1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2005 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 /* Contributed by Andrew Choi (akochoi@mac.com). */
23 /* Documentation note.
25 Consult the following documents/files for a description of the
26 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
27 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
28 mach header (-h option) and the load commands (-l option) in a
29 Mach-O file. The tool nm on Mac OS X displays the symbol table in
30 a Mach-O file. For examples of unexec for the Mach-O format, see
31 the file unexnext.c in the GNU Emacs distribution, the file
32 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
33 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
34 contains the source code for malloc_freezedry and malloc_jumpstart.
35 Read that to see what they do. This file was written completely
36 from scratch, making use of information from the above sources. */
38 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
39 memory allocator. All calls to malloc, realloc, and free in Emacs
40 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
41 this file. When temacs is run, all memory requests are handled in
42 the zone EmacsZone. The Darwin memory allocator library calls
43 maintain the data structures to manage this zone. Dumping writes
44 its contents to data segments of the executable file. When emacs
45 is run, the loader recreates the contents of the zone in memory.
46 However since the initialization routine of the zone memory
47 allocator is run again, this `zone' can no longer be used as a
48 heap. That is why emacs uses the ordinary malloc system call to
49 allocate memory. Also, when a block of memory needs to be
50 reallocated and the new size is larger than the old one, a new
51 block must be obtained by malloc and the old contents copied to
54 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
55 (possible causes of future bugs if changed).
57 The file offset of the start of the __TEXT segment is zero. Since
58 the Mach header and load commands are located at the beginning of a
59 Mach-O file, copying the contents of the __TEXT segment from the
60 input file overwrites them in the output file. Despite this,
61 unexec works fine as written below because the segment load command
62 for __TEXT appears, and is therefore processed, before all other
63 load commands except the segment load command for __PAGEZERO, which
66 Although the file offset of the start of the __TEXT segment is
67 zero, none of the sections it contains actually start there. In
68 fact, the earliest one starts a few hundred bytes beyond the end of
69 the last load command. The linker option -headerpad controls the
70 minimum size of this padding. Its setting can be changed in
71 s/darwin.h. A value of 0x300, e.g., leaves room for about 15
72 additional load commands for the newly created __DATA segments (at
73 56 bytes each). Unexec fails if there is not enough room for these
76 The __TEXT segment contains the sections __text, __cstring,
77 __picsymbol_stub, and __const and the __DATA segment contains the
78 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
79 and __common. The other segments do not contain any sections.
80 These sections are copied from the input file to the output file,
81 except for __data, __bss, and __common, which are dumped from
82 memory. The types of the sections __bss and __common are changed
83 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
84 their relative order in the input and output files remain
85 unchanged. Otherwise all n_sect fields in the nlist records in the
86 symbol table (specified by the LC_SYMTAB load command) will have to
87 be changed accordingly.
94 #include <sys/types.h>
96 #include <mach/mach.h>
97 #include <mach-o/loader.h>
98 #include <mach-o/reloc.h>
100 #include <mach-o/ppc/reloc.h>
102 #if defined (HAVE_MALLOC_MALLOC_H)
103 #include <malloc/malloc.h>
105 #include <objc/malloc.h>
113 /* Size of buffer used to copy data from the input file to the output
114 file in function unexec_copy. */
115 #define UNEXEC_COPY_BUFSZ 1024
117 /* Regions with memory addresses above this value are assumed to be
118 mapped to dynamically loaded libraries and will not be dumped. */
119 #define VM_DATA_TOP (20 * 1024 * 1024)
121 /* Used by malloc_freezedry and malloc_jumpstart. */
124 /* Type of an element on the list of regions to be dumped. */
126 vm_address_t address
;
128 vm_prot_t protection
;
129 vm_prot_t max_protection
;
131 struct region_t
*next
;
134 /* Head and tail of the list of regions to be dumped. */
135 struct region_t
*region_list_head
= 0;
136 struct region_t
*region_list_tail
= 0;
138 /* Pointer to array of load commands. */
139 struct load_command
**lca
;
141 /* Number of load commands. */
144 /* The highest VM address of segments loaded by the input file.
145 Regions with addresses beyond this are assumed to be allocated
146 dynamically and thus require dumping. */
147 vm_address_t infile_lc_highest_addr
= 0;
149 /* The lowest file offset used by the all sections in the __TEXT
150 segments. This leaves room at the beginning of the file to store
151 the Mach-O header. Check this value against header size to ensure
152 the added load commands for the new __DATA segments did not
153 overwrite any of the sections in the __TEXT segment. */
154 unsigned long text_seg_lowest_offset
= 0x10000000;
157 struct mach_header mh
;
159 /* Offset at which the next load command should be written. */
160 unsigned long curr_header_offset
= sizeof (struct mach_header
);
162 /* Current adjustment that needs to be made to offset values because
163 of additional data segments. */
164 unsigned long delta
= 0;
168 int in_dumped_exec
= 0;
170 malloc_zone_t
*emacs_zone
;
172 /* file offset of input file's data segment */
173 off_t data_segment_old_fileoff
;
175 struct segment_command
*data_segment_scp
;
177 /* Read n bytes from infd into memory starting at address dest.
178 Return true if successful, false otherwise. */
180 unexec_read (void *dest
, size_t n
)
182 return n
== read (infd
, dest
, n
);
185 /* Write n bytes from memory starting at address src to outfd starting
186 at offset dest. Return true if successful, false otherwise. */
188 unexec_write (off_t dest
, const void *src
, size_t count
)
190 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
193 return write (outfd
, src
, count
) == count
;
196 /* Copy n bytes from starting offset src in infd to starting offset
197 dest in outfd. Return true if successful, false otherwise. */
199 unexec_copy (off_t dest
, off_t src
, ssize_t count
)
202 ssize_t bytes_to_read
;
204 char buf
[UNEXEC_COPY_BUFSZ
];
206 if (lseek (infd
, src
, SEEK_SET
) != src
)
209 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
214 bytes_to_read
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
215 bytes_read
= read (infd
, buf
, bytes_to_read
);
218 if (write (outfd
, buf
, bytes_read
) != bytes_read
)
226 /* Debugging and informational messages routines. */
229 unexec_error (char *format
, ...)
233 va_start (ap
, format
);
234 fprintf (stderr
, "unexec: ");
235 vfprintf (stderr
, format
, ap
);
236 fprintf (stderr
, "\n");
242 print_prot (vm_prot_t prot
)
244 if (prot
== VM_PROT_NONE
)
248 putchar (prot
& VM_PROT_READ
? 'r' : ' ');
249 putchar (prot
& VM_PROT_WRITE
? 'w' : ' ');
250 putchar (prot
& VM_PROT_EXECUTE
? 'x' : ' ');
256 print_region (vm_address_t address
, vm_size_t size
, vm_prot_t prot
,
259 printf ("%#10x %#8x ", address
, size
);
262 print_prot (max_prot
);
271 printf (" address size prot maxp\n");
273 for (r
= region_list_head
; r
; r
= r
->next
)
274 print_region (r
->address
, r
->size
, r
->protection
, r
->max_protection
);
280 task_t target_task
= mach_task_self ();
281 vm_address_t address
= (vm_address_t
) 0;
283 struct vm_region_basic_info info
;
284 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
285 mach_port_t object_name
;
287 printf (" address size prot maxp\n");
289 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
290 (vm_region_info_t
) &info
, &info_count
, &object_name
)
291 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
293 print_region (address
, size
, info
.protection
, info
.max_protection
);
295 if (object_name
!= MACH_PORT_NULL
)
296 mach_port_deallocate (target_task
, object_name
);
302 /* Build the list of regions that need to be dumped. Regions with
303 addresses above VM_DATA_TOP are omitted. Adjacent regions with
304 identical protection are merged. Note that non-writable regions
305 cannot be omitted because they some regions created at run time are
310 task_t target_task
= mach_task_self ();
311 vm_address_t address
= (vm_address_t
) 0;
313 struct vm_region_basic_info info
;
314 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
315 mach_port_t object_name
;
319 printf ("--- List of All Regions ---\n");
320 printf (" address size prot maxp\n");
323 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
324 (vm_region_info_t
) &info
, &info_count
, &object_name
)
325 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
327 /* Done when we reach addresses of shared libraries, which are
328 loaded in high memory. */
329 if (address
>= VM_DATA_TOP
)
333 print_region (address
, size
, info
.protection
, info
.max_protection
);
336 /* If a region immediately follows the previous one (the one
337 most recently added to the list) and has identical
338 protection, merge it with the latter. Otherwise create a
339 new list element for it. */
341 && info
.protection
== region_list_tail
->protection
342 && info
.max_protection
== region_list_tail
->max_protection
343 && region_list_tail
->address
+ region_list_tail
->size
== address
)
345 region_list_tail
->size
+= size
;
349 r
= (struct region_t
*) malloc (sizeof (struct region_t
));
352 unexec_error ("cannot allocate region structure");
354 r
->address
= address
;
356 r
->protection
= info
.protection
;
357 r
->max_protection
= info
.max_protection
;
360 if (region_list_head
== 0)
362 region_list_head
= r
;
363 region_list_tail
= r
;
367 region_list_tail
->next
= r
;
368 region_list_tail
= r
;
371 /* Deallocate (unused) object name returned by
373 if (object_name
!= MACH_PORT_NULL
)
374 mach_port_deallocate (target_task
, object_name
);
380 printf ("--- List of Regions to be Dumped ---\n");
381 print_region_list ();
385 #define MAX_UNEXEC_REGIONS 200
387 int num_unexec_regions
;
388 vm_range_t unexec_regions
[MAX_UNEXEC_REGIONS
];
391 unexec_regions_recorder (task_t task
, void *rr
, unsigned type
,
392 vm_range_t
*ranges
, unsigned num
)
394 while (num
&& num_unexec_regions
< MAX_UNEXEC_REGIONS
)
396 unexec_regions
[num_unexec_regions
++] = *ranges
;
397 printf ("%#8x (sz: %#8x)\n", ranges
->address
, ranges
->size
);
400 if (num_unexec_regions
== MAX_UNEXEC_REGIONS
)
401 fprintf (stderr
, "malloc_freezedry_recorder: too many regions\n");
405 unexec_reader (task_t task
, vm_address_t address
, vm_size_t size
, void **ptr
)
407 *ptr
= (void *) address
;
412 find_emacs_zone_regions ()
414 num_unexec_regions
= 0;
416 emacs_zone
->introspect
->enumerator (mach_task_self(), 0,
417 MALLOC_PTR_REGION_RANGE_TYPE
418 | MALLOC_ADMIN_REGION_RANGE_TYPE
,
419 (vm_address_t
) emacs_zone
,
421 unexec_regions_recorder
);
425 unexec_regions_sort_compare (const void *a
, const void *b
)
427 vm_address_t aa
= ((vm_range_t
*) a
)->address
;
428 vm_address_t bb
= ((vm_range_t
*) b
)->address
;
439 unexec_regions_merge ()
444 qsort (unexec_regions
, num_unexec_regions
, sizeof (unexec_regions
[0]),
445 &unexec_regions_sort_compare
);
447 r
= unexec_regions
[0];
448 for (i
= 1; i
< num_unexec_regions
; i
++)
450 if (r
.address
+ r
.size
== unexec_regions
[i
].address
)
452 r
.size
+= unexec_regions
[i
].size
;
456 unexec_regions
[n
++] = r
;
457 r
= unexec_regions
[i
];
460 unexec_regions
[n
++] = r
;
461 num_unexec_regions
= n
;
465 /* More informational messages routines. */
468 print_load_command_name (int lc
)
473 printf ("LC_SEGMENT ");
475 case LC_LOAD_DYLINKER
:
476 printf ("LC_LOAD_DYLINKER ");
479 printf ("LC_LOAD_DYLIB ");
482 printf ("LC_SYMTAB ");
485 printf ("LC_DYSYMTAB ");
488 printf ("LC_UNIXTHREAD ");
490 case LC_PREBOUND_DYLIB
:
491 printf ("LC_PREBOUND_DYLIB");
493 case LC_TWOLEVEL_HINTS
:
494 printf ("LC_TWOLEVEL_HINTS");
502 print_load_command (struct load_command
*lc
)
504 print_load_command_name (lc
->cmd
);
505 printf ("%8d", lc
->cmdsize
);
507 if (lc
->cmd
== LC_SEGMENT
)
509 struct segment_command
*scp
;
510 struct section
*sectp
;
513 scp
= (struct segment_command
*) lc
;
514 printf (" %-16.16s %#10x %#8x\n",
515 scp
->segname
, scp
->vmaddr
, scp
->vmsize
);
517 sectp
= (struct section
*) (scp
+ 1);
518 for (j
= 0; j
< scp
->nsects
; j
++)
520 printf (" %-16.16s %#10x %#8x\n",
521 sectp
->sectname
, sectp
->addr
, sectp
->size
);
529 /* Read header and load commands from input file. Store the latter in
530 the global array lca. Store the total number of load commands in
531 global variable nlc. */
533 read_load_commands ()
537 if (!unexec_read (&mh
, sizeof (struct mach_header
)))
538 unexec_error ("cannot read mach-o header");
540 if (mh
.magic
!= MH_MAGIC
)
541 unexec_error ("input file not in Mach-O format");
543 if (mh
.filetype
!= MH_EXECUTE
)
544 unexec_error ("input Mach-O file is not an executable object file");
547 printf ("--- Header Information ---\n");
548 printf ("Magic = 0x%08x\n", mh
.magic
);
549 printf ("CPUType = %d\n", mh
.cputype
);
550 printf ("CPUSubType = %d\n", mh
.cpusubtype
);
551 printf ("FileType = 0x%x\n", mh
.filetype
);
552 printf ("NCmds = %d\n", mh
.ncmds
);
553 printf ("SizeOfCmds = %d\n", mh
.sizeofcmds
);
554 printf ("Flags = 0x%08x\n", mh
.flags
);
558 lca
= (struct load_command
**) malloc (nlc
* sizeof (struct load_command
*));
560 for (i
= 0; i
< nlc
; i
++)
562 struct load_command lc
;
563 /* Load commands are variable-size: so read the command type and
564 size first and then read the rest. */
565 if (!unexec_read (&lc
, sizeof (struct load_command
)))
566 unexec_error ("cannot read load command");
567 lca
[i
] = (struct load_command
*) malloc (lc
.cmdsize
);
568 memcpy (lca
[i
], &lc
, sizeof (struct load_command
));
569 if (!unexec_read (lca
[i
] + 1, lc
.cmdsize
- sizeof (struct load_command
)))
570 unexec_error ("cannot read content of load command");
571 if (lc
.cmd
== LC_SEGMENT
)
573 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
575 if (scp
->vmaddr
+ scp
->vmsize
> infile_lc_highest_addr
)
576 infile_lc_highest_addr
= scp
->vmaddr
+ scp
->vmsize
;
578 if (strncmp (scp
->segname
, SEG_TEXT
, 16) == 0)
580 struct section
*sectp
= (struct section
*) (scp
+ 1);
583 for (j
= 0; j
< scp
->nsects
; j
++)
584 if (sectp
->offset
< text_seg_lowest_offset
)
585 text_seg_lowest_offset
= sectp
->offset
;
590 printf ("Highest address of load commands in input file: %#8x\n",
591 infile_lc_highest_addr
);
593 printf ("Lowest offset of all sections in __TEXT segment: %#8x\n",
594 text_seg_lowest_offset
);
596 printf ("--- List of Load Commands in Input File ---\n");
597 printf ("# cmd cmdsize name address size\n");
599 for (i
= 0; i
< nlc
; i
++)
602 print_load_command (lca
[i
]);
606 /* Copy a LC_SEGMENT load command other than the __DATA segment from
607 the input file to the output file, adjusting the file offset of the
608 segment and the file offsets of sections contained in it. */
610 copy_segment (struct load_command
*lc
)
612 struct segment_command
*scp
= (struct segment_command
*) lc
;
613 unsigned long old_fileoff
= scp
->fileoff
;
614 struct section
*sectp
;
617 scp
->fileoff
+= delta
;
619 sectp
= (struct section
*) (scp
+ 1);
620 for (j
= 0; j
< scp
->nsects
; j
++)
622 sectp
->offset
+= delta
;
626 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
627 scp
->segname
, scp
->fileoff
, scp
->fileoff
+ scp
->filesize
,
630 if (!unexec_copy (scp
->fileoff
, old_fileoff
, scp
->filesize
))
631 unexec_error ("cannot copy segment from input to output file");
632 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
633 unexec_error ("cannot write load command to header");
635 curr_header_offset
+= lc
->cmdsize
;
638 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
639 file to the output file. We assume that only one such segment load
640 command exists in the input file and it contains the sections
641 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
642 __dyld. The first three of these should be dumped from memory and
643 the rest should be copied from the input file. Note that the
644 sections __bss and __common contain no data in the input file
645 because their flag fields have the value S_ZEROFILL. Dumping these
646 from memory makes it necessary to adjust file offset fields in
647 subsequently dumped load commands. Then, create new __DATA segment
648 load commands for regions on the region list other than the one
649 corresponding to the __DATA segment in the input file. */
651 copy_data_segment (struct load_command
*lc
)
653 struct segment_command
*scp
= (struct segment_command
*) lc
;
654 struct section
*sectp
;
656 unsigned long header_offset
, file_offset
, old_file_offset
;
659 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
660 scp
->segname
, scp
->fileoff
, scp
->fileoff
+ scp
->filesize
,
664 unexec_error ("cannot handle multiple DATA segments in input file");
666 /* Offsets in the output file for writing the next section structure
667 and segment data block, respectively. */
668 header_offset
= curr_header_offset
+ sizeof (struct segment_command
);
670 sectp
= (struct section
*) (scp
+ 1);
671 for (j
= 0; j
< scp
->nsects
; j
++)
673 old_file_offset
= sectp
->offset
;
674 sectp
->offset
= sectp
->addr
- scp
->vmaddr
+ scp
->fileoff
;
675 /* The __data section is dumped from memory. The __bss and
676 __common sections are also dumped from memory but their flag
677 fields require changing (from S_ZEROFILL to S_REGULAR). The
678 other three kinds of sections are just copied from the input
680 if (strncmp (sectp
->sectname
, SECT_DATA
, 16) == 0)
682 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
683 unexec_error ("cannot write section %s", SECT_DATA
);
684 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
685 unexec_error ("cannot write section %s's header", SECT_DATA
);
687 else if (strncmp (sectp
->sectname
, SECT_BSS
, 16) == 0
688 || strncmp (sectp
->sectname
, SECT_COMMON
, 16) == 0)
690 sectp
->flags
= S_REGULAR
;
691 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
692 unexec_error ("cannot write section %s", SECT_DATA
);
693 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
694 unexec_error ("cannot write section %s's header", SECT_DATA
);
696 else if (strncmp (sectp
->sectname
, "__la_symbol_ptr", 16) == 0
697 || strncmp (sectp
->sectname
, "__nl_symbol_ptr", 16) == 0
698 || strncmp (sectp
->sectname
, "__la_sym_ptr2", 16) == 0
699 || strncmp (sectp
->sectname
, "__dyld", 16) == 0
700 || strncmp (sectp
->sectname
, "__const", 16) == 0
701 || strncmp (sectp
->sectname
, "__cfstring", 16) == 0)
703 if (!unexec_copy (sectp
->offset
, old_file_offset
, sectp
->size
))
704 unexec_error ("cannot copy section %s", sectp
->sectname
);
705 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
706 unexec_error ("cannot write section %s's header", sectp
->sectname
);
709 unexec_error ("unrecognized section name in __DATA segment");
711 printf (" section %-16.16s at %#8x - %#8x (sz: %#8x)\n",
712 sectp
->sectname
, sectp
->offset
, sectp
->offset
+ sectp
->size
,
715 header_offset
+= sizeof (struct section
);
719 /* The new filesize of the segment is set to its vmsize because data
720 blocks for segments must start at region boundaries. Note that
721 this may leave unused locations at the end of the segment data
722 block because the total of the sizes of all sections in the
723 segment is generally smaller than vmsize. */
724 delta
= scp
->vmsize
- scp
->filesize
;
725 scp
->filesize
= scp
->vmsize
;
726 if (!unexec_write (curr_header_offset
, scp
, sizeof (struct segment_command
)))
727 unexec_error ("cannot write header of __DATA segment");
728 curr_header_offset
+= lc
->cmdsize
;
730 /* Create new __DATA segment load commands for regions on the region
731 list that do not corresponding to any segment load commands in
734 file_offset
= scp
->fileoff
+ scp
->filesize
;
735 for (j
= 0; j
< num_unexec_regions
; j
++)
737 struct segment_command sc
;
740 sc
.cmdsize
= sizeof (struct segment_command
);
741 strncpy (sc
.segname
, SEG_DATA
, 16);
742 sc
.vmaddr
= unexec_regions
[j
].address
;
743 sc
.vmsize
= unexec_regions
[j
].size
;
744 sc
.fileoff
= file_offset
;
745 sc
.filesize
= unexec_regions
[j
].size
;
746 sc
.maxprot
= VM_PROT_READ
| VM_PROT_WRITE
;
747 sc
.initprot
= VM_PROT_READ
| VM_PROT_WRITE
;
751 printf ("Writing segment %-16.16s at %#8x - %#8x (sz: %#8x)\n",
752 sc
.segname
, sc
.fileoff
, sc
.fileoff
+ sc
.filesize
,
755 if (!unexec_write (sc
.fileoff
, (void *) sc
.vmaddr
, sc
.vmsize
))
756 unexec_error ("cannot write new __DATA segment");
757 delta
+= sc
.filesize
;
758 file_offset
+= sc
.filesize
;
760 if (!unexec_write (curr_header_offset
, &sc
, sc
.cmdsize
))
761 unexec_error ("cannot write new __DATA segment's header");
762 curr_header_offset
+= sc
.cmdsize
;
767 /* Copy a LC_SYMTAB load command from the input file to the output
768 file, adjusting the file offset fields. */
770 copy_symtab (struct load_command
*lc
)
772 struct symtab_command
*stp
= (struct symtab_command
*) lc
;
774 stp
->symoff
+= delta
;
775 stp
->stroff
+= delta
;
777 printf ("Writing LC_SYMTAB command\n");
779 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
780 unexec_error ("cannot write symtab command to header");
782 curr_header_offset
+= lc
->cmdsize
;
785 /* Fix up relocation entries. */
787 unrelocate (const char *name
, off_t reloff
, int nrel
)
789 int i
, unreloc_count
;
790 struct relocation_info reloc_info
;
791 struct scattered_relocation_info
*sc_reloc_info
792 = (struct scattered_relocation_info
*) &reloc_info
;
794 for (unreloc_count
= 0, i
= 0; i
< nrel
; i
++)
796 if (lseek (infd
, reloff
, L_SET
) != reloff
)
797 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name
, i
);
798 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
799 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name
, i
);
800 reloff
+= sizeof (reloc_info
);
802 if (sc_reloc_info
->r_scattered
== 0)
803 switch (reloc_info
.r_type
)
805 case GENERIC_RELOC_VANILLA
:
806 if (reloc_info
.r_address
>= data_segment_scp
->vmaddr
807 && reloc_info
.r_address
< (data_segment_scp
->vmaddr
808 + data_segment_scp
->vmsize
))
810 off_t src_off
= data_segment_old_fileoff
811 + reloc_info
.r_address
- data_segment_scp
->vmaddr
;
812 off_t dst_off
= data_segment_scp
->fileoff
813 + reloc_info
.r_address
- data_segment_scp
->vmaddr
;
815 if (!unexec_copy (dst_off
, src_off
, 1 << reloc_info
.r_length
))
816 unexec_error ("unrelocate: %s:%d cannot copy original value",
822 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
823 name
, i
, reloc_info
.r_type
);
826 switch (sc_reloc_info
->r_type
)
828 #if defined (__ppc__)
829 case PPC_RELOC_PB_LA_PTR
:
830 /* nothing to do for prebound lazy pointer */
834 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
835 name
, i
, sc_reloc_info
->r_type
);
840 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
841 unreloc_count
, nrel
, name
);
844 /* Copy a LC_DYSYMTAB load command from the input file to the output
845 file, adjusting the file offset fields. */
847 copy_dysymtab (struct load_command
*lc
)
849 struct dysymtab_command
*dstp
= (struct dysymtab_command
*) lc
;
851 unrelocate ("local", dstp
->locreloff
, dstp
->nlocrel
);
852 unrelocate ("external", dstp
->extreloff
, dstp
->nextrel
);
854 if (dstp
->nextrel
> 0) {
855 dstp
->extreloff
+= delta
;
858 if (dstp
->nlocrel
> 0) {
859 dstp
->locreloff
+= delta
;
862 if (dstp
->nindirectsyms
> 0)
863 dstp
->indirectsymoff
+= delta
;
865 printf ("Writing LC_DYSYMTAB command\n");
867 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
868 unexec_error ("cannot write symtab command to header");
870 curr_header_offset
+= lc
->cmdsize
;
873 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
874 file, adjusting the file offset fields. */
876 copy_twolevelhints (struct load_command
*lc
)
878 struct twolevel_hints_command
*tlhp
= (struct twolevel_hints_command
*) lc
;
880 if (tlhp
->nhints
> 0) {
881 tlhp
->offset
+= delta
;
884 printf ("Writing LC_TWOLEVEL_HINTS command\n");
886 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
887 unexec_error ("cannot write two level hint command to header");
889 curr_header_offset
+= lc
->cmdsize
;
892 /* Copy other kinds of load commands from the input file to the output
893 file, ones that do not require adjustments of file offsets. */
895 copy_other (struct load_command
*lc
)
898 print_load_command_name (lc
->cmd
);
899 printf (" command\n");
901 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
902 unexec_error ("cannot write symtab command to header");
904 curr_header_offset
+= lc
->cmdsize
;
907 /* Loop through all load commands and dump them. Then write the Mach
914 printf ("--- Load Commands written to Output File ---\n");
916 for (i
= 0; i
< nlc
; i
++)
921 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
922 if (strncmp (scp
->segname
, SEG_DATA
, 16) == 0)
924 /* save data segment file offset and segment_command for
926 data_segment_old_fileoff
= scp
->fileoff
;
927 data_segment_scp
= scp
;
929 copy_data_segment (lca
[i
]);
933 copy_segment (lca
[i
]);
938 copy_symtab (lca
[i
]);
941 copy_dysymtab (lca
[i
]);
943 case LC_TWOLEVEL_HINTS
:
944 copy_twolevelhints (lca
[i
]);
951 if (curr_header_offset
> text_seg_lowest_offset
)
952 unexec_error ("not enough room for load commands for new __DATA segments");
954 printf ("%d unused bytes follow Mach-O header\n",
955 text_seg_lowest_offset
- curr_header_offset
);
957 mh
.sizeofcmds
= curr_header_offset
- sizeof (struct mach_header
);
958 if (!unexec_write (0, &mh
, sizeof (struct mach_header
)))
959 unexec_error ("cannot write final header contents");
962 /* Take a snapshot of Emacs and make a Mach-O format executable file
963 from it. The file names of the output and input files are outfile
964 and infile, respectively. The three other parameters are
967 unexec (char *outfile
, char *infile
, void *start_data
, void *start_bss
,
970 infd
= open (infile
, O_RDONLY
, 0);
973 unexec_error ("cannot open input file `%s'", infile
);
976 outfd
= open (outfile
, O_WRONLY
| O_TRUNC
| O_CREAT
, 0755);
980 unexec_error ("cannot open output file `%s'", outfile
);
983 build_region_list ();
984 read_load_commands ();
986 find_emacs_zone_regions ();
987 unexec_regions_merge ();
998 unexec_init_emacs_zone ()
1000 emacs_zone
= malloc_create_zone (0, 0);
1001 malloc_set_zone_name (emacs_zone
, "EmacsZone");
1004 #ifndef MACOSX_MALLOC_MULT16
1005 #define MACOSX_MALLOC_MULT16 1
1008 typedef struct unexec_malloc_header
{
1013 } unexec_malloc_header_t
;
1015 #if MACOSX_MALLOC_MULT16
1017 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1022 ptr_in_unexec_regions (void *ptr
)
1026 for (i
= 0; i
< num_unexec_regions
; i
++)
1027 if ((vm_address_t
) ptr
- unexec_regions
[i
].address
1028 < unexec_regions
[i
].size
)
1037 unexec_malloc (size_t size
)
1044 #if MACOSX_MALLOC_MULT16
1045 assert (((vm_address_t
) p
% 16) == 0);
1051 unexec_malloc_header_t
*ptr
;
1053 ptr
= (unexec_malloc_header_t
*)
1054 malloc_zone_malloc (emacs_zone
, size
+ sizeof (unexec_malloc_header_t
));
1057 #if MACOSX_MALLOC_MULT16
1058 assert (((vm_address_t
) ptr
% 16) == 8);
1060 return (void *) ptr
;
1065 unexec_realloc (void *old_ptr
, size_t new_size
)
1071 if (ptr_in_unexec_regions (old_ptr
))
1073 size_t old_size
= ((unexec_malloc_header_t
*) old_ptr
)[-1].u
.size
;
1074 size_t size
= new_size
> old_size
? old_size
: new_size
;
1076 p
= (size_t *) malloc (new_size
);
1078 memcpy (p
, old_ptr
, size
);
1082 p
= realloc (old_ptr
, new_size
);
1084 #if MACOSX_MALLOC_MULT16
1085 assert (((vm_address_t
) p
% 16) == 0);
1091 unexec_malloc_header_t
*ptr
;
1093 ptr
= (unexec_malloc_header_t
*)
1094 malloc_zone_realloc (emacs_zone
, (unexec_malloc_header_t
*) old_ptr
- 1,
1095 new_size
+ sizeof (unexec_malloc_header_t
));
1096 ptr
->u
.size
= new_size
;
1098 #if MACOSX_MALLOC_MULT16
1099 assert (((vm_address_t
) ptr
% 16) == 8);
1101 return (void *) ptr
;
1106 unexec_free (void *ptr
)
1110 if (!ptr_in_unexec_regions (ptr
))
1114 malloc_zone_free (emacs_zone
, (unexec_malloc_header_t
*) ptr
- 1);
1117 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1118 (do not change this comment) */