1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* ANSI C requires only these float functions:
23 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
24 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
26 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
27 Define HAVE_CBRT if you have cbrt.
28 Define HAVE_RINT if you have a working rint.
29 If you don't define these, then the appropriate routines will be simulated.
31 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
32 (This should happen automatically.)
34 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
35 This has no effect if HAVE_MATHERR is defined.
37 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
38 (What systems actually do this? Please let us know.)
40 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
41 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
42 range checking will happen before calling the float routines. This has
43 no effect if HAVE_MATHERR is defined (since matherr will be called when
44 a domain error occurs.)
50 #include "syssignal.h"
56 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
57 #ifndef IEEE_FLOATING_POINT
58 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
59 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
60 #define IEEE_FLOATING_POINT 1
62 #define IEEE_FLOATING_POINT 0
66 /* Work around a problem that happens because math.h on hpux 7
67 defines two static variables--which, in Emacs, are not really static,
68 because `static' is defined as nothing. The problem is that they are
69 defined both here and in lread.c.
70 These macros prevent the name conflict. */
71 #if defined (HPUX) && !defined (HPUX8)
72 #define _MAXLDBL floatfns_maxldbl
73 #define _NMAXLDBL floatfns_nmaxldbl
78 /* This declaration is omitted on some systems, like Ultrix. */
79 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
80 extern double logb ();
81 #endif /* not HPUX and HAVE_LOGB and no logb macro */
83 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
84 /* If those are defined, then this is probably a `matherr' machine. */
95 # ifdef FLOAT_CHECK_ERRNO
96 # undef FLOAT_CHECK_ERRNO
98 # ifdef FLOAT_CHECK_DOMAIN
99 # undef FLOAT_CHECK_DOMAIN
103 #ifndef NO_FLOAT_CHECK_ERRNO
104 #define FLOAT_CHECK_ERRNO
107 #ifdef FLOAT_CHECK_ERRNO
115 /* Avoid traps on VMS from sinh and cosh.
116 All the other functions set errno instead. */
121 #define cosh(x) ((exp(x)+exp(-x))*0.5)
122 #define sinh(x) ((exp(x)-exp(-x))*0.5)
125 #ifdef FLOAT_CATCH_SIGILL
126 static SIGTYPE
float_error ();
129 /* Nonzero while executing in floating point.
130 This tells float_error what to do. */
134 /* If an argument is out of range for a mathematical function,
135 here is the actual argument value to use in the error message.
136 These variables are used only across the floating point library call
137 so there is no need to staticpro them. */
139 static Lisp_Object float_error_arg
, float_error_arg2
;
141 static char *float_error_fn_name
;
143 /* Evaluate the floating point expression D, recording NUM
144 as the original argument for error messages.
145 D is normally an assignment expression.
146 Handle errors which may result in signals or may set errno.
148 Note that float_error may be declared to return void, so you can't
149 just cast the zero after the colon to (SIGTYPE) to make the types
152 #ifdef FLOAT_CHECK_ERRNO
153 #define IN_FLOAT(d, name, num) \
155 float_error_arg = num; \
156 float_error_fn_name = name; \
157 in_float = 1; errno = 0; (d); in_float = 0; \
160 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
161 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
162 default: arith_error (float_error_fn_name, float_error_arg); \
165 #define IN_FLOAT2(d, name, num, num2) \
167 float_error_arg = num; \
168 float_error_arg2 = num2; \
169 float_error_fn_name = name; \
170 in_float = 1; errno = 0; (d); in_float = 0; \
173 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
174 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
175 default: arith_error (float_error_fn_name, float_error_arg); \
179 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
180 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
183 /* Convert float to Lisp_Int if it fits, else signal a range error
184 using the given arguments. */
185 #define FLOAT_TO_INT(x, i, name, num) \
188 if (FIXNUM_OVERFLOW_P (x)) \
189 range_error (name, num); \
190 XSETINT (i, (EMACS_INT)(x)); \
193 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
196 if (FIXNUM_OVERFLOW_P (x)) \
197 range_error2 (name, num1, num2); \
198 XSETINT (i, (EMACS_INT)(x)); \
202 #define arith_error(op,arg) \
203 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
204 #define range_error(op,arg) \
205 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
206 #define range_error2(op,a1,a2) \
207 Fsignal (Qrange_error, Fcons (build_string ((op)), \
208 Fcons ((a1), Fcons ((a2), Qnil))))
209 #define domain_error(op,arg) \
210 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
211 #define domain_error2(op,a1,a2) \
212 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
213 Fcons ((a1), Fcons ((a2), Qnil))))
215 /* Extract a Lisp number as a `double', or signal an error. */
221 CHECK_NUMBER_OR_FLOAT (num
);
224 return XFLOAT_DATA (num
);
225 return (double) XINT (num
);
228 /* Trig functions. */
230 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
231 doc
: /* Return the inverse cosine of ARG. */)
233 register Lisp_Object arg
;
235 double d
= extract_float (arg
);
236 #ifdef FLOAT_CHECK_DOMAIN
237 if (d
> 1.0 || d
< -1.0)
238 domain_error ("acos", arg
);
240 IN_FLOAT (d
= acos (d
), "acos", arg
);
241 return make_float (d
);
244 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
245 doc
: /* Return the inverse sine of ARG. */)
247 register Lisp_Object arg
;
249 double d
= extract_float (arg
);
250 #ifdef FLOAT_CHECK_DOMAIN
251 if (d
> 1.0 || d
< -1.0)
252 domain_error ("asin", arg
);
254 IN_FLOAT (d
= asin (d
), "asin", arg
);
255 return make_float (d
);
258 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
259 doc
: /* Return the inverse tangent of the arguments.
260 If only one argument Y is given, return the inverse tangent of Y.
261 If two arguments Y and X are given, return the inverse tangent of Y
262 divided by X, i.e. the angle in radians between the vector (X, Y)
265 register Lisp_Object y
, x
;
267 double d
= extract_float (y
);
270 IN_FLOAT (d
= atan (d
), "atan", y
);
273 double d2
= extract_float (x
);
275 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
277 return make_float (d
);
280 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
281 doc
: /* Return the cosine of ARG. */)
283 register Lisp_Object arg
;
285 double d
= extract_float (arg
);
286 IN_FLOAT (d
= cos (d
), "cos", arg
);
287 return make_float (d
);
290 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
291 doc
: /* Return the sine of ARG. */)
293 register Lisp_Object arg
;
295 double d
= extract_float (arg
);
296 IN_FLOAT (d
= sin (d
), "sin", arg
);
297 return make_float (d
);
300 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
301 doc
: /* Return the tangent of ARG. */)
303 register Lisp_Object arg
;
305 double d
= extract_float (arg
);
307 #ifdef FLOAT_CHECK_DOMAIN
309 domain_error ("tan", arg
);
311 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
312 return make_float (d
);
315 #if 0 /* Leave these out unless we find there's a reason for them. */
317 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
318 doc
: /* Return the bessel function j0 of ARG. */)
320 register Lisp_Object arg
;
322 double d
= extract_float (arg
);
323 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
324 return make_float (d
);
327 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
328 doc
: /* Return the bessel function j1 of ARG. */)
330 register Lisp_Object arg
;
332 double d
= extract_float (arg
);
333 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
334 return make_float (d
);
337 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
338 doc
: /* Return the order N bessel function output jn of ARG.
339 The first arg (the order) is truncated to an integer. */)
341 register Lisp_Object n
, arg
;
343 int i1
= extract_float (n
);
344 double f2
= extract_float (arg
);
346 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
347 return make_float (f2
);
350 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
351 doc
: /* Return the bessel function y0 of ARG. */)
353 register Lisp_Object arg
;
355 double d
= extract_float (arg
);
356 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
357 return make_float (d
);
360 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
361 doc
: /* Return the bessel function y1 of ARG. */)
363 register Lisp_Object arg
;
365 double d
= extract_float (arg
);
366 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
367 return make_float (d
);
370 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
371 doc
: /* Return the order N bessel function output yn of ARG.
372 The first arg (the order) is truncated to an integer. */)
374 register Lisp_Object n
, arg
;
376 int i1
= extract_float (n
);
377 double f2
= extract_float (arg
);
379 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
380 return make_float (f2
);
385 #if 0 /* Leave these out unless we see they are worth having. */
387 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
388 doc
: /* Return the mathematical error function of ARG. */)
390 register Lisp_Object arg
;
392 double d
= extract_float (arg
);
393 IN_FLOAT (d
= erf (d
), "erf", arg
);
394 return make_float (d
);
397 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
398 doc
: /* Return the complementary error function of ARG. */)
400 register Lisp_Object arg
;
402 double d
= extract_float (arg
);
403 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
404 return make_float (d
);
407 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
408 doc
: /* Return the log gamma of ARG. */)
410 register Lisp_Object arg
;
412 double d
= extract_float (arg
);
413 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
414 return make_float (d
);
417 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
418 doc
: /* Return the cube root of ARG. */)
420 register Lisp_Object arg
;
422 double d
= extract_float (arg
);
424 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
427 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
429 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
431 return make_float (d
);
436 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
437 doc
: /* Return the exponential base e of ARG. */)
439 register Lisp_Object arg
;
441 double d
= extract_float (arg
);
442 #ifdef FLOAT_CHECK_DOMAIN
443 if (d
> 709.7827) /* Assume IEEE doubles here */
444 range_error ("exp", arg
);
446 return make_float (0.0);
449 IN_FLOAT (d
= exp (d
), "exp", arg
);
450 return make_float (d
);
453 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
454 doc
: /* Return the exponential ARG1 ** ARG2. */)
456 register Lisp_Object arg1
, arg2
;
460 CHECK_NUMBER_OR_FLOAT (arg1
);
461 CHECK_NUMBER_OR_FLOAT (arg2
);
462 if (INTEGERP (arg1
) /* common lisp spec */
463 && INTEGERP (arg2
)) /* don't promote, if both are ints */
464 { /* this can be improved by pre-calculating */
465 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
477 acc
= (y
& 1) ? -1 : 1;
488 y
= (unsigned)y
>> 1;
494 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
495 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
496 /* Really should check for overflow, too */
497 if (f1
== 0.0 && f2
== 0.0)
499 #ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
501 domain_error2 ("expt", arg1
, arg2
);
503 IN_FLOAT2 (f1
= pow (f1
, f2
), "expt", arg1
, arg2
);
504 return make_float (f1
);
507 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
508 doc
: /* Return the natural logarithm of ARG.
509 If second optional argument BASE is given, return log ARG using that base. */)
511 register Lisp_Object arg
, base
;
513 double d
= extract_float (arg
);
515 #ifdef FLOAT_CHECK_DOMAIN
517 domain_error2 ("log", arg
, base
);
520 IN_FLOAT (d
= log (d
), "log", arg
);
523 double b
= extract_float (base
);
525 #ifdef FLOAT_CHECK_DOMAIN
526 if (b
<= 0.0 || b
== 1.0)
527 domain_error2 ("log", arg
, base
);
530 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
532 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
534 return make_float (d
);
537 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
538 doc
: /* Return the logarithm base 10 of ARG. */)
540 register Lisp_Object arg
;
542 double d
= extract_float (arg
);
543 #ifdef FLOAT_CHECK_DOMAIN
545 domain_error ("log10", arg
);
547 IN_FLOAT (d
= log10 (d
), "log10", arg
);
548 return make_float (d
);
551 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
552 doc
: /* Return the square root of ARG. */)
554 register Lisp_Object arg
;
556 double d
= extract_float (arg
);
557 #ifdef FLOAT_CHECK_DOMAIN
559 domain_error ("sqrt", arg
);
561 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
562 return make_float (d
);
565 #if 0 /* Not clearly worth adding. */
567 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
568 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
570 register Lisp_Object arg
;
572 double d
= extract_float (arg
);
573 #ifdef FLOAT_CHECK_DOMAIN
575 domain_error ("acosh", arg
);
577 #ifdef HAVE_INVERSE_HYPERBOLIC
578 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
580 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
582 return make_float (d
);
585 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
586 doc
: /* Return the inverse hyperbolic sine of ARG. */)
588 register Lisp_Object arg
;
590 double d
= extract_float (arg
);
591 #ifdef HAVE_INVERSE_HYPERBOLIC
592 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
594 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
596 return make_float (d
);
599 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
600 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
602 register Lisp_Object arg
;
604 double d
= extract_float (arg
);
605 #ifdef FLOAT_CHECK_DOMAIN
606 if (d
>= 1.0 || d
<= -1.0)
607 domain_error ("atanh", arg
);
609 #ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
612 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
614 return make_float (d
);
617 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
618 doc
: /* Return the hyperbolic cosine of ARG. */)
620 register Lisp_Object arg
;
622 double d
= extract_float (arg
);
623 #ifdef FLOAT_CHECK_DOMAIN
624 if (d
> 710.0 || d
< -710.0)
625 range_error ("cosh", arg
);
627 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
628 return make_float (d
);
631 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
632 doc
: /* Return the hyperbolic sine of ARG. */)
634 register Lisp_Object arg
;
636 double d
= extract_float (arg
);
637 #ifdef FLOAT_CHECK_DOMAIN
638 if (d
> 710.0 || d
< -710.0)
639 range_error ("sinh", arg
);
641 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
642 return make_float (d
);
645 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
646 doc
: /* Return the hyperbolic tangent of ARG. */)
648 register Lisp_Object arg
;
650 double d
= extract_float (arg
);
651 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
652 return make_float (d
);
656 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
657 doc
: /* Return the absolute value of ARG. */)
659 register Lisp_Object arg
;
661 CHECK_NUMBER_OR_FLOAT (arg
);
664 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
665 else if (XINT (arg
) < 0)
666 XSETINT (arg
, - XINT (arg
));
671 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
672 doc
: /* Return the floating point number equal to ARG. */)
674 register Lisp_Object arg
;
676 CHECK_NUMBER_OR_FLOAT (arg
);
679 return make_float ((double) XINT (arg
));
680 else /* give 'em the same float back */
684 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
685 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
686 This is the same as the exponent of a float. */)
692 double f
= extract_float (arg
);
695 value
= -(VALMASK
>> 1);
699 IN_FLOAT (value
= logb (f
), "logb", arg
);
703 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
713 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
720 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
728 XSETINT (val
, value
);
733 /* the rounding functions */
736 rounding_driver (arg
, divisor
, double_round
, int_round2
, name
)
737 register Lisp_Object arg
, divisor
;
738 double (*double_round
) ();
739 EMACS_INT (*int_round2
) ();
742 CHECK_NUMBER_OR_FLOAT (arg
);
744 if (! NILP (divisor
))
748 CHECK_NUMBER_OR_FLOAT (divisor
);
750 if (FLOATP (arg
) || FLOATP (divisor
))
754 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
755 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
756 if (! IEEE_FLOATING_POINT
&& f2
== 0)
757 Fsignal (Qarith_error
, Qnil
);
759 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
760 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
768 Fsignal (Qarith_error
, Qnil
);
770 XSETINT (arg
, (*int_round2
) (i1
, i2
));
778 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
779 FLOAT_TO_INT (d
, arg
, name
, arg
);
785 /* With C's /, the result is implementation-defined if either operand
786 is negative, so take care with negative operands in the following
787 integer functions. */
794 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
795 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
803 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
804 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
812 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
813 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
820 /* The C language's division operator gives us one remainder R, but
821 we want the remainder R1 on the other side of 0 if R1 is closer
822 to 0 than R is; because we want to round to even, we also want R1
823 if R and R1 are the same distance from 0 and if C's quotient is
825 EMACS_INT q
= i1
/ i2
;
826 EMACS_INT r
= i1
% i2
;
827 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
828 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
829 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
832 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
833 if `rint' exists but does not work right. */
835 #define emacs_rint rint
841 return floor (d
+ 0.5);
852 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
853 doc
: /* Return the smallest integer no less than ARG.
854 This rounds the value towards +inf.
855 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
857 Lisp_Object arg
, divisor
;
859 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
862 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
863 doc
: /* Return the largest integer no greater than ARG.
864 This rounds the value towards +inf.
865 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
867 Lisp_Object arg
, divisor
;
869 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
872 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
873 doc
: /* Return the nearest integer to ARG.
874 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
876 Rounding a value equidistant between two integers may choose the
877 integer closer to zero, or it may prefer an even integer, depending on
878 your machine. For example, \(round 2.5\) can return 3 on some
879 systems, but 2 on others. */)
881 Lisp_Object arg
, divisor
;
883 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
886 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
887 doc
: /* Truncate a floating point number to an int.
888 Rounds ARG toward zero.
889 With optional DIVISOR, truncate ARG/DIVISOR. */)
891 Lisp_Object arg
, divisor
;
893 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
900 register Lisp_Object x
, y
;
904 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
905 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
907 if (! IEEE_FLOATING_POINT
&& f2
== 0)
908 Fsignal (Qarith_error
, Qnil
);
910 /* If the "remainder" comes out with the wrong sign, fix it. */
911 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
912 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
914 return make_float (f1
);
917 /* It's not clear these are worth adding. */
919 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
920 doc
: /* Return the smallest integer no less than ARG, as a float.
921 \(Round toward +inf.\) */)
923 register Lisp_Object arg
;
925 double d
= extract_float (arg
);
926 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
927 return make_float (d
);
930 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
931 doc
: /* Return the largest integer no greater than ARG, as a float.
932 \(Round towards -inf.\) */)
934 register Lisp_Object arg
;
936 double d
= extract_float (arg
);
937 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
938 return make_float (d
);
941 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
942 doc
: /* Return the nearest integer to ARG, as a float. */)
944 register Lisp_Object arg
;
946 double d
= extract_float (arg
);
947 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
948 return make_float (d
);
951 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
952 doc
: /* Truncate a floating point number to an integral float value.
953 Rounds the value toward zero. */)
955 register Lisp_Object arg
;
957 double d
= extract_float (arg
);
959 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
961 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
962 return make_float (d
);
965 #ifdef FLOAT_CATCH_SIGILL
971 fatal_error_signal (signo
);
976 #else /* not BSD4_1 */
977 sigsetmask (SIGEMPTYMASK
);
978 #endif /* not BSD4_1 */
980 /* Must reestablish handler each time it is called. */
981 signal (SIGILL
, float_error
);
982 #endif /* BSD_SYSTEM */
986 Fsignal (Qarith_error
, Fcons (float_error_arg
, Qnil
));
989 /* Another idea was to replace the library function `infnan'
990 where SIGILL is signaled. */
992 #endif /* FLOAT_CATCH_SIGILL */
1001 /* Not called from emacs-lisp float routines; do the default thing. */
1003 if (!strcmp (x
->name
, "pow"))
1007 = Fcons (build_string (x
->name
),
1008 Fcons (make_float (x
->arg1
),
1009 ((!strcmp (x
->name
, "log") || !strcmp (x
->name
, "pow"))
1010 ? Fcons (make_float (x
->arg2
), Qnil
)
1014 case DOMAIN
: Fsignal (Qdomain_error
, args
); break;
1015 case SING
: Fsignal (Qsingularity_error
, args
); break;
1016 case OVERFLOW
: Fsignal (Qoverflow_error
, args
); break;
1017 case UNDERFLOW
: Fsignal (Qunderflow_error
, args
); break;
1018 default: Fsignal (Qarith_error
, args
); break;
1020 return (1); /* don't set errno or print a message */
1022 #endif /* HAVE_MATHERR */
1027 #ifdef FLOAT_CATCH_SIGILL
1028 signal (SIGILL
, float_error
);
1049 defsubr (&Sbessel_y0
);
1050 defsubr (&Sbessel_y1
);
1051 defsubr (&Sbessel_yn
);
1052 defsubr (&Sbessel_j0
);
1053 defsubr (&Sbessel_j1
);
1054 defsubr (&Sbessel_jn
);
1057 defsubr (&Slog_gamma
);
1058 defsubr (&Scube_root
);
1060 defsubr (&Sfceiling
);
1063 defsubr (&Sftruncate
);
1073 defsubr (&Sceiling
);
1076 defsubr (&Struncate
);