(Documentation): Add xref to Documentation Tips.
[emacs.git] / src / alloc.c
blobf24d77f0519b92dff7e46f638fb582942efa91da
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 /* Note that this declares bzero on OSF/1. How dumb. */
36 #include <signal.h>
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
86 #ifdef DOUG_LEA_MALLOC
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
97 #define MMAP_MAX_AREAS 100000000
99 #else /* not DOUG_LEA_MALLOC */
101 /* The following come from gmalloc.c. */
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
107 #endif /* not DOUG_LEA_MALLOC */
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128 static pthread_mutex_t alloc_mutex;
130 #define BLOCK_INPUT_ALLOC \
131 do \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 sigblock (sigmask (SIGIO)); \
135 pthread_mutex_lock (&alloc_mutex); \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 sigunblock (sigmask (SIGIO)); \
145 while (0)
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154 /* Value of _bytes_used, when spare_memory was freed. */
156 static __malloc_size_t bytes_used_when_full;
158 static __malloc_size_t bytes_used_when_reconsidered;
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179 /* Number of bytes of consing done since the last gc. */
181 int consing_since_gc;
183 /* Count the amount of consing of various sorts of space. */
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
194 /* Minimum number of bytes of consing since GC before next GC. */
196 EMACS_INT gc_cons_threshold;
198 /* Similar minimum, computed from Vgc_cons_percentage. */
200 EMACS_INT gc_relative_threshold;
202 static Lisp_Object Vgc_cons_percentage;
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
207 EMACS_INT memory_full_cons_threshold;
209 /* Nonzero during GC. */
211 int gc_in_progress;
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
217 int abort_on_gc;
219 /* Nonzero means display messages at beginning and end of GC. */
221 int garbage_collection_messages;
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
233 /* Number of live and free conses etc. */
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
243 char *spare_memory[7];
245 /* Amount of spare memory to keep in large reserve block. */
247 #define SPARE_MEMORY (1 << 14)
249 /* Number of extra blocks malloc should get when it needs more core. */
251 static int malloc_hysteresis;
253 /* Non-nil means defun should do purecopy on the function definition. */
255 Lisp_Object Vpurify_flag;
257 /* Non-nil means we are handling a memory-full error. */
259 Lisp_Object Vmemory_full;
261 #ifndef HAVE_SHM
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 #else /* HAVE_SHM */
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
277 #endif /* HAVE_SHM */
279 /* Pointer to the pure area, and its size. */
281 static char *purebeg;
282 static size_t pure_size;
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
287 static size_t pure_bytes_used_before_overflow;
289 /* Value is non-zero if P points into pure space. */
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
297 /* Total number of bytes allocated in pure storage. */
299 EMACS_INT pure_bytes_used;
301 /* Index in pure at which next pure Lisp object will be allocated.. */
303 static EMACS_INT pure_bytes_used_lisp;
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307 static EMACS_INT pure_bytes_used_non_lisp;
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
312 char *pending_malloc_warning;
314 /* Pre-computed signal argument for use when memory is exhausted. */
316 Lisp_Object Vmemory_signal_data;
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 char *stack_copy;
327 int stack_copy_size;
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
332 int ignore_warnings;
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336 /* Hook run after GC has finished. */
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
361 extern int message_enable_multibyte;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
400 Lisp_Object Vdead;
402 #ifdef GC_MALLOC_CHECK
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
407 #endif /* GC_MALLOC_CHECK */
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
414 A red-black tree is a balanced binary tree with the following
415 properties:
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
433 struct mem_node
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
442 /* Start and end of allocated region. */
443 void *start, *end;
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
448 /* Memory type. */
449 enum mem_type type;
452 /* Base address of stack. Set in main. */
454 Lisp_Object *stack_base;
456 /* Root of the tree describing allocated Lisp memory. */
458 static struct mem_node *mem_root;
460 /* Lowest and highest known address in the heap. */
462 static void *min_heap_address, *max_heap_address;
464 /* Sentinel node of the tree. */
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498 /* Recording what needs to be marked for gc. */
500 struct gcpro *gcprolist;
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508 /* Index of next unused slot in staticvec. */
510 int staticidx = 0;
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
524 /************************************************************************
525 Malloc
526 ************************************************************************/
528 /* Function malloc calls this if it finds we are near exhausting storage. */
530 void
531 malloc_warning (str)
532 char *str;
534 pending_malloc_warning = str;
538 /* Display an already-pending malloc warning. */
540 void
541 display_malloc_warning ()
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
557 /* Called if we can't allocate relocatable space for a buffer. */
559 void
560 buffer_memory_full ()
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
579 #ifdef XMALLOC_OVERRUN_CHECK
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
606 /* Macros to insert and extract the block size in the header. */
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
633 (time passes).
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
640 static int check_depth;
642 /* Like malloc, but wraps allocated block with header and trailer. */
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 --check_depth;
660 return (POINTER_TYPE *)val;
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693 if (val && check_depth == 1)
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 --check_depth;
701 return (POINTER_TYPE *)val;
704 /* Like free, but checks block for overrun. */
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
710 unsigned char *val = (unsigned char *)block;
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
734 free (val);
735 --check_depth;
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
747 /* Like malloc but check for no memory and block interrupt input.. */
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
753 register POINTER_TYPE *val;
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
759 if (!val && size)
760 memory_full ();
761 return val;
765 /* Like realloc but check for no memory and block interrupt input.. */
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
772 register POINTER_TYPE *val;
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
783 if (!val && size) memory_full ();
784 return val;
788 /* Like free but block interrupt input. */
790 void
791 xfree (block)
792 POINTER_TYPE *block;
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
803 /* Like strdup, but uses xmalloc. */
805 char *
806 xstrdup (s)
807 const char *s;
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
816 /* Unwind for SAFE_ALLOCA */
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
845 register void *val;
847 BLOCK_INPUT;
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
853 val = (void *) malloc (nbytes);
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
870 #endif
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
926 /* Internal data structures and constants. */
928 #define ABLOCKS_SIZE 16
930 /* An aligned block of memory. */
931 struct ablock
933 union
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
958 struct ablock blocks[ABLOCKS_SIZE];
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
991 void *base, *val;
992 struct ablocks *abase;
994 eassert (nbytes <= BLOCK_BYTES);
996 BLOCK_INPUT;
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1002 if (!free_ablock)
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1014 #ifdef USE_POSIX_MEMALIGN
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1026 if (base == 0)
1028 UNBLOCK_INPUT;
1029 memory_full ();
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1058 #endif
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1118 while (*tem)
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1122 i++;
1123 *tem = (*tem)->x.next_free;
1125 else
1126 tem = &(*tem)->x.next_free;
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1135 UNBLOCK_INPUT;
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1141 struct buffer *
1142 allocate_buffer ()
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1151 #ifndef SYSTEM_MALLOC
1153 /* Arranging to disable input signals while we're in malloc.
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1163 #ifndef SYNC_INPUT
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1175 /* This function is used as the hook for free to call. */
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1182 EMACS_INT bytes_used_now;
1184 BLOCK_INPUT_ALLOC;
1186 #ifdef GC_MALLOC_CHECK
1187 if (ptr)
1189 struct mem_node *m;
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1198 else
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1204 #endif /* GC_MALLOC_CHECK */
1206 __free_hook = old_free_hook;
1207 free (ptr);
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
1212 if (! NILP (Vmemory_full)
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
1218 > ((bytes_used_when_reconsidered = BYTES_USED)
1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220 refill_memory_reserve ();
1222 __free_hook = emacs_blocked_free;
1223 UNBLOCK_INPUT_ALLOC;
1227 /* This function is the malloc hook that Emacs uses. */
1229 static void *
1230 emacs_blocked_malloc (size, ptr)
1231 size_t size;
1232 const void *ptr;
1234 void *value;
1236 BLOCK_INPUT_ALLOC;
1237 __malloc_hook = old_malloc_hook;
1238 #ifdef DOUG_LEA_MALLOC
1239 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1240 #else
1241 __malloc_extra_blocks = malloc_hysteresis;
1242 #endif
1244 value = (void *) malloc (size);
1246 #ifdef GC_MALLOC_CHECK
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1259 if (!dont_register_blocks)
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1265 #endif /* GC_MALLOC_CHECK */
1267 __malloc_hook = emacs_blocked_malloc;
1268 UNBLOCK_INPUT_ALLOC;
1270 /* fprintf (stderr, "%p malloc\n", value); */
1271 return value;
1275 /* This function is the realloc hook that Emacs uses. */
1277 static void *
1278 emacs_blocked_realloc (ptr, size, ptr2)
1279 void *ptr;
1280 size_t size;
1281 const void *ptr2;
1283 void *value;
1285 BLOCK_INPUT_ALLOC;
1286 __realloc_hook = old_realloc_hook;
1288 #ifdef GC_MALLOC_CHECK
1289 if (ptr)
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1300 mem_delete (m);
1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307 #endif /* GC_MALLOC_CHECK */
1309 value = (void *) realloc (ptr, size);
1311 #ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327 #endif /* GC_MALLOC_CHECK */
1329 __realloc_hook = emacs_blocked_realloc;
1330 UNBLOCK_INPUT_ALLOC;
1332 return value;
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1342 void
1343 reset_malloc_hooks ()
1345 __free_hook = 0;
1346 __malloc_hook = 0;
1347 __realloc_hook = 0;
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1352 /* Called from main to set up malloc to use our hooks. */
1354 void
1355 uninterrupt_malloc ()
1357 #ifdef HAVE_GTK_AND_PTHREAD
1358 pthread_mutexattr_t attr;
1360 /* GLIBC has a faster way to do this, but lets keep it portable.
1361 This is according to the Single UNIX Specification. */
1362 pthread_mutexattr_init (&attr);
1363 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364 pthread_mutex_init (&alloc_mutex, &attr);
1365 #endif /* HAVE_GTK_AND_PTHREAD */
1367 if (__free_hook != emacs_blocked_free)
1368 old_free_hook = __free_hook;
1369 __free_hook = emacs_blocked_free;
1371 if (__malloc_hook != emacs_blocked_malloc)
1372 old_malloc_hook = __malloc_hook;
1373 __malloc_hook = emacs_blocked_malloc;
1375 if (__realloc_hook != emacs_blocked_realloc)
1376 old_realloc_hook = __realloc_hook;
1377 __realloc_hook = emacs_blocked_realloc;
1380 #endif /* not SYNC_INPUT */
1381 #endif /* not SYSTEM_MALLOC */
1385 /***********************************************************************
1386 Interval Allocation
1387 ***********************************************************************/
1389 /* Number of intervals allocated in an interval_block structure.
1390 The 1020 is 1024 minus malloc overhead. */
1392 #define INTERVAL_BLOCK_SIZE \
1393 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1395 /* Intervals are allocated in chunks in form of an interval_block
1396 structure. */
1398 struct interval_block
1400 /* Place `intervals' first, to preserve alignment. */
1401 struct interval intervals[INTERVAL_BLOCK_SIZE];
1402 struct interval_block *next;
1405 /* Current interval block. Its `next' pointer points to older
1406 blocks. */
1408 struct interval_block *interval_block;
1410 /* Index in interval_block above of the next unused interval
1411 structure. */
1413 static int interval_block_index;
1415 /* Number of free and live intervals. */
1417 static int total_free_intervals, total_intervals;
1419 /* List of free intervals. */
1421 INTERVAL interval_free_list;
1423 /* Total number of interval blocks now in use. */
1425 int n_interval_blocks;
1428 /* Initialize interval allocation. */
1430 static void
1431 init_intervals ()
1433 interval_block = NULL;
1434 interval_block_index = INTERVAL_BLOCK_SIZE;
1435 interval_free_list = 0;
1436 n_interval_blocks = 0;
1440 /* Return a new interval. */
1442 INTERVAL
1443 make_interval ()
1445 INTERVAL val;
1447 /* eassert (!handling_signal); */
1449 #ifndef SYNC_INPUT
1450 BLOCK_INPUT;
1451 #endif
1453 if (interval_free_list)
1455 val = interval_free_list;
1456 interval_free_list = INTERVAL_PARENT (interval_free_list);
1458 else
1460 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1462 register struct interval_block *newi;
1464 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465 MEM_TYPE_NON_LISP);
1467 newi->next = interval_block;
1468 interval_block = newi;
1469 interval_block_index = 0;
1470 n_interval_blocks++;
1472 val = &interval_block->intervals[interval_block_index++];
1475 #ifndef SYNC_INPUT
1476 UNBLOCK_INPUT;
1477 #endif
1479 consing_since_gc += sizeof (struct interval);
1480 intervals_consed++;
1481 RESET_INTERVAL (val);
1482 val->gcmarkbit = 0;
1483 return val;
1487 /* Mark Lisp objects in interval I. */
1489 static void
1490 mark_interval (i, dummy)
1491 register INTERVAL i;
1492 Lisp_Object dummy;
1494 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1495 i->gcmarkbit = 1;
1496 mark_object (i->plist);
1500 /* Mark the interval tree rooted in TREE. Don't call this directly;
1501 use the macro MARK_INTERVAL_TREE instead. */
1503 static void
1504 mark_interval_tree (tree)
1505 register INTERVAL tree;
1507 /* No need to test if this tree has been marked already; this
1508 function is always called through the MARK_INTERVAL_TREE macro,
1509 which takes care of that. */
1511 traverse_intervals_noorder (tree, mark_interval, Qnil);
1515 /* Mark the interval tree rooted in I. */
1517 #define MARK_INTERVAL_TREE(i) \
1518 do { \
1519 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1520 mark_interval_tree (i); \
1521 } while (0)
1524 #define UNMARK_BALANCE_INTERVALS(i) \
1525 do { \
1526 if (! NULL_INTERVAL_P (i)) \
1527 (i) = balance_intervals (i); \
1528 } while (0)
1531 /* Number support. If NO_UNION_TYPE isn't in effect, we
1532 can't create number objects in macros. */
1533 #ifndef make_number
1534 Lisp_Object
1535 make_number (n)
1536 EMACS_INT n;
1538 Lisp_Object obj;
1539 obj.s.val = n;
1540 obj.s.type = Lisp_Int;
1541 return obj;
1543 #endif
1545 /***********************************************************************
1546 String Allocation
1547 ***********************************************************************/
1549 /* Lisp_Strings are allocated in string_block structures. When a new
1550 string_block is allocated, all the Lisp_Strings it contains are
1551 added to a free-list string_free_list. When a new Lisp_String is
1552 needed, it is taken from that list. During the sweep phase of GC,
1553 string_blocks that are entirely free are freed, except two which
1554 we keep.
1556 String data is allocated from sblock structures. Strings larger
1557 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1560 Sblocks consist internally of sdata structures, one for each
1561 Lisp_String. The sdata structure points to the Lisp_String it
1562 belongs to. The Lisp_String points back to the `u.data' member of
1563 its sdata structure.
1565 When a Lisp_String is freed during GC, it is put back on
1566 string_free_list, and its `data' member and its sdata's `string'
1567 pointer is set to null. The size of the string is recorded in the
1568 `u.nbytes' member of the sdata. So, sdata structures that are no
1569 longer used, can be easily recognized, and it's easy to compact the
1570 sblocks of small strings which we do in compact_small_strings. */
1572 /* Size in bytes of an sblock structure used for small strings. This
1573 is 8192 minus malloc overhead. */
1575 #define SBLOCK_SIZE 8188
1577 /* Strings larger than this are considered large strings. String data
1578 for large strings is allocated from individual sblocks. */
1580 #define LARGE_STRING_BYTES 1024
1582 /* Structure describing string memory sub-allocated from an sblock.
1583 This is where the contents of Lisp strings are stored. */
1585 struct sdata
1587 /* Back-pointer to the string this sdata belongs to. If null, this
1588 structure is free, and the NBYTES member of the union below
1589 contains the string's byte size (the same value that STRING_BYTES
1590 would return if STRING were non-null). If non-null, STRING_BYTES
1591 (STRING) is the size of the data, and DATA contains the string's
1592 contents. */
1593 struct Lisp_String *string;
1595 #ifdef GC_CHECK_STRING_BYTES
1597 EMACS_INT nbytes;
1598 unsigned char data[1];
1600 #define SDATA_NBYTES(S) (S)->nbytes
1601 #define SDATA_DATA(S) (S)->data
1603 #else /* not GC_CHECK_STRING_BYTES */
1605 union
1607 /* When STRING in non-null. */
1608 unsigned char data[1];
1610 /* When STRING is null. */
1611 EMACS_INT nbytes;
1612 } u;
1615 #define SDATA_NBYTES(S) (S)->u.nbytes
1616 #define SDATA_DATA(S) (S)->u.data
1618 #endif /* not GC_CHECK_STRING_BYTES */
1622 /* Structure describing a block of memory which is sub-allocated to
1623 obtain string data memory for strings. Blocks for small strings
1624 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1625 as large as needed. */
1627 struct sblock
1629 /* Next in list. */
1630 struct sblock *next;
1632 /* Pointer to the next free sdata block. This points past the end
1633 of the sblock if there isn't any space left in this block. */
1634 struct sdata *next_free;
1636 /* Start of data. */
1637 struct sdata first_data;
1640 /* Number of Lisp strings in a string_block structure. The 1020 is
1641 1024 minus malloc overhead. */
1643 #define STRING_BLOCK_SIZE \
1644 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1646 /* Structure describing a block from which Lisp_String structures
1647 are allocated. */
1649 struct string_block
1651 /* Place `strings' first, to preserve alignment. */
1652 struct Lisp_String strings[STRING_BLOCK_SIZE];
1653 struct string_block *next;
1656 /* Head and tail of the list of sblock structures holding Lisp string
1657 data. We always allocate from current_sblock. The NEXT pointers
1658 in the sblock structures go from oldest_sblock to current_sblock. */
1660 static struct sblock *oldest_sblock, *current_sblock;
1662 /* List of sblocks for large strings. */
1664 static struct sblock *large_sblocks;
1666 /* List of string_block structures, and how many there are. */
1668 static struct string_block *string_blocks;
1669 static int n_string_blocks;
1671 /* Free-list of Lisp_Strings. */
1673 static struct Lisp_String *string_free_list;
1675 /* Number of live and free Lisp_Strings. */
1677 static int total_strings, total_free_strings;
1679 /* Number of bytes used by live strings. */
1681 static int total_string_size;
1683 /* Given a pointer to a Lisp_String S which is on the free-list
1684 string_free_list, return a pointer to its successor in the
1685 free-list. */
1687 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1689 /* Return a pointer to the sdata structure belonging to Lisp string S.
1690 S must be live, i.e. S->data must not be null. S->data is actually
1691 a pointer to the `u.data' member of its sdata structure; the
1692 structure starts at a constant offset in front of that. */
1694 #ifdef GC_CHECK_STRING_BYTES
1696 #define SDATA_OF_STRING(S) \
1697 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698 - sizeof (EMACS_INT)))
1700 #else /* not GC_CHECK_STRING_BYTES */
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1705 #endif /* not GC_CHECK_STRING_BYTES */
1708 #ifdef GC_CHECK_STRING_OVERRUN
1710 /* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
1712 presence of this cookie during GC. */
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { 0xde, 0xad, 0xbe, 0xef };
1718 #else
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720 #endif
1722 /* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1726 #ifdef GC_CHECK_STRING_BYTES
1728 #define SDATA_SIZE(NBYTES) \
1729 ((sizeof (struct Lisp_String *) \
1730 + (NBYTES) + 1 \
1731 + sizeof (EMACS_INT) \
1732 + sizeof (EMACS_INT) - 1) \
1733 & ~(sizeof (EMACS_INT) - 1))
1735 #else /* not GC_CHECK_STRING_BYTES */
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1743 #endif /* not GC_CHECK_STRING_BYTES */
1745 /* Extra bytes to allocate for each string. */
1747 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1749 /* Initialize string allocation. Called from init_alloc_once. */
1751 void
1752 init_strings ()
1754 total_strings = total_free_strings = total_string_size = 0;
1755 oldest_sblock = current_sblock = large_sblocks = NULL;
1756 string_blocks = NULL;
1757 n_string_blocks = 0;
1758 string_free_list = NULL;
1762 #ifdef GC_CHECK_STRING_BYTES
1764 static int check_string_bytes_count;
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1775 string_bytes (s)
1776 struct Lisp_String *s;
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1792 struct sdata *from, *end, *from_end;
1794 end = b->next_free;
1796 for (from = &b->first_data; from < end; from = from_end)
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1826 if (all_p)
1828 struct sblock *b;
1830 for (b = large_sblocks; b; b = b->next)
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1840 else
1841 check_sblock (current_sblock);
1844 #endif /* GC_CHECK_STRING_BYTES */
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1851 static void
1852 check_string_free_list ()
1854 struct Lisp_String *s;
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1865 #else
1866 #define check_string_free_list()
1867 #endif
1869 /* Return a new Lisp_String. */
1871 static struct Lisp_String *
1872 allocate_string ()
1874 struct Lisp_String *s;
1876 /* eassert (!handling_signal); */
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1886 struct string_block *b;
1887 int i;
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1902 total_free_strings += STRING_BLOCK_SIZE;
1905 check_string_free_list ();
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1930 if (++check_string_bytes_count == 200)
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1935 else
1936 check_string_bytes (0);
1938 #endif /* GC_CHECK_STRING_BYTES */
1940 return s;
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1969 if (nbytes > LARGE_STRING_BYTES)
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2019 else
2020 b = current_sblock;
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2051 consing_since_gc += needed;
2055 /* Sweep and compact strings. */
2057 static void
2058 sweep_strings ()
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2073 next = b->next;
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2077 struct Lisp_String *s = b->strings + i;
2079 if (s->data)
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2093 else
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2119 else
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2137 else
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2145 check_string_free_list ();
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2151 check_string_free_list ();
2155 /* Free dead large strings. */
2157 static void
2158 free_large_strings ()
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2163 for (b = large_sblocks; b; b = next)
2165 next = b->next;
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2171 b->next = live_blocks;
2172 live_blocks = b;
2176 large_sblocks = live_blocks;
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2183 static void
2184 compact_small_strings ()
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2204 for (from = &b->first_data; from < end; from = from_end)
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2268 next = b->next;
2269 lisp_free (b);
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2292 c = XINT (init);
2293 if (SINGLE_BYTE_CHAR_P (c))
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2302 else
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2313 bcopy (str, p, len);
2314 p += len;
2318 *p = 0;
2319 return val;
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2334 CHECK_NATNUM (length);
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2361 return val;
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2446 register Lisp_Object val;
2448 if (nchars < 0)
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2470 return make_string (str, strlen (str));
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2481 Lisp_Object val;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2498 if (nchars < 0)
2499 abort ();
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2510 /***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2514 /* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
2517 any new float cells from the latest float_block. */
2519 #define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2525 #define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2530 #define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2534 #define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2538 #define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2541 #define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2544 struct float_block
2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2552 #define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2555 #define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2558 #define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2561 /* Current float_block. */
2563 struct float_block *float_block;
2565 /* Index of first unused Lisp_Float in the current float_block. */
2567 int float_block_index;
2569 /* Total number of float blocks now in use. */
2571 int n_float_blocks;
2573 /* Free-list of Lisp_Floats. */
2575 struct Lisp_Float *float_free_list;
2578 /* Initialize float allocation. */
2580 void
2581 init_float ()
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2585 float_free_list = 0;
2586 n_float_blocks = 0;
2590 /* Explicitly free a float cell by putting it on the free-list. */
2592 void
2593 free_float (ptr)
2594 struct Lisp_Float *ptr;
2596 ptr->u.chain = float_free_list;
2597 float_free_list = ptr;
2601 /* Return a new float object with value FLOAT_VALUE. */
2603 Lisp_Object
2604 make_float (float_value)
2605 double float_value;
2607 register Lisp_Object val;
2609 /* eassert (!handling_signal); */
2611 #ifndef SYNC_INPUT
2612 BLOCK_INPUT;
2613 #endif
2615 if (float_free_list)
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2622 else
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2626 register struct float_block *new;
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2640 #ifndef SYNC_INPUT
2641 UNBLOCK_INPUT;
2642 #endif
2644 XFLOAT_DATA (val) = float_value;
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672 struct cons_block
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689 /* Current cons_block. */
2691 struct cons_block *cons_block;
2693 /* Index of first unused Lisp_Cons in the current block. */
2695 int cons_block_index;
2697 /* Free-list of Lisp_Cons structures. */
2699 struct Lisp_Cons *cons_free_list;
2701 /* Total number of cons blocks now in use. */
2703 int n_cons_blocks;
2706 /* Initialize cons allocation. */
2708 void
2709 init_cons ()
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2736 register Lisp_Object val;
2738 /* eassert (!handling_signal); */
2740 #ifndef SYNC_INPUT
2741 BLOCK_INPUT;
2742 #endif
2744 if (cons_free_list)
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2751 else
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2768 #ifndef SYNC_INPUT
2769 UNBLOCK_INPUT;
2770 #endif
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2780 /* Get an error now if there's any junk in the cons free list. */
2781 void
2782 check_cons_list ()
2784 #ifdef GC_CHECK_CONS_LIST
2785 struct Lisp_Cons *tail = cons_free_list;
2787 while (tail)
2788 tail = tail->u.chain;
2789 #endif
2792 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2794 Lisp_Object
2795 list1 (arg1)
2796 Lisp_Object arg1;
2798 return Fcons (arg1, Qnil);
2801 Lisp_Object
2802 list2 (arg1, arg2)
2803 Lisp_Object arg1, arg2;
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2809 Lisp_Object
2810 list3 (arg1, arg2, arg3)
2811 Lisp_Object arg1, arg2, arg3;
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2817 Lisp_Object
2818 list4 (arg1, arg2, arg3, arg4)
2819 Lisp_Object arg1, arg2, arg3, arg4;
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2825 Lisp_Object
2826 list5 (arg1, arg2, arg3, arg4, arg5)
2827 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2829 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830 Fcons (arg5, Qnil)))));
2834 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2835 doc: /* Return a newly created list with specified arguments as elements.
2836 Any number of arguments, even zero arguments, are allowed.
2837 usage: (list &rest OBJECTS) */)
2838 (nargs, args)
2839 int nargs;
2840 register Lisp_Object *args;
2842 register Lisp_Object val;
2843 val = Qnil;
2845 while (nargs > 0)
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2850 return val;
2854 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (length, init)
2857 register Lisp_Object length, init;
2859 register Lisp_Object val;
2860 register int size;
2862 CHECK_NATNUM (length);
2863 size = XFASTINT (length);
2865 val = Qnil;
2866 while (size > 0)
2868 val = Fcons (init, val);
2869 --size;
2871 if (size > 0)
2873 val = Fcons (init, val);
2874 --size;
2876 if (size > 0)
2878 val = Fcons (init, val);
2879 --size;
2881 if (size > 0)
2883 val = Fcons (init, val);
2884 --size;
2886 if (size > 0)
2888 val = Fcons (init, val);
2889 --size;
2895 QUIT;
2898 return val;
2903 /***********************************************************************
2904 Vector Allocation
2905 ***********************************************************************/
2907 /* Singly-linked list of all vectors. */
2909 struct Lisp_Vector *all_vectors;
2911 /* Total number of vector-like objects now in use. */
2913 int n_vectors;
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2919 static struct Lisp_Vector *
2920 allocate_vectorlike (len, type)
2921 EMACS_INT len;
2922 enum mem_type type;
2924 struct Lisp_Vector *p;
2925 size_t nbytes;
2927 #ifdef DOUG_LEA_MALLOC
2928 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2929 because mapped region contents are not preserved in
2930 a dumped Emacs. */
2931 BLOCK_INPUT;
2932 mallopt (M_MMAP_MAX, 0);
2933 UNBLOCK_INPUT;
2934 #endif
2936 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2937 /* eassert (!handling_signal); */
2939 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2940 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Back to a reasonable maximum of mmap'ed areas. */
2944 BLOCK_INPUT;
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 UNBLOCK_INPUT;
2947 #endif
2949 consing_since_gc += nbytes;
2950 vector_cells_consed += len;
2952 #ifndef SYNC_INPUT
2953 BLOCK_INPUT;
2954 #endif
2956 p->next = all_vectors;
2957 all_vectors = p;
2959 #ifndef SYNC_INPUT
2960 UNBLOCK_INPUT;
2961 #endif
2963 ++n_vectors;
2964 return p;
2968 /* Allocate a vector with NSLOTS slots. */
2970 struct Lisp_Vector *
2971 allocate_vector (nslots)
2972 EMACS_INT nslots;
2974 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975 v->size = nslots;
2976 return v;
2980 /* Allocate other vector-like structures. */
2982 struct Lisp_Hash_Table *
2983 allocate_hash_table ()
2985 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987 EMACS_INT i;
2989 v->size = len;
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = Qnil;
2993 return (struct Lisp_Hash_Table *) v;
2997 struct window *
2998 allocate_window ()
3000 EMACS_INT len = VECSIZE (struct window);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002 EMACS_INT i;
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
3008 return (struct window *) v;
3012 struct frame *
3013 allocate_frame ()
3015 EMACS_INT len = VECSIZE (struct frame);
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017 EMACS_INT i;
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = make_number (0);
3021 v->size = len;
3022 return (struct frame *) v;
3026 struct Lisp_Process *
3027 allocate_process ()
3029 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3030 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031 /* Size if we only count the actual Lisp_Object fields (which need to be
3032 traced by the GC). */
3033 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3035 EMACS_INT i;
3037 for (i = 0; i < lisplen; ++i)
3038 v->contents[i] = Qnil;
3039 v->size = lisplen;
3041 return (struct Lisp_Process *) v;
3045 struct Lisp_Vector *
3046 allocate_other_vector (len)
3047 EMACS_INT len;
3049 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050 EMACS_INT i;
3052 for (i = 0; i < len; ++i)
3053 v->contents[i] = Qnil;
3054 v->size = len;
3056 return v;
3060 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3061 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3062 See also the function `vector'. */)
3063 (length, init)
3064 register Lisp_Object length, init;
3066 Lisp_Object vector;
3067 register EMACS_INT sizei;
3068 register int index;
3069 register struct Lisp_Vector *p;
3071 CHECK_NATNUM (length);
3072 sizei = XFASTINT (length);
3074 p = allocate_vector (sizei);
3075 for (index = 0; index < sizei; index++)
3076 p->contents[index] = init;
3078 XSETVECTOR (vector, p);
3079 return vector;
3083 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3084 doc: /* Return a newly created char-table, with purpose PURPOSE.
3085 Each element is initialized to INIT, which defaults to nil.
3086 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3087 The property's value should be an integer between 0 and 10. */)
3088 (purpose, init)
3089 register Lisp_Object purpose, init;
3091 Lisp_Object vector;
3092 Lisp_Object n;
3093 CHECK_SYMBOL (purpose);
3094 n = Fget (purpose, Qchar_table_extra_slots);
3095 CHECK_NUMBER (n);
3096 if (XINT (n) < 0 || XINT (n) > 10)
3097 args_out_of_range (n, Qnil);
3098 /* Add 2 to the size for the defalt and parent slots. */
3099 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3100 init);
3101 XCHAR_TABLE (vector)->top = Qt;
3102 XCHAR_TABLE (vector)->parent = Qnil;
3103 XCHAR_TABLE (vector)->purpose = purpose;
3104 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3105 return vector;
3109 /* Return a newly created sub char table with slots initialized by INIT.
3110 Since a sub char table does not appear as a top level Emacs Lisp
3111 object, we don't need a Lisp interface to make it. */
3113 Lisp_Object
3114 make_sub_char_table (init)
3115 Lisp_Object init;
3117 Lisp_Object vector
3118 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3119 XCHAR_TABLE (vector)->top = Qnil;
3120 XCHAR_TABLE (vector)->defalt = Qnil;
3121 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3122 return vector;
3126 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3127 doc: /* Return a newly created vector with specified arguments as elements.
3128 Any number of arguments, even zero arguments, are allowed.
3129 usage: (vector &rest OBJECTS) */)
3130 (nargs, args)
3131 register int nargs;
3132 Lisp_Object *args;
3134 register Lisp_Object len, val;
3135 register int index;
3136 register struct Lisp_Vector *p;
3138 XSETFASTINT (len, nargs);
3139 val = Fmake_vector (len, Qnil);
3140 p = XVECTOR (val);
3141 for (index = 0; index < nargs; index++)
3142 p->contents[index] = args[index];
3143 return val;
3147 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3148 doc: /* Create a byte-code object with specified arguments as elements.
3149 The arguments should be the arglist, bytecode-string, constant vector,
3150 stack size, (optional) doc string, and (optional) interactive spec.
3151 The first four arguments are required; at most six have any
3152 significance.
3153 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3154 (nargs, args)
3155 register int nargs;
3156 Lisp_Object *args;
3158 register Lisp_Object len, val;
3159 register int index;
3160 register struct Lisp_Vector *p;
3162 XSETFASTINT (len, nargs);
3163 if (!NILP (Vpurify_flag))
3164 val = make_pure_vector ((EMACS_INT) nargs);
3165 else
3166 val = Fmake_vector (len, Qnil);
3168 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3169 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3170 earlier because they produced a raw 8-bit string for byte-code
3171 and now such a byte-code string is loaded as multibyte while
3172 raw 8-bit characters converted to multibyte form. Thus, now we
3173 must convert them back to the original unibyte form. */
3174 args[1] = Fstring_as_unibyte (args[1]);
3176 p = XVECTOR (val);
3177 for (index = 0; index < nargs; index++)
3179 if (!NILP (Vpurify_flag))
3180 args[index] = Fpurecopy (args[index]);
3181 p->contents[index] = args[index];
3183 XSETCOMPILED (val, p);
3184 return val;
3189 /***********************************************************************
3190 Symbol Allocation
3191 ***********************************************************************/
3193 /* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3195 own overhead. */
3197 #define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3200 struct symbol_block
3202 /* Place `symbols' first, to preserve alignment. */
3203 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3204 struct symbol_block *next;
3207 /* Current symbol block and index of first unused Lisp_Symbol
3208 structure in it. */
3210 struct symbol_block *symbol_block;
3211 int symbol_block_index;
3213 /* List of free symbols. */
3215 struct Lisp_Symbol *symbol_free_list;
3217 /* Total number of symbol blocks now in use. */
3219 int n_symbol_blocks;
3222 /* Initialize symbol allocation. */
3224 void
3225 init_symbol ()
3227 symbol_block = NULL;
3228 symbol_block_index = SYMBOL_BLOCK_SIZE;
3229 symbol_free_list = 0;
3230 n_symbol_blocks = 0;
3234 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3235 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3236 Its value and function definition are void, and its property list is nil. */)
3237 (name)
3238 Lisp_Object name;
3240 register Lisp_Object val;
3241 register struct Lisp_Symbol *p;
3243 CHECK_STRING (name);
3245 /* eassert (!handling_signal); */
3247 #ifndef SYNC_INPUT
3248 BLOCK_INPUT;
3249 #endif
3251 if (symbol_free_list)
3253 XSETSYMBOL (val, symbol_free_list);
3254 symbol_free_list = symbol_free_list->next;
3256 else
3258 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3260 struct symbol_block *new;
3261 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3262 MEM_TYPE_SYMBOL);
3263 new->next = symbol_block;
3264 symbol_block = new;
3265 symbol_block_index = 0;
3266 n_symbol_blocks++;
3268 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3269 symbol_block_index++;
3272 #ifndef SYNC_INPUT
3273 UNBLOCK_INPUT;
3274 #endif
3276 p = XSYMBOL (val);
3277 p->xname = name;
3278 p->plist = Qnil;
3279 p->value = Qunbound;
3280 p->function = Qunbound;
3281 p->next = NULL;
3282 p->gcmarkbit = 0;
3283 p->interned = SYMBOL_UNINTERNED;
3284 p->constant = 0;
3285 p->indirect_variable = 0;
3286 consing_since_gc += sizeof (struct Lisp_Symbol);
3287 symbols_consed++;
3288 return val;
3293 /***********************************************************************
3294 Marker (Misc) Allocation
3295 ***********************************************************************/
3297 /* Allocation of markers and other objects that share that structure.
3298 Works like allocation of conses. */
3300 #define MARKER_BLOCK_SIZE \
3301 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3303 struct marker_block
3305 /* Place `markers' first, to preserve alignment. */
3306 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3307 struct marker_block *next;
3310 struct marker_block *marker_block;
3311 int marker_block_index;
3313 union Lisp_Misc *marker_free_list;
3315 /* Total number of marker blocks now in use. */
3317 int n_marker_blocks;
3319 void
3320 init_marker ()
3322 marker_block = NULL;
3323 marker_block_index = MARKER_BLOCK_SIZE;
3324 marker_free_list = 0;
3325 n_marker_blocks = 0;
3328 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3330 Lisp_Object
3331 allocate_misc ()
3333 Lisp_Object val;
3335 /* eassert (!handling_signal); */
3337 #ifndef SYNC_INPUT
3338 BLOCK_INPUT;
3339 #endif
3341 if (marker_free_list)
3343 XSETMISC (val, marker_free_list);
3344 marker_free_list = marker_free_list->u_free.chain;
3346 else
3348 if (marker_block_index == MARKER_BLOCK_SIZE)
3350 struct marker_block *new;
3351 new = (struct marker_block *) lisp_malloc (sizeof *new,
3352 MEM_TYPE_MISC);
3353 new->next = marker_block;
3354 marker_block = new;
3355 marker_block_index = 0;
3356 n_marker_blocks++;
3357 total_free_markers += MARKER_BLOCK_SIZE;
3359 XSETMISC (val, &marker_block->markers[marker_block_index]);
3360 marker_block_index++;
3363 #ifndef SYNC_INPUT
3364 UNBLOCK_INPUT;
3365 #endif
3367 --total_free_markers;
3368 consing_since_gc += sizeof (union Lisp_Misc);
3369 misc_objects_consed++;
3370 XMARKER (val)->gcmarkbit = 0;
3371 return val;
3374 /* Free a Lisp_Misc object */
3376 void
3377 free_misc (misc)
3378 Lisp_Object misc;
3380 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3381 XMISC (misc)->u_free.chain = marker_free_list;
3382 marker_free_list = XMISC (misc);
3384 total_free_markers++;
3387 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3388 INTEGER. This is used to package C values to call record_unwind_protect.
3389 The unwind function can get the C values back using XSAVE_VALUE. */
3391 Lisp_Object
3392 make_save_value (pointer, integer)
3393 void *pointer;
3394 int integer;
3396 register Lisp_Object val;
3397 register struct Lisp_Save_Value *p;
3399 val = allocate_misc ();
3400 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3401 p = XSAVE_VALUE (val);
3402 p->pointer = pointer;
3403 p->integer = integer;
3404 p->dogc = 0;
3405 return val;
3408 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3409 doc: /* Return a newly allocated marker which does not point at any place. */)
3412 register Lisp_Object val;
3413 register struct Lisp_Marker *p;
3415 val = allocate_misc ();
3416 XMISCTYPE (val) = Lisp_Misc_Marker;
3417 p = XMARKER (val);
3418 p->buffer = 0;
3419 p->bytepos = 0;
3420 p->charpos = 0;
3421 p->next = NULL;
3422 p->insertion_type = 0;
3423 return val;
3426 /* Put MARKER back on the free list after using it temporarily. */
3428 void
3429 free_marker (marker)
3430 Lisp_Object marker;
3432 unchain_marker (XMARKER (marker));
3433 free_misc (marker);
3437 /* Return a newly created vector or string with specified arguments as
3438 elements. If all the arguments are characters that can fit
3439 in a string of events, make a string; otherwise, make a vector.
3441 Any number of arguments, even zero arguments, are allowed. */
3443 Lisp_Object
3444 make_event_array (nargs, args)
3445 register int nargs;
3446 Lisp_Object *args;
3448 int i;
3450 for (i = 0; i < nargs; i++)
3451 /* The things that fit in a string
3452 are characters that are in 0...127,
3453 after discarding the meta bit and all the bits above it. */
3454 if (!INTEGERP (args[i])
3455 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3456 return Fvector (nargs, args);
3458 /* Since the loop exited, we know that all the things in it are
3459 characters, so we can make a string. */
3461 Lisp_Object result;
3463 result = Fmake_string (make_number (nargs), make_number (0));
3464 for (i = 0; i < nargs; i++)
3466 SSET (result, i, XINT (args[i]));
3467 /* Move the meta bit to the right place for a string char. */
3468 if (XINT (args[i]) & CHAR_META)
3469 SSET (result, i, SREF (result, i) | 0x80);
3472 return result;
3478 /************************************************************************
3479 Memory Full Handling
3480 ************************************************************************/
3483 /* Called if malloc returns zero. */
3485 void
3486 memory_full ()
3488 int i;
3490 Vmemory_full = Qt;
3492 memory_full_cons_threshold = sizeof (struct cons_block);
3494 /* The first time we get here, free the spare memory. */
3495 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3496 if (spare_memory[i])
3498 if (i == 0)
3499 free (spare_memory[i]);
3500 else if (i >= 1 && i <= 4)
3501 lisp_align_free (spare_memory[i]);
3502 else
3503 lisp_free (spare_memory[i]);
3504 spare_memory[i] = 0;
3507 /* Record the space now used. When it decreases substantially,
3508 we can refill the memory reserve. */
3509 #ifndef SYSTEM_MALLOC
3510 bytes_used_when_full = BYTES_USED;
3511 #endif
3513 /* This used to call error, but if we've run out of memory, we could
3514 get infinite recursion trying to build the string. */
3515 xsignal (Qnil, Vmemory_signal_data);
3518 /* If we released our reserve (due to running out of memory),
3519 and we have a fair amount free once again,
3520 try to set aside another reserve in case we run out once more.
3522 This is called when a relocatable block is freed in ralloc.c,
3523 and also directly from this file, in case we're not using ralloc.c. */
3525 void
3526 refill_memory_reserve ()
3528 #ifndef SYSTEM_MALLOC
3529 if (spare_memory[0] == 0)
3530 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3531 if (spare_memory[1] == 0)
3532 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3533 MEM_TYPE_CONS);
3534 if (spare_memory[2] == 0)
3535 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3536 MEM_TYPE_CONS);
3537 if (spare_memory[3] == 0)
3538 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3539 MEM_TYPE_CONS);
3540 if (spare_memory[4] == 0)
3541 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3542 MEM_TYPE_CONS);
3543 if (spare_memory[5] == 0)
3544 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3545 MEM_TYPE_STRING);
3546 if (spare_memory[6] == 0)
3547 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3548 MEM_TYPE_STRING);
3549 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3550 Vmemory_full = Qnil;
3551 #endif
3554 /************************************************************************
3555 C Stack Marking
3556 ************************************************************************/
3558 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3560 /* Conservative C stack marking requires a method to identify possibly
3561 live Lisp objects given a pointer value. We do this by keeping
3562 track of blocks of Lisp data that are allocated in a red-black tree
3563 (see also the comment of mem_node which is the type of nodes in
3564 that tree). Function lisp_malloc adds information for an allocated
3565 block to the red-black tree with calls to mem_insert, and function
3566 lisp_free removes it with mem_delete. Functions live_string_p etc
3567 call mem_find to lookup information about a given pointer in the
3568 tree, and use that to determine if the pointer points to a Lisp
3569 object or not. */
3571 /* Initialize this part of alloc.c. */
3573 static void
3574 mem_init ()
3576 mem_z.left = mem_z.right = MEM_NIL;
3577 mem_z.parent = NULL;
3578 mem_z.color = MEM_BLACK;
3579 mem_z.start = mem_z.end = NULL;
3580 mem_root = MEM_NIL;
3584 /* Value is a pointer to the mem_node containing START. Value is
3585 MEM_NIL if there is no node in the tree containing START. */
3587 static INLINE struct mem_node *
3588 mem_find (start)
3589 void *start;
3591 struct mem_node *p;
3593 if (start < min_heap_address || start > max_heap_address)
3594 return MEM_NIL;
3596 /* Make the search always successful to speed up the loop below. */
3597 mem_z.start = start;
3598 mem_z.end = (char *) start + 1;
3600 p = mem_root;
3601 while (start < p->start || start >= p->end)
3602 p = start < p->start ? p->left : p->right;
3603 return p;
3607 /* Insert a new node into the tree for a block of memory with start
3608 address START, end address END, and type TYPE. Value is a
3609 pointer to the node that was inserted. */
3611 static struct mem_node *
3612 mem_insert (start, end, type)
3613 void *start, *end;
3614 enum mem_type type;
3616 struct mem_node *c, *parent, *x;
3618 if (start < min_heap_address)
3619 min_heap_address = start;
3620 if (end > max_heap_address)
3621 max_heap_address = end;
3623 /* See where in the tree a node for START belongs. In this
3624 particular application, it shouldn't happen that a node is already
3625 present. For debugging purposes, let's check that. */
3626 c = mem_root;
3627 parent = NULL;
3629 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3631 while (c != MEM_NIL)
3633 if (start >= c->start && start < c->end)
3634 abort ();
3635 parent = c;
3636 c = start < c->start ? c->left : c->right;
3639 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3641 while (c != MEM_NIL)
3643 parent = c;
3644 c = start < c->start ? c->left : c->right;
3647 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3649 /* Create a new node. */
3650 #ifdef GC_MALLOC_CHECK
3651 x = (struct mem_node *) _malloc_internal (sizeof *x);
3652 if (x == NULL)
3653 abort ();
3654 #else
3655 x = (struct mem_node *) xmalloc (sizeof *x);
3656 #endif
3657 x->start = start;
3658 x->end = end;
3659 x->type = type;
3660 x->parent = parent;
3661 x->left = x->right = MEM_NIL;
3662 x->color = MEM_RED;
3664 /* Insert it as child of PARENT or install it as root. */
3665 if (parent)
3667 if (start < parent->start)
3668 parent->left = x;
3669 else
3670 parent->right = x;
3672 else
3673 mem_root = x;
3675 /* Re-establish red-black tree properties. */
3676 mem_insert_fixup (x);
3678 return x;
3682 /* Re-establish the red-black properties of the tree, and thereby
3683 balance the tree, after node X has been inserted; X is always red. */
3685 static void
3686 mem_insert_fixup (x)
3687 struct mem_node *x;
3689 while (x != mem_root && x->parent->color == MEM_RED)
3691 /* X is red and its parent is red. This is a violation of
3692 red-black tree property #3. */
3694 if (x->parent == x->parent->parent->left)
3696 /* We're on the left side of our grandparent, and Y is our
3697 "uncle". */
3698 struct mem_node *y = x->parent->parent->right;
3700 if (y->color == MEM_RED)
3702 /* Uncle and parent are red but should be black because
3703 X is red. Change the colors accordingly and proceed
3704 with the grandparent. */
3705 x->parent->color = MEM_BLACK;
3706 y->color = MEM_BLACK;
3707 x->parent->parent->color = MEM_RED;
3708 x = x->parent->parent;
3710 else
3712 /* Parent and uncle have different colors; parent is
3713 red, uncle is black. */
3714 if (x == x->parent->right)
3716 x = x->parent;
3717 mem_rotate_left (x);
3720 x->parent->color = MEM_BLACK;
3721 x->parent->parent->color = MEM_RED;
3722 mem_rotate_right (x->parent->parent);
3725 else
3727 /* This is the symmetrical case of above. */
3728 struct mem_node *y = x->parent->parent->left;
3730 if (y->color == MEM_RED)
3732 x->parent->color = MEM_BLACK;
3733 y->color = MEM_BLACK;
3734 x->parent->parent->color = MEM_RED;
3735 x = x->parent->parent;
3737 else
3739 if (x == x->parent->left)
3741 x = x->parent;
3742 mem_rotate_right (x);
3745 x->parent->color = MEM_BLACK;
3746 x->parent->parent->color = MEM_RED;
3747 mem_rotate_left (x->parent->parent);
3752 /* The root may have been changed to red due to the algorithm. Set
3753 it to black so that property #5 is satisfied. */
3754 mem_root->color = MEM_BLACK;
3758 /* (x) (y)
3759 / \ / \
3760 a (y) ===> (x) c
3761 / \ / \
3762 b c a b */
3764 static void
3765 mem_rotate_left (x)
3766 struct mem_node *x;
3768 struct mem_node *y;
3770 /* Turn y's left sub-tree into x's right sub-tree. */
3771 y = x->right;
3772 x->right = y->left;
3773 if (y->left != MEM_NIL)
3774 y->left->parent = x;
3776 /* Y's parent was x's parent. */
3777 if (y != MEM_NIL)
3778 y->parent = x->parent;
3780 /* Get the parent to point to y instead of x. */
3781 if (x->parent)
3783 if (x == x->parent->left)
3784 x->parent->left = y;
3785 else
3786 x->parent->right = y;
3788 else
3789 mem_root = y;
3791 /* Put x on y's left. */
3792 y->left = x;
3793 if (x != MEM_NIL)
3794 x->parent = y;
3798 /* (x) (Y)
3799 / \ / \
3800 (y) c ===> a (x)
3801 / \ / \
3802 a b b c */
3804 static void
3805 mem_rotate_right (x)
3806 struct mem_node *x;
3808 struct mem_node *y = x->left;
3810 x->left = y->right;
3811 if (y->right != MEM_NIL)
3812 y->right->parent = x;
3814 if (y != MEM_NIL)
3815 y->parent = x->parent;
3816 if (x->parent)
3818 if (x == x->parent->right)
3819 x->parent->right = y;
3820 else
3821 x->parent->left = y;
3823 else
3824 mem_root = y;
3826 y->right = x;
3827 if (x != MEM_NIL)
3828 x->parent = y;
3832 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3834 static void
3835 mem_delete (z)
3836 struct mem_node *z;
3838 struct mem_node *x, *y;
3840 if (!z || z == MEM_NIL)
3841 return;
3843 if (z->left == MEM_NIL || z->right == MEM_NIL)
3844 y = z;
3845 else
3847 y = z->right;
3848 while (y->left != MEM_NIL)
3849 y = y->left;
3852 if (y->left != MEM_NIL)
3853 x = y->left;
3854 else
3855 x = y->right;
3857 x->parent = y->parent;
3858 if (y->parent)
3860 if (y == y->parent->left)
3861 y->parent->left = x;
3862 else
3863 y->parent->right = x;
3865 else
3866 mem_root = x;
3868 if (y != z)
3870 z->start = y->start;
3871 z->end = y->end;
3872 z->type = y->type;
3875 if (y->color == MEM_BLACK)
3876 mem_delete_fixup (x);
3878 #ifdef GC_MALLOC_CHECK
3879 _free_internal (y);
3880 #else
3881 xfree (y);
3882 #endif
3886 /* Re-establish the red-black properties of the tree, after a
3887 deletion. */
3889 static void
3890 mem_delete_fixup (x)
3891 struct mem_node *x;
3893 while (x != mem_root && x->color == MEM_BLACK)
3895 if (x == x->parent->left)
3897 struct mem_node *w = x->parent->right;
3899 if (w->color == MEM_RED)
3901 w->color = MEM_BLACK;
3902 x->parent->color = MEM_RED;
3903 mem_rotate_left (x->parent);
3904 w = x->parent->right;
3907 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3909 w->color = MEM_RED;
3910 x = x->parent;
3912 else
3914 if (w->right->color == MEM_BLACK)
3916 w->left->color = MEM_BLACK;
3917 w->color = MEM_RED;
3918 mem_rotate_right (w);
3919 w = x->parent->right;
3921 w->color = x->parent->color;
3922 x->parent->color = MEM_BLACK;
3923 w->right->color = MEM_BLACK;
3924 mem_rotate_left (x->parent);
3925 x = mem_root;
3928 else
3930 struct mem_node *w = x->parent->left;
3932 if (w->color == MEM_RED)
3934 w->color = MEM_BLACK;
3935 x->parent->color = MEM_RED;
3936 mem_rotate_right (x->parent);
3937 w = x->parent->left;
3940 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3942 w->color = MEM_RED;
3943 x = x->parent;
3945 else
3947 if (w->left->color == MEM_BLACK)
3949 w->right->color = MEM_BLACK;
3950 w->color = MEM_RED;
3951 mem_rotate_left (w);
3952 w = x->parent->left;
3955 w->color = x->parent->color;
3956 x->parent->color = MEM_BLACK;
3957 w->left->color = MEM_BLACK;
3958 mem_rotate_right (x->parent);
3959 x = mem_root;
3964 x->color = MEM_BLACK;
3968 /* Value is non-zero if P is a pointer to a live Lisp string on
3969 the heap. M is a pointer to the mem_block for P. */
3971 static INLINE int
3972 live_string_p (m, p)
3973 struct mem_node *m;
3974 void *p;
3976 if (m->type == MEM_TYPE_STRING)
3978 struct string_block *b = (struct string_block *) m->start;
3979 int offset = (char *) p - (char *) &b->strings[0];
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986 && ((struct Lisp_String *) p)->data != NULL);
3988 else
3989 return 0;
3993 /* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3996 static INLINE int
3997 live_cons_p (m, p)
3998 struct mem_node *m;
3999 void *p;
4001 if (m->type == MEM_TYPE_CONS)
4003 struct cons_block *b = (struct cons_block *) m->start;
4004 int offset = (char *) p - (char *) &b->conses[0];
4006 /* P must point to the start of a Lisp_Cons, not be
4007 one of the unused cells in the current cons block,
4008 and not be on the free-list. */
4009 return (offset >= 0
4010 && offset % sizeof b->conses[0] == 0
4011 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4012 && (b != cons_block
4013 || offset / sizeof b->conses[0] < cons_block_index)
4014 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4016 else
4017 return 0;
4021 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4022 the heap. M is a pointer to the mem_block for P. */
4024 static INLINE int
4025 live_symbol_p (m, p)
4026 struct mem_node *m;
4027 void *p;
4029 if (m->type == MEM_TYPE_SYMBOL)
4031 struct symbol_block *b = (struct symbol_block *) m->start;
4032 int offset = (char *) p - (char *) &b->symbols[0];
4034 /* P must point to the start of a Lisp_Symbol, not be
4035 one of the unused cells in the current symbol block,
4036 and not be on the free-list. */
4037 return (offset >= 0
4038 && offset % sizeof b->symbols[0] == 0
4039 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4040 && (b != symbol_block
4041 || offset / sizeof b->symbols[0] < symbol_block_index)
4042 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4044 else
4045 return 0;
4049 /* Value is non-zero if P is a pointer to a live Lisp float on
4050 the heap. M is a pointer to the mem_block for P. */
4052 static INLINE int
4053 live_float_p (m, p)
4054 struct mem_node *m;
4055 void *p;
4057 if (m->type == MEM_TYPE_FLOAT)
4059 struct float_block *b = (struct float_block *) m->start;
4060 int offset = (char *) p - (char *) &b->floats[0];
4062 /* P must point to the start of a Lisp_Float and not be
4063 one of the unused cells in the current float block. */
4064 return (offset >= 0
4065 && offset % sizeof b->floats[0] == 0
4066 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4067 && (b != float_block
4068 || offset / sizeof b->floats[0] < float_block_index));
4070 else
4071 return 0;
4075 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4076 the heap. M is a pointer to the mem_block for P. */
4078 static INLINE int
4079 live_misc_p (m, p)
4080 struct mem_node *m;
4081 void *p;
4083 if (m->type == MEM_TYPE_MISC)
4085 struct marker_block *b = (struct marker_block *) m->start;
4086 int offset = (char *) p - (char *) &b->markers[0];
4088 /* P must point to the start of a Lisp_Misc, not be
4089 one of the unused cells in the current misc block,
4090 and not be on the free-list. */
4091 return (offset >= 0
4092 && offset % sizeof b->markers[0] == 0
4093 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4094 && (b != marker_block
4095 || offset / sizeof b->markers[0] < marker_block_index)
4096 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4098 else
4099 return 0;
4103 /* Value is non-zero if P is a pointer to a live vector-like object.
4104 M is a pointer to the mem_block for P. */
4106 static INLINE int
4107 live_vector_p (m, p)
4108 struct mem_node *m;
4109 void *p;
4111 return (p == m->start
4112 && m->type >= MEM_TYPE_VECTOR
4113 && m->type <= MEM_TYPE_WINDOW);
4117 /* Value is non-zero if P is a pointer to a live buffer. M is a
4118 pointer to the mem_block for P. */
4120 static INLINE int
4121 live_buffer_p (m, p)
4122 struct mem_node *m;
4123 void *p;
4125 /* P must point to the start of the block, and the buffer
4126 must not have been killed. */
4127 return (m->type == MEM_TYPE_BUFFER
4128 && p == m->start
4129 && !NILP (((struct buffer *) p)->name));
4132 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4134 #if GC_MARK_STACK
4136 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4138 /* Array of objects that are kept alive because the C stack contains
4139 a pattern that looks like a reference to them . */
4141 #define MAX_ZOMBIES 10
4142 static Lisp_Object zombies[MAX_ZOMBIES];
4144 /* Number of zombie objects. */
4146 static int nzombies;
4148 /* Number of garbage collections. */
4150 static int ngcs;
4152 /* Average percentage of zombies per collection. */
4154 static double avg_zombies;
4156 /* Max. number of live and zombie objects. */
4158 static int max_live, max_zombies;
4160 /* Average number of live objects per GC. */
4162 static double avg_live;
4164 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4165 doc: /* Show information about live and zombie objects. */)
4168 Lisp_Object args[8], zombie_list = Qnil;
4169 int i;
4170 for (i = 0; i < nzombies; i++)
4171 zombie_list = Fcons (zombies[i], zombie_list);
4172 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4173 args[1] = make_number (ngcs);
4174 args[2] = make_float (avg_live);
4175 args[3] = make_float (avg_zombies);
4176 args[4] = make_float (avg_zombies / avg_live / 100);
4177 args[5] = make_number (max_live);
4178 args[6] = make_number (max_zombies);
4179 args[7] = zombie_list;
4180 return Fmessage (8, args);
4183 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4186 /* Mark OBJ if we can prove it's a Lisp_Object. */
4188 static INLINE void
4189 mark_maybe_object (obj)
4190 Lisp_Object obj;
4192 void *po = (void *) XPNTR (obj);
4193 struct mem_node *m = mem_find (po);
4195 if (m != MEM_NIL)
4197 int mark_p = 0;
4199 switch (XGCTYPE (obj))
4201 case Lisp_String:
4202 mark_p = (live_string_p (m, po)
4203 && !STRING_MARKED_P ((struct Lisp_String *) po));
4204 break;
4206 case Lisp_Cons:
4207 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4208 break;
4210 case Lisp_Symbol:
4211 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4212 break;
4214 case Lisp_Float:
4215 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4216 break;
4218 case Lisp_Vectorlike:
4219 /* Note: can't check GC_BUFFERP before we know it's a
4220 buffer because checking that dereferences the pointer
4221 PO which might point anywhere. */
4222 if (live_vector_p (m, po))
4223 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4224 else if (live_buffer_p (m, po))
4225 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4226 break;
4228 case Lisp_Misc:
4229 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4230 break;
4232 case Lisp_Int:
4233 case Lisp_Type_Limit:
4234 break;
4237 if (mark_p)
4239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240 if (nzombies < MAX_ZOMBIES)
4241 zombies[nzombies] = obj;
4242 ++nzombies;
4243 #endif
4244 mark_object (obj);
4250 /* If P points to Lisp data, mark that as live if it isn't already
4251 marked. */
4253 static INLINE void
4254 mark_maybe_pointer (p)
4255 void *p;
4257 struct mem_node *m;
4259 /* Quickly rule out some values which can't point to Lisp data. We
4260 assume that Lisp data is aligned on even addresses. */
4261 if ((EMACS_INT) p & 1)
4262 return;
4264 m = mem_find (p);
4265 if (m != MEM_NIL)
4267 Lisp_Object obj = Qnil;
4269 switch (m->type)
4271 case MEM_TYPE_NON_LISP:
4272 /* Nothing to do; not a pointer to Lisp memory. */
4273 break;
4275 case MEM_TYPE_BUFFER:
4276 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4277 XSETVECTOR (obj, p);
4278 break;
4280 case MEM_TYPE_CONS:
4281 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4282 XSETCONS (obj, p);
4283 break;
4285 case MEM_TYPE_STRING:
4286 if (live_string_p (m, p)
4287 && !STRING_MARKED_P ((struct Lisp_String *) p))
4288 XSETSTRING (obj, p);
4289 break;
4291 case MEM_TYPE_MISC:
4292 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4293 XSETMISC (obj, p);
4294 break;
4296 case MEM_TYPE_SYMBOL:
4297 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4298 XSETSYMBOL (obj, p);
4299 break;
4301 case MEM_TYPE_FLOAT:
4302 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4303 XSETFLOAT (obj, p);
4304 break;
4306 case MEM_TYPE_VECTOR:
4307 case MEM_TYPE_PROCESS:
4308 case MEM_TYPE_HASH_TABLE:
4309 case MEM_TYPE_FRAME:
4310 case MEM_TYPE_WINDOW:
4311 if (live_vector_p (m, p))
4313 Lisp_Object tem;
4314 XSETVECTOR (tem, p);
4315 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4316 obj = tem;
4318 break;
4320 default:
4321 abort ();
4324 if (!GC_NILP (obj))
4325 mark_object (obj);
4330 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4331 or END+OFFSET..START. */
4333 static void
4334 mark_memory (start, end, offset)
4335 void *start, *end;
4336 int offset;
4338 Lisp_Object *p;
4339 void **pp;
4341 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4342 nzombies = 0;
4343 #endif
4345 /* Make START the pointer to the start of the memory region,
4346 if it isn't already. */
4347 if (end < start)
4349 void *tem = start;
4350 start = end;
4351 end = tem;
4354 /* Mark Lisp_Objects. */
4355 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4356 mark_maybe_object (*p);
4358 /* Mark Lisp data pointed to. This is necessary because, in some
4359 situations, the C compiler optimizes Lisp objects away, so that
4360 only a pointer to them remains. Example:
4362 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4365 Lisp_Object obj = build_string ("test");
4366 struct Lisp_String *s = XSTRING (obj);
4367 Fgarbage_collect ();
4368 fprintf (stderr, "test `%s'\n", s->data);
4369 return Qnil;
4372 Here, `obj' isn't really used, and the compiler optimizes it
4373 away. The only reference to the life string is through the
4374 pointer `s'. */
4376 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4377 mark_maybe_pointer (*pp);
4380 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4381 the GCC system configuration. In gcc 3.2, the only systems for
4382 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4383 by others?) and ns32k-pc532-min. */
4385 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4387 static int setjmp_tested_p, longjmps_done;
4389 #define SETJMP_WILL_LIKELY_WORK "\
4391 Emacs garbage collector has been changed to use conservative stack\n\
4392 marking. Emacs has determined that the method it uses to do the\n\
4393 marking will likely work on your system, but this isn't sure.\n\
4395 If you are a system-programmer, or can get the help of a local wizard\n\
4396 who is, please take a look at the function mark_stack in alloc.c, and\n\
4397 verify that the methods used are appropriate for your system.\n\
4399 Please mail the result to <emacs-devel@gnu.org>.\n\
4402 #define SETJMP_WILL_NOT_WORK "\
4404 Emacs garbage collector has been changed to use conservative stack\n\
4405 marking. Emacs has determined that the default method it uses to do the\n\
4406 marking will not work on your system. We will need a system-dependent\n\
4407 solution for your system.\n\
4409 Please take a look at the function mark_stack in alloc.c, and\n\
4410 try to find a way to make it work on your system.\n\
4412 Note that you may get false negatives, depending on the compiler.\n\
4413 In particular, you need to use -O with GCC for this test.\n\
4415 Please mail the result to <emacs-devel@gnu.org>.\n\
4419 /* Perform a quick check if it looks like setjmp saves registers in a
4420 jmp_buf. Print a message to stderr saying so. When this test
4421 succeeds, this is _not_ a proof that setjmp is sufficient for
4422 conservative stack marking. Only the sources or a disassembly
4423 can prove that. */
4425 static void
4426 test_setjmp ()
4428 char buf[10];
4429 register int x;
4430 jmp_buf jbuf;
4431 int result = 0;
4433 /* Arrange for X to be put in a register. */
4434 sprintf (buf, "1");
4435 x = strlen (buf);
4436 x = 2 * x - 1;
4438 setjmp (jbuf);
4439 if (longjmps_done == 1)
4441 /* Came here after the longjmp at the end of the function.
4443 If x == 1, the longjmp has restored the register to its
4444 value before the setjmp, and we can hope that setjmp
4445 saves all such registers in the jmp_buf, although that
4446 isn't sure.
4448 For other values of X, either something really strange is
4449 taking place, or the setjmp just didn't save the register. */
4451 if (x == 1)
4452 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4453 else
4455 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4456 exit (1);
4460 ++longjmps_done;
4461 x = 2;
4462 if (longjmps_done == 1)
4463 longjmp (jbuf, 1);
4466 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4469 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4471 /* Abort if anything GCPRO'd doesn't survive the GC. */
4473 static void
4474 check_gcpros ()
4476 struct gcpro *p;
4477 int i;
4479 for (p = gcprolist; p; p = p->next)
4480 for (i = 0; i < p->nvars; ++i)
4481 if (!survives_gc_p (p->var[i]))
4482 /* FIXME: It's not necessarily a bug. It might just be that the
4483 GCPRO is unnecessary or should release the object sooner. */
4484 abort ();
4487 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4489 static void
4490 dump_zombies ()
4492 int i;
4494 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4495 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4497 fprintf (stderr, " %d = ", i);
4498 debug_print (zombies[i]);
4502 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4505 /* Mark live Lisp objects on the C stack.
4507 There are several system-dependent problems to consider when
4508 porting this to new architectures:
4510 Processor Registers
4512 We have to mark Lisp objects in CPU registers that can hold local
4513 variables or are used to pass parameters.
4515 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4516 something that either saves relevant registers on the stack, or
4517 calls mark_maybe_object passing it each register's contents.
4519 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4520 implementation assumes that calling setjmp saves registers we need
4521 to see in a jmp_buf which itself lies on the stack. This doesn't
4522 have to be true! It must be verified for each system, possibly
4523 by taking a look at the source code of setjmp.
4525 Stack Layout
4527 Architectures differ in the way their processor stack is organized.
4528 For example, the stack might look like this
4530 +----------------+
4531 | Lisp_Object | size = 4
4532 +----------------+
4533 | something else | size = 2
4534 +----------------+
4535 | Lisp_Object | size = 4
4536 +----------------+
4537 | ... |
4539 In such a case, not every Lisp_Object will be aligned equally. To
4540 find all Lisp_Object on the stack it won't be sufficient to walk
4541 the stack in steps of 4 bytes. Instead, two passes will be
4542 necessary, one starting at the start of the stack, and a second
4543 pass starting at the start of the stack + 2. Likewise, if the
4544 minimal alignment of Lisp_Objects on the stack is 1, four passes
4545 would be necessary, each one starting with one byte more offset
4546 from the stack start.
4548 The current code assumes by default that Lisp_Objects are aligned
4549 equally on the stack. */
4551 static void
4552 mark_stack ()
4554 int i;
4555 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4556 union aligned_jmpbuf {
4557 Lisp_Object o;
4558 jmp_buf j;
4559 } j;
4560 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4561 void *end;
4563 /* This trick flushes the register windows so that all the state of
4564 the process is contained in the stack. */
4565 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4566 needed on ia64 too. See mach_dep.c, where it also says inline
4567 assembler doesn't work with relevant proprietary compilers. */
4568 #ifdef sparc
4569 asm ("ta 3");
4570 #endif
4572 /* Save registers that we need to see on the stack. We need to see
4573 registers used to hold register variables and registers used to
4574 pass parameters. */
4575 #ifdef GC_SAVE_REGISTERS_ON_STACK
4576 GC_SAVE_REGISTERS_ON_STACK (end);
4577 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4579 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4580 setjmp will definitely work, test it
4581 and print a message with the result
4582 of the test. */
4583 if (!setjmp_tested_p)
4585 setjmp_tested_p = 1;
4586 test_setjmp ();
4588 #endif /* GC_SETJMP_WORKS */
4590 setjmp (j.j);
4591 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4592 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4594 /* This assumes that the stack is a contiguous region in memory. If
4595 that's not the case, something has to be done here to iterate
4596 over the stack segments. */
4597 #ifndef GC_LISP_OBJECT_ALIGNMENT
4598 #ifdef __GNUC__
4599 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4600 #else
4601 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4602 #endif
4603 #endif
4604 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4605 mark_memory (stack_base, end, i);
4606 /* Allow for marking a secondary stack, like the register stack on the
4607 ia64. */
4608 #ifdef GC_MARK_SECONDARY_STACK
4609 GC_MARK_SECONDARY_STACK ();
4610 #endif
4612 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4613 check_gcpros ();
4614 #endif
4617 #endif /* GC_MARK_STACK != 0 */
4620 /* Determine whether it is safe to access memory at address P. */
4622 valid_pointer_p (p)
4623 void *p;
4625 #ifdef WINDOWSNT
4626 return w32_valid_pointer_p (p, 16);
4627 #else
4628 int fd;
4630 /* Obviously, we cannot just access it (we would SEGV trying), so we
4631 trick the o/s to tell us whether p is a valid pointer.
4632 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4633 not validate p in that case. */
4635 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4637 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4638 emacs_close (fd);
4639 unlink ("__Valid__Lisp__Object__");
4640 return valid;
4643 return -1;
4644 #endif
4647 /* Return 1 if OBJ is a valid lisp object.
4648 Return 0 if OBJ is NOT a valid lisp object.
4649 Return -1 if we cannot validate OBJ.
4650 This function can be quite slow,
4651 so it should only be used in code for manual debugging. */
4654 valid_lisp_object_p (obj)
4655 Lisp_Object obj;
4657 void *p;
4658 #if GC_MARK_STACK
4659 struct mem_node *m;
4660 #endif
4662 if (INTEGERP (obj))
4663 return 1;
4665 p = (void *) XPNTR (obj);
4666 if (PURE_POINTER_P (p))
4667 return 1;
4669 #if !GC_MARK_STACK
4670 return valid_pointer_p (p);
4671 #else
4673 m = mem_find (p);
4675 if (m == MEM_NIL)
4677 int valid = valid_pointer_p (p);
4678 if (valid <= 0)
4679 return valid;
4681 if (SUBRP (obj))
4682 return 1;
4684 return 0;
4687 switch (m->type)
4689 case MEM_TYPE_NON_LISP:
4690 return 0;
4692 case MEM_TYPE_BUFFER:
4693 return live_buffer_p (m, p);
4695 case MEM_TYPE_CONS:
4696 return live_cons_p (m, p);
4698 case MEM_TYPE_STRING:
4699 return live_string_p (m, p);
4701 case MEM_TYPE_MISC:
4702 return live_misc_p (m, p);
4704 case MEM_TYPE_SYMBOL:
4705 return live_symbol_p (m, p);
4707 case MEM_TYPE_FLOAT:
4708 return live_float_p (m, p);
4710 case MEM_TYPE_VECTOR:
4711 case MEM_TYPE_PROCESS:
4712 case MEM_TYPE_HASH_TABLE:
4713 case MEM_TYPE_FRAME:
4714 case MEM_TYPE_WINDOW:
4715 return live_vector_p (m, p);
4717 default:
4718 break;
4721 return 0;
4722 #endif
4728 /***********************************************************************
4729 Pure Storage Management
4730 ***********************************************************************/
4732 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4733 pointer to it. TYPE is the Lisp type for which the memory is
4734 allocated. TYPE < 0 means it's not used for a Lisp object. */
4736 static POINTER_TYPE *
4737 pure_alloc (size, type)
4738 size_t size;
4739 int type;
4741 POINTER_TYPE *result;
4742 #ifdef USE_LSB_TAG
4743 size_t alignment = (1 << GCTYPEBITS);
4744 #else
4745 size_t alignment = sizeof (EMACS_INT);
4747 /* Give Lisp_Floats an extra alignment. */
4748 if (type == Lisp_Float)
4750 #if defined __GNUC__ && __GNUC__ >= 2
4751 alignment = __alignof (struct Lisp_Float);
4752 #else
4753 alignment = sizeof (struct Lisp_Float);
4754 #endif
4756 #endif
4758 again:
4759 if (type >= 0)
4761 /* Allocate space for a Lisp object from the beginning of the free
4762 space with taking account of alignment. */
4763 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4764 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4766 else
4768 /* Allocate space for a non-Lisp object from the end of the free
4769 space. */
4770 pure_bytes_used_non_lisp += size;
4771 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4773 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4775 if (pure_bytes_used <= pure_size)
4776 return result;
4778 /* Don't allocate a large amount here,
4779 because it might get mmap'd and then its address
4780 might not be usable. */
4781 purebeg = (char *) xmalloc (10000);
4782 pure_size = 10000;
4783 pure_bytes_used_before_overflow += pure_bytes_used - size;
4784 pure_bytes_used = 0;
4785 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4786 goto again;
4790 /* Print a warning if PURESIZE is too small. */
4792 void
4793 check_pure_size ()
4795 if (pure_bytes_used_before_overflow)
4796 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4797 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4801 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4802 the non-Lisp data pool of the pure storage, and return its start
4803 address. Return NULL if not found. */
4805 static char *
4806 find_string_data_in_pure (data, nbytes)
4807 char *data;
4808 int nbytes;
4810 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4811 unsigned char *p;
4812 char *non_lisp_beg;
4814 if (pure_bytes_used_non_lisp < nbytes + 1)
4815 return NULL;
4817 /* Set up the Boyer-Moore table. */
4818 skip = nbytes + 1;
4819 for (i = 0; i < 256; i++)
4820 bm_skip[i] = skip;
4822 p = (unsigned char *) data;
4823 while (--skip > 0)
4824 bm_skip[*p++] = skip;
4826 last_char_skip = bm_skip['\0'];
4828 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4829 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4831 /* See the comments in the function `boyer_moore' (search.c) for the
4832 use of `infinity'. */
4833 infinity = pure_bytes_used_non_lisp + 1;
4834 bm_skip['\0'] = infinity;
4836 p = (unsigned char *) non_lisp_beg + nbytes;
4837 start = 0;
4840 /* Check the last character (== '\0'). */
4843 start += bm_skip[*(p + start)];
4845 while (start <= start_max);
4847 if (start < infinity)
4848 /* Couldn't find the last character. */
4849 return NULL;
4851 /* No less than `infinity' means we could find the last
4852 character at `p[start - infinity]'. */
4853 start -= infinity;
4855 /* Check the remaining characters. */
4856 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4857 /* Found. */
4858 return non_lisp_beg + start;
4860 start += last_char_skip;
4862 while (start <= start_max);
4864 return NULL;
4868 /* Return a string allocated in pure space. DATA is a buffer holding
4869 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4870 non-zero means make the result string multibyte.
4872 Must get an error if pure storage is full, since if it cannot hold
4873 a large string it may be able to hold conses that point to that
4874 string; then the string is not protected from gc. */
4876 Lisp_Object
4877 make_pure_string (data, nchars, nbytes, multibyte)
4878 char *data;
4879 int nchars, nbytes;
4880 int multibyte;
4882 Lisp_Object string;
4883 struct Lisp_String *s;
4885 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4886 s->data = find_string_data_in_pure (data, nbytes);
4887 if (s->data == NULL)
4889 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4890 bcopy (data, s->data, nbytes);
4891 s->data[nbytes] = '\0';
4893 s->size = nchars;
4894 s->size_byte = multibyte ? nbytes : -1;
4895 s->intervals = NULL_INTERVAL;
4896 XSETSTRING (string, s);
4897 return string;
4901 /* Return a cons allocated from pure space. Give it pure copies
4902 of CAR as car and CDR as cdr. */
4904 Lisp_Object
4905 pure_cons (car, cdr)
4906 Lisp_Object car, cdr;
4908 register Lisp_Object new;
4909 struct Lisp_Cons *p;
4911 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4912 XSETCONS (new, p);
4913 XSETCAR (new, Fpurecopy (car));
4914 XSETCDR (new, Fpurecopy (cdr));
4915 return new;
4919 /* Value is a float object with value NUM allocated from pure space. */
4921 Lisp_Object
4922 make_pure_float (num)
4923 double num;
4925 register Lisp_Object new;
4926 struct Lisp_Float *p;
4928 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4929 XSETFLOAT (new, p);
4930 XFLOAT_DATA (new) = num;
4931 return new;
4935 /* Return a vector with room for LEN Lisp_Objects allocated from
4936 pure space. */
4938 Lisp_Object
4939 make_pure_vector (len)
4940 EMACS_INT len;
4942 Lisp_Object new;
4943 struct Lisp_Vector *p;
4944 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4946 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4947 XSETVECTOR (new, p);
4948 XVECTOR (new)->size = len;
4949 return new;
4953 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4954 doc: /* Make a copy of object OBJ in pure storage.
4955 Recursively copies contents of vectors and cons cells.
4956 Does not copy symbols. Copies strings without text properties. */)
4957 (obj)
4958 register Lisp_Object obj;
4960 if (NILP (Vpurify_flag))
4961 return obj;
4963 if (PURE_POINTER_P (XPNTR (obj)))
4964 return obj;
4966 if (CONSP (obj))
4967 return pure_cons (XCAR (obj), XCDR (obj));
4968 else if (FLOATP (obj))
4969 return make_pure_float (XFLOAT_DATA (obj));
4970 else if (STRINGP (obj))
4971 return make_pure_string (SDATA (obj), SCHARS (obj),
4972 SBYTES (obj),
4973 STRING_MULTIBYTE (obj));
4974 else if (COMPILEDP (obj) || VECTORP (obj))
4976 register struct Lisp_Vector *vec;
4977 register int i;
4978 EMACS_INT size;
4980 size = XVECTOR (obj)->size;
4981 if (size & PSEUDOVECTOR_FLAG)
4982 size &= PSEUDOVECTOR_SIZE_MASK;
4983 vec = XVECTOR (make_pure_vector (size));
4984 for (i = 0; i < size; i++)
4985 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4986 if (COMPILEDP (obj))
4987 XSETCOMPILED (obj, vec);
4988 else
4989 XSETVECTOR (obj, vec);
4990 return obj;
4992 else if (MARKERP (obj))
4993 error ("Attempt to copy a marker to pure storage");
4995 return obj;
5000 /***********************************************************************
5001 Protection from GC
5002 ***********************************************************************/
5004 /* Put an entry in staticvec, pointing at the variable with address
5005 VARADDRESS. */
5007 void
5008 staticpro (varaddress)
5009 Lisp_Object *varaddress;
5011 staticvec[staticidx++] = varaddress;
5012 if (staticidx >= NSTATICS)
5013 abort ();
5016 struct catchtag
5018 Lisp_Object tag;
5019 Lisp_Object val;
5020 struct catchtag *next;
5024 /***********************************************************************
5025 Protection from GC
5026 ***********************************************************************/
5028 /* Temporarily prevent garbage collection. */
5031 inhibit_garbage_collection ()
5033 int count = SPECPDL_INDEX ();
5034 int nbits = min (VALBITS, BITS_PER_INT);
5036 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5037 return count;
5041 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5042 doc: /* Reclaim storage for Lisp objects no longer needed.
5043 Garbage collection happens automatically if you cons more than
5044 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5045 `garbage-collect' normally returns a list with info on amount of space in use:
5046 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5047 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5048 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5049 (USED-STRINGS . FREE-STRINGS))
5050 However, if there was overflow in pure space, `garbage-collect'
5051 returns nil, because real GC can't be done. */)
5054 register struct specbinding *bind;
5055 struct catchtag *catch;
5056 struct handler *handler;
5057 char stack_top_variable;
5058 register int i;
5059 int message_p;
5060 Lisp_Object total[8];
5061 int count = SPECPDL_INDEX ();
5062 EMACS_TIME t1, t2, t3;
5064 if (abort_on_gc)
5065 abort ();
5067 /* Can't GC if pure storage overflowed because we can't determine
5068 if something is a pure object or not. */
5069 if (pure_bytes_used_before_overflow)
5070 return Qnil;
5072 CHECK_CONS_LIST ();
5074 /* Don't keep undo information around forever.
5075 Do this early on, so it is no problem if the user quits. */
5077 register struct buffer *nextb = all_buffers;
5079 while (nextb)
5081 /* If a buffer's undo list is Qt, that means that undo is
5082 turned off in that buffer. Calling truncate_undo_list on
5083 Qt tends to return NULL, which effectively turns undo back on.
5084 So don't call truncate_undo_list if undo_list is Qt. */
5085 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5086 truncate_undo_list (nextb);
5088 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5089 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5091 /* If a buffer's gap size is more than 10% of the buffer
5092 size, or larger than 2000 bytes, then shrink it
5093 accordingly. Keep a minimum size of 20 bytes. */
5094 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5096 if (nextb->text->gap_size > size)
5098 struct buffer *save_current = current_buffer;
5099 current_buffer = nextb;
5100 make_gap (-(nextb->text->gap_size - size));
5101 current_buffer = save_current;
5105 nextb = nextb->next;
5109 EMACS_GET_TIME (t1);
5111 /* In case user calls debug_print during GC,
5112 don't let that cause a recursive GC. */
5113 consing_since_gc = 0;
5115 /* Save what's currently displayed in the echo area. */
5116 message_p = push_message ();
5117 record_unwind_protect (pop_message_unwind, Qnil);
5119 /* Save a copy of the contents of the stack, for debugging. */
5120 #if MAX_SAVE_STACK > 0
5121 if (NILP (Vpurify_flag))
5123 i = &stack_top_variable - stack_bottom;
5124 if (i < 0) i = -i;
5125 if (i < MAX_SAVE_STACK)
5127 if (stack_copy == 0)
5128 stack_copy = (char *) xmalloc (stack_copy_size = i);
5129 else if (stack_copy_size < i)
5130 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5131 if (stack_copy)
5133 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5134 bcopy (stack_bottom, stack_copy, i);
5135 else
5136 bcopy (&stack_top_variable, stack_copy, i);
5140 #endif /* MAX_SAVE_STACK > 0 */
5142 if (garbage_collection_messages)
5143 message1_nolog ("Garbage collecting...");
5145 BLOCK_INPUT;
5147 shrink_regexp_cache ();
5149 gc_in_progress = 1;
5151 /* clear_marks (); */
5153 /* Mark all the special slots that serve as the roots of accessibility. */
5155 for (i = 0; i < staticidx; i++)
5156 mark_object (*staticvec[i]);
5158 for (bind = specpdl; bind != specpdl_ptr; bind++)
5160 mark_object (bind->symbol);
5161 mark_object (bind->old_value);
5163 mark_kboards ();
5165 #ifdef USE_GTK
5167 extern void xg_mark_data ();
5168 xg_mark_data ();
5170 #endif
5172 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5173 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5174 mark_stack ();
5175 #else
5177 register struct gcpro *tail;
5178 for (tail = gcprolist; tail; tail = tail->next)
5179 for (i = 0; i < tail->nvars; i++)
5180 mark_object (tail->var[i]);
5182 #endif
5184 mark_byte_stack ();
5185 for (catch = catchlist; catch; catch = catch->next)
5187 mark_object (catch->tag);
5188 mark_object (catch->val);
5190 for (handler = handlerlist; handler; handler = handler->next)
5192 mark_object (handler->handler);
5193 mark_object (handler->var);
5195 mark_backtrace ();
5197 #ifdef HAVE_WINDOW_SYSTEM
5198 mark_fringe_data ();
5199 #endif
5201 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5202 mark_stack ();
5203 #endif
5205 /* Everything is now marked, except for the things that require special
5206 finalization, i.e. the undo_list.
5207 Look thru every buffer's undo list
5208 for elements that update markers that were not marked,
5209 and delete them. */
5211 register struct buffer *nextb = all_buffers;
5213 while (nextb)
5215 /* If a buffer's undo list is Qt, that means that undo is
5216 turned off in that buffer. Calling truncate_undo_list on
5217 Qt tends to return NULL, which effectively turns undo back on.
5218 So don't call truncate_undo_list if undo_list is Qt. */
5219 if (! EQ (nextb->undo_list, Qt))
5221 Lisp_Object tail, prev;
5222 tail = nextb->undo_list;
5223 prev = Qnil;
5224 while (CONSP (tail))
5226 if (GC_CONSP (XCAR (tail))
5227 && GC_MARKERP (XCAR (XCAR (tail)))
5228 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5230 if (NILP (prev))
5231 nextb->undo_list = tail = XCDR (tail);
5232 else
5234 tail = XCDR (tail);
5235 XSETCDR (prev, tail);
5238 else
5240 prev = tail;
5241 tail = XCDR (tail);
5245 /* Now that we have stripped the elements that need not be in the
5246 undo_list any more, we can finally mark the list. */
5247 mark_object (nextb->undo_list);
5249 nextb = nextb->next;
5253 gc_sweep ();
5255 /* Clear the mark bits that we set in certain root slots. */
5257 unmark_byte_stack ();
5258 VECTOR_UNMARK (&buffer_defaults);
5259 VECTOR_UNMARK (&buffer_local_symbols);
5261 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5262 dump_zombies ();
5263 #endif
5265 UNBLOCK_INPUT;
5267 CHECK_CONS_LIST ();
5269 /* clear_marks (); */
5270 gc_in_progress = 0;
5272 consing_since_gc = 0;
5273 if (gc_cons_threshold < 10000)
5274 gc_cons_threshold = 10000;
5276 if (FLOATP (Vgc_cons_percentage))
5277 { /* Set gc_cons_combined_threshold. */
5278 EMACS_INT total = 0;
5280 total += total_conses * sizeof (struct Lisp_Cons);
5281 total += total_symbols * sizeof (struct Lisp_Symbol);
5282 total += total_markers * sizeof (union Lisp_Misc);
5283 total += total_string_size;
5284 total += total_vector_size * sizeof (Lisp_Object);
5285 total += total_floats * sizeof (struct Lisp_Float);
5286 total += total_intervals * sizeof (struct interval);
5287 total += total_strings * sizeof (struct Lisp_String);
5289 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5291 else
5292 gc_relative_threshold = 0;
5294 if (garbage_collection_messages)
5296 if (message_p || minibuf_level > 0)
5297 restore_message ();
5298 else
5299 message1_nolog ("Garbage collecting...done");
5302 unbind_to (count, Qnil);
5304 total[0] = Fcons (make_number (total_conses),
5305 make_number (total_free_conses));
5306 total[1] = Fcons (make_number (total_symbols),
5307 make_number (total_free_symbols));
5308 total[2] = Fcons (make_number (total_markers),
5309 make_number (total_free_markers));
5310 total[3] = make_number (total_string_size);
5311 total[4] = make_number (total_vector_size);
5312 total[5] = Fcons (make_number (total_floats),
5313 make_number (total_free_floats));
5314 total[6] = Fcons (make_number (total_intervals),
5315 make_number (total_free_intervals));
5316 total[7] = Fcons (make_number (total_strings),
5317 make_number (total_free_strings));
5319 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5321 /* Compute average percentage of zombies. */
5322 double nlive = 0;
5324 for (i = 0; i < 7; ++i)
5325 if (CONSP (total[i]))
5326 nlive += XFASTINT (XCAR (total[i]));
5328 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5329 max_live = max (nlive, max_live);
5330 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5331 max_zombies = max (nzombies, max_zombies);
5332 ++ngcs;
5334 #endif
5336 if (!NILP (Vpost_gc_hook))
5338 int count = inhibit_garbage_collection ();
5339 safe_run_hooks (Qpost_gc_hook);
5340 unbind_to (count, Qnil);
5343 /* Accumulate statistics. */
5344 EMACS_GET_TIME (t2);
5345 EMACS_SUB_TIME (t3, t2, t1);
5346 if (FLOATP (Vgc_elapsed))
5347 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5348 EMACS_SECS (t3) +
5349 EMACS_USECS (t3) * 1.0e-6);
5350 gcs_done++;
5352 return Flist (sizeof total / sizeof *total, total);
5356 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5357 only interesting objects referenced from glyphs are strings. */
5359 static void
5360 mark_glyph_matrix (matrix)
5361 struct glyph_matrix *matrix;
5363 struct glyph_row *row = matrix->rows;
5364 struct glyph_row *end = row + matrix->nrows;
5366 for (; row < end; ++row)
5367 if (row->enabled_p)
5369 int area;
5370 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5372 struct glyph *glyph = row->glyphs[area];
5373 struct glyph *end_glyph = glyph + row->used[area];
5375 for (; glyph < end_glyph; ++glyph)
5376 if (GC_STRINGP (glyph->object)
5377 && !STRING_MARKED_P (XSTRING (glyph->object)))
5378 mark_object (glyph->object);
5384 /* Mark Lisp faces in the face cache C. */
5386 static void
5387 mark_face_cache (c)
5388 struct face_cache *c;
5390 if (c)
5392 int i, j;
5393 for (i = 0; i < c->used; ++i)
5395 struct face *face = FACE_FROM_ID (c->f, i);
5397 if (face)
5399 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5400 mark_object (face->lface[j]);
5407 #ifdef HAVE_WINDOW_SYSTEM
5409 /* Mark Lisp objects in image IMG. */
5411 static void
5412 mark_image (img)
5413 struct image *img;
5415 mark_object (img->spec);
5417 if (!NILP (img->data.lisp_val))
5418 mark_object (img->data.lisp_val);
5422 /* Mark Lisp objects in image cache of frame F. It's done this way so
5423 that we don't have to include xterm.h here. */
5425 static void
5426 mark_image_cache (f)
5427 struct frame *f;
5429 forall_images_in_image_cache (f, mark_image);
5432 #endif /* HAVE_X_WINDOWS */
5436 /* Mark reference to a Lisp_Object.
5437 If the object referred to has not been seen yet, recursively mark
5438 all the references contained in it. */
5440 #define LAST_MARKED_SIZE 500
5441 Lisp_Object last_marked[LAST_MARKED_SIZE];
5442 int last_marked_index;
5444 /* For debugging--call abort when we cdr down this many
5445 links of a list, in mark_object. In debugging,
5446 the call to abort will hit a breakpoint.
5447 Normally this is zero and the check never goes off. */
5448 int mark_object_loop_halt;
5450 void
5451 mark_object (arg)
5452 Lisp_Object arg;
5454 register Lisp_Object obj = arg;
5455 #ifdef GC_CHECK_MARKED_OBJECTS
5456 void *po;
5457 struct mem_node *m;
5458 #endif
5459 int cdr_count = 0;
5461 loop:
5463 if (PURE_POINTER_P (XPNTR (obj)))
5464 return;
5466 last_marked[last_marked_index++] = obj;
5467 if (last_marked_index == LAST_MARKED_SIZE)
5468 last_marked_index = 0;
5470 /* Perform some sanity checks on the objects marked here. Abort if
5471 we encounter an object we know is bogus. This increases GC time
5472 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5473 #ifdef GC_CHECK_MARKED_OBJECTS
5475 po = (void *) XPNTR (obj);
5477 /* Check that the object pointed to by PO is known to be a Lisp
5478 structure allocated from the heap. */
5479 #define CHECK_ALLOCATED() \
5480 do { \
5481 m = mem_find (po); \
5482 if (m == MEM_NIL) \
5483 abort (); \
5484 } while (0)
5486 /* Check that the object pointed to by PO is live, using predicate
5487 function LIVEP. */
5488 #define CHECK_LIVE(LIVEP) \
5489 do { \
5490 if (!LIVEP (m, po)) \
5491 abort (); \
5492 } while (0)
5494 /* Check both of the above conditions. */
5495 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5496 do { \
5497 CHECK_ALLOCATED (); \
5498 CHECK_LIVE (LIVEP); \
5499 } while (0) \
5501 #else /* not GC_CHECK_MARKED_OBJECTS */
5503 #define CHECK_ALLOCATED() (void) 0
5504 #define CHECK_LIVE(LIVEP) (void) 0
5505 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5507 #endif /* not GC_CHECK_MARKED_OBJECTS */
5509 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5511 case Lisp_String:
5513 register struct Lisp_String *ptr = XSTRING (obj);
5514 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5515 MARK_INTERVAL_TREE (ptr->intervals);
5516 MARK_STRING (ptr);
5517 #ifdef GC_CHECK_STRING_BYTES
5518 /* Check that the string size recorded in the string is the
5519 same as the one recorded in the sdata structure. */
5520 CHECK_STRING_BYTES (ptr);
5521 #endif /* GC_CHECK_STRING_BYTES */
5523 break;
5525 case Lisp_Vectorlike:
5526 #ifdef GC_CHECK_MARKED_OBJECTS
5527 m = mem_find (po);
5528 if (m == MEM_NIL && !GC_SUBRP (obj)
5529 && po != &buffer_defaults
5530 && po != &buffer_local_symbols)
5531 abort ();
5532 #endif /* GC_CHECK_MARKED_OBJECTS */
5534 if (GC_BUFFERP (obj))
5536 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5538 #ifdef GC_CHECK_MARKED_OBJECTS
5539 if (po != &buffer_defaults && po != &buffer_local_symbols)
5541 struct buffer *b;
5542 for (b = all_buffers; b && b != po; b = b->next)
5544 if (b == NULL)
5545 abort ();
5547 #endif /* GC_CHECK_MARKED_OBJECTS */
5548 mark_buffer (obj);
5551 else if (GC_SUBRP (obj))
5552 break;
5553 else if (GC_COMPILEDP (obj))
5554 /* We could treat this just like a vector, but it is better to
5555 save the COMPILED_CONSTANTS element for last and avoid
5556 recursion there. */
5558 register struct Lisp_Vector *ptr = XVECTOR (obj);
5559 register EMACS_INT size = ptr->size;
5560 register int i;
5562 if (VECTOR_MARKED_P (ptr))
5563 break; /* Already marked */
5565 CHECK_LIVE (live_vector_p);
5566 VECTOR_MARK (ptr); /* Else mark it */
5567 size &= PSEUDOVECTOR_SIZE_MASK;
5568 for (i = 0; i < size; i++) /* and then mark its elements */
5570 if (i != COMPILED_CONSTANTS)
5571 mark_object (ptr->contents[i]);
5573 obj = ptr->contents[COMPILED_CONSTANTS];
5574 goto loop;
5576 else if (GC_FRAMEP (obj))
5578 register struct frame *ptr = XFRAME (obj);
5580 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5581 VECTOR_MARK (ptr); /* Else mark it */
5583 CHECK_LIVE (live_vector_p);
5584 mark_object (ptr->name);
5585 mark_object (ptr->icon_name);
5586 mark_object (ptr->title);
5587 mark_object (ptr->focus_frame);
5588 mark_object (ptr->selected_window);
5589 mark_object (ptr->minibuffer_window);
5590 mark_object (ptr->param_alist);
5591 mark_object (ptr->scroll_bars);
5592 mark_object (ptr->condemned_scroll_bars);
5593 mark_object (ptr->menu_bar_items);
5594 mark_object (ptr->face_alist);
5595 mark_object (ptr->menu_bar_vector);
5596 mark_object (ptr->buffer_predicate);
5597 mark_object (ptr->buffer_list);
5598 mark_object (ptr->menu_bar_window);
5599 mark_object (ptr->tool_bar_window);
5600 mark_face_cache (ptr->face_cache);
5601 #ifdef HAVE_WINDOW_SYSTEM
5602 mark_image_cache (ptr);
5603 mark_object (ptr->tool_bar_items);
5604 mark_object (ptr->desired_tool_bar_string);
5605 mark_object (ptr->current_tool_bar_string);
5606 #endif /* HAVE_WINDOW_SYSTEM */
5608 else if (GC_BOOL_VECTOR_P (obj))
5610 register struct Lisp_Vector *ptr = XVECTOR (obj);
5612 if (VECTOR_MARKED_P (ptr))
5613 break; /* Already marked */
5614 CHECK_LIVE (live_vector_p);
5615 VECTOR_MARK (ptr); /* Else mark it */
5617 else if (GC_WINDOWP (obj))
5619 register struct Lisp_Vector *ptr = XVECTOR (obj);
5620 struct window *w = XWINDOW (obj);
5621 register int i;
5623 /* Stop if already marked. */
5624 if (VECTOR_MARKED_P (ptr))
5625 break;
5627 /* Mark it. */
5628 CHECK_LIVE (live_vector_p);
5629 VECTOR_MARK (ptr);
5631 /* There is no Lisp data above The member CURRENT_MATRIX in
5632 struct WINDOW. Stop marking when that slot is reached. */
5633 for (i = 0;
5634 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5635 i++)
5636 mark_object (ptr->contents[i]);
5638 /* Mark glyphs for leaf windows. Marking window matrices is
5639 sufficient because frame matrices use the same glyph
5640 memory. */
5641 if (NILP (w->hchild)
5642 && NILP (w->vchild)
5643 && w->current_matrix)
5645 mark_glyph_matrix (w->current_matrix);
5646 mark_glyph_matrix (w->desired_matrix);
5649 else if (GC_HASH_TABLE_P (obj))
5651 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5653 /* Stop if already marked. */
5654 if (VECTOR_MARKED_P (h))
5655 break;
5657 /* Mark it. */
5658 CHECK_LIVE (live_vector_p);
5659 VECTOR_MARK (h);
5661 /* Mark contents. */
5662 /* Do not mark next_free or next_weak.
5663 Being in the next_weak chain
5664 should not keep the hash table alive.
5665 No need to mark `count' since it is an integer. */
5666 mark_object (h->test);
5667 mark_object (h->weak);
5668 mark_object (h->rehash_size);
5669 mark_object (h->rehash_threshold);
5670 mark_object (h->hash);
5671 mark_object (h->next);
5672 mark_object (h->index);
5673 mark_object (h->user_hash_function);
5674 mark_object (h->user_cmp_function);
5676 /* If hash table is not weak, mark all keys and values.
5677 For weak tables, mark only the vector. */
5678 if (GC_NILP (h->weak))
5679 mark_object (h->key_and_value);
5680 else
5681 VECTOR_MARK (XVECTOR (h->key_and_value));
5683 else
5685 register struct Lisp_Vector *ptr = XVECTOR (obj);
5686 register EMACS_INT size = ptr->size;
5687 register int i;
5689 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5690 CHECK_LIVE (live_vector_p);
5691 VECTOR_MARK (ptr); /* Else mark it */
5692 if (size & PSEUDOVECTOR_FLAG)
5693 size &= PSEUDOVECTOR_SIZE_MASK;
5695 /* Note that this size is not the memory-footprint size, but only
5696 the number of Lisp_Object fields that we should trace.
5697 The distinction is used e.g. by Lisp_Process which places extra
5698 non-Lisp_Object fields at the end of the structure. */
5699 for (i = 0; i < size; i++) /* and then mark its elements */
5700 mark_object (ptr->contents[i]);
5702 break;
5704 case Lisp_Symbol:
5706 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5707 struct Lisp_Symbol *ptrx;
5709 if (ptr->gcmarkbit) break;
5710 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5711 ptr->gcmarkbit = 1;
5712 mark_object (ptr->value);
5713 mark_object (ptr->function);
5714 mark_object (ptr->plist);
5716 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5717 MARK_STRING (XSTRING (ptr->xname));
5718 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5720 /* Note that we do not mark the obarray of the symbol.
5721 It is safe not to do so because nothing accesses that
5722 slot except to check whether it is nil. */
5723 ptr = ptr->next;
5724 if (ptr)
5726 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5727 XSETSYMBOL (obj, ptrx);
5728 goto loop;
5731 break;
5733 case Lisp_Misc:
5734 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5735 if (XMARKER (obj)->gcmarkbit)
5736 break;
5737 XMARKER (obj)->gcmarkbit = 1;
5739 switch (XMISCTYPE (obj))
5741 case Lisp_Misc_Buffer_Local_Value:
5742 case Lisp_Misc_Some_Buffer_Local_Value:
5744 register struct Lisp_Buffer_Local_Value *ptr
5745 = XBUFFER_LOCAL_VALUE (obj);
5746 /* If the cdr is nil, avoid recursion for the car. */
5747 if (EQ (ptr->cdr, Qnil))
5749 obj = ptr->realvalue;
5750 goto loop;
5752 mark_object (ptr->realvalue);
5753 mark_object (ptr->buffer);
5754 mark_object (ptr->frame);
5755 obj = ptr->cdr;
5756 goto loop;
5759 case Lisp_Misc_Marker:
5760 /* DO NOT mark thru the marker's chain.
5761 The buffer's markers chain does not preserve markers from gc;
5762 instead, markers are removed from the chain when freed by gc. */
5763 break;
5765 case Lisp_Misc_Intfwd:
5766 case Lisp_Misc_Boolfwd:
5767 case Lisp_Misc_Objfwd:
5768 case Lisp_Misc_Buffer_Objfwd:
5769 case Lisp_Misc_Kboard_Objfwd:
5770 /* Don't bother with Lisp_Buffer_Objfwd,
5771 since all markable slots in current buffer marked anyway. */
5772 /* Don't need to do Lisp_Objfwd, since the places they point
5773 are protected with staticpro. */
5774 break;
5776 case Lisp_Misc_Save_Value:
5777 #if GC_MARK_STACK
5779 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5780 /* If DOGC is set, POINTER is the address of a memory
5781 area containing INTEGER potential Lisp_Objects. */
5782 if (ptr->dogc)
5784 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5785 int nelt;
5786 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5787 mark_maybe_object (*p);
5790 #endif
5791 break;
5793 case Lisp_Misc_Overlay:
5795 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5796 mark_object (ptr->start);
5797 mark_object (ptr->end);
5798 mark_object (ptr->plist);
5799 if (ptr->next)
5801 XSETMISC (obj, ptr->next);
5802 goto loop;
5805 break;
5807 default:
5808 abort ();
5810 break;
5812 case Lisp_Cons:
5814 register struct Lisp_Cons *ptr = XCONS (obj);
5815 if (CONS_MARKED_P (ptr)) break;
5816 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5817 CONS_MARK (ptr);
5818 /* If the cdr is nil, avoid recursion for the car. */
5819 if (EQ (ptr->u.cdr, Qnil))
5821 obj = ptr->car;
5822 cdr_count = 0;
5823 goto loop;
5825 mark_object (ptr->car);
5826 obj = ptr->u.cdr;
5827 cdr_count++;
5828 if (cdr_count == mark_object_loop_halt)
5829 abort ();
5830 goto loop;
5833 case Lisp_Float:
5834 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5835 FLOAT_MARK (XFLOAT (obj));
5836 break;
5838 case Lisp_Int:
5839 break;
5841 default:
5842 abort ();
5845 #undef CHECK_LIVE
5846 #undef CHECK_ALLOCATED
5847 #undef CHECK_ALLOCATED_AND_LIVE
5850 /* Mark the pointers in a buffer structure. */
5852 static void
5853 mark_buffer (buf)
5854 Lisp_Object buf;
5856 register struct buffer *buffer = XBUFFER (buf);
5857 register Lisp_Object *ptr, tmp;
5858 Lisp_Object base_buffer;
5860 VECTOR_MARK (buffer);
5862 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5864 /* For now, we just don't mark the undo_list. It's done later in
5865 a special way just before the sweep phase, and after stripping
5866 some of its elements that are not needed any more. */
5868 if (buffer->overlays_before)
5870 XSETMISC (tmp, buffer->overlays_before);
5871 mark_object (tmp);
5873 if (buffer->overlays_after)
5875 XSETMISC (tmp, buffer->overlays_after);
5876 mark_object (tmp);
5879 for (ptr = &buffer->name;
5880 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5881 ptr++)
5882 mark_object (*ptr);
5884 /* If this is an indirect buffer, mark its base buffer. */
5885 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5887 XSETBUFFER (base_buffer, buffer->base_buffer);
5888 mark_buffer (base_buffer);
5893 /* Value is non-zero if OBJ will survive the current GC because it's
5894 either marked or does not need to be marked to survive. */
5897 survives_gc_p (obj)
5898 Lisp_Object obj;
5900 int survives_p;
5902 switch (XGCTYPE (obj))
5904 case Lisp_Int:
5905 survives_p = 1;
5906 break;
5908 case Lisp_Symbol:
5909 survives_p = XSYMBOL (obj)->gcmarkbit;
5910 break;
5912 case Lisp_Misc:
5913 survives_p = XMARKER (obj)->gcmarkbit;
5914 break;
5916 case Lisp_String:
5917 survives_p = STRING_MARKED_P (XSTRING (obj));
5918 break;
5920 case Lisp_Vectorlike:
5921 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5922 break;
5924 case Lisp_Cons:
5925 survives_p = CONS_MARKED_P (XCONS (obj));
5926 break;
5928 case Lisp_Float:
5929 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5930 break;
5932 default:
5933 abort ();
5936 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5941 /* Sweep: find all structures not marked, and free them. */
5943 static void
5944 gc_sweep ()
5946 /* Remove or mark entries in weak hash tables.
5947 This must be done before any object is unmarked. */
5948 sweep_weak_hash_tables ();
5950 sweep_strings ();
5951 #ifdef GC_CHECK_STRING_BYTES
5952 if (!noninteractive)
5953 check_string_bytes (1);
5954 #endif
5956 /* Put all unmarked conses on free list */
5958 register struct cons_block *cblk;
5959 struct cons_block **cprev = &cons_block;
5960 register int lim = cons_block_index;
5961 register int num_free = 0, num_used = 0;
5963 cons_free_list = 0;
5965 for (cblk = cons_block; cblk; cblk = *cprev)
5967 register int i;
5968 int this_free = 0;
5969 for (i = 0; i < lim; i++)
5970 if (!CONS_MARKED_P (&cblk->conses[i]))
5972 this_free++;
5973 cblk->conses[i].u.chain = cons_free_list;
5974 cons_free_list = &cblk->conses[i];
5975 #if GC_MARK_STACK
5976 cons_free_list->car = Vdead;
5977 #endif
5979 else
5981 num_used++;
5982 CONS_UNMARK (&cblk->conses[i]);
5984 lim = CONS_BLOCK_SIZE;
5985 /* If this block contains only free conses and we have already
5986 seen more than two blocks worth of free conses then deallocate
5987 this block. */
5988 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5990 *cprev = cblk->next;
5991 /* Unhook from the free list. */
5992 cons_free_list = cblk->conses[0].u.chain;
5993 lisp_align_free (cblk);
5994 n_cons_blocks--;
5996 else
5998 num_free += this_free;
5999 cprev = &cblk->next;
6002 total_conses = num_used;
6003 total_free_conses = num_free;
6006 /* Put all unmarked floats on free list */
6008 register struct float_block *fblk;
6009 struct float_block **fprev = &float_block;
6010 register int lim = float_block_index;
6011 register int num_free = 0, num_used = 0;
6013 float_free_list = 0;
6015 for (fblk = float_block; fblk; fblk = *fprev)
6017 register int i;
6018 int this_free = 0;
6019 for (i = 0; i < lim; i++)
6020 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6022 this_free++;
6023 fblk->floats[i].u.chain = float_free_list;
6024 float_free_list = &fblk->floats[i];
6026 else
6028 num_used++;
6029 FLOAT_UNMARK (&fblk->floats[i]);
6031 lim = FLOAT_BLOCK_SIZE;
6032 /* If this block contains only free floats and we have already
6033 seen more than two blocks worth of free floats then deallocate
6034 this block. */
6035 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6037 *fprev = fblk->next;
6038 /* Unhook from the free list. */
6039 float_free_list = fblk->floats[0].u.chain;
6040 lisp_align_free (fblk);
6041 n_float_blocks--;
6043 else
6045 num_free += this_free;
6046 fprev = &fblk->next;
6049 total_floats = num_used;
6050 total_free_floats = num_free;
6053 /* Put all unmarked intervals on free list */
6055 register struct interval_block *iblk;
6056 struct interval_block **iprev = &interval_block;
6057 register int lim = interval_block_index;
6058 register int num_free = 0, num_used = 0;
6060 interval_free_list = 0;
6062 for (iblk = interval_block; iblk; iblk = *iprev)
6064 register int i;
6065 int this_free = 0;
6067 for (i = 0; i < lim; i++)
6069 if (!iblk->intervals[i].gcmarkbit)
6071 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6072 interval_free_list = &iblk->intervals[i];
6073 this_free++;
6075 else
6077 num_used++;
6078 iblk->intervals[i].gcmarkbit = 0;
6081 lim = INTERVAL_BLOCK_SIZE;
6082 /* If this block contains only free intervals and we have already
6083 seen more than two blocks worth of free intervals then
6084 deallocate this block. */
6085 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6087 *iprev = iblk->next;
6088 /* Unhook from the free list. */
6089 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6090 lisp_free (iblk);
6091 n_interval_blocks--;
6093 else
6095 num_free += this_free;
6096 iprev = &iblk->next;
6099 total_intervals = num_used;
6100 total_free_intervals = num_free;
6103 /* Put all unmarked symbols on free list */
6105 register struct symbol_block *sblk;
6106 struct symbol_block **sprev = &symbol_block;
6107 register int lim = symbol_block_index;
6108 register int num_free = 0, num_used = 0;
6110 symbol_free_list = NULL;
6112 for (sblk = symbol_block; sblk; sblk = *sprev)
6114 int this_free = 0;
6115 struct Lisp_Symbol *sym = sblk->symbols;
6116 struct Lisp_Symbol *end = sym + lim;
6118 for (; sym < end; ++sym)
6120 /* Check if the symbol was created during loadup. In such a case
6121 it might be pointed to by pure bytecode which we don't trace,
6122 so we conservatively assume that it is live. */
6123 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6125 if (!sym->gcmarkbit && !pure_p)
6127 sym->next = symbol_free_list;
6128 symbol_free_list = sym;
6129 #if GC_MARK_STACK
6130 symbol_free_list->function = Vdead;
6131 #endif
6132 ++this_free;
6134 else
6136 ++num_used;
6137 if (!pure_p)
6138 UNMARK_STRING (XSTRING (sym->xname));
6139 sym->gcmarkbit = 0;
6143 lim = SYMBOL_BLOCK_SIZE;
6144 /* If this block contains only free symbols and we have already
6145 seen more than two blocks worth of free symbols then deallocate
6146 this block. */
6147 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6149 *sprev = sblk->next;
6150 /* Unhook from the free list. */
6151 symbol_free_list = sblk->symbols[0].next;
6152 lisp_free (sblk);
6153 n_symbol_blocks--;
6155 else
6157 num_free += this_free;
6158 sprev = &sblk->next;
6161 total_symbols = num_used;
6162 total_free_symbols = num_free;
6165 /* Put all unmarked misc's on free list.
6166 For a marker, first unchain it from the buffer it points into. */
6168 register struct marker_block *mblk;
6169 struct marker_block **mprev = &marker_block;
6170 register int lim = marker_block_index;
6171 register int num_free = 0, num_used = 0;
6173 marker_free_list = 0;
6175 for (mblk = marker_block; mblk; mblk = *mprev)
6177 register int i;
6178 int this_free = 0;
6180 for (i = 0; i < lim; i++)
6182 if (!mblk->markers[i].u_marker.gcmarkbit)
6184 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6185 unchain_marker (&mblk->markers[i].u_marker);
6186 /* Set the type of the freed object to Lisp_Misc_Free.
6187 We could leave the type alone, since nobody checks it,
6188 but this might catch bugs faster. */
6189 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6190 mblk->markers[i].u_free.chain = marker_free_list;
6191 marker_free_list = &mblk->markers[i];
6192 this_free++;
6194 else
6196 num_used++;
6197 mblk->markers[i].u_marker.gcmarkbit = 0;
6200 lim = MARKER_BLOCK_SIZE;
6201 /* If this block contains only free markers and we have already
6202 seen more than two blocks worth of free markers then deallocate
6203 this block. */
6204 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6206 *mprev = mblk->next;
6207 /* Unhook from the free list. */
6208 marker_free_list = mblk->markers[0].u_free.chain;
6209 lisp_free (mblk);
6210 n_marker_blocks--;
6212 else
6214 num_free += this_free;
6215 mprev = &mblk->next;
6219 total_markers = num_used;
6220 total_free_markers = num_free;
6223 /* Free all unmarked buffers */
6225 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6227 while (buffer)
6228 if (!VECTOR_MARKED_P (buffer))
6230 if (prev)
6231 prev->next = buffer->next;
6232 else
6233 all_buffers = buffer->next;
6234 next = buffer->next;
6235 lisp_free (buffer);
6236 buffer = next;
6238 else
6240 VECTOR_UNMARK (buffer);
6241 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6242 prev = buffer, buffer = buffer->next;
6246 /* Free all unmarked vectors */
6248 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6249 total_vector_size = 0;
6251 while (vector)
6252 if (!VECTOR_MARKED_P (vector))
6254 if (prev)
6255 prev->next = vector->next;
6256 else
6257 all_vectors = vector->next;
6258 next = vector->next;
6259 lisp_free (vector);
6260 n_vectors--;
6261 vector = next;
6264 else
6266 VECTOR_UNMARK (vector);
6267 if (vector->size & PSEUDOVECTOR_FLAG)
6268 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6269 else
6270 total_vector_size += vector->size;
6271 prev = vector, vector = vector->next;
6275 #ifdef GC_CHECK_STRING_BYTES
6276 if (!noninteractive)
6277 check_string_bytes (1);
6278 #endif
6284 /* Debugging aids. */
6286 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6287 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6288 This may be helpful in debugging Emacs's memory usage.
6289 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6292 Lisp_Object end;
6294 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6296 return end;
6299 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6300 doc: /* Return a list of counters that measure how much consing there has been.
6301 Each of these counters increments for a certain kind of object.
6302 The counters wrap around from the largest positive integer to zero.
6303 Garbage collection does not decrease them.
6304 The elements of the value are as follows:
6305 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6306 All are in units of 1 = one object consed
6307 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6308 objects consed.
6309 MISCS include overlays, markers, and some internal types.
6310 Frames, windows, buffers, and subprocesses count as vectors
6311 (but the contents of a buffer's text do not count here). */)
6314 Lisp_Object consed[8];
6316 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6317 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6318 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6319 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6320 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6321 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6322 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6323 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6325 return Flist (8, consed);
6328 int suppress_checking;
6329 void
6330 die (msg, file, line)
6331 const char *msg;
6332 const char *file;
6333 int line;
6335 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6336 file, line, msg);
6337 abort ();
6340 /* Initialization */
6342 void
6343 init_alloc_once ()
6345 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6346 purebeg = PUREBEG;
6347 pure_size = PURESIZE;
6348 pure_bytes_used = 0;
6349 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6350 pure_bytes_used_before_overflow = 0;
6352 /* Initialize the list of free aligned blocks. */
6353 free_ablock = NULL;
6355 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6356 mem_init ();
6357 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6358 #endif
6360 all_vectors = 0;
6361 ignore_warnings = 1;
6362 #ifdef DOUG_LEA_MALLOC
6363 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6364 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6365 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6366 #endif
6367 init_strings ();
6368 init_cons ();
6369 init_symbol ();
6370 init_marker ();
6371 init_float ();
6372 init_intervals ();
6374 #ifdef REL_ALLOC
6375 malloc_hysteresis = 32;
6376 #else
6377 malloc_hysteresis = 0;
6378 #endif
6380 refill_memory_reserve ();
6382 ignore_warnings = 0;
6383 gcprolist = 0;
6384 byte_stack_list = 0;
6385 staticidx = 0;
6386 consing_since_gc = 0;
6387 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6388 gc_relative_threshold = 0;
6390 #ifdef VIRT_ADDR_VARIES
6391 malloc_sbrk_unused = 1<<22; /* A large number */
6392 malloc_sbrk_used = 100000; /* as reasonable as any number */
6393 #endif /* VIRT_ADDR_VARIES */
6396 void
6397 init_alloc ()
6399 gcprolist = 0;
6400 byte_stack_list = 0;
6401 #if GC_MARK_STACK
6402 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6403 setjmp_tested_p = longjmps_done = 0;
6404 #endif
6405 #endif
6406 Vgc_elapsed = make_float (0.0);
6407 gcs_done = 0;
6410 void
6411 syms_of_alloc ()
6413 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6414 doc: /* *Number of bytes of consing between garbage collections.
6415 Garbage collection can happen automatically once this many bytes have been
6416 allocated since the last garbage collection. All data types count.
6418 Garbage collection happens automatically only when `eval' is called.
6420 By binding this temporarily to a large number, you can effectively
6421 prevent garbage collection during a part of the program.
6422 See also `gc-cons-percentage'. */);
6424 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6425 doc: /* *Portion of the heap used for allocation.
6426 Garbage collection can happen automatically once this portion of the heap
6427 has been allocated since the last garbage collection.
6428 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6429 Vgc_cons_percentage = make_float (0.1);
6431 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6432 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6434 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6435 doc: /* Number of cons cells that have been consed so far. */);
6437 DEFVAR_INT ("floats-consed", &floats_consed,
6438 doc: /* Number of floats that have been consed so far. */);
6440 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6441 doc: /* Number of vector cells that have been consed so far. */);
6443 DEFVAR_INT ("symbols-consed", &symbols_consed,
6444 doc: /* Number of symbols that have been consed so far. */);
6446 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6447 doc: /* Number of string characters that have been consed so far. */);
6449 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6450 doc: /* Number of miscellaneous objects that have been consed so far. */);
6452 DEFVAR_INT ("intervals-consed", &intervals_consed,
6453 doc: /* Number of intervals that have been consed so far. */);
6455 DEFVAR_INT ("strings-consed", &strings_consed,
6456 doc: /* Number of strings that have been consed so far. */);
6458 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6459 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6460 This means that certain objects should be allocated in shared (pure) space. */);
6462 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6463 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6464 garbage_collection_messages = 0;
6466 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6467 doc: /* Hook run after garbage collection has finished. */);
6468 Vpost_gc_hook = Qnil;
6469 Qpost_gc_hook = intern ("post-gc-hook");
6470 staticpro (&Qpost_gc_hook);
6472 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6473 doc: /* Precomputed `signal' argument for memory-full error. */);
6474 /* We build this in advance because if we wait until we need it, we might
6475 not be able to allocate the memory to hold it. */
6476 Vmemory_signal_data
6477 = list2 (Qerror,
6478 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6480 DEFVAR_LISP ("memory-full", &Vmemory_full,
6481 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6482 Vmemory_full = Qnil;
6484 staticpro (&Qgc_cons_threshold);
6485 Qgc_cons_threshold = intern ("gc-cons-threshold");
6487 staticpro (&Qchar_table_extra_slots);
6488 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6490 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6491 doc: /* Accumulated time elapsed in garbage collections.
6492 The time is in seconds as a floating point value. */);
6493 DEFVAR_INT ("gcs-done", &gcs_done,
6494 doc: /* Accumulated number of garbage collections done. */);
6496 defsubr (&Scons);
6497 defsubr (&Slist);
6498 defsubr (&Svector);
6499 defsubr (&Smake_byte_code);
6500 defsubr (&Smake_list);
6501 defsubr (&Smake_vector);
6502 defsubr (&Smake_char_table);
6503 defsubr (&Smake_string);
6504 defsubr (&Smake_bool_vector);
6505 defsubr (&Smake_symbol);
6506 defsubr (&Smake_marker);
6507 defsubr (&Spurecopy);
6508 defsubr (&Sgarbage_collect);
6509 defsubr (&Smemory_limit);
6510 defsubr (&Smemory_use_counts);
6512 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6513 defsubr (&Sgc_status);
6514 #endif
6517 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6518 (do not change this comment) */