Include <unistd.h> unilaterally.
[emacs.git] / src / fns.c
blob8fd5c7d291aa0c298c1cf0929f66eaeab8e18099
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GNU Emacs.
9 GNU Emacs is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
14 GNU Emacs is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
22 #include <config.h>
24 #include <unistd.h>
25 #include <time.h>
26 #include <setjmp.h>
28 /* Note on some machines this defines `vector' as a typedef,
29 so make sure we don't use that name in this file. */
30 #undef vector
31 #define vector *****
33 #include "lisp.h"
34 #include "commands.h"
35 #include "character.h"
36 #include "coding.h"
37 #include "buffer.h"
38 #include "keyboard.h"
39 #include "keymap.h"
40 #include "intervals.h"
41 #include "frame.h"
42 #include "window.h"
43 #include "blockinput.h"
44 #ifdef HAVE_MENUS
45 #if defined (HAVE_X_WINDOWS)
46 #include "xterm.h"
47 #endif
48 #endif /* HAVE_MENUS */
50 #ifndef NULL
51 #define NULL ((POINTER_TYPE *)0)
52 #endif
54 /* Nonzero enables use of dialog boxes for questions
55 asked by mouse commands. */
56 int use_dialog_box;
58 /* Nonzero enables use of a file dialog for file name
59 questions asked by mouse commands. */
60 int use_file_dialog;
62 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
63 Lisp_Object Qyes_or_no_p_history;
64 Lisp_Object Qcursor_in_echo_area;
65 Lisp_Object Qwidget_type;
66 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
68 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
70 extern long get_random (void);
71 extern void seed_random (long);
73 #ifndef HAVE_UNISTD_H
74 extern long time ();
75 #endif
77 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
78 doc: /* Return the argument unchanged. */)
79 (Lisp_Object arg)
81 return arg;
84 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
85 doc: /* Return a pseudo-random number.
86 All integers representable in Lisp are equally likely.
87 On most systems, this is 29 bits' worth.
88 With positive integer LIMIT, return random number in interval [0,LIMIT).
89 With argument t, set the random number seed from the current time and pid.
90 Other values of LIMIT are ignored. */)
91 (Lisp_Object limit)
93 EMACS_INT val;
94 Lisp_Object lispy_val;
95 unsigned long denominator;
97 if (EQ (limit, Qt))
98 seed_random (getpid () + time (NULL));
99 if (NATNUMP (limit) && XFASTINT (limit) != 0)
101 /* Try to take our random number from the higher bits of VAL,
102 not the lower, since (says Gentzel) the low bits of `random'
103 are less random than the higher ones. We do this by using the
104 quotient rather than the remainder. At the high end of the RNG
105 it's possible to get a quotient larger than n; discarding
106 these values eliminates the bias that would otherwise appear
107 when using a large n. */
108 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
110 val = get_random () / denominator;
111 while (val >= XFASTINT (limit));
113 else
114 val = get_random ();
115 XSETINT (lispy_val, val);
116 return lispy_val;
119 /* Random data-structure functions */
121 DEFUN ("length", Flength, Slength, 1, 1, 0,
122 doc: /* Return the length of vector, list or string SEQUENCE.
123 A byte-code function object is also allowed.
124 If the string contains multibyte characters, this is not necessarily
125 the number of bytes in the string; it is the number of characters.
126 To get the number of bytes, use `string-bytes'. */)
127 (register Lisp_Object sequence)
129 register Lisp_Object val;
130 register int i;
132 if (STRINGP (sequence))
133 XSETFASTINT (val, SCHARS (sequence));
134 else if (VECTORP (sequence))
135 XSETFASTINT (val, ASIZE (sequence));
136 else if (CHAR_TABLE_P (sequence))
137 XSETFASTINT (val, MAX_CHAR);
138 else if (BOOL_VECTOR_P (sequence))
139 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
140 else if (COMPILEDP (sequence))
141 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
142 else if (CONSP (sequence))
144 i = 0;
145 while (CONSP (sequence))
147 sequence = XCDR (sequence);
148 ++i;
150 if (!CONSP (sequence))
151 break;
153 sequence = XCDR (sequence);
154 ++i;
155 QUIT;
158 CHECK_LIST_END (sequence, sequence);
160 val = make_number (i);
162 else if (NILP (sequence))
163 XSETFASTINT (val, 0);
164 else
165 wrong_type_argument (Qsequencep, sequence);
167 return val;
170 /* This does not check for quits. That is safe since it must terminate. */
172 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
173 doc: /* Return the length of a list, but avoid error or infinite loop.
174 This function never gets an error. If LIST is not really a list,
175 it returns 0. If LIST is circular, it returns a finite value
176 which is at least the number of distinct elements. */)
177 (Lisp_Object list)
179 Lisp_Object tail, halftail, length;
180 int len = 0;
182 /* halftail is used to detect circular lists. */
183 halftail = list;
184 for (tail = list; CONSP (tail); tail = XCDR (tail))
186 if (EQ (tail, halftail) && len != 0)
187 break;
188 len++;
189 if ((len & 1) == 0)
190 halftail = XCDR (halftail);
193 XSETINT (length, len);
194 return length;
197 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
198 doc: /* Return the number of bytes in STRING.
199 If STRING is multibyte, this may be greater than the length of STRING. */)
200 (Lisp_Object string)
202 CHECK_STRING (string);
203 return make_number (SBYTES (string));
206 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
207 doc: /* Return t if two strings have identical contents.
208 Case is significant, but text properties are ignored.
209 Symbols are also allowed; their print names are used instead. */)
210 (register Lisp_Object s1, Lisp_Object s2)
212 if (SYMBOLP (s1))
213 s1 = SYMBOL_NAME (s1);
214 if (SYMBOLP (s2))
215 s2 = SYMBOL_NAME (s2);
216 CHECK_STRING (s1);
217 CHECK_STRING (s2);
219 if (SCHARS (s1) != SCHARS (s2)
220 || SBYTES (s1) != SBYTES (s2)
221 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
222 return Qnil;
223 return Qt;
226 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
227 doc: /* Compare the contents of two strings, converting to multibyte if needed.
228 In string STR1, skip the first START1 characters and stop at END1.
229 In string STR2, skip the first START2 characters and stop at END2.
230 END1 and END2 default to the full lengths of the respective strings.
232 Case is significant in this comparison if IGNORE-CASE is nil.
233 Unibyte strings are converted to multibyte for comparison.
235 The value is t if the strings (or specified portions) match.
236 If string STR1 is less, the value is a negative number N;
237 - 1 - N is the number of characters that match at the beginning.
238 If string STR1 is greater, the value is a positive number N;
239 N - 1 is the number of characters that match at the beginning. */)
240 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
242 register EMACS_INT end1_char, end2_char;
243 register EMACS_INT i1, i1_byte, i2, i2_byte;
245 CHECK_STRING (str1);
246 CHECK_STRING (str2);
247 if (NILP (start1))
248 start1 = make_number (0);
249 if (NILP (start2))
250 start2 = make_number (0);
251 CHECK_NATNUM (start1);
252 CHECK_NATNUM (start2);
253 if (! NILP (end1))
254 CHECK_NATNUM (end1);
255 if (! NILP (end2))
256 CHECK_NATNUM (end2);
258 i1 = XINT (start1);
259 i2 = XINT (start2);
261 i1_byte = string_char_to_byte (str1, i1);
262 i2_byte = string_char_to_byte (str2, i2);
264 end1_char = SCHARS (str1);
265 if (! NILP (end1) && end1_char > XINT (end1))
266 end1_char = XINT (end1);
268 end2_char = SCHARS (str2);
269 if (! NILP (end2) && end2_char > XINT (end2))
270 end2_char = XINT (end2);
272 while (i1 < end1_char && i2 < end2_char)
274 /* When we find a mismatch, we must compare the
275 characters, not just the bytes. */
276 int c1, c2;
278 if (STRING_MULTIBYTE (str1))
279 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
280 else
282 c1 = SREF (str1, i1++);
283 MAKE_CHAR_MULTIBYTE (c1);
286 if (STRING_MULTIBYTE (str2))
287 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
288 else
290 c2 = SREF (str2, i2++);
291 MAKE_CHAR_MULTIBYTE (c2);
294 if (c1 == c2)
295 continue;
297 if (! NILP (ignore_case))
299 Lisp_Object tem;
301 tem = Fupcase (make_number (c1));
302 c1 = XINT (tem);
303 tem = Fupcase (make_number (c2));
304 c2 = XINT (tem);
307 if (c1 == c2)
308 continue;
310 /* Note that I1 has already been incremented
311 past the character that we are comparing;
312 hence we don't add or subtract 1 here. */
313 if (c1 < c2)
314 return make_number (- i1 + XINT (start1));
315 else
316 return make_number (i1 - XINT (start1));
319 if (i1 < end1_char)
320 return make_number (i1 - XINT (start1) + 1);
321 if (i2 < end2_char)
322 return make_number (- i1 + XINT (start1) - 1);
324 return Qt;
327 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
328 doc: /* Return t if first arg string is less than second in lexicographic order.
329 Case is significant.
330 Symbols are also allowed; their print names are used instead. */)
331 (register Lisp_Object s1, Lisp_Object s2)
333 register EMACS_INT end;
334 register EMACS_INT i1, i1_byte, i2, i2_byte;
336 if (SYMBOLP (s1))
337 s1 = SYMBOL_NAME (s1);
338 if (SYMBOLP (s2))
339 s2 = SYMBOL_NAME (s2);
340 CHECK_STRING (s1);
341 CHECK_STRING (s2);
343 i1 = i1_byte = i2 = i2_byte = 0;
345 end = SCHARS (s1);
346 if (end > SCHARS (s2))
347 end = SCHARS (s2);
349 while (i1 < end)
351 /* When we find a mismatch, we must compare the
352 characters, not just the bytes. */
353 int c1, c2;
355 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
356 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
358 if (c1 != c2)
359 return c1 < c2 ? Qt : Qnil;
361 return i1 < SCHARS (s2) ? Qt : Qnil;
364 static Lisp_Object concat (int nargs, Lisp_Object *args,
365 enum Lisp_Type target_type, int last_special);
367 /* ARGSUSED */
368 Lisp_Object
369 concat2 (Lisp_Object s1, Lisp_Object s2)
371 Lisp_Object args[2];
372 args[0] = s1;
373 args[1] = s2;
374 return concat (2, args, Lisp_String, 0);
377 /* ARGSUSED */
378 Lisp_Object
379 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
381 Lisp_Object args[3];
382 args[0] = s1;
383 args[1] = s2;
384 args[2] = s3;
385 return concat (3, args, Lisp_String, 0);
388 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
389 doc: /* Concatenate all the arguments and make the result a list.
390 The result is a list whose elements are the elements of all the arguments.
391 Each argument may be a list, vector or string.
392 The last argument is not copied, just used as the tail of the new list.
393 usage: (append &rest SEQUENCES) */)
394 (int nargs, Lisp_Object *args)
396 return concat (nargs, args, Lisp_Cons, 1);
399 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
400 doc: /* Concatenate all the arguments and make the result a string.
401 The result is a string whose elements are the elements of all the arguments.
402 Each argument may be a string or a list or vector of characters (integers).
403 usage: (concat &rest SEQUENCES) */)
404 (int nargs, Lisp_Object *args)
406 return concat (nargs, args, Lisp_String, 0);
409 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
410 doc: /* Concatenate all the arguments and make the result a vector.
411 The result is a vector whose elements are the elements of all the arguments.
412 Each argument may be a list, vector or string.
413 usage: (vconcat &rest SEQUENCES) */)
414 (int nargs, Lisp_Object *args)
416 return concat (nargs, args, Lisp_Vectorlike, 0);
420 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
421 doc: /* Return a copy of a list, vector, string or char-table.
422 The elements of a list or vector are not copied; they are shared
423 with the original. */)
424 (Lisp_Object arg)
426 if (NILP (arg)) return arg;
428 if (CHAR_TABLE_P (arg))
430 return copy_char_table (arg);
433 if (BOOL_VECTOR_P (arg))
435 Lisp_Object val;
436 int size_in_chars
437 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
438 / BOOL_VECTOR_BITS_PER_CHAR);
440 val = Fmake_bool_vector (Flength (arg), Qnil);
441 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
442 size_in_chars);
443 return val;
446 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
447 wrong_type_argument (Qsequencep, arg);
449 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
452 /* This structure holds information of an argument of `concat' that is
453 a string and has text properties to be copied. */
454 struct textprop_rec
456 int argnum; /* refer to ARGS (arguments of `concat') */
457 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
458 EMACS_INT to; /* refer to VAL (the target string) */
461 static Lisp_Object
462 concat (int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)
464 Lisp_Object val;
465 register Lisp_Object tail;
466 register Lisp_Object this;
467 EMACS_INT toindex;
468 EMACS_INT toindex_byte = 0;
469 register EMACS_INT result_len;
470 register EMACS_INT result_len_byte;
471 register int argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 int some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatinating each string because the length of resulting
477 string can't be decided until we finish the whole concatination.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatination. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 int num_textprops = 0;
483 USE_SAFE_ALLOCA;
485 tail = Qnil;
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
490 nargs--;
491 last_tail = args[nargs];
493 else
494 last_tail = Qnil;
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 EMACS_INT i;
522 Lisp_Object ch;
523 EMACS_INT this_len_byte;
525 if (VECTORP (this))
526 for (i = 0; i < len; i++)
528 ch = AREF (this, i);
529 CHECK_CHARACTER (ch);
530 this_len_byte = CHAR_BYTES (XINT (ch));
531 result_len_byte += this_len_byte;
532 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
533 some_multibyte = 1;
535 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
536 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
537 else if (CONSP (this))
538 for (; CONSP (this); this = XCDR (this))
540 ch = XCAR (this);
541 CHECK_CHARACTER (ch);
542 this_len_byte = CHAR_BYTES (XINT (ch));
543 result_len_byte += this_len_byte;
544 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
545 some_multibyte = 1;
547 else if (STRINGP (this))
549 if (STRING_MULTIBYTE (this))
551 some_multibyte = 1;
552 result_len_byte += SBYTES (this);
554 else
555 result_len_byte += count_size_as_multibyte (SDATA (this),
556 SCHARS (this));
560 result_len += len;
561 if (result_len < 0)
562 error ("String overflow");
565 if (! some_multibyte)
566 result_len_byte = result_len;
568 /* Create the output object. */
569 if (target_type == Lisp_Cons)
570 val = Fmake_list (make_number (result_len), Qnil);
571 else if (target_type == Lisp_Vectorlike)
572 val = Fmake_vector (make_number (result_len), Qnil);
573 else if (some_multibyte)
574 val = make_uninit_multibyte_string (result_len, result_len_byte);
575 else
576 val = make_uninit_string (result_len);
578 /* In `append', if all but last arg are nil, return last arg. */
579 if (target_type == Lisp_Cons && EQ (val, Qnil))
580 return last_tail;
582 /* Copy the contents of the args into the result. */
583 if (CONSP (val))
584 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
585 else
586 toindex = 0, toindex_byte = 0;
588 prev = Qnil;
589 if (STRINGP (val))
590 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
592 for (argnum = 0; argnum < nargs; argnum++)
594 Lisp_Object thislen;
595 EMACS_INT thisleni = 0;
596 register EMACS_INT thisindex = 0;
597 register EMACS_INT thisindex_byte = 0;
599 this = args[argnum];
600 if (!CONSP (this))
601 thislen = Flength (this), thisleni = XINT (thislen);
603 /* Between strings of the same kind, copy fast. */
604 if (STRINGP (this) && STRINGP (val)
605 && STRING_MULTIBYTE (this) == some_multibyte)
607 EMACS_INT thislen_byte = SBYTES (this);
609 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
610 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
612 textprops[num_textprops].argnum = argnum;
613 textprops[num_textprops].from = 0;
614 textprops[num_textprops++].to = toindex;
616 toindex_byte += thislen_byte;
617 toindex += thisleni;
619 /* Copy a single-byte string to a multibyte string. */
620 else if (STRINGP (this) && STRINGP (val))
622 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
624 textprops[num_textprops].argnum = argnum;
625 textprops[num_textprops].from = 0;
626 textprops[num_textprops++].to = toindex;
628 toindex_byte += copy_text (SDATA (this),
629 SDATA (val) + toindex_byte,
630 SCHARS (this), 0, 1);
631 toindex += thisleni;
633 else
634 /* Copy element by element. */
635 while (1)
637 register Lisp_Object elt;
639 /* Fetch next element of `this' arg into `elt', or break if
640 `this' is exhausted. */
641 if (NILP (this)) break;
642 if (CONSP (this))
643 elt = XCAR (this), this = XCDR (this);
644 else if (thisindex >= thisleni)
645 break;
646 else if (STRINGP (this))
648 int c;
649 if (STRING_MULTIBYTE (this))
651 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
652 thisindex,
653 thisindex_byte);
654 XSETFASTINT (elt, c);
656 else
658 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
659 if (some_multibyte
660 && !ASCII_CHAR_P (XINT (elt))
661 && XINT (elt) < 0400)
663 c = BYTE8_TO_CHAR (XINT (elt));
664 XSETINT (elt, c);
668 else if (BOOL_VECTOR_P (this))
670 int byte;
671 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
672 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
673 elt = Qt;
674 else
675 elt = Qnil;
676 thisindex++;
678 else
680 elt = AREF (this, thisindex);
681 thisindex++;
684 /* Store this element into the result. */
685 if (toindex < 0)
687 XSETCAR (tail, elt);
688 prev = tail;
689 tail = XCDR (tail);
691 else if (VECTORP (val))
693 ASET (val, toindex, elt);
694 toindex++;
696 else
698 CHECK_NUMBER (elt);
699 if (some_multibyte)
700 toindex_byte += CHAR_STRING (XINT (elt),
701 SDATA (val) + toindex_byte);
702 else
703 SSET (val, toindex_byte++, XINT (elt));
704 toindex++;
708 if (!NILP (prev))
709 XSETCDR (prev, last_tail);
711 if (num_textprops > 0)
713 Lisp_Object props;
714 EMACS_INT last_to_end = -1;
716 for (argnum = 0; argnum < num_textprops; argnum++)
718 this = args[textprops[argnum].argnum];
719 props = text_property_list (this,
720 make_number (0),
721 make_number (SCHARS (this)),
722 Qnil);
723 /* If successive arguments have properites, be sure that the
724 value of `composition' property be the copy. */
725 if (last_to_end == textprops[argnum].to)
726 make_composition_value_copy (props);
727 add_text_properties_from_list (val, props,
728 make_number (textprops[argnum].to));
729 last_to_end = textprops[argnum].to + SCHARS (this);
733 SAFE_FREE ();
734 return val;
737 static Lisp_Object string_char_byte_cache_string;
738 static EMACS_INT string_char_byte_cache_charpos;
739 static EMACS_INT string_char_byte_cache_bytepos;
741 void
742 clear_string_char_byte_cache (void)
744 string_char_byte_cache_string = Qnil;
747 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
749 EMACS_INT
750 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
752 EMACS_INT i_byte;
753 EMACS_INT best_below, best_below_byte;
754 EMACS_INT best_above, best_above_byte;
756 best_below = best_below_byte = 0;
757 best_above = SCHARS (string);
758 best_above_byte = SBYTES (string);
759 if (best_above == best_above_byte)
760 return char_index;
762 if (EQ (string, string_char_byte_cache_string))
764 if (string_char_byte_cache_charpos < char_index)
766 best_below = string_char_byte_cache_charpos;
767 best_below_byte = string_char_byte_cache_bytepos;
769 else
771 best_above = string_char_byte_cache_charpos;
772 best_above_byte = string_char_byte_cache_bytepos;
776 if (char_index - best_below < best_above - char_index)
778 unsigned char *p = SDATA (string) + best_below_byte;
780 while (best_below < char_index)
782 p += BYTES_BY_CHAR_HEAD (*p);
783 best_below++;
785 i_byte = p - SDATA (string);
787 else
789 unsigned char *p = SDATA (string) + best_above_byte;
791 while (best_above > char_index)
793 p--;
794 while (!CHAR_HEAD_P (*p)) p--;
795 best_above--;
797 i_byte = p - SDATA (string);
800 string_char_byte_cache_bytepos = i_byte;
801 string_char_byte_cache_charpos = char_index;
802 string_char_byte_cache_string = string;
804 return i_byte;
807 /* Return the character index corresponding to BYTE_INDEX in STRING. */
809 EMACS_INT
810 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
812 EMACS_INT i, i_byte;
813 EMACS_INT best_below, best_below_byte;
814 EMACS_INT best_above, best_above_byte;
816 best_below = best_below_byte = 0;
817 best_above = SCHARS (string);
818 best_above_byte = SBYTES (string);
819 if (best_above == best_above_byte)
820 return byte_index;
822 if (EQ (string, string_char_byte_cache_string))
824 if (string_char_byte_cache_bytepos < byte_index)
826 best_below = string_char_byte_cache_charpos;
827 best_below_byte = string_char_byte_cache_bytepos;
829 else
831 best_above = string_char_byte_cache_charpos;
832 best_above_byte = string_char_byte_cache_bytepos;
836 if (byte_index - best_below_byte < best_above_byte - byte_index)
838 unsigned char *p = SDATA (string) + best_below_byte;
839 unsigned char *pend = SDATA (string) + byte_index;
841 while (p < pend)
843 p += BYTES_BY_CHAR_HEAD (*p);
844 best_below++;
846 i = best_below;
847 i_byte = p - SDATA (string);
849 else
851 unsigned char *p = SDATA (string) + best_above_byte;
852 unsigned char *pbeg = SDATA (string) + byte_index;
854 while (p > pbeg)
856 p--;
857 while (!CHAR_HEAD_P (*p)) p--;
858 best_above--;
860 i = best_above;
861 i_byte = p - SDATA (string);
864 string_char_byte_cache_bytepos = i_byte;
865 string_char_byte_cache_charpos = i;
866 string_char_byte_cache_string = string;
868 return i;
871 /* Convert STRING to a multibyte string. */
873 static Lisp_Object
874 string_make_multibyte (Lisp_Object string)
876 unsigned char *buf;
877 EMACS_INT nbytes;
878 Lisp_Object ret;
879 USE_SAFE_ALLOCA;
881 if (STRING_MULTIBYTE (string))
882 return string;
884 nbytes = count_size_as_multibyte (SDATA (string),
885 SCHARS (string));
886 /* If all the chars are ASCII, they won't need any more bytes
887 once converted. In that case, we can return STRING itself. */
888 if (nbytes == SBYTES (string))
889 return string;
891 SAFE_ALLOCA (buf, unsigned char *, nbytes);
892 copy_text (SDATA (string), buf, SBYTES (string),
893 0, 1);
895 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
896 SAFE_FREE ();
898 return ret;
902 /* Convert STRING (if unibyte) to a multibyte string without changing
903 the number of characters. Characters 0200 trough 0237 are
904 converted to eight-bit characters. */
906 Lisp_Object
907 string_to_multibyte (Lisp_Object string)
909 unsigned char *buf;
910 EMACS_INT nbytes;
911 Lisp_Object ret;
912 USE_SAFE_ALLOCA;
914 if (STRING_MULTIBYTE (string))
915 return string;
917 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
918 /* If all the chars are ASCII, they won't need any more bytes once
919 converted. */
920 if (nbytes == SBYTES (string))
921 return make_multibyte_string (SDATA (string), nbytes, nbytes);
923 SAFE_ALLOCA (buf, unsigned char *, nbytes);
924 memcpy (buf, SDATA (string), SBYTES (string));
925 str_to_multibyte (buf, nbytes, SBYTES (string));
927 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
928 SAFE_FREE ();
930 return ret;
934 /* Convert STRING to a single-byte string. */
936 Lisp_Object
937 string_make_unibyte (Lisp_Object string)
939 EMACS_INT nchars;
940 unsigned char *buf;
941 Lisp_Object ret;
942 USE_SAFE_ALLOCA;
944 if (! STRING_MULTIBYTE (string))
945 return string;
947 nchars = SCHARS (string);
949 SAFE_ALLOCA (buf, unsigned char *, nchars);
950 copy_text (SDATA (string), buf, SBYTES (string),
951 1, 0);
953 ret = make_unibyte_string (buf, nchars);
954 SAFE_FREE ();
956 return ret;
959 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
960 1, 1, 0,
961 doc: /* Return the multibyte equivalent of STRING.
962 If STRING is unibyte and contains non-ASCII characters, the function
963 `unibyte-char-to-multibyte' is used to convert each unibyte character
964 to a multibyte character. In this case, the returned string is a
965 newly created string with no text properties. If STRING is multibyte
966 or entirely ASCII, it is returned unchanged. In particular, when
967 STRING is unibyte and entirely ASCII, the returned string is unibyte.
968 \(When the characters are all ASCII, Emacs primitives will treat the
969 string the same way whether it is unibyte or multibyte.) */)
970 (Lisp_Object string)
972 CHECK_STRING (string);
974 return string_make_multibyte (string);
977 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
978 1, 1, 0,
979 doc: /* Return the unibyte equivalent of STRING.
980 Multibyte character codes are converted to unibyte according to
981 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
982 If the lookup in the translation table fails, this function takes just
983 the low 8 bits of each character. */)
984 (Lisp_Object string)
986 CHECK_STRING (string);
988 return string_make_unibyte (string);
991 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
992 1, 1, 0,
993 doc: /* Return a unibyte string with the same individual bytes as STRING.
994 If STRING is unibyte, the result is STRING itself.
995 Otherwise it is a newly created string, with no text properties.
996 If STRING is multibyte and contains a character of charset
997 `eight-bit', it is converted to the corresponding single byte. */)
998 (Lisp_Object string)
1000 CHECK_STRING (string);
1002 if (STRING_MULTIBYTE (string))
1004 EMACS_INT bytes = SBYTES (string);
1005 unsigned char *str = (unsigned char *) xmalloc (bytes);
1007 memcpy (str, SDATA (string), bytes);
1008 bytes = str_as_unibyte (str, bytes);
1009 string = make_unibyte_string (str, bytes);
1010 xfree (str);
1012 return string;
1015 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1016 1, 1, 0,
1017 doc: /* Return a multibyte string with the same individual bytes as STRING.
1018 If STRING is multibyte, the result is STRING itself.
1019 Otherwise it is a newly created string, with no text properties.
1021 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1022 part of a correct utf-8 sequence), it is converted to the corresponding
1023 multibyte character of charset `eight-bit'.
1024 See also `string-to-multibyte'.
1026 Beware, this often doesn't really do what you think it does.
1027 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1028 If you're not sure, whether to use `string-as-multibyte' or
1029 `string-to-multibyte', use `string-to-multibyte'. */)
1030 (Lisp_Object string)
1032 CHECK_STRING (string);
1034 if (! STRING_MULTIBYTE (string))
1036 Lisp_Object new_string;
1037 EMACS_INT nchars, nbytes;
1039 parse_str_as_multibyte (SDATA (string),
1040 SBYTES (string),
1041 &nchars, &nbytes);
1042 new_string = make_uninit_multibyte_string (nchars, nbytes);
1043 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1044 if (nbytes != SBYTES (string))
1045 str_as_multibyte (SDATA (new_string), nbytes,
1046 SBYTES (string), NULL);
1047 string = new_string;
1048 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1050 return string;
1053 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1054 1, 1, 0,
1055 doc: /* Return a multibyte string with the same individual chars as STRING.
1056 If STRING is multibyte, the result is STRING itself.
1057 Otherwise it is a newly created string, with no text properties.
1059 If STRING is unibyte and contains an 8-bit byte, it is converted to
1060 the corresponding multibyte character of charset `eight-bit'.
1062 This differs from `string-as-multibyte' by converting each byte of a correct
1063 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1064 correct sequence. */)
1065 (Lisp_Object string)
1067 CHECK_STRING (string);
1069 return string_to_multibyte (string);
1072 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1073 1, 1, 0,
1074 doc: /* Return a unibyte string with the same individual chars as STRING.
1075 If STRING is unibyte, the result is STRING itself.
1076 Otherwise it is a newly created string, with no text properties,
1077 where each `eight-bit' character is converted to the corresponding byte.
1078 If STRING contains a non-ASCII, non-`eight-bit' character,
1079 an error is signaled. */)
1080 (Lisp_Object string)
1082 CHECK_STRING (string);
1084 if (STRING_MULTIBYTE (string))
1086 EMACS_INT chars = SCHARS (string);
1087 unsigned char *str = (unsigned char *) xmalloc (chars);
1088 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1090 if (converted < chars)
1091 error ("Can't convert the %dth character to unibyte", converted);
1092 string = make_unibyte_string (str, chars);
1093 xfree (str);
1095 return string;
1099 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1100 doc: /* Return a copy of ALIST.
1101 This is an alist which represents the same mapping from objects to objects,
1102 but does not share the alist structure with ALIST.
1103 The objects mapped (cars and cdrs of elements of the alist)
1104 are shared, however.
1105 Elements of ALIST that are not conses are also shared. */)
1106 (Lisp_Object alist)
1108 register Lisp_Object tem;
1110 CHECK_LIST (alist);
1111 if (NILP (alist))
1112 return alist;
1113 alist = concat (1, &alist, Lisp_Cons, 0);
1114 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1116 register Lisp_Object car;
1117 car = XCAR (tem);
1119 if (CONSP (car))
1120 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1122 return alist;
1125 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1126 doc: /* Return a new string whose contents are a substring of STRING.
1127 The returned string consists of the characters between index FROM
1128 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1129 zero-indexed: 0 means the first character of STRING. Negative values
1130 are counted from the end of STRING. If TO is nil, the substring runs
1131 to the end of STRING.
1133 The STRING argument may also be a vector. In that case, the return
1134 value is a new vector that contains the elements between index FROM
1135 \(inclusive) and index TO (exclusive) of that vector argument. */)
1136 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1138 Lisp_Object res;
1139 EMACS_INT size;
1140 EMACS_INT size_byte = 0;
1141 EMACS_INT from_char, to_char;
1142 EMACS_INT from_byte = 0, to_byte = 0;
1144 CHECK_VECTOR_OR_STRING (string);
1145 CHECK_NUMBER (from);
1147 if (STRINGP (string))
1149 size = SCHARS (string);
1150 size_byte = SBYTES (string);
1152 else
1153 size = ASIZE (string);
1155 if (NILP (to))
1157 to_char = size;
1158 to_byte = size_byte;
1160 else
1162 CHECK_NUMBER (to);
1164 to_char = XINT (to);
1165 if (to_char < 0)
1166 to_char += size;
1168 if (STRINGP (string))
1169 to_byte = string_char_to_byte (string, to_char);
1172 from_char = XINT (from);
1173 if (from_char < 0)
1174 from_char += size;
1175 if (STRINGP (string))
1176 from_byte = string_char_to_byte (string, from_char);
1178 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1179 args_out_of_range_3 (string, make_number (from_char),
1180 make_number (to_char));
1182 if (STRINGP (string))
1184 res = make_specified_string (SDATA (string) + from_byte,
1185 to_char - from_char, to_byte - from_byte,
1186 STRING_MULTIBYTE (string));
1187 copy_text_properties (make_number (from_char), make_number (to_char),
1188 string, make_number (0), res, Qnil);
1190 else
1191 res = Fvector (to_char - from_char, &AREF (string, from_char));
1193 return res;
1197 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1198 doc: /* Return a substring of STRING, without text properties.
1199 It starts at index FROM and ends before TO.
1200 TO may be nil or omitted; then the substring runs to the end of STRING.
1201 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1202 If FROM or TO is negative, it counts from the end.
1204 With one argument, just copy STRING without its properties. */)
1205 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1207 EMACS_INT size, size_byte;
1208 EMACS_INT from_char, to_char;
1209 EMACS_INT from_byte, to_byte;
1211 CHECK_STRING (string);
1213 size = SCHARS (string);
1214 size_byte = SBYTES (string);
1216 if (NILP (from))
1217 from_char = from_byte = 0;
1218 else
1220 CHECK_NUMBER (from);
1221 from_char = XINT (from);
1222 if (from_char < 0)
1223 from_char += size;
1225 from_byte = string_char_to_byte (string, from_char);
1228 if (NILP (to))
1230 to_char = size;
1231 to_byte = size_byte;
1233 else
1235 CHECK_NUMBER (to);
1237 to_char = XINT (to);
1238 if (to_char < 0)
1239 to_char += size;
1241 to_byte = string_char_to_byte (string, to_char);
1244 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1245 args_out_of_range_3 (string, make_number (from_char),
1246 make_number (to_char));
1248 return make_specified_string (SDATA (string) + from_byte,
1249 to_char - from_char, to_byte - from_byte,
1250 STRING_MULTIBYTE (string));
1253 /* Extract a substring of STRING, giving start and end positions
1254 both in characters and in bytes. */
1256 Lisp_Object
1257 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1258 EMACS_INT to, EMACS_INT to_byte)
1260 Lisp_Object res;
1261 EMACS_INT size;
1262 EMACS_INT size_byte;
1264 CHECK_VECTOR_OR_STRING (string);
1266 if (STRINGP (string))
1268 size = SCHARS (string);
1269 size_byte = SBYTES (string);
1271 else
1272 size = ASIZE (string);
1274 if (!(0 <= from && from <= to && to <= size))
1275 args_out_of_range_3 (string, make_number (from), make_number (to));
1277 if (STRINGP (string))
1279 res = make_specified_string (SDATA (string) + from_byte,
1280 to - from, to_byte - from_byte,
1281 STRING_MULTIBYTE (string));
1282 copy_text_properties (make_number (from), make_number (to),
1283 string, make_number (0), res, Qnil);
1285 else
1286 res = Fvector (to - from, &AREF (string, from));
1288 return res;
1291 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1292 doc: /* Take cdr N times on LIST, return the result. */)
1293 (Lisp_Object n, Lisp_Object list)
1295 register int i, num;
1296 CHECK_NUMBER (n);
1297 num = XINT (n);
1298 for (i = 0; i < num && !NILP (list); i++)
1300 QUIT;
1301 CHECK_LIST_CONS (list, list);
1302 list = XCDR (list);
1304 return list;
1307 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1308 doc: /* Return the Nth element of LIST.
1309 N counts from zero. If LIST is not that long, nil is returned. */)
1310 (Lisp_Object n, Lisp_Object list)
1312 return Fcar (Fnthcdr (n, list));
1315 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1316 doc: /* Return element of SEQUENCE at index N. */)
1317 (register Lisp_Object sequence, Lisp_Object n)
1319 CHECK_NUMBER (n);
1320 if (CONSP (sequence) || NILP (sequence))
1321 return Fcar (Fnthcdr (n, sequence));
1323 /* Faref signals a "not array" error, so check here. */
1324 CHECK_ARRAY (sequence, Qsequencep);
1325 return Faref (sequence, n);
1328 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1329 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1330 The value is actually the tail of LIST whose car is ELT. */)
1331 (register Lisp_Object elt, Lisp_Object list)
1333 register Lisp_Object tail;
1334 for (tail = list; CONSP (tail); tail = XCDR (tail))
1336 register Lisp_Object tem;
1337 CHECK_LIST_CONS (tail, list);
1338 tem = XCAR (tail);
1339 if (! NILP (Fequal (elt, tem)))
1340 return tail;
1341 QUIT;
1343 return Qnil;
1346 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1347 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1348 The value is actually the tail of LIST whose car is ELT. */)
1349 (register Lisp_Object elt, Lisp_Object list)
1351 while (1)
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1356 list = XCDR (list);
1357 if (!CONSP (list) || EQ (XCAR (list), elt))
1358 break;
1360 list = XCDR (list);
1361 if (!CONSP (list) || EQ (XCAR (list), elt))
1362 break;
1364 list = XCDR (list);
1365 QUIT;
1368 CHECK_LIST (list);
1369 return list;
1372 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1373 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1374 The value is actually the tail of LIST whose car is ELT. */)
1375 (register Lisp_Object elt, Lisp_Object list)
1377 register Lisp_Object tail;
1379 if (!FLOATP (elt))
1380 return Fmemq (elt, list);
1382 for (tail = list; CONSP (tail); tail = XCDR (tail))
1384 register Lisp_Object tem;
1385 CHECK_LIST_CONS (tail, list);
1386 tem = XCAR (tail);
1387 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1388 return tail;
1389 QUIT;
1391 return Qnil;
1394 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1395 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1396 The value is actually the first element of LIST whose car is KEY.
1397 Elements of LIST that are not conses are ignored. */)
1398 (Lisp_Object key, Lisp_Object list)
1400 while (1)
1402 if (!CONSP (list)
1403 || (CONSP (XCAR (list))
1404 && EQ (XCAR (XCAR (list)), key)))
1405 break;
1407 list = XCDR (list);
1408 if (!CONSP (list)
1409 || (CONSP (XCAR (list))
1410 && EQ (XCAR (XCAR (list)), key)))
1411 break;
1413 list = XCDR (list);
1414 if (!CONSP (list)
1415 || (CONSP (XCAR (list))
1416 && EQ (XCAR (XCAR (list)), key)))
1417 break;
1419 list = XCDR (list);
1420 QUIT;
1423 return CAR (list);
1426 /* Like Fassq but never report an error and do not allow quits.
1427 Use only on lists known never to be circular. */
1429 Lisp_Object
1430 assq_no_quit (Lisp_Object key, Lisp_Object list)
1432 while (CONSP (list)
1433 && (!CONSP (XCAR (list))
1434 || !EQ (XCAR (XCAR (list)), key)))
1435 list = XCDR (list);
1437 return CAR_SAFE (list);
1440 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1441 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1442 The value is actually the first element of LIST whose car equals KEY. */)
1443 (Lisp_Object key, Lisp_Object list)
1445 Lisp_Object car;
1447 while (1)
1449 if (!CONSP (list)
1450 || (CONSP (XCAR (list))
1451 && (car = XCAR (XCAR (list)),
1452 EQ (car, key) || !NILP (Fequal (car, key)))))
1453 break;
1455 list = XCDR (list);
1456 if (!CONSP (list)
1457 || (CONSP (XCAR (list))
1458 && (car = XCAR (XCAR (list)),
1459 EQ (car, key) || !NILP (Fequal (car, key)))))
1460 break;
1462 list = XCDR (list);
1463 if (!CONSP (list)
1464 || (CONSP (XCAR (list))
1465 && (car = XCAR (XCAR (list)),
1466 EQ (car, key) || !NILP (Fequal (car, key)))))
1467 break;
1469 list = XCDR (list);
1470 QUIT;
1473 return CAR (list);
1476 /* Like Fassoc but never report an error and do not allow quits.
1477 Use only on lists known never to be circular. */
1479 Lisp_Object
1480 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1482 while (CONSP (list)
1483 && (!CONSP (XCAR (list))
1484 || (!EQ (XCAR (XCAR (list)), key)
1485 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1486 list = XCDR (list);
1488 return CONSP (list) ? XCAR (list) : Qnil;
1491 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1492 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1493 The value is actually the first element of LIST whose cdr is KEY. */)
1494 (register Lisp_Object key, Lisp_Object list)
1496 while (1)
1498 if (!CONSP (list)
1499 || (CONSP (XCAR (list))
1500 && EQ (XCDR (XCAR (list)), key)))
1501 break;
1503 list = XCDR (list);
1504 if (!CONSP (list)
1505 || (CONSP (XCAR (list))
1506 && EQ (XCDR (XCAR (list)), key)))
1507 break;
1509 list = XCDR (list);
1510 if (!CONSP (list)
1511 || (CONSP (XCAR (list))
1512 && EQ (XCDR (XCAR (list)), key)))
1513 break;
1515 list = XCDR (list);
1516 QUIT;
1519 return CAR (list);
1522 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1523 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1524 The value is actually the first element of LIST whose cdr equals KEY. */)
1525 (Lisp_Object key, Lisp_Object list)
1527 Lisp_Object cdr;
1529 while (1)
1531 if (!CONSP (list)
1532 || (CONSP (XCAR (list))
1533 && (cdr = XCDR (XCAR (list)),
1534 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1535 break;
1537 list = XCDR (list);
1538 if (!CONSP (list)
1539 || (CONSP (XCAR (list))
1540 && (cdr = XCDR (XCAR (list)),
1541 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1542 break;
1544 list = XCDR (list);
1545 if (!CONSP (list)
1546 || (CONSP (XCAR (list))
1547 && (cdr = XCDR (XCAR (list)),
1548 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1549 break;
1551 list = XCDR (list);
1552 QUIT;
1555 return CAR (list);
1558 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1559 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1560 The modified LIST is returned. Comparison is done with `eq'.
1561 If the first member of LIST is ELT, there is no way to remove it by side effect;
1562 therefore, write `(setq foo (delq element foo))'
1563 to be sure of changing the value of `foo'. */)
1564 (register Lisp_Object elt, Lisp_Object list)
1566 register Lisp_Object tail, prev;
1567 register Lisp_Object tem;
1569 tail = list;
1570 prev = Qnil;
1571 while (!NILP (tail))
1573 CHECK_LIST_CONS (tail, list);
1574 tem = XCAR (tail);
1575 if (EQ (elt, tem))
1577 if (NILP (prev))
1578 list = XCDR (tail);
1579 else
1580 Fsetcdr (prev, XCDR (tail));
1582 else
1583 prev = tail;
1584 tail = XCDR (tail);
1585 QUIT;
1587 return list;
1590 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1591 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1592 SEQ must be a list, a vector, or a string.
1593 The modified SEQ is returned. Comparison is done with `equal'.
1594 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1595 is not a side effect; it is simply using a different sequence.
1596 Therefore, write `(setq foo (delete element foo))'
1597 to be sure of changing the value of `foo'. */)
1598 (Lisp_Object elt, Lisp_Object seq)
1600 if (VECTORP (seq))
1602 EMACS_INT i, n;
1604 for (i = n = 0; i < ASIZE (seq); ++i)
1605 if (NILP (Fequal (AREF (seq, i), elt)))
1606 ++n;
1608 if (n != ASIZE (seq))
1610 struct Lisp_Vector *p = allocate_vector (n);
1612 for (i = n = 0; i < ASIZE (seq); ++i)
1613 if (NILP (Fequal (AREF (seq, i), elt)))
1614 p->contents[n++] = AREF (seq, i);
1616 XSETVECTOR (seq, p);
1619 else if (STRINGP (seq))
1621 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1622 int c;
1624 for (i = nchars = nbytes = ibyte = 0;
1625 i < SCHARS (seq);
1626 ++i, ibyte += cbytes)
1628 if (STRING_MULTIBYTE (seq))
1630 c = STRING_CHAR (SDATA (seq) + ibyte);
1631 cbytes = CHAR_BYTES (c);
1633 else
1635 c = SREF (seq, i);
1636 cbytes = 1;
1639 if (!INTEGERP (elt) || c != XINT (elt))
1641 ++nchars;
1642 nbytes += cbytes;
1646 if (nchars != SCHARS (seq))
1648 Lisp_Object tem;
1650 tem = make_uninit_multibyte_string (nchars, nbytes);
1651 if (!STRING_MULTIBYTE (seq))
1652 STRING_SET_UNIBYTE (tem);
1654 for (i = nchars = nbytes = ibyte = 0;
1655 i < SCHARS (seq);
1656 ++i, ibyte += cbytes)
1658 if (STRING_MULTIBYTE (seq))
1660 c = STRING_CHAR (SDATA (seq) + ibyte);
1661 cbytes = CHAR_BYTES (c);
1663 else
1665 c = SREF (seq, i);
1666 cbytes = 1;
1669 if (!INTEGERP (elt) || c != XINT (elt))
1671 unsigned char *from = SDATA (seq) + ibyte;
1672 unsigned char *to = SDATA (tem) + nbytes;
1673 EMACS_INT n;
1675 ++nchars;
1676 nbytes += cbytes;
1678 for (n = cbytes; n--; )
1679 *to++ = *from++;
1683 seq = tem;
1686 else
1688 Lisp_Object tail, prev;
1690 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1692 CHECK_LIST_CONS (tail, seq);
1694 if (!NILP (Fequal (elt, XCAR (tail))))
1696 if (NILP (prev))
1697 seq = XCDR (tail);
1698 else
1699 Fsetcdr (prev, XCDR (tail));
1701 else
1702 prev = tail;
1703 QUIT;
1707 return seq;
1710 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1711 doc: /* Reverse LIST by modifying cdr pointers.
1712 Return the reversed list. */)
1713 (Lisp_Object list)
1715 register Lisp_Object prev, tail, next;
1717 if (NILP (list)) return list;
1718 prev = Qnil;
1719 tail = list;
1720 while (!NILP (tail))
1722 QUIT;
1723 CHECK_LIST_CONS (tail, list);
1724 next = XCDR (tail);
1725 Fsetcdr (tail, prev);
1726 prev = tail;
1727 tail = next;
1729 return prev;
1732 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1733 doc: /* Reverse LIST, copying. Return the reversed list.
1734 See also the function `nreverse', which is used more often. */)
1735 (Lisp_Object list)
1737 Lisp_Object new;
1739 for (new = Qnil; CONSP (list); list = XCDR (list))
1741 QUIT;
1742 new = Fcons (XCAR (list), new);
1744 CHECK_LIST_END (list, list);
1745 return new;
1748 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1750 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1751 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1752 Returns the sorted list. LIST is modified by side effects.
1753 PREDICATE is called with two elements of LIST, and should return non-nil
1754 if the first element should sort before the second. */)
1755 (Lisp_Object list, Lisp_Object predicate)
1757 Lisp_Object front, back;
1758 register Lisp_Object len, tem;
1759 struct gcpro gcpro1, gcpro2;
1760 register int length;
1762 front = list;
1763 len = Flength (list);
1764 length = XINT (len);
1765 if (length < 2)
1766 return list;
1768 XSETINT (len, (length / 2) - 1);
1769 tem = Fnthcdr (len, list);
1770 back = Fcdr (tem);
1771 Fsetcdr (tem, Qnil);
1773 GCPRO2 (front, back);
1774 front = Fsort (front, predicate);
1775 back = Fsort (back, predicate);
1776 UNGCPRO;
1777 return merge (front, back, predicate);
1780 Lisp_Object
1781 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1783 Lisp_Object value;
1784 register Lisp_Object tail;
1785 Lisp_Object tem;
1786 register Lisp_Object l1, l2;
1787 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1789 l1 = org_l1;
1790 l2 = org_l2;
1791 tail = Qnil;
1792 value = Qnil;
1794 /* It is sufficient to protect org_l1 and org_l2.
1795 When l1 and l2 are updated, we copy the new values
1796 back into the org_ vars. */
1797 GCPRO4 (org_l1, org_l2, pred, value);
1799 while (1)
1801 if (NILP (l1))
1803 UNGCPRO;
1804 if (NILP (tail))
1805 return l2;
1806 Fsetcdr (tail, l2);
1807 return value;
1809 if (NILP (l2))
1811 UNGCPRO;
1812 if (NILP (tail))
1813 return l1;
1814 Fsetcdr (tail, l1);
1815 return value;
1817 tem = call2 (pred, Fcar (l2), Fcar (l1));
1818 if (NILP (tem))
1820 tem = l1;
1821 l1 = Fcdr (l1);
1822 org_l1 = l1;
1824 else
1826 tem = l2;
1827 l2 = Fcdr (l2);
1828 org_l2 = l2;
1830 if (NILP (tail))
1831 value = tem;
1832 else
1833 Fsetcdr (tail, tem);
1834 tail = tem;
1839 /* This does not check for quits. That is safe since it must terminate. */
1841 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1842 doc: /* Extract a value from a property list.
1843 PLIST is a property list, which is a list of the form
1844 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1845 corresponding to the given PROP, or nil if PROP is not one of the
1846 properties on the list. This function never signals an error. */)
1847 (Lisp_Object plist, Lisp_Object prop)
1849 Lisp_Object tail, halftail;
1851 /* halftail is used to detect circular lists. */
1852 tail = halftail = plist;
1853 while (CONSP (tail) && CONSP (XCDR (tail)))
1855 if (EQ (prop, XCAR (tail)))
1856 return XCAR (XCDR (tail));
1858 tail = XCDR (XCDR (tail));
1859 halftail = XCDR (halftail);
1860 if (EQ (tail, halftail))
1861 break;
1863 #if 0 /* Unsafe version. */
1864 /* This function can be called asynchronously
1865 (setup_coding_system). Don't QUIT in that case. */
1866 if (!interrupt_input_blocked)
1867 QUIT;
1868 #endif
1871 return Qnil;
1874 DEFUN ("get", Fget, Sget, 2, 2, 0,
1875 doc: /* Return the value of SYMBOL's PROPNAME property.
1876 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1877 (Lisp_Object symbol, Lisp_Object propname)
1879 CHECK_SYMBOL (symbol);
1880 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1883 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1884 doc: /* Change value in PLIST of PROP to VAL.
1885 PLIST is a property list, which is a list of the form
1886 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1887 If PROP is already a property on the list, its value is set to VAL,
1888 otherwise the new PROP VAL pair is added. The new plist is returned;
1889 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1890 The PLIST is modified by side effects. */)
1891 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1893 register Lisp_Object tail, prev;
1894 Lisp_Object newcell;
1895 prev = Qnil;
1896 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1897 tail = XCDR (XCDR (tail)))
1899 if (EQ (prop, XCAR (tail)))
1901 Fsetcar (XCDR (tail), val);
1902 return plist;
1905 prev = tail;
1906 QUIT;
1908 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1909 if (NILP (prev))
1910 return newcell;
1911 else
1912 Fsetcdr (XCDR (prev), newcell);
1913 return plist;
1916 DEFUN ("put", Fput, Sput, 3, 3, 0,
1917 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1918 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1919 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1921 CHECK_SYMBOL (symbol);
1922 XSYMBOL (symbol)->plist
1923 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1924 return value;
1927 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1928 doc: /* Extract a value from a property list, comparing with `equal'.
1929 PLIST is a property list, which is a list of the form
1930 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1931 corresponding to the given PROP, or nil if PROP is not
1932 one of the properties on the list. */)
1933 (Lisp_Object plist, Lisp_Object prop)
1935 Lisp_Object tail;
1937 for (tail = plist;
1938 CONSP (tail) && CONSP (XCDR (tail));
1939 tail = XCDR (XCDR (tail)))
1941 if (! NILP (Fequal (prop, XCAR (tail))))
1942 return XCAR (XCDR (tail));
1944 QUIT;
1947 CHECK_LIST_END (tail, prop);
1949 return Qnil;
1952 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1953 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1954 PLIST is a property list, which is a list of the form
1955 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1956 If PROP is already a property on the list, its value is set to VAL,
1957 otherwise the new PROP VAL pair is added. The new plist is returned;
1958 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1959 The PLIST is modified by side effects. */)
1960 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1962 register Lisp_Object tail, prev;
1963 Lisp_Object newcell;
1964 prev = Qnil;
1965 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1966 tail = XCDR (XCDR (tail)))
1968 if (! NILP (Fequal (prop, XCAR (tail))))
1970 Fsetcar (XCDR (tail), val);
1971 return plist;
1974 prev = tail;
1975 QUIT;
1977 newcell = Fcons (prop, Fcons (val, Qnil));
1978 if (NILP (prev))
1979 return newcell;
1980 else
1981 Fsetcdr (XCDR (prev), newcell);
1982 return plist;
1985 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1986 doc: /* Return t if the two args are the same Lisp object.
1987 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1988 (Lisp_Object obj1, Lisp_Object obj2)
1990 if (FLOATP (obj1))
1991 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1992 else
1993 return EQ (obj1, obj2) ? Qt : Qnil;
1996 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1997 doc: /* Return t if two Lisp objects have similar structure and contents.
1998 They must have the same data type.
1999 Conses are compared by comparing the cars and the cdrs.
2000 Vectors and strings are compared element by element.
2001 Numbers are compared by value, but integers cannot equal floats.
2002 (Use `=' if you want integers and floats to be able to be equal.)
2003 Symbols must match exactly. */)
2004 (register Lisp_Object o1, Lisp_Object o2)
2006 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2009 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2010 doc: /* Return t if two Lisp objects have similar structure and contents.
2011 This is like `equal' except that it compares the text properties
2012 of strings. (`equal' ignores text properties.) */)
2013 (register Lisp_Object o1, Lisp_Object o2)
2015 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2018 /* DEPTH is current depth of recursion. Signal an error if it
2019 gets too deep.
2020 PROPS, if non-nil, means compare string text properties too. */
2022 static int
2023 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2025 if (depth > 200)
2026 error ("Stack overflow in equal");
2028 tail_recurse:
2029 QUIT;
2030 if (EQ (o1, o2))
2031 return 1;
2032 if (XTYPE (o1) != XTYPE (o2))
2033 return 0;
2035 switch (XTYPE (o1))
2037 case Lisp_Float:
2039 double d1, d2;
2041 d1 = extract_float (o1);
2042 d2 = extract_float (o2);
2043 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2044 though they are not =. */
2045 return d1 == d2 || (d1 != d1 && d2 != d2);
2048 case Lisp_Cons:
2049 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2050 return 0;
2051 o1 = XCDR (o1);
2052 o2 = XCDR (o2);
2053 goto tail_recurse;
2055 case Lisp_Misc:
2056 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2057 return 0;
2058 if (OVERLAYP (o1))
2060 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2061 depth + 1, props)
2062 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2063 depth + 1, props))
2064 return 0;
2065 o1 = XOVERLAY (o1)->plist;
2066 o2 = XOVERLAY (o2)->plist;
2067 goto tail_recurse;
2069 if (MARKERP (o1))
2071 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2072 && (XMARKER (o1)->buffer == 0
2073 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2075 break;
2077 case Lisp_Vectorlike:
2079 register int i;
2080 EMACS_INT size = ASIZE (o1);
2081 /* Pseudovectors have the type encoded in the size field, so this test
2082 actually checks that the objects have the same type as well as the
2083 same size. */
2084 if (ASIZE (o2) != size)
2085 return 0;
2086 /* Boolvectors are compared much like strings. */
2087 if (BOOL_VECTOR_P (o1))
2089 int size_in_chars
2090 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2091 / BOOL_VECTOR_BITS_PER_CHAR);
2093 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2094 return 0;
2095 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2096 size_in_chars))
2097 return 0;
2098 return 1;
2100 if (WINDOW_CONFIGURATIONP (o1))
2101 return compare_window_configurations (o1, o2, 0);
2103 /* Aside from them, only true vectors, char-tables, compiled
2104 functions, and fonts (font-spec, font-entity, font-ojbect)
2105 are sensible to compare, so eliminate the others now. */
2106 if (size & PSEUDOVECTOR_FLAG)
2108 if (!(size & (PVEC_COMPILED
2109 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2110 return 0;
2111 size &= PSEUDOVECTOR_SIZE_MASK;
2113 for (i = 0; i < size; i++)
2115 Lisp_Object v1, v2;
2116 v1 = AREF (o1, i);
2117 v2 = AREF (o2, i);
2118 if (!internal_equal (v1, v2, depth + 1, props))
2119 return 0;
2121 return 1;
2123 break;
2125 case Lisp_String:
2126 if (SCHARS (o1) != SCHARS (o2))
2127 return 0;
2128 if (SBYTES (o1) != SBYTES (o2))
2129 return 0;
2130 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2131 return 0;
2132 if (props && !compare_string_intervals (o1, o2))
2133 return 0;
2134 return 1;
2136 default:
2137 break;
2140 return 0;
2144 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2145 doc: /* Store each element of ARRAY with ITEM.
2146 ARRAY is a vector, string, char-table, or bool-vector. */)
2147 (Lisp_Object array, Lisp_Object item)
2149 register EMACS_INT size, index;
2150 int charval;
2152 if (VECTORP (array))
2154 register Lisp_Object *p = XVECTOR (array)->contents;
2155 size = ASIZE (array);
2156 for (index = 0; index < size; index++)
2157 p[index] = item;
2159 else if (CHAR_TABLE_P (array))
2161 int i;
2163 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2164 XCHAR_TABLE (array)->contents[i] = item;
2165 XCHAR_TABLE (array)->defalt = item;
2167 else if (STRINGP (array))
2169 register unsigned char *p = SDATA (array);
2170 CHECK_NUMBER (item);
2171 charval = XINT (item);
2172 size = SCHARS (array);
2173 if (STRING_MULTIBYTE (array))
2175 unsigned char str[MAX_MULTIBYTE_LENGTH];
2176 int len = CHAR_STRING (charval, str);
2177 EMACS_INT size_byte = SBYTES (array);
2178 unsigned char *p1 = p, *endp = p + size_byte;
2179 int i;
2181 if (size != size_byte)
2182 while (p1 < endp)
2184 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2185 if (len != this_len)
2186 error ("Attempt to change byte length of a string");
2187 p1 += this_len;
2189 for (i = 0; i < size_byte; i++)
2190 *p++ = str[i % len];
2192 else
2193 for (index = 0; index < size; index++)
2194 p[index] = charval;
2196 else if (BOOL_VECTOR_P (array))
2198 register unsigned char *p = XBOOL_VECTOR (array)->data;
2199 int size_in_chars
2200 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2201 / BOOL_VECTOR_BITS_PER_CHAR);
2203 charval = (! NILP (item) ? -1 : 0);
2204 for (index = 0; index < size_in_chars - 1; index++)
2205 p[index] = charval;
2206 if (index < size_in_chars)
2208 /* Mask out bits beyond the vector size. */
2209 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2210 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2211 p[index] = charval;
2214 else
2215 wrong_type_argument (Qarrayp, array);
2216 return array;
2219 DEFUN ("clear-string", Fclear_string, Sclear_string,
2220 1, 1, 0,
2221 doc: /* Clear the contents of STRING.
2222 This makes STRING unibyte and may change its length. */)
2223 (Lisp_Object string)
2225 EMACS_INT len;
2226 CHECK_STRING (string);
2227 len = SBYTES (string);
2228 memset (SDATA (string), 0, len);
2229 STRING_SET_CHARS (string, len);
2230 STRING_SET_UNIBYTE (string);
2231 return Qnil;
2234 /* ARGSUSED */
2235 Lisp_Object
2236 nconc2 (Lisp_Object s1, Lisp_Object s2)
2238 Lisp_Object args[2];
2239 args[0] = s1;
2240 args[1] = s2;
2241 return Fnconc (2, args);
2244 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2245 doc: /* Concatenate any number of lists by altering them.
2246 Only the last argument is not altered, and need not be a list.
2247 usage: (nconc &rest LISTS) */)
2248 (int nargs, Lisp_Object *args)
2250 register int argnum;
2251 register Lisp_Object tail, tem, val;
2253 val = tail = Qnil;
2255 for (argnum = 0; argnum < nargs; argnum++)
2257 tem = args[argnum];
2258 if (NILP (tem)) continue;
2260 if (NILP (val))
2261 val = tem;
2263 if (argnum + 1 == nargs) break;
2265 CHECK_LIST_CONS (tem, tem);
2267 while (CONSP (tem))
2269 tail = tem;
2270 tem = XCDR (tail);
2271 QUIT;
2274 tem = args[argnum + 1];
2275 Fsetcdr (tail, tem);
2276 if (NILP (tem))
2277 args[argnum + 1] = tail;
2280 return val;
2283 /* This is the guts of all mapping functions.
2284 Apply FN to each element of SEQ, one by one,
2285 storing the results into elements of VALS, a C vector of Lisp_Objects.
2286 LENI is the length of VALS, which should also be the length of SEQ. */
2288 static void
2289 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2291 register Lisp_Object tail;
2292 Lisp_Object dummy;
2293 register EMACS_INT i;
2294 struct gcpro gcpro1, gcpro2, gcpro3;
2296 if (vals)
2298 /* Don't let vals contain any garbage when GC happens. */
2299 for (i = 0; i < leni; i++)
2300 vals[i] = Qnil;
2302 GCPRO3 (dummy, fn, seq);
2303 gcpro1.var = vals;
2304 gcpro1.nvars = leni;
2306 else
2307 GCPRO2 (fn, seq);
2308 /* We need not explicitly protect `tail' because it is used only on lists, and
2309 1) lists are not relocated and 2) the list is marked via `seq' so will not
2310 be freed */
2312 if (VECTORP (seq))
2314 for (i = 0; i < leni; i++)
2316 dummy = call1 (fn, AREF (seq, i));
2317 if (vals)
2318 vals[i] = dummy;
2321 else if (BOOL_VECTOR_P (seq))
2323 for (i = 0; i < leni; i++)
2325 int byte;
2326 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2327 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2328 dummy = call1 (fn, dummy);
2329 if (vals)
2330 vals[i] = dummy;
2333 else if (STRINGP (seq))
2335 EMACS_INT i_byte;
2337 for (i = 0, i_byte = 0; i < leni;)
2339 int c;
2340 EMACS_INT i_before = i;
2342 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2343 XSETFASTINT (dummy, c);
2344 dummy = call1 (fn, dummy);
2345 if (vals)
2346 vals[i_before] = dummy;
2349 else /* Must be a list, since Flength did not get an error */
2351 tail = seq;
2352 for (i = 0; i < leni && CONSP (tail); i++)
2354 dummy = call1 (fn, XCAR (tail));
2355 if (vals)
2356 vals[i] = dummy;
2357 tail = XCDR (tail);
2361 UNGCPRO;
2364 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2365 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2366 In between each pair of results, stick in SEPARATOR. Thus, " " as
2367 SEPARATOR results in spaces between the values returned by FUNCTION.
2368 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2369 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2371 Lisp_Object len;
2372 register EMACS_INT leni;
2373 int nargs;
2374 register Lisp_Object *args;
2375 register EMACS_INT i;
2376 struct gcpro gcpro1;
2377 Lisp_Object ret;
2378 USE_SAFE_ALLOCA;
2380 len = Flength (sequence);
2381 if (CHAR_TABLE_P (sequence))
2382 wrong_type_argument (Qlistp, sequence);
2383 leni = XINT (len);
2384 nargs = leni + leni - 1;
2385 if (nargs < 0) return empty_unibyte_string;
2387 SAFE_ALLOCA_LISP (args, nargs);
2389 GCPRO1 (separator);
2390 mapcar1 (leni, args, function, sequence);
2391 UNGCPRO;
2393 for (i = leni - 1; i > 0; i--)
2394 args[i + i] = args[i];
2396 for (i = 1; i < nargs; i += 2)
2397 args[i] = separator;
2399 ret = Fconcat (nargs, args);
2400 SAFE_FREE ();
2402 return ret;
2405 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2406 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2407 The result is a list just as long as SEQUENCE.
2408 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2409 (Lisp_Object function, Lisp_Object sequence)
2411 register Lisp_Object len;
2412 register EMACS_INT leni;
2413 register Lisp_Object *args;
2414 Lisp_Object ret;
2415 USE_SAFE_ALLOCA;
2417 len = Flength (sequence);
2418 if (CHAR_TABLE_P (sequence))
2419 wrong_type_argument (Qlistp, sequence);
2420 leni = XFASTINT (len);
2422 SAFE_ALLOCA_LISP (args, leni);
2424 mapcar1 (leni, args, function, sequence);
2426 ret = Flist (leni, args);
2427 SAFE_FREE ();
2429 return ret;
2432 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2433 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2434 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2435 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2436 (Lisp_Object function, Lisp_Object sequence)
2438 register EMACS_INT leni;
2440 leni = XFASTINT (Flength (sequence));
2441 if (CHAR_TABLE_P (sequence))
2442 wrong_type_argument (Qlistp, sequence);
2443 mapcar1 (leni, 0, function, sequence);
2445 return sequence;
2448 /* This is how C code calls `yes-or-no-p' and allows the user
2449 to redefined it.
2451 Anything that calls this function must protect from GC! */
2453 Lisp_Object
2454 do_yes_or_no_p (Lisp_Object prompt)
2456 return call1 (intern ("yes-or-no-p"), prompt);
2459 /* Anything that calls this function must protect from GC! */
2461 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, MANY, 0,
2462 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2463 Takes one argument, which is the string to display to ask the question.
2464 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2465 The user must confirm the answer with RET,
2466 and can edit it until it has been confirmed.
2468 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2469 is nil, and `use-dialog-box' is non-nil.
2470 usage: (yes-or-no-p PROMPT &rest ARGS) */)
2471 (int nargs, Lisp_Object *args)
2473 register Lisp_Object ans;
2474 struct gcpro gcpro1;
2475 Lisp_Object prompt = Fformat (nargs, args);
2477 #ifdef HAVE_MENUS
2478 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2479 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2480 && use_dialog_box
2481 && have_menus_p ())
2483 Lisp_Object pane, menu, obj;
2484 redisplay_preserve_echo_area (4);
2485 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2486 Fcons (Fcons (build_string ("No"), Qnil),
2487 Qnil));
2488 GCPRO1 (pane);
2489 menu = Fcons (prompt, pane);
2490 obj = Fx_popup_dialog (Qt, menu, Qnil);
2491 UNGCPRO;
2492 return obj;
2494 #endif /* HAVE_MENUS */
2496 prompt = concat2 (prompt, build_string ("(yes or no) "));
2497 GCPRO1 (prompt);
2499 while (1)
2501 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2502 Qyes_or_no_p_history, Qnil,
2503 Qnil));
2504 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2506 UNGCPRO;
2507 return Qt;
2509 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2511 UNGCPRO;
2512 return Qnil;
2515 Fding (Qnil);
2516 Fdiscard_input ();
2517 message ("Please answer yes or no.");
2518 Fsleep_for (make_number (2), Qnil);
2522 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2523 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2525 Each of the three load averages is multiplied by 100, then converted
2526 to integer.
2528 When USE-FLOATS is non-nil, floats will be used instead of integers.
2529 These floats are not multiplied by 100.
2531 If the 5-minute or 15-minute load averages are not available, return a
2532 shortened list, containing only those averages which are available.
2534 An error is thrown if the load average can't be obtained. In some
2535 cases making it work would require Emacs being installed setuid or
2536 setgid so that it can read kernel information, and that usually isn't
2537 advisable. */)
2538 (Lisp_Object use_floats)
2540 double load_ave[3];
2541 int loads = getloadavg (load_ave, 3);
2542 Lisp_Object ret = Qnil;
2544 if (loads < 0)
2545 error ("load-average not implemented for this operating system");
2547 while (loads-- > 0)
2549 Lisp_Object load = (NILP (use_floats) ?
2550 make_number ((int) (100.0 * load_ave[loads]))
2551 : make_float (load_ave[loads]));
2552 ret = Fcons (load, ret);
2555 return ret;
2558 Lisp_Object Vfeatures, Qsubfeatures;
2560 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2561 doc: /* Return t if FEATURE is present in this Emacs.
2563 Use this to conditionalize execution of lisp code based on the
2564 presence or absence of Emacs or environment extensions.
2565 Use `provide' to declare that a feature is available. This function
2566 looks at the value of the variable `features'. The optional argument
2567 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2568 (Lisp_Object feature, Lisp_Object subfeature)
2570 register Lisp_Object tem;
2571 CHECK_SYMBOL (feature);
2572 tem = Fmemq (feature, Vfeatures);
2573 if (!NILP (tem) && !NILP (subfeature))
2574 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2575 return (NILP (tem)) ? Qnil : Qt;
2578 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2579 doc: /* Announce that FEATURE is a feature of the current Emacs.
2580 The optional argument SUBFEATURES should be a list of symbols listing
2581 particular subfeatures supported in this version of FEATURE. */)
2582 (Lisp_Object feature, Lisp_Object subfeatures)
2584 register Lisp_Object tem;
2585 CHECK_SYMBOL (feature);
2586 CHECK_LIST (subfeatures);
2587 if (!NILP (Vautoload_queue))
2588 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2589 Vautoload_queue);
2590 tem = Fmemq (feature, Vfeatures);
2591 if (NILP (tem))
2592 Vfeatures = Fcons (feature, Vfeatures);
2593 if (!NILP (subfeatures))
2594 Fput (feature, Qsubfeatures, subfeatures);
2595 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2597 /* Run any load-hooks for this file. */
2598 tem = Fassq (feature, Vafter_load_alist);
2599 if (CONSP (tem))
2600 Fprogn (XCDR (tem));
2602 return feature;
2605 /* `require' and its subroutines. */
2607 /* List of features currently being require'd, innermost first. */
2609 Lisp_Object require_nesting_list;
2611 Lisp_Object
2612 require_unwind (Lisp_Object old_value)
2614 return require_nesting_list = old_value;
2617 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2618 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2619 If FEATURE is not a member of the list `features', then the feature
2620 is not loaded; so load the file FILENAME.
2621 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2622 and `load' will try to load this name appended with the suffix `.elc' or
2623 `.el', in that order. The name without appended suffix will not be used.
2624 If the optional third argument NOERROR is non-nil,
2625 then return nil if the file is not found instead of signaling an error.
2626 Normally the return value is FEATURE.
2627 The normal messages at start and end of loading FILENAME are suppressed. */)
2628 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2630 register Lisp_Object tem;
2631 struct gcpro gcpro1, gcpro2;
2632 int from_file = load_in_progress;
2634 CHECK_SYMBOL (feature);
2636 /* Record the presence of `require' in this file
2637 even if the feature specified is already loaded.
2638 But not more than once in any file,
2639 and not when we aren't loading or reading from a file. */
2640 if (!from_file)
2641 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2642 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2643 from_file = 1;
2645 if (from_file)
2647 tem = Fcons (Qrequire, feature);
2648 if (NILP (Fmember (tem, Vcurrent_load_list)))
2649 LOADHIST_ATTACH (tem);
2651 tem = Fmemq (feature, Vfeatures);
2653 if (NILP (tem))
2655 int count = SPECPDL_INDEX ();
2656 int nesting = 0;
2658 /* This is to make sure that loadup.el gives a clear picture
2659 of what files are preloaded and when. */
2660 if (! NILP (Vpurify_flag))
2661 error ("(require %s) while preparing to dump",
2662 SDATA (SYMBOL_NAME (feature)));
2664 /* A certain amount of recursive `require' is legitimate,
2665 but if we require the same feature recursively 3 times,
2666 signal an error. */
2667 tem = require_nesting_list;
2668 while (! NILP (tem))
2670 if (! NILP (Fequal (feature, XCAR (tem))))
2671 nesting++;
2672 tem = XCDR (tem);
2674 if (nesting > 3)
2675 error ("Recursive `require' for feature `%s'",
2676 SDATA (SYMBOL_NAME (feature)));
2678 /* Update the list for any nested `require's that occur. */
2679 record_unwind_protect (require_unwind, require_nesting_list);
2680 require_nesting_list = Fcons (feature, require_nesting_list);
2682 /* Value saved here is to be restored into Vautoload_queue */
2683 record_unwind_protect (un_autoload, Vautoload_queue);
2684 Vautoload_queue = Qt;
2686 /* Load the file. */
2687 GCPRO2 (feature, filename);
2688 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2689 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2690 UNGCPRO;
2692 /* If load failed entirely, return nil. */
2693 if (NILP (tem))
2694 return unbind_to (count, Qnil);
2696 tem = Fmemq (feature, Vfeatures);
2697 if (NILP (tem))
2698 error ("Required feature `%s' was not provided",
2699 SDATA (SYMBOL_NAME (feature)));
2701 /* Once loading finishes, don't undo it. */
2702 Vautoload_queue = Qt;
2703 feature = unbind_to (count, feature);
2706 return feature;
2709 /* Primitives for work of the "widget" library.
2710 In an ideal world, this section would not have been necessary.
2711 However, lisp function calls being as slow as they are, it turns
2712 out that some functions in the widget library (wid-edit.el) are the
2713 bottleneck of Widget operation. Here is their translation to C,
2714 for the sole reason of efficiency. */
2716 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2717 doc: /* Return non-nil if PLIST has the property PROP.
2718 PLIST is a property list, which is a list of the form
2719 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2720 Unlike `plist-get', this allows you to distinguish between a missing
2721 property and a property with the value nil.
2722 The value is actually the tail of PLIST whose car is PROP. */)
2723 (Lisp_Object plist, Lisp_Object prop)
2725 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2727 QUIT;
2728 plist = XCDR (plist);
2729 plist = CDR (plist);
2731 return plist;
2734 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2735 doc: /* In WIDGET, set PROPERTY to VALUE.
2736 The value can later be retrieved with `widget-get'. */)
2737 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2739 CHECK_CONS (widget);
2740 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2741 return value;
2744 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2745 doc: /* In WIDGET, get the value of PROPERTY.
2746 The value could either be specified when the widget was created, or
2747 later with `widget-put'. */)
2748 (Lisp_Object widget, Lisp_Object property)
2750 Lisp_Object tmp;
2752 while (1)
2754 if (NILP (widget))
2755 return Qnil;
2756 CHECK_CONS (widget);
2757 tmp = Fplist_member (XCDR (widget), property);
2758 if (CONSP (tmp))
2760 tmp = XCDR (tmp);
2761 return CAR (tmp);
2763 tmp = XCAR (widget);
2764 if (NILP (tmp))
2765 return Qnil;
2766 widget = Fget (tmp, Qwidget_type);
2770 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2771 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2772 ARGS are passed as extra arguments to the function.
2773 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2774 (int nargs, Lisp_Object *args)
2776 /* This function can GC. */
2777 Lisp_Object newargs[3];
2778 struct gcpro gcpro1, gcpro2;
2779 Lisp_Object result;
2781 newargs[0] = Fwidget_get (args[0], args[1]);
2782 newargs[1] = args[0];
2783 newargs[2] = Flist (nargs - 2, args + 2);
2784 GCPRO2 (newargs[0], newargs[2]);
2785 result = Fapply (3, newargs);
2786 UNGCPRO;
2787 return result;
2790 #ifdef HAVE_LANGINFO_CODESET
2791 #include <langinfo.h>
2792 #endif
2794 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2795 doc: /* Access locale data ITEM for the current C locale, if available.
2796 ITEM should be one of the following:
2798 `codeset', returning the character set as a string (locale item CODESET);
2800 `days', returning a 7-element vector of day names (locale items DAY_n);
2802 `months', returning a 12-element vector of month names (locale items MON_n);
2804 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2805 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2807 If the system can't provide such information through a call to
2808 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2810 See also Info node `(libc)Locales'.
2812 The data read from the system are decoded using `locale-coding-system'. */)
2813 (Lisp_Object item)
2815 char *str = NULL;
2816 #ifdef HAVE_LANGINFO_CODESET
2817 Lisp_Object val;
2818 if (EQ (item, Qcodeset))
2820 str = nl_langinfo (CODESET);
2821 return build_string (str);
2823 #ifdef DAY_1
2824 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2826 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2827 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2828 int i;
2829 struct gcpro gcpro1;
2830 GCPRO1 (v);
2831 synchronize_system_time_locale ();
2832 for (i = 0; i < 7; i++)
2834 str = nl_langinfo (days[i]);
2835 val = make_unibyte_string (str, strlen (str));
2836 /* Fixme: Is this coding system necessarily right, even if
2837 it is consistent with CODESET? If not, what to do? */
2838 Faset (v, make_number (i),
2839 code_convert_string_norecord (val, Vlocale_coding_system,
2840 0));
2842 UNGCPRO;
2843 return v;
2845 #endif /* DAY_1 */
2846 #ifdef MON_1
2847 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2849 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2850 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2851 MON_8, MON_9, MON_10, MON_11, MON_12};
2852 int i;
2853 struct gcpro gcpro1;
2854 GCPRO1 (v);
2855 synchronize_system_time_locale ();
2856 for (i = 0; i < 12; i++)
2858 str = nl_langinfo (months[i]);
2859 val = make_unibyte_string (str, strlen (str));
2860 Faset (v, make_number (i),
2861 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2863 UNGCPRO;
2864 return v;
2866 #endif /* MON_1 */
2867 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2868 but is in the locale files. This could be used by ps-print. */
2869 #ifdef PAPER_WIDTH
2870 else if (EQ (item, Qpaper))
2872 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2873 make_number (nl_langinfo (PAPER_HEIGHT)));
2875 #endif /* PAPER_WIDTH */
2876 #endif /* HAVE_LANGINFO_CODESET*/
2877 return Qnil;
2880 /* base64 encode/decode functions (RFC 2045).
2881 Based on code from GNU recode. */
2883 #define MIME_LINE_LENGTH 76
2885 #define IS_ASCII(Character) \
2886 ((Character) < 128)
2887 #define IS_BASE64(Character) \
2888 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2889 #define IS_BASE64_IGNORABLE(Character) \
2890 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2891 || (Character) == '\f' || (Character) == '\r')
2893 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2894 character or return retval if there are no characters left to
2895 process. */
2896 #define READ_QUADRUPLET_BYTE(retval) \
2897 do \
2899 if (i == length) \
2901 if (nchars_return) \
2902 *nchars_return = nchars; \
2903 return (retval); \
2905 c = from[i++]; \
2907 while (IS_BASE64_IGNORABLE (c))
2909 /* Table of characters coding the 64 values. */
2910 static const char base64_value_to_char[64] =
2912 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2913 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2914 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2915 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2916 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2917 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2918 '8', '9', '+', '/' /* 60-63 */
2921 /* Table of base64 values for first 128 characters. */
2922 static const short base64_char_to_value[128] =
2924 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2925 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2926 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2927 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2928 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2929 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2930 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2931 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2932 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2933 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2934 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2935 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2936 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2939 /* The following diagram shows the logical steps by which three octets
2940 get transformed into four base64 characters.
2942 .--------. .--------. .--------.
2943 |aaaaaabb| |bbbbcccc| |ccdddddd|
2944 `--------' `--------' `--------'
2945 6 2 4 4 2 6
2946 .--------+--------+--------+--------.
2947 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2948 `--------+--------+--------+--------'
2950 .--------+--------+--------+--------.
2951 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2952 `--------+--------+--------+--------'
2954 The octets are divided into 6 bit chunks, which are then encoded into
2955 base64 characters. */
2958 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2959 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2960 EMACS_INT *);
2962 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2963 2, 3, "r",
2964 doc: /* Base64-encode the region between BEG and END.
2965 Return the length of the encoded text.
2966 Optional third argument NO-LINE-BREAK means do not break long lines
2967 into shorter lines. */)
2968 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2970 char *encoded;
2971 EMACS_INT allength, length;
2972 EMACS_INT ibeg, iend, encoded_length;
2973 EMACS_INT old_pos = PT;
2974 USE_SAFE_ALLOCA;
2976 validate_region (&beg, &end);
2978 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2979 iend = CHAR_TO_BYTE (XFASTINT (end));
2980 move_gap_both (XFASTINT (beg), ibeg);
2982 /* We need to allocate enough room for encoding the text.
2983 We need 33 1/3% more space, plus a newline every 76
2984 characters, and then we round up. */
2985 length = iend - ibeg;
2986 allength = length + length/3 + 1;
2987 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2989 SAFE_ALLOCA (encoded, char *, allength);
2990 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
2991 NILP (no_line_break),
2992 !NILP (current_buffer->enable_multibyte_characters));
2993 if (encoded_length > allength)
2994 abort ();
2996 if (encoded_length < 0)
2998 /* The encoding wasn't possible. */
2999 SAFE_FREE ();
3000 error ("Multibyte character in data for base64 encoding");
3003 /* Now we have encoded the region, so we insert the new contents
3004 and delete the old. (Insert first in order to preserve markers.) */
3005 SET_PT_BOTH (XFASTINT (beg), ibeg);
3006 insert (encoded, encoded_length);
3007 SAFE_FREE ();
3008 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3010 /* If point was outside of the region, restore it exactly; else just
3011 move to the beginning of the region. */
3012 if (old_pos >= XFASTINT (end))
3013 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3014 else if (old_pos > XFASTINT (beg))
3015 old_pos = XFASTINT (beg);
3016 SET_PT (old_pos);
3018 /* We return the length of the encoded text. */
3019 return make_number (encoded_length);
3022 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3023 1, 2, 0,
3024 doc: /* Base64-encode STRING and return the result.
3025 Optional second argument NO-LINE-BREAK means do not break long lines
3026 into shorter lines. */)
3027 (Lisp_Object string, Lisp_Object no_line_break)
3029 EMACS_INT allength, length, encoded_length;
3030 char *encoded;
3031 Lisp_Object encoded_string;
3032 USE_SAFE_ALLOCA;
3034 CHECK_STRING (string);
3036 /* We need to allocate enough room for encoding the text.
3037 We need 33 1/3% more space, plus a newline every 76
3038 characters, and then we round up. */
3039 length = SBYTES (string);
3040 allength = length + length/3 + 1;
3041 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3043 /* We need to allocate enough room for decoding the text. */
3044 SAFE_ALLOCA (encoded, char *, allength);
3046 encoded_length = base64_encode_1 (SDATA (string),
3047 encoded, length, NILP (no_line_break),
3048 STRING_MULTIBYTE (string));
3049 if (encoded_length > allength)
3050 abort ();
3052 if (encoded_length < 0)
3054 /* The encoding wasn't possible. */
3055 SAFE_FREE ();
3056 error ("Multibyte character in data for base64 encoding");
3059 encoded_string = make_unibyte_string (encoded, encoded_length);
3060 SAFE_FREE ();
3062 return encoded_string;
3065 static EMACS_INT
3066 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3067 int line_break, int multibyte)
3069 int counter = 0;
3070 EMACS_INT i = 0;
3071 char *e = to;
3072 int c;
3073 unsigned int value;
3074 int bytes;
3076 while (i < length)
3078 if (multibyte)
3080 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3081 if (CHAR_BYTE8_P (c))
3082 c = CHAR_TO_BYTE8 (c);
3083 else if (c >= 256)
3084 return -1;
3085 i += bytes;
3087 else
3088 c = from[i++];
3090 /* Wrap line every 76 characters. */
3092 if (line_break)
3094 if (counter < MIME_LINE_LENGTH / 4)
3095 counter++;
3096 else
3098 *e++ = '\n';
3099 counter = 1;
3103 /* Process first byte of a triplet. */
3105 *e++ = base64_value_to_char[0x3f & c >> 2];
3106 value = (0x03 & c) << 4;
3108 /* Process second byte of a triplet. */
3110 if (i == length)
3112 *e++ = base64_value_to_char[value];
3113 *e++ = '=';
3114 *e++ = '=';
3115 break;
3118 if (multibyte)
3120 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3121 if (CHAR_BYTE8_P (c))
3122 c = CHAR_TO_BYTE8 (c);
3123 else if (c >= 256)
3124 return -1;
3125 i += bytes;
3127 else
3128 c = from[i++];
3130 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3131 value = (0x0f & c) << 2;
3133 /* Process third byte of a triplet. */
3135 if (i == length)
3137 *e++ = base64_value_to_char[value];
3138 *e++ = '=';
3139 break;
3142 if (multibyte)
3144 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3145 if (CHAR_BYTE8_P (c))
3146 c = CHAR_TO_BYTE8 (c);
3147 else if (c >= 256)
3148 return -1;
3149 i += bytes;
3151 else
3152 c = from[i++];
3154 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3155 *e++ = base64_value_to_char[0x3f & c];
3158 return e - to;
3162 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3163 2, 2, "r",
3164 doc: /* Base64-decode the region between BEG and END.
3165 Return the length of the decoded text.
3166 If the region can't be decoded, signal an error and don't modify the buffer. */)
3167 (Lisp_Object beg, Lisp_Object end)
3169 EMACS_INT ibeg, iend, length, allength;
3170 char *decoded;
3171 EMACS_INT old_pos = PT;
3172 EMACS_INT decoded_length;
3173 EMACS_INT inserted_chars;
3174 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3175 USE_SAFE_ALLOCA;
3177 validate_region (&beg, &end);
3179 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3180 iend = CHAR_TO_BYTE (XFASTINT (end));
3182 length = iend - ibeg;
3184 /* We need to allocate enough room for decoding the text. If we are
3185 working on a multibyte buffer, each decoded code may occupy at
3186 most two bytes. */
3187 allength = multibyte ? length * 2 : length;
3188 SAFE_ALLOCA (decoded, char *, allength);
3190 move_gap_both (XFASTINT (beg), ibeg);
3191 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3192 multibyte, &inserted_chars);
3193 if (decoded_length > allength)
3194 abort ();
3196 if (decoded_length < 0)
3198 /* The decoding wasn't possible. */
3199 SAFE_FREE ();
3200 error ("Invalid base64 data");
3203 /* Now we have decoded the region, so we insert the new contents
3204 and delete the old. (Insert first in order to preserve markers.) */
3205 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3206 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3207 SAFE_FREE ();
3209 /* Delete the original text. */
3210 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3211 iend + decoded_length, 1);
3213 /* If point was outside of the region, restore it exactly; else just
3214 move to the beginning of the region. */
3215 if (old_pos >= XFASTINT (end))
3216 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3217 else if (old_pos > XFASTINT (beg))
3218 old_pos = XFASTINT (beg);
3219 SET_PT (old_pos > ZV ? ZV : old_pos);
3221 return make_number (inserted_chars);
3224 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3225 1, 1, 0,
3226 doc: /* Base64-decode STRING and return the result. */)
3227 (Lisp_Object string)
3229 char *decoded;
3230 EMACS_INT length, decoded_length;
3231 Lisp_Object decoded_string;
3232 USE_SAFE_ALLOCA;
3234 CHECK_STRING (string);
3236 length = SBYTES (string);
3237 /* We need to allocate enough room for decoding the text. */
3238 SAFE_ALLOCA (decoded, char *, length);
3240 /* The decoded result should be unibyte. */
3241 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3242 0, NULL);
3243 if (decoded_length > length)
3244 abort ();
3245 else if (decoded_length >= 0)
3246 decoded_string = make_unibyte_string (decoded, decoded_length);
3247 else
3248 decoded_string = Qnil;
3250 SAFE_FREE ();
3251 if (!STRINGP (decoded_string))
3252 error ("Invalid base64 data");
3254 return decoded_string;
3257 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3258 MULTIBYTE is nonzero, the decoded result should be in multibyte
3259 form. If NCHARS_RETRUN is not NULL, store the number of produced
3260 characters in *NCHARS_RETURN. */
3262 static EMACS_INT
3263 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3264 int multibyte, EMACS_INT *nchars_return)
3266 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3267 char *e = to;
3268 unsigned char c;
3269 unsigned long value;
3270 EMACS_INT nchars = 0;
3272 while (1)
3274 /* Process first byte of a quadruplet. */
3276 READ_QUADRUPLET_BYTE (e-to);
3278 if (!IS_BASE64 (c))
3279 return -1;
3280 value = base64_char_to_value[c] << 18;
3282 /* Process second byte of a quadruplet. */
3284 READ_QUADRUPLET_BYTE (-1);
3286 if (!IS_BASE64 (c))
3287 return -1;
3288 value |= base64_char_to_value[c] << 12;
3290 c = (unsigned char) (value >> 16);
3291 if (multibyte && c >= 128)
3292 e += BYTE8_STRING (c, e);
3293 else
3294 *e++ = c;
3295 nchars++;
3297 /* Process third byte of a quadruplet. */
3299 READ_QUADRUPLET_BYTE (-1);
3301 if (c == '=')
3303 READ_QUADRUPLET_BYTE (-1);
3305 if (c != '=')
3306 return -1;
3307 continue;
3310 if (!IS_BASE64 (c))
3311 return -1;
3312 value |= base64_char_to_value[c] << 6;
3314 c = (unsigned char) (0xff & value >> 8);
3315 if (multibyte && c >= 128)
3316 e += BYTE8_STRING (c, e);
3317 else
3318 *e++ = c;
3319 nchars++;
3321 /* Process fourth byte of a quadruplet. */
3323 READ_QUADRUPLET_BYTE (-1);
3325 if (c == '=')
3326 continue;
3328 if (!IS_BASE64 (c))
3329 return -1;
3330 value |= base64_char_to_value[c];
3332 c = (unsigned char) (0xff & value);
3333 if (multibyte && c >= 128)
3334 e += BYTE8_STRING (c, e);
3335 else
3336 *e++ = c;
3337 nchars++;
3343 /***********************************************************************
3344 ***** *****
3345 ***** Hash Tables *****
3346 ***** *****
3347 ***********************************************************************/
3349 /* Implemented by gerd@gnu.org. This hash table implementation was
3350 inspired by CMUCL hash tables. */
3352 /* Ideas:
3354 1. For small tables, association lists are probably faster than
3355 hash tables because they have lower overhead.
3357 For uses of hash tables where the O(1) behavior of table
3358 operations is not a requirement, it might therefore be a good idea
3359 not to hash. Instead, we could just do a linear search in the
3360 key_and_value vector of the hash table. This could be done
3361 if a `:linear-search t' argument is given to make-hash-table. */
3364 /* The list of all weak hash tables. Don't staticpro this one. */
3366 struct Lisp_Hash_Table *weak_hash_tables;
3368 /* Various symbols. */
3370 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3371 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3372 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3374 /* Function prototypes. */
3376 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3377 static int get_key_arg (Lisp_Object, int, Lisp_Object *, char *);
3378 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3379 static int cmpfn_eql (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3380 Lisp_Object, unsigned);
3381 static int cmpfn_equal (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3382 Lisp_Object, unsigned);
3383 static int cmpfn_user_defined (struct Lisp_Hash_Table *, Lisp_Object,
3384 unsigned, Lisp_Object, unsigned);
3385 static unsigned hashfn_eq (struct Lisp_Hash_Table *, Lisp_Object);
3386 static unsigned hashfn_eql (struct Lisp_Hash_Table *, Lisp_Object);
3387 static unsigned hashfn_equal (struct Lisp_Hash_Table *, Lisp_Object);
3388 static unsigned hashfn_user_defined (struct Lisp_Hash_Table *,
3389 Lisp_Object);
3390 static unsigned sxhash_string (unsigned char *, int);
3391 static unsigned sxhash_list (Lisp_Object, int);
3392 static unsigned sxhash_vector (Lisp_Object, int);
3393 static unsigned sxhash_bool_vector (Lisp_Object);
3394 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3398 /***********************************************************************
3399 Utilities
3400 ***********************************************************************/
3402 /* If OBJ is a Lisp hash table, return a pointer to its struct
3403 Lisp_Hash_Table. Otherwise, signal an error. */
3405 static struct Lisp_Hash_Table *
3406 check_hash_table (Lisp_Object obj)
3408 CHECK_HASH_TABLE (obj);
3409 return XHASH_TABLE (obj);
3413 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3414 number. */
3417 next_almost_prime (int n)
3419 if (n % 2 == 0)
3420 n += 1;
3421 if (n % 3 == 0)
3422 n += 2;
3423 if (n % 7 == 0)
3424 n += 4;
3425 return n;
3429 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3430 which USED[I] is non-zero. If found at index I in ARGS, set
3431 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3432 -1. This function is used to extract a keyword/argument pair from
3433 a DEFUN parameter list. */
3435 static int
3436 get_key_arg (Lisp_Object key, int nargs, Lisp_Object *args, char *used)
3438 int i;
3440 for (i = 0; i < nargs - 1; ++i)
3441 if (!used[i] && EQ (args[i], key))
3442 break;
3444 if (i >= nargs - 1)
3445 i = -1;
3446 else
3448 used[i++] = 1;
3449 used[i] = 1;
3452 return i;
3456 /* Return a Lisp vector which has the same contents as VEC but has
3457 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3458 vector that are not copied from VEC are set to INIT. */
3460 Lisp_Object
3461 larger_vector (Lisp_Object vec, int new_size, Lisp_Object init)
3463 struct Lisp_Vector *v;
3464 int i, old_size;
3466 xassert (VECTORP (vec));
3467 old_size = ASIZE (vec);
3468 xassert (new_size >= old_size);
3470 v = allocate_vector (new_size);
3471 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3472 for (i = old_size; i < new_size; ++i)
3473 v->contents[i] = init;
3474 XSETVECTOR (vec, v);
3475 return vec;
3479 /***********************************************************************
3480 Low-level Functions
3481 ***********************************************************************/
3483 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3484 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3485 KEY2 are the same. */
3487 static int
3488 cmpfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3490 return (FLOATP (key1)
3491 && FLOATP (key2)
3492 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3496 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3497 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3498 KEY2 are the same. */
3500 static int
3501 cmpfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3503 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3507 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3508 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3509 if KEY1 and KEY2 are the same. */
3511 static int
3512 cmpfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3514 if (hash1 == hash2)
3516 Lisp_Object args[3];
3518 args[0] = h->user_cmp_function;
3519 args[1] = key1;
3520 args[2] = key2;
3521 return !NILP (Ffuncall (3, args));
3523 else
3524 return 0;
3528 /* Value is a hash code for KEY for use in hash table H which uses
3529 `eq' to compare keys. The hash code returned is guaranteed to fit
3530 in a Lisp integer. */
3532 static unsigned
3533 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3535 unsigned hash = XUINT (key) ^ XTYPE (key);
3536 xassert ((hash & ~INTMASK) == 0);
3537 return hash;
3541 /* Value is a hash code for KEY for use in hash table H which uses
3542 `eql' to compare keys. The hash code returned is guaranteed to fit
3543 in a Lisp integer. */
3545 static unsigned
3546 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3548 unsigned hash;
3549 if (FLOATP (key))
3550 hash = sxhash (key, 0);
3551 else
3552 hash = XUINT (key) ^ XTYPE (key);
3553 xassert ((hash & ~INTMASK) == 0);
3554 return hash;
3558 /* Value is a hash code for KEY for use in hash table H which uses
3559 `equal' to compare keys. The hash code returned is guaranteed to fit
3560 in a Lisp integer. */
3562 static unsigned
3563 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3565 unsigned hash = sxhash (key, 0);
3566 xassert ((hash & ~INTMASK) == 0);
3567 return hash;
3571 /* Value is a hash code for KEY for use in hash table H which uses as
3572 user-defined function to compare keys. The hash code returned is
3573 guaranteed to fit in a Lisp integer. */
3575 static unsigned
3576 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3578 Lisp_Object args[2], hash;
3580 args[0] = h->user_hash_function;
3581 args[1] = key;
3582 hash = Ffuncall (2, args);
3583 if (!INTEGERP (hash))
3584 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3585 return XUINT (hash);
3589 /* Create and initialize a new hash table.
3591 TEST specifies the test the hash table will use to compare keys.
3592 It must be either one of the predefined tests `eq', `eql' or
3593 `equal' or a symbol denoting a user-defined test named TEST with
3594 test and hash functions USER_TEST and USER_HASH.
3596 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3598 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3599 new size when it becomes full is computed by adding REHASH_SIZE to
3600 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3601 table's new size is computed by multiplying its old size with
3602 REHASH_SIZE.
3604 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3605 be resized when the ratio of (number of entries in the table) /
3606 (table size) is >= REHASH_THRESHOLD.
3608 WEAK specifies the weakness of the table. If non-nil, it must be
3609 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3611 Lisp_Object
3612 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3613 Lisp_Object rehash_threshold, Lisp_Object weak,
3614 Lisp_Object user_test, Lisp_Object user_hash)
3616 struct Lisp_Hash_Table *h;
3617 Lisp_Object table;
3618 int index_size, i, sz;
3620 /* Preconditions. */
3621 xassert (SYMBOLP (test));
3622 xassert (INTEGERP (size) && XINT (size) >= 0);
3623 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3624 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3625 xassert (FLOATP (rehash_threshold)
3626 && XFLOATINT (rehash_threshold) > 0
3627 && XFLOATINT (rehash_threshold) <= 1.0);
3629 if (XFASTINT (size) == 0)
3630 size = make_number (1);
3632 /* Allocate a table and initialize it. */
3633 h = allocate_hash_table ();
3635 /* Initialize hash table slots. */
3636 sz = XFASTINT (size);
3638 h->test = test;
3639 if (EQ (test, Qeql))
3641 h->cmpfn = cmpfn_eql;
3642 h->hashfn = hashfn_eql;
3644 else if (EQ (test, Qeq))
3646 h->cmpfn = NULL;
3647 h->hashfn = hashfn_eq;
3649 else if (EQ (test, Qequal))
3651 h->cmpfn = cmpfn_equal;
3652 h->hashfn = hashfn_equal;
3654 else
3656 h->user_cmp_function = user_test;
3657 h->user_hash_function = user_hash;
3658 h->cmpfn = cmpfn_user_defined;
3659 h->hashfn = hashfn_user_defined;
3662 h->weak = weak;
3663 h->rehash_threshold = rehash_threshold;
3664 h->rehash_size = rehash_size;
3665 h->count = 0;
3666 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3667 h->hash = Fmake_vector (size, Qnil);
3668 h->next = Fmake_vector (size, Qnil);
3669 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3670 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3671 h->index = Fmake_vector (make_number (index_size), Qnil);
3673 /* Set up the free list. */
3674 for (i = 0; i < sz - 1; ++i)
3675 HASH_NEXT (h, i) = make_number (i + 1);
3676 h->next_free = make_number (0);
3678 XSET_HASH_TABLE (table, h);
3679 xassert (HASH_TABLE_P (table));
3680 xassert (XHASH_TABLE (table) == h);
3682 /* Maybe add this hash table to the list of all weak hash tables. */
3683 if (NILP (h->weak))
3684 h->next_weak = NULL;
3685 else
3687 h->next_weak = weak_hash_tables;
3688 weak_hash_tables = h;
3691 return table;
3695 /* Return a copy of hash table H1. Keys and values are not copied,
3696 only the table itself is. */
3698 static Lisp_Object
3699 copy_hash_table (struct Lisp_Hash_Table *h1)
3701 Lisp_Object table;
3702 struct Lisp_Hash_Table *h2;
3703 struct Lisp_Vector *next;
3705 h2 = allocate_hash_table ();
3706 next = h2->vec_next;
3707 memcpy (h2, h1, sizeof *h2);
3708 h2->vec_next = next;
3709 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3710 h2->hash = Fcopy_sequence (h1->hash);
3711 h2->next = Fcopy_sequence (h1->next);
3712 h2->index = Fcopy_sequence (h1->index);
3713 XSET_HASH_TABLE (table, h2);
3715 /* Maybe add this hash table to the list of all weak hash tables. */
3716 if (!NILP (h2->weak))
3718 h2->next_weak = weak_hash_tables;
3719 weak_hash_tables = h2;
3722 return table;
3726 /* Resize hash table H if it's too full. If H cannot be resized
3727 because it's already too large, throw an error. */
3729 static INLINE void
3730 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3732 if (NILP (h->next_free))
3734 int old_size = HASH_TABLE_SIZE (h);
3735 int i, new_size, index_size;
3736 EMACS_INT nsize;
3738 if (INTEGERP (h->rehash_size))
3739 new_size = old_size + XFASTINT (h->rehash_size);
3740 else
3741 new_size = old_size * XFLOATINT (h->rehash_size);
3742 new_size = max (old_size + 1, new_size);
3743 index_size = next_almost_prime ((int)
3744 (new_size
3745 / XFLOATINT (h->rehash_threshold)));
3746 /* Assignment to EMACS_INT stops GCC whining about limited range
3747 of data type. */
3748 nsize = max (index_size, 2 * new_size);
3749 if (nsize > MOST_POSITIVE_FIXNUM)
3750 error ("Hash table too large to resize");
3752 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3753 h->next = larger_vector (h->next, new_size, Qnil);
3754 h->hash = larger_vector (h->hash, new_size, Qnil);
3755 h->index = Fmake_vector (make_number (index_size), Qnil);
3757 /* Update the free list. Do it so that new entries are added at
3758 the end of the free list. This makes some operations like
3759 maphash faster. */
3760 for (i = old_size; i < new_size - 1; ++i)
3761 HASH_NEXT (h, i) = make_number (i + 1);
3763 if (!NILP (h->next_free))
3765 Lisp_Object last, next;
3767 last = h->next_free;
3768 while (next = HASH_NEXT (h, XFASTINT (last)),
3769 !NILP (next))
3770 last = next;
3772 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3774 else
3775 XSETFASTINT (h->next_free, old_size);
3777 /* Rehash. */
3778 for (i = 0; i < old_size; ++i)
3779 if (!NILP (HASH_HASH (h, i)))
3781 unsigned hash_code = XUINT (HASH_HASH (h, i));
3782 int start_of_bucket = hash_code % ASIZE (h->index);
3783 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3784 HASH_INDEX (h, start_of_bucket) = make_number (i);
3790 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3791 the hash code of KEY. Value is the index of the entry in H
3792 matching KEY, or -1 if not found. */
3795 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, unsigned int *hash)
3797 unsigned hash_code;
3798 int start_of_bucket;
3799 Lisp_Object idx;
3801 hash_code = h->hashfn (h, key);
3802 if (hash)
3803 *hash = hash_code;
3805 start_of_bucket = hash_code % ASIZE (h->index);
3806 idx = HASH_INDEX (h, start_of_bucket);
3808 /* We need not gcpro idx since it's either an integer or nil. */
3809 while (!NILP (idx))
3811 int i = XFASTINT (idx);
3812 if (EQ (key, HASH_KEY (h, i))
3813 || (h->cmpfn
3814 && h->cmpfn (h, key, hash_code,
3815 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3816 break;
3817 idx = HASH_NEXT (h, i);
3820 return NILP (idx) ? -1 : XFASTINT (idx);
3824 /* Put an entry into hash table H that associates KEY with VALUE.
3825 HASH is a previously computed hash code of KEY.
3826 Value is the index of the entry in H matching KEY. */
3829 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value, unsigned int hash)
3831 int start_of_bucket, i;
3833 xassert ((hash & ~INTMASK) == 0);
3835 /* Increment count after resizing because resizing may fail. */
3836 maybe_resize_hash_table (h);
3837 h->count++;
3839 /* Store key/value in the key_and_value vector. */
3840 i = XFASTINT (h->next_free);
3841 h->next_free = HASH_NEXT (h, i);
3842 HASH_KEY (h, i) = key;
3843 HASH_VALUE (h, i) = value;
3845 /* Remember its hash code. */
3846 HASH_HASH (h, i) = make_number (hash);
3848 /* Add new entry to its collision chain. */
3849 start_of_bucket = hash % ASIZE (h->index);
3850 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3851 HASH_INDEX (h, start_of_bucket) = make_number (i);
3852 return i;
3856 /* Remove the entry matching KEY from hash table H, if there is one. */
3858 static void
3859 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3861 unsigned hash_code;
3862 int start_of_bucket;
3863 Lisp_Object idx, prev;
3865 hash_code = h->hashfn (h, key);
3866 start_of_bucket = hash_code % ASIZE (h->index);
3867 idx = HASH_INDEX (h, start_of_bucket);
3868 prev = Qnil;
3870 /* We need not gcpro idx, prev since they're either integers or nil. */
3871 while (!NILP (idx))
3873 int i = XFASTINT (idx);
3875 if (EQ (key, HASH_KEY (h, i))
3876 || (h->cmpfn
3877 && h->cmpfn (h, key, hash_code,
3878 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3880 /* Take entry out of collision chain. */
3881 if (NILP (prev))
3882 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3883 else
3884 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3886 /* Clear slots in key_and_value and add the slots to
3887 the free list. */
3888 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3889 HASH_NEXT (h, i) = h->next_free;
3890 h->next_free = make_number (i);
3891 h->count--;
3892 xassert (h->count >= 0);
3893 break;
3895 else
3897 prev = idx;
3898 idx = HASH_NEXT (h, i);
3904 /* Clear hash table H. */
3906 static void
3907 hash_clear (struct Lisp_Hash_Table *h)
3909 if (h->count > 0)
3911 int i, size = HASH_TABLE_SIZE (h);
3913 for (i = 0; i < size; ++i)
3915 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3916 HASH_KEY (h, i) = Qnil;
3917 HASH_VALUE (h, i) = Qnil;
3918 HASH_HASH (h, i) = Qnil;
3921 for (i = 0; i < ASIZE (h->index); ++i)
3922 ASET (h->index, i, Qnil);
3924 h->next_free = make_number (0);
3925 h->count = 0;
3931 /************************************************************************
3932 Weak Hash Tables
3933 ************************************************************************/
3935 void
3936 init_weak_hash_tables (void)
3938 weak_hash_tables = NULL;
3941 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3942 entries from the table that don't survive the current GC.
3943 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3944 non-zero if anything was marked. */
3946 static int
3947 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3949 int bucket, n, marked;
3951 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3952 marked = 0;
3954 for (bucket = 0; bucket < n; ++bucket)
3956 Lisp_Object idx, next, prev;
3958 /* Follow collision chain, removing entries that
3959 don't survive this garbage collection. */
3960 prev = Qnil;
3961 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3963 int i = XFASTINT (idx);
3964 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3965 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3966 int remove_p;
3968 if (EQ (h->weak, Qkey))
3969 remove_p = !key_known_to_survive_p;
3970 else if (EQ (h->weak, Qvalue))
3971 remove_p = !value_known_to_survive_p;
3972 else if (EQ (h->weak, Qkey_or_value))
3973 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3974 else if (EQ (h->weak, Qkey_and_value))
3975 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3976 else
3977 abort ();
3979 next = HASH_NEXT (h, i);
3981 if (remove_entries_p)
3983 if (remove_p)
3985 /* Take out of collision chain. */
3986 if (NILP (prev))
3987 HASH_INDEX (h, bucket) = next;
3988 else
3989 HASH_NEXT (h, XFASTINT (prev)) = next;
3991 /* Add to free list. */
3992 HASH_NEXT (h, i) = h->next_free;
3993 h->next_free = idx;
3995 /* Clear key, value, and hash. */
3996 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3997 HASH_HASH (h, i) = Qnil;
3999 h->count--;
4001 else
4003 prev = idx;
4006 else
4008 if (!remove_p)
4010 /* Make sure key and value survive. */
4011 if (!key_known_to_survive_p)
4013 mark_object (HASH_KEY (h, i));
4014 marked = 1;
4017 if (!value_known_to_survive_p)
4019 mark_object (HASH_VALUE (h, i));
4020 marked = 1;
4027 return marked;
4030 /* Remove elements from weak hash tables that don't survive the
4031 current garbage collection. Remove weak tables that don't survive
4032 from Vweak_hash_tables. Called from gc_sweep. */
4034 void
4035 sweep_weak_hash_tables (void)
4037 struct Lisp_Hash_Table *h, *used, *next;
4038 int marked;
4040 /* Mark all keys and values that are in use. Keep on marking until
4041 there is no more change. This is necessary for cases like
4042 value-weak table A containing an entry X -> Y, where Y is used in a
4043 key-weak table B, Z -> Y. If B comes after A in the list of weak
4044 tables, X -> Y might be removed from A, although when looking at B
4045 one finds that it shouldn't. */
4048 marked = 0;
4049 for (h = weak_hash_tables; h; h = h->next_weak)
4051 if (h->size & ARRAY_MARK_FLAG)
4052 marked |= sweep_weak_table (h, 0);
4055 while (marked);
4057 /* Remove tables and entries that aren't used. */
4058 for (h = weak_hash_tables, used = NULL; h; h = next)
4060 next = h->next_weak;
4062 if (h->size & ARRAY_MARK_FLAG)
4064 /* TABLE is marked as used. Sweep its contents. */
4065 if (h->count > 0)
4066 sweep_weak_table (h, 1);
4068 /* Add table to the list of used weak hash tables. */
4069 h->next_weak = used;
4070 used = h;
4074 weak_hash_tables = used;
4079 /***********************************************************************
4080 Hash Code Computation
4081 ***********************************************************************/
4083 /* Maximum depth up to which to dive into Lisp structures. */
4085 #define SXHASH_MAX_DEPTH 3
4087 /* Maximum length up to which to take list and vector elements into
4088 account. */
4090 #define SXHASH_MAX_LEN 7
4092 /* Combine two integers X and Y for hashing. */
4094 #define SXHASH_COMBINE(X, Y) \
4095 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4096 + (unsigned)(Y))
4099 /* Return a hash for string PTR which has length LEN. The hash
4100 code returned is guaranteed to fit in a Lisp integer. */
4102 static unsigned
4103 sxhash_string (unsigned char *ptr, int len)
4105 unsigned char *p = ptr;
4106 unsigned char *end = p + len;
4107 unsigned char c;
4108 unsigned hash = 0;
4110 while (p != end)
4112 c = *p++;
4113 if (c >= 0140)
4114 c -= 40;
4115 hash = ((hash << 4) + (hash >> 28) + c);
4118 return hash & INTMASK;
4122 /* Return a hash for list LIST. DEPTH is the current depth in the
4123 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4125 static unsigned
4126 sxhash_list (Lisp_Object list, int depth)
4128 unsigned hash = 0;
4129 int i;
4131 if (depth < SXHASH_MAX_DEPTH)
4132 for (i = 0;
4133 CONSP (list) && i < SXHASH_MAX_LEN;
4134 list = XCDR (list), ++i)
4136 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4137 hash = SXHASH_COMBINE (hash, hash2);
4140 if (!NILP (list))
4142 unsigned hash2 = sxhash (list, depth + 1);
4143 hash = SXHASH_COMBINE (hash, hash2);
4146 return hash;
4150 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4151 the Lisp structure. */
4153 static unsigned
4154 sxhash_vector (Lisp_Object vec, int depth)
4156 unsigned hash = ASIZE (vec);
4157 int i, n;
4159 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4160 for (i = 0; i < n; ++i)
4162 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4163 hash = SXHASH_COMBINE (hash, hash2);
4166 return hash;
4170 /* Return a hash for bool-vector VECTOR. */
4172 static unsigned
4173 sxhash_bool_vector (Lisp_Object vec)
4175 unsigned hash = XBOOL_VECTOR (vec)->size;
4176 int i, n;
4178 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4179 for (i = 0; i < n; ++i)
4180 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4182 return hash;
4186 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4187 structure. Value is an unsigned integer clipped to INTMASK. */
4189 unsigned
4190 sxhash (Lisp_Object obj, int depth)
4192 unsigned hash;
4194 if (depth > SXHASH_MAX_DEPTH)
4195 return 0;
4197 switch (XTYPE (obj))
4199 case_Lisp_Int:
4200 hash = XUINT (obj);
4201 break;
4203 case Lisp_Misc:
4204 hash = XUINT (obj);
4205 break;
4207 case Lisp_Symbol:
4208 obj = SYMBOL_NAME (obj);
4209 /* Fall through. */
4211 case Lisp_String:
4212 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4213 break;
4215 /* This can be everything from a vector to an overlay. */
4216 case Lisp_Vectorlike:
4217 if (VECTORP (obj))
4218 /* According to the CL HyperSpec, two arrays are equal only if
4219 they are `eq', except for strings and bit-vectors. In
4220 Emacs, this works differently. We have to compare element
4221 by element. */
4222 hash = sxhash_vector (obj, depth);
4223 else if (BOOL_VECTOR_P (obj))
4224 hash = sxhash_bool_vector (obj);
4225 else
4226 /* Others are `equal' if they are `eq', so let's take their
4227 address as hash. */
4228 hash = XUINT (obj);
4229 break;
4231 case Lisp_Cons:
4232 hash = sxhash_list (obj, depth);
4233 break;
4235 case Lisp_Float:
4237 double val = XFLOAT_DATA (obj);
4238 unsigned char *p = (unsigned char *) &val;
4239 unsigned char *e = p + sizeof val;
4240 for (hash = 0; p < e; ++p)
4241 hash = SXHASH_COMBINE (hash, *p);
4242 break;
4245 default:
4246 abort ();
4249 return hash & INTMASK;
4254 /***********************************************************************
4255 Lisp Interface
4256 ***********************************************************************/
4259 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4260 doc: /* Compute a hash code for OBJ and return it as integer. */)
4261 (Lisp_Object obj)
4263 unsigned hash = sxhash (obj, 0);
4264 return make_number (hash);
4268 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4269 doc: /* Create and return a new hash table.
4271 Arguments are specified as keyword/argument pairs. The following
4272 arguments are defined:
4274 :test TEST -- TEST must be a symbol that specifies how to compare
4275 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4276 `equal'. User-supplied test and hash functions can be specified via
4277 `define-hash-table-test'.
4279 :size SIZE -- A hint as to how many elements will be put in the table.
4280 Default is 65.
4282 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4283 fills up. If REHASH-SIZE is an integer, increase the size by that
4284 amount. If it is a float, it must be > 1.0, and the new size is the
4285 old size multiplied by that factor. Default is 1.5.
4287 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4288 Resize the hash table when the ratio (number of entries / table size)
4289 is greater than or equal to THRESHOLD. Default is 0.8.
4291 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4292 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4293 returned is a weak table. Key/value pairs are removed from a weak
4294 hash table when there are no non-weak references pointing to their
4295 key, value, one of key or value, or both key and value, depending on
4296 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4297 is nil.
4299 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4300 (int nargs, Lisp_Object *args)
4302 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4303 Lisp_Object user_test, user_hash;
4304 char *used;
4305 int i;
4307 /* The vector `used' is used to keep track of arguments that
4308 have been consumed. */
4309 used = (char *) alloca (nargs * sizeof *used);
4310 memset (used, 0, nargs * sizeof *used);
4312 /* See if there's a `:test TEST' among the arguments. */
4313 i = get_key_arg (QCtest, nargs, args, used);
4314 test = i < 0 ? Qeql : args[i];
4315 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4317 /* See if it is a user-defined test. */
4318 Lisp_Object prop;
4320 prop = Fget (test, Qhash_table_test);
4321 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4322 signal_error ("Invalid hash table test", test);
4323 user_test = XCAR (prop);
4324 user_hash = XCAR (XCDR (prop));
4326 else
4327 user_test = user_hash = Qnil;
4329 /* See if there's a `:size SIZE' argument. */
4330 i = get_key_arg (QCsize, nargs, args, used);
4331 size = i < 0 ? Qnil : args[i];
4332 if (NILP (size))
4333 size = make_number (DEFAULT_HASH_SIZE);
4334 else if (!INTEGERP (size) || XINT (size) < 0)
4335 signal_error ("Invalid hash table size", size);
4337 /* Look for `:rehash-size SIZE'. */
4338 i = get_key_arg (QCrehash_size, nargs, args, used);
4339 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4340 if (!NUMBERP (rehash_size)
4341 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4342 || XFLOATINT (rehash_size) <= 1.0)
4343 signal_error ("Invalid hash table rehash size", rehash_size);
4345 /* Look for `:rehash-threshold THRESHOLD'. */
4346 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4347 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4348 if (!FLOATP (rehash_threshold)
4349 || XFLOATINT (rehash_threshold) <= 0.0
4350 || XFLOATINT (rehash_threshold) > 1.0)
4351 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4353 /* Look for `:weakness WEAK'. */
4354 i = get_key_arg (QCweakness, nargs, args, used);
4355 weak = i < 0 ? Qnil : args[i];
4356 if (EQ (weak, Qt))
4357 weak = Qkey_and_value;
4358 if (!NILP (weak)
4359 && !EQ (weak, Qkey)
4360 && !EQ (weak, Qvalue)
4361 && !EQ (weak, Qkey_or_value)
4362 && !EQ (weak, Qkey_and_value))
4363 signal_error ("Invalid hash table weakness", weak);
4365 /* Now, all args should have been used up, or there's a problem. */
4366 for (i = 0; i < nargs; ++i)
4367 if (!used[i])
4368 signal_error ("Invalid argument list", args[i]);
4370 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4371 user_test, user_hash);
4375 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4376 doc: /* Return a copy of hash table TABLE. */)
4377 (Lisp_Object table)
4379 return copy_hash_table (check_hash_table (table));
4383 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4384 doc: /* Return the number of elements in TABLE. */)
4385 (Lisp_Object table)
4387 return make_number (check_hash_table (table)->count);
4391 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4392 Shash_table_rehash_size, 1, 1, 0,
4393 doc: /* Return the current rehash size of TABLE. */)
4394 (Lisp_Object table)
4396 return check_hash_table (table)->rehash_size;
4400 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4401 Shash_table_rehash_threshold, 1, 1, 0,
4402 doc: /* Return the current rehash threshold of TABLE. */)
4403 (Lisp_Object table)
4405 return check_hash_table (table)->rehash_threshold;
4409 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4410 doc: /* Return the size of TABLE.
4411 The size can be used as an argument to `make-hash-table' to create
4412 a hash table than can hold as many elements as TABLE holds
4413 without need for resizing. */)
4414 (Lisp_Object table)
4416 struct Lisp_Hash_Table *h = check_hash_table (table);
4417 return make_number (HASH_TABLE_SIZE (h));
4421 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4422 doc: /* Return the test TABLE uses. */)
4423 (Lisp_Object table)
4425 return check_hash_table (table)->test;
4429 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4430 1, 1, 0,
4431 doc: /* Return the weakness of TABLE. */)
4432 (Lisp_Object table)
4434 return check_hash_table (table)->weak;
4438 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4439 doc: /* Return t if OBJ is a Lisp hash table object. */)
4440 (Lisp_Object obj)
4442 return HASH_TABLE_P (obj) ? Qt : Qnil;
4446 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4447 doc: /* Clear hash table TABLE and return it. */)
4448 (Lisp_Object table)
4450 hash_clear (check_hash_table (table));
4451 /* Be compatible with XEmacs. */
4452 return table;
4456 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4457 doc: /* Look up KEY in TABLE and return its associated value.
4458 If KEY is not found, return DFLT which defaults to nil. */)
4459 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4461 struct Lisp_Hash_Table *h = check_hash_table (table);
4462 int i = hash_lookup (h, key, NULL);
4463 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4467 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4468 doc: /* Associate KEY with VALUE in hash table TABLE.
4469 If KEY is already present in table, replace its current value with
4470 VALUE. */)
4471 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4473 struct Lisp_Hash_Table *h = check_hash_table (table);
4474 int i;
4475 unsigned hash;
4477 i = hash_lookup (h, key, &hash);
4478 if (i >= 0)
4479 HASH_VALUE (h, i) = value;
4480 else
4481 hash_put (h, key, value, hash);
4483 return value;
4487 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4488 doc: /* Remove KEY from TABLE. */)
4489 (Lisp_Object key, Lisp_Object table)
4491 struct Lisp_Hash_Table *h = check_hash_table (table);
4492 hash_remove_from_table (h, key);
4493 return Qnil;
4497 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4498 doc: /* Call FUNCTION for all entries in hash table TABLE.
4499 FUNCTION is called with two arguments, KEY and VALUE. */)
4500 (Lisp_Object function, Lisp_Object table)
4502 struct Lisp_Hash_Table *h = check_hash_table (table);
4503 Lisp_Object args[3];
4504 int i;
4506 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4507 if (!NILP (HASH_HASH (h, i)))
4509 args[0] = function;
4510 args[1] = HASH_KEY (h, i);
4511 args[2] = HASH_VALUE (h, i);
4512 Ffuncall (3, args);
4515 return Qnil;
4519 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4520 Sdefine_hash_table_test, 3, 3, 0,
4521 doc: /* Define a new hash table test with name NAME, a symbol.
4523 In hash tables created with NAME specified as test, use TEST to
4524 compare keys, and HASH for computing hash codes of keys.
4526 TEST must be a function taking two arguments and returning non-nil if
4527 both arguments are the same. HASH must be a function taking one
4528 argument and return an integer that is the hash code of the argument.
4529 Hash code computation should use the whole value range of integers,
4530 including negative integers. */)
4531 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4533 return Fput (name, Qhash_table_test, list2 (test, hash));
4538 /************************************************************************
4540 ************************************************************************/
4542 #include "md5.h"
4544 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4545 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4547 A message digest is a cryptographic checksum of a document, and the
4548 algorithm to calculate it is defined in RFC 1321.
4550 The two optional arguments START and END are character positions
4551 specifying for which part of OBJECT the message digest should be
4552 computed. If nil or omitted, the digest is computed for the whole
4553 OBJECT.
4555 The MD5 message digest is computed from the result of encoding the
4556 text in a coding system, not directly from the internal Emacs form of
4557 the text. The optional fourth argument CODING-SYSTEM specifies which
4558 coding system to encode the text with. It should be the same coding
4559 system that you used or will use when actually writing the text into a
4560 file.
4562 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4563 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4564 system would be chosen by default for writing this text into a file.
4566 If OBJECT is a string, the most preferred coding system (see the
4567 command `prefer-coding-system') is used.
4569 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4570 guesswork fails. Normally, an error is signaled in such case. */)
4571 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4573 unsigned char digest[16];
4574 unsigned char value[33];
4575 int i;
4576 EMACS_INT size;
4577 EMACS_INT size_byte = 0;
4578 EMACS_INT start_char = 0, end_char = 0;
4579 EMACS_INT start_byte = 0, end_byte = 0;
4580 register EMACS_INT b, e;
4581 register struct buffer *bp;
4582 EMACS_INT temp;
4584 if (STRINGP (object))
4586 if (NILP (coding_system))
4588 /* Decide the coding-system to encode the data with. */
4590 if (STRING_MULTIBYTE (object))
4591 /* use default, we can't guess correct value */
4592 coding_system = preferred_coding_system ();
4593 else
4594 coding_system = Qraw_text;
4597 if (NILP (Fcoding_system_p (coding_system)))
4599 /* Invalid coding system. */
4601 if (!NILP (noerror))
4602 coding_system = Qraw_text;
4603 else
4604 xsignal1 (Qcoding_system_error, coding_system);
4607 if (STRING_MULTIBYTE (object))
4608 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4610 size = SCHARS (object);
4611 size_byte = SBYTES (object);
4613 if (!NILP (start))
4615 CHECK_NUMBER (start);
4617 start_char = XINT (start);
4619 if (start_char < 0)
4620 start_char += size;
4622 start_byte = string_char_to_byte (object, start_char);
4625 if (NILP (end))
4627 end_char = size;
4628 end_byte = size_byte;
4630 else
4632 CHECK_NUMBER (end);
4634 end_char = XINT (end);
4636 if (end_char < 0)
4637 end_char += size;
4639 end_byte = string_char_to_byte (object, end_char);
4642 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4643 args_out_of_range_3 (object, make_number (start_char),
4644 make_number (end_char));
4646 else
4648 struct buffer *prev = current_buffer;
4650 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4652 CHECK_BUFFER (object);
4654 bp = XBUFFER (object);
4655 if (bp != current_buffer)
4656 set_buffer_internal (bp);
4658 if (NILP (start))
4659 b = BEGV;
4660 else
4662 CHECK_NUMBER_COERCE_MARKER (start);
4663 b = XINT (start);
4666 if (NILP (end))
4667 e = ZV;
4668 else
4670 CHECK_NUMBER_COERCE_MARKER (end);
4671 e = XINT (end);
4674 if (b > e)
4675 temp = b, b = e, e = temp;
4677 if (!(BEGV <= b && e <= ZV))
4678 args_out_of_range (start, end);
4680 if (NILP (coding_system))
4682 /* Decide the coding-system to encode the data with.
4683 See fileio.c:Fwrite-region */
4685 if (!NILP (Vcoding_system_for_write))
4686 coding_system = Vcoding_system_for_write;
4687 else
4689 int force_raw_text = 0;
4691 coding_system = XBUFFER (object)->buffer_file_coding_system;
4692 if (NILP (coding_system)
4693 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4695 coding_system = Qnil;
4696 if (NILP (current_buffer->enable_multibyte_characters))
4697 force_raw_text = 1;
4700 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4702 /* Check file-coding-system-alist. */
4703 Lisp_Object args[4], val;
4705 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4706 args[3] = Fbuffer_file_name(object);
4707 val = Ffind_operation_coding_system (4, args);
4708 if (CONSP (val) && !NILP (XCDR (val)))
4709 coding_system = XCDR (val);
4712 if (NILP (coding_system)
4713 && !NILP (XBUFFER (object)->buffer_file_coding_system))
4715 /* If we still have not decided a coding system, use the
4716 default value of buffer-file-coding-system. */
4717 coding_system = XBUFFER (object)->buffer_file_coding_system;
4720 if (!force_raw_text
4721 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4722 /* Confirm that VAL can surely encode the current region. */
4723 coding_system = call4 (Vselect_safe_coding_system_function,
4724 make_number (b), make_number (e),
4725 coding_system, Qnil);
4727 if (force_raw_text)
4728 coding_system = Qraw_text;
4731 if (NILP (Fcoding_system_p (coding_system)))
4733 /* Invalid coding system. */
4735 if (!NILP (noerror))
4736 coding_system = Qraw_text;
4737 else
4738 xsignal1 (Qcoding_system_error, coding_system);
4742 object = make_buffer_string (b, e, 0);
4743 if (prev != current_buffer)
4744 set_buffer_internal (prev);
4745 /* Discard the unwind protect for recovering the current
4746 buffer. */
4747 specpdl_ptr--;
4749 if (STRING_MULTIBYTE (object))
4750 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4753 md5_buffer (SDATA (object) + start_byte,
4754 SBYTES (object) - (size_byte - end_byte),
4755 digest);
4757 for (i = 0; i < 16; i++)
4758 sprintf (&value[2 * i], "%02x", digest[i]);
4759 value[32] = '\0';
4761 return make_string (value, 32);
4765 void
4766 syms_of_fns (void)
4768 /* Hash table stuff. */
4769 Qhash_table_p = intern_c_string ("hash-table-p");
4770 staticpro (&Qhash_table_p);
4771 Qeq = intern_c_string ("eq");
4772 staticpro (&Qeq);
4773 Qeql = intern_c_string ("eql");
4774 staticpro (&Qeql);
4775 Qequal = intern_c_string ("equal");
4776 staticpro (&Qequal);
4777 QCtest = intern_c_string (":test");
4778 staticpro (&QCtest);
4779 QCsize = intern_c_string (":size");
4780 staticpro (&QCsize);
4781 QCrehash_size = intern_c_string (":rehash-size");
4782 staticpro (&QCrehash_size);
4783 QCrehash_threshold = intern_c_string (":rehash-threshold");
4784 staticpro (&QCrehash_threshold);
4785 QCweakness = intern_c_string (":weakness");
4786 staticpro (&QCweakness);
4787 Qkey = intern_c_string ("key");
4788 staticpro (&Qkey);
4789 Qvalue = intern_c_string ("value");
4790 staticpro (&Qvalue);
4791 Qhash_table_test = intern_c_string ("hash-table-test");
4792 staticpro (&Qhash_table_test);
4793 Qkey_or_value = intern_c_string ("key-or-value");
4794 staticpro (&Qkey_or_value);
4795 Qkey_and_value = intern_c_string ("key-and-value");
4796 staticpro (&Qkey_and_value);
4798 defsubr (&Ssxhash);
4799 defsubr (&Smake_hash_table);
4800 defsubr (&Scopy_hash_table);
4801 defsubr (&Shash_table_count);
4802 defsubr (&Shash_table_rehash_size);
4803 defsubr (&Shash_table_rehash_threshold);
4804 defsubr (&Shash_table_size);
4805 defsubr (&Shash_table_test);
4806 defsubr (&Shash_table_weakness);
4807 defsubr (&Shash_table_p);
4808 defsubr (&Sclrhash);
4809 defsubr (&Sgethash);
4810 defsubr (&Sputhash);
4811 defsubr (&Sremhash);
4812 defsubr (&Smaphash);
4813 defsubr (&Sdefine_hash_table_test);
4815 Qstring_lessp = intern_c_string ("string-lessp");
4816 staticpro (&Qstring_lessp);
4817 Qprovide = intern_c_string ("provide");
4818 staticpro (&Qprovide);
4819 Qrequire = intern_c_string ("require");
4820 staticpro (&Qrequire);
4821 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4822 staticpro (&Qyes_or_no_p_history);
4823 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4824 staticpro (&Qcursor_in_echo_area);
4825 Qwidget_type = intern_c_string ("widget-type");
4826 staticpro (&Qwidget_type);
4828 staticpro (&string_char_byte_cache_string);
4829 string_char_byte_cache_string = Qnil;
4831 require_nesting_list = Qnil;
4832 staticpro (&require_nesting_list);
4834 Fset (Qyes_or_no_p_history, Qnil);
4836 DEFVAR_LISP ("features", &Vfeatures,
4837 doc: /* A list of symbols which are the features of the executing Emacs.
4838 Used by `featurep' and `require', and altered by `provide'. */);
4839 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4840 Qsubfeatures = intern_c_string ("subfeatures");
4841 staticpro (&Qsubfeatures);
4843 #ifdef HAVE_LANGINFO_CODESET
4844 Qcodeset = intern_c_string ("codeset");
4845 staticpro (&Qcodeset);
4846 Qdays = intern_c_string ("days");
4847 staticpro (&Qdays);
4848 Qmonths = intern_c_string ("months");
4849 staticpro (&Qmonths);
4850 Qpaper = intern_c_string ("paper");
4851 staticpro (&Qpaper);
4852 #endif /* HAVE_LANGINFO_CODESET */
4854 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
4855 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4856 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4857 invoked by mouse clicks and mouse menu items.
4859 On some platforms, file selection dialogs are also enabled if this is
4860 non-nil. */);
4861 use_dialog_box = 1;
4863 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
4864 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4865 This applies to commands from menus and tool bar buttons even when
4866 they are initiated from the keyboard. If `use-dialog-box' is nil,
4867 that disables the use of a file dialog, regardless of the value of
4868 this variable. */);
4869 use_file_dialog = 1;
4871 defsubr (&Sidentity);
4872 defsubr (&Srandom);
4873 defsubr (&Slength);
4874 defsubr (&Ssafe_length);
4875 defsubr (&Sstring_bytes);
4876 defsubr (&Sstring_equal);
4877 defsubr (&Scompare_strings);
4878 defsubr (&Sstring_lessp);
4879 defsubr (&Sappend);
4880 defsubr (&Sconcat);
4881 defsubr (&Svconcat);
4882 defsubr (&Scopy_sequence);
4883 defsubr (&Sstring_make_multibyte);
4884 defsubr (&Sstring_make_unibyte);
4885 defsubr (&Sstring_as_multibyte);
4886 defsubr (&Sstring_as_unibyte);
4887 defsubr (&Sstring_to_multibyte);
4888 defsubr (&Sstring_to_unibyte);
4889 defsubr (&Scopy_alist);
4890 defsubr (&Ssubstring);
4891 defsubr (&Ssubstring_no_properties);
4892 defsubr (&Snthcdr);
4893 defsubr (&Snth);
4894 defsubr (&Selt);
4895 defsubr (&Smember);
4896 defsubr (&Smemq);
4897 defsubr (&Smemql);
4898 defsubr (&Sassq);
4899 defsubr (&Sassoc);
4900 defsubr (&Srassq);
4901 defsubr (&Srassoc);
4902 defsubr (&Sdelq);
4903 defsubr (&Sdelete);
4904 defsubr (&Snreverse);
4905 defsubr (&Sreverse);
4906 defsubr (&Ssort);
4907 defsubr (&Splist_get);
4908 defsubr (&Sget);
4909 defsubr (&Splist_put);
4910 defsubr (&Sput);
4911 defsubr (&Slax_plist_get);
4912 defsubr (&Slax_plist_put);
4913 defsubr (&Seql);
4914 defsubr (&Sequal);
4915 defsubr (&Sequal_including_properties);
4916 defsubr (&Sfillarray);
4917 defsubr (&Sclear_string);
4918 defsubr (&Snconc);
4919 defsubr (&Smapcar);
4920 defsubr (&Smapc);
4921 defsubr (&Smapconcat);
4922 defsubr (&Syes_or_no_p);
4923 defsubr (&Sload_average);
4924 defsubr (&Sfeaturep);
4925 defsubr (&Srequire);
4926 defsubr (&Sprovide);
4927 defsubr (&Splist_member);
4928 defsubr (&Swidget_put);
4929 defsubr (&Swidget_get);
4930 defsubr (&Swidget_apply);
4931 defsubr (&Sbase64_encode_region);
4932 defsubr (&Sbase64_decode_region);
4933 defsubr (&Sbase64_encode_string);
4934 defsubr (&Sbase64_decode_string);
4935 defsubr (&Smd5);
4936 defsubr (&Slocale_info);
4940 void
4941 init_fns (void)
4945 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
4946 (do not change this comment) */