1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23 #define LISP_INLINE EXTERN_INLINE
26 #include <limits.h> /* For CHAR_BIT. */
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
38 #include "intervals.h"
40 #include "character.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
53 # undef GC_CHECK_MARKED_OBJECTS
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
73 #include "w32heap.h" /* for sbrk */
76 #ifdef DOUG_LEA_MALLOC
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
98 /* Default value of gc_cons_threshold (see below). */
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
102 /* Global variables. */
103 struct emacs_globals globals
;
105 /* Number of bytes of consing done since the last gc. */
107 EMACS_INT consing_since_gc
;
109 /* Similar minimum, computed from Vgc_cons_percentage. */
111 EMACS_INT gc_relative_threshold
;
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
116 EMACS_INT memory_full_cons_threshold
;
118 /* True during GC. */
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
128 /* Number of live and free conses etc. */
130 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
131 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
132 static EMACS_INT total_free_floats
, total_floats
;
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
138 static char *spare_memory
[7];
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
143 #define SPARE_MEMORY (1 << 14)
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
151 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
152 #define PUREBEG (char *) pure
154 /* Pointer to the pure area, and its size. */
156 static char *purebeg
;
157 static ptrdiff_t pure_size
;
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
162 static ptrdiff_t pure_bytes_used_before_overflow
;
164 /* True if P points into pure space. */
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
169 /* Index in pure at which next pure Lisp object will be allocated.. */
171 static ptrdiff_t pure_bytes_used_lisp
;
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
175 static ptrdiff_t pure_bytes_used_non_lisp
;
177 /* If nonzero, this is a warning delivered by malloc and not yet
180 const char *pending_malloc_warning
;
182 /* Maximum amount of C stack to save when a GC happens. */
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
188 /* Buffer in which we save a copy of the C stack at each GC. */
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy
;
192 static ptrdiff_t stack_copy_size
;
195 static Lisp_Object Qconses
;
196 static Lisp_Object Qsymbols
;
197 static Lisp_Object Qmiscs
;
198 static Lisp_Object Qstrings
;
199 static Lisp_Object Qvectors
;
200 static Lisp_Object Qfloats
;
201 static Lisp_Object Qintervals
;
202 static Lisp_Object Qbuffers
;
203 static Lisp_Object Qstring_bytes
, Qvector_slots
, Qheap
;
204 static Lisp_Object Qgc_cons_threshold
;
205 Lisp_Object Qautomatic_gc
;
206 Lisp_Object Qchar_table_extra_slots
;
208 /* Hook run after GC has finished. */
210 static Lisp_Object Qpost_gc_hook
;
212 static void mark_terminals (void);
213 static void gc_sweep (void);
214 static Lisp_Object
make_pure_vector (ptrdiff_t);
215 static void mark_buffer (struct buffer
*);
217 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
218 static void refill_memory_reserve (void);
220 static void compact_small_strings (void);
221 static void free_large_strings (void);
222 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
224 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
225 what memory allocated via lisp_malloc and lisp_align_malloc is intended
226 for what purpose. This enumeration specifies the type of memory. */
237 /* Since all non-bool pseudovectors are small enough to be
238 allocated from vector blocks, this memory type denotes
239 large regular vectors and large bool pseudovectors. */
241 /* Special type to denote vector blocks. */
242 MEM_TYPE_VECTOR_BLOCK
,
243 /* Special type to denote reserved memory. */
247 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249 /* A unique object in pure space used to make some Lisp objects
250 on free lists recognizable in O(1). */
252 static Lisp_Object Vdead
;
253 #define DEADP(x) EQ (x, Vdead)
255 #ifdef GC_MALLOC_CHECK
257 enum mem_type allocated_mem_type
;
259 #endif /* GC_MALLOC_CHECK */
261 /* A node in the red-black tree describing allocated memory containing
262 Lisp data. Each such block is recorded with its start and end
263 address when it is allocated, and removed from the tree when it
266 A red-black tree is a balanced binary tree with the following
269 1. Every node is either red or black.
270 2. Every leaf is black.
271 3. If a node is red, then both of its children are black.
272 4. Every simple path from a node to a descendant leaf contains
273 the same number of black nodes.
274 5. The root is always black.
276 When nodes are inserted into the tree, or deleted from the tree,
277 the tree is "fixed" so that these properties are always true.
279 A red-black tree with N internal nodes has height at most 2
280 log(N+1). Searches, insertions and deletions are done in O(log N).
281 Please see a text book about data structures for a detailed
282 description of red-black trees. Any book worth its salt should
287 /* Children of this node. These pointers are never NULL. When there
288 is no child, the value is MEM_NIL, which points to a dummy node. */
289 struct mem_node
*left
, *right
;
291 /* The parent of this node. In the root node, this is NULL. */
292 struct mem_node
*parent
;
294 /* Start and end of allocated region. */
298 enum {MEM_BLACK
, MEM_RED
} color
;
304 /* Base address of stack. Set in main. */
306 Lisp_Object
*stack_base
;
308 /* Root of the tree describing allocated Lisp memory. */
310 static struct mem_node
*mem_root
;
312 /* Lowest and highest known address in the heap. */
314 static void *min_heap_address
, *max_heap_address
;
316 /* Sentinel node of the tree. */
318 static struct mem_node mem_z
;
319 #define MEM_NIL &mem_z
321 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
322 static void mem_insert_fixup (struct mem_node
*);
323 static void mem_rotate_left (struct mem_node
*);
324 static void mem_rotate_right (struct mem_node
*);
325 static void mem_delete (struct mem_node
*);
326 static void mem_delete_fixup (struct mem_node
*);
327 static struct mem_node
*mem_find (void *);
329 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
335 /* Recording what needs to be marked for gc. */
337 struct gcpro
*gcprolist
;
339 /* Addresses of staticpro'd variables. Initialize it to a nonzero
340 value; otherwise some compilers put it into BSS. */
342 enum { NSTATICS
= 2048 };
343 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
345 /* Index of next unused slot in staticvec. */
347 static int staticidx
;
349 static void *pure_alloc (size_t, int);
352 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
353 ALIGNMENT must be a power of 2. */
355 #define ALIGN(ptr, ALIGNMENT) \
356 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
357 & ~ ((ALIGNMENT) - 1)))
360 XFLOAT_INIT (Lisp_Object f
, double n
)
362 XFLOAT (f
)->u
.data
= n
;
366 /************************************************************************
368 ************************************************************************/
370 /* Function malloc calls this if it finds we are near exhausting storage. */
373 malloc_warning (const char *str
)
375 pending_malloc_warning
= str
;
379 /* Display an already-pending malloc warning. */
382 display_malloc_warning (void)
384 call3 (intern ("display-warning"),
386 build_string (pending_malloc_warning
),
387 intern ("emergency"));
388 pending_malloc_warning
= 0;
391 /* Called if we can't allocate relocatable space for a buffer. */
394 buffer_memory_full (ptrdiff_t nbytes
)
396 /* If buffers use the relocating allocator, no need to free
397 spare_memory, because we may have plenty of malloc space left
398 that we could get, and if we don't, the malloc that fails will
399 itself cause spare_memory to be freed. If buffers don't use the
400 relocating allocator, treat this like any other failing
404 memory_full (nbytes
);
406 /* This used to call error, but if we've run out of memory, we could
407 get infinite recursion trying to build the string. */
408 xsignal (Qnil
, Vmemory_signal_data
);
412 /* A common multiple of the positive integers A and B. Ideally this
413 would be the least common multiple, but there's no way to do that
414 as a constant expression in C, so do the best that we can easily do. */
415 #define COMMON_MULTIPLE(a, b) \
416 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
418 #ifndef XMALLOC_OVERRUN_CHECK
419 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
426 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
427 block size in little-endian order. The trailer consists of
428 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
430 The header is used to detect whether this block has been allocated
431 through these functions, as some low-level libc functions may
432 bypass the malloc hooks. */
434 #define XMALLOC_OVERRUN_CHECK_SIZE 16
435 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
436 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
438 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
439 hold a size_t value and (2) the header size is a multiple of the
440 alignment that Emacs needs for C types and for USE_LSB_TAG. */
441 #define XMALLOC_BASE_ALIGNMENT \
442 alignof (union { long double d; intmax_t i; void *p; })
445 # define XMALLOC_HEADER_ALIGNMENT \
446 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
448 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
450 #define XMALLOC_OVERRUN_SIZE_SIZE \
451 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
452 + XMALLOC_HEADER_ALIGNMENT - 1) \
453 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
454 - XMALLOC_OVERRUN_CHECK_SIZE)
456 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
457 { '\x9a', '\x9b', '\xae', '\xaf',
458 '\xbf', '\xbe', '\xce', '\xcf',
459 '\xea', '\xeb', '\xec', '\xed',
460 '\xdf', '\xde', '\x9c', '\x9d' };
462 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
463 { '\xaa', '\xab', '\xac', '\xad',
464 '\xba', '\xbb', '\xbc', '\xbd',
465 '\xca', '\xcb', '\xcc', '\xcd',
466 '\xda', '\xdb', '\xdc', '\xdd' };
468 /* Insert and extract the block size in the header. */
471 xmalloc_put_size (unsigned char *ptr
, size_t size
)
474 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
476 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
482 xmalloc_get_size (unsigned char *ptr
)
486 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
487 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
496 /* Like malloc, but wraps allocated block with header and trailer. */
499 overrun_check_malloc (size_t size
)
501 register unsigned char *val
;
502 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
505 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
508 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
509 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
510 xmalloc_put_size (val
, size
);
511 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
512 XMALLOC_OVERRUN_CHECK_SIZE
);
518 /* Like realloc, but checks old block for overrun, and wraps new block
519 with header and trailer. */
522 overrun_check_realloc (void *block
, size_t size
)
524 register unsigned char *val
= (unsigned char *) block
;
525 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
529 && memcmp (xmalloc_overrun_check_header
,
530 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
531 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
533 size_t osize
= xmalloc_get_size (val
);
534 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
535 XMALLOC_OVERRUN_CHECK_SIZE
))
537 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
538 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
539 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
542 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
546 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
547 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
548 xmalloc_put_size (val
, size
);
549 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
550 XMALLOC_OVERRUN_CHECK_SIZE
);
555 /* Like free, but checks block for overrun. */
558 overrun_check_free (void *block
)
560 unsigned char *val
= (unsigned char *) block
;
563 && memcmp (xmalloc_overrun_check_header
,
564 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
565 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
567 size_t osize
= xmalloc_get_size (val
);
568 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
569 XMALLOC_OVERRUN_CHECK_SIZE
))
571 #ifdef XMALLOC_CLEAR_FREE_MEMORY
572 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
573 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
575 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
576 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
577 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
587 #define malloc overrun_check_malloc
588 #define realloc overrun_check_realloc
589 #define free overrun_check_free
592 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
593 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
594 If that variable is set, block input while in one of Emacs's memory
595 allocation functions. There should be no need for this debugging
596 option, since signal handlers do not allocate memory, but Emacs
597 formerly allocated memory in signal handlers and this compile-time
598 option remains as a way to help debug the issue should it rear its
600 #ifdef XMALLOC_BLOCK_INPUT_CHECK
601 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
603 malloc_block_input (void)
605 if (block_input_in_memory_allocators
)
609 malloc_unblock_input (void)
611 if (block_input_in_memory_allocators
)
614 # define MALLOC_BLOCK_INPUT malloc_block_input ()
615 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
617 # define MALLOC_BLOCK_INPUT ((void) 0)
618 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #define MALLOC_PROBE(size) \
623 if (profiler_memory_running) \
624 malloc_probe (size); \
628 /* Like malloc but check for no memory and block interrupt input.. */
631 xmalloc (size_t size
)
637 MALLOC_UNBLOCK_INPUT
;
645 /* Like the above, but zeroes out the memory just allocated. */
648 xzalloc (size_t size
)
654 MALLOC_UNBLOCK_INPUT
;
658 memset (val
, 0, size
);
663 /* Like realloc but check for no memory and block interrupt input.. */
666 xrealloc (void *block
, size_t size
)
671 /* We must call malloc explicitly when BLOCK is 0, since some
672 reallocs don't do this. */
676 val
= realloc (block
, size
);
677 MALLOC_UNBLOCK_INPUT
;
686 /* Like free but block interrupt input. */
695 MALLOC_UNBLOCK_INPUT
;
696 /* We don't call refill_memory_reserve here
697 because in practice the call in r_alloc_free seems to suffice. */
701 /* Other parts of Emacs pass large int values to allocator functions
702 expecting ptrdiff_t. This is portable in practice, but check it to
704 verify (INT_MAX
<= PTRDIFF_MAX
);
707 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
708 Signal an error on memory exhaustion, and block interrupt input. */
711 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
713 eassert (0 <= nitems
&& 0 < item_size
);
714 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
715 memory_full (SIZE_MAX
);
716 return xmalloc (nitems
* item_size
);
720 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
721 Signal an error on memory exhaustion, and block interrupt input. */
724 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
726 eassert (0 <= nitems
&& 0 < item_size
);
727 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
728 memory_full (SIZE_MAX
);
729 return xrealloc (pa
, nitems
* item_size
);
733 /* Grow PA, which points to an array of *NITEMS items, and return the
734 location of the reallocated array, updating *NITEMS to reflect its
735 new size. The new array will contain at least NITEMS_INCR_MIN more
736 items, but will not contain more than NITEMS_MAX items total.
737 ITEM_SIZE is the size of each item, in bytes.
739 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
740 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 If PA is null, then allocate a new array instead of reallocating
746 Block interrupt input as needed. If memory exhaustion occurs, set
747 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 Thus, to grow an array A without saving its old contents, do
751 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
752 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
753 and signals an error, and later this code is reexecuted and
754 attempts to free A. */
757 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
758 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
760 /* The approximate size to use for initial small allocation
761 requests. This is the largest "small" request for the GNU C
763 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
765 /* If the array is tiny, grow it to about (but no greater than)
766 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
767 ptrdiff_t n
= *nitems
;
768 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
769 ptrdiff_t half_again
= n
>> 1;
770 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
772 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
773 NITEMS_MAX, and what the C language can represent safely. */
774 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
775 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
776 ? nitems_max
: C_language_max
);
777 ptrdiff_t nitems_incr_max
= n_max
- n
;
778 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
780 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
783 if (nitems_incr_max
< incr
)
784 memory_full (SIZE_MAX
);
786 pa
= xrealloc (pa
, n
* item_size
);
792 /* Like strdup, but uses xmalloc. */
795 xstrdup (const char *s
)
799 size
= strlen (s
) + 1;
800 return memcpy (xmalloc (size
), s
, size
);
803 /* Like above, but duplicates Lisp string to C string. */
806 xlispstrdup (Lisp_Object string
)
808 ptrdiff_t size
= SBYTES (string
) + 1;
809 return memcpy (xmalloc (size
), SSDATA (string
), size
);
812 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
813 argument is a const pointer. */
816 xputenv (char const *string
)
818 if (putenv ((char *) string
) != 0)
822 /* Return a newly allocated memory block of SIZE bytes, remembering
823 to free it when unwinding. */
825 record_xmalloc (size_t size
)
827 void *p
= xmalloc (size
);
828 record_unwind_protect_ptr (xfree
, p
);
833 /* Like malloc but used for allocating Lisp data. NBYTES is the
834 number of bytes to allocate, TYPE describes the intended use of the
835 allocated memory block (for strings, for conses, ...). */
838 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
842 lisp_malloc (size_t nbytes
, enum mem_type type
)
848 #ifdef GC_MALLOC_CHECK
849 allocated_mem_type
= type
;
852 val
= malloc (nbytes
);
855 /* If the memory just allocated cannot be addressed thru a Lisp
856 object's pointer, and it needs to be,
857 that's equivalent to running out of memory. */
858 if (val
&& type
!= MEM_TYPE_NON_LISP
)
861 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
862 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
864 lisp_malloc_loser
= val
;
871 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
872 if (val
&& type
!= MEM_TYPE_NON_LISP
)
873 mem_insert (val
, (char *) val
+ nbytes
, type
);
876 MALLOC_UNBLOCK_INPUT
;
878 memory_full (nbytes
);
879 MALLOC_PROBE (nbytes
);
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
887 lisp_free (void *block
)
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 mem_delete (mem_find (block
));
894 MALLOC_UNBLOCK_INPUT
;
897 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
899 /* The entry point is lisp_align_malloc which returns blocks of at most
900 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
902 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
903 #define USE_POSIX_MEMALIGN 1
906 /* BLOCK_ALIGN has to be a power of 2. */
907 #define BLOCK_ALIGN (1 << 10)
909 /* Padding to leave at the end of a malloc'd block. This is to give
910 malloc a chance to minimize the amount of memory wasted to alignment.
911 It should be tuned to the particular malloc library used.
912 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
913 posix_memalign on the other hand would ideally prefer a value of 4
914 because otherwise, there's 1020 bytes wasted between each ablocks.
915 In Emacs, testing shows that those 1020 can most of the time be
916 efficiently used by malloc to place other objects, so a value of 0 can
917 still preferable unless you have a lot of aligned blocks and virtually
919 #define BLOCK_PADDING 0
920 #define BLOCK_BYTES \
921 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
923 /* Internal data structures and constants. */
925 #define ABLOCKS_SIZE 16
927 /* An aligned block of memory. */
932 char payload
[BLOCK_BYTES
];
933 struct ablock
*next_free
;
935 /* `abase' is the aligned base of the ablocks. */
936 /* It is overloaded to hold the virtual `busy' field that counts
937 the number of used ablock in the parent ablocks.
938 The first ablock has the `busy' field, the others have the `abase'
939 field. To tell the difference, we assume that pointers will have
940 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
941 is used to tell whether the real base of the parent ablocks is `abase'
942 (if not, the word before the first ablock holds a pointer to the
944 struct ablocks
*abase
;
945 /* The padding of all but the last ablock is unused. The padding of
946 the last ablock in an ablocks is not allocated. */
948 char padding
[BLOCK_PADDING
];
952 /* A bunch of consecutive aligned blocks. */
955 struct ablock blocks
[ABLOCKS_SIZE
];
958 /* Size of the block requested from malloc or posix_memalign. */
959 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
961 #define ABLOCK_ABASE(block) \
962 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
963 ? (struct ablocks *)(block) \
966 /* Virtual `busy' field. */
967 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
969 /* Pointer to the (not necessarily aligned) malloc block. */
970 #ifdef USE_POSIX_MEMALIGN
971 #define ABLOCKS_BASE(abase) (abase)
973 #define ABLOCKS_BASE(abase) \
974 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
977 /* The list of free ablock. */
978 static struct ablock
*free_ablock
;
980 /* Allocate an aligned block of nbytes.
981 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
982 smaller or equal to BLOCK_BYTES. */
984 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
987 struct ablocks
*abase
;
989 eassert (nbytes
<= BLOCK_BYTES
);
993 #ifdef GC_MALLOC_CHECK
994 allocated_mem_type
= type
;
1000 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1002 #ifdef DOUG_LEA_MALLOC
1003 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1004 because mapped region contents are not preserved in
1006 mallopt (M_MMAP_MAX
, 0);
1009 #ifdef USE_POSIX_MEMALIGN
1011 int err
= posix_memalign (&base
, BLOCK_ALIGN
, ABLOCKS_BYTES
);
1017 base
= malloc (ABLOCKS_BYTES
);
1018 abase
= ALIGN (base
, BLOCK_ALIGN
);
1023 MALLOC_UNBLOCK_INPUT
;
1024 memory_full (ABLOCKS_BYTES
);
1027 aligned
= (base
== abase
);
1029 ((void**)abase
)[-1] = base
;
1031 #ifdef DOUG_LEA_MALLOC
1032 /* Back to a reasonable maximum of mmap'ed areas. */
1033 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1037 /* If the memory just allocated cannot be addressed thru a Lisp
1038 object's pointer, and it needs to be, that's equivalent to
1039 running out of memory. */
1040 if (type
!= MEM_TYPE_NON_LISP
)
1043 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1044 XSETCONS (tem
, end
);
1045 if ((char *) XCONS (tem
) != end
)
1047 lisp_malloc_loser
= base
;
1049 MALLOC_UNBLOCK_INPUT
;
1050 memory_full (SIZE_MAX
);
1055 /* Initialize the blocks and put them on the free list.
1056 If `base' was not properly aligned, we can't use the last block. */
1057 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1059 abase
->blocks
[i
].abase
= abase
;
1060 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1061 free_ablock
= &abase
->blocks
[i
];
1063 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1065 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1066 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1067 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1068 eassert (ABLOCKS_BASE (abase
) == base
);
1069 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1072 abase
= ABLOCK_ABASE (free_ablock
);
1073 ABLOCKS_BUSY (abase
) =
1074 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1076 free_ablock
= free_ablock
->x
.next_free
;
1078 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1079 if (type
!= MEM_TYPE_NON_LISP
)
1080 mem_insert (val
, (char *) val
+ nbytes
, type
);
1083 MALLOC_UNBLOCK_INPUT
;
1085 MALLOC_PROBE (nbytes
);
1087 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1092 lisp_align_free (void *block
)
1094 struct ablock
*ablock
= block
;
1095 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 mem_delete (mem_find (block
));
1101 /* Put on free list. */
1102 ablock
->x
.next_free
= free_ablock
;
1103 free_ablock
= ablock
;
1104 /* Update busy count. */
1105 ABLOCKS_BUSY (abase
)
1106 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1108 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1109 { /* All the blocks are free. */
1110 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1111 struct ablock
**tem
= &free_ablock
;
1112 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1116 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1119 *tem
= (*tem
)->x
.next_free
;
1122 tem
= &(*tem
)->x
.next_free
;
1124 eassert ((aligned
& 1) == aligned
);
1125 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1126 #ifdef USE_POSIX_MEMALIGN
1127 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1129 free (ABLOCKS_BASE (abase
));
1131 MALLOC_UNBLOCK_INPUT
;
1135 /***********************************************************************
1137 ***********************************************************************/
1139 /* Number of intervals allocated in an interval_block structure.
1140 The 1020 is 1024 minus malloc overhead. */
1142 #define INTERVAL_BLOCK_SIZE \
1143 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1145 /* Intervals are allocated in chunks in the form of an interval_block
1148 struct interval_block
1150 /* Place `intervals' first, to preserve alignment. */
1151 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1152 struct interval_block
*next
;
1155 /* Current interval block. Its `next' pointer points to older
1158 static struct interval_block
*interval_block
;
1160 /* Index in interval_block above of the next unused interval
1163 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1165 /* Number of free and live intervals. */
1167 static EMACS_INT total_free_intervals
, total_intervals
;
1169 /* List of free intervals. */
1171 static INTERVAL interval_free_list
;
1173 /* Return a new interval. */
1176 make_interval (void)
1182 if (interval_free_list
)
1184 val
= interval_free_list
;
1185 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1189 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1191 struct interval_block
*newi
1192 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1194 newi
->next
= interval_block
;
1195 interval_block
= newi
;
1196 interval_block_index
= 0;
1197 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1199 val
= &interval_block
->intervals
[interval_block_index
++];
1202 MALLOC_UNBLOCK_INPUT
;
1204 consing_since_gc
+= sizeof (struct interval
);
1206 total_free_intervals
--;
1207 RESET_INTERVAL (val
);
1213 /* Mark Lisp objects in interval I. */
1216 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1218 /* Intervals should never be shared. So, if extra internal checking is
1219 enabled, GC aborts if it seems to have visited an interval twice. */
1220 eassert (!i
->gcmarkbit
);
1222 mark_object (i
->plist
);
1225 /* Mark the interval tree rooted in I. */
1227 #define MARK_INTERVAL_TREE(i) \
1229 if (i && !i->gcmarkbit) \
1230 traverse_intervals_noorder (i, mark_interval, Qnil); \
1233 /***********************************************************************
1235 ***********************************************************************/
1237 /* Lisp_Strings are allocated in string_block structures. When a new
1238 string_block is allocated, all the Lisp_Strings it contains are
1239 added to a free-list string_free_list. When a new Lisp_String is
1240 needed, it is taken from that list. During the sweep phase of GC,
1241 string_blocks that are entirely free are freed, except two which
1244 String data is allocated from sblock structures. Strings larger
1245 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1246 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1248 Sblocks consist internally of sdata structures, one for each
1249 Lisp_String. The sdata structure points to the Lisp_String it
1250 belongs to. The Lisp_String points back to the `u.data' member of
1251 its sdata structure.
1253 When a Lisp_String is freed during GC, it is put back on
1254 string_free_list, and its `data' member and its sdata's `string'
1255 pointer is set to null. The size of the string is recorded in the
1256 `n.nbytes' member of the sdata. So, sdata structures that are no
1257 longer used, can be easily recognized, and it's easy to compact the
1258 sblocks of small strings which we do in compact_small_strings. */
1260 /* Size in bytes of an sblock structure used for small strings. This
1261 is 8192 minus malloc overhead. */
1263 #define SBLOCK_SIZE 8188
1265 /* Strings larger than this are considered large strings. String data
1266 for large strings is allocated from individual sblocks. */
1268 #define LARGE_STRING_BYTES 1024
1270 /* Struct or union describing string memory sub-allocated from an sblock.
1271 This is where the contents of Lisp strings are stored. */
1273 #ifdef GC_CHECK_STRING_BYTES
1277 /* Back-pointer to the string this sdata belongs to. If null, this
1278 structure is free, and the NBYTES member of the union below
1279 contains the string's byte size (the same value that STRING_BYTES
1280 would return if STRING were non-null). If non-null, STRING_BYTES
1281 (STRING) is the size of the data, and DATA contains the string's
1283 struct Lisp_String
*string
;
1286 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1289 #define SDATA_NBYTES(S) (S)->nbytes
1290 #define SDATA_DATA(S) (S)->data
1291 #define SDATA_SELECTOR(member) member
1297 struct Lisp_String
*string
;
1299 /* When STRING is non-null. */
1302 struct Lisp_String
*string
;
1303 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1306 /* When STRING is null. */
1309 struct Lisp_String
*string
;
1314 #define SDATA_NBYTES(S) (S)->n.nbytes
1315 #define SDATA_DATA(S) (S)->u.data
1316 #define SDATA_SELECTOR(member) u.member
1318 #endif /* not GC_CHECK_STRING_BYTES */
1320 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1323 /* Structure describing a block of memory which is sub-allocated to
1324 obtain string data memory for strings. Blocks for small strings
1325 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1326 as large as needed. */
1331 struct sblock
*next
;
1333 /* Pointer to the next free sdata block. This points past the end
1334 of the sblock if there isn't any space left in this block. */
1337 /* Start of data. */
1341 /* Number of Lisp strings in a string_block structure. The 1020 is
1342 1024 minus malloc overhead. */
1344 #define STRING_BLOCK_SIZE \
1345 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1347 /* Structure describing a block from which Lisp_String structures
1352 /* Place `strings' first, to preserve alignment. */
1353 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1354 struct string_block
*next
;
1357 /* Head and tail of the list of sblock structures holding Lisp string
1358 data. We always allocate from current_sblock. The NEXT pointers
1359 in the sblock structures go from oldest_sblock to current_sblock. */
1361 static struct sblock
*oldest_sblock
, *current_sblock
;
1363 /* List of sblocks for large strings. */
1365 static struct sblock
*large_sblocks
;
1367 /* List of string_block structures. */
1369 static struct string_block
*string_blocks
;
1371 /* Free-list of Lisp_Strings. */
1373 static struct Lisp_String
*string_free_list
;
1375 /* Number of live and free Lisp_Strings. */
1377 static EMACS_INT total_strings
, total_free_strings
;
1379 /* Number of bytes used by live strings. */
1381 static EMACS_INT total_string_bytes
;
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1394 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1397 #ifdef GC_CHECK_STRING_OVERRUN
1399 /* We check for overrun in string data blocks by appending a small
1400 "cookie" after each allocated string data block, and check for the
1401 presence of this cookie during GC. */
1403 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1404 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1405 { '\xde', '\xad', '\xbe', '\xef' };
1408 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1411 /* Value is the size of an sdata structure large enough to hold NBYTES
1412 bytes of string data. The value returned includes a terminating
1413 NUL byte, the size of the sdata structure, and padding. */
1415 #ifdef GC_CHECK_STRING_BYTES
1417 #define SDATA_SIZE(NBYTES) \
1418 ((SDATA_DATA_OFFSET \
1420 + sizeof (ptrdiff_t) - 1) \
1421 & ~(sizeof (ptrdiff_t) - 1))
1423 #else /* not GC_CHECK_STRING_BYTES */
1425 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1426 less than the size of that member. The 'max' is not needed when
1427 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1428 alignment code reserves enough space. */
1430 #define SDATA_SIZE(NBYTES) \
1431 ((SDATA_DATA_OFFSET \
1432 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1434 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1436 + sizeof (ptrdiff_t) - 1) \
1437 & ~(sizeof (ptrdiff_t) - 1))
1439 #endif /* not GC_CHECK_STRING_BYTES */
1441 /* Extra bytes to allocate for each string. */
1443 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1445 /* Exact bound on the number of bytes in a string, not counting the
1446 terminating null. A string cannot contain more bytes than
1447 STRING_BYTES_BOUND, nor can it be so long that the size_t
1448 arithmetic in allocate_string_data would overflow while it is
1449 calculating a value to be passed to malloc. */
1450 static ptrdiff_t const STRING_BYTES_MAX
=
1451 min (STRING_BYTES_BOUND
,
1452 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1454 - offsetof (struct sblock
, first_data
)
1455 - SDATA_DATA_OFFSET
)
1456 & ~(sizeof (EMACS_INT
) - 1)));
1458 /* Initialize string allocation. Called from init_alloc_once. */
1463 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1464 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1468 #ifdef GC_CHECK_STRING_BYTES
1470 static int check_string_bytes_count
;
1472 /* Like STRING_BYTES, but with debugging check. Can be
1473 called during GC, so pay attention to the mark bit. */
1476 string_bytes (struct Lisp_String
*s
)
1479 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1481 if (!PURE_POINTER_P (s
)
1483 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1488 /* Check validity of Lisp strings' string_bytes member in B. */
1491 check_sblock (struct sblock
*b
)
1493 sdata
*from
, *end
, *from_end
;
1497 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1499 /* Compute the next FROM here because copying below may
1500 overwrite data we need to compute it. */
1503 /* Check that the string size recorded in the string is the
1504 same as the one recorded in the sdata structure. */
1505 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1506 : SDATA_NBYTES (from
));
1507 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1512 /* Check validity of Lisp strings' string_bytes member. ALL_P
1513 means check all strings, otherwise check only most
1514 recently allocated strings. Used for hunting a bug. */
1517 check_string_bytes (bool all_p
)
1523 for (b
= large_sblocks
; b
; b
= b
->next
)
1525 struct Lisp_String
*s
= b
->first_data
.string
;
1530 for (b
= oldest_sblock
; b
; b
= b
->next
)
1533 else if (current_sblock
)
1534 check_sblock (current_sblock
);
1537 #else /* not GC_CHECK_STRING_BYTES */
1539 #define check_string_bytes(all) ((void) 0)
1541 #endif /* GC_CHECK_STRING_BYTES */
1543 #ifdef GC_CHECK_STRING_FREE_LIST
1545 /* Walk through the string free list looking for bogus next pointers.
1546 This may catch buffer overrun from a previous string. */
1549 check_string_free_list (void)
1551 struct Lisp_String
*s
;
1553 /* Pop a Lisp_String off the free-list. */
1554 s
= string_free_list
;
1557 if ((uintptr_t) s
< 1024)
1559 s
= NEXT_FREE_LISP_STRING (s
);
1563 #define check_string_free_list()
1566 /* Return a new Lisp_String. */
1568 static struct Lisp_String
*
1569 allocate_string (void)
1571 struct Lisp_String
*s
;
1575 /* If the free-list is empty, allocate a new string_block, and
1576 add all the Lisp_Strings in it to the free-list. */
1577 if (string_free_list
== NULL
)
1579 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1582 b
->next
= string_blocks
;
1585 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1588 /* Every string on a free list should have NULL data pointer. */
1590 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1591 string_free_list
= s
;
1594 total_free_strings
+= STRING_BLOCK_SIZE
;
1597 check_string_free_list ();
1599 /* Pop a Lisp_String off the free-list. */
1600 s
= string_free_list
;
1601 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1603 MALLOC_UNBLOCK_INPUT
;
1605 --total_free_strings
;
1608 consing_since_gc
+= sizeof *s
;
1610 #ifdef GC_CHECK_STRING_BYTES
1611 if (!noninteractive
)
1613 if (++check_string_bytes_count
== 200)
1615 check_string_bytes_count
= 0;
1616 check_string_bytes (1);
1619 check_string_bytes (0);
1621 #endif /* GC_CHECK_STRING_BYTES */
1627 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1628 plus a NUL byte at the end. Allocate an sdata structure for S, and
1629 set S->data to its `u.data' member. Store a NUL byte at the end of
1630 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1631 S->data if it was initially non-null. */
1634 allocate_string_data (struct Lisp_String
*s
,
1635 EMACS_INT nchars
, EMACS_INT nbytes
)
1637 sdata
*data
, *old_data
;
1639 ptrdiff_t needed
, old_nbytes
;
1641 if (STRING_BYTES_MAX
< nbytes
)
1644 /* Determine the number of bytes needed to store NBYTES bytes
1646 needed
= SDATA_SIZE (nbytes
);
1649 old_data
= SDATA_OF_STRING (s
);
1650 old_nbytes
= STRING_BYTES (s
);
1657 if (nbytes
> LARGE_STRING_BYTES
)
1659 size_t size
= offsetof (struct sblock
, first_data
) + needed
;
1661 #ifdef DOUG_LEA_MALLOC
1662 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1663 because mapped region contents are not preserved in
1666 In case you think of allowing it in a dumped Emacs at the
1667 cost of not being able to re-dump, there's another reason:
1668 mmap'ed data typically have an address towards the top of the
1669 address space, which won't fit into an EMACS_INT (at least on
1670 32-bit systems with the current tagging scheme). --fx */
1671 mallopt (M_MMAP_MAX
, 0);
1674 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1676 #ifdef DOUG_LEA_MALLOC
1677 /* Back to a reasonable maximum of mmap'ed areas. */
1678 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1681 b
->next_free
= &b
->first_data
;
1682 b
->first_data
.string
= NULL
;
1683 b
->next
= large_sblocks
;
1686 else if (current_sblock
== NULL
1687 || (((char *) current_sblock
+ SBLOCK_SIZE
1688 - (char *) current_sblock
->next_free
)
1689 < (needed
+ GC_STRING_EXTRA
)))
1691 /* Not enough room in the current sblock. */
1692 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1693 b
->next_free
= &b
->first_data
;
1694 b
->first_data
.string
= NULL
;
1698 current_sblock
->next
= b
;
1706 data
= b
->next_free
;
1707 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1709 MALLOC_UNBLOCK_INPUT
;
1712 s
->data
= SDATA_DATA (data
);
1713 #ifdef GC_CHECK_STRING_BYTES
1714 SDATA_NBYTES (data
) = nbytes
;
1717 s
->size_byte
= nbytes
;
1718 s
->data
[nbytes
] = '\0';
1719 #ifdef GC_CHECK_STRING_OVERRUN
1720 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1721 GC_STRING_OVERRUN_COOKIE_SIZE
);
1724 /* Note that Faset may call to this function when S has already data
1725 assigned. In this case, mark data as free by setting it's string
1726 back-pointer to null, and record the size of the data in it. */
1729 SDATA_NBYTES (old_data
) = old_nbytes
;
1730 old_data
->string
= NULL
;
1733 consing_since_gc
+= needed
;
1737 /* Sweep and compact strings. */
1740 sweep_strings (void)
1742 struct string_block
*b
, *next
;
1743 struct string_block
*live_blocks
= NULL
;
1745 string_free_list
= NULL
;
1746 total_strings
= total_free_strings
= 0;
1747 total_string_bytes
= 0;
1749 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1750 for (b
= string_blocks
; b
; b
= next
)
1753 struct Lisp_String
*free_list_before
= string_free_list
;
1757 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1759 struct Lisp_String
*s
= b
->strings
+ i
;
1763 /* String was not on free-list before. */
1764 if (STRING_MARKED_P (s
))
1766 /* String is live; unmark it and its intervals. */
1769 /* Do not use string_(set|get)_intervals here. */
1770 s
->intervals
= balance_intervals (s
->intervals
);
1773 total_string_bytes
+= STRING_BYTES (s
);
1777 /* String is dead. Put it on the free-list. */
1778 sdata
*data
= SDATA_OF_STRING (s
);
1780 /* Save the size of S in its sdata so that we know
1781 how large that is. Reset the sdata's string
1782 back-pointer so that we know it's free. */
1783 #ifdef GC_CHECK_STRING_BYTES
1784 if (string_bytes (s
) != SDATA_NBYTES (data
))
1787 data
->n
.nbytes
= STRING_BYTES (s
);
1789 data
->string
= NULL
;
1791 /* Reset the strings's `data' member so that we
1795 /* Put the string on the free-list. */
1796 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1797 string_free_list
= s
;
1803 /* S was on the free-list before. Put it there again. */
1804 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1805 string_free_list
= s
;
1810 /* Free blocks that contain free Lisp_Strings only, except
1811 the first two of them. */
1812 if (nfree
== STRING_BLOCK_SIZE
1813 && total_free_strings
> STRING_BLOCK_SIZE
)
1816 string_free_list
= free_list_before
;
1820 total_free_strings
+= nfree
;
1821 b
->next
= live_blocks
;
1826 check_string_free_list ();
1828 string_blocks
= live_blocks
;
1829 free_large_strings ();
1830 compact_small_strings ();
1832 check_string_free_list ();
1836 /* Free dead large strings. */
1839 free_large_strings (void)
1841 struct sblock
*b
, *next
;
1842 struct sblock
*live_blocks
= NULL
;
1844 for (b
= large_sblocks
; b
; b
= next
)
1848 if (b
->first_data
.string
== NULL
)
1852 b
->next
= live_blocks
;
1857 large_sblocks
= live_blocks
;
1861 /* Compact data of small strings. Free sblocks that don't contain
1862 data of live strings after compaction. */
1865 compact_small_strings (void)
1867 struct sblock
*b
, *tb
, *next
;
1868 sdata
*from
, *to
, *end
, *tb_end
;
1869 sdata
*to_end
, *from_end
;
1871 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1872 to, and TB_END is the end of TB. */
1874 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1875 to
= &tb
->first_data
;
1877 /* Step through the blocks from the oldest to the youngest. We
1878 expect that old blocks will stabilize over time, so that less
1879 copying will happen this way. */
1880 for (b
= oldest_sblock
; b
; b
= b
->next
)
1883 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1885 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1887 /* Compute the next FROM here because copying below may
1888 overwrite data we need to compute it. */
1890 struct Lisp_String
*s
= from
->string
;
1892 #ifdef GC_CHECK_STRING_BYTES
1893 /* Check that the string size recorded in the string is the
1894 same as the one recorded in the sdata structure. */
1895 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
1897 #endif /* GC_CHECK_STRING_BYTES */
1899 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
1900 eassert (nbytes
<= LARGE_STRING_BYTES
);
1902 nbytes
= SDATA_SIZE (nbytes
);
1903 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1905 #ifdef GC_CHECK_STRING_OVERRUN
1906 if (memcmp (string_overrun_cookie
,
1907 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
1908 GC_STRING_OVERRUN_COOKIE_SIZE
))
1912 /* Non-NULL S means it's alive. Copy its data. */
1915 /* If TB is full, proceed with the next sblock. */
1916 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1917 if (to_end
> tb_end
)
1921 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1922 to
= &tb
->first_data
;
1923 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1926 /* Copy, and update the string's `data' pointer. */
1929 eassert (tb
!= b
|| to
< from
);
1930 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
1931 to
->string
->data
= SDATA_DATA (to
);
1934 /* Advance past the sdata we copied to. */
1940 /* The rest of the sblocks following TB don't contain live data, so
1941 we can free them. */
1942 for (b
= tb
->next
; b
; b
= next
)
1950 current_sblock
= tb
;
1954 string_overflow (void)
1956 error ("Maximum string size exceeded");
1959 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1960 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
1961 LENGTH must be an integer.
1962 INIT must be an integer that represents a character. */)
1963 (Lisp_Object length
, Lisp_Object init
)
1965 register Lisp_Object val
;
1966 register unsigned char *p
, *end
;
1970 CHECK_NATNUM (length
);
1971 CHECK_CHARACTER (init
);
1973 c
= XFASTINT (init
);
1974 if (ASCII_CHAR_P (c
))
1976 nbytes
= XINT (length
);
1977 val
= make_uninit_string (nbytes
);
1979 end
= p
+ SCHARS (val
);
1985 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1986 int len
= CHAR_STRING (c
, str
);
1987 EMACS_INT string_len
= XINT (length
);
1989 if (string_len
> STRING_BYTES_MAX
/ len
)
1991 nbytes
= len
* string_len
;
1992 val
= make_uninit_multibyte_string (string_len
, nbytes
);
1997 memcpy (p
, str
, len
);
2007 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2008 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2009 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2010 (Lisp_Object length
, Lisp_Object init
)
2012 register Lisp_Object val
;
2013 struct Lisp_Bool_Vector
*p
;
2014 ptrdiff_t length_in_chars
;
2015 EMACS_INT length_in_elts
;
2017 int extra_bool_elts
= ((bool_header_size
- header_size
+ word_size
- 1)
2020 CHECK_NATNUM (length
);
2022 bits_per_value
= sizeof (EMACS_INT
) * BOOL_VECTOR_BITS_PER_CHAR
;
2024 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
2026 val
= Fmake_vector (make_number (length_in_elts
+ extra_bool_elts
), Qnil
);
2028 /* No Lisp_Object to trace in there. */
2029 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2031 p
= XBOOL_VECTOR (val
);
2032 p
->size
= XFASTINT (length
);
2034 length_in_chars
= ((XFASTINT (length
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2035 / BOOL_VECTOR_BITS_PER_CHAR
);
2036 if (length_in_chars
)
2038 memset (p
->data
, ! NILP (init
) ? -1 : 0, length_in_chars
);
2040 /* Clear any extraneous bits in the last byte. */
2041 p
->data
[length_in_chars
- 1]
2042 &= (1 << ((XFASTINT (length
) - 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1)) - 1;
2049 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2050 of characters from the contents. This string may be unibyte or
2051 multibyte, depending on the contents. */
2054 make_string (const char *contents
, ptrdiff_t nbytes
)
2056 register Lisp_Object val
;
2057 ptrdiff_t nchars
, multibyte_nbytes
;
2059 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2060 &nchars
, &multibyte_nbytes
);
2061 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2062 /* CONTENTS contains no multibyte sequences or contains an invalid
2063 multibyte sequence. We must make unibyte string. */
2064 val
= make_unibyte_string (contents
, nbytes
);
2066 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2071 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2074 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2076 register Lisp_Object val
;
2077 val
= make_uninit_string (length
);
2078 memcpy (SDATA (val
), contents
, length
);
2083 /* Make a multibyte string from NCHARS characters occupying NBYTES
2084 bytes at CONTENTS. */
2087 make_multibyte_string (const char *contents
,
2088 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2090 register Lisp_Object val
;
2091 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2092 memcpy (SDATA (val
), contents
, nbytes
);
2097 /* Make a string from NCHARS characters occupying NBYTES bytes at
2098 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2101 make_string_from_bytes (const char *contents
,
2102 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2104 register Lisp_Object val
;
2105 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2106 memcpy (SDATA (val
), contents
, nbytes
);
2107 if (SBYTES (val
) == SCHARS (val
))
2108 STRING_SET_UNIBYTE (val
);
2113 /* Make a string from NCHARS characters occupying NBYTES bytes at
2114 CONTENTS. The argument MULTIBYTE controls whether to label the
2115 string as multibyte. If NCHARS is negative, it counts the number of
2116 characters by itself. */
2119 make_specified_string (const char *contents
,
2120 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2127 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2132 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2133 memcpy (SDATA (val
), contents
, nbytes
);
2135 STRING_SET_UNIBYTE (val
);
2140 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2141 occupying LENGTH bytes. */
2144 make_uninit_string (EMACS_INT length
)
2149 return empty_unibyte_string
;
2150 val
= make_uninit_multibyte_string (length
, length
);
2151 STRING_SET_UNIBYTE (val
);
2156 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2157 which occupy NBYTES bytes. */
2160 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2163 struct Lisp_String
*s
;
2168 return empty_multibyte_string
;
2170 s
= allocate_string ();
2171 s
->intervals
= NULL
;
2172 allocate_string_data (s
, nchars
, nbytes
);
2173 XSETSTRING (string
, s
);
2174 string_chars_consed
+= nbytes
;
2178 /* Print arguments to BUF according to a FORMAT, then return
2179 a Lisp_String initialized with the data from BUF. */
2182 make_formatted_string (char *buf
, const char *format
, ...)
2187 va_start (ap
, format
);
2188 length
= vsprintf (buf
, format
, ap
);
2190 return make_string (buf
, length
);
2194 /***********************************************************************
2196 ***********************************************************************/
2198 /* We store float cells inside of float_blocks, allocating a new
2199 float_block with malloc whenever necessary. Float cells reclaimed
2200 by GC are put on a free list to be reallocated before allocating
2201 any new float cells from the latest float_block. */
2203 #define FLOAT_BLOCK_SIZE \
2204 (((BLOCK_BYTES - sizeof (struct float_block *) \
2205 /* The compiler might add padding at the end. */ \
2206 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2207 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2209 #define GETMARKBIT(block,n) \
2210 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2211 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2214 #define SETMARKBIT(block,n) \
2215 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2216 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2218 #define UNSETMARKBIT(block,n) \
2219 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2220 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2222 #define FLOAT_BLOCK(fptr) \
2223 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2225 #define FLOAT_INDEX(fptr) \
2226 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2230 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2231 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2232 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2233 struct float_block
*next
;
2236 #define FLOAT_MARKED_P(fptr) \
2237 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2239 #define FLOAT_MARK(fptr) \
2240 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2242 #define FLOAT_UNMARK(fptr) \
2243 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2245 /* Current float_block. */
2247 static struct float_block
*float_block
;
2249 /* Index of first unused Lisp_Float in the current float_block. */
2251 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2253 /* Free-list of Lisp_Floats. */
2255 static struct Lisp_Float
*float_free_list
;
2257 /* Return a new float object with value FLOAT_VALUE. */
2260 make_float (double float_value
)
2262 register Lisp_Object val
;
2266 if (float_free_list
)
2268 /* We use the data field for chaining the free list
2269 so that we won't use the same field that has the mark bit. */
2270 XSETFLOAT (val
, float_free_list
);
2271 float_free_list
= float_free_list
->u
.chain
;
2275 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2277 struct float_block
*new
2278 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2279 new->next
= float_block
;
2280 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2282 float_block_index
= 0;
2283 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2285 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2286 float_block_index
++;
2289 MALLOC_UNBLOCK_INPUT
;
2291 XFLOAT_INIT (val
, float_value
);
2292 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2293 consing_since_gc
+= sizeof (struct Lisp_Float
);
2295 total_free_floats
--;
2301 /***********************************************************************
2303 ***********************************************************************/
2305 /* We store cons cells inside of cons_blocks, allocating a new
2306 cons_block with malloc whenever necessary. Cons cells reclaimed by
2307 GC are put on a free list to be reallocated before allocating
2308 any new cons cells from the latest cons_block. */
2310 #define CONS_BLOCK_SIZE \
2311 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2312 /* The compiler might add padding at the end. */ \
2313 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2314 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2316 #define CONS_BLOCK(fptr) \
2317 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2319 #define CONS_INDEX(fptr) \
2320 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2324 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2325 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2326 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2327 struct cons_block
*next
;
2330 #define CONS_MARKED_P(fptr) \
2331 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2333 #define CONS_MARK(fptr) \
2334 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2336 #define CONS_UNMARK(fptr) \
2337 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2339 /* Current cons_block. */
2341 static struct cons_block
*cons_block
;
2343 /* Index of first unused Lisp_Cons in the current block. */
2345 static int cons_block_index
= CONS_BLOCK_SIZE
;
2347 /* Free-list of Lisp_Cons structures. */
2349 static struct Lisp_Cons
*cons_free_list
;
2351 /* Explicitly free a cons cell by putting it on the free-list. */
2354 free_cons (struct Lisp_Cons
*ptr
)
2356 ptr
->u
.chain
= cons_free_list
;
2360 cons_free_list
= ptr
;
2361 consing_since_gc
-= sizeof *ptr
;
2362 total_free_conses
++;
2365 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2366 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2367 (Lisp_Object car
, Lisp_Object cdr
)
2369 register Lisp_Object val
;
2375 /* We use the cdr for chaining the free list
2376 so that we won't use the same field that has the mark bit. */
2377 XSETCONS (val
, cons_free_list
);
2378 cons_free_list
= cons_free_list
->u
.chain
;
2382 if (cons_block_index
== CONS_BLOCK_SIZE
)
2384 struct cons_block
*new
2385 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2386 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2387 new->next
= cons_block
;
2389 cons_block_index
= 0;
2390 total_free_conses
+= CONS_BLOCK_SIZE
;
2392 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2396 MALLOC_UNBLOCK_INPUT
;
2400 eassert (!CONS_MARKED_P (XCONS (val
)));
2401 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2402 total_free_conses
--;
2403 cons_cells_consed
++;
2407 #ifdef GC_CHECK_CONS_LIST
2408 /* Get an error now if there's any junk in the cons free list. */
2410 check_cons_list (void)
2412 struct Lisp_Cons
*tail
= cons_free_list
;
2415 tail
= tail
->u
.chain
;
2419 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2422 list1 (Lisp_Object arg1
)
2424 return Fcons (arg1
, Qnil
);
2428 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2430 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2435 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2437 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2442 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2444 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2449 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2451 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2452 Fcons (arg5
, Qnil
)))));
2455 /* Make a list of COUNT Lisp_Objects, where ARG is the
2456 first one. Allocate conses from pure space if TYPE
2457 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2460 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2464 Lisp_Object val
, *objp
;
2466 /* Change to SAFE_ALLOCA if you hit this eassert. */
2467 eassert (count
<= MAX_ALLOCA
/ word_size
);
2469 objp
= alloca (count
* word_size
);
2472 for (i
= 1; i
< count
; i
++)
2473 objp
[i
] = va_arg (ap
, Lisp_Object
);
2476 for (val
= Qnil
, i
= count
- 1; i
>= 0; i
--)
2478 if (type
== CONSTYPE_PURE
)
2479 val
= pure_cons (objp
[i
], val
);
2480 else if (type
== CONSTYPE_HEAP
)
2481 val
= Fcons (objp
[i
], val
);
2488 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2489 doc
: /* Return a newly created list with specified arguments as elements.
2490 Any number of arguments, even zero arguments, are allowed.
2491 usage: (list &rest OBJECTS) */)
2492 (ptrdiff_t nargs
, Lisp_Object
*args
)
2494 register Lisp_Object val
;
2500 val
= Fcons (args
[nargs
], val
);
2506 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2507 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2508 (register Lisp_Object length
, Lisp_Object init
)
2510 register Lisp_Object val
;
2511 register EMACS_INT size
;
2513 CHECK_NATNUM (length
);
2514 size
= XFASTINT (length
);
2519 val
= Fcons (init
, val
);
2524 val
= Fcons (init
, val
);
2529 val
= Fcons (init
, val
);
2534 val
= Fcons (init
, val
);
2539 val
= Fcons (init
, val
);
2554 /***********************************************************************
2556 ***********************************************************************/
2558 /* This value is balanced well enough to avoid too much internal overhead
2559 for the most common cases; it's not required to be a power of two, but
2560 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2562 #define VECTOR_BLOCK_SIZE 4096
2564 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2567 roundup_size
= COMMON_MULTIPLE (word_size
, USE_LSB_TAG
? GCALIGNMENT
: 1)
2570 /* ROUNDUP_SIZE must be a power of 2. */
2571 verify ((roundup_size
& (roundup_size
- 1)) == 0);
2573 /* Verify assumptions described above. */
2574 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2575 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2577 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2579 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2581 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2583 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2585 /* Size of the minimal vector allocated from block. */
2587 #define VBLOCK_BYTES_MIN vroundup (header_size + sizeof (Lisp_Object))
2589 /* Size of the largest vector allocated from block. */
2591 #define VBLOCK_BYTES_MAX \
2592 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2594 /* We maintain one free list for each possible block-allocated
2595 vector size, and this is the number of free lists we have. */
2597 #define VECTOR_MAX_FREE_LIST_INDEX \
2598 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2600 /* Common shortcut to advance vector pointer over a block data. */
2602 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2604 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2606 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2608 /* Get and set the next field in block-allocated vectorlike objects on
2609 the free list. Doing it this way respects C's aliasing rules.
2610 We could instead make 'contents' a union, but that would mean
2611 changes everywhere that the code uses 'contents'. */
2612 static struct Lisp_Vector
*
2613 next_in_free_list (struct Lisp_Vector
*v
)
2615 intptr_t i
= XLI (v
->contents
[0]);
2616 return (struct Lisp_Vector
*) i
;
2619 set_next_in_free_list (struct Lisp_Vector
*v
, struct Lisp_Vector
*next
)
2621 v
->contents
[0] = XIL ((intptr_t) next
);
2624 /* Common shortcut to setup vector on a free list. */
2626 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2628 (tmp) = ((nbytes - header_size) / word_size); \
2629 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2630 eassert ((nbytes) % roundup_size == 0); \
2631 (tmp) = VINDEX (nbytes); \
2632 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2633 set_next_in_free_list (v, vector_free_lists[tmp]); \
2634 vector_free_lists[tmp] = (v); \
2635 total_free_vector_slots += (nbytes) / word_size; \
2638 /* This internal type is used to maintain the list of large vectors
2639 which are allocated at their own, e.g. outside of vector blocks. */
2644 struct large_vector
*vector
;
2646 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2647 unsigned char c
[vroundup (sizeof (struct large_vector
*))];
2650 struct Lisp_Vector v
;
2653 /* This internal type is used to maintain an underlying storage
2654 for small vectors. */
2658 char data
[VECTOR_BLOCK_BYTES
];
2659 struct vector_block
*next
;
2662 /* Chain of vector blocks. */
2664 static struct vector_block
*vector_blocks
;
2666 /* Vector free lists, where NTH item points to a chain of free
2667 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2669 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2671 /* Singly-linked list of large vectors. */
2673 static struct large_vector
*large_vectors
;
2675 /* The only vector with 0 slots, allocated from pure space. */
2677 Lisp_Object zero_vector
;
2679 /* Number of live vectors. */
2681 static EMACS_INT total_vectors
;
2683 /* Total size of live and free vectors, in Lisp_Object units. */
2685 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2687 /* Get a new vector block. */
2689 static struct vector_block
*
2690 allocate_vector_block (void)
2692 struct vector_block
*block
= xmalloc (sizeof *block
);
2694 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2695 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2696 MEM_TYPE_VECTOR_BLOCK
);
2699 block
->next
= vector_blocks
;
2700 vector_blocks
= block
;
2704 /* Called once to initialize vector allocation. */
2709 zero_vector
= make_pure_vector (0);
2712 /* Allocate vector from a vector block. */
2714 static struct Lisp_Vector
*
2715 allocate_vector_from_block (size_t nbytes
)
2717 struct Lisp_Vector
*vector
;
2718 struct vector_block
*block
;
2719 size_t index
, restbytes
;
2721 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2722 eassert (nbytes
% roundup_size
== 0);
2724 /* First, try to allocate from a free list
2725 containing vectors of the requested size. */
2726 index
= VINDEX (nbytes
);
2727 if (vector_free_lists
[index
])
2729 vector
= vector_free_lists
[index
];
2730 vector_free_lists
[index
] = next_in_free_list (vector
);
2731 total_free_vector_slots
-= nbytes
/ word_size
;
2735 /* Next, check free lists containing larger vectors. Since
2736 we will split the result, we should have remaining space
2737 large enough to use for one-slot vector at least. */
2738 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2739 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2740 if (vector_free_lists
[index
])
2742 /* This vector is larger than requested. */
2743 vector
= vector_free_lists
[index
];
2744 vector_free_lists
[index
] = next_in_free_list (vector
);
2745 total_free_vector_slots
-= nbytes
/ word_size
;
2747 /* Excess bytes are used for the smaller vector,
2748 which should be set on an appropriate free list. */
2749 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2750 eassert (restbytes
% roundup_size
== 0);
2751 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2755 /* Finally, need a new vector block. */
2756 block
= allocate_vector_block ();
2758 /* New vector will be at the beginning of this block. */
2759 vector
= (struct Lisp_Vector
*) block
->data
;
2761 /* If the rest of space from this block is large enough
2762 for one-slot vector at least, set up it on a free list. */
2763 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2764 if (restbytes
>= VBLOCK_BYTES_MIN
)
2766 eassert (restbytes
% roundup_size
== 0);
2767 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2772 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2774 #define VECTOR_IN_BLOCK(vector, block) \
2775 ((char *) (vector) <= (block)->data \
2776 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2778 /* Return the memory footprint of V in bytes. */
2781 vector_nbytes (struct Lisp_Vector
*v
)
2783 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2785 if (size
& PSEUDOVECTOR_FLAG
)
2787 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2788 size
= (bool_header_size
2789 + (((struct Lisp_Bool_Vector
*) v
)->size
2790 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2791 / BOOL_VECTOR_BITS_PER_CHAR
);
2794 + ((size
& PSEUDOVECTOR_SIZE_MASK
)
2795 + ((size
& PSEUDOVECTOR_REST_MASK
)
2796 >> PSEUDOVECTOR_SIZE_BITS
)) * word_size
);
2799 size
= header_size
+ size
* word_size
;
2800 return vroundup (size
);
2803 /* Reclaim space used by unmarked vectors. */
2806 sweep_vectors (void)
2808 struct vector_block
*block
, **bprev
= &vector_blocks
;
2809 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2810 struct Lisp_Vector
*vector
, *next
;
2812 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2813 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2815 /* Looking through vector blocks. */
2817 for (block
= vector_blocks
; block
; block
= *bprev
)
2819 bool free_this_block
= 0;
2822 for (vector
= (struct Lisp_Vector
*) block
->data
;
2823 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
2825 if (VECTOR_MARKED_P (vector
))
2827 VECTOR_UNMARK (vector
);
2829 nbytes
= vector_nbytes (vector
);
2830 total_vector_slots
+= nbytes
/ word_size
;
2831 next
= ADVANCE (vector
, nbytes
);
2835 ptrdiff_t total_bytes
;
2837 nbytes
= vector_nbytes (vector
);
2838 total_bytes
= nbytes
;
2839 next
= ADVANCE (vector
, nbytes
);
2841 /* While NEXT is not marked, try to coalesce with VECTOR,
2842 thus making VECTOR of the largest possible size. */
2844 while (VECTOR_IN_BLOCK (next
, block
))
2846 if (VECTOR_MARKED_P (next
))
2848 nbytes
= vector_nbytes (next
);
2849 total_bytes
+= nbytes
;
2850 next
= ADVANCE (next
, nbytes
);
2853 eassert (total_bytes
% roundup_size
== 0);
2855 if (vector
== (struct Lisp_Vector
*) block
->data
2856 && !VECTOR_IN_BLOCK (next
, block
))
2857 /* This block should be freed because all of it's
2858 space was coalesced into the only free vector. */
2859 free_this_block
= 1;
2863 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
2868 if (free_this_block
)
2870 *bprev
= block
->next
;
2871 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2872 mem_delete (mem_find (block
->data
));
2877 bprev
= &block
->next
;
2880 /* Sweep large vectors. */
2882 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
2885 if (VECTOR_MARKED_P (vector
))
2887 VECTOR_UNMARK (vector
);
2889 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
2891 struct Lisp_Bool_Vector
*b
= (struct Lisp_Bool_Vector
*) vector
;
2893 /* All non-bool pseudovectors are small enough to be allocated
2894 from vector blocks. This code should be redesigned if some
2895 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2896 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
2899 += (bool_header_size
2900 + ((b
->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2901 / BOOL_VECTOR_BITS_PER_CHAR
)) / word_size
;
2905 += header_size
/ word_size
+ vector
->header
.size
;
2906 lvprev
= &lv
->next
.vector
;
2910 *lvprev
= lv
->next
.vector
;
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2919 static struct Lisp_Vector
*
2920 allocate_vectorlike (ptrdiff_t len
)
2922 struct Lisp_Vector
*p
;
2927 p
= XVECTOR (zero_vector
);
2930 size_t nbytes
= header_size
+ len
* word_size
;
2932 #ifdef DOUG_LEA_MALLOC
2933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2934 because mapped region contents are not preserved in
2936 mallopt (M_MMAP_MAX
, 0);
2939 if (nbytes
<= VBLOCK_BYTES_MAX
)
2940 p
= allocate_vector_from_block (vroundup (nbytes
));
2943 struct large_vector
*lv
2944 = lisp_malloc ((offsetof (struct large_vector
, v
.contents
)
2946 MEM_TYPE_VECTORLIKE
);
2947 lv
->next
.vector
= large_vectors
;
2952 #ifdef DOUG_LEA_MALLOC
2953 /* Back to a reasonable maximum of mmap'ed areas. */
2954 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2957 consing_since_gc
+= nbytes
;
2958 vector_cells_consed
+= len
;
2961 MALLOC_UNBLOCK_INPUT
;
2967 /* Allocate a vector with LEN slots. */
2969 struct Lisp_Vector
*
2970 allocate_vector (EMACS_INT len
)
2972 struct Lisp_Vector
*v
;
2973 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
2975 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
2976 memory_full (SIZE_MAX
);
2977 v
= allocate_vectorlike (len
);
2978 v
->header
.size
= len
;
2983 /* Allocate other vector-like structures. */
2985 struct Lisp_Vector
*
2986 allocate_pseudovector (int memlen
, int lisplen
, enum pvec_type tag
)
2988 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
2991 /* Catch bogus values. */
2992 eassert (tag
<= PVEC_FONT
);
2993 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
2994 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
2996 /* Only the first lisplen slots will be traced normally by the GC. */
2997 for (i
= 0; i
< lisplen
; ++i
)
2998 v
->contents
[i
] = Qnil
;
3000 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3005 allocate_buffer (void)
3007 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3009 BUFFER_PVEC_INIT (b
);
3010 /* Put B on the chain of all buffers including killed ones. */
3011 b
->next
= all_buffers
;
3013 /* Note that the rest fields of B are not initialized. */
3017 struct Lisp_Hash_Table
*
3018 allocate_hash_table (void)
3020 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
3024 allocate_window (void)
3028 w
= ALLOCATE_PSEUDOVECTOR (struct window
, current_matrix
, PVEC_WINDOW
);
3029 /* Users assumes that non-Lisp data is zeroed. */
3030 memset (&w
->current_matrix
, 0,
3031 sizeof (*w
) - offsetof (struct window
, current_matrix
));
3036 allocate_terminal (void)
3040 t
= ALLOCATE_PSEUDOVECTOR (struct terminal
, next_terminal
, PVEC_TERMINAL
);
3041 /* Users assumes that non-Lisp data is zeroed. */
3042 memset (&t
->next_terminal
, 0,
3043 sizeof (*t
) - offsetof (struct terminal
, next_terminal
));
3048 allocate_frame (void)
3052 f
= ALLOCATE_PSEUDOVECTOR (struct frame
, face_cache
, PVEC_FRAME
);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&f
->face_cache
, 0,
3055 sizeof (*f
) - offsetof (struct frame
, face_cache
));
3059 struct Lisp_Process
*
3060 allocate_process (void)
3062 struct Lisp_Process
*p
;
3064 p
= ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
3065 /* Users assumes that non-Lisp data is zeroed. */
3067 sizeof (*p
) - offsetof (struct Lisp_Process
, pid
));
3071 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3072 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3073 See also the function `vector'. */)
3074 (register Lisp_Object length
, Lisp_Object init
)
3077 register ptrdiff_t sizei
;
3078 register ptrdiff_t i
;
3079 register struct Lisp_Vector
*p
;
3081 CHECK_NATNUM (length
);
3083 p
= allocate_vector (XFASTINT (length
));
3084 sizei
= XFASTINT (length
);
3085 for (i
= 0; i
< sizei
; i
++)
3086 p
->contents
[i
] = init
;
3088 XSETVECTOR (vector
, p
);
3093 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3094 doc
: /* Return a newly created vector with specified arguments as elements.
3095 Any number of arguments, even zero arguments, are allowed.
3096 usage: (vector &rest OBJECTS) */)
3097 (ptrdiff_t nargs
, Lisp_Object
*args
)
3100 register Lisp_Object val
= make_uninit_vector (nargs
);
3101 register struct Lisp_Vector
*p
= XVECTOR (val
);
3103 for (i
= 0; i
< nargs
; i
++)
3104 p
->contents
[i
] = args
[i
];
3109 make_byte_code (struct Lisp_Vector
*v
)
3111 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3112 && STRING_MULTIBYTE (v
->contents
[1]))
3113 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3114 earlier because they produced a raw 8-bit string for byte-code
3115 and now such a byte-code string is loaded as multibyte while
3116 raw 8-bit characters converted to multibyte form. Thus, now we
3117 must convert them back to the original unibyte form. */
3118 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3119 XSETPVECTYPE (v
, PVEC_COMPILED
);
3122 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3123 doc
: /* Create a byte-code object with specified arguments as elements.
3124 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3125 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3126 and (optional) INTERACTIVE-SPEC.
3127 The first four arguments are required; at most six have any
3129 The ARGLIST can be either like the one of `lambda', in which case the arguments
3130 will be dynamically bound before executing the byte code, or it can be an
3131 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3132 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3133 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3134 argument to catch the left-over arguments. If such an integer is used, the
3135 arguments will not be dynamically bound but will be instead pushed on the
3136 stack before executing the byte-code.
3137 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3138 (ptrdiff_t nargs
, Lisp_Object
*args
)
3141 register Lisp_Object val
= make_uninit_vector (nargs
);
3142 register struct Lisp_Vector
*p
= XVECTOR (val
);
3144 /* We used to purecopy everything here, if purify-flag was set. This worked
3145 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3146 dangerous, since make-byte-code is used during execution to build
3147 closures, so any closure built during the preload phase would end up
3148 copied into pure space, including its free variables, which is sometimes
3149 just wasteful and other times plainly wrong (e.g. those free vars may want
3152 for (i
= 0; i
< nargs
; i
++)
3153 p
->contents
[i
] = args
[i
];
3155 XSETCOMPILED (val
, p
);
3161 /***********************************************************************
3163 ***********************************************************************/
3165 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3166 of the required alignment if LSB tags are used. */
3168 union aligned_Lisp_Symbol
3170 struct Lisp_Symbol s
;
3172 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3177 /* Each symbol_block is just under 1020 bytes long, since malloc
3178 really allocates in units of powers of two and uses 4 bytes for its
3181 #define SYMBOL_BLOCK_SIZE \
3182 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3186 /* Place `symbols' first, to preserve alignment. */
3187 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3188 struct symbol_block
*next
;
3191 /* Current symbol block and index of first unused Lisp_Symbol
3194 static struct symbol_block
*symbol_block
;
3195 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3197 /* List of free symbols. */
3199 static struct Lisp_Symbol
*symbol_free_list
;
3202 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3204 XSYMBOL (sym
)->name
= name
;
3207 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3208 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3209 Its value is void, and its function definition and property list are nil. */)
3212 register Lisp_Object val
;
3213 register struct Lisp_Symbol
*p
;
3215 CHECK_STRING (name
);
3219 if (symbol_free_list
)
3221 XSETSYMBOL (val
, symbol_free_list
);
3222 symbol_free_list
= symbol_free_list
->next
;
3226 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3228 struct symbol_block
*new
3229 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3230 new->next
= symbol_block
;
3232 symbol_block_index
= 0;
3233 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3235 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3236 symbol_block_index
++;
3239 MALLOC_UNBLOCK_INPUT
;
3242 set_symbol_name (val
, name
);
3243 set_symbol_plist (val
, Qnil
);
3244 p
->redirect
= SYMBOL_PLAINVAL
;
3245 SET_SYMBOL_VAL (p
, Qunbound
);
3246 set_symbol_function (val
, Qnil
);
3247 set_symbol_next (val
, NULL
);
3249 p
->interned
= SYMBOL_UNINTERNED
;
3251 p
->declared_special
= 0;
3252 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3254 total_free_symbols
--;
3260 /***********************************************************************
3261 Marker (Misc) Allocation
3262 ***********************************************************************/
3264 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3265 the required alignment when LSB tags are used. */
3267 union aligned_Lisp_Misc
3271 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3276 /* Allocation of markers and other objects that share that structure.
3277 Works like allocation of conses. */
3279 #define MARKER_BLOCK_SIZE \
3280 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3284 /* Place `markers' first, to preserve alignment. */
3285 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3286 struct marker_block
*next
;
3289 static struct marker_block
*marker_block
;
3290 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3292 static union Lisp_Misc
*marker_free_list
;
3294 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3297 allocate_misc (enum Lisp_Misc_Type type
)
3303 if (marker_free_list
)
3305 XSETMISC (val
, marker_free_list
);
3306 marker_free_list
= marker_free_list
->u_free
.chain
;
3310 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3312 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3313 new->next
= marker_block
;
3315 marker_block_index
= 0;
3316 total_free_markers
+= MARKER_BLOCK_SIZE
;
3318 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3319 marker_block_index
++;
3322 MALLOC_UNBLOCK_INPUT
;
3324 --total_free_markers
;
3325 consing_since_gc
+= sizeof (union Lisp_Misc
);
3326 misc_objects_consed
++;
3327 XMISCANY (val
)->type
= type
;
3328 XMISCANY (val
)->gcmarkbit
= 0;
3332 /* Free a Lisp_Misc object. */
3335 free_misc (Lisp_Object misc
)
3337 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3338 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3339 marker_free_list
= XMISC (misc
);
3340 consing_since_gc
-= sizeof (union Lisp_Misc
);
3341 total_free_markers
++;
3344 /* Verify properties of Lisp_Save_Value's representation
3345 that are assumed here and elsewhere. */
3347 verify (SAVE_UNUSED
== 0);
3348 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3352 /* Return Lisp_Save_Value objects for the various combinations
3353 that callers need. */
3356 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3358 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3359 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3360 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3361 p
->data
[0].integer
= a
;
3362 p
->data
[1].integer
= b
;
3363 p
->data
[2].integer
= c
;
3368 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3371 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3372 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3373 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3374 p
->data
[0].object
= a
;
3375 p
->data
[1].object
= b
;
3376 p
->data
[2].object
= c
;
3377 p
->data
[3].object
= d
;
3382 make_save_ptr (void *a
)
3384 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3385 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3386 p
->save_type
= SAVE_POINTER
;
3387 p
->data
[0].pointer
= a
;
3392 make_save_ptr_int (void *a
, ptrdiff_t b
)
3394 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3395 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3396 p
->save_type
= SAVE_TYPE_PTR_INT
;
3397 p
->data
[0].pointer
= a
;
3398 p
->data
[1].integer
= b
;
3402 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3404 make_save_ptr_ptr (void *a
, void *b
)
3406 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3407 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3408 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3409 p
->data
[0].pointer
= a
;
3410 p
->data
[1].pointer
= b
;
3416 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3418 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3419 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3420 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3421 p
->data
[0].funcpointer
= a
;
3422 p
->data
[1].pointer
= b
;
3423 p
->data
[2].object
= c
;
3427 /* Return a Lisp_Save_Value object that represents an array A
3428 of N Lisp objects. */
3431 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3433 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3434 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3435 p
->save_type
= SAVE_TYPE_MEMORY
;
3436 p
->data
[0].pointer
= a
;
3437 p
->data
[1].integer
= n
;
3441 /* Free a Lisp_Save_Value object. Do not use this function
3442 if SAVE contains pointer other than returned by xmalloc. */
3445 free_save_value (Lisp_Object save
)
3447 xfree (XSAVE_POINTER (save
, 0));
3451 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3454 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3456 register Lisp_Object overlay
;
3458 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3459 OVERLAY_START (overlay
) = start
;
3460 OVERLAY_END (overlay
) = end
;
3461 set_overlay_plist (overlay
, plist
);
3462 XOVERLAY (overlay
)->next
= NULL
;
3466 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3467 doc
: /* Return a newly allocated marker which does not point at any place. */)
3470 register Lisp_Object val
;
3471 register struct Lisp_Marker
*p
;
3473 val
= allocate_misc (Lisp_Misc_Marker
);
3479 p
->insertion_type
= 0;
3480 p
->need_adjustment
= 0;
3484 /* Return a newly allocated marker which points into BUF
3485 at character position CHARPOS and byte position BYTEPOS. */
3488 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3491 struct Lisp_Marker
*m
;
3493 /* No dead buffers here. */
3494 eassert (BUFFER_LIVE_P (buf
));
3496 /* Every character is at least one byte. */
3497 eassert (charpos
<= bytepos
);
3499 obj
= allocate_misc (Lisp_Misc_Marker
);
3502 m
->charpos
= charpos
;
3503 m
->bytepos
= bytepos
;
3504 m
->insertion_type
= 0;
3505 m
->need_adjustment
= 0;
3506 m
->next
= BUF_MARKERS (buf
);
3507 BUF_MARKERS (buf
) = m
;
3511 /* Put MARKER back on the free list after using it temporarily. */
3514 free_marker (Lisp_Object marker
)
3516 unchain_marker (XMARKER (marker
));
3521 /* Return a newly created vector or string with specified arguments as
3522 elements. If all the arguments are characters that can fit
3523 in a string of events, make a string; otherwise, make a vector.
3525 Any number of arguments, even zero arguments, are allowed. */
3528 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3532 for (i
= 0; i
< nargs
; i
++)
3533 /* The things that fit in a string
3534 are characters that are in 0...127,
3535 after discarding the meta bit and all the bits above it. */
3536 if (!INTEGERP (args
[i
])
3537 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3538 return Fvector (nargs
, args
);
3540 /* Since the loop exited, we know that all the things in it are
3541 characters, so we can make a string. */
3545 result
= Fmake_string (make_number (nargs
), make_number (0));
3546 for (i
= 0; i
< nargs
; i
++)
3548 SSET (result
, i
, XINT (args
[i
]));
3549 /* Move the meta bit to the right place for a string char. */
3550 if (XINT (args
[i
]) & CHAR_META
)
3551 SSET (result
, i
, SREF (result
, i
) | 0x80);
3560 /************************************************************************
3561 Memory Full Handling
3562 ************************************************************************/
3565 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3566 there may have been size_t overflow so that malloc was never
3567 called, or perhaps malloc was invoked successfully but the
3568 resulting pointer had problems fitting into a tagged EMACS_INT. In
3569 either case this counts as memory being full even though malloc did
3573 memory_full (size_t nbytes
)
3575 /* Do not go into hysterics merely because a large request failed. */
3576 bool enough_free_memory
= 0;
3577 if (SPARE_MEMORY
< nbytes
)
3582 p
= malloc (SPARE_MEMORY
);
3586 enough_free_memory
= 1;
3588 MALLOC_UNBLOCK_INPUT
;
3591 if (! enough_free_memory
)
3597 memory_full_cons_threshold
= sizeof (struct cons_block
);
3599 /* The first time we get here, free the spare memory. */
3600 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3601 if (spare_memory
[i
])
3604 free (spare_memory
[i
]);
3605 else if (i
>= 1 && i
<= 4)
3606 lisp_align_free (spare_memory
[i
]);
3608 lisp_free (spare_memory
[i
]);
3609 spare_memory
[i
] = 0;
3613 /* This used to call error, but if we've run out of memory, we could
3614 get infinite recursion trying to build the string. */
3615 xsignal (Qnil
, Vmemory_signal_data
);
3618 /* If we released our reserve (due to running out of memory),
3619 and we have a fair amount free once again,
3620 try to set aside another reserve in case we run out once more.
3622 This is called when a relocatable block is freed in ralloc.c,
3623 and also directly from this file, in case we're not using ralloc.c. */
3626 refill_memory_reserve (void)
3628 #ifndef SYSTEM_MALLOC
3629 if (spare_memory
[0] == 0)
3630 spare_memory
[0] = malloc (SPARE_MEMORY
);
3631 if (spare_memory
[1] == 0)
3632 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3634 if (spare_memory
[2] == 0)
3635 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3637 if (spare_memory
[3] == 0)
3638 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3640 if (spare_memory
[4] == 0)
3641 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3643 if (spare_memory
[5] == 0)
3644 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3646 if (spare_memory
[6] == 0)
3647 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3649 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3650 Vmemory_full
= Qnil
;
3654 /************************************************************************
3656 ************************************************************************/
3658 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3660 /* Conservative C stack marking requires a method to identify possibly
3661 live Lisp objects given a pointer value. We do this by keeping
3662 track of blocks of Lisp data that are allocated in a red-black tree
3663 (see also the comment of mem_node which is the type of nodes in
3664 that tree). Function lisp_malloc adds information for an allocated
3665 block to the red-black tree with calls to mem_insert, and function
3666 lisp_free removes it with mem_delete. Functions live_string_p etc
3667 call mem_find to lookup information about a given pointer in the
3668 tree, and use that to determine if the pointer points to a Lisp
3671 /* Initialize this part of alloc.c. */
3676 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3677 mem_z
.parent
= NULL
;
3678 mem_z
.color
= MEM_BLACK
;
3679 mem_z
.start
= mem_z
.end
= NULL
;
3684 /* Value is a pointer to the mem_node containing START. Value is
3685 MEM_NIL if there is no node in the tree containing START. */
3687 static struct mem_node
*
3688 mem_find (void *start
)
3692 if (start
< min_heap_address
|| start
> max_heap_address
)
3695 /* Make the search always successful to speed up the loop below. */
3696 mem_z
.start
= start
;
3697 mem_z
.end
= (char *) start
+ 1;
3700 while (start
< p
->start
|| start
>= p
->end
)
3701 p
= start
< p
->start
? p
->left
: p
->right
;
3706 /* Insert a new node into the tree for a block of memory with start
3707 address START, end address END, and type TYPE. Value is a
3708 pointer to the node that was inserted. */
3710 static struct mem_node
*
3711 mem_insert (void *start
, void *end
, enum mem_type type
)
3713 struct mem_node
*c
, *parent
, *x
;
3715 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3716 min_heap_address
= start
;
3717 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3718 max_heap_address
= end
;
3720 /* See where in the tree a node for START belongs. In this
3721 particular application, it shouldn't happen that a node is already
3722 present. For debugging purposes, let's check that. */
3726 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3728 while (c
!= MEM_NIL
)
3730 if (start
>= c
->start
&& start
< c
->end
)
3733 c
= start
< c
->start
? c
->left
: c
->right
;
3736 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3738 while (c
!= MEM_NIL
)
3741 c
= start
< c
->start
? c
->left
: c
->right
;
3744 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3746 /* Create a new node. */
3747 #ifdef GC_MALLOC_CHECK
3748 x
= malloc (sizeof *x
);
3752 x
= xmalloc (sizeof *x
);
3758 x
->left
= x
->right
= MEM_NIL
;
3761 /* Insert it as child of PARENT or install it as root. */
3764 if (start
< parent
->start
)
3772 /* Re-establish red-black tree properties. */
3773 mem_insert_fixup (x
);
3779 /* Re-establish the red-black properties of the tree, and thereby
3780 balance the tree, after node X has been inserted; X is always red. */
3783 mem_insert_fixup (struct mem_node
*x
)
3785 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3787 /* X is red and its parent is red. This is a violation of
3788 red-black tree property #3. */
3790 if (x
->parent
== x
->parent
->parent
->left
)
3792 /* We're on the left side of our grandparent, and Y is our
3794 struct mem_node
*y
= x
->parent
->parent
->right
;
3796 if (y
->color
== MEM_RED
)
3798 /* Uncle and parent are red but should be black because
3799 X is red. Change the colors accordingly and proceed
3800 with the grandparent. */
3801 x
->parent
->color
= MEM_BLACK
;
3802 y
->color
= MEM_BLACK
;
3803 x
->parent
->parent
->color
= MEM_RED
;
3804 x
= x
->parent
->parent
;
3808 /* Parent and uncle have different colors; parent is
3809 red, uncle is black. */
3810 if (x
== x
->parent
->right
)
3813 mem_rotate_left (x
);
3816 x
->parent
->color
= MEM_BLACK
;
3817 x
->parent
->parent
->color
= MEM_RED
;
3818 mem_rotate_right (x
->parent
->parent
);
3823 /* This is the symmetrical case of above. */
3824 struct mem_node
*y
= x
->parent
->parent
->left
;
3826 if (y
->color
== MEM_RED
)
3828 x
->parent
->color
= MEM_BLACK
;
3829 y
->color
= MEM_BLACK
;
3830 x
->parent
->parent
->color
= MEM_RED
;
3831 x
= x
->parent
->parent
;
3835 if (x
== x
->parent
->left
)
3838 mem_rotate_right (x
);
3841 x
->parent
->color
= MEM_BLACK
;
3842 x
->parent
->parent
->color
= MEM_RED
;
3843 mem_rotate_left (x
->parent
->parent
);
3848 /* The root may have been changed to red due to the algorithm. Set
3849 it to black so that property #5 is satisfied. */
3850 mem_root
->color
= MEM_BLACK
;
3861 mem_rotate_left (struct mem_node
*x
)
3865 /* Turn y's left sub-tree into x's right sub-tree. */
3868 if (y
->left
!= MEM_NIL
)
3869 y
->left
->parent
= x
;
3871 /* Y's parent was x's parent. */
3873 y
->parent
= x
->parent
;
3875 /* Get the parent to point to y instead of x. */
3878 if (x
== x
->parent
->left
)
3879 x
->parent
->left
= y
;
3881 x
->parent
->right
= y
;
3886 /* Put x on y's left. */
3900 mem_rotate_right (struct mem_node
*x
)
3902 struct mem_node
*y
= x
->left
;
3905 if (y
->right
!= MEM_NIL
)
3906 y
->right
->parent
= x
;
3909 y
->parent
= x
->parent
;
3912 if (x
== x
->parent
->right
)
3913 x
->parent
->right
= y
;
3915 x
->parent
->left
= y
;
3926 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3929 mem_delete (struct mem_node
*z
)
3931 struct mem_node
*x
, *y
;
3933 if (!z
|| z
== MEM_NIL
)
3936 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3941 while (y
->left
!= MEM_NIL
)
3945 if (y
->left
!= MEM_NIL
)
3950 x
->parent
= y
->parent
;
3953 if (y
== y
->parent
->left
)
3954 y
->parent
->left
= x
;
3956 y
->parent
->right
= x
;
3963 z
->start
= y
->start
;
3968 if (y
->color
== MEM_BLACK
)
3969 mem_delete_fixup (x
);
3971 #ifdef GC_MALLOC_CHECK
3979 /* Re-establish the red-black properties of the tree, after a
3983 mem_delete_fixup (struct mem_node
*x
)
3985 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3987 if (x
== x
->parent
->left
)
3989 struct mem_node
*w
= x
->parent
->right
;
3991 if (w
->color
== MEM_RED
)
3993 w
->color
= MEM_BLACK
;
3994 x
->parent
->color
= MEM_RED
;
3995 mem_rotate_left (x
->parent
);
3996 w
= x
->parent
->right
;
3999 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4006 if (w
->right
->color
== MEM_BLACK
)
4008 w
->left
->color
= MEM_BLACK
;
4010 mem_rotate_right (w
);
4011 w
= x
->parent
->right
;
4013 w
->color
= x
->parent
->color
;
4014 x
->parent
->color
= MEM_BLACK
;
4015 w
->right
->color
= MEM_BLACK
;
4016 mem_rotate_left (x
->parent
);
4022 struct mem_node
*w
= x
->parent
->left
;
4024 if (w
->color
== MEM_RED
)
4026 w
->color
= MEM_BLACK
;
4027 x
->parent
->color
= MEM_RED
;
4028 mem_rotate_right (x
->parent
);
4029 w
= x
->parent
->left
;
4032 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4039 if (w
->left
->color
== MEM_BLACK
)
4041 w
->right
->color
= MEM_BLACK
;
4043 mem_rotate_left (w
);
4044 w
= x
->parent
->left
;
4047 w
->color
= x
->parent
->color
;
4048 x
->parent
->color
= MEM_BLACK
;
4049 w
->left
->color
= MEM_BLACK
;
4050 mem_rotate_right (x
->parent
);
4056 x
->color
= MEM_BLACK
;
4060 /* Value is non-zero if P is a pointer to a live Lisp string on
4061 the heap. M is a pointer to the mem_block for P. */
4064 live_string_p (struct mem_node
*m
, void *p
)
4066 if (m
->type
== MEM_TYPE_STRING
)
4068 struct string_block
*b
= m
->start
;
4069 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4071 /* P must point to the start of a Lisp_String structure, and it
4072 must not be on the free-list. */
4074 && offset
% sizeof b
->strings
[0] == 0
4075 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4076 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4083 /* Value is non-zero if P is a pointer to a live Lisp cons on
4084 the heap. M is a pointer to the mem_block for P. */
4087 live_cons_p (struct mem_node
*m
, void *p
)
4089 if (m
->type
== MEM_TYPE_CONS
)
4091 struct cons_block
*b
= m
->start
;
4092 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4094 /* P must point to the start of a Lisp_Cons, not be
4095 one of the unused cells in the current cons block,
4096 and not be on the free-list. */
4098 && offset
% sizeof b
->conses
[0] == 0
4099 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4101 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4102 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4109 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4110 the heap. M is a pointer to the mem_block for P. */
4113 live_symbol_p (struct mem_node
*m
, void *p
)
4115 if (m
->type
== MEM_TYPE_SYMBOL
)
4117 struct symbol_block
*b
= m
->start
;
4118 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4120 /* P must point to the start of a Lisp_Symbol, not be
4121 one of the unused cells in the current symbol block,
4122 and not be on the free-list. */
4124 && offset
% sizeof b
->symbols
[0] == 0
4125 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4126 && (b
!= symbol_block
4127 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4128 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4135 /* Value is non-zero if P is a pointer to a live Lisp float on
4136 the heap. M is a pointer to the mem_block for P. */
4139 live_float_p (struct mem_node
*m
, void *p
)
4141 if (m
->type
== MEM_TYPE_FLOAT
)
4143 struct float_block
*b
= m
->start
;
4144 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4146 /* P must point to the start of a Lisp_Float and not be
4147 one of the unused cells in the current float block. */
4149 && offset
% sizeof b
->floats
[0] == 0
4150 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4151 && (b
!= float_block
4152 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4159 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4160 the heap. M is a pointer to the mem_block for P. */
4163 live_misc_p (struct mem_node
*m
, void *p
)
4165 if (m
->type
== MEM_TYPE_MISC
)
4167 struct marker_block
*b
= m
->start
;
4168 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4170 /* P must point to the start of a Lisp_Misc, not be
4171 one of the unused cells in the current misc block,
4172 and not be on the free-list. */
4174 && offset
% sizeof b
->markers
[0] == 0
4175 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4176 && (b
!= marker_block
4177 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4178 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4185 /* Value is non-zero if P is a pointer to a live vector-like object.
4186 M is a pointer to the mem_block for P. */
4189 live_vector_p (struct mem_node
*m
, void *p
)
4191 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4193 /* This memory node corresponds to a vector block. */
4194 struct vector_block
*block
= m
->start
;
4195 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4197 /* P is in the block's allocation range. Scan the block
4198 up to P and see whether P points to the start of some
4199 vector which is not on a free list. FIXME: check whether
4200 some allocation patterns (probably a lot of short vectors)
4201 may cause a substantial overhead of this loop. */
4202 while (VECTOR_IN_BLOCK (vector
, block
)
4203 && vector
<= (struct Lisp_Vector
*) p
)
4205 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4208 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4211 else if (m
->type
== MEM_TYPE_VECTORLIKE
4212 && (char *) p
== ((char *) m
->start
4213 + offsetof (struct large_vector
, v
)))
4214 /* This memory node corresponds to a large vector. */
4220 /* Value is non-zero if P is a pointer to a live buffer. M is a
4221 pointer to the mem_block for P. */
4224 live_buffer_p (struct mem_node
*m
, void *p
)
4226 /* P must point to the start of the block, and the buffer
4227 must not have been killed. */
4228 return (m
->type
== MEM_TYPE_BUFFER
4230 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4233 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4237 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4239 /* Currently not used, but may be called from gdb. */
4241 void dump_zombies (void) EXTERNALLY_VISIBLE
;
4243 /* Array of objects that are kept alive because the C stack contains
4244 a pattern that looks like a reference to them . */
4246 #define MAX_ZOMBIES 10
4247 static Lisp_Object zombies
[MAX_ZOMBIES
];
4249 /* Number of zombie objects. */
4251 static EMACS_INT nzombies
;
4253 /* Number of garbage collections. */
4255 static EMACS_INT ngcs
;
4257 /* Average percentage of zombies per collection. */
4259 static double avg_zombies
;
4261 /* Max. number of live and zombie objects. */
4263 static EMACS_INT max_live
, max_zombies
;
4265 /* Average number of live objects per GC. */
4267 static double avg_live
;
4269 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4270 doc
: /* Show information about live and zombie objects. */)
4273 Lisp_Object args
[8], zombie_list
= Qnil
;
4275 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4276 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4277 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4278 args
[1] = make_number (ngcs
);
4279 args
[2] = make_float (avg_live
);
4280 args
[3] = make_float (avg_zombies
);
4281 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
4282 args
[5] = make_number (max_live
);
4283 args
[6] = make_number (max_zombies
);
4284 args
[7] = zombie_list
;
4285 return Fmessage (8, args
);
4288 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4291 /* Mark OBJ if we can prove it's a Lisp_Object. */
4294 mark_maybe_object (Lisp_Object obj
)
4302 po
= (void *) XPNTR (obj
);
4309 switch (XTYPE (obj
))
4312 mark_p
= (live_string_p (m
, po
)
4313 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4317 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4321 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4325 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4328 case Lisp_Vectorlike
:
4329 /* Note: can't check BUFFERP before we know it's a
4330 buffer because checking that dereferences the pointer
4331 PO which might point anywhere. */
4332 if (live_vector_p (m
, po
))
4333 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4334 else if (live_buffer_p (m
, po
))
4335 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4339 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4348 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4349 if (nzombies
< MAX_ZOMBIES
)
4350 zombies
[nzombies
] = obj
;
4359 /* If P points to Lisp data, mark that as live if it isn't already
4363 mark_maybe_pointer (void *p
)
4367 /* Quickly rule out some values which can't point to Lisp data.
4368 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4369 Otherwise, assume that Lisp data is aligned on even addresses. */
4370 if ((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2))
4376 Lisp_Object obj
= Qnil
;
4380 case MEM_TYPE_NON_LISP
:
4381 case MEM_TYPE_SPARE
:
4382 /* Nothing to do; not a pointer to Lisp memory. */
4385 case MEM_TYPE_BUFFER
:
4386 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4387 XSETVECTOR (obj
, p
);
4391 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4395 case MEM_TYPE_STRING
:
4396 if (live_string_p (m
, p
)
4397 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4398 XSETSTRING (obj
, p
);
4402 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4406 case MEM_TYPE_SYMBOL
:
4407 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4408 XSETSYMBOL (obj
, p
);
4411 case MEM_TYPE_FLOAT
:
4412 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4416 case MEM_TYPE_VECTORLIKE
:
4417 case MEM_TYPE_VECTOR_BLOCK
:
4418 if (live_vector_p (m
, p
))
4421 XSETVECTOR (tem
, p
);
4422 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4437 /* Alignment of pointer values. Use alignof, as it sometimes returns
4438 a smaller alignment than GCC's __alignof__ and mark_memory might
4439 miss objects if __alignof__ were used. */
4440 #define GC_POINTER_ALIGNMENT alignof (void *)
4442 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4443 not suffice, which is the typical case. A host where a Lisp_Object is
4444 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4445 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4446 suffice to widen it to to a Lisp_Object and check it that way. */
4447 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4448 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4449 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4450 nor mark_maybe_object can follow the pointers. This should not occur on
4451 any practical porting target. */
4452 # error "MSB type bits straddle pointer-word boundaries"
4454 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4455 pointer words that hold pointers ORed with type bits. */
4456 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4458 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4459 words that hold unmodified pointers. */
4460 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4463 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4464 or END+OFFSET..START. */
4467 mark_memory (void *start
, void *end
)
4468 #if defined (__clang__) && defined (__has_feature)
4469 #if __has_feature(address_sanitizer)
4470 /* Do not allow -faddress-sanitizer to check this function, since it
4471 crosses the function stack boundary, and thus would yield many
4473 __attribute__((no_address_safety_analysis
))
4480 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4484 /* Make START the pointer to the start of the memory region,
4485 if it isn't already. */
4493 /* Mark Lisp data pointed to. This is necessary because, in some
4494 situations, the C compiler optimizes Lisp objects away, so that
4495 only a pointer to them remains. Example:
4497 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4500 Lisp_Object obj = build_string ("test");
4501 struct Lisp_String *s = XSTRING (obj);
4502 Fgarbage_collect ();
4503 fprintf (stderr, "test `%s'\n", s->data);
4507 Here, `obj' isn't really used, and the compiler optimizes it
4508 away. The only reference to the life string is through the
4511 for (pp
= start
; (void *) pp
< end
; pp
++)
4512 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4514 void *p
= *(void **) ((char *) pp
+ i
);
4515 mark_maybe_pointer (p
);
4516 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4517 mark_maybe_object (XIL ((intptr_t) p
));
4521 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4523 static bool setjmp_tested_p
;
4524 static int longjmps_done
;
4526 #define SETJMP_WILL_LIKELY_WORK "\
4528 Emacs garbage collector has been changed to use conservative stack\n\
4529 marking. Emacs has determined that the method it uses to do the\n\
4530 marking will likely work on your system, but this isn't sure.\n\
4532 If you are a system-programmer, or can get the help of a local wizard\n\
4533 who is, please take a look at the function mark_stack in alloc.c, and\n\
4534 verify that the methods used are appropriate for your system.\n\
4536 Please mail the result to <emacs-devel@gnu.org>.\n\
4539 #define SETJMP_WILL_NOT_WORK "\
4541 Emacs garbage collector has been changed to use conservative stack\n\
4542 marking. Emacs has determined that the default method it uses to do the\n\
4543 marking will not work on your system. We will need a system-dependent\n\
4544 solution for your system.\n\
4546 Please take a look at the function mark_stack in alloc.c, and\n\
4547 try to find a way to make it work on your system.\n\
4549 Note that you may get false negatives, depending on the compiler.\n\
4550 In particular, you need to use -O with GCC for this test.\n\
4552 Please mail the result to <emacs-devel@gnu.org>.\n\
4556 /* Perform a quick check if it looks like setjmp saves registers in a
4557 jmp_buf. Print a message to stderr saying so. When this test
4558 succeeds, this is _not_ a proof that setjmp is sufficient for
4559 conservative stack marking. Only the sources or a disassembly
4569 /* Arrange for X to be put in a register. */
4575 if (longjmps_done
== 1)
4577 /* Came here after the longjmp at the end of the function.
4579 If x == 1, the longjmp has restored the register to its
4580 value before the setjmp, and we can hope that setjmp
4581 saves all such registers in the jmp_buf, although that
4584 For other values of X, either something really strange is
4585 taking place, or the setjmp just didn't save the register. */
4588 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4591 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4598 if (longjmps_done
== 1)
4599 sys_longjmp (jbuf
, 1);
4602 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4605 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4607 /* Abort if anything GCPRO'd doesn't survive the GC. */
4615 for (p
= gcprolist
; p
; p
= p
->next
)
4616 for (i
= 0; i
< p
->nvars
; ++i
)
4617 if (!survives_gc_p (p
->var
[i
]))
4618 /* FIXME: It's not necessarily a bug. It might just be that the
4619 GCPRO is unnecessary or should release the object sooner. */
4623 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4630 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4631 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4633 fprintf (stderr
, " %d = ", i
);
4634 debug_print (zombies
[i
]);
4638 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4641 /* Mark live Lisp objects on the C stack.
4643 There are several system-dependent problems to consider when
4644 porting this to new architectures:
4648 We have to mark Lisp objects in CPU registers that can hold local
4649 variables or are used to pass parameters.
4651 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4652 something that either saves relevant registers on the stack, or
4653 calls mark_maybe_object passing it each register's contents.
4655 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4656 implementation assumes that calling setjmp saves registers we need
4657 to see in a jmp_buf which itself lies on the stack. This doesn't
4658 have to be true! It must be verified for each system, possibly
4659 by taking a look at the source code of setjmp.
4661 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4662 can use it as a machine independent method to store all registers
4663 to the stack. In this case the macros described in the previous
4664 two paragraphs are not used.
4668 Architectures differ in the way their processor stack is organized.
4669 For example, the stack might look like this
4672 | Lisp_Object | size = 4
4674 | something else | size = 2
4676 | Lisp_Object | size = 4
4680 In such a case, not every Lisp_Object will be aligned equally. To
4681 find all Lisp_Object on the stack it won't be sufficient to walk
4682 the stack in steps of 4 bytes. Instead, two passes will be
4683 necessary, one starting at the start of the stack, and a second
4684 pass starting at the start of the stack + 2. Likewise, if the
4685 minimal alignment of Lisp_Objects on the stack is 1, four passes
4686 would be necessary, each one starting with one byte more offset
4687 from the stack start. */
4694 #ifdef HAVE___BUILTIN_UNWIND_INIT
4695 /* Force callee-saved registers and register windows onto the stack.
4696 This is the preferred method if available, obviating the need for
4697 machine dependent methods. */
4698 __builtin_unwind_init ();
4700 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4701 #ifndef GC_SAVE_REGISTERS_ON_STACK
4702 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4703 union aligned_jmpbuf
{
4707 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4709 /* This trick flushes the register windows so that all the state of
4710 the process is contained in the stack. */
4711 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4712 needed on ia64 too. See mach_dep.c, where it also says inline
4713 assembler doesn't work with relevant proprietary compilers. */
4715 #if defined (__sparc64__) && defined (__FreeBSD__)
4716 /* FreeBSD does not have a ta 3 handler. */
4723 /* Save registers that we need to see on the stack. We need to see
4724 registers used to hold register variables and registers used to
4726 #ifdef GC_SAVE_REGISTERS_ON_STACK
4727 GC_SAVE_REGISTERS_ON_STACK (end
);
4728 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4730 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4731 setjmp will definitely work, test it
4732 and print a message with the result
4734 if (!setjmp_tested_p
)
4736 setjmp_tested_p
= 1;
4739 #endif /* GC_SETJMP_WORKS */
4742 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4743 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4744 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4746 /* This assumes that the stack is a contiguous region in memory. If
4747 that's not the case, something has to be done here to iterate
4748 over the stack segments. */
4749 mark_memory (stack_base
, end
);
4751 /* Allow for marking a secondary stack, like the register stack on the
4753 #ifdef GC_MARK_SECONDARY_STACK
4754 GC_MARK_SECONDARY_STACK ();
4757 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4762 #else /* GC_MARK_STACK == 0 */
4764 #define mark_maybe_object(obj) emacs_abort ()
4766 #endif /* GC_MARK_STACK != 0 */
4769 /* Determine whether it is safe to access memory at address P. */
4771 valid_pointer_p (void *p
)
4774 return w32_valid_pointer_p (p
, 16);
4778 /* Obviously, we cannot just access it (we would SEGV trying), so we
4779 trick the o/s to tell us whether p is a valid pointer.
4780 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4781 not validate p in that case. */
4783 if (emacs_pipe (fd
) == 0)
4785 bool valid
= emacs_write (fd
[1], (char *) p
, 16) == 16;
4786 emacs_close (fd
[1]);
4787 emacs_close (fd
[0]);
4795 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4796 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4797 cannot validate OBJ. This function can be quite slow, so its primary
4798 use is the manual debugging. The only exception is print_object, where
4799 we use it to check whether the memory referenced by the pointer of
4800 Lisp_Save_Value object contains valid objects. */
4803 valid_lisp_object_p (Lisp_Object obj
)
4813 p
= (void *) XPNTR (obj
);
4814 if (PURE_POINTER_P (p
))
4817 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4821 return valid_pointer_p (p
);
4828 int valid
= valid_pointer_p (p
);
4840 case MEM_TYPE_NON_LISP
:
4841 case MEM_TYPE_SPARE
:
4844 case MEM_TYPE_BUFFER
:
4845 return live_buffer_p (m
, p
) ? 1 : 2;
4848 return live_cons_p (m
, p
);
4850 case MEM_TYPE_STRING
:
4851 return live_string_p (m
, p
);
4854 return live_misc_p (m
, p
);
4856 case MEM_TYPE_SYMBOL
:
4857 return live_symbol_p (m
, p
);
4859 case MEM_TYPE_FLOAT
:
4860 return live_float_p (m
, p
);
4862 case MEM_TYPE_VECTORLIKE
:
4863 case MEM_TYPE_VECTOR_BLOCK
:
4864 return live_vector_p (m
, p
);
4877 /***********************************************************************
4878 Pure Storage Management
4879 ***********************************************************************/
4881 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4882 pointer to it. TYPE is the Lisp type for which the memory is
4883 allocated. TYPE < 0 means it's not used for a Lisp object. */
4886 pure_alloc (size_t size
, int type
)
4890 size_t alignment
= GCALIGNMENT
;
4892 size_t alignment
= alignof (EMACS_INT
);
4894 /* Give Lisp_Floats an extra alignment. */
4895 if (type
== Lisp_Float
)
4896 alignment
= alignof (struct Lisp_Float
);
4902 /* Allocate space for a Lisp object from the beginning of the free
4903 space with taking account of alignment. */
4904 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4905 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4909 /* Allocate space for a non-Lisp object from the end of the free
4911 pure_bytes_used_non_lisp
+= size
;
4912 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4914 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
4916 if (pure_bytes_used
<= pure_size
)
4919 /* Don't allocate a large amount here,
4920 because it might get mmap'd and then its address
4921 might not be usable. */
4922 purebeg
= xmalloc (10000);
4924 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
4925 pure_bytes_used
= 0;
4926 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
4931 /* Print a warning if PURESIZE is too small. */
4934 check_pure_size (void)
4936 if (pure_bytes_used_before_overflow
)
4937 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
4939 pure_bytes_used
+ pure_bytes_used_before_overflow
);
4943 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4944 the non-Lisp data pool of the pure storage, and return its start
4945 address. Return NULL if not found. */
4948 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
4951 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
4952 const unsigned char *p
;
4955 if (pure_bytes_used_non_lisp
<= nbytes
)
4958 /* Set up the Boyer-Moore table. */
4960 for (i
= 0; i
< 256; i
++)
4963 p
= (const unsigned char *) data
;
4965 bm_skip
[*p
++] = skip
;
4967 last_char_skip
= bm_skip
['\0'];
4969 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4970 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
4972 /* See the comments in the function `boyer_moore' (search.c) for the
4973 use of `infinity'. */
4974 infinity
= pure_bytes_used_non_lisp
+ 1;
4975 bm_skip
['\0'] = infinity
;
4977 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
4981 /* Check the last character (== '\0'). */
4984 start
+= bm_skip
[*(p
+ start
)];
4986 while (start
<= start_max
);
4988 if (start
< infinity
)
4989 /* Couldn't find the last character. */
4992 /* No less than `infinity' means we could find the last
4993 character at `p[start - infinity]'. */
4996 /* Check the remaining characters. */
4997 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
4999 return non_lisp_beg
+ start
;
5001 start
+= last_char_skip
;
5003 while (start
<= start_max
);
5009 /* Return a string allocated in pure space. DATA is a buffer holding
5010 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5011 means make the result string multibyte.
5013 Must get an error if pure storage is full, since if it cannot hold
5014 a large string it may be able to hold conses that point to that
5015 string; then the string is not protected from gc. */
5018 make_pure_string (const char *data
,
5019 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5022 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5023 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5024 if (s
->data
== NULL
)
5026 s
->data
= pure_alloc (nbytes
+ 1, -1);
5027 memcpy (s
->data
, data
, nbytes
);
5028 s
->data
[nbytes
] = '\0';
5031 s
->size_byte
= multibyte
? nbytes
: -1;
5032 s
->intervals
= NULL
;
5033 XSETSTRING (string
, s
);
5037 /* Return a string allocated in pure space. Do not
5038 allocate the string data, just point to DATA. */
5041 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5044 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5047 s
->data
= (unsigned char *) data
;
5048 s
->intervals
= NULL
;
5049 XSETSTRING (string
, s
);
5053 /* Return a cons allocated from pure space. Give it pure copies
5054 of CAR as car and CDR as cdr. */
5057 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5060 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5062 XSETCAR (new, Fpurecopy (car
));
5063 XSETCDR (new, Fpurecopy (cdr
));
5068 /* Value is a float object with value NUM allocated from pure space. */
5071 make_pure_float (double num
)
5074 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5076 XFLOAT_INIT (new, num
);
5081 /* Return a vector with room for LEN Lisp_Objects allocated from
5085 make_pure_vector (ptrdiff_t len
)
5088 size_t size
= header_size
+ len
* word_size
;
5089 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5090 XSETVECTOR (new, p
);
5091 XVECTOR (new)->header
.size
= len
;
5096 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5097 doc
: /* Make a copy of object OBJ in pure storage.
5098 Recursively copies contents of vectors and cons cells.
5099 Does not copy symbols. Copies strings without text properties. */)
5100 (register Lisp_Object obj
)
5102 if (NILP (Vpurify_flag
))
5105 if (PURE_POINTER_P (XPNTR (obj
)))
5108 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5110 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5116 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5117 else if (FLOATP (obj
))
5118 obj
= make_pure_float (XFLOAT_DATA (obj
));
5119 else if (STRINGP (obj
))
5120 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5122 STRING_MULTIBYTE (obj
));
5123 else if (COMPILEDP (obj
) || VECTORP (obj
))
5125 register struct Lisp_Vector
*vec
;
5126 register ptrdiff_t i
;
5130 if (size
& PSEUDOVECTOR_FLAG
)
5131 size
&= PSEUDOVECTOR_SIZE_MASK
;
5132 vec
= XVECTOR (make_pure_vector (size
));
5133 for (i
= 0; i
< size
; i
++)
5134 vec
->contents
[i
] = Fpurecopy (AREF (obj
, i
));
5135 if (COMPILEDP (obj
))
5137 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5138 XSETCOMPILED (obj
, vec
);
5141 XSETVECTOR (obj
, vec
);
5143 else if (MARKERP (obj
))
5144 error ("Attempt to copy a marker to pure storage");
5146 /* Not purified, don't hash-cons. */
5149 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5150 Fputhash (obj
, obj
, Vpurify_flag
);
5157 /***********************************************************************
5159 ***********************************************************************/
5161 /* Put an entry in staticvec, pointing at the variable with address
5165 staticpro (Lisp_Object
*varaddress
)
5167 if (staticidx
>= NSTATICS
)
5168 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5169 staticvec
[staticidx
++] = varaddress
;
5173 /***********************************************************************
5175 ***********************************************************************/
5177 /* Temporarily prevent garbage collection. */
5180 inhibit_garbage_collection (void)
5182 ptrdiff_t count
= SPECPDL_INDEX ();
5184 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5188 /* Used to avoid possible overflows when
5189 converting from C to Lisp integers. */
5192 bounded_number (EMACS_INT number
)
5194 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5197 /* Calculate total bytes of live objects. */
5200 total_bytes_of_live_objects (void)
5203 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5204 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5205 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5206 tot
+= total_string_bytes
;
5207 tot
+= total_vector_slots
* word_size
;
5208 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5209 tot
+= total_intervals
* sizeof (struct interval
);
5210 tot
+= total_strings
* sizeof (struct Lisp_String
);
5214 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5215 doc
: /* Reclaim storage for Lisp objects no longer needed.
5216 Garbage collection happens automatically if you cons more than
5217 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5218 `garbage-collect' normally returns a list with info on amount of space in use,
5219 where each entry has the form (NAME SIZE USED FREE), where:
5220 - NAME is a symbol describing the kind of objects this entry represents,
5221 - SIZE is the number of bytes used by each one,
5222 - USED is the number of those objects that were found live in the heap,
5223 - FREE is the number of those objects that are not live but that Emacs
5224 keeps around for future allocations (maybe because it does not know how
5225 to return them to the OS).
5226 However, if there was overflow in pure space, `garbage-collect'
5227 returns nil, because real GC can't be done.
5228 See Info node `(elisp)Garbage Collection'. */)
5231 struct buffer
*nextb
;
5232 char stack_top_variable
;
5235 ptrdiff_t count
= SPECPDL_INDEX ();
5236 struct timespec start
;
5237 Lisp_Object retval
= Qnil
;
5238 size_t tot_before
= 0;
5243 /* Can't GC if pure storage overflowed because we can't determine
5244 if something is a pure object or not. */
5245 if (pure_bytes_used_before_overflow
)
5248 /* Record this function, so it appears on the profiler's backtraces. */
5249 record_in_backtrace (Qautomatic_gc
, &Qnil
, 0);
5253 /* Don't keep undo information around forever.
5254 Do this early on, so it is no problem if the user quits. */
5255 FOR_EACH_BUFFER (nextb
)
5256 compact_buffer (nextb
);
5258 if (profiler_memory_running
)
5259 tot_before
= total_bytes_of_live_objects ();
5261 start
= current_timespec ();
5263 /* In case user calls debug_print during GC,
5264 don't let that cause a recursive GC. */
5265 consing_since_gc
= 0;
5267 /* Save what's currently displayed in the echo area. */
5268 message_p
= push_message ();
5269 record_unwind_protect_void (pop_message_unwind
);
5271 /* Save a copy of the contents of the stack, for debugging. */
5272 #if MAX_SAVE_STACK > 0
5273 if (NILP (Vpurify_flag
))
5276 ptrdiff_t stack_size
;
5277 if (&stack_top_variable
< stack_bottom
)
5279 stack
= &stack_top_variable
;
5280 stack_size
= stack_bottom
- &stack_top_variable
;
5284 stack
= stack_bottom
;
5285 stack_size
= &stack_top_variable
- stack_bottom
;
5287 if (stack_size
<= MAX_SAVE_STACK
)
5289 if (stack_copy_size
< stack_size
)
5291 stack_copy
= xrealloc (stack_copy
, stack_size
);
5292 stack_copy_size
= stack_size
;
5294 memcpy (stack_copy
, stack
, stack_size
);
5297 #endif /* MAX_SAVE_STACK > 0 */
5299 if (garbage_collection_messages
)
5300 message1_nolog ("Garbage collecting...");
5304 shrink_regexp_cache ();
5308 /* Mark all the special slots that serve as the roots of accessibility. */
5310 mark_buffer (&buffer_defaults
);
5311 mark_buffer (&buffer_local_symbols
);
5313 for (i
= 0; i
< staticidx
; i
++)
5314 mark_object (*staticvec
[i
]);
5324 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5325 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5329 register struct gcpro
*tail
;
5330 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5331 for (i
= 0; i
< tail
->nvars
; i
++)
5332 mark_object (tail
->var
[i
]);
5336 struct catchtag
*catch;
5337 struct handler
*handler
;
5339 for (catch = catchlist
; catch; catch = catch->next
)
5341 mark_object (catch->tag
);
5342 mark_object (catch->val
);
5344 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5346 mark_object (handler
->handler
);
5347 mark_object (handler
->var
);
5352 #ifdef HAVE_WINDOW_SYSTEM
5353 mark_fringe_data ();
5356 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5360 /* Everything is now marked, except for the things that require special
5361 finalization, i.e. the undo_list.
5362 Look thru every buffer's undo list
5363 for elements that update markers that were not marked,
5365 FOR_EACH_BUFFER (nextb
)
5367 /* If a buffer's undo list is Qt, that means that undo is
5368 turned off in that buffer. Calling truncate_undo_list on
5369 Qt tends to return NULL, which effectively turns undo back on.
5370 So don't call truncate_undo_list if undo_list is Qt. */
5371 if (! EQ (nextb
->INTERNAL_FIELD (undo_list
), Qt
))
5373 Lisp_Object tail
, prev
;
5374 tail
= nextb
->INTERNAL_FIELD (undo_list
);
5376 while (CONSP (tail
))
5378 if (CONSP (XCAR (tail
))
5379 && MARKERP (XCAR (XCAR (tail
)))
5380 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5383 nextb
->INTERNAL_FIELD (undo_list
) = tail
= XCDR (tail
);
5387 XSETCDR (prev
, tail
);
5397 /* Now that we have stripped the elements that need not be in the
5398 undo_list any more, we can finally mark the list. */
5399 mark_object (nextb
->INTERNAL_FIELD (undo_list
));
5404 /* Clear the mark bits that we set in certain root slots. */
5406 unmark_byte_stack ();
5407 VECTOR_UNMARK (&buffer_defaults
);
5408 VECTOR_UNMARK (&buffer_local_symbols
);
5410 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5420 consing_since_gc
= 0;
5421 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5422 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5424 gc_relative_threshold
= 0;
5425 if (FLOATP (Vgc_cons_percentage
))
5426 { /* Set gc_cons_combined_threshold. */
5427 double tot
= total_bytes_of_live_objects ();
5429 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5432 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5433 gc_relative_threshold
= tot
;
5435 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5439 if (garbage_collection_messages
)
5441 if (message_p
|| minibuf_level
> 0)
5444 message1_nolog ("Garbage collecting...done");
5447 unbind_to (count
, Qnil
);
5449 Lisp_Object total
[11];
5450 int total_size
= 10;
5452 total
[0] = list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5453 bounded_number (total_conses
),
5454 bounded_number (total_free_conses
));
5456 total
[1] = list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5457 bounded_number (total_symbols
),
5458 bounded_number (total_free_symbols
));
5460 total
[2] = list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5461 bounded_number (total_markers
),
5462 bounded_number (total_free_markers
));
5464 total
[3] = list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5465 bounded_number (total_strings
),
5466 bounded_number (total_free_strings
));
5468 total
[4] = list3 (Qstring_bytes
, make_number (1),
5469 bounded_number (total_string_bytes
));
5471 total
[5] = list3 (Qvectors
,
5472 make_number (header_size
+ sizeof (Lisp_Object
)),
5473 bounded_number (total_vectors
));
5475 total
[6] = list4 (Qvector_slots
, make_number (word_size
),
5476 bounded_number (total_vector_slots
),
5477 bounded_number (total_free_vector_slots
));
5479 total
[7] = list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5480 bounded_number (total_floats
),
5481 bounded_number (total_free_floats
));
5483 total
[8] = list4 (Qintervals
, make_number (sizeof (struct interval
)),
5484 bounded_number (total_intervals
),
5485 bounded_number (total_free_intervals
));
5487 total
[9] = list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5488 bounded_number (total_buffers
));
5490 #ifdef DOUG_LEA_MALLOC
5492 total
[10] = list4 (Qheap
, make_number (1024),
5493 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5494 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10));
5496 retval
= Flist (total_size
, total
);
5499 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5501 /* Compute average percentage of zombies. */
5503 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5504 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5506 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5507 max_live
= max (nlive
, max_live
);
5508 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5509 max_zombies
= max (nzombies
, max_zombies
);
5514 if (!NILP (Vpost_gc_hook
))
5516 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5517 safe_run_hooks (Qpost_gc_hook
);
5518 unbind_to (gc_count
, Qnil
);
5521 /* Accumulate statistics. */
5522 if (FLOATP (Vgc_elapsed
))
5524 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5525 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5526 + timespectod (since_start
));
5531 /* Collect profiling data. */
5532 if (profiler_memory_running
)
5535 size_t tot_after
= total_bytes_of_live_objects ();
5536 if (tot_before
> tot_after
)
5537 swept
= tot_before
- tot_after
;
5538 malloc_probe (swept
);
5545 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5546 only interesting objects referenced from glyphs are strings. */
5549 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5551 struct glyph_row
*row
= matrix
->rows
;
5552 struct glyph_row
*end
= row
+ matrix
->nrows
;
5554 for (; row
< end
; ++row
)
5558 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5560 struct glyph
*glyph
= row
->glyphs
[area
];
5561 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5563 for (; glyph
< end_glyph
; ++glyph
)
5564 if (STRINGP (glyph
->object
)
5565 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5566 mark_object (glyph
->object
);
5572 /* Mark Lisp faces in the face cache C. */
5575 mark_face_cache (struct face_cache
*c
)
5580 for (i
= 0; i
< c
->used
; ++i
)
5582 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5586 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5587 mark_object (face
->lface
[j
]);
5595 /* Mark reference to a Lisp_Object.
5596 If the object referred to has not been seen yet, recursively mark
5597 all the references contained in it. */
5599 #define LAST_MARKED_SIZE 500
5600 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5601 static int last_marked_index
;
5603 /* For debugging--call abort when we cdr down this many
5604 links of a list, in mark_object. In debugging,
5605 the call to abort will hit a breakpoint.
5606 Normally this is zero and the check never goes off. */
5607 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5610 mark_vectorlike (struct Lisp_Vector
*ptr
)
5612 ptrdiff_t size
= ptr
->header
.size
;
5615 eassert (!VECTOR_MARKED_P (ptr
));
5616 VECTOR_MARK (ptr
); /* Else mark it. */
5617 if (size
& PSEUDOVECTOR_FLAG
)
5618 size
&= PSEUDOVECTOR_SIZE_MASK
;
5620 /* Note that this size is not the memory-footprint size, but only
5621 the number of Lisp_Object fields that we should trace.
5622 The distinction is used e.g. by Lisp_Process which places extra
5623 non-Lisp_Object fields at the end of the structure... */
5624 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5625 mark_object (ptr
->contents
[i
]);
5628 /* Like mark_vectorlike but optimized for char-tables (and
5629 sub-char-tables) assuming that the contents are mostly integers or
5633 mark_char_table (struct Lisp_Vector
*ptr
)
5635 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5638 eassert (!VECTOR_MARKED_P (ptr
));
5640 for (i
= 0; i
< size
; i
++)
5642 Lisp_Object val
= ptr
->contents
[i
];
5644 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5646 if (SUB_CHAR_TABLE_P (val
))
5648 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5649 mark_char_table (XVECTOR (val
));
5656 /* Mark the chain of overlays starting at PTR. */
5659 mark_overlay (struct Lisp_Overlay
*ptr
)
5661 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5664 mark_object (ptr
->start
);
5665 mark_object (ptr
->end
);
5666 mark_object (ptr
->plist
);
5670 /* Mark Lisp_Objects and special pointers in BUFFER. */
5673 mark_buffer (struct buffer
*buffer
)
5675 /* This is handled much like other pseudovectors... */
5676 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5678 /* ...but there are some buffer-specific things. */
5680 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5682 /* For now, we just don't mark the undo_list. It's done later in
5683 a special way just before the sweep phase, and after stripping
5684 some of its elements that are not needed any more. */
5686 mark_overlay (buffer
->overlays_before
);
5687 mark_overlay (buffer
->overlays_after
);
5689 /* If this is an indirect buffer, mark its base buffer. */
5690 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5691 mark_buffer (buffer
->base_buffer
);
5694 /* Remove killed buffers or items whose car is a killed buffer from
5695 LIST, and mark other items. Return changed LIST, which is marked. */
5698 mark_discard_killed_buffers (Lisp_Object list
)
5700 Lisp_Object tail
, *prev
= &list
;
5702 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
5705 Lisp_Object tem
= XCAR (tail
);
5708 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
5709 *prev
= XCDR (tail
);
5712 CONS_MARK (XCONS (tail
));
5713 mark_object (XCAR (tail
));
5714 prev
= xcdr_addr (tail
);
5721 /* Determine type of generic Lisp_Object and mark it accordingly. */
5724 mark_object (Lisp_Object arg
)
5726 register Lisp_Object obj
= arg
;
5727 #ifdef GC_CHECK_MARKED_OBJECTS
5731 ptrdiff_t cdr_count
= 0;
5735 if (PURE_POINTER_P (XPNTR (obj
)))
5738 last_marked
[last_marked_index
++] = obj
;
5739 if (last_marked_index
== LAST_MARKED_SIZE
)
5740 last_marked_index
= 0;
5742 /* Perform some sanity checks on the objects marked here. Abort if
5743 we encounter an object we know is bogus. This increases GC time
5744 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5745 #ifdef GC_CHECK_MARKED_OBJECTS
5747 po
= (void *) XPNTR (obj
);
5749 /* Check that the object pointed to by PO is known to be a Lisp
5750 structure allocated from the heap. */
5751 #define CHECK_ALLOCATED() \
5753 m = mem_find (po); \
5758 /* Check that the object pointed to by PO is live, using predicate
5760 #define CHECK_LIVE(LIVEP) \
5762 if (!LIVEP (m, po)) \
5766 /* Check both of the above conditions. */
5767 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5769 CHECK_ALLOCATED (); \
5770 CHECK_LIVE (LIVEP); \
5773 #else /* not GC_CHECK_MARKED_OBJECTS */
5775 #define CHECK_LIVE(LIVEP) (void) 0
5776 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5778 #endif /* not GC_CHECK_MARKED_OBJECTS */
5780 switch (XTYPE (obj
))
5784 register struct Lisp_String
*ptr
= XSTRING (obj
);
5785 if (STRING_MARKED_P (ptr
))
5787 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5789 MARK_INTERVAL_TREE (ptr
->intervals
);
5790 #ifdef GC_CHECK_STRING_BYTES
5791 /* Check that the string size recorded in the string is the
5792 same as the one recorded in the sdata structure. */
5794 #endif /* GC_CHECK_STRING_BYTES */
5798 case Lisp_Vectorlike
:
5800 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5801 register ptrdiff_t pvectype
;
5803 if (VECTOR_MARKED_P (ptr
))
5806 #ifdef GC_CHECK_MARKED_OBJECTS
5808 if (m
== MEM_NIL
&& !SUBRP (obj
))
5810 #endif /* GC_CHECK_MARKED_OBJECTS */
5812 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
5813 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
5814 >> PSEUDOVECTOR_AREA_BITS
);
5816 pvectype
= PVEC_NORMAL_VECTOR
;
5818 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
5819 CHECK_LIVE (live_vector_p
);
5824 #ifdef GC_CHECK_MARKED_OBJECTS
5833 #endif /* GC_CHECK_MARKED_OBJECTS */
5834 mark_buffer ((struct buffer
*) ptr
);
5838 { /* We could treat this just like a vector, but it is better
5839 to save the COMPILED_CONSTANTS element for last and avoid
5841 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5845 for (i
= 0; i
< size
; i
++)
5846 if (i
!= COMPILED_CONSTANTS
)
5847 mark_object (ptr
->contents
[i
]);
5848 if (size
> COMPILED_CONSTANTS
)
5850 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
5857 mark_vectorlike (ptr
);
5858 mark_face_cache (((struct frame
*) ptr
)->face_cache
);
5863 struct window
*w
= (struct window
*) ptr
;
5865 mark_vectorlike (ptr
);
5867 /* Mark glyph matrices, if any. Marking window
5868 matrices is sufficient because frame matrices
5869 use the same glyph memory. */
5870 if (w
->current_matrix
)
5872 mark_glyph_matrix (w
->current_matrix
);
5873 mark_glyph_matrix (w
->desired_matrix
);
5876 /* Filter out killed buffers from both buffer lists
5877 in attempt to help GC to reclaim killed buffers faster.
5878 We can do it elsewhere for live windows, but this is the
5879 best place to do it for dead windows. */
5881 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
5883 (w
, mark_discard_killed_buffers (w
->next_buffers
));
5887 case PVEC_HASH_TABLE
:
5889 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
5891 mark_vectorlike (ptr
);
5892 mark_object (h
->test
.name
);
5893 mark_object (h
->test
.user_hash_function
);
5894 mark_object (h
->test
.user_cmp_function
);
5895 /* If hash table is not weak, mark all keys and values.
5896 For weak tables, mark only the vector. */
5898 mark_object (h
->key_and_value
);
5900 VECTOR_MARK (XVECTOR (h
->key_and_value
));
5904 case PVEC_CHAR_TABLE
:
5905 mark_char_table (ptr
);
5908 case PVEC_BOOL_VECTOR
:
5909 /* No Lisp_Objects to mark in a bool vector. */
5920 mark_vectorlike (ptr
);
5927 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
5928 struct Lisp_Symbol
*ptrx
;
5932 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
5934 mark_object (ptr
->function
);
5935 mark_object (ptr
->plist
);
5936 switch (ptr
->redirect
)
5938 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
5939 case SYMBOL_VARALIAS
:
5942 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
5946 case SYMBOL_LOCALIZED
:
5948 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
5949 Lisp_Object where
= blv
->where
;
5950 /* If the value is set up for a killed buffer or deleted
5951 frame, restore it's global binding. If the value is
5952 forwarded to a C variable, either it's not a Lisp_Object
5953 var, or it's staticpro'd already. */
5954 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
5955 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
5956 swap_in_global_binding (ptr
);
5957 mark_object (blv
->where
);
5958 mark_object (blv
->valcell
);
5959 mark_object (blv
->defcell
);
5962 case SYMBOL_FORWARDED
:
5963 /* If the value is forwarded to a buffer or keyboard field,
5964 these are marked when we see the corresponding object.
5965 And if it's forwarded to a C variable, either it's not
5966 a Lisp_Object var, or it's staticpro'd already. */
5968 default: emacs_abort ();
5970 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
5971 MARK_STRING (XSTRING (ptr
->name
));
5972 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
5977 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun. */
5978 XSETSYMBOL (obj
, ptrx
);
5985 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
5987 if (XMISCANY (obj
)->gcmarkbit
)
5990 switch (XMISCTYPE (obj
))
5992 case Lisp_Misc_Marker
:
5993 /* DO NOT mark thru the marker's chain.
5994 The buffer's markers chain does not preserve markers from gc;
5995 instead, markers are removed from the chain when freed by gc. */
5996 XMISCANY (obj
)->gcmarkbit
= 1;
5999 case Lisp_Misc_Save_Value
:
6000 XMISCANY (obj
)->gcmarkbit
= 1;
6002 struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
6003 /* If `save_type' is zero, `data[0].pointer' is the address
6004 of a memory area containing `data[1].integer' potential
6006 if (GC_MARK_STACK
&& ptr
->save_type
== SAVE_TYPE_MEMORY
)
6008 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6010 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6011 mark_maybe_object (*p
);
6015 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6017 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6018 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6019 mark_object (ptr
->data
[i
].object
);
6024 case Lisp_Misc_Overlay
:
6025 mark_overlay (XOVERLAY (obj
));
6035 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6036 if (CONS_MARKED_P (ptr
))
6038 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6040 /* If the cdr is nil, avoid recursion for the car. */
6041 if (EQ (ptr
->u
.cdr
, Qnil
))
6047 mark_object (ptr
->car
);
6050 if (cdr_count
== mark_object_loop_halt
)
6056 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6057 FLOAT_MARK (XFLOAT (obj
));
6068 #undef CHECK_ALLOCATED
6069 #undef CHECK_ALLOCATED_AND_LIVE
6071 /* Mark the Lisp pointers in the terminal objects.
6072 Called by Fgarbage_collect. */
6075 mark_terminals (void)
6078 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6080 eassert (t
->name
!= NULL
);
6081 #ifdef HAVE_WINDOW_SYSTEM
6082 /* If a terminal object is reachable from a stacpro'ed object,
6083 it might have been marked already. Make sure the image cache
6085 mark_image_cache (t
->image_cache
);
6086 #endif /* HAVE_WINDOW_SYSTEM */
6087 if (!VECTOR_MARKED_P (t
))
6088 mark_vectorlike ((struct Lisp_Vector
*)t
);
6094 /* Value is non-zero if OBJ will survive the current GC because it's
6095 either marked or does not need to be marked to survive. */
6098 survives_gc_p (Lisp_Object obj
)
6102 switch (XTYPE (obj
))
6109 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6113 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6117 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6120 case Lisp_Vectorlike
:
6121 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6125 survives_p
= CONS_MARKED_P (XCONS (obj
));
6129 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6136 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6141 /* Sweep: find all structures not marked, and free them. */
6146 /* Remove or mark entries in weak hash tables.
6147 This must be done before any object is unmarked. */
6148 sweep_weak_hash_tables ();
6151 check_string_bytes (!noninteractive
);
6153 /* Put all unmarked conses on free list */
6155 register struct cons_block
*cblk
;
6156 struct cons_block
**cprev
= &cons_block
;
6157 register int lim
= cons_block_index
;
6158 EMACS_INT num_free
= 0, num_used
= 0;
6162 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6166 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
6168 /* Scan the mark bits an int at a time. */
6169 for (i
= 0; i
< ilim
; i
++)
6171 if (cblk
->gcmarkbits
[i
] == -1)
6173 /* Fast path - all cons cells for this int are marked. */
6174 cblk
->gcmarkbits
[i
] = 0;
6175 num_used
+= BITS_PER_INT
;
6179 /* Some cons cells for this int are not marked.
6180 Find which ones, and free them. */
6181 int start
, pos
, stop
;
6183 start
= i
* BITS_PER_INT
;
6185 if (stop
> BITS_PER_INT
)
6186 stop
= BITS_PER_INT
;
6189 for (pos
= start
; pos
< stop
; pos
++)
6191 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6194 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6195 cons_free_list
= &cblk
->conses
[pos
];
6197 cons_free_list
->car
= Vdead
;
6203 CONS_UNMARK (&cblk
->conses
[pos
]);
6209 lim
= CONS_BLOCK_SIZE
;
6210 /* If this block contains only free conses and we have already
6211 seen more than two blocks worth of free conses then deallocate
6213 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6215 *cprev
= cblk
->next
;
6216 /* Unhook from the free list. */
6217 cons_free_list
= cblk
->conses
[0].u
.chain
;
6218 lisp_align_free (cblk
);
6222 num_free
+= this_free
;
6223 cprev
= &cblk
->next
;
6226 total_conses
= num_used
;
6227 total_free_conses
= num_free
;
6230 /* Put all unmarked floats on free list */
6232 register struct float_block
*fblk
;
6233 struct float_block
**fprev
= &float_block
;
6234 register int lim
= float_block_index
;
6235 EMACS_INT num_free
= 0, num_used
= 0;
6237 float_free_list
= 0;
6239 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6243 for (i
= 0; i
< lim
; i
++)
6244 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6247 fblk
->floats
[i
].u
.chain
= float_free_list
;
6248 float_free_list
= &fblk
->floats
[i
];
6253 FLOAT_UNMARK (&fblk
->floats
[i
]);
6255 lim
= FLOAT_BLOCK_SIZE
;
6256 /* If this block contains only free floats and we have already
6257 seen more than two blocks worth of free floats then deallocate
6259 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6261 *fprev
= fblk
->next
;
6262 /* Unhook from the free list. */
6263 float_free_list
= fblk
->floats
[0].u
.chain
;
6264 lisp_align_free (fblk
);
6268 num_free
+= this_free
;
6269 fprev
= &fblk
->next
;
6272 total_floats
= num_used
;
6273 total_free_floats
= num_free
;
6276 /* Put all unmarked intervals on free list */
6278 register struct interval_block
*iblk
;
6279 struct interval_block
**iprev
= &interval_block
;
6280 register int lim
= interval_block_index
;
6281 EMACS_INT num_free
= 0, num_used
= 0;
6283 interval_free_list
= 0;
6285 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6290 for (i
= 0; i
< lim
; i
++)
6292 if (!iblk
->intervals
[i
].gcmarkbit
)
6294 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6295 interval_free_list
= &iblk
->intervals
[i
];
6301 iblk
->intervals
[i
].gcmarkbit
= 0;
6304 lim
= INTERVAL_BLOCK_SIZE
;
6305 /* If this block contains only free intervals and we have already
6306 seen more than two blocks worth of free intervals then
6307 deallocate this block. */
6308 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6310 *iprev
= iblk
->next
;
6311 /* Unhook from the free list. */
6312 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6317 num_free
+= this_free
;
6318 iprev
= &iblk
->next
;
6321 total_intervals
= num_used
;
6322 total_free_intervals
= num_free
;
6325 /* Put all unmarked symbols on free list */
6327 register struct symbol_block
*sblk
;
6328 struct symbol_block
**sprev
= &symbol_block
;
6329 register int lim
= symbol_block_index
;
6330 EMACS_INT num_free
= 0, num_used
= 0;
6332 symbol_free_list
= NULL
;
6334 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6337 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6338 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6340 for (; sym
< end
; ++sym
)
6342 /* Check if the symbol was created during loadup. In such a case
6343 it might be pointed to by pure bytecode which we don't trace,
6344 so we conservatively assume that it is live. */
6345 bool pure_p
= PURE_POINTER_P (XSTRING (sym
->s
.name
));
6347 if (!sym
->s
.gcmarkbit
&& !pure_p
)
6349 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6350 xfree (SYMBOL_BLV (&sym
->s
));
6351 sym
->s
.next
= symbol_free_list
;
6352 symbol_free_list
= &sym
->s
;
6354 symbol_free_list
->function
= Vdead
;
6362 UNMARK_STRING (XSTRING (sym
->s
.name
));
6363 sym
->s
.gcmarkbit
= 0;
6367 lim
= SYMBOL_BLOCK_SIZE
;
6368 /* If this block contains only free symbols and we have already
6369 seen more than two blocks worth of free symbols then deallocate
6371 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6373 *sprev
= sblk
->next
;
6374 /* Unhook from the free list. */
6375 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6380 num_free
+= this_free
;
6381 sprev
= &sblk
->next
;
6384 total_symbols
= num_used
;
6385 total_free_symbols
= num_free
;
6388 /* Put all unmarked misc's on free list.
6389 For a marker, first unchain it from the buffer it points into. */
6391 register struct marker_block
*mblk
;
6392 struct marker_block
**mprev
= &marker_block
;
6393 register int lim
= marker_block_index
;
6394 EMACS_INT num_free
= 0, num_used
= 0;
6396 marker_free_list
= 0;
6398 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6403 for (i
= 0; i
< lim
; i
++)
6405 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6407 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6408 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6409 /* Set the type of the freed object to Lisp_Misc_Free.
6410 We could leave the type alone, since nobody checks it,
6411 but this might catch bugs faster. */
6412 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6413 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6414 marker_free_list
= &mblk
->markers
[i
].m
;
6420 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6423 lim
= MARKER_BLOCK_SIZE
;
6424 /* If this block contains only free markers and we have already
6425 seen more than two blocks worth of free markers then deallocate
6427 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6429 *mprev
= mblk
->next
;
6430 /* Unhook from the free list. */
6431 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6436 num_free
+= this_free
;
6437 mprev
= &mblk
->next
;
6441 total_markers
= num_used
;
6442 total_free_markers
= num_free
;
6445 /* Free all unmarked buffers */
6447 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6450 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6451 if (!VECTOR_MARKED_P (buffer
))
6453 *bprev
= buffer
->next
;
6458 VECTOR_UNMARK (buffer
);
6459 /* Do not use buffer_(set|get)_intervals here. */
6460 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6462 bprev
= &buffer
->next
;
6467 check_string_bytes (!noninteractive
);
6473 /* Debugging aids. */
6475 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6476 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6477 This may be helpful in debugging Emacs's memory usage.
6478 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6483 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6488 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6489 doc
: /* Return a list of counters that measure how much consing there has been.
6490 Each of these counters increments for a certain kind of object.
6491 The counters wrap around from the largest positive integer to zero.
6492 Garbage collection does not decrease them.
6493 The elements of the value are as follows:
6494 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6495 All are in units of 1 = one object consed
6496 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6498 MISCS include overlays, markers, and some internal types.
6499 Frames, windows, buffers, and subprocesses count as vectors
6500 (but the contents of a buffer's text do not count here). */)
6503 return listn (CONSTYPE_HEAP
, 8,
6504 bounded_number (cons_cells_consed
),
6505 bounded_number (floats_consed
),
6506 bounded_number (vector_cells_consed
),
6507 bounded_number (symbols_consed
),
6508 bounded_number (string_chars_consed
),
6509 bounded_number (misc_objects_consed
),
6510 bounded_number (intervals_consed
),
6511 bounded_number (strings_consed
));
6514 /* Find at most FIND_MAX symbols which have OBJ as their value or
6515 function. This is used in gdbinit's `xwhichsymbols' command. */
6518 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6520 struct symbol_block
*sblk
;
6521 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6522 Lisp_Object found
= Qnil
;
6526 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6528 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6531 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6533 struct Lisp_Symbol
*sym
= &aligned_sym
->s
;
6537 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6540 XSETSYMBOL (tem
, sym
);
6541 val
= find_symbol_value (tem
);
6543 || EQ (sym
->function
, obj
)
6544 || (!NILP (sym
->function
)
6545 && COMPILEDP (sym
->function
)
6546 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6549 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)))
6551 found
= Fcons (tem
, found
);
6552 if (--find_max
== 0)
6560 unbind_to (gc_count
, Qnil
);
6564 #ifdef ENABLE_CHECKING
6566 bool suppress_checking
;
6569 die (const char *msg
, const char *file
, int line
)
6571 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6573 terminate_due_to_signal (SIGABRT
, INT_MAX
);
6577 /* Initialization. */
6580 init_alloc_once (void)
6582 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6584 pure_size
= PURESIZE
;
6586 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6588 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6591 #ifdef DOUG_LEA_MALLOC
6592 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
6593 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
6594 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
6599 refill_memory_reserve ();
6600 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
6607 byte_stack_list
= 0;
6609 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6610 setjmp_tested_p
= longjmps_done
= 0;
6613 Vgc_elapsed
= make_float (0.0);
6618 syms_of_alloc (void)
6620 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6621 doc
: /* Number of bytes of consing between garbage collections.
6622 Garbage collection can happen automatically once this many bytes have been
6623 allocated since the last garbage collection. All data types count.
6625 Garbage collection happens automatically only when `eval' is called.
6627 By binding this temporarily to a large number, you can effectively
6628 prevent garbage collection during a part of the program.
6629 See also `gc-cons-percentage'. */);
6631 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6632 doc
: /* Portion of the heap used for allocation.
6633 Garbage collection can happen automatically once this portion of the heap
6634 has been allocated since the last garbage collection.
6635 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6636 Vgc_cons_percentage
= make_float (0.1);
6638 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6639 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
6641 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6642 doc
: /* Number of cons cells that have been consed so far. */);
6644 DEFVAR_INT ("floats-consed", floats_consed
,
6645 doc
: /* Number of floats that have been consed so far. */);
6647 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6648 doc
: /* Number of vector cells that have been consed so far. */);
6650 DEFVAR_INT ("symbols-consed", symbols_consed
,
6651 doc
: /* Number of symbols that have been consed so far. */);
6653 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6654 doc
: /* Number of string characters that have been consed so far. */);
6656 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6657 doc
: /* Number of miscellaneous objects that have been consed so far.
6658 These include markers and overlays, plus certain objects not visible
6661 DEFVAR_INT ("intervals-consed", intervals_consed
,
6662 doc
: /* Number of intervals that have been consed so far. */);
6664 DEFVAR_INT ("strings-consed", strings_consed
,
6665 doc
: /* Number of strings that have been consed so far. */);
6667 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6668 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6669 This means that certain objects should be allocated in shared (pure) space.
6670 It can also be set to a hash-table, in which case this table is used to
6671 do hash-consing of the objects allocated to pure space. */);
6673 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6674 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6675 garbage_collection_messages
= 0;
6677 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6678 doc
: /* Hook run after garbage collection has finished. */);
6679 Vpost_gc_hook
= Qnil
;
6680 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
6682 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6683 doc
: /* Precomputed `signal' argument for memory-full error. */);
6684 /* We build this in advance because if we wait until we need it, we might
6685 not be able to allocate the memory to hold it. */
6687 = listn (CONSTYPE_PURE
, 2, Qerror
,
6688 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6690 DEFVAR_LISP ("memory-full", Vmemory_full
,
6691 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6692 Vmemory_full
= Qnil
;
6694 DEFSYM (Qconses
, "conses");
6695 DEFSYM (Qsymbols
, "symbols");
6696 DEFSYM (Qmiscs
, "miscs");
6697 DEFSYM (Qstrings
, "strings");
6698 DEFSYM (Qvectors
, "vectors");
6699 DEFSYM (Qfloats
, "floats");
6700 DEFSYM (Qintervals
, "intervals");
6701 DEFSYM (Qbuffers
, "buffers");
6702 DEFSYM (Qstring_bytes
, "string-bytes");
6703 DEFSYM (Qvector_slots
, "vector-slots");
6704 DEFSYM (Qheap
, "heap");
6705 DEFSYM (Qautomatic_gc
, "Automatic GC");
6707 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
6708 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
6710 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6711 doc
: /* Accumulated time elapsed in garbage collections.
6712 The time is in seconds as a floating point value. */);
6713 DEFVAR_INT ("gcs-done", gcs_done
,
6714 doc
: /* Accumulated number of garbage collections done. */);
6719 defsubr (&Smake_byte_code
);
6720 defsubr (&Smake_list
);
6721 defsubr (&Smake_vector
);
6722 defsubr (&Smake_string
);
6723 defsubr (&Smake_bool_vector
);
6724 defsubr (&Smake_symbol
);
6725 defsubr (&Smake_marker
);
6726 defsubr (&Spurecopy
);
6727 defsubr (&Sgarbage_collect
);
6728 defsubr (&Smemory_limit
);
6729 defsubr (&Smemory_use_counts
);
6731 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6732 defsubr (&Sgc_status
);
6736 /* When compiled with GCC, GDB might say "No enum type named
6737 pvec_type" if we don't have at least one symbol with that type, and
6738 then xbacktrace could fail. Similarly for the other enums and
6739 their values. Some non-GCC compilers don't like these constructs. */
6743 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
6744 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS
;
6745 enum char_bits char_bits
;
6746 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
6747 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
6748 enum enum_USE_LSB_TAG enum_USE_LSB_TAG
;
6749 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE
;
6750 enum Lisp_Bits Lisp_Bits
;
6751 enum Lisp_Compiled Lisp_Compiled
;
6752 enum maxargs maxargs
;
6753 enum MAX_ALLOCA MAX_ALLOCA
;
6754 enum More_Lisp_Bits More_Lisp_Bits
;
6755 enum pvec_type pvec_type
;
6756 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
6757 #endif /* __GNUC__ */