* lib-src/make-docfile.c (search_lisp_doc_at_eol): Use int rather than char
[emacs.git] / src / fns.c
blob1ee0a758fc2f87c0c5c62ad833fec9e1f0412cc5
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
22 #include <unistd.h>
23 #include <time.h>
25 #include <intprops.h>
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
59 return arg;
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
75 EMACS_INT val;
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
92 /* Random data-structure functions. */
94 static void
95 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
97 CHECK_TYPE (NILP (x), Qlistp, y);
100 DEFUN ("length", Flength, Slength, 1, 1, 0,
101 doc: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence)
108 register Lisp_Object val;
110 if (STRINGP (sequence))
111 XSETFASTINT (val, SCHARS (sequence));
112 else if (VECTORP (sequence))
113 XSETFASTINT (val, ASIZE (sequence));
114 else if (CHAR_TABLE_P (sequence))
115 XSETFASTINT (val, MAX_CHAR);
116 else if (BOOL_VECTOR_P (sequence))
117 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
118 else if (COMPILEDP (sequence))
119 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
120 else if (CONSP (sequence))
122 EMACS_INT i = 0;
126 ++i;
127 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM < i)
130 error ("List too long");
131 QUIT;
133 sequence = XCDR (sequence);
135 while (CONSP (sequence));
137 CHECK_LIST_END (sequence, sequence);
139 val = make_number (i);
141 else if (NILP (sequence))
142 XSETFASTINT (val, 0);
143 else
144 wrong_type_argument (Qsequencep, sequence);
146 return val;
149 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
150 doc: /* Return the length of a list, but avoid error or infinite loop.
151 This function never gets an error. If LIST is not really a list,
152 it returns 0. If LIST is circular, it returns a finite value
153 which is at least the number of distinct elements. */)
154 (Lisp_Object list)
156 Lisp_Object tail, halftail;
157 double hilen = 0;
158 uintmax_t lolen = 1;
160 if (! CONSP (list))
161 return make_number (0);
163 /* halftail is used to detect circular lists. */
164 for (tail = halftail = list; ; )
166 tail = XCDR (tail);
167 if (! CONSP (tail))
168 break;
169 if (EQ (tail, halftail))
170 break;
171 lolen++;
172 if ((lolen & 1) == 0)
174 halftail = XCDR (halftail);
175 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
177 QUIT;
178 if (lolen == 0)
179 hilen += UINTMAX_MAX + 1.0;
184 /* If the length does not fit into a fixnum, return a float.
185 On all known practical machines this returns an upper bound on
186 the true length. */
187 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
190 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
191 doc: /* Return the number of bytes in STRING.
192 If STRING is multibyte, this may be greater than the length of STRING. */)
193 (Lisp_Object string)
195 CHECK_STRING (string);
196 return make_number (SBYTES (string));
199 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
200 doc: /* Return t if two strings have identical contents.
201 Case is significant, but text properties are ignored.
202 Symbols are also allowed; their print names are used instead. */)
203 (register Lisp_Object s1, Lisp_Object s2)
205 if (SYMBOLP (s1))
206 s1 = SYMBOL_NAME (s1);
207 if (SYMBOLP (s2))
208 s2 = SYMBOL_NAME (s2);
209 CHECK_STRING (s1);
210 CHECK_STRING (s2);
212 if (SCHARS (s1) != SCHARS (s2)
213 || SBYTES (s1) != SBYTES (s2)
214 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
215 return Qnil;
216 return Qt;
219 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
220 doc: /* Compare the contents of two strings, converting to multibyte if needed.
221 The arguments START1, END1, START2, and END2, if non-nil, are
222 positions specifying which parts of STR1 or STR2 to compare. In
223 string STR1, compare the part between START1 (inclusive) and END1
224 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
225 the string; if END1 is nil, it defaults to the length of the string.
226 Likewise, in string STR2, compare the part between START2 and END2.
228 The strings are compared by the numeric values of their characters.
229 For instance, STR1 is "less than" STR2 if its first differing
230 character has a smaller numeric value. If IGNORE-CASE is non-nil,
231 characters are converted to lower-case before comparing them. Unibyte
232 strings are converted to multibyte for comparison.
234 The value is t if the strings (or specified portions) match.
235 If string STR1 is less, the value is a negative number N;
236 - 1 - N is the number of characters that match at the beginning.
237 If string STR1 is greater, the value is a positive number N;
238 N - 1 is the number of characters that match at the beginning. */)
239 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
241 register ptrdiff_t end1_char, end2_char;
242 register ptrdiff_t i1, i1_byte, i2, i2_byte;
244 CHECK_STRING (str1);
245 CHECK_STRING (str2);
246 if (NILP (start1))
247 start1 = make_number (0);
248 if (NILP (start2))
249 start2 = make_number (0);
250 CHECK_NATNUM (start1);
251 CHECK_NATNUM (start2);
252 if (! NILP (end1))
253 CHECK_NATNUM (end1);
254 if (! NILP (end2))
255 CHECK_NATNUM (end2);
257 end1_char = SCHARS (str1);
258 if (! NILP (end1) && end1_char > XINT (end1))
259 end1_char = XINT (end1);
260 if (end1_char < XINT (start1))
261 args_out_of_range (str1, start1);
263 end2_char = SCHARS (str2);
264 if (! NILP (end2) && end2_char > XINT (end2))
265 end2_char = XINT (end2);
266 if (end2_char < XINT (start2))
267 args_out_of_range (str2, start2);
269 i1 = XINT (start1);
270 i2 = XINT (start2);
272 i1_byte = string_char_to_byte (str1, i1);
273 i2_byte = string_char_to_byte (str2, i2);
275 while (i1 < end1_char && i2 < end2_char)
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
279 int c1, c2;
281 if (STRING_MULTIBYTE (str1))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
283 else
285 c1 = SREF (str1, i1++);
286 MAKE_CHAR_MULTIBYTE (c1);
289 if (STRING_MULTIBYTE (str2))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
291 else
293 c2 = SREF (str2, i2++);
294 MAKE_CHAR_MULTIBYTE (c2);
297 if (c1 == c2)
298 continue;
300 if (! NILP (ignore_case))
302 Lisp_Object tem;
304 tem = Fupcase (make_number (c1));
305 c1 = XINT (tem);
306 tem = Fupcase (make_number (c2));
307 c2 = XINT (tem);
310 if (c1 == c2)
311 continue;
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
316 if (c1 < c2)
317 return make_number (- i1 + XINT (start1));
318 else
319 return make_number (i1 - XINT (start1));
322 if (i1 < end1_char)
323 return make_number (i1 - XINT (start1) + 1);
324 if (i2 < end2_char)
325 return make_number (- i1 + XINT (start1) - 1);
327 return Qt;
330 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
331 doc: /* Return t if first arg string is less than second in lexicographic order.
332 Case is significant.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1, Lisp_Object s2)
336 register ptrdiff_t end;
337 register ptrdiff_t i1, i1_byte, i2, i2_byte;
339 if (SYMBOLP (s1))
340 s1 = SYMBOL_NAME (s1);
341 if (SYMBOLP (s2))
342 s2 = SYMBOL_NAME (s2);
343 CHECK_STRING (s1);
344 CHECK_STRING (s2);
346 i1 = i1_byte = i2 = i2_byte = 0;
348 end = SCHARS (s1);
349 if (end > SCHARS (s2))
350 end = SCHARS (s2);
352 while (i1 < end)
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
356 int c1, c2;
358 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
359 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
361 if (c1 != c2)
362 return c1 < c2 ? Qt : Qnil;
364 return i1 < SCHARS (s2) ? Qt : Qnil;
367 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
368 enum Lisp_Type target_type, bool last_special);
370 /* ARGSUSED */
371 Lisp_Object
372 concat2 (Lisp_Object s1, Lisp_Object s2)
374 Lisp_Object args[2];
375 args[0] = s1;
376 args[1] = s2;
377 return concat (2, args, Lisp_String, 0);
380 /* ARGSUSED */
381 Lisp_Object
382 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
384 Lisp_Object args[3];
385 args[0] = s1;
386 args[1] = s2;
387 args[2] = s3;
388 return concat (3, args, Lisp_String, 0);
391 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
392 doc: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
399 return concat (nargs, args, Lisp_Cons, 1);
402 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
403 doc: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs, Lisp_Object *args)
409 return concat (nargs, args, Lisp_String, 0);
412 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
413 doc: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs, Lisp_Object *args)
419 return concat (nargs, args, Lisp_Vectorlike, 0);
423 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
424 doc: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
427 (Lisp_Object arg)
429 if (NILP (arg)) return arg;
431 if (CHAR_TABLE_P (arg))
433 return copy_char_table (arg);
436 if (BOOL_VECTOR_P (arg))
438 Lisp_Object val;
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
441 / BOOL_VECTOR_BITS_PER_CHAR);
443 val = Fmake_bool_vector (Flength (arg), Qnil);
444 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
445 size_in_chars);
446 return val;
449 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
450 wrong_type_argument (Qsequencep, arg);
452 return concat (1, &arg, XTYPE (arg), 0);
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
457 struct textprop_rec
459 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
460 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
461 ptrdiff_t to; /* refer to VAL (the target string) */
464 static Lisp_Object
465 concat (ptrdiff_t nargs, Lisp_Object *args,
466 enum Lisp_Type target_type, bool last_special)
468 Lisp_Object val;
469 Lisp_Object tail;
470 Lisp_Object this;
471 ptrdiff_t toindex;
472 ptrdiff_t toindex_byte = 0;
473 EMACS_INT result_len;
474 EMACS_INT result_len_byte;
475 ptrdiff_t argnum;
476 Lisp_Object last_tail;
477 Lisp_Object prev;
478 bool some_multibyte;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec *textprops = NULL;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops = 0;
487 USE_SAFE_ALLOCA;
489 tail = Qnil;
491 /* In append, the last arg isn't treated like the others */
492 if (last_special && nargs > 0)
494 nargs--;
495 last_tail = args[nargs];
497 else
498 last_tail = Qnil;
500 /* Check each argument. */
501 for (argnum = 0; argnum < nargs; argnum++)
503 this = args[argnum];
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep, this);
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
513 result_len_byte = 0;
514 result_len = 0;
515 some_multibyte = 0;
516 for (argnum = 0; argnum < nargs; argnum++)
518 EMACS_INT len;
519 this = args[argnum];
520 len = XFASTINT (Flength (this));
521 if (target_type == Lisp_String)
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
525 ptrdiff_t i;
526 Lisp_Object ch;
527 int c;
528 ptrdiff_t this_len_byte;
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i = 0; i < len; i++)
533 ch = AREF (this, i);
534 CHECK_CHARACTER (ch);
535 c = XFASTINT (ch);
536 this_len_byte = CHAR_BYTES (c);
537 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
538 string_overflow ();
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
553 string_overflow ();
554 result_len_byte += this_len_byte;
555 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
556 some_multibyte = 1;
558 else if (STRINGP (this))
560 if (STRING_MULTIBYTE (this))
562 some_multibyte = 1;
563 this_len_byte = SBYTES (this);
565 else
566 this_len_byte = count_size_as_multibyte (SDATA (this),
567 SCHARS (this));
568 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
569 string_overflow ();
570 result_len_byte += this_len_byte;
574 result_len += len;
575 if (MOST_POSITIVE_FIXNUM < result_len)
576 memory_full (SIZE_MAX);
579 if (! some_multibyte)
580 result_len_byte = result_len;
582 /* Create the output object. */
583 if (target_type == Lisp_Cons)
584 val = Fmake_list (make_number (result_len), Qnil);
585 else if (target_type == Lisp_Vectorlike)
586 val = Fmake_vector (make_number (result_len), Qnil);
587 else if (some_multibyte)
588 val = make_uninit_multibyte_string (result_len, result_len_byte);
589 else
590 val = make_uninit_string (result_len);
592 /* In `append', if all but last arg are nil, return last arg. */
593 if (target_type == Lisp_Cons && EQ (val, Qnil))
594 return last_tail;
596 /* Copy the contents of the args into the result. */
597 if (CONSP (val))
598 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
599 else
600 toindex = 0, toindex_byte = 0;
602 prev = Qnil;
603 if (STRINGP (val))
604 SAFE_NALLOCA (textprops, 1, nargs);
606 for (argnum = 0; argnum < nargs; argnum++)
608 Lisp_Object thislen;
609 ptrdiff_t thisleni = 0;
610 register ptrdiff_t thisindex = 0;
611 register ptrdiff_t thisindex_byte = 0;
613 this = args[argnum];
614 if (!CONSP (this))
615 thislen = Flength (this), thisleni = XINT (thislen);
617 /* Between strings of the same kind, copy fast. */
618 if (STRINGP (this) && STRINGP (val)
619 && STRING_MULTIBYTE (this) == some_multibyte)
621 ptrdiff_t thislen_byte = SBYTES (this);
623 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
624 if (string_intervals (this))
626 textprops[num_textprops].argnum = argnum;
627 textprops[num_textprops].from = 0;
628 textprops[num_textprops++].to = toindex;
630 toindex_byte += thislen_byte;
631 toindex += thisleni;
633 /* Copy a single-byte string to a multibyte string. */
634 else if (STRINGP (this) && STRINGP (val))
636 if (string_intervals (this))
638 textprops[num_textprops].argnum = argnum;
639 textprops[num_textprops].from = 0;
640 textprops[num_textprops++].to = toindex;
642 toindex_byte += copy_text (SDATA (this),
643 SDATA (val) + toindex_byte,
644 SCHARS (this), 0, 1);
645 toindex += thisleni;
647 else
648 /* Copy element by element. */
649 while (1)
651 register Lisp_Object elt;
653 /* Fetch next element of `this' arg into `elt', or break if
654 `this' is exhausted. */
655 if (NILP (this)) break;
656 if (CONSP (this))
657 elt = XCAR (this), this = XCDR (this);
658 else if (thisindex >= thisleni)
659 break;
660 else if (STRINGP (this))
662 int c;
663 if (STRING_MULTIBYTE (this))
664 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
665 thisindex,
666 thisindex_byte);
667 else
669 c = SREF (this, thisindex); thisindex++;
670 if (some_multibyte && !ASCII_CHAR_P (c))
671 c = BYTE8_TO_CHAR (c);
673 XSETFASTINT (elt, c);
675 else if (BOOL_VECTOR_P (this))
677 int byte;
678 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
679 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
680 elt = Qt;
681 else
682 elt = Qnil;
683 thisindex++;
685 else
687 elt = AREF (this, thisindex);
688 thisindex++;
691 /* Store this element into the result. */
692 if (toindex < 0)
694 XSETCAR (tail, elt);
695 prev = tail;
696 tail = XCDR (tail);
698 else if (VECTORP (val))
700 ASET (val, toindex, elt);
701 toindex++;
703 else
705 int c;
706 CHECK_CHARACTER (elt);
707 c = XFASTINT (elt);
708 if (some_multibyte)
709 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
710 else
711 SSET (val, toindex_byte++, c);
712 toindex++;
716 if (!NILP (prev))
717 XSETCDR (prev, last_tail);
719 if (num_textprops > 0)
721 Lisp_Object props;
722 ptrdiff_t last_to_end = -1;
724 for (argnum = 0; argnum < num_textprops; argnum++)
726 this = args[textprops[argnum].argnum];
727 props = text_property_list (this,
728 make_number (0),
729 make_number (SCHARS (this)),
730 Qnil);
731 /* If successive arguments have properties, be sure that the
732 value of `composition' property be the copy. */
733 if (last_to_end == textprops[argnum].to)
734 make_composition_value_copy (props);
735 add_text_properties_from_list (val, props,
736 make_number (textprops[argnum].to));
737 last_to_end = textprops[argnum].to + SCHARS (this);
741 SAFE_FREE ();
742 return val;
745 static Lisp_Object string_char_byte_cache_string;
746 static ptrdiff_t string_char_byte_cache_charpos;
747 static ptrdiff_t string_char_byte_cache_bytepos;
749 void
750 clear_string_char_byte_cache (void)
752 string_char_byte_cache_string = Qnil;
755 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
757 ptrdiff_t
758 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
760 ptrdiff_t i_byte;
761 ptrdiff_t best_below, best_below_byte;
762 ptrdiff_t best_above, best_above_byte;
764 best_below = best_below_byte = 0;
765 best_above = SCHARS (string);
766 best_above_byte = SBYTES (string);
767 if (best_above == best_above_byte)
768 return char_index;
770 if (EQ (string, string_char_byte_cache_string))
772 if (string_char_byte_cache_charpos < char_index)
774 best_below = string_char_byte_cache_charpos;
775 best_below_byte = string_char_byte_cache_bytepos;
777 else
779 best_above = string_char_byte_cache_charpos;
780 best_above_byte = string_char_byte_cache_bytepos;
784 if (char_index - best_below < best_above - char_index)
786 unsigned char *p = SDATA (string) + best_below_byte;
788 while (best_below < char_index)
790 p += BYTES_BY_CHAR_HEAD (*p);
791 best_below++;
793 i_byte = p - SDATA (string);
795 else
797 unsigned char *p = SDATA (string) + best_above_byte;
799 while (best_above > char_index)
801 p--;
802 while (!CHAR_HEAD_P (*p)) p--;
803 best_above--;
805 i_byte = p - SDATA (string);
808 string_char_byte_cache_bytepos = i_byte;
809 string_char_byte_cache_charpos = char_index;
810 string_char_byte_cache_string = string;
812 return i_byte;
815 /* Return the character index corresponding to BYTE_INDEX in STRING. */
817 ptrdiff_t
818 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
820 ptrdiff_t i, i_byte;
821 ptrdiff_t best_below, best_below_byte;
822 ptrdiff_t best_above, best_above_byte;
824 best_below = best_below_byte = 0;
825 best_above = SCHARS (string);
826 best_above_byte = SBYTES (string);
827 if (best_above == best_above_byte)
828 return byte_index;
830 if (EQ (string, string_char_byte_cache_string))
832 if (string_char_byte_cache_bytepos < byte_index)
834 best_below = string_char_byte_cache_charpos;
835 best_below_byte = string_char_byte_cache_bytepos;
837 else
839 best_above = string_char_byte_cache_charpos;
840 best_above_byte = string_char_byte_cache_bytepos;
844 if (byte_index - best_below_byte < best_above_byte - byte_index)
846 unsigned char *p = SDATA (string) + best_below_byte;
847 unsigned char *pend = SDATA (string) + byte_index;
849 while (p < pend)
851 p += BYTES_BY_CHAR_HEAD (*p);
852 best_below++;
854 i = best_below;
855 i_byte = p - SDATA (string);
857 else
859 unsigned char *p = SDATA (string) + best_above_byte;
860 unsigned char *pbeg = SDATA (string) + byte_index;
862 while (p > pbeg)
864 p--;
865 while (!CHAR_HEAD_P (*p)) p--;
866 best_above--;
868 i = best_above;
869 i_byte = p - SDATA (string);
872 string_char_byte_cache_bytepos = i_byte;
873 string_char_byte_cache_charpos = i;
874 string_char_byte_cache_string = string;
876 return i;
879 /* Convert STRING to a multibyte string. */
881 static Lisp_Object
882 string_make_multibyte (Lisp_Object string)
884 unsigned char *buf;
885 ptrdiff_t nbytes;
886 Lisp_Object ret;
887 USE_SAFE_ALLOCA;
889 if (STRING_MULTIBYTE (string))
890 return string;
892 nbytes = count_size_as_multibyte (SDATA (string),
893 SCHARS (string));
894 /* If all the chars are ASCII, they won't need any more bytes
895 once converted. In that case, we can return STRING itself. */
896 if (nbytes == SBYTES (string))
897 return string;
899 buf = SAFE_ALLOCA (nbytes);
900 copy_text (SDATA (string), buf, SBYTES (string),
901 0, 1);
903 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
904 SAFE_FREE ();
906 return ret;
910 /* Convert STRING (if unibyte) to a multibyte string without changing
911 the number of characters. Characters 0200 trough 0237 are
912 converted to eight-bit characters. */
914 Lisp_Object
915 string_to_multibyte (Lisp_Object string)
917 unsigned char *buf;
918 ptrdiff_t nbytes;
919 Lisp_Object ret;
920 USE_SAFE_ALLOCA;
922 if (STRING_MULTIBYTE (string))
923 return string;
925 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
926 /* If all the chars are ASCII, they won't need any more bytes once
927 converted. */
928 if (nbytes == SBYTES (string))
929 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
931 buf = SAFE_ALLOCA (nbytes);
932 memcpy (buf, SDATA (string), SBYTES (string));
933 str_to_multibyte (buf, nbytes, SBYTES (string));
935 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
936 SAFE_FREE ();
938 return ret;
942 /* Convert STRING to a single-byte string. */
944 Lisp_Object
945 string_make_unibyte (Lisp_Object string)
947 ptrdiff_t nchars;
948 unsigned char *buf;
949 Lisp_Object ret;
950 USE_SAFE_ALLOCA;
952 if (! STRING_MULTIBYTE (string))
953 return string;
955 nchars = SCHARS (string);
957 buf = SAFE_ALLOCA (nchars);
958 copy_text (SDATA (string), buf, SBYTES (string),
959 1, 0);
961 ret = make_unibyte_string ((char *) buf, nchars);
962 SAFE_FREE ();
964 return ret;
967 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
968 1, 1, 0,
969 doc: /* Return the multibyte equivalent of STRING.
970 If STRING is unibyte and contains non-ASCII characters, the function
971 `unibyte-char-to-multibyte' is used to convert each unibyte character
972 to a multibyte character. In this case, the returned string is a
973 newly created string with no text properties. If STRING is multibyte
974 or entirely ASCII, it is returned unchanged. In particular, when
975 STRING is unibyte and entirely ASCII, the returned string is unibyte.
976 \(When the characters are all ASCII, Emacs primitives will treat the
977 string the same way whether it is unibyte or multibyte.) */)
978 (Lisp_Object string)
980 CHECK_STRING (string);
982 return string_make_multibyte (string);
985 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
986 1, 1, 0,
987 doc: /* Return the unibyte equivalent of STRING.
988 Multibyte character codes are converted to unibyte according to
989 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
990 If the lookup in the translation table fails, this function takes just
991 the low 8 bits of each character. */)
992 (Lisp_Object string)
994 CHECK_STRING (string);
996 return string_make_unibyte (string);
999 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1000 1, 1, 0,
1001 doc: /* Return a unibyte string with the same individual bytes as STRING.
1002 If STRING is unibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004 If STRING is multibyte and contains a character of charset
1005 `eight-bit', it is converted to the corresponding single byte. */)
1006 (Lisp_Object string)
1008 CHECK_STRING (string);
1010 if (STRING_MULTIBYTE (string))
1012 ptrdiff_t bytes = SBYTES (string);
1013 unsigned char *str = xmalloc (bytes);
1015 memcpy (str, SDATA (string), bytes);
1016 bytes = str_as_unibyte (str, bytes);
1017 string = make_unibyte_string ((char *) str, bytes);
1018 xfree (str);
1020 return string;
1023 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1024 1, 1, 0,
1025 doc: /* Return a multibyte string with the same individual bytes as STRING.
1026 If STRING is multibyte, the result is STRING itself.
1027 Otherwise it is a newly created string, with no text properties.
1029 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1030 part of a correct utf-8 sequence), it is converted to the corresponding
1031 multibyte character of charset `eight-bit'.
1032 See also `string-to-multibyte'.
1034 Beware, this often doesn't really do what you think it does.
1035 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1036 If you're not sure, whether to use `string-as-multibyte' or
1037 `string-to-multibyte', use `string-to-multibyte'. */)
1038 (Lisp_Object string)
1040 CHECK_STRING (string);
1042 if (! STRING_MULTIBYTE (string))
1044 Lisp_Object new_string;
1045 ptrdiff_t nchars, nbytes;
1047 parse_str_as_multibyte (SDATA (string),
1048 SBYTES (string),
1049 &nchars, &nbytes);
1050 new_string = make_uninit_multibyte_string (nchars, nbytes);
1051 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1052 if (nbytes != SBYTES (string))
1053 str_as_multibyte (SDATA (new_string), nbytes,
1054 SBYTES (string), NULL);
1055 string = new_string;
1056 set_string_intervals (string, NULL);
1058 return string;
1061 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1062 1, 1, 0,
1063 doc: /* Return a multibyte string with the same individual chars as STRING.
1064 If STRING is multibyte, the result is STRING itself.
1065 Otherwise it is a newly created string, with no text properties.
1067 If STRING is unibyte and contains an 8-bit byte, it is converted to
1068 the corresponding multibyte character of charset `eight-bit'.
1070 This differs from `string-as-multibyte' by converting each byte of a correct
1071 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1072 correct sequence. */)
1073 (Lisp_Object string)
1075 CHECK_STRING (string);
1077 return string_to_multibyte (string);
1080 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1081 1, 1, 0,
1082 doc: /* Return a unibyte string with the same individual chars as STRING.
1083 If STRING is unibyte, the result is STRING itself.
1084 Otherwise it is a newly created string, with no text properties,
1085 where each `eight-bit' character is converted to the corresponding byte.
1086 If STRING contains a non-ASCII, non-`eight-bit' character,
1087 an error is signaled. */)
1088 (Lisp_Object string)
1090 CHECK_STRING (string);
1092 if (STRING_MULTIBYTE (string))
1094 ptrdiff_t chars = SCHARS (string);
1095 unsigned char *str = xmalloc (chars);
1096 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1098 if (converted < chars)
1099 error ("Can't convert the %"pD"dth character to unibyte", converted);
1100 string = make_unibyte_string ((char *) str, chars);
1101 xfree (str);
1103 return string;
1107 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1108 doc: /* Return a copy of ALIST.
1109 This is an alist which represents the same mapping from objects to objects,
1110 but does not share the alist structure with ALIST.
1111 The objects mapped (cars and cdrs of elements of the alist)
1112 are shared, however.
1113 Elements of ALIST that are not conses are also shared. */)
1114 (Lisp_Object alist)
1116 register Lisp_Object tem;
1118 CHECK_LIST (alist);
1119 if (NILP (alist))
1120 return alist;
1121 alist = concat (1, &alist, Lisp_Cons, 0);
1122 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1124 register Lisp_Object car;
1125 car = XCAR (tem);
1127 if (CONSP (car))
1128 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1130 return alist;
1133 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1134 doc: /* Return a new string whose contents are a substring of STRING.
1135 The returned string consists of the characters between index FROM
1136 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1137 zero-indexed: 0 means the first character of STRING. Negative values
1138 are counted from the end of STRING. If TO is nil, the substring runs
1139 to the end of STRING.
1141 The STRING argument may also be a vector. In that case, the return
1142 value is a new vector that contains the elements between index FROM
1143 \(inclusive) and index TO (exclusive) of that vector argument. */)
1144 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1146 Lisp_Object res;
1147 ptrdiff_t size;
1148 EMACS_INT from_char, to_char;
1150 CHECK_VECTOR_OR_STRING (string);
1151 CHECK_NUMBER (from);
1153 if (STRINGP (string))
1154 size = SCHARS (string);
1155 else
1156 size = ASIZE (string);
1158 if (NILP (to))
1159 to_char = size;
1160 else
1162 CHECK_NUMBER (to);
1164 to_char = XINT (to);
1165 if (to_char < 0)
1166 to_char += size;
1169 from_char = XINT (from);
1170 if (from_char < 0)
1171 from_char += size;
1172 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1173 args_out_of_range_3 (string, make_number (from_char),
1174 make_number (to_char));
1176 if (STRINGP (string))
1178 ptrdiff_t to_byte =
1179 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1180 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1181 res = make_specified_string (SSDATA (string) + from_byte,
1182 to_char - from_char, to_byte - from_byte,
1183 STRING_MULTIBYTE (string));
1184 copy_text_properties (make_number (from_char), make_number (to_char),
1185 string, make_number (0), res, Qnil);
1187 else
1188 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1190 return res;
1194 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1195 doc: /* Return a substring of STRING, without text properties.
1196 It starts at index FROM and ends before TO.
1197 TO may be nil or omitted; then the substring runs to the end of STRING.
1198 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1199 If FROM or TO is negative, it counts from the end.
1201 With one argument, just copy STRING without its properties. */)
1202 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1204 ptrdiff_t size;
1205 EMACS_INT from_char, to_char;
1206 ptrdiff_t from_byte, to_byte;
1208 CHECK_STRING (string);
1210 size = SCHARS (string);
1212 if (NILP (from))
1213 from_char = 0;
1214 else
1216 CHECK_NUMBER (from);
1217 from_char = XINT (from);
1218 if (from_char < 0)
1219 from_char += size;
1222 if (NILP (to))
1223 to_char = size;
1224 else
1226 CHECK_NUMBER (to);
1227 to_char = XINT (to);
1228 if (to_char < 0)
1229 to_char += size;
1232 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1233 args_out_of_range_3 (string, make_number (from_char),
1234 make_number (to_char));
1236 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1237 to_byte =
1238 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1239 return make_specified_string (SSDATA (string) + from_byte,
1240 to_char - from_char, to_byte - from_byte,
1241 STRING_MULTIBYTE (string));
1244 /* Extract a substring of STRING, giving start and end positions
1245 both in characters and in bytes. */
1247 Lisp_Object
1248 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1249 ptrdiff_t to, ptrdiff_t to_byte)
1251 Lisp_Object res;
1252 ptrdiff_t size;
1254 CHECK_VECTOR_OR_STRING (string);
1256 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1258 if (!(0 <= from && from <= to && to <= size))
1259 args_out_of_range_3 (string, make_number (from), make_number (to));
1261 if (STRINGP (string))
1263 res = make_specified_string (SSDATA (string) + from_byte,
1264 to - from, to_byte - from_byte,
1265 STRING_MULTIBYTE (string));
1266 copy_text_properties (make_number (from), make_number (to),
1267 string, make_number (0), res, Qnil);
1269 else
1270 res = Fvector (to - from, aref_addr (string, from));
1272 return res;
1275 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1276 doc: /* Take cdr N times on LIST, return the result. */)
1277 (Lisp_Object n, Lisp_Object list)
1279 EMACS_INT i, num;
1280 CHECK_NUMBER (n);
1281 num = XINT (n);
1282 for (i = 0; i < num && !NILP (list); i++)
1284 QUIT;
1285 CHECK_LIST_CONS (list, list);
1286 list = XCDR (list);
1288 return list;
1291 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1292 doc: /* Return the Nth element of LIST.
1293 N counts from zero. If LIST is not that long, nil is returned. */)
1294 (Lisp_Object n, Lisp_Object list)
1296 return Fcar (Fnthcdr (n, list));
1299 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1300 doc: /* Return element of SEQUENCE at index N. */)
1301 (register Lisp_Object sequence, Lisp_Object n)
1303 CHECK_NUMBER (n);
1304 if (CONSP (sequence) || NILP (sequence))
1305 return Fcar (Fnthcdr (n, sequence));
1307 /* Faref signals a "not array" error, so check here. */
1308 CHECK_ARRAY (sequence, Qsequencep);
1309 return Faref (sequence, n);
1312 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1313 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1314 The value is actually the tail of LIST whose car is ELT. */)
1315 (register Lisp_Object elt, Lisp_Object list)
1317 register Lisp_Object tail;
1318 for (tail = list; CONSP (tail); tail = XCDR (tail))
1320 register Lisp_Object tem;
1321 CHECK_LIST_CONS (tail, list);
1322 tem = XCAR (tail);
1323 if (! NILP (Fequal (elt, tem)))
1324 return tail;
1325 QUIT;
1327 return Qnil;
1330 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1331 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt, Lisp_Object list)
1335 while (1)
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1344 list = XCDR (list);
1345 if (!CONSP (list) || EQ (XCAR (list), elt))
1346 break;
1348 list = XCDR (list);
1349 QUIT;
1352 CHECK_LIST (list);
1353 return list;
1356 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1357 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1358 The value is actually the tail of LIST whose car is ELT. */)
1359 (register Lisp_Object elt, Lisp_Object list)
1361 register Lisp_Object tail;
1363 if (!FLOATP (elt))
1364 return Fmemq (elt, list);
1366 for (tail = list; CONSP (tail); tail = XCDR (tail))
1368 register Lisp_Object tem;
1369 CHECK_LIST_CONS (tail, list);
1370 tem = XCAR (tail);
1371 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1372 return tail;
1373 QUIT;
1375 return Qnil;
1378 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1379 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1380 The value is actually the first element of LIST whose car is KEY.
1381 Elements of LIST that are not conses are ignored. */)
1382 (Lisp_Object key, Lisp_Object list)
1384 while (1)
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1391 list = XCDR (list);
1392 if (!CONSP (list)
1393 || (CONSP (XCAR (list))
1394 && EQ (XCAR (XCAR (list)), key)))
1395 break;
1397 list = XCDR (list);
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1403 list = XCDR (list);
1404 QUIT;
1407 return CAR (list);
1410 /* Like Fassq but never report an error and do not allow quits.
1411 Use only on lists known never to be circular. */
1413 Lisp_Object
1414 assq_no_quit (Lisp_Object key, Lisp_Object list)
1416 while (CONSP (list)
1417 && (!CONSP (XCAR (list))
1418 || !EQ (XCAR (XCAR (list)), key)))
1419 list = XCDR (list);
1421 return CAR_SAFE (list);
1424 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1425 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1426 The value is actually the first element of LIST whose car equals KEY. */)
1427 (Lisp_Object key, Lisp_Object list)
1429 Lisp_Object car;
1431 while (1)
1433 if (!CONSP (list)
1434 || (CONSP (XCAR (list))
1435 && (car = XCAR (XCAR (list)),
1436 EQ (car, key) || !NILP (Fequal (car, key)))))
1437 break;
1439 list = XCDR (list);
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1446 list = XCDR (list);
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1453 list = XCDR (list);
1454 QUIT;
1457 return CAR (list);
1460 /* Like Fassoc but never report an error and do not allow quits.
1461 Use only on lists known never to be circular. */
1463 Lisp_Object
1464 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1466 while (CONSP (list)
1467 && (!CONSP (XCAR (list))
1468 || (!EQ (XCAR (XCAR (list)), key)
1469 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1470 list = XCDR (list);
1472 return CONSP (list) ? XCAR (list) : Qnil;
1475 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1476 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1477 The value is actually the first element of LIST whose cdr is KEY. */)
1478 (register Lisp_Object key, Lisp_Object list)
1480 while (1)
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1487 list = XCDR (list);
1488 if (!CONSP (list)
1489 || (CONSP (XCAR (list))
1490 && EQ (XCDR (XCAR (list)), key)))
1491 break;
1493 list = XCDR (list);
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1499 list = XCDR (list);
1500 QUIT;
1503 return CAR (list);
1506 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1507 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1508 The value is actually the first element of LIST whose cdr equals KEY. */)
1509 (Lisp_Object key, Lisp_Object list)
1511 Lisp_Object cdr;
1513 while (1)
1515 if (!CONSP (list)
1516 || (CONSP (XCAR (list))
1517 && (cdr = XCDR (XCAR (list)),
1518 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1519 break;
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1528 list = XCDR (list);
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1535 list = XCDR (list);
1536 QUIT;
1539 return CAR (list);
1542 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1543 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1544 More precisely, this function skips any members `eq' to ELT at the
1545 front of LIST, then removes members `eq' to ELT from the remaining
1546 sublist by modifying its list structure, then returns the resulting
1547 list.
1549 Write `(setq foo (delq element foo))' to be sure of correctly changing
1550 the value of a list `foo'. */)
1551 (register Lisp_Object elt, Lisp_Object list)
1553 register Lisp_Object tail, prev;
1554 register Lisp_Object tem;
1556 tail = list;
1557 prev = Qnil;
1558 while (CONSP (tail))
1560 CHECK_LIST_CONS (tail, list);
1561 tem = XCAR (tail);
1562 if (EQ (elt, tem))
1564 if (NILP (prev))
1565 list = XCDR (tail);
1566 else
1567 Fsetcdr (prev, XCDR (tail));
1569 else
1570 prev = tail;
1571 tail = XCDR (tail);
1572 QUIT;
1574 return list;
1577 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1578 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1579 SEQ must be a sequence (i.e. a list, a vector, or a string).
1580 The return value is a sequence of the same type.
1582 If SEQ is a list, this behaves like `delq', except that it compares
1583 with `equal' instead of `eq'. In particular, it may remove elements
1584 by altering the list structure.
1586 If SEQ is not a list, deletion is never performed destructively;
1587 instead this function creates and returns a new vector or string.
1589 Write `(setq foo (delete element foo))' to be sure of correctly
1590 changing the value of a sequence `foo'. */)
1591 (Lisp_Object elt, Lisp_Object seq)
1593 if (VECTORP (seq))
1595 ptrdiff_t i, n;
1597 for (i = n = 0; i < ASIZE (seq); ++i)
1598 if (NILP (Fequal (AREF (seq, i), elt)))
1599 ++n;
1601 if (n != ASIZE (seq))
1603 struct Lisp_Vector *p = allocate_vector (n);
1605 for (i = n = 0; i < ASIZE (seq); ++i)
1606 if (NILP (Fequal (AREF (seq, i), elt)))
1607 p->u.contents[n++] = AREF (seq, i);
1609 XSETVECTOR (seq, p);
1612 else if (STRINGP (seq))
1614 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1615 int c;
1617 for (i = nchars = nbytes = ibyte = 0;
1618 i < SCHARS (seq);
1619 ++i, ibyte += cbytes)
1621 if (STRING_MULTIBYTE (seq))
1623 c = STRING_CHAR (SDATA (seq) + ibyte);
1624 cbytes = CHAR_BYTES (c);
1626 else
1628 c = SREF (seq, i);
1629 cbytes = 1;
1632 if (!INTEGERP (elt) || c != XINT (elt))
1634 ++nchars;
1635 nbytes += cbytes;
1639 if (nchars != SCHARS (seq))
1641 Lisp_Object tem;
1643 tem = make_uninit_multibyte_string (nchars, nbytes);
1644 if (!STRING_MULTIBYTE (seq))
1645 STRING_SET_UNIBYTE (tem);
1647 for (i = nchars = nbytes = ibyte = 0;
1648 i < SCHARS (seq);
1649 ++i, ibyte += cbytes)
1651 if (STRING_MULTIBYTE (seq))
1653 c = STRING_CHAR (SDATA (seq) + ibyte);
1654 cbytes = CHAR_BYTES (c);
1656 else
1658 c = SREF (seq, i);
1659 cbytes = 1;
1662 if (!INTEGERP (elt) || c != XINT (elt))
1664 unsigned char *from = SDATA (seq) + ibyte;
1665 unsigned char *to = SDATA (tem) + nbytes;
1666 ptrdiff_t n;
1668 ++nchars;
1669 nbytes += cbytes;
1671 for (n = cbytes; n--; )
1672 *to++ = *from++;
1676 seq = tem;
1679 else
1681 Lisp_Object tail, prev;
1683 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1685 CHECK_LIST_CONS (tail, seq);
1687 if (!NILP (Fequal (elt, XCAR (tail))))
1689 if (NILP (prev))
1690 seq = XCDR (tail);
1691 else
1692 Fsetcdr (prev, XCDR (tail));
1694 else
1695 prev = tail;
1696 QUIT;
1700 return seq;
1703 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1704 doc: /* Reverse LIST by modifying cdr pointers.
1705 Return the reversed list. Expects a properly nil-terminated list. */)
1706 (Lisp_Object list)
1708 register Lisp_Object prev, tail, next;
1710 if (NILP (list)) return list;
1711 prev = Qnil;
1712 tail = list;
1713 while (!NILP (tail))
1715 QUIT;
1716 CHECK_LIST_CONS (tail, tail);
1717 next = XCDR (tail);
1718 Fsetcdr (tail, prev);
1719 prev = tail;
1720 tail = next;
1722 return prev;
1725 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1726 doc: /* Reverse LIST, copying. Return the reversed list.
1727 See also the function `nreverse', which is used more often. */)
1728 (Lisp_Object list)
1730 Lisp_Object new;
1732 for (new = Qnil; CONSP (list); list = XCDR (list))
1734 QUIT;
1735 new = Fcons (XCAR (list), new);
1737 CHECK_LIST_END (list, list);
1738 return new;
1741 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1742 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1743 Returns the sorted list. LIST is modified by side effects.
1744 PREDICATE is called with two elements of LIST, and should return non-nil
1745 if the first element should sort before the second. */)
1746 (Lisp_Object list, Lisp_Object predicate)
1748 Lisp_Object front, back;
1749 register Lisp_Object len, tem;
1750 struct gcpro gcpro1, gcpro2;
1751 EMACS_INT length;
1753 front = list;
1754 len = Flength (list);
1755 length = XINT (len);
1756 if (length < 2)
1757 return list;
1759 XSETINT (len, (length / 2) - 1);
1760 tem = Fnthcdr (len, list);
1761 back = Fcdr (tem);
1762 Fsetcdr (tem, Qnil);
1764 GCPRO2 (front, back);
1765 front = Fsort (front, predicate);
1766 back = Fsort (back, predicate);
1767 UNGCPRO;
1768 return merge (front, back, predicate);
1771 Lisp_Object
1772 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1774 Lisp_Object value;
1775 register Lisp_Object tail;
1776 Lisp_Object tem;
1777 register Lisp_Object l1, l2;
1778 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1780 l1 = org_l1;
1781 l2 = org_l2;
1782 tail = Qnil;
1783 value = Qnil;
1785 /* It is sufficient to protect org_l1 and org_l2.
1786 When l1 and l2 are updated, we copy the new values
1787 back into the org_ vars. */
1788 GCPRO4 (org_l1, org_l2, pred, value);
1790 while (1)
1792 if (NILP (l1))
1794 UNGCPRO;
1795 if (NILP (tail))
1796 return l2;
1797 Fsetcdr (tail, l2);
1798 return value;
1800 if (NILP (l2))
1802 UNGCPRO;
1803 if (NILP (tail))
1804 return l1;
1805 Fsetcdr (tail, l1);
1806 return value;
1808 tem = call2 (pred, Fcar (l2), Fcar (l1));
1809 if (NILP (tem))
1811 tem = l1;
1812 l1 = Fcdr (l1);
1813 org_l1 = l1;
1815 else
1817 tem = l2;
1818 l2 = Fcdr (l2);
1819 org_l2 = l2;
1821 if (NILP (tail))
1822 value = tem;
1823 else
1824 Fsetcdr (tail, tem);
1825 tail = tem;
1830 /* This does not check for quits. That is safe since it must terminate. */
1832 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1833 doc: /* Extract a value from a property list.
1834 PLIST is a property list, which is a list of the form
1835 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1836 corresponding to the given PROP, or nil if PROP is not one of the
1837 properties on the list. This function never signals an error. */)
1838 (Lisp_Object plist, Lisp_Object prop)
1840 Lisp_Object tail, halftail;
1842 /* halftail is used to detect circular lists. */
1843 tail = halftail = plist;
1844 while (CONSP (tail) && CONSP (XCDR (tail)))
1846 if (EQ (prop, XCAR (tail)))
1847 return XCAR (XCDR (tail));
1849 tail = XCDR (XCDR (tail));
1850 halftail = XCDR (halftail);
1851 if (EQ (tail, halftail))
1852 break;
1855 return Qnil;
1858 DEFUN ("get", Fget, Sget, 2, 2, 0,
1859 doc: /* Return the value of SYMBOL's PROPNAME property.
1860 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1861 (Lisp_Object symbol, Lisp_Object propname)
1863 CHECK_SYMBOL (symbol);
1864 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1867 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1868 doc: /* Change value in PLIST of PROP to VAL.
1869 PLIST is a property list, which is a list of the form
1870 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1871 If PROP is already a property on the list, its value is set to VAL,
1872 otherwise the new PROP VAL pair is added. The new plist is returned;
1873 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1874 The PLIST is modified by side effects. */)
1875 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1877 register Lisp_Object tail, prev;
1878 Lisp_Object newcell;
1879 prev = Qnil;
1880 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1881 tail = XCDR (XCDR (tail)))
1883 if (EQ (prop, XCAR (tail)))
1885 Fsetcar (XCDR (tail), val);
1886 return plist;
1889 prev = tail;
1890 QUIT;
1892 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1893 if (NILP (prev))
1894 return newcell;
1895 else
1896 Fsetcdr (XCDR (prev), newcell);
1897 return plist;
1900 DEFUN ("put", Fput, Sput, 3, 3, 0,
1901 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1902 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1903 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1905 CHECK_SYMBOL (symbol);
1906 set_symbol_plist
1907 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1908 return value;
1911 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1912 doc: /* Extract a value from a property list, comparing with `equal'.
1913 PLIST is a property list, which is a list of the form
1914 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1915 corresponding to the given PROP, or nil if PROP is not
1916 one of the properties on the list. */)
1917 (Lisp_Object plist, Lisp_Object prop)
1919 Lisp_Object tail;
1921 for (tail = plist;
1922 CONSP (tail) && CONSP (XCDR (tail));
1923 tail = XCDR (XCDR (tail)))
1925 if (! NILP (Fequal (prop, XCAR (tail))))
1926 return XCAR (XCDR (tail));
1928 QUIT;
1931 CHECK_LIST_END (tail, prop);
1933 return Qnil;
1936 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1937 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1938 PLIST is a property list, which is a list of the form
1939 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1940 If PROP is already a property on the list, its value is set to VAL,
1941 otherwise the new PROP VAL pair is added. The new plist is returned;
1942 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1943 The PLIST is modified by side effects. */)
1944 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1946 register Lisp_Object tail, prev;
1947 Lisp_Object newcell;
1948 prev = Qnil;
1949 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1950 tail = XCDR (XCDR (tail)))
1952 if (! NILP (Fequal (prop, XCAR (tail))))
1954 Fsetcar (XCDR (tail), val);
1955 return plist;
1958 prev = tail;
1959 QUIT;
1961 newcell = list2 (prop, val);
1962 if (NILP (prev))
1963 return newcell;
1964 else
1965 Fsetcdr (XCDR (prev), newcell);
1966 return plist;
1969 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1970 doc: /* Return t if the two args are the same Lisp object.
1971 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1972 (Lisp_Object obj1, Lisp_Object obj2)
1974 if (FLOATP (obj1))
1975 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1976 else
1977 return EQ (obj1, obj2) ? Qt : Qnil;
1980 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1981 doc: /* Return t if two Lisp objects have similar structure and contents.
1982 They must have the same data type.
1983 Conses are compared by comparing the cars and the cdrs.
1984 Vectors and strings are compared element by element.
1985 Numbers are compared by value, but integers cannot equal floats.
1986 (Use `=' if you want integers and floats to be able to be equal.)
1987 Symbols must match exactly. */)
1988 (register Lisp_Object o1, Lisp_Object o2)
1990 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1993 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1994 doc: /* Return t if two Lisp objects have similar structure and contents.
1995 This is like `equal' except that it compares the text properties
1996 of strings. (`equal' ignores text properties.) */)
1997 (register Lisp_Object o1, Lisp_Object o2)
1999 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2002 /* DEPTH is current depth of recursion. Signal an error if it
2003 gets too deep.
2004 PROPS means compare string text properties too. */
2006 static bool
2007 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2009 if (depth > 200)
2010 error ("Stack overflow in equal");
2012 tail_recurse:
2013 QUIT;
2014 if (EQ (o1, o2))
2015 return 1;
2016 if (XTYPE (o1) != XTYPE (o2))
2017 return 0;
2019 switch (XTYPE (o1))
2021 case Lisp_Float:
2023 double d1, d2;
2025 d1 = extract_float (o1);
2026 d2 = extract_float (o2);
2027 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2028 though they are not =. */
2029 return d1 == d2 || (d1 != d1 && d2 != d2);
2032 case Lisp_Cons:
2033 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2034 return 0;
2035 o1 = XCDR (o1);
2036 o2 = XCDR (o2);
2037 goto tail_recurse;
2039 case Lisp_Misc:
2040 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2041 return 0;
2042 if (OVERLAYP (o1))
2044 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2045 depth + 1, props)
2046 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2047 depth + 1, props))
2048 return 0;
2049 o1 = XOVERLAY (o1)->plist;
2050 o2 = XOVERLAY (o2)->plist;
2051 goto tail_recurse;
2053 if (MARKERP (o1))
2055 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2056 && (XMARKER (o1)->buffer == 0
2057 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2059 break;
2061 case Lisp_Vectorlike:
2063 register int i;
2064 ptrdiff_t size = ASIZE (o1);
2065 /* Pseudovectors have the type encoded in the size field, so this test
2066 actually checks that the objects have the same type as well as the
2067 same size. */
2068 if (ASIZE (o2) != size)
2069 return 0;
2070 /* Boolvectors are compared much like strings. */
2071 if (BOOL_VECTOR_P (o1))
2073 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2074 return 0;
2075 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2076 ((XBOOL_VECTOR (o1)->size
2077 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2078 / BOOL_VECTOR_BITS_PER_CHAR)))
2079 return 0;
2080 return 1;
2082 if (WINDOW_CONFIGURATIONP (o1))
2083 return compare_window_configurations (o1, o2, 0);
2085 /* Aside from them, only true vectors, char-tables, compiled
2086 functions, and fonts (font-spec, font-entity, font-object)
2087 are sensible to compare, so eliminate the others now. */
2088 if (size & PSEUDOVECTOR_FLAG)
2090 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2091 < PVEC_COMPILED)
2092 return 0;
2093 size &= PSEUDOVECTOR_SIZE_MASK;
2095 for (i = 0; i < size; i++)
2097 Lisp_Object v1, v2;
2098 v1 = AREF (o1, i);
2099 v2 = AREF (o2, i);
2100 if (!internal_equal (v1, v2, depth + 1, props))
2101 return 0;
2103 return 1;
2105 break;
2107 case Lisp_String:
2108 if (SCHARS (o1) != SCHARS (o2))
2109 return 0;
2110 if (SBYTES (o1) != SBYTES (o2))
2111 return 0;
2112 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2113 return 0;
2114 if (props && !compare_string_intervals (o1, o2))
2115 return 0;
2116 return 1;
2118 default:
2119 break;
2122 return 0;
2126 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2127 doc: /* Store each element of ARRAY with ITEM.
2128 ARRAY is a vector, string, char-table, or bool-vector. */)
2129 (Lisp_Object array, Lisp_Object item)
2131 register ptrdiff_t size, idx;
2133 if (VECTORP (array))
2134 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2135 ASET (array, idx, item);
2136 else if (CHAR_TABLE_P (array))
2138 int i;
2140 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2141 set_char_table_contents (array, i, item);
2142 set_char_table_defalt (array, item);
2144 else if (STRINGP (array))
2146 register unsigned char *p = SDATA (array);
2147 int charval;
2148 CHECK_CHARACTER (item);
2149 charval = XFASTINT (item);
2150 size = SCHARS (array);
2151 if (STRING_MULTIBYTE (array))
2153 unsigned char str[MAX_MULTIBYTE_LENGTH];
2154 int len = CHAR_STRING (charval, str);
2155 ptrdiff_t size_byte = SBYTES (array);
2157 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2158 || SCHARS (array) * len != size_byte)
2159 error ("Attempt to change byte length of a string");
2160 for (idx = 0; idx < size_byte; idx++)
2161 *p++ = str[idx % len];
2163 else
2164 for (idx = 0; idx < size; idx++)
2165 p[idx] = charval;
2167 else if (BOOL_VECTOR_P (array))
2169 register unsigned char *p = XBOOL_VECTOR (array)->data;
2170 size =
2171 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2172 / BOOL_VECTOR_BITS_PER_CHAR);
2174 if (size)
2176 memset (p, ! NILP (item) ? -1 : 0, size);
2178 /* Clear any extraneous bits in the last byte. */
2179 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2182 else
2183 wrong_type_argument (Qarrayp, array);
2184 return array;
2187 DEFUN ("clear-string", Fclear_string, Sclear_string,
2188 1, 1, 0,
2189 doc: /* Clear the contents of STRING.
2190 This makes STRING unibyte and may change its length. */)
2191 (Lisp_Object string)
2193 ptrdiff_t len;
2194 CHECK_STRING (string);
2195 len = SBYTES (string);
2196 memset (SDATA (string), 0, len);
2197 STRING_SET_CHARS (string, len);
2198 STRING_SET_UNIBYTE (string);
2199 return Qnil;
2202 /* ARGSUSED */
2203 Lisp_Object
2204 nconc2 (Lisp_Object s1, Lisp_Object s2)
2206 Lisp_Object args[2];
2207 args[0] = s1;
2208 args[1] = s2;
2209 return Fnconc (2, args);
2212 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2213 doc: /* Concatenate any number of lists by altering them.
2214 Only the last argument is not altered, and need not be a list.
2215 usage: (nconc &rest LISTS) */)
2216 (ptrdiff_t nargs, Lisp_Object *args)
2218 ptrdiff_t argnum;
2219 register Lisp_Object tail, tem, val;
2221 val = tail = Qnil;
2223 for (argnum = 0; argnum < nargs; argnum++)
2225 tem = args[argnum];
2226 if (NILP (tem)) continue;
2228 if (NILP (val))
2229 val = tem;
2231 if (argnum + 1 == nargs) break;
2233 CHECK_LIST_CONS (tem, tem);
2235 while (CONSP (tem))
2237 tail = tem;
2238 tem = XCDR (tail);
2239 QUIT;
2242 tem = args[argnum + 1];
2243 Fsetcdr (tail, tem);
2244 if (NILP (tem))
2245 args[argnum + 1] = tail;
2248 return val;
2251 /* This is the guts of all mapping functions.
2252 Apply FN to each element of SEQ, one by one,
2253 storing the results into elements of VALS, a C vector of Lisp_Objects.
2254 LENI is the length of VALS, which should also be the length of SEQ. */
2256 static void
2257 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2259 register Lisp_Object tail;
2260 Lisp_Object dummy;
2261 register EMACS_INT i;
2262 struct gcpro gcpro1, gcpro2, gcpro3;
2264 if (vals)
2266 /* Don't let vals contain any garbage when GC happens. */
2267 for (i = 0; i < leni; i++)
2268 vals[i] = Qnil;
2270 GCPRO3 (dummy, fn, seq);
2271 gcpro1.var = vals;
2272 gcpro1.nvars = leni;
2274 else
2275 GCPRO2 (fn, seq);
2276 /* We need not explicitly protect `tail' because it is used only on lists, and
2277 1) lists are not relocated and 2) the list is marked via `seq' so will not
2278 be freed */
2280 if (VECTORP (seq) || COMPILEDP (seq))
2282 for (i = 0; i < leni; i++)
2284 dummy = call1 (fn, AREF (seq, i));
2285 if (vals)
2286 vals[i] = dummy;
2289 else if (BOOL_VECTOR_P (seq))
2291 for (i = 0; i < leni; i++)
2293 unsigned char byte;
2294 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2295 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2296 dummy = call1 (fn, dummy);
2297 if (vals)
2298 vals[i] = dummy;
2301 else if (STRINGP (seq))
2303 ptrdiff_t i_byte;
2305 for (i = 0, i_byte = 0; i < leni;)
2307 int c;
2308 ptrdiff_t i_before = i;
2310 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2311 XSETFASTINT (dummy, c);
2312 dummy = call1 (fn, dummy);
2313 if (vals)
2314 vals[i_before] = dummy;
2317 else /* Must be a list, since Flength did not get an error */
2319 tail = seq;
2320 for (i = 0; i < leni && CONSP (tail); i++)
2322 dummy = call1 (fn, XCAR (tail));
2323 if (vals)
2324 vals[i] = dummy;
2325 tail = XCDR (tail);
2329 UNGCPRO;
2332 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2333 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2334 In between each pair of results, stick in SEPARATOR. Thus, " " as
2335 SEPARATOR results in spaces between the values returned by FUNCTION.
2336 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2337 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2339 Lisp_Object len;
2340 register EMACS_INT leni;
2341 EMACS_INT nargs;
2342 ptrdiff_t i;
2343 register Lisp_Object *args;
2344 struct gcpro gcpro1;
2345 Lisp_Object ret;
2346 USE_SAFE_ALLOCA;
2348 len = Flength (sequence);
2349 if (CHAR_TABLE_P (sequence))
2350 wrong_type_argument (Qlistp, sequence);
2351 leni = XINT (len);
2352 nargs = leni + leni - 1;
2353 if (nargs < 0) return empty_unibyte_string;
2355 SAFE_ALLOCA_LISP (args, nargs);
2357 GCPRO1 (separator);
2358 mapcar1 (leni, args, function, sequence);
2359 UNGCPRO;
2361 for (i = leni - 1; i > 0; i--)
2362 args[i + i] = args[i];
2364 for (i = 1; i < nargs; i += 2)
2365 args[i] = separator;
2367 ret = Fconcat (nargs, args);
2368 SAFE_FREE ();
2370 return ret;
2373 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2374 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2375 The result is a list just as long as SEQUENCE.
2376 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2377 (Lisp_Object function, Lisp_Object sequence)
2379 register Lisp_Object len;
2380 register EMACS_INT leni;
2381 register Lisp_Object *args;
2382 Lisp_Object ret;
2383 USE_SAFE_ALLOCA;
2385 len = Flength (sequence);
2386 if (CHAR_TABLE_P (sequence))
2387 wrong_type_argument (Qlistp, sequence);
2388 leni = XFASTINT (len);
2390 SAFE_ALLOCA_LISP (args, leni);
2392 mapcar1 (leni, args, function, sequence);
2394 ret = Flist (leni, args);
2395 SAFE_FREE ();
2397 return ret;
2400 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2401 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2402 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2403 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2404 (Lisp_Object function, Lisp_Object sequence)
2406 register EMACS_INT leni;
2408 leni = XFASTINT (Flength (sequence));
2409 if (CHAR_TABLE_P (sequence))
2410 wrong_type_argument (Qlistp, sequence);
2411 mapcar1 (leni, 0, function, sequence);
2413 return sequence;
2416 /* This is how C code calls `yes-or-no-p' and allows the user
2417 to redefined it.
2419 Anything that calls this function must protect from GC! */
2421 Lisp_Object
2422 do_yes_or_no_p (Lisp_Object prompt)
2424 return call1 (intern ("yes-or-no-p"), prompt);
2427 /* Anything that calls this function must protect from GC! */
2429 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2430 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2431 PROMPT is the string to display to ask the question. It should end in
2432 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2434 The user must confirm the answer with RET, and can edit it until it
2435 has been confirmed.
2437 If dialog boxes are supported, a dialog box will be used
2438 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2439 (Lisp_Object prompt)
2441 register Lisp_Object ans;
2442 Lisp_Object args[2];
2443 struct gcpro gcpro1;
2445 CHECK_STRING (prompt);
2447 #ifdef HAVE_MENUS
2448 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2449 && use_dialog_box)
2451 Lisp_Object pane, menu, obj;
2452 redisplay_preserve_echo_area (4);
2453 pane = list2 (Fcons (build_string ("Yes"), Qt),
2454 Fcons (build_string ("No"), Qnil));
2455 GCPRO1 (pane);
2456 menu = Fcons (prompt, pane);
2457 obj = Fx_popup_dialog (Qt, menu, Qnil);
2458 UNGCPRO;
2459 return obj;
2461 #endif /* HAVE_MENUS */
2463 args[0] = prompt;
2464 args[1] = build_string ("(yes or no) ");
2465 prompt = Fconcat (2, args);
2467 GCPRO1 (prompt);
2469 while (1)
2471 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2472 Qyes_or_no_p_history, Qnil,
2473 Qnil));
2474 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2476 UNGCPRO;
2477 return Qt;
2479 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2481 UNGCPRO;
2482 return Qnil;
2485 Fding (Qnil);
2486 Fdiscard_input ();
2487 message1 ("Please answer yes or no.");
2488 Fsleep_for (make_number (2), Qnil);
2492 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2493 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2495 Each of the three load averages is multiplied by 100, then converted
2496 to integer.
2498 When USE-FLOATS is non-nil, floats will be used instead of integers.
2499 These floats are not multiplied by 100.
2501 If the 5-minute or 15-minute load averages are not available, return a
2502 shortened list, containing only those averages which are available.
2504 An error is thrown if the load average can't be obtained. In some
2505 cases making it work would require Emacs being installed setuid or
2506 setgid so that it can read kernel information, and that usually isn't
2507 advisable. */)
2508 (Lisp_Object use_floats)
2510 double load_ave[3];
2511 int loads = getloadavg (load_ave, 3);
2512 Lisp_Object ret = Qnil;
2514 if (loads < 0)
2515 error ("load-average not implemented for this operating system");
2517 while (loads-- > 0)
2519 Lisp_Object load = (NILP (use_floats)
2520 ? make_number (100.0 * load_ave[loads])
2521 : make_float (load_ave[loads]));
2522 ret = Fcons (load, ret);
2525 return ret;
2528 static Lisp_Object Qsubfeatures;
2530 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2531 doc: /* Return t if FEATURE is present in this Emacs.
2533 Use this to conditionalize execution of lisp code based on the
2534 presence or absence of Emacs or environment extensions.
2535 Use `provide' to declare that a feature is available. This function
2536 looks at the value of the variable `features'. The optional argument
2537 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2538 (Lisp_Object feature, Lisp_Object subfeature)
2540 register Lisp_Object tem;
2541 CHECK_SYMBOL (feature);
2542 tem = Fmemq (feature, Vfeatures);
2543 if (!NILP (tem) && !NILP (subfeature))
2544 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2545 return (NILP (tem)) ? Qnil : Qt;
2548 static Lisp_Object Qfuncall;
2550 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2551 doc: /* Announce that FEATURE is a feature of the current Emacs.
2552 The optional argument SUBFEATURES should be a list of symbols listing
2553 particular subfeatures supported in this version of FEATURE. */)
2554 (Lisp_Object feature, Lisp_Object subfeatures)
2556 register Lisp_Object tem;
2557 CHECK_SYMBOL (feature);
2558 CHECK_LIST (subfeatures);
2559 if (!NILP (Vautoload_queue))
2560 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2561 Vautoload_queue);
2562 tem = Fmemq (feature, Vfeatures);
2563 if (NILP (tem))
2564 Vfeatures = Fcons (feature, Vfeatures);
2565 if (!NILP (subfeatures))
2566 Fput (feature, Qsubfeatures, subfeatures);
2567 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2569 /* Run any load-hooks for this file. */
2570 tem = Fassq (feature, Vafter_load_alist);
2571 if (CONSP (tem))
2572 Fmapc (Qfuncall, XCDR (tem));
2574 return feature;
2577 /* `require' and its subroutines. */
2579 /* List of features currently being require'd, innermost first. */
2581 static Lisp_Object require_nesting_list;
2583 static void
2584 require_unwind (Lisp_Object old_value)
2586 require_nesting_list = old_value;
2589 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2590 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2591 If FEATURE is not a member of the list `features', then the feature
2592 is not loaded; so load the file FILENAME.
2593 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2594 and `load' will try to load this name appended with the suffix `.elc' or
2595 `.el', in that order. The name without appended suffix will not be used.
2596 See `get-load-suffixes' for the complete list of suffixes.
2597 If the optional third argument NOERROR is non-nil,
2598 then return nil if the file is not found instead of signaling an error.
2599 Normally the return value is FEATURE.
2600 The normal messages at start and end of loading FILENAME are suppressed. */)
2601 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2603 Lisp_Object tem;
2604 struct gcpro gcpro1, gcpro2;
2605 bool from_file = load_in_progress;
2607 CHECK_SYMBOL (feature);
2609 /* Record the presence of `require' in this file
2610 even if the feature specified is already loaded.
2611 But not more than once in any file,
2612 and not when we aren't loading or reading from a file. */
2613 if (!from_file)
2614 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2615 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2616 from_file = 1;
2618 if (from_file)
2620 tem = Fcons (Qrequire, feature);
2621 if (NILP (Fmember (tem, Vcurrent_load_list)))
2622 LOADHIST_ATTACH (tem);
2624 tem = Fmemq (feature, Vfeatures);
2626 if (NILP (tem))
2628 ptrdiff_t count = SPECPDL_INDEX ();
2629 int nesting = 0;
2631 /* This is to make sure that loadup.el gives a clear picture
2632 of what files are preloaded and when. */
2633 if (! NILP (Vpurify_flag))
2634 error ("(require %s) while preparing to dump",
2635 SDATA (SYMBOL_NAME (feature)));
2637 /* A certain amount of recursive `require' is legitimate,
2638 but if we require the same feature recursively 3 times,
2639 signal an error. */
2640 tem = require_nesting_list;
2641 while (! NILP (tem))
2643 if (! NILP (Fequal (feature, XCAR (tem))))
2644 nesting++;
2645 tem = XCDR (tem);
2647 if (nesting > 3)
2648 error ("Recursive `require' for feature `%s'",
2649 SDATA (SYMBOL_NAME (feature)));
2651 /* Update the list for any nested `require's that occur. */
2652 record_unwind_protect (require_unwind, require_nesting_list);
2653 require_nesting_list = Fcons (feature, require_nesting_list);
2655 /* Value saved here is to be restored into Vautoload_queue */
2656 record_unwind_protect (un_autoload, Vautoload_queue);
2657 Vautoload_queue = Qt;
2659 /* Load the file. */
2660 GCPRO2 (feature, filename);
2661 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2662 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2663 UNGCPRO;
2665 /* If load failed entirely, return nil. */
2666 if (NILP (tem))
2667 return unbind_to (count, Qnil);
2669 tem = Fmemq (feature, Vfeatures);
2670 if (NILP (tem))
2671 error ("Required feature `%s' was not provided",
2672 SDATA (SYMBOL_NAME (feature)));
2674 /* Once loading finishes, don't undo it. */
2675 Vautoload_queue = Qt;
2676 feature = unbind_to (count, feature);
2679 return feature;
2682 /* Primitives for work of the "widget" library.
2683 In an ideal world, this section would not have been necessary.
2684 However, lisp function calls being as slow as they are, it turns
2685 out that some functions in the widget library (wid-edit.el) are the
2686 bottleneck of Widget operation. Here is their translation to C,
2687 for the sole reason of efficiency. */
2689 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2690 doc: /* Return non-nil if PLIST has the property PROP.
2691 PLIST is a property list, which is a list of the form
2692 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2693 Unlike `plist-get', this allows you to distinguish between a missing
2694 property and a property with the value nil.
2695 The value is actually the tail of PLIST whose car is PROP. */)
2696 (Lisp_Object plist, Lisp_Object prop)
2698 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2700 QUIT;
2701 plist = XCDR (plist);
2702 plist = CDR (plist);
2704 return plist;
2707 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2708 doc: /* In WIDGET, set PROPERTY to VALUE.
2709 The value can later be retrieved with `widget-get'. */)
2710 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2712 CHECK_CONS (widget);
2713 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2714 return value;
2717 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2718 doc: /* In WIDGET, get the value of PROPERTY.
2719 The value could either be specified when the widget was created, or
2720 later with `widget-put'. */)
2721 (Lisp_Object widget, Lisp_Object property)
2723 Lisp_Object tmp;
2725 while (1)
2727 if (NILP (widget))
2728 return Qnil;
2729 CHECK_CONS (widget);
2730 tmp = Fplist_member (XCDR (widget), property);
2731 if (CONSP (tmp))
2733 tmp = XCDR (tmp);
2734 return CAR (tmp);
2736 tmp = XCAR (widget);
2737 if (NILP (tmp))
2738 return Qnil;
2739 widget = Fget (tmp, Qwidget_type);
2743 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2744 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2745 ARGS are passed as extra arguments to the function.
2746 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2747 (ptrdiff_t nargs, Lisp_Object *args)
2749 /* This function can GC. */
2750 Lisp_Object newargs[3];
2751 struct gcpro gcpro1, gcpro2;
2752 Lisp_Object result;
2754 newargs[0] = Fwidget_get (args[0], args[1]);
2755 newargs[1] = args[0];
2756 newargs[2] = Flist (nargs - 2, args + 2);
2757 GCPRO2 (newargs[0], newargs[2]);
2758 result = Fapply (3, newargs);
2759 UNGCPRO;
2760 return result;
2763 #ifdef HAVE_LANGINFO_CODESET
2764 #include <langinfo.h>
2765 #endif
2767 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2768 doc: /* Access locale data ITEM for the current C locale, if available.
2769 ITEM should be one of the following:
2771 `codeset', returning the character set as a string (locale item CODESET);
2773 `days', returning a 7-element vector of day names (locale items DAY_n);
2775 `months', returning a 12-element vector of month names (locale items MON_n);
2777 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2778 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2780 If the system can't provide such information through a call to
2781 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2783 See also Info node `(libc)Locales'.
2785 The data read from the system are decoded using `locale-coding-system'. */)
2786 (Lisp_Object item)
2788 char *str = NULL;
2789 #ifdef HAVE_LANGINFO_CODESET
2790 Lisp_Object val;
2791 if (EQ (item, Qcodeset))
2793 str = nl_langinfo (CODESET);
2794 return build_string (str);
2796 #ifdef DAY_1
2797 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2799 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2800 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2801 int i;
2802 struct gcpro gcpro1;
2803 GCPRO1 (v);
2804 synchronize_system_time_locale ();
2805 for (i = 0; i < 7; i++)
2807 str = nl_langinfo (days[i]);
2808 val = build_unibyte_string (str);
2809 /* Fixme: Is this coding system necessarily right, even if
2810 it is consistent with CODESET? If not, what to do? */
2811 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2812 0));
2814 UNGCPRO;
2815 return v;
2817 #endif /* DAY_1 */
2818 #ifdef MON_1
2819 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2821 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2822 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2823 MON_8, MON_9, MON_10, MON_11, MON_12};
2824 int i;
2825 struct gcpro gcpro1;
2826 GCPRO1 (v);
2827 synchronize_system_time_locale ();
2828 for (i = 0; i < 12; i++)
2830 str = nl_langinfo (months[i]);
2831 val = build_unibyte_string (str);
2832 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2833 0));
2835 UNGCPRO;
2836 return v;
2838 #endif /* MON_1 */
2839 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2840 but is in the locale files. This could be used by ps-print. */
2841 #ifdef PAPER_WIDTH
2842 else if (EQ (item, Qpaper))
2843 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2844 #endif /* PAPER_WIDTH */
2845 #endif /* HAVE_LANGINFO_CODESET*/
2846 return Qnil;
2849 /* base64 encode/decode functions (RFC 2045).
2850 Based on code from GNU recode. */
2852 #define MIME_LINE_LENGTH 76
2854 #define IS_ASCII(Character) \
2855 ((Character) < 128)
2856 #define IS_BASE64(Character) \
2857 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2858 #define IS_BASE64_IGNORABLE(Character) \
2859 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2860 || (Character) == '\f' || (Character) == '\r')
2862 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2863 character or return retval if there are no characters left to
2864 process. */
2865 #define READ_QUADRUPLET_BYTE(retval) \
2866 do \
2868 if (i == length) \
2870 if (nchars_return) \
2871 *nchars_return = nchars; \
2872 return (retval); \
2874 c = from[i++]; \
2876 while (IS_BASE64_IGNORABLE (c))
2878 /* Table of characters coding the 64 values. */
2879 static const char base64_value_to_char[64] =
2881 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2882 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2883 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2884 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2885 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2886 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2887 '8', '9', '+', '/' /* 60-63 */
2890 /* Table of base64 values for first 128 characters. */
2891 static const short base64_char_to_value[128] =
2893 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2894 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2897 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2898 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2899 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2900 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2901 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2902 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2903 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2904 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2905 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2908 /* The following diagram shows the logical steps by which three octets
2909 get transformed into four base64 characters.
2911 .--------. .--------. .--------.
2912 |aaaaaabb| |bbbbcccc| |ccdddddd|
2913 `--------' `--------' `--------'
2914 6 2 4 4 2 6
2915 .--------+--------+--------+--------.
2916 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2917 `--------+--------+--------+--------'
2919 .--------+--------+--------+--------.
2920 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2921 `--------+--------+--------+--------'
2923 The octets are divided into 6 bit chunks, which are then encoded into
2924 base64 characters. */
2927 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2928 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2929 ptrdiff_t *);
2931 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2932 2, 3, "r",
2933 doc: /* Base64-encode the region between BEG and END.
2934 Return the length of the encoded text.
2935 Optional third argument NO-LINE-BREAK means do not break long lines
2936 into shorter lines. */)
2937 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2939 char *encoded;
2940 ptrdiff_t allength, length;
2941 ptrdiff_t ibeg, iend, encoded_length;
2942 ptrdiff_t old_pos = PT;
2943 USE_SAFE_ALLOCA;
2945 validate_region (&beg, &end);
2947 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2948 iend = CHAR_TO_BYTE (XFASTINT (end));
2949 move_gap_both (XFASTINT (beg), ibeg);
2951 /* We need to allocate enough room for encoding the text.
2952 We need 33 1/3% more space, plus a newline every 76
2953 characters, and then we round up. */
2954 length = iend - ibeg;
2955 allength = length + length/3 + 1;
2956 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2958 encoded = SAFE_ALLOCA (allength);
2959 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2960 encoded, length, NILP (no_line_break),
2961 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2962 if (encoded_length > allength)
2963 emacs_abort ();
2965 if (encoded_length < 0)
2967 /* The encoding wasn't possible. */
2968 SAFE_FREE ();
2969 error ("Multibyte character in data for base64 encoding");
2972 /* Now we have encoded the region, so we insert the new contents
2973 and delete the old. (Insert first in order to preserve markers.) */
2974 SET_PT_BOTH (XFASTINT (beg), ibeg);
2975 insert (encoded, encoded_length);
2976 SAFE_FREE ();
2977 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2979 /* If point was outside of the region, restore it exactly; else just
2980 move to the beginning of the region. */
2981 if (old_pos >= XFASTINT (end))
2982 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2983 else if (old_pos > XFASTINT (beg))
2984 old_pos = XFASTINT (beg);
2985 SET_PT (old_pos);
2987 /* We return the length of the encoded text. */
2988 return make_number (encoded_length);
2991 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2992 1, 2, 0,
2993 doc: /* Base64-encode STRING and return the result.
2994 Optional second argument NO-LINE-BREAK means do not break long lines
2995 into shorter lines. */)
2996 (Lisp_Object string, Lisp_Object no_line_break)
2998 ptrdiff_t allength, length, encoded_length;
2999 char *encoded;
3000 Lisp_Object encoded_string;
3001 USE_SAFE_ALLOCA;
3003 CHECK_STRING (string);
3005 /* We need to allocate enough room for encoding the text.
3006 We need 33 1/3% more space, plus a newline every 76
3007 characters, and then we round up. */
3008 length = SBYTES (string);
3009 allength = length + length/3 + 1;
3010 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3012 /* We need to allocate enough room for decoding the text. */
3013 encoded = SAFE_ALLOCA (allength);
3015 encoded_length = base64_encode_1 (SSDATA (string),
3016 encoded, length, NILP (no_line_break),
3017 STRING_MULTIBYTE (string));
3018 if (encoded_length > allength)
3019 emacs_abort ();
3021 if (encoded_length < 0)
3023 /* The encoding wasn't possible. */
3024 SAFE_FREE ();
3025 error ("Multibyte character in data for base64 encoding");
3028 encoded_string = make_unibyte_string (encoded, encoded_length);
3029 SAFE_FREE ();
3031 return encoded_string;
3034 static ptrdiff_t
3035 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3036 bool line_break, bool multibyte)
3038 int counter = 0;
3039 ptrdiff_t i = 0;
3040 char *e = to;
3041 int c;
3042 unsigned int value;
3043 int bytes;
3045 while (i < length)
3047 if (multibyte)
3049 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3050 if (CHAR_BYTE8_P (c))
3051 c = CHAR_TO_BYTE8 (c);
3052 else if (c >= 256)
3053 return -1;
3054 i += bytes;
3056 else
3057 c = from[i++];
3059 /* Wrap line every 76 characters. */
3061 if (line_break)
3063 if (counter < MIME_LINE_LENGTH / 4)
3064 counter++;
3065 else
3067 *e++ = '\n';
3068 counter = 1;
3072 /* Process first byte of a triplet. */
3074 *e++ = base64_value_to_char[0x3f & c >> 2];
3075 value = (0x03 & c) << 4;
3077 /* Process second byte of a triplet. */
3079 if (i == length)
3081 *e++ = base64_value_to_char[value];
3082 *e++ = '=';
3083 *e++ = '=';
3084 break;
3087 if (multibyte)
3089 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3090 if (CHAR_BYTE8_P (c))
3091 c = CHAR_TO_BYTE8 (c);
3092 else if (c >= 256)
3093 return -1;
3094 i += bytes;
3096 else
3097 c = from[i++];
3099 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3100 value = (0x0f & c) << 2;
3102 /* Process third byte of a triplet. */
3104 if (i == length)
3106 *e++ = base64_value_to_char[value];
3107 *e++ = '=';
3108 break;
3111 if (multibyte)
3113 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3114 if (CHAR_BYTE8_P (c))
3115 c = CHAR_TO_BYTE8 (c);
3116 else if (c >= 256)
3117 return -1;
3118 i += bytes;
3120 else
3121 c = from[i++];
3123 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3124 *e++ = base64_value_to_char[0x3f & c];
3127 return e - to;
3131 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3132 2, 2, "r",
3133 doc: /* Base64-decode the region between BEG and END.
3134 Return the length of the decoded text.
3135 If the region can't be decoded, signal an error and don't modify the buffer. */)
3136 (Lisp_Object beg, Lisp_Object end)
3138 ptrdiff_t ibeg, iend, length, allength;
3139 char *decoded;
3140 ptrdiff_t old_pos = PT;
3141 ptrdiff_t decoded_length;
3142 ptrdiff_t inserted_chars;
3143 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3144 USE_SAFE_ALLOCA;
3146 validate_region (&beg, &end);
3148 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3149 iend = CHAR_TO_BYTE (XFASTINT (end));
3151 length = iend - ibeg;
3153 /* We need to allocate enough room for decoding the text. If we are
3154 working on a multibyte buffer, each decoded code may occupy at
3155 most two bytes. */
3156 allength = multibyte ? length * 2 : length;
3157 decoded = SAFE_ALLOCA (allength);
3159 move_gap_both (XFASTINT (beg), ibeg);
3160 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3161 decoded, length,
3162 multibyte, &inserted_chars);
3163 if (decoded_length > allength)
3164 emacs_abort ();
3166 if (decoded_length < 0)
3168 /* The decoding wasn't possible. */
3169 SAFE_FREE ();
3170 error ("Invalid base64 data");
3173 /* Now we have decoded the region, so we insert the new contents
3174 and delete the old. (Insert first in order to preserve markers.) */
3175 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3176 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3177 SAFE_FREE ();
3179 /* Delete the original text. */
3180 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3181 iend + decoded_length, 1);
3183 /* If point was outside of the region, restore it exactly; else just
3184 move to the beginning of the region. */
3185 if (old_pos >= XFASTINT (end))
3186 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3187 else if (old_pos > XFASTINT (beg))
3188 old_pos = XFASTINT (beg);
3189 SET_PT (old_pos > ZV ? ZV : old_pos);
3191 return make_number (inserted_chars);
3194 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3195 1, 1, 0,
3196 doc: /* Base64-decode STRING and return the result. */)
3197 (Lisp_Object string)
3199 char *decoded;
3200 ptrdiff_t length, decoded_length;
3201 Lisp_Object decoded_string;
3202 USE_SAFE_ALLOCA;
3204 CHECK_STRING (string);
3206 length = SBYTES (string);
3207 /* We need to allocate enough room for decoding the text. */
3208 decoded = SAFE_ALLOCA (length);
3210 /* The decoded result should be unibyte. */
3211 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3212 0, NULL);
3213 if (decoded_length > length)
3214 emacs_abort ();
3215 else if (decoded_length >= 0)
3216 decoded_string = make_unibyte_string (decoded, decoded_length);
3217 else
3218 decoded_string = Qnil;
3220 SAFE_FREE ();
3221 if (!STRINGP (decoded_string))
3222 error ("Invalid base64 data");
3224 return decoded_string;
3227 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3228 MULTIBYTE, the decoded result should be in multibyte
3229 form. If NCHARS_RETURN is not NULL, store the number of produced
3230 characters in *NCHARS_RETURN. */
3232 static ptrdiff_t
3233 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3234 bool multibyte, ptrdiff_t *nchars_return)
3236 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3237 char *e = to;
3238 unsigned char c;
3239 unsigned long value;
3240 ptrdiff_t nchars = 0;
3242 while (1)
3244 /* Process first byte of a quadruplet. */
3246 READ_QUADRUPLET_BYTE (e-to);
3248 if (!IS_BASE64 (c))
3249 return -1;
3250 value = base64_char_to_value[c] << 18;
3252 /* Process second byte of a quadruplet. */
3254 READ_QUADRUPLET_BYTE (-1);
3256 if (!IS_BASE64 (c))
3257 return -1;
3258 value |= base64_char_to_value[c] << 12;
3260 c = (unsigned char) (value >> 16);
3261 if (multibyte && c >= 128)
3262 e += BYTE8_STRING (c, e);
3263 else
3264 *e++ = c;
3265 nchars++;
3267 /* Process third byte of a quadruplet. */
3269 READ_QUADRUPLET_BYTE (-1);
3271 if (c == '=')
3273 READ_QUADRUPLET_BYTE (-1);
3275 if (c != '=')
3276 return -1;
3277 continue;
3280 if (!IS_BASE64 (c))
3281 return -1;
3282 value |= base64_char_to_value[c] << 6;
3284 c = (unsigned char) (0xff & value >> 8);
3285 if (multibyte && c >= 128)
3286 e += BYTE8_STRING (c, e);
3287 else
3288 *e++ = c;
3289 nchars++;
3291 /* Process fourth byte of a quadruplet. */
3293 READ_QUADRUPLET_BYTE (-1);
3295 if (c == '=')
3296 continue;
3298 if (!IS_BASE64 (c))
3299 return -1;
3300 value |= base64_char_to_value[c];
3302 c = (unsigned char) (0xff & value);
3303 if (multibyte && c >= 128)
3304 e += BYTE8_STRING (c, e);
3305 else
3306 *e++ = c;
3307 nchars++;
3313 /***********************************************************************
3314 ***** *****
3315 ***** Hash Tables *****
3316 ***** *****
3317 ***********************************************************************/
3319 /* Implemented by gerd@gnu.org. This hash table implementation was
3320 inspired by CMUCL hash tables. */
3322 /* Ideas:
3324 1. For small tables, association lists are probably faster than
3325 hash tables because they have lower overhead.
3327 For uses of hash tables where the O(1) behavior of table
3328 operations is not a requirement, it might therefore be a good idea
3329 not to hash. Instead, we could just do a linear search in the
3330 key_and_value vector of the hash table. This could be done
3331 if a `:linear-search t' argument is given to make-hash-table. */
3334 /* The list of all weak hash tables. Don't staticpro this one. */
3336 static struct Lisp_Hash_Table *weak_hash_tables;
3338 /* Various symbols. */
3340 static Lisp_Object Qhash_table_p;
3341 static Lisp_Object Qkey, Qvalue, Qeql;
3342 Lisp_Object Qeq, Qequal;
3343 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3344 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3347 /***********************************************************************
3348 Utilities
3349 ***********************************************************************/
3351 static void
3352 CHECK_HASH_TABLE (Lisp_Object x)
3354 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3357 static void
3358 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3360 h->key_and_value = key_and_value;
3362 static void
3363 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3365 h->next = next;
3367 static void
3368 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3370 gc_aset (h->next, idx, val);
3372 static void
3373 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3375 h->hash = hash;
3377 static void
3378 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3380 gc_aset (h->hash, idx, val);
3382 static void
3383 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3385 h->index = index;
3387 static void
3388 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3390 gc_aset (h->index, idx, val);
3393 /* If OBJ is a Lisp hash table, return a pointer to its struct
3394 Lisp_Hash_Table. Otherwise, signal an error. */
3396 static struct Lisp_Hash_Table *
3397 check_hash_table (Lisp_Object obj)
3399 CHECK_HASH_TABLE (obj);
3400 return XHASH_TABLE (obj);
3404 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3405 number. A number is "almost" a prime number if it is not divisible
3406 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3408 EMACS_INT
3409 next_almost_prime (EMACS_INT n)
3411 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3412 for (n |= 1; ; n += 2)
3413 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3414 return n;
3418 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3419 which USED[I] is non-zero. If found at index I in ARGS, set
3420 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3421 0. This function is used to extract a keyword/argument pair from
3422 a DEFUN parameter list. */
3424 static ptrdiff_t
3425 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3427 ptrdiff_t i;
3429 for (i = 1; i < nargs; i++)
3430 if (!used[i - 1] && EQ (args[i - 1], key))
3432 used[i - 1] = 1;
3433 used[i] = 1;
3434 return i;
3437 return 0;
3441 /* Return a Lisp vector which has the same contents as VEC but has
3442 at least INCR_MIN more entries, where INCR_MIN is positive.
3443 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3444 than NITEMS_MAX. Entries in the resulting
3445 vector that are not copied from VEC are set to nil. */
3447 Lisp_Object
3448 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3450 struct Lisp_Vector *v;
3451 ptrdiff_t i, incr, incr_max, old_size, new_size;
3452 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->u.contents;
3453 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3454 ? nitems_max : C_language_max);
3455 eassert (VECTORP (vec));
3456 eassert (0 < incr_min && -1 <= nitems_max);
3457 old_size = ASIZE (vec);
3458 incr_max = n_max - old_size;
3459 incr = max (incr_min, min (old_size >> 1, incr_max));
3460 if (incr_max < incr)
3461 memory_full (SIZE_MAX);
3462 new_size = old_size + incr;
3463 v = allocate_vector (new_size);
3464 memcpy (v->u.contents, XVECTOR (vec)->u.contents, old_size * sizeof *v->u.contents);
3465 for (i = old_size; i < new_size; ++i)
3466 v->u.contents[i] = Qnil;
3467 XSETVECTOR (vec, v);
3468 return vec;
3472 /***********************************************************************
3473 Low-level Functions
3474 ***********************************************************************/
3476 static struct hash_table_test hashtest_eq;
3477 struct hash_table_test hashtest_eql, hashtest_equal;
3479 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3480 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3481 KEY2 are the same. */
3483 static bool
3484 cmpfn_eql (struct hash_table_test *ht,
3485 Lisp_Object key1,
3486 Lisp_Object key2)
3488 return (FLOATP (key1)
3489 && FLOATP (key2)
3490 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3494 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3495 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3496 KEY2 are the same. */
3498 static bool
3499 cmpfn_equal (struct hash_table_test *ht,
3500 Lisp_Object key1,
3501 Lisp_Object key2)
3503 return !NILP (Fequal (key1, key2));
3507 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3508 HASH2 in hash table H using H->user_cmp_function. Value is true
3509 if KEY1 and KEY2 are the same. */
3511 static bool
3512 cmpfn_user_defined (struct hash_table_test *ht,
3513 Lisp_Object key1,
3514 Lisp_Object key2)
3516 Lisp_Object args[3];
3518 args[0] = ht->user_cmp_function;
3519 args[1] = key1;
3520 args[2] = key2;
3521 return !NILP (Ffuncall (3, args));
3525 /* Value is a hash code for KEY for use in hash table H which uses
3526 `eq' to compare keys. The hash code returned is guaranteed to fit
3527 in a Lisp integer. */
3529 static EMACS_UINT
3530 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3532 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3533 return hash;
3536 /* Value is a hash code for KEY for use in hash table H which uses
3537 `eql' to compare keys. The hash code returned is guaranteed to fit
3538 in a Lisp integer. */
3540 static EMACS_UINT
3541 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3543 EMACS_UINT hash;
3544 if (FLOATP (key))
3545 hash = sxhash (key, 0);
3546 else
3547 hash = XHASH (key) ^ XTYPE (key);
3548 return hash;
3551 /* Value is a hash code for KEY for use in hash table H which uses
3552 `equal' to compare keys. The hash code returned is guaranteed to fit
3553 in a Lisp integer. */
3555 static EMACS_UINT
3556 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3558 EMACS_UINT hash = sxhash (key, 0);
3559 return hash;
3562 /* Value is a hash code for KEY for use in hash table H which uses as
3563 user-defined function to compare keys. The hash code returned is
3564 guaranteed to fit in a Lisp integer. */
3566 static EMACS_UINT
3567 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3569 Lisp_Object args[2], hash;
3571 args[0] = ht->user_hash_function;
3572 args[1] = key;
3573 hash = Ffuncall (2, args);
3574 return hashfn_eq (ht, hash);
3577 /* An upper bound on the size of a hash table index. It must fit in
3578 ptrdiff_t and be a valid Emacs fixnum. */
3579 #define INDEX_SIZE_BOUND \
3580 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3582 /* Create and initialize a new hash table.
3584 TEST specifies the test the hash table will use to compare keys.
3585 It must be either one of the predefined tests `eq', `eql' or
3586 `equal' or a symbol denoting a user-defined test named TEST with
3587 test and hash functions USER_TEST and USER_HASH.
3589 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3591 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3592 new size when it becomes full is computed by adding REHASH_SIZE to
3593 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3594 table's new size is computed by multiplying its old size with
3595 REHASH_SIZE.
3597 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3598 be resized when the ratio of (number of entries in the table) /
3599 (table size) is >= REHASH_THRESHOLD.
3601 WEAK specifies the weakness of the table. If non-nil, it must be
3602 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3604 Lisp_Object
3605 make_hash_table (struct hash_table_test test,
3606 Lisp_Object size, Lisp_Object rehash_size,
3607 Lisp_Object rehash_threshold, Lisp_Object weak)
3609 struct Lisp_Hash_Table *h;
3610 Lisp_Object table;
3611 EMACS_INT index_size, sz;
3612 ptrdiff_t i;
3613 double index_float;
3615 /* Preconditions. */
3616 eassert (SYMBOLP (test.name));
3617 eassert (INTEGERP (size) && XINT (size) >= 0);
3618 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3619 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3620 eassert (FLOATP (rehash_threshold)
3621 && 0 < XFLOAT_DATA (rehash_threshold)
3622 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3624 if (XFASTINT (size) == 0)
3625 size = make_number (1);
3627 sz = XFASTINT (size);
3628 index_float = sz / XFLOAT_DATA (rehash_threshold);
3629 index_size = (index_float < INDEX_SIZE_BOUND + 1
3630 ? next_almost_prime (index_float)
3631 : INDEX_SIZE_BOUND + 1);
3632 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3633 error ("Hash table too large");
3635 /* Allocate a table and initialize it. */
3636 h = allocate_hash_table ();
3638 /* Initialize hash table slots. */
3639 h->test = test;
3640 h->weak = weak;
3641 h->rehash_threshold = rehash_threshold;
3642 h->rehash_size = rehash_size;
3643 h->count = 0;
3644 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3645 h->hash = Fmake_vector (size, Qnil);
3646 h->next = Fmake_vector (size, Qnil);
3647 h->index = Fmake_vector (make_number (index_size), Qnil);
3649 /* Set up the free list. */
3650 for (i = 0; i < sz - 1; ++i)
3651 set_hash_next_slot (h, i, make_number (i + 1));
3652 h->next_free = make_number (0);
3654 XSET_HASH_TABLE (table, h);
3655 eassert (HASH_TABLE_P (table));
3656 eassert (XHASH_TABLE (table) == h);
3658 /* Maybe add this hash table to the list of all weak hash tables. */
3659 if (NILP (h->weak))
3660 h->next_weak = NULL;
3661 else
3663 h->next_weak = weak_hash_tables;
3664 weak_hash_tables = h;
3667 return table;
3671 /* Return a copy of hash table H1. Keys and values are not copied,
3672 only the table itself is. */
3674 static Lisp_Object
3675 copy_hash_table (struct Lisp_Hash_Table *h1)
3677 Lisp_Object table;
3678 struct Lisp_Hash_Table *h2;
3680 h2 = allocate_hash_table ();
3681 *h2 = *h1;
3682 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3683 h2->hash = Fcopy_sequence (h1->hash);
3684 h2->next = Fcopy_sequence (h1->next);
3685 h2->index = Fcopy_sequence (h1->index);
3686 XSET_HASH_TABLE (table, h2);
3688 /* Maybe add this hash table to the list of all weak hash tables. */
3689 if (!NILP (h2->weak))
3691 h2->next_weak = weak_hash_tables;
3692 weak_hash_tables = h2;
3695 return table;
3699 /* Resize hash table H if it's too full. If H cannot be resized
3700 because it's already too large, throw an error. */
3702 static void
3703 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3705 if (NILP (h->next_free))
3707 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3708 EMACS_INT new_size, index_size, nsize;
3709 ptrdiff_t i;
3710 double index_float;
3712 if (INTEGERP (h->rehash_size))
3713 new_size = old_size + XFASTINT (h->rehash_size);
3714 else
3716 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3717 if (float_new_size < INDEX_SIZE_BOUND + 1)
3719 new_size = float_new_size;
3720 if (new_size <= old_size)
3721 new_size = old_size + 1;
3723 else
3724 new_size = INDEX_SIZE_BOUND + 1;
3726 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3727 index_size = (index_float < INDEX_SIZE_BOUND + 1
3728 ? next_almost_prime (index_float)
3729 : INDEX_SIZE_BOUND + 1);
3730 nsize = max (index_size, 2 * new_size);
3731 if (INDEX_SIZE_BOUND < nsize)
3732 error ("Hash table too large to resize");
3734 #ifdef ENABLE_CHECKING
3735 if (HASH_TABLE_P (Vpurify_flag)
3736 && XHASH_TABLE (Vpurify_flag) == h)
3738 Lisp_Object args[2];
3739 args[0] = build_string ("Growing hash table to: %d");
3740 args[1] = make_number (new_size);
3741 Fmessage (2, args);
3743 #endif
3745 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3746 2 * (new_size - old_size), -1));
3747 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3748 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3749 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3751 /* Update the free list. Do it so that new entries are added at
3752 the end of the free list. This makes some operations like
3753 maphash faster. */
3754 for (i = old_size; i < new_size - 1; ++i)
3755 set_hash_next_slot (h, i, make_number (i + 1));
3757 if (!NILP (h->next_free))
3759 Lisp_Object last, next;
3761 last = h->next_free;
3762 while (next = HASH_NEXT (h, XFASTINT (last)),
3763 !NILP (next))
3764 last = next;
3766 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3768 else
3769 XSETFASTINT (h->next_free, old_size);
3771 /* Rehash. */
3772 for (i = 0; i < old_size; ++i)
3773 if (!NILP (HASH_HASH (h, i)))
3775 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3776 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3777 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3778 set_hash_index_slot (h, start_of_bucket, make_number (i));
3784 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3785 the hash code of KEY. Value is the index of the entry in H
3786 matching KEY, or -1 if not found. */
3788 ptrdiff_t
3789 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3791 EMACS_UINT hash_code;
3792 ptrdiff_t start_of_bucket;
3793 Lisp_Object idx;
3795 hash_code = h->test.hashfn (&h->test, key);
3796 eassert ((hash_code & ~INTMASK) == 0);
3797 if (hash)
3798 *hash = hash_code;
3800 start_of_bucket = hash_code % ASIZE (h->index);
3801 idx = HASH_INDEX (h, start_of_bucket);
3803 /* We need not gcpro idx since it's either an integer or nil. */
3804 while (!NILP (idx))
3806 ptrdiff_t i = XFASTINT (idx);
3807 if (EQ (key, HASH_KEY (h, i))
3808 || (h->test.cmpfn
3809 && hash_code == XUINT (HASH_HASH (h, i))
3810 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3811 break;
3812 idx = HASH_NEXT (h, i);
3815 return NILP (idx) ? -1 : XFASTINT (idx);
3819 /* Put an entry into hash table H that associates KEY with VALUE.
3820 HASH is a previously computed hash code of KEY.
3821 Value is the index of the entry in H matching KEY. */
3823 ptrdiff_t
3824 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3825 EMACS_UINT hash)
3827 ptrdiff_t start_of_bucket, i;
3829 eassert ((hash & ~INTMASK) == 0);
3831 /* Increment count after resizing because resizing may fail. */
3832 maybe_resize_hash_table (h);
3833 h->count++;
3835 /* Store key/value in the key_and_value vector. */
3836 i = XFASTINT (h->next_free);
3837 h->next_free = HASH_NEXT (h, i);
3838 set_hash_key_slot (h, i, key);
3839 set_hash_value_slot (h, i, value);
3841 /* Remember its hash code. */
3842 set_hash_hash_slot (h, i, make_number (hash));
3844 /* Add new entry to its collision chain. */
3845 start_of_bucket = hash % ASIZE (h->index);
3846 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3847 set_hash_index_slot (h, start_of_bucket, make_number (i));
3848 return i;
3852 /* Remove the entry matching KEY from hash table H, if there is one. */
3854 static void
3855 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3857 EMACS_UINT hash_code;
3858 ptrdiff_t start_of_bucket;
3859 Lisp_Object idx, prev;
3861 hash_code = h->test.hashfn (&h->test, key);
3862 eassert ((hash_code & ~INTMASK) == 0);
3863 start_of_bucket = hash_code % ASIZE (h->index);
3864 idx = HASH_INDEX (h, start_of_bucket);
3865 prev = Qnil;
3867 /* We need not gcpro idx, prev since they're either integers or nil. */
3868 while (!NILP (idx))
3870 ptrdiff_t i = XFASTINT (idx);
3872 if (EQ (key, HASH_KEY (h, i))
3873 || (h->test.cmpfn
3874 && hash_code == XUINT (HASH_HASH (h, i))
3875 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3877 /* Take entry out of collision chain. */
3878 if (NILP (prev))
3879 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3880 else
3881 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3883 /* Clear slots in key_and_value and add the slots to
3884 the free list. */
3885 set_hash_key_slot (h, i, Qnil);
3886 set_hash_value_slot (h, i, Qnil);
3887 set_hash_hash_slot (h, i, Qnil);
3888 set_hash_next_slot (h, i, h->next_free);
3889 h->next_free = make_number (i);
3890 h->count--;
3891 eassert (h->count >= 0);
3892 break;
3894 else
3896 prev = idx;
3897 idx = HASH_NEXT (h, i);
3903 /* Clear hash table H. */
3905 static void
3906 hash_clear (struct Lisp_Hash_Table *h)
3908 if (h->count > 0)
3910 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3912 for (i = 0; i < size; ++i)
3914 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3915 set_hash_key_slot (h, i, Qnil);
3916 set_hash_value_slot (h, i, Qnil);
3917 set_hash_hash_slot (h, i, Qnil);
3920 for (i = 0; i < ASIZE (h->index); ++i)
3921 ASET (h->index, i, Qnil);
3923 h->next_free = make_number (0);
3924 h->count = 0;
3930 /************************************************************************
3931 Weak Hash Tables
3932 ************************************************************************/
3934 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3935 entries from the table that don't survive the current GC.
3936 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3937 true if anything was marked. */
3939 static bool
3940 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3942 ptrdiff_t bucket, n;
3943 bool marked;
3945 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3946 marked = 0;
3948 for (bucket = 0; bucket < n; ++bucket)
3950 Lisp_Object idx, next, prev;
3952 /* Follow collision chain, removing entries that
3953 don't survive this garbage collection. */
3954 prev = Qnil;
3955 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3957 ptrdiff_t i = XFASTINT (idx);
3958 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3959 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3960 bool remove_p;
3962 if (EQ (h->weak, Qkey))
3963 remove_p = !key_known_to_survive_p;
3964 else if (EQ (h->weak, Qvalue))
3965 remove_p = !value_known_to_survive_p;
3966 else if (EQ (h->weak, Qkey_or_value))
3967 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3968 else if (EQ (h->weak, Qkey_and_value))
3969 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3970 else
3971 emacs_abort ();
3973 next = HASH_NEXT (h, i);
3975 if (remove_entries_p)
3977 if (remove_p)
3979 /* Take out of collision chain. */
3980 if (NILP (prev))
3981 set_hash_index_slot (h, bucket, next);
3982 else
3983 set_hash_next_slot (h, XFASTINT (prev), next);
3985 /* Add to free list. */
3986 set_hash_next_slot (h, i, h->next_free);
3987 h->next_free = idx;
3989 /* Clear key, value, and hash. */
3990 set_hash_key_slot (h, i, Qnil);
3991 set_hash_value_slot (h, i, Qnil);
3992 set_hash_hash_slot (h, i, Qnil);
3994 h->count--;
3996 else
3998 prev = idx;
4001 else
4003 if (!remove_p)
4005 /* Make sure key and value survive. */
4006 if (!key_known_to_survive_p)
4008 mark_object (HASH_KEY (h, i));
4009 marked = 1;
4012 if (!value_known_to_survive_p)
4014 mark_object (HASH_VALUE (h, i));
4015 marked = 1;
4022 return marked;
4025 /* Remove elements from weak hash tables that don't survive the
4026 current garbage collection. Remove weak tables that don't survive
4027 from Vweak_hash_tables. Called from gc_sweep. */
4029 void
4030 sweep_weak_hash_tables (void)
4032 struct Lisp_Hash_Table *h, *used, *next;
4033 bool marked;
4035 /* Mark all keys and values that are in use. Keep on marking until
4036 there is no more change. This is necessary for cases like
4037 value-weak table A containing an entry X -> Y, where Y is used in a
4038 key-weak table B, Z -> Y. If B comes after A in the list of weak
4039 tables, X -> Y might be removed from A, although when looking at B
4040 one finds that it shouldn't. */
4043 marked = 0;
4044 for (h = weak_hash_tables; h; h = h->next_weak)
4046 if (h->header.size & ARRAY_MARK_FLAG)
4047 marked |= sweep_weak_table (h, 0);
4050 while (marked);
4052 /* Remove tables and entries that aren't used. */
4053 for (h = weak_hash_tables, used = NULL; h; h = next)
4055 next = h->next_weak;
4057 if (h->header.size & ARRAY_MARK_FLAG)
4059 /* TABLE is marked as used. Sweep its contents. */
4060 if (h->count > 0)
4061 sweep_weak_table (h, 1);
4063 /* Add table to the list of used weak hash tables. */
4064 h->next_weak = used;
4065 used = h;
4069 weak_hash_tables = used;
4074 /***********************************************************************
4075 Hash Code Computation
4076 ***********************************************************************/
4078 /* Maximum depth up to which to dive into Lisp structures. */
4080 #define SXHASH_MAX_DEPTH 3
4082 /* Maximum length up to which to take list and vector elements into
4083 account. */
4085 #define SXHASH_MAX_LEN 7
4087 /* Return a hash for string PTR which has length LEN. The hash value
4088 can be any EMACS_UINT value. */
4090 EMACS_UINT
4091 hash_string (char const *ptr, ptrdiff_t len)
4093 char const *p = ptr;
4094 char const *end = p + len;
4095 unsigned char c;
4096 EMACS_UINT hash = 0;
4098 while (p != end)
4100 c = *p++;
4101 hash = sxhash_combine (hash, c);
4104 return hash;
4107 /* Return a hash for string PTR which has length LEN. The hash
4108 code returned is guaranteed to fit in a Lisp integer. */
4110 static EMACS_UINT
4111 sxhash_string (char const *ptr, ptrdiff_t len)
4113 EMACS_UINT hash = hash_string (ptr, len);
4114 return SXHASH_REDUCE (hash);
4117 /* Return a hash for the floating point value VAL. */
4119 static EMACS_UINT
4120 sxhash_float (double val)
4122 EMACS_UINT hash = 0;
4123 enum {
4124 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4125 + (sizeof val % sizeof hash != 0))
4127 union {
4128 double val;
4129 EMACS_UINT word[WORDS_PER_DOUBLE];
4130 } u;
4131 int i;
4132 u.val = val;
4133 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4134 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4135 hash = sxhash_combine (hash, u.word[i]);
4136 return SXHASH_REDUCE (hash);
4139 /* Return a hash for list LIST. DEPTH is the current depth in the
4140 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4142 static EMACS_UINT
4143 sxhash_list (Lisp_Object list, int depth)
4145 EMACS_UINT hash = 0;
4146 int i;
4148 if (depth < SXHASH_MAX_DEPTH)
4149 for (i = 0;
4150 CONSP (list) && i < SXHASH_MAX_LEN;
4151 list = XCDR (list), ++i)
4153 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4154 hash = sxhash_combine (hash, hash2);
4157 if (!NILP (list))
4159 EMACS_UINT hash2 = sxhash (list, depth + 1);
4160 hash = sxhash_combine (hash, hash2);
4163 return SXHASH_REDUCE (hash);
4167 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4168 the Lisp structure. */
4170 static EMACS_UINT
4171 sxhash_vector (Lisp_Object vec, int depth)
4173 EMACS_UINT hash = ASIZE (vec);
4174 int i, n;
4176 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4177 for (i = 0; i < n; ++i)
4179 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4180 hash = sxhash_combine (hash, hash2);
4183 return SXHASH_REDUCE (hash);
4186 /* Return a hash for bool-vector VECTOR. */
4188 static EMACS_UINT
4189 sxhash_bool_vector (Lisp_Object vec)
4191 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4192 int i, n;
4194 n = min (SXHASH_MAX_LEN,
4195 ((XBOOL_VECTOR (vec)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
4196 / BOOL_VECTOR_BITS_PER_CHAR));
4197 for (i = 0; i < n; ++i)
4198 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4200 return SXHASH_REDUCE (hash);
4204 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4205 structure. Value is an unsigned integer clipped to INTMASK. */
4207 EMACS_UINT
4208 sxhash (Lisp_Object obj, int depth)
4210 EMACS_UINT hash;
4212 if (depth > SXHASH_MAX_DEPTH)
4213 return 0;
4215 switch (XTYPE (obj))
4217 case_Lisp_Int:
4218 hash = XUINT (obj);
4219 break;
4221 case Lisp_Misc:
4222 hash = XHASH (obj);
4223 break;
4225 case Lisp_Symbol:
4226 obj = SYMBOL_NAME (obj);
4227 /* Fall through. */
4229 case Lisp_String:
4230 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4231 break;
4233 /* This can be everything from a vector to an overlay. */
4234 case Lisp_Vectorlike:
4235 if (VECTORP (obj))
4236 /* According to the CL HyperSpec, two arrays are equal only if
4237 they are `eq', except for strings and bit-vectors. In
4238 Emacs, this works differently. We have to compare element
4239 by element. */
4240 hash = sxhash_vector (obj, depth);
4241 else if (BOOL_VECTOR_P (obj))
4242 hash = sxhash_bool_vector (obj);
4243 else
4244 /* Others are `equal' if they are `eq', so let's take their
4245 address as hash. */
4246 hash = XHASH (obj);
4247 break;
4249 case Lisp_Cons:
4250 hash = sxhash_list (obj, depth);
4251 break;
4253 case Lisp_Float:
4254 hash = sxhash_float (XFLOAT_DATA (obj));
4255 break;
4257 default:
4258 emacs_abort ();
4261 return hash;
4266 /***********************************************************************
4267 Lisp Interface
4268 ***********************************************************************/
4271 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4272 doc: /* Compute a hash code for OBJ and return it as integer. */)
4273 (Lisp_Object obj)
4275 EMACS_UINT hash = sxhash (obj, 0);
4276 return make_number (hash);
4280 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4281 doc: /* Create and return a new hash table.
4283 Arguments are specified as keyword/argument pairs. The following
4284 arguments are defined:
4286 :test TEST -- TEST must be a symbol that specifies how to compare
4287 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4288 `equal'. User-supplied test and hash functions can be specified via
4289 `define-hash-table-test'.
4291 :size SIZE -- A hint as to how many elements will be put in the table.
4292 Default is 65.
4294 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4295 fills up. If REHASH-SIZE is an integer, increase the size by that
4296 amount. If it is a float, it must be > 1.0, and the new size is the
4297 old size multiplied by that factor. Default is 1.5.
4299 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4300 Resize the hash table when the ratio (number of entries / table size)
4301 is greater than or equal to THRESHOLD. Default is 0.8.
4303 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4304 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4305 returned is a weak table. Key/value pairs are removed from a weak
4306 hash table when there are no non-weak references pointing to their
4307 key, value, one of key or value, or both key and value, depending on
4308 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4309 is nil.
4311 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4312 (ptrdiff_t nargs, Lisp_Object *args)
4314 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4315 struct hash_table_test testdesc;
4316 char *used;
4317 ptrdiff_t i;
4319 /* The vector `used' is used to keep track of arguments that
4320 have been consumed. */
4321 used = alloca (nargs * sizeof *used);
4322 memset (used, 0, nargs * sizeof *used);
4324 /* See if there's a `:test TEST' among the arguments. */
4325 i = get_key_arg (QCtest, nargs, args, used);
4326 test = i ? args[i] : Qeql;
4327 if (EQ (test, Qeq))
4328 testdesc = hashtest_eq;
4329 else if (EQ (test, Qeql))
4330 testdesc = hashtest_eql;
4331 else if (EQ (test, Qequal))
4332 testdesc = hashtest_equal;
4333 else
4335 /* See if it is a user-defined test. */
4336 Lisp_Object prop;
4338 prop = Fget (test, Qhash_table_test);
4339 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4340 signal_error ("Invalid hash table test", test);
4341 testdesc.name = test;
4342 testdesc.user_cmp_function = XCAR (prop);
4343 testdesc.user_hash_function = XCAR (XCDR (prop));
4344 testdesc.hashfn = hashfn_user_defined;
4345 testdesc.cmpfn = cmpfn_user_defined;
4348 /* See if there's a `:size SIZE' argument. */
4349 i = get_key_arg (QCsize, nargs, args, used);
4350 size = i ? args[i] : Qnil;
4351 if (NILP (size))
4352 size = make_number (DEFAULT_HASH_SIZE);
4353 else if (!INTEGERP (size) || XINT (size) < 0)
4354 signal_error ("Invalid hash table size", size);
4356 /* Look for `:rehash-size SIZE'. */
4357 i = get_key_arg (QCrehash_size, nargs, args, used);
4358 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4359 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4360 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4361 signal_error ("Invalid hash table rehash size", rehash_size);
4363 /* Look for `:rehash-threshold THRESHOLD'. */
4364 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4365 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4366 if (! (FLOATP (rehash_threshold)
4367 && 0 < XFLOAT_DATA (rehash_threshold)
4368 && XFLOAT_DATA (rehash_threshold) <= 1))
4369 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4371 /* Look for `:weakness WEAK'. */
4372 i = get_key_arg (QCweakness, nargs, args, used);
4373 weak = i ? args[i] : Qnil;
4374 if (EQ (weak, Qt))
4375 weak = Qkey_and_value;
4376 if (!NILP (weak)
4377 && !EQ (weak, Qkey)
4378 && !EQ (weak, Qvalue)
4379 && !EQ (weak, Qkey_or_value)
4380 && !EQ (weak, Qkey_and_value))
4381 signal_error ("Invalid hash table weakness", weak);
4383 /* Now, all args should have been used up, or there's a problem. */
4384 for (i = 0; i < nargs; ++i)
4385 if (!used[i])
4386 signal_error ("Invalid argument list", args[i]);
4388 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4392 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4393 doc: /* Return a copy of hash table TABLE. */)
4394 (Lisp_Object table)
4396 return copy_hash_table (check_hash_table (table));
4400 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4401 doc: /* Return the number of elements in TABLE. */)
4402 (Lisp_Object table)
4404 return make_number (check_hash_table (table)->count);
4408 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4409 Shash_table_rehash_size, 1, 1, 0,
4410 doc: /* Return the current rehash size of TABLE. */)
4411 (Lisp_Object table)
4413 return check_hash_table (table)->rehash_size;
4417 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4418 Shash_table_rehash_threshold, 1, 1, 0,
4419 doc: /* Return the current rehash threshold of TABLE. */)
4420 (Lisp_Object table)
4422 return check_hash_table (table)->rehash_threshold;
4426 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4427 doc: /* Return the size of TABLE.
4428 The size can be used as an argument to `make-hash-table' to create
4429 a hash table than can hold as many elements as TABLE holds
4430 without need for resizing. */)
4431 (Lisp_Object table)
4433 struct Lisp_Hash_Table *h = check_hash_table (table);
4434 return make_number (HASH_TABLE_SIZE (h));
4438 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4439 doc: /* Return the test TABLE uses. */)
4440 (Lisp_Object table)
4442 return check_hash_table (table)->test.name;
4446 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4447 1, 1, 0,
4448 doc: /* Return the weakness of TABLE. */)
4449 (Lisp_Object table)
4451 return check_hash_table (table)->weak;
4455 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4456 doc: /* Return t if OBJ is a Lisp hash table object. */)
4457 (Lisp_Object obj)
4459 return HASH_TABLE_P (obj) ? Qt : Qnil;
4463 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4464 doc: /* Clear hash table TABLE and return it. */)
4465 (Lisp_Object table)
4467 hash_clear (check_hash_table (table));
4468 /* Be compatible with XEmacs. */
4469 return table;
4473 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4474 doc: /* Look up KEY in TABLE and return its associated value.
4475 If KEY is not found, return DFLT which defaults to nil. */)
4476 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4478 struct Lisp_Hash_Table *h = check_hash_table (table);
4479 ptrdiff_t i = hash_lookup (h, key, NULL);
4480 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4484 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4485 doc: /* Associate KEY with VALUE in hash table TABLE.
4486 If KEY is already present in table, replace its current value with
4487 VALUE. In any case, return VALUE. */)
4488 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4490 struct Lisp_Hash_Table *h = check_hash_table (table);
4491 ptrdiff_t i;
4492 EMACS_UINT hash;
4494 i = hash_lookup (h, key, &hash);
4495 if (i >= 0)
4496 set_hash_value_slot (h, i, value);
4497 else
4498 hash_put (h, key, value, hash);
4500 return value;
4504 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4505 doc: /* Remove KEY from TABLE. */)
4506 (Lisp_Object key, Lisp_Object table)
4508 struct Lisp_Hash_Table *h = check_hash_table (table);
4509 hash_remove_from_table (h, key);
4510 return Qnil;
4514 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4515 doc: /* Call FUNCTION for all entries in hash table TABLE.
4516 FUNCTION is called with two arguments, KEY and VALUE. */)
4517 (Lisp_Object function, Lisp_Object table)
4519 struct Lisp_Hash_Table *h = check_hash_table (table);
4520 Lisp_Object args[3];
4521 ptrdiff_t i;
4523 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4524 if (!NILP (HASH_HASH (h, i)))
4526 args[0] = function;
4527 args[1] = HASH_KEY (h, i);
4528 args[2] = HASH_VALUE (h, i);
4529 Ffuncall (3, args);
4532 return Qnil;
4536 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4537 Sdefine_hash_table_test, 3, 3, 0,
4538 doc: /* Define a new hash table test with name NAME, a symbol.
4540 In hash tables created with NAME specified as test, use TEST to
4541 compare keys, and HASH for computing hash codes of keys.
4543 TEST must be a function taking two arguments and returning non-nil if
4544 both arguments are the same. HASH must be a function taking one
4545 argument and returning an object that is the hash code of the argument.
4546 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4547 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4548 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4550 return Fput (name, Qhash_table_test, list2 (test, hash));
4555 /************************************************************************
4556 MD5, SHA-1, and SHA-2
4557 ************************************************************************/
4559 #include "md5.h"
4560 #include "sha1.h"
4561 #include "sha256.h"
4562 #include "sha512.h"
4564 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4566 static Lisp_Object
4567 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4569 int i;
4570 ptrdiff_t size;
4571 EMACS_INT start_char = 0, end_char = 0;
4572 ptrdiff_t start_byte, end_byte;
4573 register EMACS_INT b, e;
4574 register struct buffer *bp;
4575 EMACS_INT temp;
4576 int digest_size;
4577 void *(*hash_func) (const char *, size_t, void *);
4578 Lisp_Object digest;
4580 CHECK_SYMBOL (algorithm);
4582 if (STRINGP (object))
4584 if (NILP (coding_system))
4586 /* Decide the coding-system to encode the data with. */
4588 if (STRING_MULTIBYTE (object))
4589 /* use default, we can't guess correct value */
4590 coding_system = preferred_coding_system ();
4591 else
4592 coding_system = Qraw_text;
4595 if (NILP (Fcoding_system_p (coding_system)))
4597 /* Invalid coding system. */
4599 if (!NILP (noerror))
4600 coding_system = Qraw_text;
4601 else
4602 xsignal1 (Qcoding_system_error, coding_system);
4605 if (STRING_MULTIBYTE (object))
4606 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4608 size = SCHARS (object);
4610 if (!NILP (start))
4612 CHECK_NUMBER (start);
4614 start_char = XINT (start);
4616 if (start_char < 0)
4617 start_char += size;
4620 if (NILP (end))
4621 end_char = size;
4622 else
4624 CHECK_NUMBER (end);
4626 end_char = XINT (end);
4628 if (end_char < 0)
4629 end_char += size;
4632 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4633 args_out_of_range_3 (object, make_number (start_char),
4634 make_number (end_char));
4636 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4637 end_byte =
4638 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4640 else
4642 struct buffer *prev = current_buffer;
4644 record_unwind_current_buffer ();
4646 CHECK_BUFFER (object);
4648 bp = XBUFFER (object);
4649 set_buffer_internal (bp);
4651 if (NILP (start))
4652 b = BEGV;
4653 else
4655 CHECK_NUMBER_COERCE_MARKER (start);
4656 b = XINT (start);
4659 if (NILP (end))
4660 e = ZV;
4661 else
4663 CHECK_NUMBER_COERCE_MARKER (end);
4664 e = XINT (end);
4667 if (b > e)
4668 temp = b, b = e, e = temp;
4670 if (!(BEGV <= b && e <= ZV))
4671 args_out_of_range (start, end);
4673 if (NILP (coding_system))
4675 /* Decide the coding-system to encode the data with.
4676 See fileio.c:Fwrite-region */
4678 if (!NILP (Vcoding_system_for_write))
4679 coding_system = Vcoding_system_for_write;
4680 else
4682 bool force_raw_text = 0;
4684 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4685 if (NILP (coding_system)
4686 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4688 coding_system = Qnil;
4689 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4690 force_raw_text = 1;
4693 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4695 /* Check file-coding-system-alist. */
4696 Lisp_Object args[4], val;
4698 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4699 args[3] = Fbuffer_file_name (object);
4700 val = Ffind_operation_coding_system (4, args);
4701 if (CONSP (val) && !NILP (XCDR (val)))
4702 coding_system = XCDR (val);
4705 if (NILP (coding_system)
4706 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4708 /* If we still have not decided a coding system, use the
4709 default value of buffer-file-coding-system. */
4710 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4713 if (!force_raw_text
4714 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4715 /* Confirm that VAL can surely encode the current region. */
4716 coding_system = call4 (Vselect_safe_coding_system_function,
4717 make_number (b), make_number (e),
4718 coding_system, Qnil);
4720 if (force_raw_text)
4721 coding_system = Qraw_text;
4724 if (NILP (Fcoding_system_p (coding_system)))
4726 /* Invalid coding system. */
4728 if (!NILP (noerror))
4729 coding_system = Qraw_text;
4730 else
4731 xsignal1 (Qcoding_system_error, coding_system);
4735 object = make_buffer_string (b, e, 0);
4736 set_buffer_internal (prev);
4737 /* Discard the unwind protect for recovering the current
4738 buffer. */
4739 specpdl_ptr--;
4741 if (STRING_MULTIBYTE (object))
4742 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4743 start_byte = 0;
4744 end_byte = SBYTES (object);
4747 if (EQ (algorithm, Qmd5))
4749 digest_size = MD5_DIGEST_SIZE;
4750 hash_func = md5_buffer;
4752 else if (EQ (algorithm, Qsha1))
4754 digest_size = SHA1_DIGEST_SIZE;
4755 hash_func = sha1_buffer;
4757 else if (EQ (algorithm, Qsha224))
4759 digest_size = SHA224_DIGEST_SIZE;
4760 hash_func = sha224_buffer;
4762 else if (EQ (algorithm, Qsha256))
4764 digest_size = SHA256_DIGEST_SIZE;
4765 hash_func = sha256_buffer;
4767 else if (EQ (algorithm, Qsha384))
4769 digest_size = SHA384_DIGEST_SIZE;
4770 hash_func = sha384_buffer;
4772 else if (EQ (algorithm, Qsha512))
4774 digest_size = SHA512_DIGEST_SIZE;
4775 hash_func = sha512_buffer;
4777 else
4778 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4780 /* allocate 2 x digest_size so that it can be re-used to hold the
4781 hexified value */
4782 digest = make_uninit_string (digest_size * 2);
4784 hash_func (SSDATA (object) + start_byte,
4785 end_byte - start_byte,
4786 SSDATA (digest));
4788 if (NILP (binary))
4790 unsigned char *p = SDATA (digest);
4791 for (i = digest_size - 1; i >= 0; i--)
4793 static char const hexdigit[16] = "0123456789abcdef";
4794 int p_i = p[i];
4795 p[2 * i] = hexdigit[p_i >> 4];
4796 p[2 * i + 1] = hexdigit[p_i & 0xf];
4798 return digest;
4800 else
4801 return make_unibyte_string (SSDATA (digest), digest_size);
4804 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4805 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4807 A message digest is a cryptographic checksum of a document, and the
4808 algorithm to calculate it is defined in RFC 1321.
4810 The two optional arguments START and END are character positions
4811 specifying for which part of OBJECT the message digest should be
4812 computed. If nil or omitted, the digest is computed for the whole
4813 OBJECT.
4815 The MD5 message digest is computed from the result of encoding the
4816 text in a coding system, not directly from the internal Emacs form of
4817 the text. The optional fourth argument CODING-SYSTEM specifies which
4818 coding system to encode the text with. It should be the same coding
4819 system that you used or will use when actually writing the text into a
4820 file.
4822 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4823 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4824 system would be chosen by default for writing this text into a file.
4826 If OBJECT is a string, the most preferred coding system (see the
4827 command `prefer-coding-system') is used.
4829 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4830 guesswork fails. Normally, an error is signaled in such case. */)
4831 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4833 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4836 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4837 doc: /* Return the secure hash of OBJECT, a buffer or string.
4838 ALGORITHM is a symbol specifying the hash to use:
4839 md5, sha1, sha224, sha256, sha384 or sha512.
4841 The two optional arguments START and END are positions specifying for
4842 which part of OBJECT to compute the hash. If nil or omitted, uses the
4843 whole OBJECT.
4845 If BINARY is non-nil, returns a string in binary form. */)
4846 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4848 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4851 void
4852 syms_of_fns (void)
4854 DEFSYM (Qmd5, "md5");
4855 DEFSYM (Qsha1, "sha1");
4856 DEFSYM (Qsha224, "sha224");
4857 DEFSYM (Qsha256, "sha256");
4858 DEFSYM (Qsha384, "sha384");
4859 DEFSYM (Qsha512, "sha512");
4861 /* Hash table stuff. */
4862 DEFSYM (Qhash_table_p, "hash-table-p");
4863 DEFSYM (Qeq, "eq");
4864 DEFSYM (Qeql, "eql");
4865 DEFSYM (Qequal, "equal");
4866 DEFSYM (QCtest, ":test");
4867 DEFSYM (QCsize, ":size");
4868 DEFSYM (QCrehash_size, ":rehash-size");
4869 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4870 DEFSYM (QCweakness, ":weakness");
4871 DEFSYM (Qkey, "key");
4872 DEFSYM (Qvalue, "value");
4873 DEFSYM (Qhash_table_test, "hash-table-test");
4874 DEFSYM (Qkey_or_value, "key-or-value");
4875 DEFSYM (Qkey_and_value, "key-and-value");
4877 defsubr (&Ssxhash);
4878 defsubr (&Smake_hash_table);
4879 defsubr (&Scopy_hash_table);
4880 defsubr (&Shash_table_count);
4881 defsubr (&Shash_table_rehash_size);
4882 defsubr (&Shash_table_rehash_threshold);
4883 defsubr (&Shash_table_size);
4884 defsubr (&Shash_table_test);
4885 defsubr (&Shash_table_weakness);
4886 defsubr (&Shash_table_p);
4887 defsubr (&Sclrhash);
4888 defsubr (&Sgethash);
4889 defsubr (&Sputhash);
4890 defsubr (&Sremhash);
4891 defsubr (&Smaphash);
4892 defsubr (&Sdefine_hash_table_test);
4894 DEFSYM (Qstring_lessp, "string-lessp");
4895 DEFSYM (Qprovide, "provide");
4896 DEFSYM (Qrequire, "require");
4897 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4898 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4899 DEFSYM (Qwidget_type, "widget-type");
4901 staticpro (&string_char_byte_cache_string);
4902 string_char_byte_cache_string = Qnil;
4904 require_nesting_list = Qnil;
4905 staticpro (&require_nesting_list);
4907 Fset (Qyes_or_no_p_history, Qnil);
4909 DEFVAR_LISP ("features", Vfeatures,
4910 doc: /* A list of symbols which are the features of the executing Emacs.
4911 Used by `featurep' and `require', and altered by `provide'. */);
4912 Vfeatures = list1 (intern_c_string ("emacs"));
4913 DEFSYM (Qsubfeatures, "subfeatures");
4914 DEFSYM (Qfuncall, "funcall");
4916 #ifdef HAVE_LANGINFO_CODESET
4917 DEFSYM (Qcodeset, "codeset");
4918 DEFSYM (Qdays, "days");
4919 DEFSYM (Qmonths, "months");
4920 DEFSYM (Qpaper, "paper");
4921 #endif /* HAVE_LANGINFO_CODESET */
4923 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4924 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4925 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4926 invoked by mouse clicks and mouse menu items.
4928 On some platforms, file selection dialogs are also enabled if this is
4929 non-nil. */);
4930 use_dialog_box = 1;
4932 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4933 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4934 This applies to commands from menus and tool bar buttons even when
4935 they are initiated from the keyboard. If `use-dialog-box' is nil,
4936 that disables the use of a file dialog, regardless of the value of
4937 this variable. */);
4938 use_file_dialog = 1;
4940 defsubr (&Sidentity);
4941 defsubr (&Srandom);
4942 defsubr (&Slength);
4943 defsubr (&Ssafe_length);
4944 defsubr (&Sstring_bytes);
4945 defsubr (&Sstring_equal);
4946 defsubr (&Scompare_strings);
4947 defsubr (&Sstring_lessp);
4948 defsubr (&Sappend);
4949 defsubr (&Sconcat);
4950 defsubr (&Svconcat);
4951 defsubr (&Scopy_sequence);
4952 defsubr (&Sstring_make_multibyte);
4953 defsubr (&Sstring_make_unibyte);
4954 defsubr (&Sstring_as_multibyte);
4955 defsubr (&Sstring_as_unibyte);
4956 defsubr (&Sstring_to_multibyte);
4957 defsubr (&Sstring_to_unibyte);
4958 defsubr (&Scopy_alist);
4959 defsubr (&Ssubstring);
4960 defsubr (&Ssubstring_no_properties);
4961 defsubr (&Snthcdr);
4962 defsubr (&Snth);
4963 defsubr (&Selt);
4964 defsubr (&Smember);
4965 defsubr (&Smemq);
4966 defsubr (&Smemql);
4967 defsubr (&Sassq);
4968 defsubr (&Sassoc);
4969 defsubr (&Srassq);
4970 defsubr (&Srassoc);
4971 defsubr (&Sdelq);
4972 defsubr (&Sdelete);
4973 defsubr (&Snreverse);
4974 defsubr (&Sreverse);
4975 defsubr (&Ssort);
4976 defsubr (&Splist_get);
4977 defsubr (&Sget);
4978 defsubr (&Splist_put);
4979 defsubr (&Sput);
4980 defsubr (&Slax_plist_get);
4981 defsubr (&Slax_plist_put);
4982 defsubr (&Seql);
4983 defsubr (&Sequal);
4984 defsubr (&Sequal_including_properties);
4985 defsubr (&Sfillarray);
4986 defsubr (&Sclear_string);
4987 defsubr (&Snconc);
4988 defsubr (&Smapcar);
4989 defsubr (&Smapc);
4990 defsubr (&Smapconcat);
4991 defsubr (&Syes_or_no_p);
4992 defsubr (&Sload_average);
4993 defsubr (&Sfeaturep);
4994 defsubr (&Srequire);
4995 defsubr (&Sprovide);
4996 defsubr (&Splist_member);
4997 defsubr (&Swidget_put);
4998 defsubr (&Swidget_get);
4999 defsubr (&Swidget_apply);
5000 defsubr (&Sbase64_encode_region);
5001 defsubr (&Sbase64_decode_region);
5002 defsubr (&Sbase64_encode_string);
5003 defsubr (&Sbase64_decode_string);
5004 defsubr (&Smd5);
5005 defsubr (&Ssecure_hash);
5006 defsubr (&Slocale_info);
5008 hashtest_eq.name = Qeq;
5009 hashtest_eq.user_hash_function = Qnil;
5010 hashtest_eq.user_cmp_function = Qnil;
5011 hashtest_eq.cmpfn = 0;
5012 hashtest_eq.hashfn = hashfn_eq;
5014 hashtest_eql.name = Qeql;
5015 hashtest_eql.user_hash_function = Qnil;
5016 hashtest_eql.user_cmp_function = Qnil;
5017 hashtest_eql.cmpfn = cmpfn_eql;
5018 hashtest_eql.hashfn = hashfn_eql;
5020 hashtest_equal.name = Qequal;
5021 hashtest_equal.user_hash_function = Qnil;
5022 hashtest_equal.user_cmp_function = Qnil;
5023 hashtest_equal.cmpfn = cmpfn_equal;
5024 hashtest_equal.hashfn = hashfn_equal;