : 2;
5313 case MEM_TYPE_CONS:
5314 return live_cons_p (m, p);
5316 case MEM_TYPE_STRING:
5317 return live_string_p (m, p);
5319 case MEM_TYPE_MISC:
5320 return live_misc_p (m, p);
5322 case MEM_TYPE_SYMBOL:
5323 return live_symbol_p (m, p);
5325 case MEM_TYPE_FLOAT:
5326 return live_float_p (m, p);
5328 case MEM_TYPE_VECTORLIKE:
5329 case MEM_TYPE_VECTOR_BLOCK:
5330 return live_vector_p (m, p);
5332 default:
5333 break;
5336 return 0;
5339 /***********************************************************************
5340 Pure Storage Management
5341 ***********************************************************************/
5343 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5344 pointer to it. TYPE is the Lisp type for which the memory is
5345 allocated. TYPE < 0 means it's not used for a Lisp object. */
5347 static void *
5348 pure_alloc (size_t size, int type)
5350 void *result;
5352 again:
5353 if (type >= 0)
5355 /* Allocate space for a Lisp object from the beginning of the free
5356 space with taking account of alignment. */
5357 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5358 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5360 else
5362 /* Allocate space for a non-Lisp object from the end of the free
5363 space. */
5364 pure_bytes_used_non_lisp += size;
5365 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5367 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5369 if (pure_bytes_used <= pure_size)
5370 return result;
5372 /* Don't allocate a large amount here,
5373 because it might get mmap'd and then its address
5374 might not be usable. */
5375 purebeg = xmalloc (10000);
5376 pure_size = 10000;
5377 pure_bytes_used_before_overflow += pure_bytes_used - size;
5378 pure_bytes_used = 0;
5379 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5380 goto again;
5384 #ifndef CANNOT_DUMP
5386 /* Print a warning if PURESIZE is too small. */
5388 void
5389 check_pure_size (void)
5391 if (pure_bytes_used_before_overflow)
5392 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5393 " bytes needed)"),
5394 pure_bytes_used + pure_bytes_used_before_overflow);
5396 #endif
5399 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5400 the non-Lisp data pool of the pure storage, and return its start
5401 address. Return NULL if not found. */
5403 static char *
5404 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5406 int i;
5407 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5408 const unsigned char *p;
5409 char *non_lisp_beg;
5411 if (pure_bytes_used_non_lisp <= nbytes)
5412 return NULL;
5414 /* Set up the Boyer-Moore table. */
5415 skip = nbytes + 1;
5416 for (i = 0; i < 256; i++)
5417 bm_skip[i] = skip;
5419 p = (const unsigned char *) data;
5420 while (--skip > 0)
5421 bm_skip[*p++] = skip;
5423 last_char_skip = bm_skip['\0'];
5425 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5426 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5428 /* See the comments in the function `boyer_moore' (search.c) for the
5429 use of `infinity'. */
5430 infinity = pure_bytes_used_non_lisp + 1;
5431 bm_skip['\0'] = infinity;
5433 p = (const unsigned char *) non_lisp_beg + nbytes;
5434 start = 0;
5437 /* Check the last character (== '\0'). */
5440 start += bm_skip[*(p + start)];
5442 while (start <= start_max);
5444 if (start < infinity)
5445 /* Couldn't find the last character. */
5446 return NULL;
5448 /* No less than `infinity' means we could find the last
5449 character at `p[start - infinity]'. */
5450 start -= infinity;
5452 /* Check the remaining characters. */
5453 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5454 /* Found. */
5455 return non_lisp_beg + start;
5457 start += last_char_skip;
5459 while (start <= start_max);
5461 return NULL;
5465 /* Return a string allocated in pure space. DATA is a buffer holding
5466 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5467 means make the result string multibyte.
5469 Must get an error if pure storage is full, since if it cannot hold
5470 a large string it may be able to hold conses that point to that
5471 string; then the string is not protected from gc. */
5473 Lisp_Object
5474 make_pure_string (const char *data,
5475 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5477 Lisp_Object string;
5478 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5479 s->u.s.data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5480 if (s->u.s.data == NULL)
5482 s->u.s.data = pure_alloc (nbytes + 1, -1);
5483 memcpy (s->u.s.data, data, nbytes);
5484 s->u.s.data[nbytes] = '\0';
5486 s->u.s.size = nchars;
5487 s->u.s.size_byte = multibyte ? nbytes : -1;
5488 s->u.s.intervals = NULL;
5489 XSETSTRING (string, s);
5490 return string;
5493 /* Return a string allocated in pure space. Do not
5494 allocate the string data, just point to DATA. */
5496 Lisp_Object
5497 make_pure_c_string (const char *data, ptrdiff_t nchars)
5499 Lisp_Object string;
5500 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5501 s->u.s.size = nchars;
5502 s->u.s.size_byte = -1;
5503 s->u.s.data = (unsigned char *) data;
5504 s->u.s.intervals = NULL;
5505 XSETSTRING (string, s);
5506 return string;
5509 static Lisp_Object purecopy (Lisp_Object obj);
5511 /* Return a cons allocated from pure space. Give it pure copies
5512 of CAR as car and CDR as cdr. */
5514 Lisp_Object
5515 pure_cons (Lisp_Object car, Lisp_Object cdr)
5517 Lisp_Object new;
5518 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5519 XSETCONS (new, p);
5520 XSETCAR (new, purecopy (car));
5521 XSETCDR (new, purecopy (cdr));
5522 return new;
5526 /* Value is a float object with value NUM allocated from pure space. */
5528 static Lisp_Object
5529 make_pure_float (double num)
5531 Lisp_Object new;
5532 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5533 XSETFLOAT (new, p);
5534 XFLOAT_INIT (new, num);
5535 return new;
5539 /* Return a vector with room for LEN Lisp_Objects allocated from
5540 pure space. */
5542 static Lisp_Object
5543 make_pure_vector (ptrdiff_t len)
5545 Lisp_Object new;
5546 size_t size = header_size + len * word_size;
5547 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5548 XSETVECTOR (new, p);
5549 XVECTOR (new)->header.size = len;
5550 return new;
5553 /* Copy all contents and parameters of TABLE to a new table allocated
5554 from pure space, return the purified table. */
5555 static struct Lisp_Hash_Table *
5556 purecopy_hash_table (struct Lisp_Hash_Table *table)
5558 eassert (NILP (table->weak));
5559 eassert (table->pure);
5561 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5562 struct hash_table_test pure_test = table->test;
5564 /* Purecopy the hash table test. */
5565 pure_test.name = purecopy (table->test.name);
5566 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5567 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5569 pure->header = table->header;
5570 pure->weak = purecopy (Qnil);
5571 pure->hash = purecopy (table->hash);
5572 pure->next = purecopy (table->next);
5573 pure->index = purecopy (table->index);
5574 pure->count = table->count;
5575 pure->next_free = table->next_free;
5576 pure->pure = table->pure;
5577 pure->rehash_threshold = table->rehash_threshold;
5578 pure->rehash_size = table->rehash_size;
5579 pure->key_and_value = purecopy (table->key_and_value);
5580 pure->test = pure_test;
5582 return pure;
5585 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5586 doc: /* Make a copy of object OBJ in pure storage.
5587 Recursively copies contents of vectors and cons cells.
5588 Does not copy symbols. Copies strings without text properties. */)
5589 (register Lisp_Object obj)
5591 if (NILP (Vpurify_flag))
5592 return obj;
5593 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5594 /* Can't purify those. */
5595 return obj;
5596 else
5597 return purecopy (obj);
5600 /* Pinned objects are marked before every GC cycle. */
5601 static struct pinned_object
5603 Lisp_Object object;
5604 struct pinned_object *next;
5605 } *pinned_objects;
5607 static Lisp_Object
5608 purecopy (Lisp_Object obj)
5610 if (INTEGERP (obj)
5611 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5612 || SUBRP (obj))
5613 return obj; /* Already pure. */
5615 if (STRINGP (obj) && XSTRING (obj)->u.s.intervals)
5616 message_with_string ("Dropping text-properties while making string `%s' pure",
5617 obj, true);
5619 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5621 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5622 if (!NILP (tmp))
5623 return tmp;
5626 if (CONSP (obj))
5627 obj = pure_cons (XCAR (obj), XCDR (obj));
5628 else if (FLOATP (obj))
5629 obj = make_pure_float (XFLOAT_DATA (obj));
5630 else if (STRINGP (obj))
5631 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5632 SBYTES (obj),
5633 STRING_MULTIBYTE (obj));
5634 else if (HASH_TABLE_P (obj))
5636 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5637 /* Do not purify hash tables which haven't been defined with
5638 :purecopy as non-nil or are weak - they aren't guaranteed to
5639 not change. */
5640 if (!NILP (table->weak) || !table->pure)
5642 /* Instead, add the hash table to the list of pinned objects,
5643 so that it will be marked during GC. */
5644 struct pinned_object *o = xmalloc (sizeof *o);
5645 o->object = obj;
5646 o->next = pinned_objects;
5647 pinned_objects = o;
5648 return obj; /* Don't hash cons it. */
5651 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5652 XSET_HASH_TABLE (obj, h);
5654 else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
5656 struct Lisp_Vector *objp = XVECTOR (obj);
5657 ptrdiff_t nbytes = vector_nbytes (objp);
5658 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5659 register ptrdiff_t i;
5660 ptrdiff_t size = ASIZE (obj);
5661 if (size & PSEUDOVECTOR_FLAG)
5662 size &= PSEUDOVECTOR_SIZE_MASK;
5663 memcpy (vec, objp, nbytes);
5664 for (i = 0; i < size; i++)
5665 vec->contents[i] = purecopy (vec->contents[i]);
5666 XSETVECTOR (obj, vec);
5668 else if (SYMBOLP (obj))
5670 if (!XSYMBOL (obj)->u.s.pinned && !c_symbol_p (XSYMBOL (obj)))
5671 { /* We can't purify them, but they appear in many pure objects.
5672 Mark them as `pinned' so we know to mark them at every GC cycle. */
5673 XSYMBOL (obj)->u.s.pinned = true;
5674 symbol_block_pinned = symbol_block;
5676 /* Don't hash-cons it. */
5677 return obj;
5679 else
5681 AUTO_STRING (fmt, "Don't know how to purify: %S");
5682 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5685 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5686 Fputhash (obj, obj, Vpurify_flag);
5688 return obj;
5693 /***********************************************************************
5694 Protection from GC
5695 ***********************************************************************/
5697 /* Put an entry in staticvec, pointing at the variable with address
5698 VARADDRESS. */
5700 void
5701 staticpro (Lisp_Object *varaddress)
5703 if (staticidx >= NSTATICS)
5704 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5705 staticvec[staticidx++] = varaddress;
5709 /***********************************************************************
5710 Protection from GC
5711 ***********************************************************************/
5713 /* Temporarily prevent garbage collection. */
5715 ptrdiff_t
5716 inhibit_garbage_collection (void)
5718 ptrdiff_t count = SPECPDL_INDEX ();
5720 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5721 return count;
5724 /* Used to avoid possible overflows when
5725 converting from C to Lisp integers. */
5727 static Lisp_Object
5728 bounded_number (EMACS_INT number)
5730 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5733 /* Calculate total bytes of live objects. */
5735 static size_t
5736 total_bytes_of_live_objects (void)
5738 size_t tot = 0;
5739 tot += total_conses * sizeof (struct Lisp_Cons);
5740 tot += total_symbols * sizeof (struct Lisp_Symbol);
5741 tot += total_markers * sizeof (union Lisp_Misc);
5742 tot += total_string_bytes;
5743 tot += total_vector_slots * word_size;
5744 tot += total_floats * sizeof (struct Lisp_Float);
5745 tot += total_intervals * sizeof (struct interval);
5746 tot += total_strings * sizeof (struct Lisp_String);
5747 return tot;
5750 #ifdef HAVE_WINDOW_SYSTEM
5752 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5753 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5755 static Lisp_Object
5756 compact_font_cache_entry (Lisp_Object entry)
5758 Lisp_Object tail, *prev = &entry;
5760 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5762 bool drop = 0;
5763 Lisp_Object obj = XCAR (tail);
5765 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5766 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5767 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5768 /* Don't use VECTORP here, as that calls ASIZE, which could
5769 hit assertion violation during GC. */
5770 && (VECTORLIKEP (XCDR (obj))
5771 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5773 ptrdiff_t i, size = gc_asize (XCDR (obj));
5774 Lisp_Object obj_cdr = XCDR (obj);
5776 /* If font-spec is not marked, most likely all font-entities
5777 are not marked too. But we must be sure that nothing is
5778 marked within OBJ before we really drop it. */
5779 for (i = 0; i < size; i++)
5781 Lisp_Object objlist;
5783 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5784 break;
5786 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5787 for (; CONSP (objlist); objlist = XCDR (objlist))
5789 Lisp_Object val = XCAR (objlist);
5790 struct font *font = GC_XFONT_OBJECT (val);
5792 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5793 && VECTOR_MARKED_P(font))
5794 break;
5796 if (CONSP (objlist))
5798 /* Found a marked font, bail out. */
5799 break;
5803 if (i == size)
5805 /* No marked fonts were found, so this entire font
5806 entity can be dropped. */
5807 drop = 1;
5810 if (drop)
5811 *prev = XCDR (tail);
5812 else
5813 prev = xcdr_addr (tail);
5815 return entry;
5818 /* Compact font caches on all terminals and mark
5819 everything which is still here after compaction. */
5821 static void
5822 compact_font_caches (void)
5824 struct terminal *t;
5826 for (t = terminal_list; t; t = t->next_terminal)
5828 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5829 /* Inhibit compacting the caches if the user so wishes. Some of
5830 the users don't mind a larger memory footprint, but do mind
5831 slower redisplay. */
5832 if (!inhibit_compacting_font_caches
5833 && CONSP (cache))
5835 Lisp_Object entry;
5837 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5838 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5840 mark_object (cache);
5844 #else /* not HAVE_WINDOW_SYSTEM */
5846 #define compact_font_caches() (void)(0)
5848 #endif /* HAVE_WINDOW_SYSTEM */
5850 /* Remove (MARKER . DATA) entries with unmarked MARKER
5851 from buffer undo LIST and return changed list. */
5853 static Lisp_Object
5854 compact_undo_list (Lisp_Object list)
5856 Lisp_Object tail, *prev = &list;
5858 for (tail = list; CONSP (tail); tail = XCDR (tail))
5860 if (CONSP (XCAR (tail))
5861 && MARKERP (XCAR (XCAR (tail)))
5862 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5863 *prev = XCDR (tail);
5864 else
5865 prev = xcdr_addr (tail);
5867 return list;
5870 static void
5871 mark_pinned_objects (void)
5873 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5874 mark_object (pobj->object);
5877 static void
5878 mark_pinned_symbols (void)
5880 struct symbol_block *sblk;
5881 int lim = (symbol_block_pinned == symbol_block
5882 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5884 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5886 struct Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5887 for (; sym < end; ++sym)
5888 if (sym->u.s.pinned)
5889 mark_object (make_lisp_symbol (sym));
5891 lim = SYMBOL_BLOCK_SIZE;
5895 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5896 separate function so that we could limit mark_stack in searching
5897 the stack frames below this function, thus avoiding the rare cases
5898 where mark_stack finds values that look like live Lisp objects on
5899 portions of stack that couldn't possibly contain such live objects.
5900 For more details of this, see the discussion at
5901 https://lists.gnu.org/r/emacs-devel/2014-05/msg00270.html. */
5902 static Lisp_Object
5903 garbage_collect_1 (void *end)
5905 struct buffer *nextb;
5906 char stack_top_variable;
5907 ptrdiff_t i;
5908 bool message_p;
5909 ptrdiff_t count = SPECPDL_INDEX ();
5910 struct timespec start;
5911 Lisp_Object retval = Qnil;
5912 size_t tot_before = 0;
5914 /* Can't GC if pure storage overflowed because we can't determine
5915 if something is a pure object or not. */
5916 if (pure_bytes_used_before_overflow)
5917 return Qnil;
5919 /* Record this function, so it appears on the profiler's backtraces. */
5920 record_in_backtrace (QAutomatic_GC, 0, 0);
5922 check_cons_list ();
5924 /* Don't keep undo information around forever.
5925 Do this early on, so it is no problem if the user quits. */
5926 FOR_EACH_BUFFER (nextb)
5927 compact_buffer (nextb);
5929 if (profiler_memory_running)
5930 tot_before = total_bytes_of_live_objects ();
5932 start = current_timespec ();
5934 /* In case user calls debug_print during GC,
5935 don't let that cause a recursive GC. */
5936 consing_since_gc = 0;
5938 /* Save what's currently displayed in the echo area. Don't do that
5939 if we are GC'ing because we've run out of memory, since
5940 push_message will cons, and we might have no memory for that. */
5941 if (NILP (Vmemory_full))
5943 message_p = push_message ();
5944 record_unwind_protect_void (pop_message_unwind);
5946 else
5947 message_p = false;
5949 /* Save a copy of the contents of the stack, for debugging. */
5950 #if MAX_SAVE_STACK > 0
5951 if (NILP (Vpurify_flag))
5953 char *stack;
5954 ptrdiff_t stack_size;
5955 if (&stack_top_variable < stack_bottom)
5957 stack = &stack_top_variable;
5958 stack_size = stack_bottom - &stack_top_variable;
5960 else
5962 stack = stack_bottom;
5963 stack_size = &stack_top_variable - stack_bottom;
5965 if (stack_size <= MAX_SAVE_STACK)
5967 if (stack_copy_size < stack_size)
5969 stack_copy = xrealloc (stack_copy, stack_size);
5970 stack_copy_size = stack_size;
5972 no_sanitize_memcpy (stack_copy, stack, stack_size);
5975 #endif /* MAX_SAVE_STACK > 0 */
5977 if (garbage_collection_messages)
5978 message1_nolog ("Garbage collecting...");
5980 block_input ();
5982 shrink_regexp_cache ();
5984 gc_in_progress = 1;
5986 /* Mark all the special slots that serve as the roots of accessibility. */
5988 mark_buffer (&buffer_defaults);
5989 mark_buffer (&buffer_local_symbols);
5991 for (i = 0; i < ARRAYELTS (lispsym); i++)
5992 mark_object (builtin_lisp_symbol (i));
5994 for (i = 0; i < staticidx; i++)
5995 mark_object (*staticvec[i]);
5997 mark_pinned_objects ();
5998 mark_pinned_symbols ();
5999 mark_terminals ();
6000 mark_kboards ();
6001 mark_threads ();
6003 #ifdef USE_GTK
6004 xg_mark_data ();
6005 #endif
6007 #ifdef HAVE_WINDOW_SYSTEM
6008 mark_fringe_data ();
6009 #endif
6011 #ifdef HAVE_MODULES
6012 mark_modules ();
6013 #endif
6015 /* Everything is now marked, except for the data in font caches,
6016 undo lists, and finalizers. The first two are compacted by
6017 removing an items which aren't reachable otherwise. */
6019 compact_font_caches ();
6021 FOR_EACH_BUFFER (nextb)
6023 if (!EQ (BVAR (nextb, undo_list), Qt))
6024 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
6025 /* Now that we have stripped the elements that need not be
6026 in the undo_list any more, we can finally mark the list. */
6027 mark_object (BVAR (nextb, undo_list));
6030 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
6031 to doomed_finalizers so we can run their associated functions
6032 after GC. It's important to scan finalizers at this stage so
6033 that we can be sure that unmarked finalizers are really
6034 unreachable except for references from their associated functions
6035 and from other finalizers. */
6037 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
6038 mark_finalizer_list (&doomed_finalizers);
6040 gc_sweep ();
6042 /* Clear the mark bits that we set in certain root slots. */
6043 VECTOR_UNMARK (&buffer_defaults);
6044 VECTOR_UNMARK (&buffer_local_symbols);
6046 check_cons_list ();
6048 gc_in_progress = 0;
6050 unblock_input ();
6052 consing_since_gc = 0;
6053 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
6054 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
6056 gc_relative_threshold = 0;
6057 if (FLOATP (Vgc_cons_percentage))
6058 { /* Set gc_cons_combined_threshold. */
6059 double tot = total_bytes_of_live_objects ();
6061 tot *= XFLOAT_DATA (Vgc_cons_percentage);
6062 if (0 < tot)
6064 if (tot < TYPE_MAXIMUM (EMACS_INT))
6065 gc_relative_threshold = tot;
6066 else
6067 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
6071 if (garbage_collection_messages && NILP (Vmemory_full))
6073 if (message_p || minibuf_level > 0)
6074 restore_message ();
6075 else
6076 message1_nolog ("Garbage collecting...done");
6079 unbind_to (count, Qnil);
6081 Lisp_Object total[] = {
6082 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
6083 bounded_number (total_conses),
6084 bounded_number (total_free_conses)),
6085 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
6086 bounded_number (total_symbols),
6087 bounded_number (total_free_symbols)),
6088 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
6089 bounded_number (total_markers),
6090 bounded_number (total_free_markers)),
6091 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
6092 bounded_number (total_strings),
6093 bounded_number (total_free_strings)),
6094 list3 (Qstring_bytes, make_number (1),
6095 bounded_number (total_string_bytes)),
6096 list3 (Qvectors,
6097 make_number (header_size + sizeof (Lisp_Object)),
6098 bounded_number (total_vectors)),
6099 list4 (Qvector_slots, make_number (word_size),
6100 bounded_number (total_vector_slots),
6101 bounded_number (total_free_vector_slots)),
6102 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
6103 bounded_number (total_floats),
6104 bounded_number (total_free_floats)),
6105 list4 (Qintervals, make_number (sizeof (struct interval)),
6106 bounded_number (total_intervals),
6107 bounded_number (total_free_intervals)),
6108 list3 (Qbuffers, make_number (sizeof (struct buffer)),
6109 bounded_number (total_buffers)),
6111 #ifdef DOUG_LEA_MALLOC
6112 list4 (Qheap, make_number (1024),
6113 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
6114 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
6115 #endif
6117 retval = CALLMANY (Flist, total);
6119 /* GC is complete: now we can run our finalizer callbacks. */
6120 run_finalizers (&doomed_finalizers);
6122 if (!NILP (Vpost_gc_hook))
6124 ptrdiff_t gc_count = inhibit_garbage_collection ();
6125 safe_run_hooks (Qpost_gc_hook);
6126 unbind_to (gc_count, Qnil);
6129 /* Accumulate statistics. */
6130 if (FLOATP (Vgc_elapsed))
6132 struct timespec since_start = timespec_sub (current_timespec (), start);
6133 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6134 + timespectod (since_start));
6137 gcs_done++;
6139 /* Collect profiling data. */
6140 if (profiler_memory_running)
6142 size_t swept = 0;
6143 size_t tot_after = total_bytes_of_live_objects ();
6144 if (tot_before > tot_after)
6145 swept = tot_before - tot_after;
6146 malloc_probe (swept);
6149 return retval;
6152 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6153 doc: /* Reclaim storage for Lisp objects no longer needed.
6154 Garbage collection happens automatically if you cons more than
6155 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6156 `garbage-collect' normally returns a list with info on amount of space in use,
6157 where each entry has the form (NAME SIZE USED FREE), where:
6158 - NAME is a symbol describing the kind of objects this entry represents,
6159 - SIZE is the number of bytes used by each one,
6160 - USED is the number of those objects that were found live in the heap,
6161 - FREE is the number of those objects that are not live but that Emacs
6162 keeps around for future allocations (maybe because it does not know how
6163 to return them to the OS).
6164 However, if there was overflow in pure space, `garbage-collect'
6165 returns nil, because real GC can't be done.
6166 See Info node `(elisp)Garbage Collection'. */
6167 attributes: noinline)
6168 (void)
6170 void *end;
6171 SET_STACK_TOP_ADDRESS (&end);
6172 return garbage_collect_1 (end);
6175 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6176 only interesting objects referenced from glyphs are strings. */
6178 static void
6179 mark_glyph_matrix (struct glyph_matrix *matrix)
6181 struct glyph_row *row = matrix->rows;
6182 struct glyph_row *end = row + matrix->nrows;
6184 for (; row < end; ++row)
6185 if (row->enabled_p)
6187 int area;
6188 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6190 struct glyph *glyph = row->glyphs[area];
6191 struct glyph *end_glyph = glyph + row->used[area];
6193 for (; glyph < end_glyph; ++glyph)
6194 if (STRINGP (glyph->object)
6195 && !STRING_MARKED_P (XSTRING (glyph->object)))
6196 mark_object (glyph->object);
6201 /* Mark reference to a Lisp_Object.
6202 If the object referred to has not been seen yet, recursively mark
6203 all the references contained in it. */
6205 #define LAST_MARKED_SIZE 500
6206 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6207 static int last_marked_index;
6209 /* For debugging--call abort when we cdr down this many
6210 links of a list, in mark_object. In debugging,
6211 the call to abort will hit a breakpoint.
6212 Normally this is zero and the check never goes off. */
6213 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6215 static void
6216 mark_vectorlike (struct Lisp_Vector *ptr)
6218 ptrdiff_t size = ptr->header.size;
6219 ptrdiff_t i;
6221 eassert (!VECTOR_MARKED_P (ptr));
6222 VECTOR_MARK (ptr); /* Else mark it. */
6223 if (size & PSEUDOVECTOR_FLAG)
6224 size &= PSEUDOVECTOR_SIZE_MASK;
6226 /* Note that this size is not the memory-footprint size, but only
6227 the number of Lisp_Object fields that we should trace.
6228 The distinction is used e.g. by Lisp_Process which places extra
6229 non-Lisp_Object fields at the end of the structure... */
6230 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6231 mark_object (ptr->contents[i]);
6234 /* Like mark_vectorlike but optimized for char-tables (and
6235 sub-char-tables) assuming that the contents are mostly integers or
6236 symbols. */
6238 static void
6239 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6241 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6242 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6243 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6245 eassert (!VECTOR_MARKED_P (ptr));
6246 VECTOR_MARK (ptr);
6247 for (i = idx; i < size; i++)
6249 Lisp_Object val = ptr->contents[i];
6251 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->u.s.gcmarkbit))
6252 continue;
6253 if (SUB_CHAR_TABLE_P (val))
6255 if (! VECTOR_MARKED_P (XVECTOR (val)))
6256 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6258 else
6259 mark_object (val);
6263 NO_INLINE /* To reduce stack depth in mark_object. */
6264 static Lisp_Object
6265 mark_compiled (struct Lisp_Vector *ptr)
6267 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6269 VECTOR_MARK (ptr);
6270 for (i = 0; i < size; i++)
6271 if (i != COMPILED_CONSTANTS)
6272 mark_object (ptr->contents[i]);
6273 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6276 /* Mark the chain of overlays starting at PTR. */
6278 static void
6279 mark_overlay (struct Lisp_Overlay *ptr)
6281 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6283 ptr->gcmarkbit = 1;
6284 /* These two are always markers and can be marked fast. */
6285 XMARKER (ptr->start)->gcmarkbit = 1;
6286 XMARKER (ptr->end)->gcmarkbit = 1;
6287 mark_object (ptr->plist);
6291 /* Mark Lisp_Objects and special pointers in BUFFER. */
6293 static void
6294 mark_buffer (struct buffer *buffer)
6296 /* This is handled much like other pseudovectors... */
6297 mark_vectorlike ((struct Lisp_Vector *) buffer);
6299 /* ...but there are some buffer-specific things. */
6301 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6303 /* For now, we just don't mark the undo_list. It's done later in
6304 a special way just before the sweep phase, and after stripping
6305 some of its elements that are not needed any more. */
6307 mark_overlay (buffer->overlays_before);
6308 mark_overlay (buffer->overlays_after);
6310 /* If this is an indirect buffer, mark its base buffer. */
6311 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6312 mark_buffer (buffer->base_buffer);
6315 /* Mark Lisp faces in the face cache C. */
6317 NO_INLINE /* To reduce stack depth in mark_object. */
6318 static void
6319 mark_face_cache (struct face_cache *c)
6321 if (c)
6323 int i, j;
6324 for (i = 0; i < c->used; ++i)
6326 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6328 if (face)
6330 if (face->font && !VECTOR_MARKED_P (face->font))
6331 mark_vectorlike ((struct Lisp_Vector *) face->font);
6333 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6334 mark_object (face->lface[j]);
6340 NO_INLINE /* To reduce stack depth in mark_object. */
6341 static void
6342 mark_localized_symbol (struct Lisp_Symbol *ptr)
6344 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6345 Lisp_Object where = blv->where;
6346 /* If the value is set up for a killed buffer or deleted
6347 frame, restore its global binding. If the value is
6348 forwarded to a C variable, either it's not a Lisp_Object
6349 var, or it's staticpro'd already. */
6350 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6351 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6352 swap_in_global_binding (ptr);
6353 mark_object (blv->where);
6354 mark_object (blv->valcell);
6355 mark_object (blv->defcell);
6358 NO_INLINE /* To reduce stack depth in mark_object. */
6359 static void
6360 mark_save_value (struct Lisp_Save_Value *ptr)
6362 /* If `save_type' is zero, `data[0].pointer' is the address
6363 of a memory area containing `data[1].integer' potential
6364 Lisp_Objects. */
6365 if (ptr->save_type == SAVE_TYPE_MEMORY)
6367 Lisp_Object *p = ptr->data[0].pointer;
6368 ptrdiff_t nelt;
6369 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6370 mark_maybe_object (*p);
6372 else
6374 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6375 int i;
6376 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6377 if (save_type (ptr, i) == SAVE_OBJECT)
6378 mark_object (ptr->data[i].object);
6382 /* Remove killed buffers or items whose car is a killed buffer from
6383 LIST, and mark other items. Return changed LIST, which is marked. */
6385 static Lisp_Object
6386 mark_discard_killed_buffers (Lisp_Object list)
6388 Lisp_Object tail, *prev = &list;
6390 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6391 tail = XCDR (tail))
6393 Lisp_Object tem = XCAR (tail);
6394 if (CONSP (tem))
6395 tem = XCAR (tem);
6396 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6397 *prev = XCDR (tail);
6398 else
6400 CONS_MARK (XCONS (tail));
6401 mark_object (XCAR (tail));
6402 prev = xcdr_addr (tail);
6405 mark_object (tail);
6406 return list;
6409 /* Determine type of generic Lisp_Object and mark it accordingly.
6411 This function implements a straightforward depth-first marking
6412 algorithm and so the recursion depth may be very high (a few
6413 tens of thousands is not uncommon). To minimize stack usage,
6414 a few cold paths are moved out to NO_INLINE functions above.
6415 In general, inlining them doesn't help you to gain more speed. */
6417 void
6418 mark_object (Lisp_Object arg)
6420 register Lisp_Object obj;
6421 void *po;
6422 #if GC_CHECK_MARKED_OBJECTS
6423 struct mem_node *m;
6424 #endif
6425 ptrdiff_t cdr_count = 0;
6427 obj = arg;
6428 loop:
6430 po = XPNTR (obj);
6431 if (PURE_P (po))
6432 return;
6434 last_marked[last_marked_index++] = obj;
6435 if (last_marked_index == LAST_MARKED_SIZE)
6436 last_marked_index = 0;
6438 /* Perform some sanity checks on the objects marked here. Abort if
6439 we encounter an object we know is bogus. This increases GC time
6440 by ~80%. */
6441 #if GC_CHECK_MARKED_OBJECTS
6443 /* Check that the object pointed to by PO is known to be a Lisp
6444 structure allocated from the heap. */
6445 #define CHECK_ALLOCATED() \
6446 do { \
6447 m = mem_find (po); \
6448 if (m == MEM_NIL) \
6449 emacs_abort (); \
6450 } while (0)
6452 /* Check that the object pointed to by PO is live, using predicate
6453 function LIVEP. */
6454 #define CHECK_LIVE(LIVEP) \
6455 do { \
6456 if (!LIVEP (m, po)) \
6457 emacs_abort (); \
6458 } while (0)
6460 /* Check both of the above conditions, for non-symbols. */
6461 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6462 do { \
6463 CHECK_ALLOCATED (); \
6464 CHECK_LIVE (LIVEP); \
6465 } while (0) \
6467 /* Check both of the above conditions, for symbols. */
6468 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6469 do { \
6470 if (!c_symbol_p (ptr)) \
6472 CHECK_ALLOCATED (); \
6473 CHECK_LIVE (live_symbol_p); \
6475 } while (0) \
6477 #else /* not GC_CHECK_MARKED_OBJECTS */
6479 #define CHECK_LIVE(LIVEP) ((void) 0)
6480 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6481 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6483 #endif /* not GC_CHECK_MARKED_OBJECTS */
6485 switch (XTYPE (obj))
6487 case Lisp_String:
6489 register struct Lisp_String *ptr = XSTRING (obj);
6490 if (STRING_MARKED_P (ptr))
6491 break;
6492 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6493 MARK_STRING (ptr);
6494 MARK_INTERVAL_TREE (ptr->u.s.intervals);
6495 #ifdef GC_CHECK_STRING_BYTES
6496 /* Check that the string size recorded in the string is the
6497 same as the one recorded in the sdata structure. */
6498 string_bytes (ptr);
6499 #endif /* GC_CHECK_STRING_BYTES */
6501 break;
6503 case Lisp_Vectorlike:
6505 register struct Lisp_Vector *ptr = XVECTOR (obj);
6507 if (VECTOR_MARKED_P (ptr))
6508 break;
6510 #if GC_CHECK_MARKED_OBJECTS
6511 m = mem_find (po);
6512 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6513 emacs_abort ();
6514 #endif /* GC_CHECK_MARKED_OBJECTS */
6516 enum pvec_type pvectype
6517 = PSEUDOVECTOR_TYPE (ptr);
6519 if (pvectype != PVEC_SUBR
6520 && pvectype != PVEC_BUFFER
6521 && !main_thread_p (po))
6522 CHECK_LIVE (live_vector_p);
6524 switch (pvectype)
6526 case PVEC_BUFFER:
6527 #if GC_CHECK_MARKED_OBJECTS
6529 struct buffer *b;
6530 FOR_EACH_BUFFER (b)
6531 if (b == po)
6532 break;
6533 if (b == NULL)
6534 emacs_abort ();
6536 #endif /* GC_CHECK_MARKED_OBJECTS */
6537 mark_buffer ((struct buffer *) ptr);
6538 break;
6540 case PVEC_COMPILED:
6541 /* Although we could treat this just like a vector, mark_compiled
6542 returns the COMPILED_CONSTANTS element, which is marked at the
6543 next iteration of goto-loop here. This is done to avoid a few
6544 recursive calls to mark_object. */
6545 obj = mark_compiled (ptr);
6546 if (!NILP (obj))
6547 goto loop;
6548 break;
6550 case PVEC_FRAME:
6552 struct frame *f = (struct frame *) ptr;
6554 mark_vectorlike (ptr);
6555 mark_face_cache (f->face_cache);
6556 #ifdef HAVE_WINDOW_SYSTEM
6557 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6559 struct font *font = FRAME_FONT (f);
6561 if (font && !VECTOR_MARKED_P (font))
6562 mark_vectorlike ((struct Lisp_Vector *) font);
6564 #endif
6566 break;
6568 case PVEC_WINDOW:
6570 struct window *w = (struct window *) ptr;
6572 mark_vectorlike (ptr);
6574 /* Mark glyph matrices, if any. Marking window
6575 matrices is sufficient because frame matrices
6576 use the same glyph memory. */
6577 if (w->current_matrix)
6579 mark_glyph_matrix (w->current_matrix);
6580 mark_glyph_matrix (w->desired_matrix);
6583 /* Filter out killed buffers from both buffer lists
6584 in attempt to help GC to reclaim killed buffers faster.
6585 We can do it elsewhere for live windows, but this is the
6586 best place to do it for dead windows. */
6587 wset_prev_buffers
6588 (w, mark_discard_killed_buffers (w->prev_buffers));
6589 wset_next_buffers
6590 (w, mark_discard_killed_buffers (w->next_buffers));
6592 break;
6594 case PVEC_HASH_TABLE:
6596 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6598 mark_vectorlike (ptr);
6599 mark_object (h->test.name);
6600 mark_object (h->test.user_hash_function);
6601 mark_object (h->test.user_cmp_function);
6602 /* If hash table is not weak, mark all keys and values.
6603 For weak tables, mark only the vector. */
6604 if (NILP (h->weak))
6605 mark_object (h->key_and_value);
6606 else
6607 VECTOR_MARK (XVECTOR (h->key_and_value));
6609 break;
6611 case PVEC_CHAR_TABLE:
6612 case PVEC_SUB_CHAR_TABLE:
6613 mark_char_table (ptr, (enum pvec_type) pvectype);
6614 break;
6616 case PVEC_BOOL_VECTOR:
6617 /* No Lisp_Objects to mark in a bool vector. */
6618 VECTOR_MARK (ptr);
6619 break;
6621 case PVEC_SUBR:
6622 break;
6624 case PVEC_FREE:
6625 emacs_abort ();
6627 default:
6628 mark_vectorlike (ptr);
6631 break;
6633 case Lisp_Symbol:
6635 struct Lisp_Symbol *ptr = XSYMBOL (obj);
6636 nextsym:
6637 if (ptr->u.s.gcmarkbit)
6638 break;
6639 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6640 ptr->u.s.gcmarkbit = 1;
6641 /* Attempt to catch bogus objects. */
6642 eassert (valid_lisp_object_p (ptr->u.s.function));
6643 mark_object (ptr->u.s.function);
6644 mark_object (ptr->u.s.plist);
6645 switch (ptr->u.s.redirect)
6647 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6648 case SYMBOL_VARALIAS:
6650 Lisp_Object tem;
6651 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6652 mark_object (tem);
6653 break;
6655 case SYMBOL_LOCALIZED:
6656 mark_localized_symbol (ptr);
6657 break;
6658 case SYMBOL_FORWARDED:
6659 /* If the value is forwarded to a buffer or keyboard field,
6660 these are marked when we see the corresponding object.
6661 And if it's forwarded to a C variable, either it's not
6662 a Lisp_Object var, or it's staticpro'd already. */
6663 break;
6664 default: emacs_abort ();
6666 if (!PURE_P (XSTRING (ptr->u.s.name)))
6667 MARK_STRING (XSTRING (ptr->u.s.name));
6668 MARK_INTERVAL_TREE (string_intervals (ptr->u.s.name));
6669 /* Inner loop to mark next symbol in this bucket, if any. */
6670 po = ptr = ptr->u.s.next;
6671 if (ptr)
6672 goto nextsym;
6674 break;
6676 case Lisp_Misc:
6677 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6679 if (XMISCANY (obj)->gcmarkbit)
6680 break;
6682 switch (XMISCTYPE (obj))
6684 case Lisp_Misc_Marker:
6685 /* DO NOT mark thru the marker's chain.
6686 The buffer's markers chain does not preserve markers from gc;
6687 instead, markers are removed from the chain when freed by gc. */
6688 XMISCANY (obj)->gcmarkbit = 1;
6689 break;
6691 case Lisp_Misc_Save_Value:
6692 XMISCANY (obj)->gcmarkbit = 1;
6693 mark_save_value (XSAVE_VALUE (obj));
6694 break;
6696 case Lisp_Misc_Overlay:
6697 mark_overlay (XOVERLAY (obj));
6698 break;
6700 case Lisp_Misc_Finalizer:
6701 XMISCANY (obj)->gcmarkbit = true;
6702 mark_object (XFINALIZER (obj)->function);
6703 break;
6705 #ifdef HAVE_MODULES
6706 case Lisp_Misc_User_Ptr:
6707 XMISCANY (obj)->gcmarkbit = true;
6708 break;
6709 #endif
6711 default:
6712 emacs_abort ();
6714 break;
6716 case Lisp_Cons:
6718 register struct Lisp_Cons *ptr = XCONS (obj);
6719 if (CONS_MARKED_P (ptr))
6720 break;
6721 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6722 CONS_MARK (ptr);
6723 /* If the cdr is nil, avoid recursion for the car. */
6724 if (EQ (ptr->u.s.u.cdr, Qnil))
6726 obj = ptr->u.s.car;
6727 cdr_count = 0;
6728 goto loop;
6730 mark_object (ptr->u.s.car);
6731 obj = ptr->u.s.u.cdr;
6732 cdr_count++;
6733 if (cdr_count == mark_object_loop_halt)
6734 emacs_abort ();
6735 goto loop;
6738 case Lisp_Float:
6739 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6740 FLOAT_MARK (XFLOAT (obj));
6741 break;
6743 case_Lisp_Int:
6744 break;
6746 default:
6747 emacs_abort ();
6750 #undef CHECK_LIVE
6751 #undef CHECK_ALLOCATED
6752 #undef CHECK_ALLOCATED_AND_LIVE
6754 /* Mark the Lisp pointers in the terminal objects.
6755 Called by Fgarbage_collect. */
6757 static void
6758 mark_terminals (void)
6760 struct terminal *t;
6761 for (t = terminal_list; t; t = t->next_terminal)
6763 eassert (t->name != NULL);
6764 #ifdef HAVE_WINDOW_SYSTEM
6765 /* If a terminal object is reachable from a stacpro'ed object,
6766 it might have been marked already. Make sure the image cache
6767 gets marked. */
6768 mark_image_cache (t->image_cache);
6769 #endif /* HAVE_WINDOW_SYSTEM */
6770 if (!VECTOR_MARKED_P (t))
6771 mark_vectorlike ((struct Lisp_Vector *)t);
6777 /* Value is non-zero if OBJ will survive the current GC because it's
6778 either marked or does not need to be marked to survive. */
6780 bool
6781 survives_gc_p (Lisp_Object obj)
6783 bool survives_p;
6785 switch (XTYPE (obj))
6787 case_Lisp_Int:
6788 survives_p = 1;
6789 break;
6791 case Lisp_Symbol:
6792 survives_p = XSYMBOL (obj)->u.s.gcmarkbit;
6793 break;
6795 case Lisp_Misc:
6796 survives_p = XMISCANY (obj)->gcmarkbit;
6797 break;
6799 case Lisp_String:
6800 survives_p = STRING_MARKED_P (XSTRING (obj));
6801 break;
6803 case Lisp_Vectorlike:
6804 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6805 break;
6807 case Lisp_Cons:
6808 survives_p = CONS_MARKED_P (XCONS (obj));
6809 break;
6811 case Lisp_Float:
6812 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6813 break;
6815 default:
6816 emacs_abort ();
6819 return survives_p || PURE_P (XPNTR (obj));
6825 NO_INLINE /* For better stack traces */
6826 static void
6827 sweep_conses (void)
6829 struct cons_block *cblk;
6830 struct cons_block **cprev = &cons_block;
6831 int lim = cons_block_index;
6832 EMACS_INT num_free = 0, num_used = 0;
6834 cons_free_list = 0;
6836 for (cblk = cons_block; cblk; cblk = *cprev)
6838 int i = 0;
6839 int this_free = 0;
6840 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6842 /* Scan the mark bits an int at a time. */
6843 for (i = 0; i < ilim; i++)
6845 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6847 /* Fast path - all cons cells for this int are marked. */
6848 cblk->gcmarkbits[i] = 0;
6849 num_used += BITS_PER_BITS_WORD;
6851 else
6853 /* Some cons cells for this int are not marked.
6854 Find which ones, and free them. */
6855 int start, pos, stop;
6857 start = i * BITS_PER_BITS_WORD;
6858 stop = lim - start;
6859 if (stop > BITS_PER_BITS_WORD)
6860 stop = BITS_PER_BITS_WORD;
6861 stop += start;
6863 for (pos = start; pos < stop; pos++)
6865 if (!CONS_MARKED_P (&cblk->conses[pos]))
6867 this_free++;
6868 cblk->conses[pos].u.s.u.chain = cons_free_list;
6869 cons_free_list = &cblk->conses[pos];
6870 cons_free_list->u.s.car = Vdead;
6872 else
6874 num_used++;
6875 CONS_UNMARK (&cblk->conses[pos]);
6881 lim = CONS_BLOCK_SIZE;
6882 /* If this block contains only free conses and we have already
6883 seen more than two blocks worth of free conses then deallocate
6884 this block. */
6885 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6887 *cprev = cblk->next;
6888 /* Unhook from the free list. */
6889 cons_free_list = cblk->conses[0].u.s.u.chain;
6890 lisp_align_free (cblk);
6892 else
6894 num_free += this_free;
6895 cprev = &cblk->next;
6898 total_conses = num_used;
6899 total_free_conses = num_free;
6902 NO_INLINE /* For better stack traces */
6903 static void
6904 sweep_floats (void)
6906 register struct float_block *fblk;
6907 struct float_block **fprev = &float_block;
6908 register int lim = float_block_index;
6909 EMACS_INT num_free = 0, num_used = 0;
6911 float_free_list = 0;
6913 for (fblk = float_block; fblk; fblk = *fprev)
6915 register int i;
6916 int this_free = 0;
6917 for (i = 0; i < lim; i++)
6918 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6920 this_free++;
6921 fblk->floats[i].u.chain = float_free_list;
6922 float_free_list = &fblk->floats[i];
6924 else
6926 num_used++;
6927 FLOAT_UNMARK (&fblk->floats[i]);
6929 lim = FLOAT_BLOCK_SIZE;
6930 /* If this block contains only free floats and we have already
6931 seen more than two blocks worth of free floats then deallocate
6932 this block. */
6933 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6935 *fprev = fblk->next;
6936 /* Unhook from the free list. */
6937 float_free_list = fblk->floats[0].u.chain;
6938 lisp_align_free (fblk);
6940 else
6942 num_free += this_free;
6943 fprev = &fblk->next;
6946 total_floats = num_used;
6947 total_free_floats = num_free;
6950 NO_INLINE /* For better stack traces */
6951 static void
6952 sweep_intervals (void)
6954 register struct interval_block *iblk;
6955 struct interval_block **iprev = &interval_block;
6956 register int lim = interval_block_index;
6957 EMACS_INT num_free = 0, num_used = 0;
6959 interval_free_list = 0;
6961 for (iblk = interval_block; iblk; iblk = *iprev)
6963 register int i;
6964 int this_free = 0;
6966 for (i = 0; i < lim; i++)
6968 if (!iblk->intervals[i].gcmarkbit)
6970 set_interval_parent (&iblk->intervals[i], interval_free_list);
6971 interval_free_list = &iblk->intervals[i];
6972 this_free++;
6974 else
6976 num_used++;
6977 iblk->intervals[i].gcmarkbit = 0;
6980 lim = INTERVAL_BLOCK_SIZE;
6981 /* If this block contains only free intervals and we have already
6982 seen more than two blocks worth of free intervals then
6983 deallocate this block. */
6984 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6986 *iprev = iblk->next;
6987 /* Unhook from the free list. */
6988 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6989 lisp_free (iblk);
6991 else
6993 num_free += this_free;
6994 iprev = &iblk->next;
6997 total_intervals = num_used;
6998 total_free_intervals = num_free;
7001 NO_INLINE /* For better stack traces */
7002 static void
7003 sweep_symbols (void)
7005 struct symbol_block *sblk;
7006 struct symbol_block **sprev = &symbol_block;
7007 int lim = symbol_block_index;
7008 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
7010 symbol_free_list = NULL;
7012 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7013 lispsym[i].u.s.gcmarkbit = 0;
7015 for (sblk = symbol_block; sblk; sblk = *sprev)
7017 int this_free = 0;
7018 struct Lisp_Symbol *sym = sblk->symbols;
7019 struct Lisp_Symbol *end = sym + lim;
7021 for (; sym < end; ++sym)
7023 if (!sym->u.s.gcmarkbit)
7025 if (sym->u.s.redirect == SYMBOL_LOCALIZED)
7027 xfree (SYMBOL_BLV (sym));
7028 /* At every GC we sweep all symbol_blocks and rebuild the
7029 symbol_free_list, so those symbols which stayed unused
7030 between the two will be re-swept.
7031 So we have to make sure we don't re-free this blv next
7032 time we sweep this symbol_block (bug#29066). */
7033 sym->u.s.redirect = SYMBOL_PLAINVAL;
7035 sym->u.s.next = symbol_free_list;
7036 symbol_free_list = sym;
7037 symbol_free_list->u.s.function = Vdead;
7038 ++this_free;
7040 else
7042 ++num_used;
7043 sym->u.s.gcmarkbit = 0;
7044 /* Attempt to catch bogus objects. */
7045 eassert (valid_lisp_object_p (sym->u.s.function));
7049 lim = SYMBOL_BLOCK_SIZE;
7050 /* If this block contains only free symbols and we have already
7051 seen more than two blocks worth of free symbols then deallocate
7052 this block. */
7053 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
7055 *sprev = sblk->next;
7056 /* Unhook from the free list. */
7057 symbol_free_list = sblk->symbols[0].u.s.next;
7058 lisp_free (sblk);
7060 else
7062 num_free += this_free;
7063 sprev = &sblk->next;
7066 total_symbols = num_used;
7067 total_free_symbols = num_free;
7070 NO_INLINE /* For better stack traces. */
7071 static void
7072 sweep_misc (void)
7074 register struct marker_block *mblk;
7075 struct marker_block **mprev = &marker_block;
7076 register int lim = marker_block_index;
7077 EMACS_INT num_free = 0, num_used = 0;
7079 /* Put all unmarked misc's on free list. For a marker, first
7080 unchain it from the buffer it points into. */
7082 marker_free_list = 0;
7084 for (mblk = marker_block; mblk; mblk = *mprev)
7086 register int i;
7087 int this_free = 0;
7089 for (i = 0; i < lim; i++)
7091 if (!mblk->markers[i].m.u_any.gcmarkbit)
7093 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7094 unchain_marker (&mblk->markers[i].m.u_marker);
7095 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7096 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7097 #ifdef HAVE_MODULES
7098 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7100 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7101 if (uptr->finalizer)
7102 uptr->finalizer (uptr->p);
7104 #endif
7105 /* Set the type of the freed object to Lisp_Misc_Free.
7106 We could leave the type alone, since nobody checks it,
7107 but this might catch bugs faster. */
7108 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7109 mblk->markers[i].m.u_free.chain = marker_free_list;
7110 marker_free_list = &mblk->markers[i].m;
7111 this_free++;
7113 else
7115 num_used++;
7116 mblk->markers[i].m.u_any.gcmarkbit = 0;
7119 lim = MARKER_BLOCK_SIZE;
7120 /* If this block contains only free markers and we have already
7121 seen more than two blocks worth of free markers then deallocate
7122 this block. */
7123 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7125 *mprev = mblk->next;
7126 /* Unhook from the free list. */
7127 marker_free_list = mblk->markers[0].m.u_free.chain;
7128 lisp_free (mblk);
7130 else
7132 num_free += this_free;
7133 mprev = &mblk->next;
7137 total_markers = num_used;
7138 total_free_markers = num_free;
7141 NO_INLINE /* For better stack traces */
7142 static void
7143 sweep_buffers (void)
7145 register struct buffer *buffer, **bprev = &all_buffers;
7147 total_buffers = 0;
7148 for (buffer = all_buffers; buffer; buffer = *bprev)
7149 if (!VECTOR_MARKED_P (buffer))
7151 *bprev = buffer->next;
7152 lisp_free (buffer);
7154 else
7156 VECTOR_UNMARK (buffer);
7157 /* Do not use buffer_(set|get)_intervals here. */
7158 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7159 total_buffers++;
7160 bprev = &buffer->next;
7164 /* Sweep: find all structures not marked, and free them. */
7165 static void
7166 gc_sweep (void)
7168 /* Remove or mark entries in weak hash tables.
7169 This must be done before any object is unmarked. */
7170 sweep_weak_hash_tables ();
7172 sweep_strings ();
7173 check_string_bytes (!noninteractive);
7174 sweep_conses ();
7175 sweep_floats ();
7176 sweep_intervals ();
7177 sweep_symbols ();
7178 sweep_misc ();
7179 sweep_buffers ();
7180 sweep_vectors ();
7181 check_string_bytes (!noninteractive);
7184 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7185 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7186 All values are in Kbytes. If there is no swap space,
7187 last two values are zero. If the system is not supported
7188 or memory information can't be obtained, return nil. */)
7189 (void)
7191 #if defined HAVE_LINUX_SYSINFO
7192 struct sysinfo si;
7193 uintmax_t units;
7195 if (sysinfo (&si))
7196 return Qnil;
7197 #ifdef LINUX_SYSINFO_UNIT
7198 units = si.mem_unit;
7199 #else
7200 units = 1;
7201 #endif
7202 return list4i ((uintmax_t) si.totalram * units / 1024,
7203 (uintmax_t) si.freeram * units / 1024,
7204 (uintmax_t) si.totalswap * units / 1024,
7205 (uintmax_t) si.freeswap * units / 1024);
7206 #elif defined WINDOWSNT
7207 unsigned long long totalram, freeram, totalswap, freeswap;
7209 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7210 return list4i ((uintmax_t) totalram / 1024,
7211 (uintmax_t) freeram / 1024,
7212 (uintmax_t) totalswap / 1024,
7213 (uintmax_t) freeswap / 1024);
7214 else
7215 return Qnil;
7216 #elif defined MSDOS
7217 unsigned long totalram, freeram, totalswap, freeswap;
7219 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7220 return list4i ((uintmax_t) totalram / 1024,
7221 (uintmax_t) freeram / 1024,
7222 (uintmax_t) totalswap / 1024,
7223 (uintmax_t) freeswap / 1024);
7224 else
7225 return Qnil;
7226 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7227 /* FIXME: add more systems. */
7228 return Qnil;
7229 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7232 /* Debugging aids. */
7234 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7235 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7236 This may be helpful in debugging Emacs's memory usage.
7237 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7238 (void)
7240 Lisp_Object end;
7242 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7243 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7244 XSETINT (end, 0);
7245 #else
7246 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7247 #endif
7249 return end;
7252 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7253 doc: /* Return a list of counters that measure how much consing there has been.
7254 Each of these counters increments for a certain kind of object.
7255 The counters wrap around from the largest positive integer to zero.
7256 Garbage collection does not decrease them.
7257 The elements of the value are as follows:
7258 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7259 All are in units of 1 = one object consed
7260 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7261 objects consed.
7262 MISCS include overlays, markers, and some internal types.
7263 Frames, windows, buffers, and subprocesses count as vectors
7264 (but the contents of a buffer's text do not count here). */)
7265 (void)
7267 return listn (CONSTYPE_HEAP, 8,
7268 bounded_number (cons_cells_consed),
7269 bounded_number (floats_consed),
7270 bounded_number (vector_cells_consed),
7271 bounded_number (symbols_consed),
7272 bounded_number (string_chars_consed),
7273 bounded_number (misc_objects_consed),
7274 bounded_number (intervals_consed),
7275 bounded_number (strings_consed));
7278 static bool
7279 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7281 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7282 Lisp_Object val = find_symbol_value (symbol);
7283 return (EQ (val, obj)
7284 || EQ (sym->u.s.function, obj)
7285 || (!NILP (sym->u.s.function)
7286 && COMPILEDP (sym->u.s.function)
7287 && EQ (AREF (sym->u.s.function, COMPILED_BYTECODE), obj))
7288 || (!NILP (val)
7289 && COMPILEDP (val)
7290 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7293 /* Find at most FIND_MAX symbols which have OBJ as their value or
7294 function. This is used in gdbinit's `xwhichsymbols' command. */
7296 Lisp_Object
7297 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7299 struct symbol_block *sblk;
7300 ptrdiff_t gc_count = inhibit_garbage_collection ();
7301 Lisp_Object found = Qnil;
7303 if (! DEADP (obj))
7305 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7307 Lisp_Object sym = builtin_lisp_symbol (i);
7308 if (symbol_uses_obj (sym, obj))
7310 found = Fcons (sym, found);
7311 if (--find_max == 0)
7312 goto out;
7316 for (sblk = symbol_block; sblk; sblk = sblk->next)
7318 struct Lisp_Symbol *asym = sblk->symbols;
7319 int bn;
7321 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, asym++)
7323 if (sblk == symbol_block && bn >= symbol_block_index)
7324 break;
7326 Lisp_Object sym = make_lisp_symbol (asym);
7327 if (symbol_uses_obj (sym, obj))
7329 found = Fcons (sym, found);
7330 if (--find_max == 0)
7331 goto out;
7337 out:
7338 unbind_to (gc_count, Qnil);
7339 return found;
7342 #ifdef SUSPICIOUS_OBJECT_CHECKING
7344 static void *
7345 find_suspicious_object_in_range (void *begin, void *end)
7347 char *begin_a = begin;
7348 char *end_a = end;
7349 int i;
7351 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7353 char *suspicious_object = suspicious_objects[i];
7354 if (begin_a <= suspicious_object && suspicious_object < end_a)
7355 return suspicious_object;
7358 return NULL;
7361 static void
7362 note_suspicious_free (void *ptr)
7364 struct suspicious_free_record *rec;
7366 rec = &suspicious_free_history[suspicious_free_history_index++];
7367 if (suspicious_free_history_index ==
7368 ARRAYELTS (suspicious_free_history))
7370 suspicious_free_history_index = 0;
7373 memset (rec, 0, sizeof (*rec));
7374 rec->suspicious_object = ptr;
7375 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7378 static void
7379 detect_suspicious_free (void *ptr)
7381 int i;
7383 eassert (ptr != NULL);
7385 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7386 if (suspicious_objects[i] == ptr)
7388 note_suspicious_free (ptr);
7389 suspicious_objects[i] = NULL;
7393 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7395 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7396 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7397 If Emacs is compiled with suspicious object checking, capture
7398 a stack trace when OBJ is freed in order to help track down
7399 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7400 (Lisp_Object obj)
7402 #ifdef SUSPICIOUS_OBJECT_CHECKING
7403 /* Right now, we care only about vectors. */
7404 if (VECTORLIKEP (obj))
7406 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7407 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7408 suspicious_object_index = 0;
7410 #endif
7411 return obj;
7414 #ifdef ENABLE_CHECKING
7416 bool suppress_checking;
7418 void
7419 die (const char *msg, const char *file, int line)
7421 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7422 file, line, msg);
7423 terminate_due_to_signal (SIGABRT, INT_MAX);
7426 #endif /* ENABLE_CHECKING */
7428 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7430 /* Stress alloca with inconveniently sized requests and check
7431 whether all allocated areas may be used for Lisp_Object. */
7433 NO_INLINE static void
7434 verify_alloca (void)
7436 int i;
7437 enum { ALLOCA_CHECK_MAX = 256 };
7438 /* Start from size of the smallest Lisp object. */
7439 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7441 void *ptr = alloca (i);
7442 make_lisp_ptr (ptr, Lisp_Cons);
7446 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7448 #define verify_alloca() ((void) 0)
7450 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7452 /* Initialization. */
7454 void
7455 init_alloc_once (void)
7457 /* Even though Qt's contents are not set up, its address is known. */
7458 Vpurify_flag = Qt;
7460 purebeg = PUREBEG;
7461 pure_size = PURESIZE;
7463 verify_alloca ();
7464 init_finalizer_list (&finalizers);
7465 init_finalizer_list (&doomed_finalizers);
7467 mem_init ();
7468 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7470 #ifdef DOUG_LEA_MALLOC
7471 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7472 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7473 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7474 #endif
7475 init_strings ();
7476 init_vectors ();
7478 refill_memory_reserve ();
7479 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7482 void
7483 init_alloc (void)
7485 Vgc_elapsed = make_float (0.0);
7486 gcs_done = 0;
7488 #if USE_VALGRIND
7489 valgrind_p = RUNNING_ON_VALGRIND != 0;
7490 #endif
7493 void
7494 syms_of_alloc (void)
7496 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7497 doc: /* Number of bytes of consing between garbage collections.
7498 Garbage collection can happen automatically once this many bytes have been
7499 allocated since the last garbage collection. All data types count.
7501 Garbage collection happens automatically only when `eval' is called.
7503 By binding this temporarily to a large number, you can effectively
7504 prevent garbage collection during a part of the program.
7505 See also `gc-cons-percentage'. */);
7507 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7508 doc: /* Portion of the heap used for allocation.
7509 Garbage collection can happen automatically once this portion of the heap
7510 has been allocated since the last garbage collection.
7511 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7512 Vgc_cons_percentage = make_float (0.1);
7514 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7515 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7517 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7518 doc: /* Number of cons cells that have been consed so far. */);
7520 DEFVAR_INT ("floats-consed", floats_consed,
7521 doc: /* Number of floats that have been consed so far. */);
7523 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7524 doc: /* Number of vector cells that have been consed so far. */);
7526 DEFVAR_INT ("symbols-consed", symbols_consed,
7527 doc: /* Number of symbols that have been consed so far. */);
7528 symbols_consed += ARRAYELTS (lispsym);
7530 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7531 doc: /* Number of string characters that have been consed so far. */);
7533 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7534 doc: /* Number of miscellaneous objects that have been consed so far.
7535 These include markers and overlays, plus certain objects not visible
7536 to users. */);
7538 DEFVAR_INT ("intervals-consed", intervals_consed,
7539 doc: /* Number of intervals that have been consed so far. */);
7541 DEFVAR_INT ("strings-consed", strings_consed,
7542 doc: /* Number of strings that have been consed so far. */);
7544 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7545 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7546 This means that certain objects should be allocated in shared (pure) space.
7547 It can also be set to a hash-table, in which case this table is used to
7548 do hash-consing of the objects allocated to pure space. */);
7550 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7551 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7552 garbage_collection_messages = 0;
7554 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7555 doc: /* Hook run after garbage collection has finished. */);
7556 Vpost_gc_hook = Qnil;
7557 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7559 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7560 doc: /* Precomputed `signal' argument for memory-full error. */);
7561 /* We build this in advance because if we wait until we need it, we might
7562 not be able to allocate the memory to hold it. */
7563 Vmemory_signal_data
7564 = listn (CONSTYPE_PURE, 2, Qerror,
7565 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7567 DEFVAR_LISP ("memory-full", Vmemory_full,
7568 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7569 Vmemory_full = Qnil;
7571 DEFSYM (Qconses, "conses");
7572 DEFSYM (Qsymbols, "symbols");
7573 DEFSYM (Qmiscs, "miscs");
7574 DEFSYM (Qstrings, "strings");
7575 DEFSYM (Qvectors, "vectors");
7576 DEFSYM (Qfloats, "floats");
7577 DEFSYM (Qintervals, "intervals");
7578 DEFSYM (Qbuffers, "buffers");
7579 DEFSYM (Qstring_bytes, "string-bytes");
7580 DEFSYM (Qvector_slots, "vector-slots");
7581 DEFSYM (Qheap, "heap");
7582 DEFSYM (QAutomatic_GC, "Automatic GC");
7584 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7585 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7587 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7588 doc: /* Accumulated time elapsed in garbage collections.
7589 The time is in seconds as a floating point value. */);
7590 DEFVAR_INT ("gcs-done", gcs_done,
7591 doc: /* Accumulated number of garbage collections done. */);
7593 defsubr (&Scons);
7594 defsubr (&Slist);
7595 defsubr (&Svector);
7596 defsubr (&Srecord);
7597 defsubr (&Sbool_vector);
7598 defsubr (&Smake_byte_code);
7599 defsubr (&Smake_list);
7600 defsubr (&Smake_vector);
7601 defsubr (&Smake_record);
7602 defsubr (&Smake_string);
7603 defsubr (&Smake_bool_vector);
7604 defsubr (&Smake_symbol);
7605 defsubr (&Smake_marker);
7606 defsubr (&Smake_finalizer);
7607 defsubr (&Spurecopy);
7608 defsubr (&Sgarbage_collect);
7609 defsubr (&Smemory_limit);
7610 defsubr (&Smemory_info);
7611 defsubr (&Smemory_use_counts);
7612 defsubr (&Ssuspicious_object);
7615 /* When compiled with GCC, GDB might say "No enum type named
7616 pvec_type" if we don't have at least one symbol with that type, and
7617 then xbacktrace could fail. Similarly for the other enums and
7618 their values. Some non-GCC compilers don't like these constructs. */
7619 #ifdef __GNUC__
7620 union
7622 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7623 enum char_table_specials char_table_specials;
7624 enum char_bits char_bits;
7625 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7626 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7627 enum Lisp_Bits Lisp_Bits;
7628 enum Lisp_Compiled Lisp_Compiled;
7629 enum maxargs maxargs;
7630 enum MAX_ALLOCA MAX_ALLOCA;
7631 enum More_Lisp_Bits More_Lisp_Bits;
7632 enum pvec_type pvec_type;
7633 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7634 #endif /* __GNUC__ */