1 ;;; regexp-opt.el --- generate efficient regexps to match strings
3 ;; Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 ;; 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 ;; Author: Simon Marshall <simon@gnu.org>
8 ;; Keywords: strings, regexps, extensions
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 3, or (at your option)
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
29 ;; The "opt" in "regexp-opt" stands for "optim\\(al\\|i[sz]e\\)".
31 ;; This package generates a regexp from a given list of strings (which matches
32 ;; one of those strings) so that the regexp generated by:
34 ;; (regexp-opt strings)
36 ;; is equivalent to, but more efficient than, the regexp generated by:
38 ;; (mapconcat 'regexp-quote strings "\\|")
42 ;; (let ((strings '("cond" "if" "when" "unless" "while"
43 ;; "let" "let*" "progn" "prog1" "prog2"
44 ;; "save-restriction" "save-excursion" "save-window-excursion"
45 ;; "save-current-buffer" "save-match-data"
46 ;; "catch" "throw" "unwind-protect" "condition-case")))
47 ;; (concat "(" (regexp-opt strings t) "\\>"))
48 ;; => "(\\(c\\(atch\\|ond\\(ition-case\\)?\\)\\|if\\|let\\*?\\|prog[12n]\\|save-\\(current-buffer\\|excursion\\|match-data\\|restriction\\|window-excursion\\)\\|throw\\|un\\(less\\|wind-protect\\)\\|wh\\(en\\|ile\\)\\)\\>"
50 ;; Searching using the above example `regexp-opt' regexp takes approximately
51 ;; two-thirds of the time taken using the equivalent `mapconcat' regexp.
53 ;; Since this package was written to produce efficient regexps, not regexps
54 ;; efficiently, it is probably not a good idea to in-line too many calls in
55 ;; your code, unless you use the following trick with `eval-when-compile':
57 ;; (defvar definition-regexp
60 ;; (regexp-opt '("defun" "defsubst" "defmacro" "defalias"
61 ;; "defvar" "defconst") t)
64 ;; The `byte-compile' code will be as if you had defined the variable thus:
66 ;; (defvar definition-regexp
67 ;; "^(\\(def\\(alias\\|const\\|macro\\|subst\\|un\\|var\\)\\)\\>")
69 ;; Note that if you use this trick for all instances of `regexp-opt' and
70 ;; `regexp-opt-depth' in your code, regexp-opt.el would only have to be loaded
71 ;; at compile time. But note also that using this trick means that should
72 ;; regexp-opt.el be changed, perhaps to fix a bug or to add a feature to
73 ;; improve the efficiency of `regexp-opt' regexps, you would have to recompile
74 ;; your code for such changes to have effect in your code.
76 ;; Originally written for font-lock.el, from an idea from Stig's hl319.el, with
77 ;; thanks for ideas also to Michael Ernst, Bob Glickstein, Dan Nicolaescu and
79 ;; No doubt `regexp-opt' doesn't always produce optimal regexps, so code, ideas
80 ;; or any other information to improve things are welcome.
82 ;; One possible improvement would be to compile '("aa" "ab" "ba" "bb")
83 ;; into "[ab][ab]" rather than "a[ab]\\|b[ab]". I'm not sure it's worth
84 ;; it but if someone knows how to do it without going through too many
85 ;; contortions, I'm all ears.
90 (defun regexp-opt (strings &optional paren
)
91 "Return a regexp to match a string in the list STRINGS.
92 Each string should be unique in STRINGS and should not contain any regexps,
93 quoted or not. If optional PAREN is non-nil, ensure that the returned regexp
94 is enclosed by at least one regexp grouping construct.
95 The returned regexp is typically more efficient than the equivalent regexp:
97 (let ((open (if PAREN \"\\\\(\" \"\")) (close (if PAREN \"\\\\)\" \"\")))
98 (concat open (mapconcat 'regexp-quote STRINGS \"\\\\|\") close))
100 If PAREN is `words', then the resulting regexp is additionally surrounded
103 ;; Recurse on the sorted list.
104 (let* ((max-lisp-eval-depth (* 1024 1024))
105 (max-specpdl-size (* 1024 1024))
106 (completion-ignore-case nil
)
107 (completion-regexp-list nil
)
108 (words (eq paren
'words
))
109 (open (cond ((stringp paren
) paren
) (paren "\\(")))
110 (sorted-strings (delete-dups
111 (sort (copy-sequence strings
) 'string-lessp
)))
112 (re (regexp-opt-group sorted-strings open
)))
113 (if words
(concat "\\<" re
"\\>") re
))))
116 (defun regexp-opt-depth (regexp)
117 "Return the depth of REGEXP.
118 This means the number of non-shy regexp grouping constructs
119 \(parenthesized expressions) in REGEXP."
121 ;; Hack to signal an error if REGEXP does not have balanced parentheses.
122 (string-match regexp
"")
123 ;; Count the number of open parentheses in REGEXP.
124 (let ((count 0) start last
)
125 (while (string-match "\\\\(\\(\\?:\\)?" regexp start
)
126 (setq start
(match-end 0)) ; Start of next search.
127 (when (and (not (match-beginning 1))
128 (subregexp-context-p regexp
(match-beginning 0) last
))
129 ;; It's not a shy group and it's not inside brackets or after
130 ;; a backslash: it's really a group-open marker.
131 (setq last start
) ; Speed up next regexp-opt-re-context-p.
132 (setq count
(1+ count
))))
135 ;;; Workhorse functions.
140 (defun regexp-opt-group (strings &optional paren lax
)
141 ;; Return a regexp to match a string in the sorted list STRINGS.
142 ;; If PAREN non-nil, output regexp parentheses around returned regexp.
143 ;; If LAX non-nil, don't output parentheses if it doesn't require them.
144 ;; Merges keywords to avoid backtracking in Emacs' regexp matcher.
146 ;; The basic idea is to find the shortest common prefix or suffix, remove it
147 ;; and recurse. If there is no prefix, we divide the list into two so that
148 ;; \(at least) one half will have at least a one-character common prefix.
150 ;; Also we delay the addition of grouping parenthesis as long as possible
151 ;; until we're sure we need them, and try to remove one-character sequences
152 ;; so we can use character sets rather than grouping parenthesis.
153 (let* ((open-group (cond ((stringp paren
) paren
) (paren "\\(?:") (t "")))
154 (close-group (if paren
"\\)" ""))
155 (open-charset (if lax
"" open-group
))
156 (close-charset (if lax
"" close-group
)))
159 ;; If there are no strings, just return the empty string.
160 ((= (length strings
) 0)
163 ;; If there is only one string, just return it.
164 ((= (length strings
) 1)
165 (if (= (length (car strings
)) 1)
166 (concat open-charset
(regexp-quote (car strings
)) close-charset
)
167 (concat open-group
(regexp-quote (car strings
)) close-group
)))
169 ;; If there is an empty string, remove it and recurse on the rest.
170 ((= (length (car strings
)) 0)
172 (regexp-opt-group (cdr strings
) t t
) "?"
175 ;; If there are several one-char strings, use charsets
176 ((and (= (length (car strings
)) 1)
177 (let ((strs (cdr strings
)))
178 (while (and strs
(/= (length (car strs
)) 1))
182 ;; Collect one-char strings
184 (if (= (length s
) 1) (push (string-to-char s
) letters
) (push s rest
)))
187 ;; several one-char strings: take them and recurse
188 ;; on the rest (first so as to match the longest).
190 (regexp-opt-group (nreverse rest
))
191 "\\|" (regexp-opt-charset letters
)
193 ;; all are one-char strings: just return a character set.
195 (regexp-opt-charset letters
)
198 ;; We have a list of different length strings.
200 (let ((prefix (try-completion "" strings
)))
201 (if (> (length prefix
) 0)
202 ;; common prefix: take it and recurse on the suffixes.
203 (let* ((n (length prefix
))
204 (suffixes (mapcar (lambda (s) (substring s n
)) strings
)))
206 (regexp-quote prefix
)
207 (regexp-opt-group suffixes t t
)
210 (let* ((sgnirts (mapcar (lambda (s)
211 (concat (nreverse (string-to-list s
))))
213 (xiffus (try-completion "" sgnirts
)))
214 (if (> (length xiffus
) 0)
215 ;; common suffix: take it and recurse on the prefixes.
216 (let* ((n (- (length xiffus
)))
218 ;; Sorting is necessary in cases such as ("ad" "d").
219 (sort (mapcar (lambda (s) (substring s
0 n
)) strings
)
222 (regexp-opt-group prefixes t t
)
224 (concat (nreverse (string-to-list xiffus
))))
227 ;; Otherwise, divide the list into those that start with a
228 ;; particular letter and those that do not, and recurse on them.
229 (let* ((char (char-to-string (string-to-char (car strings
))))
230 (half1 (all-completions char strings
))
231 (half2 (nthcdr (length half1
) strings
)))
233 (regexp-opt-group half1
)
234 "\\|" (regexp-opt-group half2
)
235 close-group
))))))))))
238 (defun regexp-opt-charset (chars)
240 ;; Return a regexp to match a character in CHARS.
242 ;; The basic idea is to find character ranges. Also we take care in the
243 ;; position of character set meta characters in the character set regexp.
245 (let* ((charmap (make-char-table 'case-table
))
248 (bracket "") (dash "") (caret ""))
250 ;; Make a character map but extract character set meta characters.
260 (aset charmap char t
))))
262 ;; Make a character set from the map using ranges where applicable.
267 (if (= (1- (car c
)) end
) (setq end
(cdr c
))
268 (if (> end
(+ start
2))
269 (setq charset
(format "%s%c-%c" charset start end
))
270 (while (>= end start
)
271 (setq charset
(format "%s%c" charset start
))
273 (setq start
(car c
) end
(cdr c
)))
274 (if (= (1- c
) end
) (setq end c
)
275 (if (> end
(+ start
2))
276 (setq charset
(format "%s%c-%c" charset start end
))
277 (while (>= end start
)
278 (setq charset
(format "%s%c" charset start
))
280 (setq start c end c
)))))
283 (if (> end
(+ start
2))
284 (setq charset
(format "%s%c-%c" charset start end
))
285 (while (>= end start
)
286 (setq charset
(format "%s%c" charset start
))
289 ;; Make sure a caret is not first and a dash is first or last.
290 (if (and (string-equal charset
"") (string-equal bracket
""))
291 (concat "[" dash caret
"]")
292 (concat "[" bracket charset caret dash
"]"))))
294 (provide 'regexp-opt
)
296 ;; arch-tag: 6c5a66f4-29af-4fd6-8c3b-4b554d5b4370
297 ;;; regexp-opt.el ends here