(vip-add-hook,vip-remove-hook): new functions.
[emacs.git] / src / regex.c
blob9bb15d7366ed686a67917c2d1f194fcc36b6e93e
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #define _GNU_SOURCE
29 #ifdef HAVE_CONFIG_H
30 #include <config.h>
31 #endif
33 /* We need this for `regex.h', and perhaps for the Emacs include files. */
34 #include <sys/types.h>
36 /* This is for other GNU distributions with internationalized messages. */
37 #if HAVE_LIBINTL_H || defined (_LIBC)
38 # include <libintl.h>
39 #else
40 # define gettext(msgid) (msgid)
41 #endif
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45 #ifdef emacs
47 #include "lisp.h"
48 #include "buffer.h"
49 #include "syntax.h"
51 #else /* not emacs */
53 /* If we are not linking with Emacs proper,
54 we can't use the relocating allocator
55 even if config.h says that we can. */
56 #undef REL_ALLOC
58 #if defined (STDC_HEADERS) || defined (_LIBC)
59 #include <stdlib.h>
60 #else
61 char *malloc ();
62 char *realloc ();
63 #endif
65 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
66 If nothing else has been done, use the method below. */
67 #ifdef INHIBIT_STRING_HEADER
68 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
69 #if !defined (bzero) && !defined (bcopy)
70 #undef INHIBIT_STRING_HEADER
71 #endif
72 #endif
73 #endif
75 /* This is the normal way of making sure we have a bcopy and a bzero.
76 This is used in most programs--a few other programs avoid this
77 by defining INHIBIT_STRING_HEADER. */
78 #ifndef INHIBIT_STRING_HEADER
79 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
80 #include <string.h>
81 #ifndef bcmp
82 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
83 #endif
84 #ifndef bcopy
85 #define bcopy(s, d, n) memcpy ((d), (s), (n))
86 #endif
87 #ifndef bzero
88 #define bzero(s, n) memset ((s), 0, (n))
89 #endif
90 #else
91 #include <strings.h>
92 #endif
93 #endif
95 /* Define the syntax stuff for \<, \>, etc. */
97 /* This must be nonzero for the wordchar and notwordchar pattern
98 commands in re_match_2. */
99 #ifndef Sword
100 #define Sword 1
101 #endif
103 #ifdef SWITCH_ENUM_BUG
104 #define SWITCH_ENUM_CAST(x) ((int)(x))
105 #else
106 #define SWITCH_ENUM_CAST(x) (x)
107 #endif
109 #ifdef SYNTAX_TABLE
111 extern char *re_syntax_table;
113 #else /* not SYNTAX_TABLE */
115 /* How many characters in the character set. */
116 #define CHAR_SET_SIZE 256
118 static char re_syntax_table[CHAR_SET_SIZE];
120 static void
121 init_syntax_once ()
123 register int c;
124 static int done = 0;
126 if (done)
127 return;
129 bzero (re_syntax_table, sizeof re_syntax_table);
131 for (c = 'a'; c <= 'z'; c++)
132 re_syntax_table[c] = Sword;
134 for (c = 'A'; c <= 'Z'; c++)
135 re_syntax_table[c] = Sword;
137 for (c = '0'; c <= '9'; c++)
138 re_syntax_table[c] = Sword;
140 re_syntax_table['_'] = Sword;
142 done = 1;
145 #endif /* not SYNTAX_TABLE */
147 #define SYNTAX(c) re_syntax_table[c]
149 #endif /* not emacs */
151 /* Get the interface, including the syntax bits. */
152 #include "regex.h"
154 /* isalpha etc. are used for the character classes. */
155 #include <ctype.h>
157 /* Jim Meyering writes:
159 "... Some ctype macros are valid only for character codes that
160 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
161 using /bin/cc or gcc but without giving an ansi option). So, all
162 ctype uses should be through macros like ISPRINT... If
163 STDC_HEADERS is defined, then autoconf has verified that the ctype
164 macros don't need to be guarded with references to isascii. ...
165 Defining isascii to 1 should let any compiler worth its salt
166 eliminate the && through constant folding." */
168 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
169 #define ISASCII(c) 1
170 #else
171 #define ISASCII(c) isascii(c)
172 #endif
174 #ifdef isblank
175 #define ISBLANK(c) (ISASCII (c) && isblank (c))
176 #else
177 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
178 #endif
179 #ifdef isgraph
180 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
181 #else
182 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
183 #endif
185 #define ISPRINT(c) (ISASCII (c) && isprint (c))
186 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
187 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
188 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
189 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
190 #define ISLOWER(c) (ISASCII (c) && islower (c))
191 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
192 #define ISSPACE(c) (ISASCII (c) && isspace (c))
193 #define ISUPPER(c) (ISASCII (c) && isupper (c))
194 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
196 #ifndef NULL
197 #define NULL (void *)0
198 #endif
200 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
201 since ours (we hope) works properly with all combinations of
202 machines, compilers, `char' and `unsigned char' argument types.
203 (Per Bothner suggested the basic approach.) */
204 #undef SIGN_EXTEND_CHAR
205 #if __STDC__
206 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
207 #else /* not __STDC__ */
208 /* As in Harbison and Steele. */
209 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
210 #endif
212 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
213 use `alloca' instead of `malloc'. This is because using malloc in
214 re_search* or re_match* could cause memory leaks when C-g is used in
215 Emacs; also, malloc is slower and causes storage fragmentation. On
216 the other hand, malloc is more portable, and easier to debug.
218 Because we sometimes use alloca, some routines have to be macros,
219 not functions -- `alloca'-allocated space disappears at the end of the
220 function it is called in. */
222 #ifdef REGEX_MALLOC
224 #define REGEX_ALLOCATE malloc
225 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
226 #define REGEX_FREE free
228 #else /* not REGEX_MALLOC */
230 /* Emacs already defines alloca, sometimes. */
231 #ifndef alloca
233 /* Make alloca work the best possible way. */
234 #ifdef __GNUC__
235 #define alloca __builtin_alloca
236 #else /* not __GNUC__ */
237 #if HAVE_ALLOCA_H
238 #include <alloca.h>
239 #else /* not __GNUC__ or HAVE_ALLOCA_H */
240 #ifndef _AIX /* Already did AIX, up at the top. */
241 char *alloca ();
242 #endif /* not _AIX */
243 #endif /* not HAVE_ALLOCA_H */
244 #endif /* not __GNUC__ */
246 #endif /* not alloca */
248 #define REGEX_ALLOCATE alloca
250 /* Assumes a `char *destination' variable. */
251 #define REGEX_REALLOCATE(source, osize, nsize) \
252 (destination = (char *) alloca (nsize), \
253 bcopy (source, destination, osize), \
254 destination)
256 /* No need to do anything to free, after alloca. */
257 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
259 #endif /* not REGEX_MALLOC */
261 /* Define how to allocate the failure stack. */
263 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
265 #define REGEX_ALLOCATE_STACK(size) \
266 r_alloc (&failure_stack_ptr, (size))
267 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
268 r_re_alloc (&failure_stack_ptr, (nsize))
269 #define REGEX_FREE_STACK(ptr) \
270 r_alloc_free (&failure_stack_ptr)
272 #else /* not using relocating allocator */
274 #ifdef REGEX_MALLOC
276 #define REGEX_ALLOCATE_STACK malloc
277 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
278 #define REGEX_FREE_STACK free
280 #else /* not REGEX_MALLOC */
282 #define REGEX_ALLOCATE_STACK alloca
284 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
285 REGEX_REALLOCATE (source, osize, nsize)
286 /* No need to explicitly free anything. */
287 #define REGEX_FREE_STACK(arg)
289 #endif /* not REGEX_MALLOC */
290 #endif /* not using relocating allocator */
293 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
294 `string1' or just past its end. This works if PTR is NULL, which is
295 a good thing. */
296 #define FIRST_STRING_P(ptr) \
297 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
299 /* (Re)Allocate N items of type T using malloc, or fail. */
300 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
301 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
302 #define RETALLOC_IF(addr, n, t) \
303 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
304 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
306 #define BYTEWIDTH 8 /* In bits. */
308 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
310 #undef MAX
311 #undef MIN
312 #define MAX(a, b) ((a) > (b) ? (a) : (b))
313 #define MIN(a, b) ((a) < (b) ? (a) : (b))
315 typedef char boolean;
316 #define false 0
317 #define true 1
319 static int re_match_2_internal ();
321 /* These are the command codes that appear in compiled regular
322 expressions. Some opcodes are followed by argument bytes. A
323 command code can specify any interpretation whatsoever for its
324 arguments. Zero bytes may appear in the compiled regular expression. */
326 typedef enum
328 no_op = 0,
330 /* Succeed right away--no more backtracking. */
331 succeed,
333 /* Followed by one byte giving n, then by n literal bytes. */
334 exactn,
336 /* Matches any (more or less) character. */
337 anychar,
339 /* Matches any one char belonging to specified set. First
340 following byte is number of bitmap bytes. Then come bytes
341 for a bitmap saying which chars are in. Bits in each byte
342 are ordered low-bit-first. A character is in the set if its
343 bit is 1. A character too large to have a bit in the map is
344 automatically not in the set. */
345 charset,
347 /* Same parameters as charset, but match any character that is
348 not one of those specified. */
349 charset_not,
351 /* Start remembering the text that is matched, for storing in a
352 register. Followed by one byte with the register number, in
353 the range 0 to one less than the pattern buffer's re_nsub
354 field. Then followed by one byte with the number of groups
355 inner to this one. (This last has to be part of the
356 start_memory only because we need it in the on_failure_jump
357 of re_match_2.) */
358 start_memory,
360 /* Stop remembering the text that is matched and store it in a
361 memory register. Followed by one byte with the register
362 number, in the range 0 to one less than `re_nsub' in the
363 pattern buffer, and one byte with the number of inner groups,
364 just like `start_memory'. (We need the number of inner
365 groups here because we don't have any easy way of finding the
366 corresponding start_memory when we're at a stop_memory.) */
367 stop_memory,
369 /* Match a duplicate of something remembered. Followed by one
370 byte containing the register number. */
371 duplicate,
373 /* Fail unless at beginning of line. */
374 begline,
376 /* Fail unless at end of line. */
377 endline,
379 /* Succeeds if at beginning of buffer (if emacs) or at beginning
380 of string to be matched (if not). */
381 begbuf,
383 /* Analogously, for end of buffer/string. */
384 endbuf,
386 /* Followed by two byte relative address to which to jump. */
387 jump,
389 /* Same as jump, but marks the end of an alternative. */
390 jump_past_alt,
392 /* Followed by two-byte relative address of place to resume at
393 in case of failure. */
394 on_failure_jump,
396 /* Like on_failure_jump, but pushes a placeholder instead of the
397 current string position when executed. */
398 on_failure_keep_string_jump,
400 /* Throw away latest failure point and then jump to following
401 two-byte relative address. */
402 pop_failure_jump,
404 /* Change to pop_failure_jump if know won't have to backtrack to
405 match; otherwise change to jump. This is used to jump
406 back to the beginning of a repeat. If what follows this jump
407 clearly won't match what the repeat does, such that we can be
408 sure that there is no use backtracking out of repetitions
409 already matched, then we change it to a pop_failure_jump.
410 Followed by two-byte address. */
411 maybe_pop_jump,
413 /* Jump to following two-byte address, and push a dummy failure
414 point. This failure point will be thrown away if an attempt
415 is made to use it for a failure. A `+' construct makes this
416 before the first repeat. Also used as an intermediary kind
417 of jump when compiling an alternative. */
418 dummy_failure_jump,
420 /* Push a dummy failure point and continue. Used at the end of
421 alternatives. */
422 push_dummy_failure,
424 /* Followed by two-byte relative address and two-byte number n.
425 After matching N times, jump to the address upon failure. */
426 succeed_n,
428 /* Followed by two-byte relative address, and two-byte number n.
429 Jump to the address N times, then fail. */
430 jump_n,
432 /* Set the following two-byte relative address to the
433 subsequent two-byte number. The address *includes* the two
434 bytes of number. */
435 set_number_at,
437 wordchar, /* Matches any word-constituent character. */
438 notwordchar, /* Matches any char that is not a word-constituent. */
440 wordbeg, /* Succeeds if at word beginning. */
441 wordend, /* Succeeds if at word end. */
443 wordbound, /* Succeeds if at a word boundary. */
444 notwordbound /* Succeeds if not at a word boundary. */
446 #ifdef emacs
447 ,before_dot, /* Succeeds if before point. */
448 at_dot, /* Succeeds if at point. */
449 after_dot, /* Succeeds if after point. */
451 /* Matches any character whose syntax is specified. Followed by
452 a byte which contains a syntax code, e.g., Sword. */
453 syntaxspec,
455 /* Matches any character whose syntax is not that specified. */
456 notsyntaxspec
457 #endif /* emacs */
458 } re_opcode_t;
460 /* Common operations on the compiled pattern. */
462 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
464 #define STORE_NUMBER(destination, number) \
465 do { \
466 (destination)[0] = (number) & 0377; \
467 (destination)[1] = (number) >> 8; \
468 } while (0)
470 /* Same as STORE_NUMBER, except increment DESTINATION to
471 the byte after where the number is stored. Therefore, DESTINATION
472 must be an lvalue. */
474 #define STORE_NUMBER_AND_INCR(destination, number) \
475 do { \
476 STORE_NUMBER (destination, number); \
477 (destination) += 2; \
478 } while (0)
480 /* Put into DESTINATION a number stored in two contiguous bytes starting
481 at SOURCE. */
483 #define EXTRACT_NUMBER(destination, source) \
484 do { \
485 (destination) = *(source) & 0377; \
486 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
487 } while (0)
489 #ifdef DEBUG
490 static void
491 extract_number (dest, source)
492 int *dest;
493 unsigned char *source;
495 int temp = SIGN_EXTEND_CHAR (*(source + 1));
496 *dest = *source & 0377;
497 *dest += temp << 8;
500 #ifndef EXTRACT_MACROS /* To debug the macros. */
501 #undef EXTRACT_NUMBER
502 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
503 #endif /* not EXTRACT_MACROS */
505 #endif /* DEBUG */
507 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
508 SOURCE must be an lvalue. */
510 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
511 do { \
512 EXTRACT_NUMBER (destination, source); \
513 (source) += 2; \
514 } while (0)
516 #ifdef DEBUG
517 static void
518 extract_number_and_incr (destination, source)
519 int *destination;
520 unsigned char **source;
522 extract_number (destination, *source);
523 *source += 2;
526 #ifndef EXTRACT_MACROS
527 #undef EXTRACT_NUMBER_AND_INCR
528 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
529 extract_number_and_incr (&dest, &src)
530 #endif /* not EXTRACT_MACROS */
532 #endif /* DEBUG */
534 /* If DEBUG is defined, Regex prints many voluminous messages about what
535 it is doing (if the variable `debug' is nonzero). If linked with the
536 main program in `iregex.c', you can enter patterns and strings
537 interactively. And if linked with the main program in `main.c' and
538 the other test files, you can run the already-written tests. */
540 #ifdef DEBUG
542 /* We use standard I/O for debugging. */
543 #include <stdio.h>
545 /* It is useful to test things that ``must'' be true when debugging. */
546 #include <assert.h>
548 static int debug = 0;
550 #define DEBUG_STATEMENT(e) e
551 #define DEBUG_PRINT1(x) if (debug) printf (x)
552 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
553 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
554 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
555 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
556 if (debug) print_partial_compiled_pattern (s, e)
557 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
558 if (debug) print_double_string (w, s1, sz1, s2, sz2)
561 /* Print the fastmap in human-readable form. */
563 void
564 print_fastmap (fastmap)
565 char *fastmap;
567 unsigned was_a_range = 0;
568 unsigned i = 0;
570 while (i < (1 << BYTEWIDTH))
572 if (fastmap[i++])
574 was_a_range = 0;
575 putchar (i - 1);
576 while (i < (1 << BYTEWIDTH) && fastmap[i])
578 was_a_range = 1;
579 i++;
581 if (was_a_range)
583 printf ("-");
584 putchar (i - 1);
588 putchar ('\n');
592 /* Print a compiled pattern string in human-readable form, starting at
593 the START pointer into it and ending just before the pointer END. */
595 void
596 print_partial_compiled_pattern (start, end)
597 unsigned char *start;
598 unsigned char *end;
600 int mcnt, mcnt2;
601 unsigned char *p = start;
602 unsigned char *pend = end;
604 if (start == NULL)
606 printf ("(null)\n");
607 return;
610 /* Loop over pattern commands. */
611 while (p < pend)
613 printf ("%d:\t", p - start);
615 switch ((re_opcode_t) *p++)
617 case no_op:
618 printf ("/no_op");
619 break;
621 case exactn:
622 mcnt = *p++;
623 printf ("/exactn/%d", mcnt);
626 putchar ('/');
627 putchar (*p++);
629 while (--mcnt);
630 break;
632 case start_memory:
633 mcnt = *p++;
634 printf ("/start_memory/%d/%d", mcnt, *p++);
635 break;
637 case stop_memory:
638 mcnt = *p++;
639 printf ("/stop_memory/%d/%d", mcnt, *p++);
640 break;
642 case duplicate:
643 printf ("/duplicate/%d", *p++);
644 break;
646 case anychar:
647 printf ("/anychar");
648 break;
650 case charset:
651 case charset_not:
653 register int c, last = -100;
654 register int in_range = 0;
656 printf ("/charset [%s",
657 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
659 assert (p + *p < pend);
661 for (c = 0; c < 256; c++)
662 if (c / 8 < *p
663 && (p[1 + (c/8)] & (1 << (c % 8))))
665 /* Are we starting a range? */
666 if (last + 1 == c && ! in_range)
668 putchar ('-');
669 in_range = 1;
671 /* Have we broken a range? */
672 else if (last + 1 != c && in_range)
674 putchar (last);
675 in_range = 0;
678 if (! in_range)
679 putchar (c);
681 last = c;
684 if (in_range)
685 putchar (last);
687 putchar (']');
689 p += 1 + *p;
691 break;
693 case begline:
694 printf ("/begline");
695 break;
697 case endline:
698 printf ("/endline");
699 break;
701 case on_failure_jump:
702 extract_number_and_incr (&mcnt, &p);
703 printf ("/on_failure_jump to %d", p + mcnt - start);
704 break;
706 case on_failure_keep_string_jump:
707 extract_number_and_incr (&mcnt, &p);
708 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
709 break;
711 case dummy_failure_jump:
712 extract_number_and_incr (&mcnt, &p);
713 printf ("/dummy_failure_jump to %d", p + mcnt - start);
714 break;
716 case push_dummy_failure:
717 printf ("/push_dummy_failure");
718 break;
720 case maybe_pop_jump:
721 extract_number_and_incr (&mcnt, &p);
722 printf ("/maybe_pop_jump to %d", p + mcnt - start);
723 break;
725 case pop_failure_jump:
726 extract_number_and_incr (&mcnt, &p);
727 printf ("/pop_failure_jump to %d", p + mcnt - start);
728 break;
730 case jump_past_alt:
731 extract_number_and_incr (&mcnt, &p);
732 printf ("/jump_past_alt to %d", p + mcnt - start);
733 break;
735 case jump:
736 extract_number_and_incr (&mcnt, &p);
737 printf ("/jump to %d", p + mcnt - start);
738 break;
740 case succeed_n:
741 extract_number_and_incr (&mcnt, &p);
742 extract_number_and_incr (&mcnt2, &p);
743 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
744 break;
746 case jump_n:
747 extract_number_and_incr (&mcnt, &p);
748 extract_number_and_incr (&mcnt2, &p);
749 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
750 break;
752 case set_number_at:
753 extract_number_and_incr (&mcnt, &p);
754 extract_number_and_incr (&mcnt2, &p);
755 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
756 break;
758 case wordbound:
759 printf ("/wordbound");
760 break;
762 case notwordbound:
763 printf ("/notwordbound");
764 break;
766 case wordbeg:
767 printf ("/wordbeg");
768 break;
770 case wordend:
771 printf ("/wordend");
773 #ifdef emacs
774 case before_dot:
775 printf ("/before_dot");
776 break;
778 case at_dot:
779 printf ("/at_dot");
780 break;
782 case after_dot:
783 printf ("/after_dot");
784 break;
786 case syntaxspec:
787 printf ("/syntaxspec");
788 mcnt = *p++;
789 printf ("/%d", mcnt);
790 break;
792 case notsyntaxspec:
793 printf ("/notsyntaxspec");
794 mcnt = *p++;
795 printf ("/%d", mcnt);
796 break;
797 #endif /* emacs */
799 case wordchar:
800 printf ("/wordchar");
801 break;
803 case notwordchar:
804 printf ("/notwordchar");
805 break;
807 case begbuf:
808 printf ("/begbuf");
809 break;
811 case endbuf:
812 printf ("/endbuf");
813 break;
815 default:
816 printf ("?%d", *(p-1));
819 putchar ('\n');
822 printf ("%d:\tend of pattern.\n", p - start);
826 void
827 print_compiled_pattern (bufp)
828 struct re_pattern_buffer *bufp;
830 unsigned char *buffer = bufp->buffer;
832 print_partial_compiled_pattern (buffer, buffer + bufp->used);
833 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
835 if (bufp->fastmap_accurate && bufp->fastmap)
837 printf ("fastmap: ");
838 print_fastmap (bufp->fastmap);
841 printf ("re_nsub: %d\t", bufp->re_nsub);
842 printf ("regs_alloc: %d\t", bufp->regs_allocated);
843 printf ("can_be_null: %d\t", bufp->can_be_null);
844 printf ("newline_anchor: %d\n", bufp->newline_anchor);
845 printf ("no_sub: %d\t", bufp->no_sub);
846 printf ("not_bol: %d\t", bufp->not_bol);
847 printf ("not_eol: %d\t", bufp->not_eol);
848 printf ("syntax: %d\n", bufp->syntax);
849 /* Perhaps we should print the translate table? */
853 void
854 print_double_string (where, string1, size1, string2, size2)
855 const char *where;
856 const char *string1;
857 const char *string2;
858 int size1;
859 int size2;
861 unsigned this_char;
863 if (where == NULL)
864 printf ("(null)");
865 else
867 if (FIRST_STRING_P (where))
869 for (this_char = where - string1; this_char < size1; this_char++)
870 putchar (string1[this_char]);
872 where = string2;
875 for (this_char = where - string2; this_char < size2; this_char++)
876 putchar (string2[this_char]);
880 #else /* not DEBUG */
882 #undef assert
883 #define assert(e)
885 #define DEBUG_STATEMENT(e)
886 #define DEBUG_PRINT1(x)
887 #define DEBUG_PRINT2(x1, x2)
888 #define DEBUG_PRINT3(x1, x2, x3)
889 #define DEBUG_PRINT4(x1, x2, x3, x4)
890 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
891 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
893 #endif /* not DEBUG */
895 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
896 also be assigned to arbitrarily: each pattern buffer stores its own
897 syntax, so it can be changed between regex compilations. */
898 /* This has no initializer because initialized variables in Emacs
899 become read-only after dumping. */
900 reg_syntax_t re_syntax_options;
903 /* Specify the precise syntax of regexps for compilation. This provides
904 for compatibility for various utilities which historically have
905 different, incompatible syntaxes.
907 The argument SYNTAX is a bit mask comprised of the various bits
908 defined in regex.h. We return the old syntax. */
910 reg_syntax_t
911 re_set_syntax (syntax)
912 reg_syntax_t syntax;
914 reg_syntax_t ret = re_syntax_options;
916 re_syntax_options = syntax;
917 return ret;
920 /* This table gives an error message for each of the error codes listed
921 in regex.h. Obviously the order here has to be same as there.
922 POSIX doesn't require that we do anything for REG_NOERROR,
923 but why not be nice? */
925 static const char *re_error_msgid[] =
926 { "Success", /* REG_NOERROR */
927 "No match", /* REG_NOMATCH */
928 "Invalid regular expression", /* REG_BADPAT */
929 "Invalid collation character", /* REG_ECOLLATE */
930 "Invalid character class name", /* REG_ECTYPE */
931 "Trailing backslash", /* REG_EESCAPE */
932 "Invalid back reference", /* REG_ESUBREG */
933 "Unmatched [ or [^", /* REG_EBRACK */
934 "Unmatched ( or \\(", /* REG_EPAREN */
935 "Unmatched \\{", /* REG_EBRACE */
936 "Invalid content of \\{\\}", /* REG_BADBR */
937 "Invalid range end", /* REG_ERANGE */
938 "Memory exhausted", /* REG_ESPACE */
939 "Invalid preceding regular expression", /* REG_BADRPT */
940 "Premature end of regular expression", /* REG_EEND */
941 "Regular expression too big", /* REG_ESIZE */
942 "Unmatched ) or \\)", /* REG_ERPAREN */
945 /* Avoiding alloca during matching, to placate r_alloc. */
947 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
948 searching and matching functions should not call alloca. On some
949 systems, alloca is implemented in terms of malloc, and if we're
950 using the relocating allocator routines, then malloc could cause a
951 relocation, which might (if the strings being searched are in the
952 ralloc heap) shift the data out from underneath the regexp
953 routines.
955 Here's another reason to avoid allocation: Emacs
956 processes input from X in a signal handler; processing X input may
957 call malloc; if input arrives while a matching routine is calling
958 malloc, then we're scrod. But Emacs can't just block input while
959 calling matching routines; then we don't notice interrupts when
960 they come in. So, Emacs blocks input around all regexp calls
961 except the matching calls, which it leaves unprotected, in the
962 faith that they will not malloc. */
964 /* Normally, this is fine. */
965 #define MATCH_MAY_ALLOCATE
967 /* When using GNU C, we are not REALLY using the C alloca, no matter
968 what config.h may say. So don't take precautions for it. */
969 #ifdef __GNUC__
970 #undef C_ALLOCA
971 #endif
973 /* The match routines may not allocate if (1) they would do it with malloc
974 and (2) it's not safe for them to use malloc.
975 Note that if REL_ALLOC is defined, matching would not use malloc for the
976 failure stack, but we would still use it for the register vectors;
977 so REL_ALLOC should not affect this. */
978 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
979 #undef MATCH_MAY_ALLOCATE
980 #endif
983 /* Failure stack declarations and macros; both re_compile_fastmap and
984 re_match_2 use a failure stack. These have to be macros because of
985 REGEX_ALLOCATE_STACK. */
988 /* Number of failure points for which to initially allocate space
989 when matching. If this number is exceeded, we allocate more
990 space, so it is not a hard limit. */
991 #ifndef INIT_FAILURE_ALLOC
992 #define INIT_FAILURE_ALLOC 5
993 #endif
995 /* Roughly the maximum number of failure points on the stack. Would be
996 exactly that if always used MAX_FAILURE_SPACE each time we failed.
997 This is a variable only so users of regex can assign to it; we never
998 change it ourselves. */
999 #if defined (MATCH_MAY_ALLOCATE)
1000 int re_max_failures = 200000;
1001 #else
1002 int re_max_failures = 2000;
1003 #endif
1005 union fail_stack_elt
1007 unsigned char *pointer;
1008 int integer;
1011 typedef union fail_stack_elt fail_stack_elt_t;
1013 typedef struct
1015 fail_stack_elt_t *stack;
1016 unsigned size;
1017 unsigned avail; /* Offset of next open position. */
1018 } fail_stack_type;
1020 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1021 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1022 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1025 /* Define macros to initialize and free the failure stack.
1026 Do `return -2' if the alloc fails. */
1028 #ifdef MATCH_MAY_ALLOCATE
1029 #define INIT_FAIL_STACK() \
1030 do { \
1031 fail_stack.stack = (fail_stack_elt_t *) \
1032 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1034 if (fail_stack.stack == NULL) \
1035 return -2; \
1037 fail_stack.size = INIT_FAILURE_ALLOC; \
1038 fail_stack.avail = 0; \
1039 } while (0)
1041 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1042 #else
1043 #define INIT_FAIL_STACK() \
1044 do { \
1045 fail_stack.avail = 0; \
1046 } while (0)
1048 #define RESET_FAIL_STACK()
1049 #endif
1052 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1054 Return 1 if succeeds, and 0 if either ran out of memory
1055 allocating space for it or it was already too large.
1057 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1059 #define DOUBLE_FAIL_STACK(fail_stack) \
1060 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1061 ? 0 \
1062 : ((fail_stack).stack = (fail_stack_elt_t *) \
1063 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1064 (fail_stack).size * sizeof (fail_stack_elt_t), \
1065 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1067 (fail_stack).stack == NULL \
1068 ? 0 \
1069 : ((fail_stack).size <<= 1, \
1070 1)))
1073 /* Push pointer POINTER on FAIL_STACK.
1074 Return 1 if was able to do so and 0 if ran out of memory allocating
1075 space to do so. */
1076 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1077 ((FAIL_STACK_FULL () \
1078 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1079 ? 0 \
1080 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1083 /* Push a pointer value onto the failure stack.
1084 Assumes the variable `fail_stack'. Probably should only
1085 be called from within `PUSH_FAILURE_POINT'. */
1086 #define PUSH_FAILURE_POINTER(item) \
1087 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1089 /* This pushes an integer-valued item onto the failure stack.
1090 Assumes the variable `fail_stack'. Probably should only
1091 be called from within `PUSH_FAILURE_POINT'. */
1092 #define PUSH_FAILURE_INT(item) \
1093 fail_stack.stack[fail_stack.avail++].integer = (item)
1095 /* Push a fail_stack_elt_t value onto the failure stack.
1096 Assumes the variable `fail_stack'. Probably should only
1097 be called from within `PUSH_FAILURE_POINT'. */
1098 #define PUSH_FAILURE_ELT(item) \
1099 fail_stack.stack[fail_stack.avail++] = (item)
1101 /* These three POP... operations complement the three PUSH... operations.
1102 All assume that `fail_stack' is nonempty. */
1103 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1104 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1105 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1107 /* Used to omit pushing failure point id's when we're not debugging. */
1108 #ifdef DEBUG
1109 #define DEBUG_PUSH PUSH_FAILURE_INT
1110 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1111 #else
1112 #define DEBUG_PUSH(item)
1113 #define DEBUG_POP(item_addr)
1114 #endif
1117 /* Push the information about the state we will need
1118 if we ever fail back to it.
1120 Requires variables fail_stack, regstart, regend, reg_info, and
1121 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1122 declared.
1124 Does `return FAILURE_CODE' if runs out of memory. */
1126 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1127 do { \
1128 char *destination; \
1129 /* Must be int, so when we don't save any registers, the arithmetic \
1130 of 0 + -1 isn't done as unsigned. */ \
1131 int this_reg; \
1133 DEBUG_STATEMENT (failure_id++); \
1134 DEBUG_STATEMENT (nfailure_points_pushed++); \
1135 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1136 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1137 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1139 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1140 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1142 /* Ensure we have enough space allocated for what we will push. */ \
1143 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1145 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1146 return failure_code; \
1148 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1149 (fail_stack).size); \
1150 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1153 /* Push the info, starting with the registers. */ \
1154 DEBUG_PRINT1 ("\n"); \
1156 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1157 this_reg++) \
1159 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1160 DEBUG_STATEMENT (num_regs_pushed++); \
1162 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1163 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1165 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1166 PUSH_FAILURE_POINTER (regend[this_reg]); \
1168 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1169 DEBUG_PRINT2 (" match_null=%d", \
1170 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1171 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1172 DEBUG_PRINT2 (" matched_something=%d", \
1173 MATCHED_SOMETHING (reg_info[this_reg])); \
1174 DEBUG_PRINT2 (" ever_matched=%d", \
1175 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1176 DEBUG_PRINT1 ("\n"); \
1177 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1180 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1181 PUSH_FAILURE_INT (lowest_active_reg); \
1183 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1184 PUSH_FAILURE_INT (highest_active_reg); \
1186 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1187 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1188 PUSH_FAILURE_POINTER (pattern_place); \
1190 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1191 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1192 size2); \
1193 DEBUG_PRINT1 ("'\n"); \
1194 PUSH_FAILURE_POINTER (string_place); \
1196 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1197 DEBUG_PUSH (failure_id); \
1198 } while (0)
1200 /* This is the number of items that are pushed and popped on the stack
1201 for each register. */
1202 #define NUM_REG_ITEMS 3
1204 /* Individual items aside from the registers. */
1205 #ifdef DEBUG
1206 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1207 #else
1208 #define NUM_NONREG_ITEMS 4
1209 #endif
1211 /* We push at most this many items on the stack. */
1212 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1214 /* We actually push this many items. */
1215 #define NUM_FAILURE_ITEMS \
1216 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1217 + NUM_NONREG_ITEMS)
1219 /* How many items can still be added to the stack without overflowing it. */
1220 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1223 /* Pops what PUSH_FAIL_STACK pushes.
1225 We restore into the parameters, all of which should be lvalues:
1226 STR -- the saved data position.
1227 PAT -- the saved pattern position.
1228 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1229 REGSTART, REGEND -- arrays of string positions.
1230 REG_INFO -- array of information about each subexpression.
1232 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1233 `pend', `string1', `size1', `string2', and `size2'. */
1235 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1237 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1238 int this_reg; \
1239 const unsigned char *string_temp; \
1241 assert (!FAIL_STACK_EMPTY ()); \
1243 /* Remove failure points and point to how many regs pushed. */ \
1244 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1245 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1246 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1248 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1250 DEBUG_POP (&failure_id); \
1251 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1253 /* If the saved string location is NULL, it came from an \
1254 on_failure_keep_string_jump opcode, and we want to throw away the \
1255 saved NULL, thus retaining our current position in the string. */ \
1256 string_temp = POP_FAILURE_POINTER (); \
1257 if (string_temp != NULL) \
1258 str = (const char *) string_temp; \
1260 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1261 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1262 DEBUG_PRINT1 ("'\n"); \
1264 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1265 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1266 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1268 /* Restore register info. */ \
1269 high_reg = (unsigned) POP_FAILURE_INT (); \
1270 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1272 low_reg = (unsigned) POP_FAILURE_INT (); \
1273 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1275 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1277 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1279 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1280 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1282 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1283 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1285 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1286 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1289 set_regs_matched_done = 0; \
1290 DEBUG_STATEMENT (nfailure_points_popped++); \
1291 } /* POP_FAILURE_POINT */
1295 /* Structure for per-register (a.k.a. per-group) information.
1296 Other register information, such as the
1297 starting and ending positions (which are addresses), and the list of
1298 inner groups (which is a bits list) are maintained in separate
1299 variables.
1301 We are making a (strictly speaking) nonportable assumption here: that
1302 the compiler will pack our bit fields into something that fits into
1303 the type of `word', i.e., is something that fits into one item on the
1304 failure stack. */
1306 typedef union
1308 fail_stack_elt_t word;
1309 struct
1311 /* This field is one if this group can match the empty string,
1312 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1313 #define MATCH_NULL_UNSET_VALUE 3
1314 unsigned match_null_string_p : 2;
1315 unsigned is_active : 1;
1316 unsigned matched_something : 1;
1317 unsigned ever_matched_something : 1;
1318 } bits;
1319 } register_info_type;
1321 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1322 #define IS_ACTIVE(R) ((R).bits.is_active)
1323 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1324 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1327 /* Call this when have matched a real character; it sets `matched' flags
1328 for the subexpressions which we are currently inside. Also records
1329 that those subexprs have matched. */
1330 #define SET_REGS_MATCHED() \
1331 do \
1333 if (!set_regs_matched_done) \
1335 unsigned r; \
1336 set_regs_matched_done = 1; \
1337 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1339 MATCHED_SOMETHING (reg_info[r]) \
1340 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1341 = 1; \
1345 while (0)
1347 /* Registers are set to a sentinel when they haven't yet matched. */
1348 static char reg_unset_dummy;
1349 #define REG_UNSET_VALUE (&reg_unset_dummy)
1350 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1352 /* Subroutine declarations and macros for regex_compile. */
1354 static void store_op1 (), store_op2 ();
1355 static void insert_op1 (), insert_op2 ();
1356 static boolean at_begline_loc_p (), at_endline_loc_p ();
1357 static boolean group_in_compile_stack ();
1358 static reg_errcode_t compile_range ();
1360 /* Fetch the next character in the uncompiled pattern---translating it
1361 if necessary. Also cast from a signed character in the constant
1362 string passed to us by the user to an unsigned char that we can use
1363 as an array index (in, e.g., `translate'). */
1364 #define PATFETCH(c) \
1365 do {if (p == pend) return REG_EEND; \
1366 c = (unsigned char) *p++; \
1367 if (translate) c = translate[c]; \
1368 } while (0)
1370 /* Fetch the next character in the uncompiled pattern, with no
1371 translation. */
1372 #define PATFETCH_RAW(c) \
1373 do {if (p == pend) return REG_EEND; \
1374 c = (unsigned char) *p++; \
1375 } while (0)
1377 /* Go backwards one character in the pattern. */
1378 #define PATUNFETCH p--
1381 /* If `translate' is non-null, return translate[D], else just D. We
1382 cast the subscript to translate because some data is declared as
1383 `char *', to avoid warnings when a string constant is passed. But
1384 when we use a character as a subscript we must make it unsigned. */
1385 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1388 /* Macros for outputting the compiled pattern into `buffer'. */
1390 /* If the buffer isn't allocated when it comes in, use this. */
1391 #define INIT_BUF_SIZE 32
1393 /* Make sure we have at least N more bytes of space in buffer. */
1394 #define GET_BUFFER_SPACE(n) \
1395 while (b - bufp->buffer + (n) > bufp->allocated) \
1396 EXTEND_BUFFER ()
1398 /* Make sure we have one more byte of buffer space and then add C to it. */
1399 #define BUF_PUSH(c) \
1400 do { \
1401 GET_BUFFER_SPACE (1); \
1402 *b++ = (unsigned char) (c); \
1403 } while (0)
1406 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1407 #define BUF_PUSH_2(c1, c2) \
1408 do { \
1409 GET_BUFFER_SPACE (2); \
1410 *b++ = (unsigned char) (c1); \
1411 *b++ = (unsigned char) (c2); \
1412 } while (0)
1415 /* As with BUF_PUSH_2, except for three bytes. */
1416 #define BUF_PUSH_3(c1, c2, c3) \
1417 do { \
1418 GET_BUFFER_SPACE (3); \
1419 *b++ = (unsigned char) (c1); \
1420 *b++ = (unsigned char) (c2); \
1421 *b++ = (unsigned char) (c3); \
1422 } while (0)
1425 /* Store a jump with opcode OP at LOC to location TO. We store a
1426 relative address offset by the three bytes the jump itself occupies. */
1427 #define STORE_JUMP(op, loc, to) \
1428 store_op1 (op, loc, (to) - (loc) - 3)
1430 /* Likewise, for a two-argument jump. */
1431 #define STORE_JUMP2(op, loc, to, arg) \
1432 store_op2 (op, loc, (to) - (loc) - 3, arg)
1434 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1435 #define INSERT_JUMP(op, loc, to) \
1436 insert_op1 (op, loc, (to) - (loc) - 3, b)
1438 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1439 #define INSERT_JUMP2(op, loc, to, arg) \
1440 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1443 /* This is not an arbitrary limit: the arguments which represent offsets
1444 into the pattern are two bytes long. So if 2^16 bytes turns out to
1445 be too small, many things would have to change. */
1446 #define MAX_BUF_SIZE (1L << 16)
1449 /* Extend the buffer by twice its current size via realloc and
1450 reset the pointers that pointed into the old block to point to the
1451 correct places in the new one. If extending the buffer results in it
1452 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1453 #define EXTEND_BUFFER() \
1454 do { \
1455 unsigned char *old_buffer = bufp->buffer; \
1456 if (bufp->allocated == MAX_BUF_SIZE) \
1457 return REG_ESIZE; \
1458 bufp->allocated <<= 1; \
1459 if (bufp->allocated > MAX_BUF_SIZE) \
1460 bufp->allocated = MAX_BUF_SIZE; \
1461 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1462 if (bufp->buffer == NULL) \
1463 return REG_ESPACE; \
1464 /* If the buffer moved, move all the pointers into it. */ \
1465 if (old_buffer != bufp->buffer) \
1467 b = (b - old_buffer) + bufp->buffer; \
1468 begalt = (begalt - old_buffer) + bufp->buffer; \
1469 if (fixup_alt_jump) \
1470 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1471 if (laststart) \
1472 laststart = (laststart - old_buffer) + bufp->buffer; \
1473 if (pending_exact) \
1474 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1476 } while (0)
1479 /* Since we have one byte reserved for the register number argument to
1480 {start,stop}_memory, the maximum number of groups we can report
1481 things about is what fits in that byte. */
1482 #define MAX_REGNUM 255
1484 /* But patterns can have more than `MAX_REGNUM' registers. We just
1485 ignore the excess. */
1486 typedef unsigned regnum_t;
1489 /* Macros for the compile stack. */
1491 /* Since offsets can go either forwards or backwards, this type needs to
1492 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1493 typedef int pattern_offset_t;
1495 typedef struct
1497 pattern_offset_t begalt_offset;
1498 pattern_offset_t fixup_alt_jump;
1499 pattern_offset_t inner_group_offset;
1500 pattern_offset_t laststart_offset;
1501 regnum_t regnum;
1502 } compile_stack_elt_t;
1505 typedef struct
1507 compile_stack_elt_t *stack;
1508 unsigned size;
1509 unsigned avail; /* Offset of next open position. */
1510 } compile_stack_type;
1513 #define INIT_COMPILE_STACK_SIZE 32
1515 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1516 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1518 /* The next available element. */
1519 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1522 /* Set the bit for character C in a list. */
1523 #define SET_LIST_BIT(c) \
1524 (b[((unsigned char) (c)) / BYTEWIDTH] \
1525 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1528 /* Get the next unsigned number in the uncompiled pattern. */
1529 #define GET_UNSIGNED_NUMBER(num) \
1530 { if (p != pend) \
1532 PATFETCH (c); \
1533 while (ISDIGIT (c)) \
1535 if (num < 0) \
1536 num = 0; \
1537 num = num * 10 + c - '0'; \
1538 if (p == pend) \
1539 break; \
1540 PATFETCH (c); \
1545 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1547 #define IS_CHAR_CLASS(string) \
1548 (STREQ (string, "alpha") || STREQ (string, "upper") \
1549 || STREQ (string, "lower") || STREQ (string, "digit") \
1550 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1551 || STREQ (string, "space") || STREQ (string, "print") \
1552 || STREQ (string, "punct") || STREQ (string, "graph") \
1553 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1555 #ifndef MATCH_MAY_ALLOCATE
1557 /* If we cannot allocate large objects within re_match_2_internal,
1558 we make the fail stack and register vectors global.
1559 The fail stack, we grow to the maximum size when a regexp
1560 is compiled.
1561 The register vectors, we adjust in size each time we
1562 compile a regexp, according to the number of registers it needs. */
1564 static fail_stack_type fail_stack;
1566 /* Size with which the following vectors are currently allocated.
1567 That is so we can make them bigger as needed,
1568 but never make them smaller. */
1569 static int regs_allocated_size;
1571 static const char ** regstart, ** regend;
1572 static const char ** old_regstart, ** old_regend;
1573 static const char **best_regstart, **best_regend;
1574 static register_info_type *reg_info;
1575 static const char **reg_dummy;
1576 static register_info_type *reg_info_dummy;
1578 /* Make the register vectors big enough for NUM_REGS registers,
1579 but don't make them smaller. */
1581 static
1582 regex_grow_registers (num_regs)
1583 int num_regs;
1585 if (num_regs > regs_allocated_size)
1587 RETALLOC_IF (regstart, num_regs, const char *);
1588 RETALLOC_IF (regend, num_regs, const char *);
1589 RETALLOC_IF (old_regstart, num_regs, const char *);
1590 RETALLOC_IF (old_regend, num_regs, const char *);
1591 RETALLOC_IF (best_regstart, num_regs, const char *);
1592 RETALLOC_IF (best_regend, num_regs, const char *);
1593 RETALLOC_IF (reg_info, num_regs, register_info_type);
1594 RETALLOC_IF (reg_dummy, num_regs, const char *);
1595 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1597 regs_allocated_size = num_regs;
1601 #endif /* not MATCH_MAY_ALLOCATE */
1603 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1604 Returns one of error codes defined in `regex.h', or zero for success.
1606 Assumes the `allocated' (and perhaps `buffer') and `translate'
1607 fields are set in BUFP on entry.
1609 If it succeeds, results are put in BUFP (if it returns an error, the
1610 contents of BUFP are undefined):
1611 `buffer' is the compiled pattern;
1612 `syntax' is set to SYNTAX;
1613 `used' is set to the length of the compiled pattern;
1614 `fastmap_accurate' is zero;
1615 `re_nsub' is the number of subexpressions in PATTERN;
1616 `not_bol' and `not_eol' are zero;
1618 The `fastmap' and `newline_anchor' fields are neither
1619 examined nor set. */
1621 /* Return, freeing storage we allocated. */
1622 #define FREE_STACK_RETURN(value) \
1623 return (free (compile_stack.stack), value)
1625 static reg_errcode_t
1626 regex_compile (pattern, size, syntax, bufp)
1627 const char *pattern;
1628 int size;
1629 reg_syntax_t syntax;
1630 struct re_pattern_buffer *bufp;
1632 /* We fetch characters from PATTERN here. Even though PATTERN is
1633 `char *' (i.e., signed), we declare these variables as unsigned, so
1634 they can be reliably used as array indices. */
1635 register unsigned char c, c1;
1637 /* A random temporary spot in PATTERN. */
1638 const char *p1;
1640 /* Points to the end of the buffer, where we should append. */
1641 register unsigned char *b;
1643 /* Keeps track of unclosed groups. */
1644 compile_stack_type compile_stack;
1646 /* Points to the current (ending) position in the pattern. */
1647 const char *p = pattern;
1648 const char *pend = pattern + size;
1650 /* How to translate the characters in the pattern. */
1651 char *translate = bufp->translate;
1653 /* Address of the count-byte of the most recently inserted `exactn'
1654 command. This makes it possible to tell if a new exact-match
1655 character can be added to that command or if the character requires
1656 a new `exactn' command. */
1657 unsigned char *pending_exact = 0;
1659 /* Address of start of the most recently finished expression.
1660 This tells, e.g., postfix * where to find the start of its
1661 operand. Reset at the beginning of groups and alternatives. */
1662 unsigned char *laststart = 0;
1664 /* Address of beginning of regexp, or inside of last group. */
1665 unsigned char *begalt;
1667 /* Place in the uncompiled pattern (i.e., the {) to
1668 which to go back if the interval is invalid. */
1669 const char *beg_interval;
1671 /* Address of the place where a forward jump should go to the end of
1672 the containing expression. Each alternative of an `or' -- except the
1673 last -- ends with a forward jump of this sort. */
1674 unsigned char *fixup_alt_jump = 0;
1676 /* Counts open-groups as they are encountered. Remembered for the
1677 matching close-group on the compile stack, so the same register
1678 number is put in the stop_memory as the start_memory. */
1679 regnum_t regnum = 0;
1681 #ifdef DEBUG
1682 DEBUG_PRINT1 ("\nCompiling pattern: ");
1683 if (debug)
1685 unsigned debug_count;
1687 for (debug_count = 0; debug_count < size; debug_count++)
1688 putchar (pattern[debug_count]);
1689 putchar ('\n');
1691 #endif /* DEBUG */
1693 /* Initialize the compile stack. */
1694 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1695 if (compile_stack.stack == NULL)
1696 return REG_ESPACE;
1698 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1699 compile_stack.avail = 0;
1701 /* Initialize the pattern buffer. */
1702 bufp->syntax = syntax;
1703 bufp->fastmap_accurate = 0;
1704 bufp->not_bol = bufp->not_eol = 0;
1706 /* Set `used' to zero, so that if we return an error, the pattern
1707 printer (for debugging) will think there's no pattern. We reset it
1708 at the end. */
1709 bufp->used = 0;
1711 /* Always count groups, whether or not bufp->no_sub is set. */
1712 bufp->re_nsub = 0;
1714 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1715 /* Initialize the syntax table. */
1716 init_syntax_once ();
1717 #endif
1719 if (bufp->allocated == 0)
1721 if (bufp->buffer)
1722 { /* If zero allocated, but buffer is non-null, try to realloc
1723 enough space. This loses if buffer's address is bogus, but
1724 that is the user's responsibility. */
1725 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1727 else
1728 { /* Caller did not allocate a buffer. Do it for them. */
1729 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1731 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1733 bufp->allocated = INIT_BUF_SIZE;
1736 begalt = b = bufp->buffer;
1738 /* Loop through the uncompiled pattern until we're at the end. */
1739 while (p != pend)
1741 PATFETCH (c);
1743 switch (c)
1745 case '^':
1747 if ( /* If at start of pattern, it's an operator. */
1748 p == pattern + 1
1749 /* If context independent, it's an operator. */
1750 || syntax & RE_CONTEXT_INDEP_ANCHORS
1751 /* Otherwise, depends on what's come before. */
1752 || at_begline_loc_p (pattern, p, syntax))
1753 BUF_PUSH (begline);
1754 else
1755 goto normal_char;
1757 break;
1760 case '$':
1762 if ( /* If at end of pattern, it's an operator. */
1763 p == pend
1764 /* If context independent, it's an operator. */
1765 || syntax & RE_CONTEXT_INDEP_ANCHORS
1766 /* Otherwise, depends on what's next. */
1767 || at_endline_loc_p (p, pend, syntax))
1768 BUF_PUSH (endline);
1769 else
1770 goto normal_char;
1772 break;
1775 case '+':
1776 case '?':
1777 if ((syntax & RE_BK_PLUS_QM)
1778 || (syntax & RE_LIMITED_OPS))
1779 goto normal_char;
1780 handle_plus:
1781 case '*':
1782 /* If there is no previous pattern... */
1783 if (!laststart)
1785 if (syntax & RE_CONTEXT_INVALID_OPS)
1786 FREE_STACK_RETURN (REG_BADRPT);
1787 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1788 goto normal_char;
1792 /* Are we optimizing this jump? */
1793 boolean keep_string_p = false;
1795 /* 1 means zero (many) matches is allowed. */
1796 char zero_times_ok = 0, many_times_ok = 0;
1798 /* If there is a sequence of repetition chars, collapse it
1799 down to just one (the right one). We can't combine
1800 interval operators with these because of, e.g., `a{2}*',
1801 which should only match an even number of `a's. */
1803 for (;;)
1805 zero_times_ok |= c != '+';
1806 many_times_ok |= c != '?';
1808 if (p == pend)
1809 break;
1811 PATFETCH (c);
1813 if (c == '*'
1814 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1817 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1819 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1821 PATFETCH (c1);
1822 if (!(c1 == '+' || c1 == '?'))
1824 PATUNFETCH;
1825 PATUNFETCH;
1826 break;
1829 c = c1;
1831 else
1833 PATUNFETCH;
1834 break;
1837 /* If we get here, we found another repeat character. */
1840 /* Star, etc. applied to an empty pattern is equivalent
1841 to an empty pattern. */
1842 if (!laststart)
1843 break;
1845 /* Now we know whether or not zero matches is allowed
1846 and also whether or not two or more matches is allowed. */
1847 if (many_times_ok)
1848 { /* More than one repetition is allowed, so put in at the
1849 end a backward relative jump from `b' to before the next
1850 jump we're going to put in below (which jumps from
1851 laststart to after this jump).
1853 But if we are at the `*' in the exact sequence `.*\n',
1854 insert an unconditional jump backwards to the .,
1855 instead of the beginning of the loop. This way we only
1856 push a failure point once, instead of every time
1857 through the loop. */
1858 assert (p - 1 > pattern);
1860 /* Allocate the space for the jump. */
1861 GET_BUFFER_SPACE (3);
1863 /* We know we are not at the first character of the pattern,
1864 because laststart was nonzero. And we've already
1865 incremented `p', by the way, to be the character after
1866 the `*'. Do we have to do something analogous here
1867 for null bytes, because of RE_DOT_NOT_NULL? */
1868 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1869 && zero_times_ok
1870 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1871 && !(syntax & RE_DOT_NEWLINE))
1872 { /* We have .*\n. */
1873 STORE_JUMP (jump, b, laststart);
1874 keep_string_p = true;
1876 else
1877 /* Anything else. */
1878 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1880 /* We've added more stuff to the buffer. */
1881 b += 3;
1884 /* On failure, jump from laststart to b + 3, which will be the
1885 end of the buffer after this jump is inserted. */
1886 GET_BUFFER_SPACE (3);
1887 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1888 : on_failure_jump,
1889 laststart, b + 3);
1890 pending_exact = 0;
1891 b += 3;
1893 if (!zero_times_ok)
1895 /* At least one repetition is required, so insert a
1896 `dummy_failure_jump' before the initial
1897 `on_failure_jump' instruction of the loop. This
1898 effects a skip over that instruction the first time
1899 we hit that loop. */
1900 GET_BUFFER_SPACE (3);
1901 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1902 b += 3;
1905 break;
1908 case '.':
1909 laststart = b;
1910 BUF_PUSH (anychar);
1911 break;
1914 case '[':
1916 boolean had_char_class = false;
1918 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1920 /* Ensure that we have enough space to push a charset: the
1921 opcode, the length count, and the bitset; 34 bytes in all. */
1922 GET_BUFFER_SPACE (34);
1924 laststart = b;
1926 /* We test `*p == '^' twice, instead of using an if
1927 statement, so we only need one BUF_PUSH. */
1928 BUF_PUSH (*p == '^' ? charset_not : charset);
1929 if (*p == '^')
1930 p++;
1932 /* Remember the first position in the bracket expression. */
1933 p1 = p;
1935 /* Push the number of bytes in the bitmap. */
1936 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1938 /* Clear the whole map. */
1939 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1941 /* charset_not matches newline according to a syntax bit. */
1942 if ((re_opcode_t) b[-2] == charset_not
1943 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1944 SET_LIST_BIT ('\n');
1946 /* Read in characters and ranges, setting map bits. */
1947 for (;;)
1949 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1951 PATFETCH (c);
1953 /* \ might escape characters inside [...] and [^...]. */
1954 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1956 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1958 PATFETCH (c1);
1959 SET_LIST_BIT (c1);
1960 continue;
1963 /* Could be the end of the bracket expression. If it's
1964 not (i.e., when the bracket expression is `[]' so
1965 far), the ']' character bit gets set way below. */
1966 if (c == ']' && p != p1 + 1)
1967 break;
1969 /* Look ahead to see if it's a range when the last thing
1970 was a character class. */
1971 if (had_char_class && c == '-' && *p != ']')
1972 FREE_STACK_RETURN (REG_ERANGE);
1974 /* Look ahead to see if it's a range when the last thing
1975 was a character: if this is a hyphen not at the
1976 beginning or the end of a list, then it's the range
1977 operator. */
1978 if (c == '-'
1979 && !(p - 2 >= pattern && p[-2] == '[')
1980 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1981 && *p != ']')
1983 reg_errcode_t ret
1984 = compile_range (&p, pend, translate, syntax, b);
1985 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1988 else if (p[0] == '-' && p[1] != ']')
1989 { /* This handles ranges made up of characters only. */
1990 reg_errcode_t ret;
1992 /* Move past the `-'. */
1993 PATFETCH (c1);
1995 ret = compile_range (&p, pend, translate, syntax, b);
1996 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1999 /* See if we're at the beginning of a possible character
2000 class. */
2002 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2003 { /* Leave room for the null. */
2004 char str[CHAR_CLASS_MAX_LENGTH + 1];
2006 PATFETCH (c);
2007 c1 = 0;
2009 /* If pattern is `[[:'. */
2010 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2012 for (;;)
2014 PATFETCH (c);
2015 if (c == ':' || c == ']' || p == pend
2016 || c1 == CHAR_CLASS_MAX_LENGTH)
2017 break;
2018 str[c1++] = c;
2020 str[c1] = '\0';
2022 /* If isn't a word bracketed by `[:' and:`]':
2023 undo the ending character, the letters, and leave
2024 the leading `:' and `[' (but set bits for them). */
2025 if (c == ':' && *p == ']')
2027 int ch;
2028 boolean is_alnum = STREQ (str, "alnum");
2029 boolean is_alpha = STREQ (str, "alpha");
2030 boolean is_blank = STREQ (str, "blank");
2031 boolean is_cntrl = STREQ (str, "cntrl");
2032 boolean is_digit = STREQ (str, "digit");
2033 boolean is_graph = STREQ (str, "graph");
2034 boolean is_lower = STREQ (str, "lower");
2035 boolean is_print = STREQ (str, "print");
2036 boolean is_punct = STREQ (str, "punct");
2037 boolean is_space = STREQ (str, "space");
2038 boolean is_upper = STREQ (str, "upper");
2039 boolean is_xdigit = STREQ (str, "xdigit");
2041 if (!IS_CHAR_CLASS (str))
2042 FREE_STACK_RETURN (REG_ECTYPE);
2044 /* Throw away the ] at the end of the character
2045 class. */
2046 PATFETCH (c);
2048 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2050 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2052 /* This was split into 3 if's to
2053 avoid an arbitrary limit in some compiler. */
2054 if ( (is_alnum && ISALNUM (ch))
2055 || (is_alpha && ISALPHA (ch))
2056 || (is_blank && ISBLANK (ch))
2057 || (is_cntrl && ISCNTRL (ch)))
2058 SET_LIST_BIT (ch);
2059 if ( (is_digit && ISDIGIT (ch))
2060 || (is_graph && ISGRAPH (ch))
2061 || (is_lower && ISLOWER (ch))
2062 || (is_print && ISPRINT (ch)))
2063 SET_LIST_BIT (ch);
2064 if ( (is_punct && ISPUNCT (ch))
2065 || (is_space && ISSPACE (ch))
2066 || (is_upper && ISUPPER (ch))
2067 || (is_xdigit && ISXDIGIT (ch)))
2068 SET_LIST_BIT (ch);
2070 had_char_class = true;
2072 else
2074 c1++;
2075 while (c1--)
2076 PATUNFETCH;
2077 SET_LIST_BIT ('[');
2078 SET_LIST_BIT (':');
2079 had_char_class = false;
2082 else
2084 had_char_class = false;
2085 SET_LIST_BIT (c);
2089 /* Discard any (non)matching list bytes that are all 0 at the
2090 end of the map. Decrease the map-length byte too. */
2091 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2092 b[-1]--;
2093 b += b[-1];
2095 break;
2098 case '(':
2099 if (syntax & RE_NO_BK_PARENS)
2100 goto handle_open;
2101 else
2102 goto normal_char;
2105 case ')':
2106 if (syntax & RE_NO_BK_PARENS)
2107 goto handle_close;
2108 else
2109 goto normal_char;
2112 case '\n':
2113 if (syntax & RE_NEWLINE_ALT)
2114 goto handle_alt;
2115 else
2116 goto normal_char;
2119 case '|':
2120 if (syntax & RE_NO_BK_VBAR)
2121 goto handle_alt;
2122 else
2123 goto normal_char;
2126 case '{':
2127 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2128 goto handle_interval;
2129 else
2130 goto normal_char;
2133 case '\\':
2134 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2136 /* Do not translate the character after the \, so that we can
2137 distinguish, e.g., \B from \b, even if we normally would
2138 translate, e.g., B to b. */
2139 PATFETCH_RAW (c);
2141 switch (c)
2143 case '(':
2144 if (syntax & RE_NO_BK_PARENS)
2145 goto normal_backslash;
2147 handle_open:
2148 bufp->re_nsub++;
2149 regnum++;
2151 if (COMPILE_STACK_FULL)
2153 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2154 compile_stack_elt_t);
2155 if (compile_stack.stack == NULL) return REG_ESPACE;
2157 compile_stack.size <<= 1;
2160 /* These are the values to restore when we hit end of this
2161 group. They are all relative offsets, so that if the
2162 whole pattern moves because of realloc, they will still
2163 be valid. */
2164 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2165 COMPILE_STACK_TOP.fixup_alt_jump
2166 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2167 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2168 COMPILE_STACK_TOP.regnum = regnum;
2170 /* We will eventually replace the 0 with the number of
2171 groups inner to this one. But do not push a
2172 start_memory for groups beyond the last one we can
2173 represent in the compiled pattern. */
2174 if (regnum <= MAX_REGNUM)
2176 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2177 BUF_PUSH_3 (start_memory, regnum, 0);
2180 compile_stack.avail++;
2182 fixup_alt_jump = 0;
2183 laststart = 0;
2184 begalt = b;
2185 /* If we've reached MAX_REGNUM groups, then this open
2186 won't actually generate any code, so we'll have to
2187 clear pending_exact explicitly. */
2188 pending_exact = 0;
2189 break;
2192 case ')':
2193 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2195 if (COMPILE_STACK_EMPTY)
2196 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2197 goto normal_backslash;
2198 else
2199 FREE_STACK_RETURN (REG_ERPAREN);
2201 handle_close:
2202 if (fixup_alt_jump)
2203 { /* Push a dummy failure point at the end of the
2204 alternative for a possible future
2205 `pop_failure_jump' to pop. See comments at
2206 `push_dummy_failure' in `re_match_2'. */
2207 BUF_PUSH (push_dummy_failure);
2209 /* We allocated space for this jump when we assigned
2210 to `fixup_alt_jump', in the `handle_alt' case below. */
2211 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2214 /* See similar code for backslashed left paren above. */
2215 if (COMPILE_STACK_EMPTY)
2216 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2217 goto normal_char;
2218 else
2219 FREE_STACK_RETURN (REG_ERPAREN);
2221 /* Since we just checked for an empty stack above, this
2222 ``can't happen''. */
2223 assert (compile_stack.avail != 0);
2225 /* We don't just want to restore into `regnum', because
2226 later groups should continue to be numbered higher,
2227 as in `(ab)c(de)' -- the second group is #2. */
2228 regnum_t this_group_regnum;
2230 compile_stack.avail--;
2231 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2232 fixup_alt_jump
2233 = COMPILE_STACK_TOP.fixup_alt_jump
2234 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2235 : 0;
2236 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2237 this_group_regnum = COMPILE_STACK_TOP.regnum;
2238 /* If we've reached MAX_REGNUM groups, then this open
2239 won't actually generate any code, so we'll have to
2240 clear pending_exact explicitly. */
2241 pending_exact = 0;
2243 /* We're at the end of the group, so now we know how many
2244 groups were inside this one. */
2245 if (this_group_regnum <= MAX_REGNUM)
2247 unsigned char *inner_group_loc
2248 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2250 *inner_group_loc = regnum - this_group_regnum;
2251 BUF_PUSH_3 (stop_memory, this_group_regnum,
2252 regnum - this_group_regnum);
2255 break;
2258 case '|': /* `\|'. */
2259 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2260 goto normal_backslash;
2261 handle_alt:
2262 if (syntax & RE_LIMITED_OPS)
2263 goto normal_char;
2265 /* Insert before the previous alternative a jump which
2266 jumps to this alternative if the former fails. */
2267 GET_BUFFER_SPACE (3);
2268 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2269 pending_exact = 0;
2270 b += 3;
2272 /* The alternative before this one has a jump after it
2273 which gets executed if it gets matched. Adjust that
2274 jump so it will jump to this alternative's analogous
2275 jump (put in below, which in turn will jump to the next
2276 (if any) alternative's such jump, etc.). The last such
2277 jump jumps to the correct final destination. A picture:
2278 _____ _____
2279 | | | |
2280 | v | v
2281 a | b | c
2283 If we are at `b', then fixup_alt_jump right now points to a
2284 three-byte space after `a'. We'll put in the jump, set
2285 fixup_alt_jump to right after `b', and leave behind three
2286 bytes which we'll fill in when we get to after `c'. */
2288 if (fixup_alt_jump)
2289 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2291 /* Mark and leave space for a jump after this alternative,
2292 to be filled in later either by next alternative or
2293 when know we're at the end of a series of alternatives. */
2294 fixup_alt_jump = b;
2295 GET_BUFFER_SPACE (3);
2296 b += 3;
2298 laststart = 0;
2299 begalt = b;
2300 break;
2303 case '{':
2304 /* If \{ is a literal. */
2305 if (!(syntax & RE_INTERVALS)
2306 /* If we're at `\{' and it's not the open-interval
2307 operator. */
2308 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2309 || (p - 2 == pattern && p == pend))
2310 goto normal_backslash;
2312 handle_interval:
2314 /* If got here, then the syntax allows intervals. */
2316 /* At least (most) this many matches must be made. */
2317 int lower_bound = -1, upper_bound = -1;
2319 beg_interval = p - 1;
2321 if (p == pend)
2323 if (syntax & RE_NO_BK_BRACES)
2324 goto unfetch_interval;
2325 else
2326 FREE_STACK_RETURN (REG_EBRACE);
2329 GET_UNSIGNED_NUMBER (lower_bound);
2331 if (c == ',')
2333 GET_UNSIGNED_NUMBER (upper_bound);
2334 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2336 else
2337 /* Interval such as `{1}' => match exactly once. */
2338 upper_bound = lower_bound;
2340 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2341 || lower_bound > upper_bound)
2343 if (syntax & RE_NO_BK_BRACES)
2344 goto unfetch_interval;
2345 else
2346 FREE_STACK_RETURN (REG_BADBR);
2349 if (!(syntax & RE_NO_BK_BRACES))
2351 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2353 PATFETCH (c);
2356 if (c != '}')
2358 if (syntax & RE_NO_BK_BRACES)
2359 goto unfetch_interval;
2360 else
2361 FREE_STACK_RETURN (REG_BADBR);
2364 /* We just parsed a valid interval. */
2366 /* If it's invalid to have no preceding re. */
2367 if (!laststart)
2369 if (syntax & RE_CONTEXT_INVALID_OPS)
2370 FREE_STACK_RETURN (REG_BADRPT);
2371 else if (syntax & RE_CONTEXT_INDEP_OPS)
2372 laststart = b;
2373 else
2374 goto unfetch_interval;
2377 /* If the upper bound is zero, don't want to succeed at
2378 all; jump from `laststart' to `b + 3', which will be
2379 the end of the buffer after we insert the jump. */
2380 if (upper_bound == 0)
2382 GET_BUFFER_SPACE (3);
2383 INSERT_JUMP (jump, laststart, b + 3);
2384 b += 3;
2387 /* Otherwise, we have a nontrivial interval. When
2388 we're all done, the pattern will look like:
2389 set_number_at <jump count> <upper bound>
2390 set_number_at <succeed_n count> <lower bound>
2391 succeed_n <after jump addr> <succeed_n count>
2392 <body of loop>
2393 jump_n <succeed_n addr> <jump count>
2394 (The upper bound and `jump_n' are omitted if
2395 `upper_bound' is 1, though.) */
2396 else
2397 { /* If the upper bound is > 1, we need to insert
2398 more at the end of the loop. */
2399 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2401 GET_BUFFER_SPACE (nbytes);
2403 /* Initialize lower bound of the `succeed_n', even
2404 though it will be set during matching by its
2405 attendant `set_number_at' (inserted next),
2406 because `re_compile_fastmap' needs to know.
2407 Jump to the `jump_n' we might insert below. */
2408 INSERT_JUMP2 (succeed_n, laststart,
2409 b + 5 + (upper_bound > 1) * 5,
2410 lower_bound);
2411 b += 5;
2413 /* Code to initialize the lower bound. Insert
2414 before the `succeed_n'. The `5' is the last two
2415 bytes of this `set_number_at', plus 3 bytes of
2416 the following `succeed_n'. */
2417 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2418 b += 5;
2420 if (upper_bound > 1)
2421 { /* More than one repetition is allowed, so
2422 append a backward jump to the `succeed_n'
2423 that starts this interval.
2425 When we've reached this during matching,
2426 we'll have matched the interval once, so
2427 jump back only `upper_bound - 1' times. */
2428 STORE_JUMP2 (jump_n, b, laststart + 5,
2429 upper_bound - 1);
2430 b += 5;
2432 /* The location we want to set is the second
2433 parameter of the `jump_n'; that is `b-2' as
2434 an absolute address. `laststart' will be
2435 the `set_number_at' we're about to insert;
2436 `laststart+3' the number to set, the source
2437 for the relative address. But we are
2438 inserting into the middle of the pattern --
2439 so everything is getting moved up by 5.
2440 Conclusion: (b - 2) - (laststart + 3) + 5,
2441 i.e., b - laststart.
2443 We insert this at the beginning of the loop
2444 so that if we fail during matching, we'll
2445 reinitialize the bounds. */
2446 insert_op2 (set_number_at, laststart, b - laststart,
2447 upper_bound - 1, b);
2448 b += 5;
2451 pending_exact = 0;
2452 beg_interval = NULL;
2454 break;
2456 unfetch_interval:
2457 /* If an invalid interval, match the characters as literals. */
2458 assert (beg_interval);
2459 p = beg_interval;
2460 beg_interval = NULL;
2462 /* normal_char and normal_backslash need `c'. */
2463 PATFETCH (c);
2465 if (!(syntax & RE_NO_BK_BRACES))
2467 if (p > pattern && p[-1] == '\\')
2468 goto normal_backslash;
2470 goto normal_char;
2472 #ifdef emacs
2473 /* There is no way to specify the before_dot and after_dot
2474 operators. rms says this is ok. --karl */
2475 case '=':
2476 BUF_PUSH (at_dot);
2477 break;
2479 case 's':
2480 laststart = b;
2481 PATFETCH (c);
2482 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2483 break;
2485 case 'S':
2486 laststart = b;
2487 PATFETCH (c);
2488 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2489 break;
2490 #endif /* emacs */
2493 case 'w':
2494 laststart = b;
2495 BUF_PUSH (wordchar);
2496 break;
2499 case 'W':
2500 laststart = b;
2501 BUF_PUSH (notwordchar);
2502 break;
2505 case '<':
2506 BUF_PUSH (wordbeg);
2507 break;
2509 case '>':
2510 BUF_PUSH (wordend);
2511 break;
2513 case 'b':
2514 BUF_PUSH (wordbound);
2515 break;
2517 case 'B':
2518 BUF_PUSH (notwordbound);
2519 break;
2521 case '`':
2522 BUF_PUSH (begbuf);
2523 break;
2525 case '\'':
2526 BUF_PUSH (endbuf);
2527 break;
2529 case '1': case '2': case '3': case '4': case '5':
2530 case '6': case '7': case '8': case '9':
2531 if (syntax & RE_NO_BK_REFS)
2532 goto normal_char;
2534 c1 = c - '0';
2536 if (c1 > regnum)
2537 FREE_STACK_RETURN (REG_ESUBREG);
2539 /* Can't back reference to a subexpression if inside of it. */
2540 if (group_in_compile_stack (compile_stack, c1))
2541 goto normal_char;
2543 laststart = b;
2544 BUF_PUSH_2 (duplicate, c1);
2545 break;
2548 case '+':
2549 case '?':
2550 if (syntax & RE_BK_PLUS_QM)
2551 goto handle_plus;
2552 else
2553 goto normal_backslash;
2555 default:
2556 normal_backslash:
2557 /* You might think it would be useful for \ to mean
2558 not to translate; but if we don't translate it
2559 it will never match anything. */
2560 c = TRANSLATE (c);
2561 goto normal_char;
2563 break;
2566 default:
2567 /* Expects the character in `c'. */
2568 normal_char:
2569 /* If no exactn currently being built. */
2570 if (!pending_exact
2572 /* If last exactn not at current position. */
2573 || pending_exact + *pending_exact + 1 != b
2575 /* We have only one byte following the exactn for the count. */
2576 || *pending_exact == (1 << BYTEWIDTH) - 1
2578 /* If followed by a repetition operator. */
2579 || *p == '*' || *p == '^'
2580 || ((syntax & RE_BK_PLUS_QM)
2581 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2582 : (*p == '+' || *p == '?'))
2583 || ((syntax & RE_INTERVALS)
2584 && ((syntax & RE_NO_BK_BRACES)
2585 ? *p == '{'
2586 : (p[0] == '\\' && p[1] == '{'))))
2588 /* Start building a new exactn. */
2590 laststart = b;
2592 BUF_PUSH_2 (exactn, 0);
2593 pending_exact = b - 1;
2596 BUF_PUSH (c);
2597 (*pending_exact)++;
2598 break;
2599 } /* switch (c) */
2600 } /* while p != pend */
2603 /* Through the pattern now. */
2605 if (fixup_alt_jump)
2606 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2608 if (!COMPILE_STACK_EMPTY)
2609 FREE_STACK_RETURN (REG_EPAREN);
2611 /* If we don't want backtracking, force success
2612 the first time we reach the end of the compiled pattern. */
2613 if (syntax & RE_NO_POSIX_BACKTRACKING)
2614 BUF_PUSH (succeed);
2616 free (compile_stack.stack);
2618 /* We have succeeded; set the length of the buffer. */
2619 bufp->used = b - bufp->buffer;
2621 #ifdef DEBUG
2622 if (debug)
2624 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2625 print_compiled_pattern (bufp);
2627 #endif /* DEBUG */
2629 #ifndef MATCH_MAY_ALLOCATE
2630 /* Initialize the failure stack to the largest possible stack. This
2631 isn't necessary unless we're trying to avoid calling alloca in
2632 the search and match routines. */
2634 int num_regs = bufp->re_nsub + 1;
2636 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2637 is strictly greater than re_max_failures, the largest possible stack
2638 is 2 * re_max_failures failure points. */
2639 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2641 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2643 #ifdef emacs
2644 if (! fail_stack.stack)
2645 fail_stack.stack
2646 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2647 * sizeof (fail_stack_elt_t));
2648 else
2649 fail_stack.stack
2650 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2651 (fail_stack.size
2652 * sizeof (fail_stack_elt_t)));
2653 #else /* not emacs */
2654 if (! fail_stack.stack)
2655 fail_stack.stack
2656 = (fail_stack_elt_t *) malloc (fail_stack.size
2657 * sizeof (fail_stack_elt_t));
2658 else
2659 fail_stack.stack
2660 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2661 (fail_stack.size
2662 * sizeof (fail_stack_elt_t)));
2663 #endif /* not emacs */
2666 regex_grow_registers (num_regs);
2668 #endif /* not MATCH_MAY_ALLOCATE */
2670 return REG_NOERROR;
2671 } /* regex_compile */
2673 /* Subroutines for `regex_compile'. */
2675 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2677 static void
2678 store_op1 (op, loc, arg)
2679 re_opcode_t op;
2680 unsigned char *loc;
2681 int arg;
2683 *loc = (unsigned char) op;
2684 STORE_NUMBER (loc + 1, arg);
2688 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2690 static void
2691 store_op2 (op, loc, arg1, arg2)
2692 re_opcode_t op;
2693 unsigned char *loc;
2694 int arg1, arg2;
2696 *loc = (unsigned char) op;
2697 STORE_NUMBER (loc + 1, arg1);
2698 STORE_NUMBER (loc + 3, arg2);
2702 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2703 for OP followed by two-byte integer parameter ARG. */
2705 static void
2706 insert_op1 (op, loc, arg, end)
2707 re_opcode_t op;
2708 unsigned char *loc;
2709 int arg;
2710 unsigned char *end;
2712 register unsigned char *pfrom = end;
2713 register unsigned char *pto = end + 3;
2715 while (pfrom != loc)
2716 *--pto = *--pfrom;
2718 store_op1 (op, loc, arg);
2722 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2724 static void
2725 insert_op2 (op, loc, arg1, arg2, end)
2726 re_opcode_t op;
2727 unsigned char *loc;
2728 int arg1, arg2;
2729 unsigned char *end;
2731 register unsigned char *pfrom = end;
2732 register unsigned char *pto = end + 5;
2734 while (pfrom != loc)
2735 *--pto = *--pfrom;
2737 store_op2 (op, loc, arg1, arg2);
2741 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2742 after an alternative or a begin-subexpression. We assume there is at
2743 least one character before the ^. */
2745 static boolean
2746 at_begline_loc_p (pattern, p, syntax)
2747 const char *pattern, *p;
2748 reg_syntax_t syntax;
2750 const char *prev = p - 2;
2751 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2753 return
2754 /* After a subexpression? */
2755 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2756 /* After an alternative? */
2757 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2761 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2762 at least one character after the $, i.e., `P < PEND'. */
2764 static boolean
2765 at_endline_loc_p (p, pend, syntax)
2766 const char *p, *pend;
2767 int syntax;
2769 const char *next = p;
2770 boolean next_backslash = *next == '\\';
2771 const char *next_next = p + 1 < pend ? p + 1 : 0;
2773 return
2774 /* Before a subexpression? */
2775 (syntax & RE_NO_BK_PARENS ? *next == ')'
2776 : next_backslash && next_next && *next_next == ')')
2777 /* Before an alternative? */
2778 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2779 : next_backslash && next_next && *next_next == '|');
2783 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2784 false if it's not. */
2786 static boolean
2787 group_in_compile_stack (compile_stack, regnum)
2788 compile_stack_type compile_stack;
2789 regnum_t regnum;
2791 int this_element;
2793 for (this_element = compile_stack.avail - 1;
2794 this_element >= 0;
2795 this_element--)
2796 if (compile_stack.stack[this_element].regnum == regnum)
2797 return true;
2799 return false;
2803 /* Read the ending character of a range (in a bracket expression) from the
2804 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2805 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2806 Then we set the translation of all bits between the starting and
2807 ending characters (inclusive) in the compiled pattern B.
2809 Return an error code.
2811 We use these short variable names so we can use the same macros as
2812 `regex_compile' itself. */
2814 static reg_errcode_t
2815 compile_range (p_ptr, pend, translate, syntax, b)
2816 const char **p_ptr, *pend;
2817 char *translate;
2818 reg_syntax_t syntax;
2819 unsigned char *b;
2821 unsigned this_char;
2823 const char *p = *p_ptr;
2824 int range_start, range_end;
2826 if (p == pend)
2827 return REG_ERANGE;
2829 /* Even though the pattern is a signed `char *', we need to fetch
2830 with unsigned char *'s; if the high bit of the pattern character
2831 is set, the range endpoints will be negative if we fetch using a
2832 signed char *.
2834 We also want to fetch the endpoints without translating them; the
2835 appropriate translation is done in the bit-setting loop below. */
2836 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2837 range_start = ((const unsigned char *) p)[-2];
2838 range_end = ((const unsigned char *) p)[0];
2840 /* Have to increment the pointer into the pattern string, so the
2841 caller isn't still at the ending character. */
2842 (*p_ptr)++;
2844 /* If the start is after the end, the range is empty. */
2845 if (range_start > range_end)
2846 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2848 /* Here we see why `this_char' has to be larger than an `unsigned
2849 char' -- the range is inclusive, so if `range_end' == 0xff
2850 (assuming 8-bit characters), we would otherwise go into an infinite
2851 loop, since all characters <= 0xff. */
2852 for (this_char = range_start; this_char <= range_end; this_char++)
2854 SET_LIST_BIT (TRANSLATE (this_char));
2857 return REG_NOERROR;
2860 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2861 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2862 characters can start a string that matches the pattern. This fastmap
2863 is used by re_search to skip quickly over impossible starting points.
2865 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2866 area as BUFP->fastmap.
2868 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2869 the pattern buffer.
2871 Returns 0 if we succeed, -2 if an internal error. */
2874 re_compile_fastmap (bufp)
2875 struct re_pattern_buffer *bufp;
2877 int j, k;
2878 #ifdef MATCH_MAY_ALLOCATE
2879 fail_stack_type fail_stack;
2880 #endif
2881 #ifndef REGEX_MALLOC
2882 char *destination;
2883 #endif
2884 /* We don't push any register information onto the failure stack. */
2885 unsigned num_regs = 0;
2887 register char *fastmap = bufp->fastmap;
2888 unsigned char *pattern = bufp->buffer;
2889 unsigned long size = bufp->used;
2890 unsigned char *p = pattern;
2891 register unsigned char *pend = pattern + size;
2893 /* This holds the pointer to the failure stack, when
2894 it is allocated relocatably. */
2895 fail_stack_elt_t *failure_stack_ptr;
2897 /* Assume that each path through the pattern can be null until
2898 proven otherwise. We set this false at the bottom of switch
2899 statement, to which we get only if a particular path doesn't
2900 match the empty string. */
2901 boolean path_can_be_null = true;
2903 /* We aren't doing a `succeed_n' to begin with. */
2904 boolean succeed_n_p = false;
2906 assert (fastmap != NULL && p != NULL);
2908 INIT_FAIL_STACK ();
2909 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2910 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2911 bufp->can_be_null = 0;
2913 while (1)
2915 if (p == pend || *p == succeed)
2917 /* We have reached the (effective) end of pattern. */
2918 if (!FAIL_STACK_EMPTY ())
2920 bufp->can_be_null |= path_can_be_null;
2922 /* Reset for next path. */
2923 path_can_be_null = true;
2925 p = fail_stack.stack[--fail_stack.avail].pointer;
2927 continue;
2929 else
2930 break;
2933 /* We should never be about to go beyond the end of the pattern. */
2934 assert (p < pend);
2936 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2939 /* I guess the idea here is to simply not bother with a fastmap
2940 if a backreference is used, since it's too hard to figure out
2941 the fastmap for the corresponding group. Setting
2942 `can_be_null' stops `re_search_2' from using the fastmap, so
2943 that is all we do. */
2944 case duplicate:
2945 bufp->can_be_null = 1;
2946 goto done;
2949 /* Following are the cases which match a character. These end
2950 with `break'. */
2952 case exactn:
2953 fastmap[p[1]] = 1;
2954 break;
2957 case charset:
2958 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2959 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2960 fastmap[j] = 1;
2961 break;
2964 case charset_not:
2965 /* Chars beyond end of map must be allowed. */
2966 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2967 fastmap[j] = 1;
2969 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2970 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2971 fastmap[j] = 1;
2972 break;
2975 case wordchar:
2976 for (j = 0; j < (1 << BYTEWIDTH); j++)
2977 if (SYNTAX (j) == Sword)
2978 fastmap[j] = 1;
2979 break;
2982 case notwordchar:
2983 for (j = 0; j < (1 << BYTEWIDTH); j++)
2984 if (SYNTAX (j) != Sword)
2985 fastmap[j] = 1;
2986 break;
2989 case anychar:
2991 int fastmap_newline = fastmap['\n'];
2993 /* `.' matches anything ... */
2994 for (j = 0; j < (1 << BYTEWIDTH); j++)
2995 fastmap[j] = 1;
2997 /* ... except perhaps newline. */
2998 if (!(bufp->syntax & RE_DOT_NEWLINE))
2999 fastmap['\n'] = fastmap_newline;
3001 /* Return if we have already set `can_be_null'; if we have,
3002 then the fastmap is irrelevant. Something's wrong here. */
3003 else if (bufp->can_be_null)
3004 goto done;
3006 /* Otherwise, have to check alternative paths. */
3007 break;
3010 #ifdef emacs
3011 case syntaxspec:
3012 k = *p++;
3013 for (j = 0; j < (1 << BYTEWIDTH); j++)
3014 if (SYNTAX (j) == (enum syntaxcode) k)
3015 fastmap[j] = 1;
3016 break;
3019 case notsyntaxspec:
3020 k = *p++;
3021 for (j = 0; j < (1 << BYTEWIDTH); j++)
3022 if (SYNTAX (j) != (enum syntaxcode) k)
3023 fastmap[j] = 1;
3024 break;
3027 /* All cases after this match the empty string. These end with
3028 `continue'. */
3031 case before_dot:
3032 case at_dot:
3033 case after_dot:
3034 continue;
3035 #endif /* not emacs */
3038 case no_op:
3039 case begline:
3040 case endline:
3041 case begbuf:
3042 case endbuf:
3043 case wordbound:
3044 case notwordbound:
3045 case wordbeg:
3046 case wordend:
3047 case push_dummy_failure:
3048 continue;
3051 case jump_n:
3052 case pop_failure_jump:
3053 case maybe_pop_jump:
3054 case jump:
3055 case jump_past_alt:
3056 case dummy_failure_jump:
3057 EXTRACT_NUMBER_AND_INCR (j, p);
3058 p += j;
3059 if (j > 0)
3060 continue;
3062 /* Jump backward implies we just went through the body of a
3063 loop and matched nothing. Opcode jumped to should be
3064 `on_failure_jump' or `succeed_n'. Just treat it like an
3065 ordinary jump. For a * loop, it has pushed its failure
3066 point already; if so, discard that as redundant. */
3067 if ((re_opcode_t) *p != on_failure_jump
3068 && (re_opcode_t) *p != succeed_n)
3069 continue;
3071 p++;
3072 EXTRACT_NUMBER_AND_INCR (j, p);
3073 p += j;
3075 /* If what's on the stack is where we are now, pop it. */
3076 if (!FAIL_STACK_EMPTY ()
3077 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3078 fail_stack.avail--;
3080 continue;
3083 case on_failure_jump:
3084 case on_failure_keep_string_jump:
3085 handle_on_failure_jump:
3086 EXTRACT_NUMBER_AND_INCR (j, p);
3088 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3089 end of the pattern. We don't want to push such a point,
3090 since when we restore it above, entering the switch will
3091 increment `p' past the end of the pattern. We don't need
3092 to push such a point since we obviously won't find any more
3093 fastmap entries beyond `pend'. Such a pattern can match
3094 the null string, though. */
3095 if (p + j < pend)
3097 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3099 RESET_FAIL_STACK ();
3100 return -2;
3103 else
3104 bufp->can_be_null = 1;
3106 if (succeed_n_p)
3108 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3109 succeed_n_p = false;
3112 continue;
3115 case succeed_n:
3116 /* Get to the number of times to succeed. */
3117 p += 2;
3119 /* Increment p past the n for when k != 0. */
3120 EXTRACT_NUMBER_AND_INCR (k, p);
3121 if (k == 0)
3123 p -= 4;
3124 succeed_n_p = true; /* Spaghetti code alert. */
3125 goto handle_on_failure_jump;
3127 continue;
3130 case set_number_at:
3131 p += 4;
3132 continue;
3135 case start_memory:
3136 case stop_memory:
3137 p += 2;
3138 continue;
3141 default:
3142 abort (); /* We have listed all the cases. */
3143 } /* switch *p++ */
3145 /* Getting here means we have found the possible starting
3146 characters for one path of the pattern -- and that the empty
3147 string does not match. We need not follow this path further.
3148 Instead, look at the next alternative (remembered on the
3149 stack), or quit if no more. The test at the top of the loop
3150 does these things. */
3151 path_can_be_null = false;
3152 p = pend;
3153 } /* while p */
3155 /* Set `can_be_null' for the last path (also the first path, if the
3156 pattern is empty). */
3157 bufp->can_be_null |= path_can_be_null;
3159 done:
3160 RESET_FAIL_STACK ();
3161 return 0;
3162 } /* re_compile_fastmap */
3164 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3165 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3166 this memory for recording register information. STARTS and ENDS
3167 must be allocated using the malloc library routine, and must each
3168 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3170 If NUM_REGS == 0, then subsequent matches should allocate their own
3171 register data.
3173 Unless this function is called, the first search or match using
3174 PATTERN_BUFFER will allocate its own register data, without
3175 freeing the old data. */
3177 void
3178 re_set_registers (bufp, regs, num_regs, starts, ends)
3179 struct re_pattern_buffer *bufp;
3180 struct re_registers *regs;
3181 unsigned num_regs;
3182 regoff_t *starts, *ends;
3184 if (num_regs)
3186 bufp->regs_allocated = REGS_REALLOCATE;
3187 regs->num_regs = num_regs;
3188 regs->start = starts;
3189 regs->end = ends;
3191 else
3193 bufp->regs_allocated = REGS_UNALLOCATED;
3194 regs->num_regs = 0;
3195 regs->start = regs->end = (regoff_t *) 0;
3199 /* Searching routines. */
3201 /* Like re_search_2, below, but only one string is specified, and
3202 doesn't let you say where to stop matching. */
3205 re_search (bufp, string, size, startpos, range, regs)
3206 struct re_pattern_buffer *bufp;
3207 const char *string;
3208 int size, startpos, range;
3209 struct re_registers *regs;
3211 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3212 regs, size);
3216 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3217 virtual concatenation of STRING1 and STRING2, starting first at index
3218 STARTPOS, then at STARTPOS + 1, and so on.
3220 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3222 RANGE is how far to scan while trying to match. RANGE = 0 means try
3223 only at STARTPOS; in general, the last start tried is STARTPOS +
3224 RANGE.
3226 In REGS, return the indices of the virtual concatenation of STRING1
3227 and STRING2 that matched the entire BUFP->buffer and its contained
3228 subexpressions.
3230 Do not consider matching one past the index STOP in the virtual
3231 concatenation of STRING1 and STRING2.
3233 We return either the position in the strings at which the match was
3234 found, -1 if no match, or -2 if error (such as failure
3235 stack overflow). */
3238 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3239 struct re_pattern_buffer *bufp;
3240 const char *string1, *string2;
3241 int size1, size2;
3242 int startpos;
3243 int range;
3244 struct re_registers *regs;
3245 int stop;
3247 int val;
3248 register char *fastmap = bufp->fastmap;
3249 register char *translate = bufp->translate;
3250 int total_size = size1 + size2;
3251 int endpos = startpos + range;
3253 /* Check for out-of-range STARTPOS. */
3254 if (startpos < 0 || startpos > total_size)
3255 return -1;
3257 /* Fix up RANGE if it might eventually take us outside
3258 the virtual concatenation of STRING1 and STRING2. */
3259 if (endpos < -1)
3260 range = -1 - startpos;
3261 else if (endpos > total_size)
3262 range = total_size - startpos;
3264 /* If the search isn't to be a backwards one, don't waste time in a
3265 search for a pattern that must be anchored. */
3266 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3268 if (startpos > 0)
3269 return -1;
3270 else
3271 range = 1;
3274 /* Update the fastmap now if not correct already. */
3275 if (fastmap && !bufp->fastmap_accurate)
3276 if (re_compile_fastmap (bufp) == -2)
3277 return -2;
3279 /* Loop through the string, looking for a place to start matching. */
3280 for (;;)
3282 /* If a fastmap is supplied, skip quickly over characters that
3283 cannot be the start of a match. If the pattern can match the
3284 null string, however, we don't need to skip characters; we want
3285 the first null string. */
3286 if (fastmap && startpos < total_size && !bufp->can_be_null)
3288 if (range > 0) /* Searching forwards. */
3290 register const char *d;
3291 register int lim = 0;
3292 int irange = range;
3294 if (startpos < size1 && startpos + range >= size1)
3295 lim = range - (size1 - startpos);
3297 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3299 /* Written out as an if-else to avoid testing `translate'
3300 inside the loop. */
3301 if (translate)
3302 while (range > lim
3303 && !fastmap[(unsigned char)
3304 translate[(unsigned char) *d++]])
3305 range--;
3306 else
3307 while (range > lim && !fastmap[(unsigned char) *d++])
3308 range--;
3310 startpos += irange - range;
3312 else /* Searching backwards. */
3314 register char c = (size1 == 0 || startpos >= size1
3315 ? string2[startpos - size1]
3316 : string1[startpos]);
3318 if (!fastmap[(unsigned char) TRANSLATE (c)])
3319 goto advance;
3323 /* If can't match the null string, and that's all we have left, fail. */
3324 if (range >= 0 && startpos == total_size && fastmap
3325 && !bufp->can_be_null)
3326 return -1;
3328 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3329 startpos, regs, stop);
3330 #ifndef REGEX_MALLOC
3331 #ifdef C_ALLOCA
3332 alloca (0);
3333 #endif
3334 #endif
3336 if (val >= 0)
3337 return startpos;
3339 if (val == -2)
3340 return -2;
3342 advance:
3343 if (!range)
3344 break;
3345 else if (range > 0)
3347 range--;
3348 startpos++;
3350 else
3352 range++;
3353 startpos--;
3356 return -1;
3357 } /* re_search_2 */
3359 /* Declarations and macros for re_match_2. */
3361 static int bcmp_translate ();
3362 static boolean alt_match_null_string_p (),
3363 common_op_match_null_string_p (),
3364 group_match_null_string_p ();
3366 /* This converts PTR, a pointer into one of the search strings `string1'
3367 and `string2' into an offset from the beginning of that string. */
3368 #define POINTER_TO_OFFSET(ptr) \
3369 (FIRST_STRING_P (ptr) \
3370 ? ((regoff_t) ((ptr) - string1)) \
3371 : ((regoff_t) ((ptr) - string2 + size1)))
3373 /* Macros for dealing with the split strings in re_match_2. */
3375 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3377 /* Call before fetching a character with *d. This switches over to
3378 string2 if necessary. */
3379 #define PREFETCH() \
3380 while (d == dend) \
3382 /* End of string2 => fail. */ \
3383 if (dend == end_match_2) \
3384 goto fail; \
3385 /* End of string1 => advance to string2. */ \
3386 d = string2; \
3387 dend = end_match_2; \
3391 /* Test if at very beginning or at very end of the virtual concatenation
3392 of `string1' and `string2'. If only one string, it's `string2'. */
3393 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3394 #define AT_STRINGS_END(d) ((d) == end2)
3397 /* Test if D points to a character which is word-constituent. We have
3398 two special cases to check for: if past the end of string1, look at
3399 the first character in string2; and if before the beginning of
3400 string2, look at the last character in string1. */
3401 #define WORDCHAR_P(d) \
3402 (SYNTAX ((d) == end1 ? *string2 \
3403 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3404 == Sword)
3406 /* Test if the character before D and the one at D differ with respect
3407 to being word-constituent. */
3408 #define AT_WORD_BOUNDARY(d) \
3409 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3410 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3413 /* Free everything we malloc. */
3414 #ifdef MATCH_MAY_ALLOCATE
3415 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3416 #define FREE_VARIABLES() \
3417 do { \
3418 REGEX_FREE_STACK (fail_stack.stack); \
3419 FREE_VAR (regstart); \
3420 FREE_VAR (regend); \
3421 FREE_VAR (old_regstart); \
3422 FREE_VAR (old_regend); \
3423 FREE_VAR (best_regstart); \
3424 FREE_VAR (best_regend); \
3425 FREE_VAR (reg_info); \
3426 FREE_VAR (reg_dummy); \
3427 FREE_VAR (reg_info_dummy); \
3428 } while (0)
3429 #else
3430 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3431 #endif /* not MATCH_MAY_ALLOCATE */
3433 /* These values must meet several constraints. They must not be valid
3434 register values; since we have a limit of 255 registers (because
3435 we use only one byte in the pattern for the register number), we can
3436 use numbers larger than 255. They must differ by 1, because of
3437 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3438 be larger than the value for the highest register, so we do not try
3439 to actually save any registers when none are active. */
3440 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3441 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3443 /* Matching routines. */
3445 #ifndef emacs /* Emacs never uses this. */
3446 /* re_match is like re_match_2 except it takes only a single string. */
3449 re_match (bufp, string, size, pos, regs)
3450 struct re_pattern_buffer *bufp;
3451 const char *string;
3452 int size, pos;
3453 struct re_registers *regs;
3455 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3456 pos, regs, size);
3457 alloca (0);
3458 return result;
3460 #endif /* not emacs */
3463 /* re_match_2 matches the compiled pattern in BUFP against the
3464 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3465 and SIZE2, respectively). We start matching at POS, and stop
3466 matching at STOP.
3468 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3469 store offsets for the substring each group matched in REGS. See the
3470 documentation for exactly how many groups we fill.
3472 We return -1 if no match, -2 if an internal error (such as the
3473 failure stack overflowing). Otherwise, we return the length of the
3474 matched substring. */
3477 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3478 struct re_pattern_buffer *bufp;
3479 const char *string1, *string2;
3480 int size1, size2;
3481 int pos;
3482 struct re_registers *regs;
3483 int stop;
3485 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3486 pos, regs, stop);
3487 alloca (0);
3488 return result;
3491 /* This is a separate function so that we can force an alloca cleanup
3492 afterwards. */
3493 static int
3494 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3495 struct re_pattern_buffer *bufp;
3496 const char *string1, *string2;
3497 int size1, size2;
3498 int pos;
3499 struct re_registers *regs;
3500 int stop;
3502 /* General temporaries. */
3503 int mcnt;
3504 unsigned char *p1;
3506 /* Just past the end of the corresponding string. */
3507 const char *end1, *end2;
3509 /* Pointers into string1 and string2, just past the last characters in
3510 each to consider matching. */
3511 const char *end_match_1, *end_match_2;
3513 /* Where we are in the data, and the end of the current string. */
3514 const char *d, *dend;
3516 /* Where we are in the pattern, and the end of the pattern. */
3517 unsigned char *p = bufp->buffer;
3518 register unsigned char *pend = p + bufp->used;
3520 /* Mark the opcode just after a start_memory, so we can test for an
3521 empty subpattern when we get to the stop_memory. */
3522 unsigned char *just_past_start_mem = 0;
3524 /* We use this to map every character in the string. */
3525 char *translate = bufp->translate;
3527 /* Failure point stack. Each place that can handle a failure further
3528 down the line pushes a failure point on this stack. It consists of
3529 restart, regend, and reg_info for all registers corresponding to
3530 the subexpressions we're currently inside, plus the number of such
3531 registers, and, finally, two char *'s. The first char * is where
3532 to resume scanning the pattern; the second one is where to resume
3533 scanning the strings. If the latter is zero, the failure point is
3534 a ``dummy''; if a failure happens and the failure point is a dummy,
3535 it gets discarded and the next next one is tried. */
3536 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3537 fail_stack_type fail_stack;
3538 #endif
3539 #ifdef DEBUG
3540 static unsigned failure_id = 0;
3541 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3542 #endif
3544 /* This holds the pointer to the failure stack, when
3545 it is allocated relocatably. */
3546 fail_stack_elt_t *failure_stack_ptr;
3548 /* We fill all the registers internally, independent of what we
3549 return, for use in backreferences. The number here includes
3550 an element for register zero. */
3551 unsigned num_regs = bufp->re_nsub + 1;
3553 /* The currently active registers. */
3554 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3555 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3557 /* Information on the contents of registers. These are pointers into
3558 the input strings; they record just what was matched (on this
3559 attempt) by a subexpression part of the pattern, that is, the
3560 regnum-th regstart pointer points to where in the pattern we began
3561 matching and the regnum-th regend points to right after where we
3562 stopped matching the regnum-th subexpression. (The zeroth register
3563 keeps track of what the whole pattern matches.) */
3564 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3565 const char **regstart, **regend;
3566 #endif
3568 /* If a group that's operated upon by a repetition operator fails to
3569 match anything, then the register for its start will need to be
3570 restored because it will have been set to wherever in the string we
3571 are when we last see its open-group operator. Similarly for a
3572 register's end. */
3573 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3574 const char **old_regstart, **old_regend;
3575 #endif
3577 /* The is_active field of reg_info helps us keep track of which (possibly
3578 nested) subexpressions we are currently in. The matched_something
3579 field of reg_info[reg_num] helps us tell whether or not we have
3580 matched any of the pattern so far this time through the reg_num-th
3581 subexpression. These two fields get reset each time through any
3582 loop their register is in. */
3583 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3584 register_info_type *reg_info;
3585 #endif
3587 /* The following record the register info as found in the above
3588 variables when we find a match better than any we've seen before.
3589 This happens as we backtrack through the failure points, which in
3590 turn happens only if we have not yet matched the entire string. */
3591 unsigned best_regs_set = false;
3592 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3593 const char **best_regstart, **best_regend;
3594 #endif
3596 /* Logically, this is `best_regend[0]'. But we don't want to have to
3597 allocate space for that if we're not allocating space for anything
3598 else (see below). Also, we never need info about register 0 for
3599 any of the other register vectors, and it seems rather a kludge to
3600 treat `best_regend' differently than the rest. So we keep track of
3601 the end of the best match so far in a separate variable. We
3602 initialize this to NULL so that when we backtrack the first time
3603 and need to test it, it's not garbage. */
3604 const char *match_end = NULL;
3606 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3607 int set_regs_matched_done = 0;
3609 /* Used when we pop values we don't care about. */
3610 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3611 const char **reg_dummy;
3612 register_info_type *reg_info_dummy;
3613 #endif
3615 #ifdef DEBUG
3616 /* Counts the total number of registers pushed. */
3617 unsigned num_regs_pushed = 0;
3618 #endif
3620 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3622 INIT_FAIL_STACK ();
3624 #ifdef MATCH_MAY_ALLOCATE
3625 /* Do not bother to initialize all the register variables if there are
3626 no groups in the pattern, as it takes a fair amount of time. If
3627 there are groups, we include space for register 0 (the whole
3628 pattern), even though we never use it, since it simplifies the
3629 array indexing. We should fix this. */
3630 if (bufp->re_nsub)
3632 regstart = REGEX_TALLOC (num_regs, const char *);
3633 regend = REGEX_TALLOC (num_regs, const char *);
3634 old_regstart = REGEX_TALLOC (num_regs, const char *);
3635 old_regend = REGEX_TALLOC (num_regs, const char *);
3636 best_regstart = REGEX_TALLOC (num_regs, const char *);
3637 best_regend = REGEX_TALLOC (num_regs, const char *);
3638 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3639 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3640 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3642 if (!(regstart && regend && old_regstart && old_regend && reg_info
3643 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3645 FREE_VARIABLES ();
3646 return -2;
3649 else
3651 /* We must initialize all our variables to NULL, so that
3652 `FREE_VARIABLES' doesn't try to free them. */
3653 regstart = regend = old_regstart = old_regend = best_regstart
3654 = best_regend = reg_dummy = NULL;
3655 reg_info = reg_info_dummy = (register_info_type *) NULL;
3657 #endif /* MATCH_MAY_ALLOCATE */
3659 /* The starting position is bogus. */
3660 if (pos < 0 || pos > size1 + size2)
3662 FREE_VARIABLES ();
3663 return -1;
3666 /* Initialize subexpression text positions to -1 to mark ones that no
3667 start_memory/stop_memory has been seen for. Also initialize the
3668 register information struct. */
3669 for (mcnt = 1; mcnt < num_regs; mcnt++)
3671 regstart[mcnt] = regend[mcnt]
3672 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3674 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3675 IS_ACTIVE (reg_info[mcnt]) = 0;
3676 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3677 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3680 /* We move `string1' into `string2' if the latter's empty -- but not if
3681 `string1' is null. */
3682 if (size2 == 0 && string1 != NULL)
3684 string2 = string1;
3685 size2 = size1;
3686 string1 = 0;
3687 size1 = 0;
3689 end1 = string1 + size1;
3690 end2 = string2 + size2;
3692 /* Compute where to stop matching, within the two strings. */
3693 if (stop <= size1)
3695 end_match_1 = string1 + stop;
3696 end_match_2 = string2;
3698 else
3700 end_match_1 = end1;
3701 end_match_2 = string2 + stop - size1;
3704 /* `p' scans through the pattern as `d' scans through the data.
3705 `dend' is the end of the input string that `d' points within. `d'
3706 is advanced into the following input string whenever necessary, but
3707 this happens before fetching; therefore, at the beginning of the
3708 loop, `d' can be pointing at the end of a string, but it cannot
3709 equal `string2'. */
3710 if (size1 > 0 && pos <= size1)
3712 d = string1 + pos;
3713 dend = end_match_1;
3715 else
3717 d = string2 + pos - size1;
3718 dend = end_match_2;
3721 DEBUG_PRINT1 ("The compiled pattern is: ");
3722 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3723 DEBUG_PRINT1 ("The string to match is: `");
3724 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3725 DEBUG_PRINT1 ("'\n");
3727 /* This loops over pattern commands. It exits by returning from the
3728 function if the match is complete, or it drops through if the match
3729 fails at this starting point in the input data. */
3730 for (;;)
3732 DEBUG_PRINT2 ("\n0x%x: ", p);
3734 if (p == pend)
3735 { /* End of pattern means we might have succeeded. */
3736 DEBUG_PRINT1 ("end of pattern ... ");
3738 /* If we haven't matched the entire string, and we want the
3739 longest match, try backtracking. */
3740 if (d != end_match_2)
3742 /* 1 if this match ends in the same string (string1 or string2)
3743 as the best previous match. */
3744 boolean same_str_p = (FIRST_STRING_P (match_end)
3745 == MATCHING_IN_FIRST_STRING);
3746 /* 1 if this match is the best seen so far. */
3747 boolean best_match_p;
3749 /* AIX compiler got confused when this was combined
3750 with the previous declaration. */
3751 if (same_str_p)
3752 best_match_p = d > match_end;
3753 else
3754 best_match_p = !MATCHING_IN_FIRST_STRING;
3756 DEBUG_PRINT1 ("backtracking.\n");
3758 if (!FAIL_STACK_EMPTY ())
3759 { /* More failure points to try. */
3761 /* If exceeds best match so far, save it. */
3762 if (!best_regs_set || best_match_p)
3764 best_regs_set = true;
3765 match_end = d;
3767 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3769 for (mcnt = 1; mcnt < num_regs; mcnt++)
3771 best_regstart[mcnt] = regstart[mcnt];
3772 best_regend[mcnt] = regend[mcnt];
3775 goto fail;
3778 /* If no failure points, don't restore garbage. And if
3779 last match is real best match, don't restore second
3780 best one. */
3781 else if (best_regs_set && !best_match_p)
3783 restore_best_regs:
3784 /* Restore best match. It may happen that `dend ==
3785 end_match_1' while the restored d is in string2.
3786 For example, the pattern `x.*y.*z' against the
3787 strings `x-' and `y-z-', if the two strings are
3788 not consecutive in memory. */
3789 DEBUG_PRINT1 ("Restoring best registers.\n");
3791 d = match_end;
3792 dend = ((d >= string1 && d <= end1)
3793 ? end_match_1 : end_match_2);
3795 for (mcnt = 1; mcnt < num_regs; mcnt++)
3797 regstart[mcnt] = best_regstart[mcnt];
3798 regend[mcnt] = best_regend[mcnt];
3801 } /* d != end_match_2 */
3803 succeed_label:
3804 DEBUG_PRINT1 ("Accepting match.\n");
3806 /* If caller wants register contents data back, do it. */
3807 if (regs && !bufp->no_sub)
3809 /* Have the register data arrays been allocated? */
3810 if (bufp->regs_allocated == REGS_UNALLOCATED)
3811 { /* No. So allocate them with malloc. We need one
3812 extra element beyond `num_regs' for the `-1' marker
3813 GNU code uses. */
3814 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3815 regs->start = TALLOC (regs->num_regs, regoff_t);
3816 regs->end = TALLOC (regs->num_regs, regoff_t);
3817 if (regs->start == NULL || regs->end == NULL)
3819 FREE_VARIABLES ();
3820 return -2;
3822 bufp->regs_allocated = REGS_REALLOCATE;
3824 else if (bufp->regs_allocated == REGS_REALLOCATE)
3825 { /* Yes. If we need more elements than were already
3826 allocated, reallocate them. If we need fewer, just
3827 leave it alone. */
3828 if (regs->num_regs < num_regs + 1)
3830 regs->num_regs = num_regs + 1;
3831 RETALLOC (regs->start, regs->num_regs, regoff_t);
3832 RETALLOC (regs->end, regs->num_regs, regoff_t);
3833 if (regs->start == NULL || regs->end == NULL)
3835 FREE_VARIABLES ();
3836 return -2;
3840 else
3842 /* These braces fend off a "empty body in an else-statement"
3843 warning under GCC when assert expands to nothing. */
3844 assert (bufp->regs_allocated == REGS_FIXED);
3847 /* Convert the pointer data in `regstart' and `regend' to
3848 indices. Register zero has to be set differently,
3849 since we haven't kept track of any info for it. */
3850 if (regs->num_regs > 0)
3852 regs->start[0] = pos;
3853 regs->end[0] = (MATCHING_IN_FIRST_STRING
3854 ? ((regoff_t) (d - string1))
3855 : ((regoff_t) (d - string2 + size1)));
3858 /* Go through the first `min (num_regs, regs->num_regs)'
3859 registers, since that is all we initialized. */
3860 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3862 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3863 regs->start[mcnt] = regs->end[mcnt] = -1;
3864 else
3866 regs->start[mcnt]
3867 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3868 regs->end[mcnt]
3869 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3873 /* If the regs structure we return has more elements than
3874 were in the pattern, set the extra elements to -1. If
3875 we (re)allocated the registers, this is the case,
3876 because we always allocate enough to have at least one
3877 -1 at the end. */
3878 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3879 regs->start[mcnt] = regs->end[mcnt] = -1;
3880 } /* regs && !bufp->no_sub */
3882 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3883 nfailure_points_pushed, nfailure_points_popped,
3884 nfailure_points_pushed - nfailure_points_popped);
3885 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3887 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3888 ? string1
3889 : string2 - size1);
3891 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3893 FREE_VARIABLES ();
3894 return mcnt;
3897 /* Otherwise match next pattern command. */
3898 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3900 /* Ignore these. Used to ignore the n of succeed_n's which
3901 currently have n == 0. */
3902 case no_op:
3903 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3904 break;
3906 case succeed:
3907 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3908 goto succeed_label;
3910 /* Match the next n pattern characters exactly. The following
3911 byte in the pattern defines n, and the n bytes after that
3912 are the characters to match. */
3913 case exactn:
3914 mcnt = *p++;
3915 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3917 /* This is written out as an if-else so we don't waste time
3918 testing `translate' inside the loop. */
3919 if (translate)
3923 PREFETCH ();
3924 if (translate[(unsigned char) *d++] != (char) *p++)
3925 goto fail;
3927 while (--mcnt);
3929 else
3933 PREFETCH ();
3934 if (*d++ != (char) *p++) goto fail;
3936 while (--mcnt);
3938 SET_REGS_MATCHED ();
3939 break;
3942 /* Match any character except possibly a newline or a null. */
3943 case anychar:
3944 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3946 PREFETCH ();
3948 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3949 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3950 goto fail;
3952 SET_REGS_MATCHED ();
3953 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3954 d++;
3955 break;
3958 case charset:
3959 case charset_not:
3961 register unsigned char c;
3962 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3964 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3966 PREFETCH ();
3967 c = TRANSLATE (*d); /* The character to match. */
3969 /* Cast to `unsigned' instead of `unsigned char' in case the
3970 bit list is a full 32 bytes long. */
3971 if (c < (unsigned) (*p * BYTEWIDTH)
3972 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3973 not = !not;
3975 p += 1 + *p;
3977 if (!not) goto fail;
3979 SET_REGS_MATCHED ();
3980 d++;
3981 break;
3985 /* The beginning of a group is represented by start_memory.
3986 The arguments are the register number in the next byte, and the
3987 number of groups inner to this one in the next. The text
3988 matched within the group is recorded (in the internal
3989 registers data structure) under the register number. */
3990 case start_memory:
3991 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3993 /* Find out if this group can match the empty string. */
3994 p1 = p; /* To send to group_match_null_string_p. */
3996 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3997 REG_MATCH_NULL_STRING_P (reg_info[*p])
3998 = group_match_null_string_p (&p1, pend, reg_info);
4000 /* Save the position in the string where we were the last time
4001 we were at this open-group operator in case the group is
4002 operated upon by a repetition operator, e.g., with `(a*)*b'
4003 against `ab'; then we want to ignore where we are now in
4004 the string in case this attempt to match fails. */
4005 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4006 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4007 : regstart[*p];
4008 DEBUG_PRINT2 (" old_regstart: %d\n",
4009 POINTER_TO_OFFSET (old_regstart[*p]));
4011 regstart[*p] = d;
4012 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4014 IS_ACTIVE (reg_info[*p]) = 1;
4015 MATCHED_SOMETHING (reg_info[*p]) = 0;
4017 /* Clear this whenever we change the register activity status. */
4018 set_regs_matched_done = 0;
4020 /* This is the new highest active register. */
4021 highest_active_reg = *p;
4023 /* If nothing was active before, this is the new lowest active
4024 register. */
4025 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4026 lowest_active_reg = *p;
4028 /* Move past the register number and inner group count. */
4029 p += 2;
4030 just_past_start_mem = p;
4032 break;
4035 /* The stop_memory opcode represents the end of a group. Its
4036 arguments are the same as start_memory's: the register
4037 number, and the number of inner groups. */
4038 case stop_memory:
4039 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4041 /* We need to save the string position the last time we were at
4042 this close-group operator in case the group is operated
4043 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4044 against `aba'; then we want to ignore where we are now in
4045 the string in case this attempt to match fails. */
4046 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4047 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4048 : regend[*p];
4049 DEBUG_PRINT2 (" old_regend: %d\n",
4050 POINTER_TO_OFFSET (old_regend[*p]));
4052 regend[*p] = d;
4053 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4055 /* This register isn't active anymore. */
4056 IS_ACTIVE (reg_info[*p]) = 0;
4058 /* Clear this whenever we change the register activity status. */
4059 set_regs_matched_done = 0;
4061 /* If this was the only register active, nothing is active
4062 anymore. */
4063 if (lowest_active_reg == highest_active_reg)
4065 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4066 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4068 else
4069 { /* We must scan for the new highest active register, since
4070 it isn't necessarily one less than now: consider
4071 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4072 new highest active register is 1. */
4073 unsigned char r = *p - 1;
4074 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4075 r--;
4077 /* If we end up at register zero, that means that we saved
4078 the registers as the result of an `on_failure_jump', not
4079 a `start_memory', and we jumped to past the innermost
4080 `stop_memory'. For example, in ((.)*) we save
4081 registers 1 and 2 as a result of the *, but when we pop
4082 back to the second ), we are at the stop_memory 1.
4083 Thus, nothing is active. */
4084 if (r == 0)
4086 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4087 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4089 else
4090 highest_active_reg = r;
4093 /* If just failed to match something this time around with a
4094 group that's operated on by a repetition operator, try to
4095 force exit from the ``loop'', and restore the register
4096 information for this group that we had before trying this
4097 last match. */
4098 if ((!MATCHED_SOMETHING (reg_info[*p])
4099 || just_past_start_mem == p - 1)
4100 && (p + 2) < pend)
4102 boolean is_a_jump_n = false;
4104 p1 = p + 2;
4105 mcnt = 0;
4106 switch ((re_opcode_t) *p1++)
4108 case jump_n:
4109 is_a_jump_n = true;
4110 case pop_failure_jump:
4111 case maybe_pop_jump:
4112 case jump:
4113 case dummy_failure_jump:
4114 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4115 if (is_a_jump_n)
4116 p1 += 2;
4117 break;
4119 default:
4120 /* do nothing */ ;
4122 p1 += mcnt;
4124 /* If the next operation is a jump backwards in the pattern
4125 to an on_failure_jump right before the start_memory
4126 corresponding to this stop_memory, exit from the loop
4127 by forcing a failure after pushing on the stack the
4128 on_failure_jump's jump in the pattern, and d. */
4129 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4130 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4132 /* If this group ever matched anything, then restore
4133 what its registers were before trying this last
4134 failed match, e.g., with `(a*)*b' against `ab' for
4135 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4136 against `aba' for regend[3].
4138 Also restore the registers for inner groups for,
4139 e.g., `((a*)(b*))*' against `aba' (register 3 would
4140 otherwise get trashed). */
4142 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4144 unsigned r;
4146 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4148 /* Restore this and inner groups' (if any) registers. */
4149 for (r = *p; r < *p + *(p + 1); r++)
4151 regstart[r] = old_regstart[r];
4153 /* xx why this test? */
4154 if (old_regend[r] >= regstart[r])
4155 regend[r] = old_regend[r];
4158 p1++;
4159 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4160 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4162 goto fail;
4166 /* Move past the register number and the inner group count. */
4167 p += 2;
4168 break;
4171 /* \<digit> has been turned into a `duplicate' command which is
4172 followed by the numeric value of <digit> as the register number. */
4173 case duplicate:
4175 register const char *d2, *dend2;
4176 int regno = *p++; /* Get which register to match against. */
4177 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4179 /* Can't back reference a group which we've never matched. */
4180 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4181 goto fail;
4183 /* Where in input to try to start matching. */
4184 d2 = regstart[regno];
4186 /* Where to stop matching; if both the place to start and
4187 the place to stop matching are in the same string, then
4188 set to the place to stop, otherwise, for now have to use
4189 the end of the first string. */
4191 dend2 = ((FIRST_STRING_P (regstart[regno])
4192 == FIRST_STRING_P (regend[regno]))
4193 ? regend[regno] : end_match_1);
4194 for (;;)
4196 /* If necessary, advance to next segment in register
4197 contents. */
4198 while (d2 == dend2)
4200 if (dend2 == end_match_2) break;
4201 if (dend2 == regend[regno]) break;
4203 /* End of string1 => advance to string2. */
4204 d2 = string2;
4205 dend2 = regend[regno];
4207 /* At end of register contents => success */
4208 if (d2 == dend2) break;
4210 /* If necessary, advance to next segment in data. */
4211 PREFETCH ();
4213 /* How many characters left in this segment to match. */
4214 mcnt = dend - d;
4216 /* Want how many consecutive characters we can match in
4217 one shot, so, if necessary, adjust the count. */
4218 if (mcnt > dend2 - d2)
4219 mcnt = dend2 - d2;
4221 /* Compare that many; failure if mismatch, else move
4222 past them. */
4223 if (translate
4224 ? bcmp_translate (d, d2, mcnt, translate)
4225 : bcmp (d, d2, mcnt))
4226 goto fail;
4227 d += mcnt, d2 += mcnt;
4229 /* Do this because we've match some characters. */
4230 SET_REGS_MATCHED ();
4233 break;
4236 /* begline matches the empty string at the beginning of the string
4237 (unless `not_bol' is set in `bufp'), and, if
4238 `newline_anchor' is set, after newlines. */
4239 case begline:
4240 DEBUG_PRINT1 ("EXECUTING begline.\n");
4242 if (AT_STRINGS_BEG (d))
4244 if (!bufp->not_bol) break;
4246 else if (d[-1] == '\n' && bufp->newline_anchor)
4248 break;
4250 /* In all other cases, we fail. */
4251 goto fail;
4254 /* endline is the dual of begline. */
4255 case endline:
4256 DEBUG_PRINT1 ("EXECUTING endline.\n");
4258 if (AT_STRINGS_END (d))
4260 if (!bufp->not_eol) break;
4263 /* We have to ``prefetch'' the next character. */
4264 else if ((d == end1 ? *string2 : *d) == '\n'
4265 && bufp->newline_anchor)
4267 break;
4269 goto fail;
4272 /* Match at the very beginning of the data. */
4273 case begbuf:
4274 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4275 if (AT_STRINGS_BEG (d))
4276 break;
4277 goto fail;
4280 /* Match at the very end of the data. */
4281 case endbuf:
4282 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4283 if (AT_STRINGS_END (d))
4284 break;
4285 goto fail;
4288 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4289 pushes NULL as the value for the string on the stack. Then
4290 `pop_failure_point' will keep the current value for the
4291 string, instead of restoring it. To see why, consider
4292 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4293 then the . fails against the \n. But the next thing we want
4294 to do is match the \n against the \n; if we restored the
4295 string value, we would be back at the foo.
4297 Because this is used only in specific cases, we don't need to
4298 check all the things that `on_failure_jump' does, to make
4299 sure the right things get saved on the stack. Hence we don't
4300 share its code. The only reason to push anything on the
4301 stack at all is that otherwise we would have to change
4302 `anychar's code to do something besides goto fail in this
4303 case; that seems worse than this. */
4304 case on_failure_keep_string_jump:
4305 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4307 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4308 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4310 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4311 break;
4314 /* Uses of on_failure_jump:
4316 Each alternative starts with an on_failure_jump that points
4317 to the beginning of the next alternative. Each alternative
4318 except the last ends with a jump that in effect jumps past
4319 the rest of the alternatives. (They really jump to the
4320 ending jump of the following alternative, because tensioning
4321 these jumps is a hassle.)
4323 Repeats start with an on_failure_jump that points past both
4324 the repetition text and either the following jump or
4325 pop_failure_jump back to this on_failure_jump. */
4326 case on_failure_jump:
4327 on_failure:
4328 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4330 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4331 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4333 /* If this on_failure_jump comes right before a group (i.e.,
4334 the original * applied to a group), save the information
4335 for that group and all inner ones, so that if we fail back
4336 to this point, the group's information will be correct.
4337 For example, in \(a*\)*\1, we need the preceding group,
4338 and in \(\(a*\)b*\)\2, we need the inner group. */
4340 /* We can't use `p' to check ahead because we push
4341 a failure point to `p + mcnt' after we do this. */
4342 p1 = p;
4344 /* We need to skip no_op's before we look for the
4345 start_memory in case this on_failure_jump is happening as
4346 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4347 against aba. */
4348 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4349 p1++;
4351 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4353 /* We have a new highest active register now. This will
4354 get reset at the start_memory we are about to get to,
4355 but we will have saved all the registers relevant to
4356 this repetition op, as described above. */
4357 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4358 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4359 lowest_active_reg = *(p1 + 1);
4362 DEBUG_PRINT1 (":\n");
4363 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4364 break;
4367 /* A smart repeat ends with `maybe_pop_jump'.
4368 We change it to either `pop_failure_jump' or `jump'. */
4369 case maybe_pop_jump:
4370 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4371 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4373 register unsigned char *p2 = p;
4375 /* Compare the beginning of the repeat with what in the
4376 pattern follows its end. If we can establish that there
4377 is nothing that they would both match, i.e., that we
4378 would have to backtrack because of (as in, e.g., `a*a')
4379 then we can change to pop_failure_jump, because we'll
4380 never have to backtrack.
4382 This is not true in the case of alternatives: in
4383 `(a|ab)*' we do need to backtrack to the `ab' alternative
4384 (e.g., if the string was `ab'). But instead of trying to
4385 detect that here, the alternative has put on a dummy
4386 failure point which is what we will end up popping. */
4388 /* Skip over open/close-group commands.
4389 If what follows this loop is a ...+ construct,
4390 look at what begins its body, since we will have to
4391 match at least one of that. */
4392 while (1)
4394 if (p2 + 2 < pend
4395 && ((re_opcode_t) *p2 == stop_memory
4396 || (re_opcode_t) *p2 == start_memory))
4397 p2 += 3;
4398 else if (p2 + 6 < pend
4399 && (re_opcode_t) *p2 == dummy_failure_jump)
4400 p2 += 6;
4401 else
4402 break;
4405 p1 = p + mcnt;
4406 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4407 to the `maybe_finalize_jump' of this case. Examine what
4408 follows. */
4410 /* If we're at the end of the pattern, we can change. */
4411 if (p2 == pend)
4413 /* Consider what happens when matching ":\(.*\)"
4414 against ":/". I don't really understand this code
4415 yet. */
4416 p[-3] = (unsigned char) pop_failure_jump;
4417 DEBUG_PRINT1
4418 (" End of pattern: change to `pop_failure_jump'.\n");
4421 else if ((re_opcode_t) *p2 == exactn
4422 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4424 register unsigned char c
4425 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4427 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4429 p[-3] = (unsigned char) pop_failure_jump;
4430 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4431 c, p1[5]);
4434 else if ((re_opcode_t) p1[3] == charset
4435 || (re_opcode_t) p1[3] == charset_not)
4437 int not = (re_opcode_t) p1[3] == charset_not;
4439 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4440 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4441 not = !not;
4443 /* `not' is equal to 1 if c would match, which means
4444 that we can't change to pop_failure_jump. */
4445 if (!not)
4447 p[-3] = (unsigned char) pop_failure_jump;
4448 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4452 else if ((re_opcode_t) *p2 == charset)
4454 #ifdef DEBUG
4455 register unsigned char c
4456 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4457 #endif
4459 if ((re_opcode_t) p1[3] == exactn
4460 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4461 && (p2[1 + p1[4] / BYTEWIDTH]
4462 & (1 << (p1[4] % BYTEWIDTH)))))
4464 p[-3] = (unsigned char) pop_failure_jump;
4465 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4466 c, p1[5]);
4469 else if ((re_opcode_t) p1[3] == charset_not)
4471 int idx;
4472 /* We win if the charset_not inside the loop
4473 lists every character listed in the charset after. */
4474 for (idx = 0; idx < (int) p2[1]; idx++)
4475 if (! (p2[2 + idx] == 0
4476 || (idx < (int) p1[4]
4477 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4478 break;
4480 if (idx == p2[1])
4482 p[-3] = (unsigned char) pop_failure_jump;
4483 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4486 else if ((re_opcode_t) p1[3] == charset)
4488 int idx;
4489 /* We win if the charset inside the loop
4490 has no overlap with the one after the loop. */
4491 for (idx = 0;
4492 idx < (int) p2[1] && idx < (int) p1[4];
4493 idx++)
4494 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4495 break;
4497 if (idx == p2[1] || idx == p1[4])
4499 p[-3] = (unsigned char) pop_failure_jump;
4500 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4505 p -= 2; /* Point at relative address again. */
4506 if ((re_opcode_t) p[-1] != pop_failure_jump)
4508 p[-1] = (unsigned char) jump;
4509 DEBUG_PRINT1 (" Match => jump.\n");
4510 goto unconditional_jump;
4512 /* Note fall through. */
4515 /* The end of a simple repeat has a pop_failure_jump back to
4516 its matching on_failure_jump, where the latter will push a
4517 failure point. The pop_failure_jump takes off failure
4518 points put on by this pop_failure_jump's matching
4519 on_failure_jump; we got through the pattern to here from the
4520 matching on_failure_jump, so didn't fail. */
4521 case pop_failure_jump:
4523 /* We need to pass separate storage for the lowest and
4524 highest registers, even though we don't care about the
4525 actual values. Otherwise, we will restore only one
4526 register from the stack, since lowest will == highest in
4527 `pop_failure_point'. */
4528 unsigned dummy_low_reg, dummy_high_reg;
4529 unsigned char *pdummy;
4530 const char *sdummy;
4532 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4533 POP_FAILURE_POINT (sdummy, pdummy,
4534 dummy_low_reg, dummy_high_reg,
4535 reg_dummy, reg_dummy, reg_info_dummy);
4537 /* Note fall through. */
4540 /* Unconditionally jump (without popping any failure points). */
4541 case jump:
4542 unconditional_jump:
4543 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4544 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4545 p += mcnt; /* Do the jump. */
4546 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4547 break;
4550 /* We need this opcode so we can detect where alternatives end
4551 in `group_match_null_string_p' et al. */
4552 case jump_past_alt:
4553 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4554 goto unconditional_jump;
4557 /* Normally, the on_failure_jump pushes a failure point, which
4558 then gets popped at pop_failure_jump. We will end up at
4559 pop_failure_jump, also, and with a pattern of, say, `a+', we
4560 are skipping over the on_failure_jump, so we have to push
4561 something meaningless for pop_failure_jump to pop. */
4562 case dummy_failure_jump:
4563 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4564 /* It doesn't matter what we push for the string here. What
4565 the code at `fail' tests is the value for the pattern. */
4566 PUSH_FAILURE_POINT (0, 0, -2);
4567 goto unconditional_jump;
4570 /* At the end of an alternative, we need to push a dummy failure
4571 point in case we are followed by a `pop_failure_jump', because
4572 we don't want the failure point for the alternative to be
4573 popped. For example, matching `(a|ab)*' against `aab'
4574 requires that we match the `ab' alternative. */
4575 case push_dummy_failure:
4576 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4577 /* See comments just above at `dummy_failure_jump' about the
4578 two zeroes. */
4579 PUSH_FAILURE_POINT (0, 0, -2);
4580 break;
4582 /* Have to succeed matching what follows at least n times.
4583 After that, handle like `on_failure_jump'. */
4584 case succeed_n:
4585 EXTRACT_NUMBER (mcnt, p + 2);
4586 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4588 assert (mcnt >= 0);
4589 /* Originally, this is how many times we HAVE to succeed. */
4590 if (mcnt > 0)
4592 mcnt--;
4593 p += 2;
4594 STORE_NUMBER_AND_INCR (p, mcnt);
4595 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4597 else if (mcnt == 0)
4599 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4600 p[2] = (unsigned char) no_op;
4601 p[3] = (unsigned char) no_op;
4602 goto on_failure;
4604 break;
4606 case jump_n:
4607 EXTRACT_NUMBER (mcnt, p + 2);
4608 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4610 /* Originally, this is how many times we CAN jump. */
4611 if (mcnt)
4613 mcnt--;
4614 STORE_NUMBER (p + 2, mcnt);
4615 goto unconditional_jump;
4617 /* If don't have to jump any more, skip over the rest of command. */
4618 else
4619 p += 4;
4620 break;
4622 case set_number_at:
4624 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4626 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4627 p1 = p + mcnt;
4628 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4629 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4630 STORE_NUMBER (p1, mcnt);
4631 break;
4634 case wordbound:
4635 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4636 if (AT_WORD_BOUNDARY (d))
4637 break;
4638 goto fail;
4640 case notwordbound:
4641 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4642 if (AT_WORD_BOUNDARY (d))
4643 goto fail;
4644 break;
4646 case wordbeg:
4647 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4648 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4649 break;
4650 goto fail;
4652 case wordend:
4653 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4654 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4655 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4656 break;
4657 goto fail;
4659 #ifdef emacs
4660 case before_dot:
4661 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4662 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4663 goto fail;
4664 break;
4666 case at_dot:
4667 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4668 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4669 goto fail;
4670 break;
4672 case after_dot:
4673 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4674 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4675 goto fail;
4676 break;
4677 #if 0 /* not emacs19 */
4678 case at_dot:
4679 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4680 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4681 goto fail;
4682 break;
4683 #endif /* not emacs19 */
4685 case syntaxspec:
4686 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4687 mcnt = *p++;
4688 goto matchsyntax;
4690 case wordchar:
4691 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4692 mcnt = (int) Sword;
4693 matchsyntax:
4694 PREFETCH ();
4695 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4696 d++;
4697 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4698 goto fail;
4699 SET_REGS_MATCHED ();
4700 break;
4702 case notsyntaxspec:
4703 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4704 mcnt = *p++;
4705 goto matchnotsyntax;
4707 case notwordchar:
4708 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4709 mcnt = (int) Sword;
4710 matchnotsyntax:
4711 PREFETCH ();
4712 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4713 d++;
4714 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4715 goto fail;
4716 SET_REGS_MATCHED ();
4717 break;
4719 #else /* not emacs */
4720 case wordchar:
4721 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4722 PREFETCH ();
4723 if (!WORDCHAR_P (d))
4724 goto fail;
4725 SET_REGS_MATCHED ();
4726 d++;
4727 break;
4729 case notwordchar:
4730 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4731 PREFETCH ();
4732 if (WORDCHAR_P (d))
4733 goto fail;
4734 SET_REGS_MATCHED ();
4735 d++;
4736 break;
4737 #endif /* not emacs */
4739 default:
4740 abort ();
4742 continue; /* Successfully executed one pattern command; keep going. */
4745 /* We goto here if a matching operation fails. */
4746 fail:
4747 if (!FAIL_STACK_EMPTY ())
4748 { /* A restart point is known. Restore to that state. */
4749 DEBUG_PRINT1 ("\nFAIL:\n");
4750 POP_FAILURE_POINT (d, p,
4751 lowest_active_reg, highest_active_reg,
4752 regstart, regend, reg_info);
4754 /* If this failure point is a dummy, try the next one. */
4755 if (!p)
4756 goto fail;
4758 /* If we failed to the end of the pattern, don't examine *p. */
4759 assert (p <= pend);
4760 if (p < pend)
4762 boolean is_a_jump_n = false;
4764 /* If failed to a backwards jump that's part of a repetition
4765 loop, need to pop this failure point and use the next one. */
4766 switch ((re_opcode_t) *p)
4768 case jump_n:
4769 is_a_jump_n = true;
4770 case maybe_pop_jump:
4771 case pop_failure_jump:
4772 case jump:
4773 p1 = p + 1;
4774 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4775 p1 += mcnt;
4777 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4778 || (!is_a_jump_n
4779 && (re_opcode_t) *p1 == on_failure_jump))
4780 goto fail;
4781 break;
4782 default:
4783 /* do nothing */ ;
4787 if (d >= string1 && d <= end1)
4788 dend = end_match_1;
4790 else
4791 break; /* Matching at this starting point really fails. */
4792 } /* for (;;) */
4794 if (best_regs_set)
4795 goto restore_best_regs;
4797 FREE_VARIABLES ();
4799 return -1; /* Failure to match. */
4800 } /* re_match_2 */
4802 /* Subroutine definitions for re_match_2. */
4805 /* We are passed P pointing to a register number after a start_memory.
4807 Return true if the pattern up to the corresponding stop_memory can
4808 match the empty string, and false otherwise.
4810 If we find the matching stop_memory, sets P to point to one past its number.
4811 Otherwise, sets P to an undefined byte less than or equal to END.
4813 We don't handle duplicates properly (yet). */
4815 static boolean
4816 group_match_null_string_p (p, end, reg_info)
4817 unsigned char **p, *end;
4818 register_info_type *reg_info;
4820 int mcnt;
4821 /* Point to after the args to the start_memory. */
4822 unsigned char *p1 = *p + 2;
4824 while (p1 < end)
4826 /* Skip over opcodes that can match nothing, and return true or
4827 false, as appropriate, when we get to one that can't, or to the
4828 matching stop_memory. */
4830 switch ((re_opcode_t) *p1)
4832 /* Could be either a loop or a series of alternatives. */
4833 case on_failure_jump:
4834 p1++;
4835 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4837 /* If the next operation is not a jump backwards in the
4838 pattern. */
4840 if (mcnt >= 0)
4842 /* Go through the on_failure_jumps of the alternatives,
4843 seeing if any of the alternatives cannot match nothing.
4844 The last alternative starts with only a jump,
4845 whereas the rest start with on_failure_jump and end
4846 with a jump, e.g., here is the pattern for `a|b|c':
4848 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4849 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4850 /exactn/1/c
4852 So, we have to first go through the first (n-1)
4853 alternatives and then deal with the last one separately. */
4856 /* Deal with the first (n-1) alternatives, which start
4857 with an on_failure_jump (see above) that jumps to right
4858 past a jump_past_alt. */
4860 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4862 /* `mcnt' holds how many bytes long the alternative
4863 is, including the ending `jump_past_alt' and
4864 its number. */
4866 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4867 reg_info))
4868 return false;
4870 /* Move to right after this alternative, including the
4871 jump_past_alt. */
4872 p1 += mcnt;
4874 /* Break if it's the beginning of an n-th alternative
4875 that doesn't begin with an on_failure_jump. */
4876 if ((re_opcode_t) *p1 != on_failure_jump)
4877 break;
4879 /* Still have to check that it's not an n-th
4880 alternative that starts with an on_failure_jump. */
4881 p1++;
4882 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4883 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4885 /* Get to the beginning of the n-th alternative. */
4886 p1 -= 3;
4887 break;
4891 /* Deal with the last alternative: go back and get number
4892 of the `jump_past_alt' just before it. `mcnt' contains
4893 the length of the alternative. */
4894 EXTRACT_NUMBER (mcnt, p1 - 2);
4896 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4897 return false;
4899 p1 += mcnt; /* Get past the n-th alternative. */
4900 } /* if mcnt > 0 */
4901 break;
4904 case stop_memory:
4905 assert (p1[1] == **p);
4906 *p = p1 + 2;
4907 return true;
4910 default:
4911 if (!common_op_match_null_string_p (&p1, end, reg_info))
4912 return false;
4914 } /* while p1 < end */
4916 return false;
4917 } /* group_match_null_string_p */
4920 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4921 It expects P to be the first byte of a single alternative and END one
4922 byte past the last. The alternative can contain groups. */
4924 static boolean
4925 alt_match_null_string_p (p, end, reg_info)
4926 unsigned char *p, *end;
4927 register_info_type *reg_info;
4929 int mcnt;
4930 unsigned char *p1 = p;
4932 while (p1 < end)
4934 /* Skip over opcodes that can match nothing, and break when we get
4935 to one that can't. */
4937 switch ((re_opcode_t) *p1)
4939 /* It's a loop. */
4940 case on_failure_jump:
4941 p1++;
4942 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4943 p1 += mcnt;
4944 break;
4946 default:
4947 if (!common_op_match_null_string_p (&p1, end, reg_info))
4948 return false;
4950 } /* while p1 < end */
4952 return true;
4953 } /* alt_match_null_string_p */
4956 /* Deals with the ops common to group_match_null_string_p and
4957 alt_match_null_string_p.
4959 Sets P to one after the op and its arguments, if any. */
4961 static boolean
4962 common_op_match_null_string_p (p, end, reg_info)
4963 unsigned char **p, *end;
4964 register_info_type *reg_info;
4966 int mcnt;
4967 boolean ret;
4968 int reg_no;
4969 unsigned char *p1 = *p;
4971 switch ((re_opcode_t) *p1++)
4973 case no_op:
4974 case begline:
4975 case endline:
4976 case begbuf:
4977 case endbuf:
4978 case wordbeg:
4979 case wordend:
4980 case wordbound:
4981 case notwordbound:
4982 #ifdef emacs
4983 case before_dot:
4984 case at_dot:
4985 case after_dot:
4986 #endif
4987 break;
4989 case start_memory:
4990 reg_no = *p1;
4991 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4992 ret = group_match_null_string_p (&p1, end, reg_info);
4994 /* Have to set this here in case we're checking a group which
4995 contains a group and a back reference to it. */
4997 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4998 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5000 if (!ret)
5001 return false;
5002 break;
5004 /* If this is an optimized succeed_n for zero times, make the jump. */
5005 case jump:
5006 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5007 if (mcnt >= 0)
5008 p1 += mcnt;
5009 else
5010 return false;
5011 break;
5013 case succeed_n:
5014 /* Get to the number of times to succeed. */
5015 p1 += 2;
5016 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5018 if (mcnt == 0)
5020 p1 -= 4;
5021 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5022 p1 += mcnt;
5024 else
5025 return false;
5026 break;
5028 case duplicate:
5029 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5030 return false;
5031 break;
5033 case set_number_at:
5034 p1 += 4;
5036 default:
5037 /* All other opcodes mean we cannot match the empty string. */
5038 return false;
5041 *p = p1;
5042 return true;
5043 } /* common_op_match_null_string_p */
5046 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5047 bytes; nonzero otherwise. */
5049 static int
5050 bcmp_translate (s1, s2, len, translate)
5051 unsigned char *s1, *s2;
5052 register int len;
5053 char *translate;
5055 register unsigned char *p1 = s1, *p2 = s2;
5056 while (len)
5058 if (translate[*p1++] != translate[*p2++]) return 1;
5059 len--;
5061 return 0;
5064 /* Entry points for GNU code. */
5066 /* re_compile_pattern is the GNU regular expression compiler: it
5067 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5068 Returns 0 if the pattern was valid, otherwise an error string.
5070 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5071 are set in BUFP on entry.
5073 We call regex_compile to do the actual compilation. */
5075 const char *
5076 re_compile_pattern (pattern, length, bufp)
5077 const char *pattern;
5078 int length;
5079 struct re_pattern_buffer *bufp;
5081 reg_errcode_t ret;
5083 /* GNU code is written to assume at least RE_NREGS registers will be set
5084 (and at least one extra will be -1). */
5085 bufp->regs_allocated = REGS_UNALLOCATED;
5087 /* And GNU code determines whether or not to get register information
5088 by passing null for the REGS argument to re_match, etc., not by
5089 setting no_sub. */
5090 bufp->no_sub = 0;
5092 /* Match anchors at newline. */
5093 bufp->newline_anchor = 1;
5095 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5097 if (!ret)
5098 return NULL;
5099 return gettext (re_error_msgid[(int) ret]);
5102 /* Entry points compatible with 4.2 BSD regex library. We don't define
5103 them unless specifically requested. */
5105 #ifdef _REGEX_RE_COMP
5107 /* BSD has one and only one pattern buffer. */
5108 static struct re_pattern_buffer re_comp_buf;
5110 char *
5111 re_comp (s)
5112 const char *s;
5114 reg_errcode_t ret;
5116 if (!s)
5118 if (!re_comp_buf.buffer)
5119 return gettext ("No previous regular expression");
5120 return 0;
5123 if (!re_comp_buf.buffer)
5125 re_comp_buf.buffer = (unsigned char *) malloc (200);
5126 if (re_comp_buf.buffer == NULL)
5127 return gettext (re_error_msgid[(int) REG_ESPACE]);
5128 re_comp_buf.allocated = 200;
5130 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5131 if (re_comp_buf.fastmap == NULL)
5132 return gettext (re_error_msgid[(int) REG_ESPACE]);
5135 /* Since `re_exec' always passes NULL for the `regs' argument, we
5136 don't need to initialize the pattern buffer fields which affect it. */
5138 /* Match anchors at newlines. */
5139 re_comp_buf.newline_anchor = 1;
5141 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5143 if (!ret)
5144 return NULL;
5146 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5147 return (char *) gettext (re_error_msgid[(int) ret]);
5152 re_exec (s)
5153 const char *s;
5155 const int len = strlen (s);
5156 return
5157 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5159 #endif /* _REGEX_RE_COMP */
5161 /* POSIX.2 functions. Don't define these for Emacs. */
5163 #ifndef emacs
5165 /* regcomp takes a regular expression as a string and compiles it.
5167 PREG is a regex_t *. We do not expect any fields to be initialized,
5168 since POSIX says we shouldn't. Thus, we set
5170 `buffer' to the compiled pattern;
5171 `used' to the length of the compiled pattern;
5172 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5173 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5174 RE_SYNTAX_POSIX_BASIC;
5175 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5176 `fastmap' and `fastmap_accurate' to zero;
5177 `re_nsub' to the number of subexpressions in PATTERN.
5179 PATTERN is the address of the pattern string.
5181 CFLAGS is a series of bits which affect compilation.
5183 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5184 use POSIX basic syntax.
5186 If REG_NEWLINE is set, then . and [^...] don't match newline.
5187 Also, regexec will try a match beginning after every newline.
5189 If REG_ICASE is set, then we considers upper- and lowercase
5190 versions of letters to be equivalent when matching.
5192 If REG_NOSUB is set, then when PREG is passed to regexec, that
5193 routine will report only success or failure, and nothing about the
5194 registers.
5196 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5197 the return codes and their meanings.) */
5200 regcomp (preg, pattern, cflags)
5201 regex_t *preg;
5202 const char *pattern;
5203 int cflags;
5205 reg_errcode_t ret;
5206 unsigned syntax
5207 = (cflags & REG_EXTENDED) ?
5208 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5210 /* regex_compile will allocate the space for the compiled pattern. */
5211 preg->buffer = 0;
5212 preg->allocated = 0;
5213 preg->used = 0;
5215 /* Don't bother to use a fastmap when searching. This simplifies the
5216 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5217 characters after newlines into the fastmap. This way, we just try
5218 every character. */
5219 preg->fastmap = 0;
5221 if (cflags & REG_ICASE)
5223 unsigned i;
5225 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5226 if (preg->translate == NULL)
5227 return (int) REG_ESPACE;
5229 /* Map uppercase characters to corresponding lowercase ones. */
5230 for (i = 0; i < CHAR_SET_SIZE; i++)
5231 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5233 else
5234 preg->translate = NULL;
5236 /* If REG_NEWLINE is set, newlines are treated differently. */
5237 if (cflags & REG_NEWLINE)
5238 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5239 syntax &= ~RE_DOT_NEWLINE;
5240 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5241 /* It also changes the matching behavior. */
5242 preg->newline_anchor = 1;
5244 else
5245 preg->newline_anchor = 0;
5247 preg->no_sub = !!(cflags & REG_NOSUB);
5249 /* POSIX says a null character in the pattern terminates it, so we
5250 can use strlen here in compiling the pattern. */
5251 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5253 /* POSIX doesn't distinguish between an unmatched open-group and an
5254 unmatched close-group: both are REG_EPAREN. */
5255 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5257 return (int) ret;
5261 /* regexec searches for a given pattern, specified by PREG, in the
5262 string STRING.
5264 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5265 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5266 least NMATCH elements, and we set them to the offsets of the
5267 corresponding matched substrings.
5269 EFLAGS specifies `execution flags' which affect matching: if
5270 REG_NOTBOL is set, then ^ does not match at the beginning of the
5271 string; if REG_NOTEOL is set, then $ does not match at the end.
5273 We return 0 if we find a match and REG_NOMATCH if not. */
5276 regexec (preg, string, nmatch, pmatch, eflags)
5277 const regex_t *preg;
5278 const char *string;
5279 size_t nmatch;
5280 regmatch_t pmatch[];
5281 int eflags;
5283 int ret;
5284 struct re_registers regs;
5285 regex_t private_preg;
5286 int len = strlen (string);
5287 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5289 private_preg = *preg;
5291 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5292 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5294 /* The user has told us exactly how many registers to return
5295 information about, via `nmatch'. We have to pass that on to the
5296 matching routines. */
5297 private_preg.regs_allocated = REGS_FIXED;
5299 if (want_reg_info)
5301 regs.num_regs = nmatch;
5302 regs.start = TALLOC (nmatch, regoff_t);
5303 regs.end = TALLOC (nmatch, regoff_t);
5304 if (regs.start == NULL || regs.end == NULL)
5305 return (int) REG_NOMATCH;
5308 /* Perform the searching operation. */
5309 ret = re_search (&private_preg, string, len,
5310 /* start: */ 0, /* range: */ len,
5311 want_reg_info ? &regs : (struct re_registers *) 0);
5313 /* Copy the register information to the POSIX structure. */
5314 if (want_reg_info)
5316 if (ret >= 0)
5318 unsigned r;
5320 for (r = 0; r < nmatch; r++)
5322 pmatch[r].rm_so = regs.start[r];
5323 pmatch[r].rm_eo = regs.end[r];
5327 /* If we needed the temporary register info, free the space now. */
5328 free (regs.start);
5329 free (regs.end);
5332 /* We want zero return to mean success, unlike `re_search'. */
5333 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5337 /* Returns a message corresponding to an error code, ERRCODE, returned
5338 from either regcomp or regexec. We don't use PREG here. */
5340 size_t
5341 regerror (errcode, preg, errbuf, errbuf_size)
5342 int errcode;
5343 const regex_t *preg;
5344 char *errbuf;
5345 size_t errbuf_size;
5347 const char *msg;
5348 size_t msg_size;
5350 if (errcode < 0
5351 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5352 /* Only error codes returned by the rest of the code should be passed
5353 to this routine. If we are given anything else, or if other regex
5354 code generates an invalid error code, then the program has a bug.
5355 Dump core so we can fix it. */
5356 abort ();
5358 msg = gettext (re_error_msgid[errcode]);
5360 msg_size = strlen (msg) + 1; /* Includes the null. */
5362 if (errbuf_size != 0)
5364 if (msg_size > errbuf_size)
5366 strncpy (errbuf, msg, errbuf_size - 1);
5367 errbuf[errbuf_size - 1] = 0;
5369 else
5370 strcpy (errbuf, msg);
5373 return msg_size;
5377 /* Free dynamically allocated space used by PREG. */
5379 void
5380 regfree (preg)
5381 regex_t *preg;
5383 if (preg->buffer != NULL)
5384 free (preg->buffer);
5385 preg->buffer = NULL;
5387 preg->allocated = 0;
5388 preg->used = 0;
5390 if (preg->fastmap != NULL)
5391 free (preg->fastmap);
5392 preg->fastmap = NULL;
5393 preg->fastmap_accurate = 0;
5395 if (preg->translate != NULL)
5396 free (preg->translate);
5397 preg->translate = NULL;
5400 #endif /* not emacs */
5403 Local variables:
5404 make-backup-files: t
5405 version-control: t
5406 trim-versions-without-asking: nil
5407 End: