merge trunk
[emacs.git] / doc / lispref / numbers.texi
blobce0716f39ef2ef055084c9e95d913a694943d4d8
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2012
4 @c   Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
11   GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}.  Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828.  They can also be expressed in exponential notation: 1.5e2
16 equals 150; in this example, @samp{e2} stands for ten to the second
17 power, and that is multiplied by 1.5.  Floating point values are not
18 exact; they have a fixed, limited amount of precision.
20 @menu
21 * Integer Basics::            Representation and range of integers.
22 * Float Basics::              Representation and range of floating point.
23 * Predicates on Numbers::     Testing for numbers.
24 * Comparison of Numbers::     Equality and inequality predicates.
25 * Numeric Conversions::       Converting float to integer and vice versa.
26 * Arithmetic Operations::     How to add, subtract, multiply and divide.
27 * Rounding Operations::       Explicitly rounding floating point numbers.
28 * Bitwise Operations::        Logical and, or, not, shifting.
29 * Math Functions::            Trig, exponential and logarithmic functions.
30 * Random Numbers::            Obtaining random integers, predictable or not.
31 @end menu
33 @node Integer Basics
34 @section Integer Basics
36   The range of values for an integer depends on the machine.  The
37 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
38 @ifnottex
39 -2**29
40 @end ifnottex
41 @tex
42 @math{-2^{29}}
43 @end tex
45 @ifnottex
46 2**29 - 1),
47 @end ifnottex
48 @tex
49 @math{2^{29}-1}),
50 @end tex
51 but some machines provide a wider range.  Many examples in this
52 chapter assume that an integer has 30 bits and that floating point
53 numbers are IEEE double precision.
54 @cindex overflow
56   The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period.  An integer that is out of the
58 Emacs range is treated as a floating-point number.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  1073741825      ; @r{The floating point number 1073741825.0.}
66  0               ; @r{The integer 0.}
67 -0               ; @r{The integer 0.}
68 @end example
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73 @cindex hex numbers
74 @cindex octal numbers
75 @cindex reading numbers in hex, octal, and binary
76   The syntax for integers in bases other than 10 uses @samp{#}
77 followed by a letter that specifies the radix: @samp{b} for binary,
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79 specify radix @var{radix}.  Case is not significant for the letter
80 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
83 from 2 to 36.  For example:
85 @example
86 #b101100 @result{} 44
87 #o54 @result{} 44
88 #x2c @result{} 44
89 #24r1k @result{} 44
90 @end example
92   To understand how various functions work on integers, especially the
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94 view the numbers in their binary form.
96   In 30-bit binary, the decimal integer 5 looks like this:
98 @example
99 0000...000101 (30 bits total)
100 @end example
102 @noindent
103 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
104 this case, @samp{...} stands for twenty 0 bits.  Later examples also
105 use the @samp{...} notation to make binary integers easier to read.)
107   The integer @minus{}1 looks like this:
109 @example
110 1111...111111 (30 bits total)
111 @end example
113 @noindent
114 @cindex two's complement
115 @minus{}1 is represented as 30 ones.  (This is called @dfn{two's
116 complement} notation.)
118   The negative integer, @minus{}5, is creating by subtracting 4 from
119 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
120 @minus{}5 looks like this:
122 @example
123 1111...111011 (30 bits total)
124 @end example
126   In this implementation, the largest 30-bit binary integer value is
127 536,870,911 in decimal.  In binary, it looks like this:
129 @example
130 0111...111111 (30 bits total)
131 @end example
133   Since the arithmetic functions do not check whether integers go
134 outside their range, when you add 1 to 536,870,911, the value is the
135 negative integer @minus{}536,870,912:
137 @example
138 (+ 1 536870911)
139      @result{} -536870912
140      @result{} 1000...000000 (30 bits total)
141 @end example
143   Many of the functions described in this chapter accept markers for
144 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
145 arguments to such functions may be either numbers or markers, we often
146 give these arguments the name @var{number-or-marker}.  When the argument
147 value is a marker, its position value is used and its buffer is ignored.
149 @cindex largest Lisp integer number
150 @cindex maximum Lisp integer number
151 @defvar most-positive-fixnum
152 The value of this variable is the largest integer that Emacs Lisp
153 can handle.
154 @end defvar
156 @cindex smallest Lisp integer number
157 @cindex minimum Lisp integer number
158 @defvar most-negative-fixnum
159 The value of this variable is the smallest integer that Emacs Lisp can
160 handle.  It is negative.
161 @end defvar
163   @xref{Character Codes, max-char}, for the maximum value of a valid
164 character codepoint.
166 @node Float Basics
167 @section Floating Point Basics
169 @cindex @acronym{IEEE} floating point
170   Floating point numbers are useful for representing numbers that are
171 not integral.  The precise range of floating point numbers is
172 machine-specific; it is the same as the range of the C data type
173 @code{double} on the machine you are using.  Emacs uses the
174 @acronym{IEEE} floating point standard where possible (the standard is
175 supported by most modern computers).
177   The read syntax for floating point numbers requires either a decimal
178 point (with at least one digit following), an exponent, or both.  For
179 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
180 @samp{.15e4} are five ways of writing a floating point number whose
181 value is 1500.  They are all equivalent.  You can also use a minus
182 sign to write negative floating point numbers, as in @samp{-1.0}.
184   Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
185 respect to @code{equal} and @code{=}), even though the two are
186 distinguishable in the @acronym{IEEE} floating point standard.
188 @cindex positive infinity
189 @cindex negative infinity
190 @cindex infinity
191 @cindex NaN
192   The @acronym{IEEE} floating point standard supports positive
193 infinity and negative infinity as floating point values.  It also
194 provides for a class of values called NaN or ``not-a-number'';
195 numerical functions return such values in cases where there is no
196 correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN.  (NaN
197 values can also carry a sign, but for practical purposes there's no
198 significant difference between different NaN values in Emacs Lisp.)
199 Here are the read syntaxes for these special floating point values:
201 @table @asis
202 @item positive infinity
203 @samp{1.0e+INF}
204 @item negative infinity
205 @samp{-1.0e+INF}
206 @item Not-a-number
207 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
208 @end table
210 @defun isnan number
211 This predicate tests whether its argument is NaN, and returns @code{t}
212 if so, @code{nil} otherwise.  The argument must be a number.
213 @end defun
215   The following functions are specialized for handling floating point
216 numbers:
218 @defun frexp x
219 This function returns a cons cell @code{(@var{sig} . @var{exp})},
220 where @var{sig} and @var{exp} are respectively the significand and
221 exponent of the floating point number @var{x}:
223 @smallexample
224 @var{x} = @var{sig} * 2^@var{exp}
225 @end smallexample
227 @var{sig} is a floating point number between 0.5 (inclusive) and 1.0
228 (exclusive).  If @var{x} is zero, the return value is @code{(0 . 0)}.
229 @end defun
231 @defun ldexp sig &optional exp
232 This function returns a floating point number corresponding to the
233 significand @var{sig} and exponent @var{exp}.
234 @end defun
236 @defun copysign x1 x2
237 This function copies the sign of @var{x2} to the value of @var{x1},
238 and returns the result.  @var{x1} and @var{x2} must be floating point
239 numbers.
240 @end defun
242 @defun logb number
243 This function returns the binary exponent of @var{number}.  More
244 precisely, the value is the logarithm of @var{number} base 2, rounded
245 down to an integer.
247 @example
248 (logb 10)
249      @result{} 3
250 (logb 10.0e20)
251      @result{} 69
252 @end example
253 @end defun
255 @node Predicates on Numbers
256 @section Type Predicates for Numbers
257 @cindex predicates for numbers
259   The functions in this section test for numbers, or for a specific
260 type of number.  The functions @code{integerp} and @code{floatp} can
261 take any type of Lisp object as argument (they would not be of much
262 use otherwise), but the @code{zerop} predicate requires a number as
263 its argument.  See also @code{integer-or-marker-p} and
264 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
266 @defun floatp object
267 This predicate tests whether its argument is a floating point
268 number and returns @code{t} if so, @code{nil} otherwise.
269 @end defun
271 @defun integerp object
272 This predicate tests whether its argument is an integer, and returns
273 @code{t} if so, @code{nil} otherwise.
274 @end defun
276 @defun numberp object
277 This predicate tests whether its argument is a number (either integer or
278 floating point), and returns @code{t} if so, @code{nil} otherwise.
279 @end defun
281 @defun natnump object
282 @cindex natural numbers
283 This predicate (whose name comes from the phrase ``natural number'')
284 tests to see whether its argument is a nonnegative integer, and
285 returns @code{t} if so, @code{nil} otherwise.  0 is considered
286 non-negative.
288 @findex wholenump number
289 This is a synonym for @code{natnump}.
290 @end defun
292 @defun zerop number
293 This predicate tests whether its argument is zero, and returns @code{t}
294 if so, @code{nil} otherwise.  The argument must be a number.
296 @code{(zerop x)} is equivalent to @code{(= x 0)}.
297 @end defun
299 @node Comparison of Numbers
300 @section Comparison of Numbers
301 @cindex number comparison
302 @cindex comparing numbers
304   To test numbers for numerical equality, you should normally use
305 @code{=}, not @code{eq}.  There can be many distinct floating point
306 number objects with the same numeric value.  If you use @code{eq} to
307 compare them, then you test whether two values are the same
308 @emph{object}.  By contrast, @code{=} compares only the numeric values
309 of the objects.
311   At present, each integer value has a unique Lisp object in Emacs Lisp.
312 Therefore, @code{eq} is equivalent to @code{=} where integers are
313 concerned.  It is sometimes convenient to use @code{eq} for comparing an
314 unknown value with an integer, because @code{eq} does not report an
315 error if the unknown value is not a number---it accepts arguments of any
316 type.  By contrast, @code{=} signals an error if the arguments are not
317 numbers or markers.  However, it is a good idea to use @code{=} if you
318 can, even for comparing integers, just in case we change the
319 representation of integers in a future Emacs version.
321   Sometimes it is useful to compare numbers with @code{equal}; it
322 treats two numbers as equal if they have the same data type (both
323 integers, or both floating point) and the same value.  By contrast,
324 @code{=} can treat an integer and a floating point number as equal.
325 @xref{Equality Predicates}.
327   There is another wrinkle: because floating point arithmetic is not
328 exact, it is often a bad idea to check for equality of two floating
329 point values.  Usually it is better to test for approximate equality.
330 Here's a function to do this:
332 @example
333 (defvar fuzz-factor 1.0e-6)
334 (defun approx-equal (x y)
335   (or (and (= x 0) (= y 0))
336       (< (/ (abs (- x y))
337             (max (abs x) (abs y)))
338          fuzz-factor)))
339 @end example
341 @cindex CL note---integers vrs @code{eq}
342 @quotation
343 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
344 @code{=} because Common Lisp implements multi-word integers, and two
345 distinct integer objects can have the same numeric value.  Emacs Lisp
346 can have just one integer object for any given value because it has a
347 limited range of integer values.
348 @end quotation
350 @defun = number-or-marker1 number-or-marker2
351 This function tests whether its arguments are numerically equal, and
352 returns @code{t} if so, @code{nil} otherwise.
353 @end defun
355 @defun eql value1 value2
356 This function acts like @code{eq} except when both arguments are
357 numbers.  It compares numbers by type and numeric value, so that
358 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
359 @code{(eql 1 1)} both return @code{t}.
360 @end defun
362 @defun /= number-or-marker1 number-or-marker2
363 This function tests whether its arguments are numerically equal, and
364 returns @code{t} if they are not, and @code{nil} if they are.
365 @end defun
367 @defun <  number-or-marker1 number-or-marker2
368 This function tests whether its first argument is strictly less than
369 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
370 @end defun
372 @defun <=  number-or-marker1 number-or-marker2
373 This function tests whether its first argument is less than or equal
374 to its second argument.  It returns @code{t} if so, @code{nil}
375 otherwise.
376 @end defun
378 @defun >  number-or-marker1 number-or-marker2
379 This function tests whether its first argument is strictly greater
380 than its second argument.  It returns @code{t} if so, @code{nil}
381 otherwise.
382 @end defun
384 @defun >=  number-or-marker1 number-or-marker2
385 This function tests whether its first argument is greater than or
386 equal to its second argument.  It returns @code{t} if so, @code{nil}
387 otherwise.
388 @end defun
390 @defun max number-or-marker &rest numbers-or-markers
391 This function returns the largest of its arguments.
392 If any of the arguments is floating-point, the value is returned
393 as floating point, even if it was given as an integer.
395 @example
396 (max 20)
397      @result{} 20
398 (max 1 2.5)
399      @result{} 2.5
400 (max 1 3 2.5)
401      @result{} 3.0
402 @end example
403 @end defun
405 @defun min number-or-marker &rest numbers-or-markers
406 This function returns the smallest of its arguments.
407 If any of the arguments is floating-point, the value is returned
408 as floating point, even if it was given as an integer.
410 @example
411 (min -4 1)
412      @result{} -4
413 @end example
414 @end defun
416 @defun abs number
417 This function returns the absolute value of @var{number}.
418 @end defun
420 @node Numeric Conversions
421 @section Numeric Conversions
422 @cindex rounding in conversions
423 @cindex number conversions
424 @cindex converting numbers
426 To convert an integer to floating point, use the function @code{float}.
428 @defun float number
429 This returns @var{number} converted to floating point.
430 If @var{number} is already a floating point number, @code{float} returns
431 it unchanged.
432 @end defun
434 There are four functions to convert floating point numbers to integers;
435 they differ in how they round.  All accept an argument @var{number}
436 and an optional argument @var{divisor}.  Both arguments may be
437 integers or floating point numbers.  @var{divisor} may also be
438 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
439 functions convert @var{number} to an integer, or return it unchanged
440 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
441 divide @var{number} by @var{divisor} and convert the result to an
442 integer.  An @code{arith-error} results if @var{divisor} is 0.
444 @defun truncate number &optional divisor
445 This returns @var{number}, converted to an integer by rounding towards
446 zero.
448 @example
449 (truncate 1.2)
450      @result{} 1
451 (truncate 1.7)
452      @result{} 1
453 (truncate -1.2)
454      @result{} -1
455 (truncate -1.7)
456      @result{} -1
457 @end example
458 @end defun
460 @defun floor number &optional divisor
461 This returns @var{number}, converted to an integer by rounding downward
462 (towards negative infinity).
464 If @var{divisor} is specified, this uses the kind of division
465 operation that corresponds to @code{mod}, rounding downward.
467 @example
468 (floor 1.2)
469      @result{} 1
470 (floor 1.7)
471      @result{} 1
472 (floor -1.2)
473      @result{} -2
474 (floor -1.7)
475      @result{} -2
476 (floor 5.99 3)
477      @result{} 1
478 @end example
479 @end defun
481 @defun ceiling number &optional divisor
482 This returns @var{number}, converted to an integer by rounding upward
483 (towards positive infinity).
485 @example
486 (ceiling 1.2)
487      @result{} 2
488 (ceiling 1.7)
489      @result{} 2
490 (ceiling -1.2)
491      @result{} -1
492 (ceiling -1.7)
493      @result{} -1
494 @end example
495 @end defun
497 @defun round number &optional divisor
498 This returns @var{number}, converted to an integer by rounding towards the
499 nearest integer.  Rounding a value equidistant between two integers
500 may choose the integer closer to zero, or it may prefer an even integer,
501 depending on your machine.
503 @example
504 (round 1.2)
505      @result{} 1
506 (round 1.7)
507      @result{} 2
508 (round -1.2)
509      @result{} -1
510 (round -1.7)
511      @result{} -2
512 @end example
513 @end defun
515 @node Arithmetic Operations
516 @section Arithmetic Operations
517 @cindex arithmetic operations
519   Emacs Lisp provides the traditional four arithmetic operations:
520 addition, subtraction, multiplication, and division.  Remainder and modulus
521 functions supplement the division functions.  The functions to
522 add or subtract 1 are provided because they are traditional in Lisp and
523 commonly used.
525   All of these functions except @code{%} return a floating point value
526 if any argument is floating.
528   It is important to note that in Emacs Lisp, arithmetic functions
529 do not check for overflow.  Thus @code{(1+ 536870911)} may evaluate to
530 @minus{}536870912, depending on your hardware.
532 @defun 1+ number-or-marker
533 This function returns @var{number-or-marker} plus 1.
534 For example,
536 @example
537 (setq foo 4)
538      @result{} 4
539 (1+ foo)
540      @result{} 5
541 @end example
543 This function is not analogous to the C operator @code{++}---it does not
544 increment a variable.  It just computes a sum.  Thus, if we continue,
546 @example
548      @result{} 4
549 @end example
551 If you want to increment the variable, you must use @code{setq},
552 like this:
554 @example
555 (setq foo (1+ foo))
556      @result{} 5
557 @end example
558 @end defun
560 @defun 1- number-or-marker
561 This function returns @var{number-or-marker} minus 1.
562 @end defun
564 @defun + &rest numbers-or-markers
565 This function adds its arguments together.  When given no arguments,
566 @code{+} returns 0.
568 @example
570      @result{} 0
571 (+ 1)
572      @result{} 1
573 (+ 1 2 3 4)
574      @result{} 10
575 @end example
576 @end defun
578 @defun - &optional number-or-marker &rest more-numbers-or-markers
579 The @code{-} function serves two purposes: negation and subtraction.
580 When @code{-} has a single argument, the value is the negative of the
581 argument.  When there are multiple arguments, @code{-} subtracts each of
582 the @var{more-numbers-or-markers} from @var{number-or-marker},
583 cumulatively.  If there are no arguments, the result is 0.
585 @example
586 (- 10 1 2 3 4)
587      @result{} 0
588 (- 10)
589      @result{} -10
591      @result{} 0
592 @end example
593 @end defun
595 @defun * &rest numbers-or-markers
596 This function multiplies its arguments together, and returns the
597 product.  When given no arguments, @code{*} returns 1.
599 @example
601      @result{} 1
602 (* 1)
603      @result{} 1
604 (* 1 2 3 4)
605      @result{} 24
606 @end example
607 @end defun
609 @defun / dividend divisor &rest divisors
610 This function divides @var{dividend} by @var{divisor} and returns the
611 quotient.  If there are additional arguments @var{divisors}, then it
612 divides @var{dividend} by each divisor in turn.  Each argument may be a
613 number or a marker.
615 If all the arguments are integers, then the result is an integer too.
616 This means the result has to be rounded.  On most machines, the result
617 is rounded towards zero after each division, but some machines may round
618 differently with negative arguments.  This is because the Lisp function
619 @code{/} is implemented using the C division operator, which also
620 permits machine-dependent rounding.  As a practical matter, all known
621 machines round in the standard fashion.
623 @cindex @code{arith-error} in division
624 If you divide an integer by 0, an @code{arith-error} error is signaled.
625 (@xref{Errors}.)  Floating point division by zero returns either
626 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
627 otherwise, it signals an @code{arith-error} error.
629 @example
630 @group
631 (/ 6 2)
632      @result{} 3
633 @end group
634 (/ 5 2)
635      @result{} 2
636 (/ 5.0 2)
637      @result{} 2.5
638 (/ 5 2.0)
639      @result{} 2.5
640 (/ 5.0 2.0)
641      @result{} 2.5
642 (/ 25 3 2)
643      @result{} 4
644 @group
645 (/ -17 6)
646      @result{} -2   @r{(could in theory be @minus{}3 on some machines)}
647 @end group
648 @end example
649 @end defun
651 @defun % dividend divisor
652 @cindex remainder
653 This function returns the integer remainder after division of @var{dividend}
654 by @var{divisor}.  The arguments must be integers or markers.
656 For negative arguments, the remainder is in principle machine-dependent
657 since the quotient is; but in practice, all known machines behave alike.
659 An @code{arith-error} results if @var{divisor} is 0.
661 @example
662 (% 9 4)
663      @result{} 1
664 (% -9 4)
665      @result{} -1
666 (% 9 -4)
667      @result{} 1
668 (% -9 -4)
669      @result{} -1
670 @end example
672 For any two integers @var{dividend} and @var{divisor},
674 @example
675 @group
676 (+ (% @var{dividend} @var{divisor})
677    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
678 @end group
679 @end example
681 @noindent
682 always equals @var{dividend}.
683 @end defun
685 @defun mod dividend divisor
686 @cindex modulus
687 This function returns the value of @var{dividend} modulo @var{divisor};
688 in other words, the remainder after division of @var{dividend}
689 by @var{divisor}, but with the same sign as @var{divisor}.
690 The arguments must be numbers or markers.
692 Unlike @code{%}, @code{mod} returns a well-defined result for negative
693 arguments.  It also permits floating point arguments; it rounds the
694 quotient downward (towards minus infinity) to an integer, and uses that
695 quotient to compute the remainder.
697 An @code{arith-error} results if @var{divisor} is 0.
699 @example
700 @group
701 (mod 9 4)
702      @result{} 1
703 @end group
704 @group
705 (mod -9 4)
706      @result{} 3
707 @end group
708 @group
709 (mod 9 -4)
710      @result{} -3
711 @end group
712 @group
713 (mod -9 -4)
714      @result{} -1
715 @end group
716 @group
717 (mod 5.5 2.5)
718      @result{} .5
719 @end group
720 @end example
722 For any two numbers @var{dividend} and @var{divisor},
724 @example
725 @group
726 (+ (mod @var{dividend} @var{divisor})
727    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
728 @end group
729 @end example
731 @noindent
732 always equals @var{dividend}, subject to rounding error if either
733 argument is floating point.  For @code{floor}, see @ref{Numeric
734 Conversions}.
735 @end defun
737 @node Rounding Operations
738 @section Rounding Operations
739 @cindex rounding without conversion
741 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
742 @code{ftruncate} take a floating point argument and return a floating
743 point result whose value is a nearby integer.  @code{ffloor} returns the
744 nearest integer below; @code{fceiling}, the nearest integer above;
745 @code{ftruncate}, the nearest integer in the direction towards zero;
746 @code{fround}, the nearest integer.
748 @defun ffloor float
749 This function rounds @var{float} to the next lower integral value, and
750 returns that value as a floating point number.
751 @end defun
753 @defun fceiling float
754 This function rounds @var{float} to the next higher integral value, and
755 returns that value as a floating point number.
756 @end defun
758 @defun ftruncate float
759 This function rounds @var{float} towards zero to an integral value, and
760 returns that value as a floating point number.
761 @end defun
763 @defun fround float
764 This function rounds @var{float} to the nearest integral value,
765 and returns that value as a floating point number.
766 @end defun
768 @node Bitwise Operations
769 @section Bitwise Operations on Integers
770 @cindex bitwise arithmetic
771 @cindex logical arithmetic
773   In a computer, an integer is represented as a binary number, a
774 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
775 operation acts on the individual bits of such a sequence.  For example,
776 @dfn{shifting} moves the whole sequence left or right one or more places,
777 reproducing the same pattern ``moved over''.
779   The bitwise operations in Emacs Lisp apply only to integers.
781 @defun lsh integer1 count
782 @cindex logical shift
783 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
784 bits in @var{integer1} to the left @var{count} places, or to the right
785 if @var{count} is negative, bringing zeros into the vacated bits.  If
786 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
787 (most-significant) bit, producing a positive result even if
788 @var{integer1} is negative.  Contrast this with @code{ash}, below.
790 Here are two examples of @code{lsh}, shifting a pattern of bits one
791 place to the left.  We show only the low-order eight bits of the binary
792 pattern; the rest are all zero.
794 @example
795 @group
796 (lsh 5 1)
797      @result{} 10
798 ;; @r{Decimal 5 becomes decimal 10.}
799 00000101 @result{} 00001010
801 (lsh 7 1)
802      @result{} 14
803 ;; @r{Decimal 7 becomes decimal 14.}
804 00000111 @result{} 00001110
805 @end group
806 @end example
808 @noindent
809 As the examples illustrate, shifting the pattern of bits one place to
810 the left produces a number that is twice the value of the previous
811 number.
813 Shifting a pattern of bits two places to the left produces results
814 like this (with 8-bit binary numbers):
816 @example
817 @group
818 (lsh 3 2)
819      @result{} 12
820 ;; @r{Decimal 3 becomes decimal 12.}
821 00000011 @result{} 00001100
822 @end group
823 @end example
825 On the other hand, shifting one place to the right looks like this:
827 @example
828 @group
829 (lsh 6 -1)
830      @result{} 3
831 ;; @r{Decimal 6 becomes decimal 3.}
832 00000110 @result{} 00000011
833 @end group
835 @group
836 (lsh 5 -1)
837      @result{} 2
838 ;; @r{Decimal 5 becomes decimal 2.}
839 00000101 @result{} 00000010
840 @end group
841 @end example
843 @noindent
844 As the example illustrates, shifting one place to the right divides the
845 value of a positive integer by two, rounding downward.
847 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
848 not check for overflow, so shifting left can discard significant bits
849 and change the sign of the number.  For example, left shifting
850 536,870,911 produces @minus{}2 in the 30-bit implementation:
852 @example
853 (lsh 536870911 1)          ; @r{left shift}
854      @result{} -2
855 @end example
857 In binary, the argument looks like this:
859 @example
860 @group
861 ;; @r{Decimal 536,870,911}
862 0111...111111 (30 bits total)
863 @end group
864 @end example
866 @noindent
867 which becomes the following when left shifted:
869 @example
870 @group
871 ;; @r{Decimal @minus{}2}
872 1111...111110 (30 bits total)
873 @end group
874 @end example
875 @end defun
877 @defun ash integer1 count
878 @cindex arithmetic shift
879 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
880 to the left @var{count} places, or to the right if @var{count}
881 is negative.
883 @code{ash} gives the same results as @code{lsh} except when
884 @var{integer1} and @var{count} are both negative.  In that case,
885 @code{ash} puts ones in the empty bit positions on the left, while
886 @code{lsh} puts zeros in those bit positions.
888 Thus, with @code{ash}, shifting the pattern of bits one place to the right
889 looks like this:
891 @example
892 @group
893 (ash -6 -1) @result{} -3
894 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
895 1111...111010 (30 bits total)
896      @result{}
897 1111...111101 (30 bits total)
898 @end group
899 @end example
901 In contrast, shifting the pattern of bits one place to the right with
902 @code{lsh} looks like this:
904 @example
905 @group
906 (lsh -6 -1) @result{} 536870909
907 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
908 1111...111010 (30 bits total)
909      @result{}
910 0111...111101 (30 bits total)
911 @end group
912 @end example
914 Here are other examples:
916 @c !!! Check if lined up in smallbook format!  XDVI shows problem
917 @c     with smallbook but not with regular book! --rjc 16mar92
918 @smallexample
919 @group
920                    ;  @r{       30-bit binary values}
922 (lsh 5 2)          ;   5  =  @r{0000...000101}
923      @result{} 20         ;      =  @r{0000...010100}
924 @end group
925 @group
926 (ash 5 2)
927      @result{} 20
928 (lsh -5 2)         ;  -5  =  @r{1111...111011}
929      @result{} -20        ;      =  @r{1111...101100}
930 (ash -5 2)
931      @result{} -20
932 @end group
933 @group
934 (lsh 5 -2)         ;   5  =  @r{0000...000101}
935      @result{} 1          ;      =  @r{0000...000001}
936 @end group
937 @group
938 (ash 5 -2)
939      @result{} 1
940 @end group
941 @group
942 (lsh -5 -2)        ;  -5  =  @r{1111...111011}
943      @result{} 268435454
944                    ;      =  @r{0011...111110}
945 @end group
946 @group
947 (ash -5 -2)        ;  -5  =  @r{1111...111011}
948      @result{} -2         ;      =  @r{1111...111110}
949 @end group
950 @end smallexample
951 @end defun
953 @defun logand &rest ints-or-markers
954 This function returns the ``logical and'' of the arguments: the
955 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
956 set in all the arguments.  (``Set'' means that the value of the bit is 1
957 rather than 0.)
959 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
960 12 is 12: 1101 combined with 1100 produces 1100.
961 In both the binary numbers, the leftmost two bits are set (i.e., they
962 are 1's), so the leftmost two bits of the returned value are set.
963 However, for the rightmost two bits, each is zero in at least one of
964 the arguments, so the rightmost two bits of the returned value are 0's.
966 @noindent
967 Therefore,
969 @example
970 @group
971 (logand 13 12)
972      @result{} 12
973 @end group
974 @end example
976 If @code{logand} is not passed any argument, it returns a value of
977 @minus{}1.  This number is an identity element for @code{logand}
978 because its binary representation consists entirely of ones.  If
979 @code{logand} is passed just one argument, it returns that argument.
981 @smallexample
982 @group
983                    ; @r{       30-bit binary values}
985 (logand 14 13)     ; 14  =  @r{0000...001110}
986                    ; 13  =  @r{0000...001101}
987      @result{} 12         ; 12  =  @r{0000...001100}
988 @end group
990 @group
991 (logand 14 13 4)   ; 14  =  @r{0000...001110}
992                    ; 13  =  @r{0000...001101}
993                    ;  4  =  @r{0000...000100}
994      @result{} 4          ;  4  =  @r{0000...000100}
995 @end group
997 @group
998 (logand)
999      @result{} -1         ; -1  =  @r{1111...111111}
1000 @end group
1001 @end smallexample
1002 @end defun
1004 @defun logior &rest ints-or-markers
1005 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1006 is set in the result if, and only if, the @var{n}th bit is set in at least
1007 one of the arguments.  If there are no arguments, the result is zero,
1008 which is an identity element for this operation.  If @code{logior} is
1009 passed just one argument, it returns that argument.
1011 @smallexample
1012 @group
1013                    ; @r{       30-bit binary values}
1015 (logior 12 5)      ; 12  =  @r{0000...001100}
1016                    ;  5  =  @r{0000...000101}
1017      @result{} 13         ; 13  =  @r{0000...001101}
1018 @end group
1020 @group
1021 (logior 12 5 7)    ; 12  =  @r{0000...001100}
1022                    ;  5  =  @r{0000...000101}
1023                    ;  7  =  @r{0000...000111}
1024      @result{} 15         ; 15  =  @r{0000...001111}
1025 @end group
1026 @end smallexample
1027 @end defun
1029 @defun logxor &rest ints-or-markers
1030 This function returns the ``exclusive or'' of its arguments: the
1031 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1032 set in an odd number of the arguments.  If there are no arguments, the
1033 result is 0, which is an identity element for this operation.  If
1034 @code{logxor} is passed just one argument, it returns that argument.
1036 @smallexample
1037 @group
1038                    ; @r{       30-bit binary values}
1040 (logxor 12 5)      ; 12  =  @r{0000...001100}
1041                    ;  5  =  @r{0000...000101}
1042      @result{} 9          ;  9  =  @r{0000...001001}
1043 @end group
1045 @group
1046 (logxor 12 5 7)    ; 12  =  @r{0000...001100}
1047                    ;  5  =  @r{0000...000101}
1048                    ;  7  =  @r{0000...000111}
1049      @result{} 14         ; 14  =  @r{0000...001110}
1050 @end group
1051 @end smallexample
1052 @end defun
1054 @defun lognot integer
1055 This function returns the logical complement of its argument: the @var{n}th
1056 bit is one in the result if, and only if, the @var{n}th bit is zero in
1057 @var{integer}, and vice-versa.
1059 @example
1060 (lognot 5)
1061      @result{} -6
1062 ;;  5  =  @r{0000...000101} (30 bits total)
1063 ;; @r{becomes}
1064 ;; -6  =  @r{1111...111010} (30 bits total)
1065 @end example
1066 @end defun
1068 @node Math Functions
1069 @section Standard Mathematical Functions
1070 @cindex transcendental functions
1071 @cindex mathematical functions
1072 @cindex floating-point functions
1074   These mathematical functions allow integers as well as floating point
1075 numbers as arguments.
1077 @defun sin arg
1078 @defunx cos arg
1079 @defunx tan arg
1080 These are the ordinary trigonometric functions, with argument measured
1081 in radians.
1082 @end defun
1084 @defun asin arg
1085 The value of @code{(asin @var{arg})} is a number between
1086 @ifnottex
1087 @minus{}pi/2
1088 @end ifnottex
1089 @tex
1090 @math{-\pi/2}
1091 @end tex
1093 @ifnottex
1094 pi/2
1095 @end ifnottex
1096 @tex
1097 @math{\pi/2}
1098 @end tex
1099 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1100 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1101 @end defun
1103 @defun acos arg
1104 The value of @code{(acos @var{arg})} is a number between 0 and
1105 @ifnottex
1107 @end ifnottex
1108 @tex
1109 @math{\pi}
1110 @end tex
1111 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1112 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1113 @end defun
1115 @defun atan y &optional x
1116 The value of @code{(atan @var{y})} is a number between
1117 @ifnottex
1118 @minus{}pi/2
1119 @end ifnottex
1120 @tex
1121 @math{-\pi/2}
1122 @end tex
1124 @ifnottex
1125 pi/2
1126 @end ifnottex
1127 @tex
1128 @math{\pi/2}
1129 @end tex
1130 (exclusive) whose tangent is @var{y}.  If the optional second
1131 argument @var{x} is given, the value of @code{(atan y x)} is the
1132 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1133 @code{X} axis.
1134 @end defun
1136 @defun exp arg
1137 This is the exponential function; it returns @math{e} to the power
1138 @var{arg}.
1139 @end defun
1141 @defun log arg &optional base
1142 This function returns the logarithm of @var{arg}, with base
1143 @var{base}.  If you don't specify @var{base}, the natural base
1144 @math{e} is used.  If @var{arg} is negative, it signals a
1145 @code{domain-error} error.
1146 @end defun
1148 @ignore
1149 @defun expm1 arg
1150 This function returns @code{(1- (exp @var{arg}))}, but it is more
1151 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1152 is close to 1.
1153 @end defun
1155 @defun log1p arg
1156 This function returns @code{(log (1+ @var{arg}))}, but it is more
1157 accurate than that when @var{arg} is so small that adding 1 to it would
1158 lose accuracy.
1159 @end defun
1160 @end ignore
1162 @defun log10 arg
1163 This function returns the logarithm of @var{arg}, with base 10.  If
1164 @var{arg} is negative, it signals a @code{domain-error} error.
1165 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1166 approximately.
1167 @end defun
1169 @defun expt x y
1170 This function returns @var{x} raised to power @var{y}.  If both
1171 arguments are integers and @var{y} is positive, the result is an
1172 integer; in this case, overflow causes truncation, so watch out.
1173 @end defun
1175 @defun sqrt arg
1176 This returns the square root of @var{arg}.  If @var{arg} is negative,
1177 it signals a @code{domain-error} error.
1178 @end defun
1180 In addition, Emacs defines the following common mathematical
1181 constants:
1183 @defvar float-e
1184 The mathematical constant @math{e} (2.71828@dots{}).
1185 @end defvar
1187 @defvar float-pi
1188 The mathematical constant @math{pi} (3.14159@dots{}).
1189 @end defvar
1191 @node Random Numbers
1192 @section Random Numbers
1193 @cindex random numbers
1195 A deterministic computer program cannot generate true random numbers.
1196 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1197 pseudo-random numbers is generated in a deterministic fashion.  The
1198 numbers are not truly random, but they have certain properties that
1199 mimic a random series.  For example, all possible values occur equally
1200 often in a pseudo-random series.
1202 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1203 Starting from any given seed, the @code{random} function always
1204 generates the same sequence of numbers.  Emacs always starts with the
1205 same seed value, so the sequence of values of @code{random} is actually
1206 the same in each Emacs run!  For example, in one operating system, the
1207 first call to @code{(random)} after you start Emacs always returns
1208 @minus{}1457731, and the second one always returns @minus{}7692030.  This
1209 repeatability is helpful for debugging.
1211 If you want random numbers that don't always come out the same, execute
1212 @code{(random t)}.  This chooses a new seed based on the current time of
1213 day and on Emacs's process @acronym{ID} number.
1215 @defun random &optional limit
1216 This function returns a pseudo-random integer.  Repeated calls return a
1217 series of pseudo-random integers.
1219 If @var{limit} is a positive integer, the value is chosen to be
1220 nonnegative and less than @var{limit}.
1222 If @var{limit} is @code{t}, it means to choose a new seed based on the
1223 current time of day and on Emacs's process @acronym{ID} number.
1225 On some machines, any integer representable in Lisp may be the result
1226 of @code{random}.  On other machines, the result can never be larger
1227 than a certain maximum or less than a certain (negative) minimum.
1228 @end defun