Make sure smtpmail produces valid mbox files with Unix EOLs for FCC.
[emacs.git] / src / alloc.c
blobf85661415cdd80bbd298afe0a958c5f4530a397c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #include <signal.h>
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "character.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
59 #include <unistd.h>
60 #ifndef HAVE_UNISTD_H
61 extern POINTER_TYPE *sbrk ();
62 #endif
64 #include <fcntl.h>
66 #ifdef WINDOWSNT
67 #include "w32.h"
68 #endif
70 #ifdef DOUG_LEA_MALLOC
72 #include <malloc.h>
74 /* Specify maximum number of areas to mmap. It would be nice to use a
75 value that explicitly means "no limit". */
77 #define MMAP_MAX_AREAS 100000000
79 #else /* not DOUG_LEA_MALLOC */
81 /* The following come from gmalloc.c. */
83 extern size_t _bytes_used;
84 extern size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
89 #ifdef HAVE_PTHREAD
91 /* When GTK uses the file chooser dialog, different backends can be loaded
92 dynamically. One such a backend is the Gnome VFS backend that gets loaded
93 if you run Gnome. That backend creates several threads and also allocates
94 memory with malloc.
96 Also, gconf and gsettings may create several threads.
98 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
99 functions below are called from malloc, there is a chance that one
100 of these threads preempts the Emacs main thread and the hook variables
101 end up in an inconsistent state. So we have a mutex to prevent that (note
102 that the backend handles concurrent access to malloc within its own threads
103 but Emacs code running in the main thread is not included in that control).
105 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
106 happens in one of the backend threads we will have two threads that tries
107 to run Emacs code at once, and the code is not prepared for that.
108 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110 static pthread_mutex_t alloc_mutex;
112 #define BLOCK_INPUT_ALLOC \
113 do \
115 if (pthread_equal (pthread_self (), main_thread)) \
116 BLOCK_INPUT; \
117 pthread_mutex_lock (&alloc_mutex); \
119 while (0)
120 #define UNBLOCK_INPUT_ALLOC \
121 do \
123 pthread_mutex_unlock (&alloc_mutex); \
124 if (pthread_equal (pthread_self (), main_thread)) \
125 UNBLOCK_INPUT; \
127 while (0)
129 #else /* ! defined HAVE_PTHREAD */
131 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
132 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134 #endif /* ! defined HAVE_PTHREAD */
135 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
137 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
138 to a struct Lisp_String. */
140 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
141 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
142 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
144 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
145 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
146 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
148 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
149 Be careful during GC, because S->size contains the mark bit for
150 strings. */
152 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
154 /* Global variables. */
155 struct emacs_globals globals;
157 /* Number of bytes of consing done since the last gc. */
159 EMACS_INT consing_since_gc;
161 /* Similar minimum, computed from Vgc_cons_percentage. */
163 EMACS_INT gc_relative_threshold;
165 /* Minimum number of bytes of consing since GC before next GC,
166 when memory is full. */
168 EMACS_INT memory_full_cons_threshold;
170 /* Nonzero during GC. */
172 int gc_in_progress;
174 /* Nonzero means abort if try to GC.
175 This is for code which is written on the assumption that
176 no GC will happen, so as to verify that assumption. */
178 int abort_on_gc;
180 /* Number of live and free conses etc. */
182 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
183 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
184 static EMACS_INT total_free_floats, total_floats;
186 /* Points to memory space allocated as "spare", to be freed if we run
187 out of memory. We keep one large block, four cons-blocks, and
188 two string blocks. */
190 static char *spare_memory[7];
192 /* Amount of spare memory to keep in large reserve block, or to see
193 whether this much is available when malloc fails on a larger request. */
195 #define SPARE_MEMORY (1 << 14)
197 /* Number of extra blocks malloc should get when it needs more core. */
199 static int malloc_hysteresis;
201 /* Initialize it to a nonzero value to force it into data space
202 (rather than bss space). That way unexec will remap it into text
203 space (pure), on some systems. We have not implemented the
204 remapping on more recent systems because this is less important
205 nowadays than in the days of small memories and timesharing. */
207 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
208 #define PUREBEG (char *) pure
210 /* Pointer to the pure area, and its size. */
212 static char *purebeg;
213 static ptrdiff_t pure_size;
215 /* Number of bytes of pure storage used before pure storage overflowed.
216 If this is non-zero, this implies that an overflow occurred. */
218 static ptrdiff_t pure_bytes_used_before_overflow;
220 /* Value is non-zero if P points into pure space. */
222 #define PURE_POINTER_P(P) \
223 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
225 /* Index in pure at which next pure Lisp object will be allocated.. */
227 static EMACS_INT pure_bytes_used_lisp;
229 /* Number of bytes allocated for non-Lisp objects in pure storage. */
231 static EMACS_INT pure_bytes_used_non_lisp;
233 /* If nonzero, this is a warning delivered by malloc and not yet
234 displayed. */
236 const char *pending_malloc_warning;
238 /* Maximum amount of C stack to save when a GC happens. */
240 #ifndef MAX_SAVE_STACK
241 #define MAX_SAVE_STACK 16000
242 #endif
244 /* Buffer in which we save a copy of the C stack at each GC. */
246 #if MAX_SAVE_STACK > 0
247 static char *stack_copy;
248 static ptrdiff_t stack_copy_size;
249 #endif
251 /* Non-zero means ignore malloc warnings. Set during initialization.
252 Currently not used. */
254 static int ignore_warnings;
256 static Lisp_Object Qgc_cons_threshold;
257 Lisp_Object Qchar_table_extra_slots;
259 /* Hook run after GC has finished. */
261 static Lisp_Object Qpost_gc_hook;
263 static void mark_buffer (Lisp_Object);
264 static void mark_terminals (void);
265 static void gc_sweep (void);
266 static void mark_glyph_matrix (struct glyph_matrix *);
267 static void mark_face_cache (struct face_cache *);
269 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
270 static void refill_memory_reserve (void);
271 #endif
272 static struct Lisp_String *allocate_string (void);
273 static void compact_small_strings (void);
274 static void free_large_strings (void);
275 static void sweep_strings (void);
276 static void free_misc (Lisp_Object);
277 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
279 /* When scanning the C stack for live Lisp objects, Emacs keeps track
280 of what memory allocated via lisp_malloc is intended for what
281 purpose. This enumeration specifies the type of memory. */
283 enum mem_type
285 MEM_TYPE_NON_LISP,
286 MEM_TYPE_BUFFER,
287 MEM_TYPE_CONS,
288 MEM_TYPE_STRING,
289 MEM_TYPE_MISC,
290 MEM_TYPE_SYMBOL,
291 MEM_TYPE_FLOAT,
292 /* We used to keep separate mem_types for subtypes of vectors such as
293 process, hash_table, frame, terminal, and window, but we never made
294 use of the distinction, so it only caused source-code complexity
295 and runtime slowdown. Minor but pointless. */
296 MEM_TYPE_VECTORLIKE
299 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
300 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
303 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
305 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
306 #include <stdio.h> /* For fprintf. */
307 #endif
309 /* A unique object in pure space used to make some Lisp objects
310 on free lists recognizable in O(1). */
312 static Lisp_Object Vdead;
313 #define DEADP(x) EQ (x, Vdead)
315 #ifdef GC_MALLOC_CHECK
317 enum mem_type allocated_mem_type;
318 static int dont_register_blocks;
320 #endif /* GC_MALLOC_CHECK */
322 /* A node in the red-black tree describing allocated memory containing
323 Lisp data. Each such block is recorded with its start and end
324 address when it is allocated, and removed from the tree when it
325 is freed.
327 A red-black tree is a balanced binary tree with the following
328 properties:
330 1. Every node is either red or black.
331 2. Every leaf is black.
332 3. If a node is red, then both of its children are black.
333 4. Every simple path from a node to a descendant leaf contains
334 the same number of black nodes.
335 5. The root is always black.
337 When nodes are inserted into the tree, or deleted from the tree,
338 the tree is "fixed" so that these properties are always true.
340 A red-black tree with N internal nodes has height at most 2
341 log(N+1). Searches, insertions and deletions are done in O(log N).
342 Please see a text book about data structures for a detailed
343 description of red-black trees. Any book worth its salt should
344 describe them. */
346 struct mem_node
348 /* Children of this node. These pointers are never NULL. When there
349 is no child, the value is MEM_NIL, which points to a dummy node. */
350 struct mem_node *left, *right;
352 /* The parent of this node. In the root node, this is NULL. */
353 struct mem_node *parent;
355 /* Start and end of allocated region. */
356 void *start, *end;
358 /* Node color. */
359 enum {MEM_BLACK, MEM_RED} color;
361 /* Memory type. */
362 enum mem_type type;
365 /* Base address of stack. Set in main. */
367 Lisp_Object *stack_base;
369 /* Root of the tree describing allocated Lisp memory. */
371 static struct mem_node *mem_root;
373 /* Lowest and highest known address in the heap. */
375 static void *min_heap_address, *max_heap_address;
377 /* Sentinel node of the tree. */
379 static struct mem_node mem_z;
380 #define MEM_NIL &mem_z
382 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
383 static void lisp_free (POINTER_TYPE *);
384 static void mark_stack (void);
385 static int live_vector_p (struct mem_node *, void *);
386 static int live_buffer_p (struct mem_node *, void *);
387 static int live_string_p (struct mem_node *, void *);
388 static int live_cons_p (struct mem_node *, void *);
389 static int live_symbol_p (struct mem_node *, void *);
390 static int live_float_p (struct mem_node *, void *);
391 static int live_misc_p (struct mem_node *, void *);
392 static void mark_maybe_object (Lisp_Object);
393 static void mark_memory (void *, void *);
394 static void mem_init (void);
395 static struct mem_node *mem_insert (void *, void *, enum mem_type);
396 static void mem_insert_fixup (struct mem_node *);
397 static void mem_rotate_left (struct mem_node *);
398 static void mem_rotate_right (struct mem_node *);
399 static void mem_delete (struct mem_node *);
400 static void mem_delete_fixup (struct mem_node *);
401 static inline struct mem_node *mem_find (void *);
404 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
405 static void check_gcpros (void);
406 #endif
408 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
410 #ifndef DEADP
411 # define DEADP(x) 0
412 #endif
414 /* Recording what needs to be marked for gc. */
416 struct gcpro *gcprolist;
418 /* Addresses of staticpro'd variables. Initialize it to a nonzero
419 value; otherwise some compilers put it into BSS. */
421 #define NSTATICS 0x640
422 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
424 /* Index of next unused slot in staticvec. */
426 static int staticidx = 0;
428 static POINTER_TYPE *pure_alloc (size_t, int);
431 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
432 ALIGNMENT must be a power of 2. */
434 #define ALIGN(ptr, ALIGNMENT) \
435 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
436 & ~((ALIGNMENT) - 1)))
440 /************************************************************************
441 Malloc
442 ************************************************************************/
444 /* Function malloc calls this if it finds we are near exhausting storage. */
446 void
447 malloc_warning (const char *str)
449 pending_malloc_warning = str;
453 /* Display an already-pending malloc warning. */
455 void
456 display_malloc_warning (void)
458 call3 (intern ("display-warning"),
459 intern ("alloc"),
460 build_string (pending_malloc_warning),
461 intern ("emergency"));
462 pending_malloc_warning = 0;
465 /* Called if we can't allocate relocatable space for a buffer. */
467 void
468 buffer_memory_full (EMACS_INT nbytes)
470 /* If buffers use the relocating allocator, no need to free
471 spare_memory, because we may have plenty of malloc space left
472 that we could get, and if we don't, the malloc that fails will
473 itself cause spare_memory to be freed. If buffers don't use the
474 relocating allocator, treat this like any other failing
475 malloc. */
477 #ifndef REL_ALLOC
478 memory_full (nbytes);
479 #endif
481 /* This used to call error, but if we've run out of memory, we could
482 get infinite recursion trying to build the string. */
483 xsignal (Qnil, Vmemory_signal_data);
487 #ifndef XMALLOC_OVERRUN_CHECK
488 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
489 #else
491 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
492 around each block.
494 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
495 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
496 block size in little-endian order. The trailer consists of
497 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
499 The header is used to detect whether this block has been allocated
500 through these functions, as some low-level libc functions may
501 bypass the malloc hooks. */
503 #define XMALLOC_OVERRUN_CHECK_SIZE 16
504 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
505 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
507 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
508 hold a size_t value and (2) the header size is a multiple of the
509 alignment that Emacs needs for C types and for USE_LSB_TAG. */
510 #define XMALLOC_BASE_ALIGNMENT \
511 offsetof ( \
512 struct { \
513 union { long double d; intmax_t i; void *p; } u; \
514 char c; \
515 }, \
517 #ifdef USE_LSB_TAG
518 /* A common multiple of the positive integers A and B. Ideally this
519 would be the least common multiple, but there's no way to do that
520 as a constant expression in C, so do the best that we can easily do. */
521 # define COMMON_MULTIPLE(a, b) \
522 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
546 /* Insert and extract the block size in the header. */
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 size <<= CHAR_BIT;
568 size += *ptr++;
570 return size;
574 /* The call depth in overrun_check functions. For example, this might happen:
575 xmalloc()
576 overrun_check_malloc()
577 -> malloc -> (via hook)_-> emacs_blocked_malloc
578 -> overrun_check_malloc
579 call malloc (hooks are NULL, so real malloc is called).
580 malloc returns 10000.
581 add overhead, return 10016.
582 <- (back in overrun_check_malloc)
583 add overhead again, return 10032
584 xmalloc returns 10032.
586 (time passes).
588 xfree(10032)
589 overrun_check_free(10032)
590 decrease overhead
591 free(10016) <- crash, because 10000 is the original pointer. */
593 static ptrdiff_t check_depth;
595 /* Like malloc, but wraps allocated block with header and trailer. */
597 static POINTER_TYPE *
598 overrun_check_malloc (size_t size)
600 register unsigned char *val;
601 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
602 if (SIZE_MAX - overhead < size)
603 abort ();
605 val = (unsigned char *) malloc (size + overhead);
606 if (val && check_depth == 1)
608 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
609 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
610 xmalloc_put_size (val, size);
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
614 --check_depth;
615 return (POINTER_TYPE *)val;
619 /* Like realloc, but checks old block for overrun, and wraps new block
620 with header and trailer. */
622 static POINTER_TYPE *
623 overrun_check_realloc (POINTER_TYPE *block, size_t size)
625 register unsigned char *val = (unsigned char *) block;
626 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
627 if (SIZE_MAX - overhead < size)
628 abort ();
630 if (val
631 && check_depth == 1
632 && memcmp (xmalloc_overrun_check_header,
633 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
634 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
636 size_t osize = xmalloc_get_size (val);
637 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
638 XMALLOC_OVERRUN_CHECK_SIZE))
639 abort ();
640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
641 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
645 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
647 if (val && check_depth == 1)
649 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
650 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 xmalloc_put_size (val, size);
652 memcpy (val + size, xmalloc_overrun_check_trailer,
653 XMALLOC_OVERRUN_CHECK_SIZE);
655 --check_depth;
656 return (POINTER_TYPE *)val;
659 /* Like free, but checks block for overrun. */
661 static void
662 overrun_check_free (POINTER_TYPE *block)
664 unsigned char *val = (unsigned char *) block;
666 ++check_depth;
667 if (val
668 && check_depth == 1
669 && memcmp (xmalloc_overrun_check_header,
670 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
671 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
673 size_t osize = xmalloc_get_size (val);
674 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
675 XMALLOC_OVERRUN_CHECK_SIZE))
676 abort ();
677 #ifdef XMALLOC_CLEAR_FREE_MEMORY
678 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
679 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
680 #else
681 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
682 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
683 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
684 #endif
687 free (val);
688 --check_depth;
691 #undef malloc
692 #undef realloc
693 #undef free
694 #define malloc overrun_check_malloc
695 #define realloc overrun_check_realloc
696 #define free overrun_check_free
697 #endif
699 #ifdef SYNC_INPUT
700 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
701 there's no need to block input around malloc. */
702 #define MALLOC_BLOCK_INPUT ((void)0)
703 #define MALLOC_UNBLOCK_INPUT ((void)0)
704 #else
705 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
706 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
707 #endif
709 /* Like malloc but check for no memory and block interrupt input.. */
711 POINTER_TYPE *
712 xmalloc (size_t size)
714 register POINTER_TYPE *val;
716 MALLOC_BLOCK_INPUT;
717 val = (POINTER_TYPE *) malloc (size);
718 MALLOC_UNBLOCK_INPUT;
720 if (!val && size)
721 memory_full (size);
722 return val;
726 /* Like realloc but check for no memory and block interrupt input.. */
728 POINTER_TYPE *
729 xrealloc (POINTER_TYPE *block, size_t size)
731 register POINTER_TYPE *val;
733 MALLOC_BLOCK_INPUT;
734 /* We must call malloc explicitly when BLOCK is 0, since some
735 reallocs don't do this. */
736 if (! block)
737 val = (POINTER_TYPE *) malloc (size);
738 else
739 val = (POINTER_TYPE *) realloc (block, size);
740 MALLOC_UNBLOCK_INPUT;
742 if (!val && size)
743 memory_full (size);
744 return val;
748 /* Like free but block interrupt input. */
750 void
751 xfree (POINTER_TYPE *block)
753 if (!block)
754 return;
755 MALLOC_BLOCK_INPUT;
756 free (block);
757 MALLOC_UNBLOCK_INPUT;
758 /* We don't call refill_memory_reserve here
759 because that duplicates doing so in emacs_blocked_free
760 and the criterion should go there. */
764 /* Other parts of Emacs pass large int values to allocator functions
765 expecting ptrdiff_t. This is portable in practice, but check it to
766 be safe. */
767 verify (INT_MAX <= PTRDIFF_MAX);
770 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
771 Signal an error on memory exhaustion, and block interrupt input. */
773 void *
774 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
776 xassert (0 <= nitems && 0 < item_size);
777 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
778 memory_full (SIZE_MAX);
779 return xmalloc (nitems * item_size);
783 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
784 Signal an error on memory exhaustion, and block interrupt input. */
786 void *
787 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
789 xassert (0 <= nitems && 0 < item_size);
790 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
791 memory_full (SIZE_MAX);
792 return xrealloc (pa, nitems * item_size);
796 /* Grow PA, which points to an array of *NITEMS items, and return the
797 location of the reallocated array, updating *NITEMS to reflect its
798 new size. The new array will contain at least NITEMS_INCR_MIN more
799 items, but will not contain more than NITEMS_MAX items total.
800 ITEM_SIZE is the size of each item, in bytes.
802 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
803 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
804 infinity.
806 If PA is null, then allocate a new array instead of reallocating
807 the old one. Thus, to grow an array A without saving its old
808 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
809 &NITEMS, ...).
811 Block interrupt input as needed. If memory exhaustion occurs, set
812 *NITEMS to zero if PA is null, and signal an error (i.e., do not
813 return). */
815 void *
816 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
817 ptrdiff_t nitems_max, ptrdiff_t item_size)
819 /* The approximate size to use for initial small allocation
820 requests. This is the largest "small" request for the GNU C
821 library malloc. */
822 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
824 /* If the array is tiny, grow it to about (but no greater than)
825 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
826 ptrdiff_t n = *nitems;
827 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
828 ptrdiff_t half_again = n >> 1;
829 ptrdiff_t incr_estimate = max (tiny_max, half_again);
831 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
832 NITEMS_MAX, and what the C language can represent safely. */
833 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
834 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
835 ? nitems_max : C_language_max);
836 ptrdiff_t nitems_incr_max = n_max - n;
837 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
839 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
840 if (! pa)
841 *nitems = 0;
842 if (nitems_incr_max < incr)
843 memory_full (SIZE_MAX);
844 n += incr;
845 pa = xrealloc (pa, n * item_size);
846 *nitems = n;
847 return pa;
851 /* Like strdup, but uses xmalloc. */
853 char *
854 xstrdup (const char *s)
856 size_t len = strlen (s) + 1;
857 char *p = (char *) xmalloc (len);
858 memcpy (p, s, len);
859 return p;
863 /* Unwind for SAFE_ALLOCA */
865 Lisp_Object
866 safe_alloca_unwind (Lisp_Object arg)
868 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
870 p->dogc = 0;
871 xfree (p->pointer);
872 p->pointer = 0;
873 free_misc (arg);
874 return Qnil;
878 /* Like malloc but used for allocating Lisp data. NBYTES is the
879 number of bytes to allocate, TYPE describes the intended use of the
880 allocated memory block (for strings, for conses, ...). */
882 #ifndef USE_LSB_TAG
883 static void *lisp_malloc_loser;
884 #endif
886 static POINTER_TYPE *
887 lisp_malloc (size_t nbytes, enum mem_type type)
889 register void *val;
891 MALLOC_BLOCK_INPUT;
893 #ifdef GC_MALLOC_CHECK
894 allocated_mem_type = type;
895 #endif
897 val = (void *) malloc (nbytes);
899 #ifndef USE_LSB_TAG
900 /* If the memory just allocated cannot be addressed thru a Lisp
901 object's pointer, and it needs to be,
902 that's equivalent to running out of memory. */
903 if (val && type != MEM_TYPE_NON_LISP)
905 Lisp_Object tem;
906 XSETCONS (tem, (char *) val + nbytes - 1);
907 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
909 lisp_malloc_loser = val;
910 free (val);
911 val = 0;
914 #endif
916 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
917 if (val && type != MEM_TYPE_NON_LISP)
918 mem_insert (val, (char *) val + nbytes, type);
919 #endif
921 MALLOC_UNBLOCK_INPUT;
922 if (!val && nbytes)
923 memory_full (nbytes);
924 return val;
927 /* Free BLOCK. This must be called to free memory allocated with a
928 call to lisp_malloc. */
930 static void
931 lisp_free (POINTER_TYPE *block)
933 MALLOC_BLOCK_INPUT;
934 free (block);
935 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
936 mem_delete (mem_find (block));
937 #endif
938 MALLOC_UNBLOCK_INPUT;
941 /* Allocation of aligned blocks of memory to store Lisp data. */
942 /* The entry point is lisp_align_malloc which returns blocks of at most */
943 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
945 /* Use posix_memalloc if the system has it and we're using the system's
946 malloc (because our gmalloc.c routines don't have posix_memalign although
947 its memalloc could be used). */
948 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
949 #define USE_POSIX_MEMALIGN 1
950 #endif
952 /* BLOCK_ALIGN has to be a power of 2. */
953 #define BLOCK_ALIGN (1 << 10)
955 /* Padding to leave at the end of a malloc'd block. This is to give
956 malloc a chance to minimize the amount of memory wasted to alignment.
957 It should be tuned to the particular malloc library used.
958 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
959 posix_memalign on the other hand would ideally prefer a value of 4
960 because otherwise, there's 1020 bytes wasted between each ablocks.
961 In Emacs, testing shows that those 1020 can most of the time be
962 efficiently used by malloc to place other objects, so a value of 0 can
963 still preferable unless you have a lot of aligned blocks and virtually
964 nothing else. */
965 #define BLOCK_PADDING 0
966 #define BLOCK_BYTES \
967 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
969 /* Internal data structures and constants. */
971 #define ABLOCKS_SIZE 16
973 /* An aligned block of memory. */
974 struct ablock
976 union
978 char payload[BLOCK_BYTES];
979 struct ablock *next_free;
980 } x;
981 /* `abase' is the aligned base of the ablocks. */
982 /* It is overloaded to hold the virtual `busy' field that counts
983 the number of used ablock in the parent ablocks.
984 The first ablock has the `busy' field, the others have the `abase'
985 field. To tell the difference, we assume that pointers will have
986 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
987 is used to tell whether the real base of the parent ablocks is `abase'
988 (if not, the word before the first ablock holds a pointer to the
989 real base). */
990 struct ablocks *abase;
991 /* The padding of all but the last ablock is unused. The padding of
992 the last ablock in an ablocks is not allocated. */
993 #if BLOCK_PADDING
994 char padding[BLOCK_PADDING];
995 #endif
998 /* A bunch of consecutive aligned blocks. */
999 struct ablocks
1001 struct ablock blocks[ABLOCKS_SIZE];
1004 /* Size of the block requested from malloc or memalign. */
1005 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1007 #define ABLOCK_ABASE(block) \
1008 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1009 ? (struct ablocks *)(block) \
1010 : (block)->abase)
1012 /* Virtual `busy' field. */
1013 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1015 /* Pointer to the (not necessarily aligned) malloc block. */
1016 #ifdef USE_POSIX_MEMALIGN
1017 #define ABLOCKS_BASE(abase) (abase)
1018 #else
1019 #define ABLOCKS_BASE(abase) \
1020 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1021 #endif
1023 /* The list of free ablock. */
1024 static struct ablock *free_ablock;
1026 /* Allocate an aligned block of nbytes.
1027 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1028 smaller or equal to BLOCK_BYTES. */
1029 static POINTER_TYPE *
1030 lisp_align_malloc (size_t nbytes, enum mem_type type)
1032 void *base, *val;
1033 struct ablocks *abase;
1035 eassert (nbytes <= BLOCK_BYTES);
1037 MALLOC_BLOCK_INPUT;
1039 #ifdef GC_MALLOC_CHECK
1040 allocated_mem_type = type;
1041 #endif
1043 if (!free_ablock)
1045 int i;
1046 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1048 #ifdef DOUG_LEA_MALLOC
1049 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1050 because mapped region contents are not preserved in
1051 a dumped Emacs. */
1052 mallopt (M_MMAP_MAX, 0);
1053 #endif
1055 #ifdef USE_POSIX_MEMALIGN
1057 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1058 if (err)
1059 base = NULL;
1060 abase = base;
1062 #else
1063 base = malloc (ABLOCKS_BYTES);
1064 abase = ALIGN (base, BLOCK_ALIGN);
1065 #endif
1067 if (base == 0)
1069 MALLOC_UNBLOCK_INPUT;
1070 memory_full (ABLOCKS_BYTES);
1073 aligned = (base == abase);
1074 if (!aligned)
1075 ((void**)abase)[-1] = base;
1077 #ifdef DOUG_LEA_MALLOC
1078 /* Back to a reasonable maximum of mmap'ed areas. */
1079 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1080 #endif
1082 #ifndef USE_LSB_TAG
1083 /* If the memory just allocated cannot be addressed thru a Lisp
1084 object's pointer, and it needs to be, that's equivalent to
1085 running out of memory. */
1086 if (type != MEM_TYPE_NON_LISP)
1088 Lisp_Object tem;
1089 char *end = (char *) base + ABLOCKS_BYTES - 1;
1090 XSETCONS (tem, end);
1091 if ((char *) XCONS (tem) != end)
1093 lisp_malloc_loser = base;
1094 free (base);
1095 MALLOC_UNBLOCK_INPUT;
1096 memory_full (SIZE_MAX);
1099 #endif
1101 /* Initialize the blocks and put them on the free list.
1102 Is `base' was not properly aligned, we can't use the last block. */
1103 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1105 abase->blocks[i].abase = abase;
1106 abase->blocks[i].x.next_free = free_ablock;
1107 free_ablock = &abase->blocks[i];
1109 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1111 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1112 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1113 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1114 eassert (ABLOCKS_BASE (abase) == base);
1115 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1118 abase = ABLOCK_ABASE (free_ablock);
1119 ABLOCKS_BUSY (abase) =
1120 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1121 val = free_ablock;
1122 free_ablock = free_ablock->x.next_free;
1124 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1125 if (type != MEM_TYPE_NON_LISP)
1126 mem_insert (val, (char *) val + nbytes, type);
1127 #endif
1129 MALLOC_UNBLOCK_INPUT;
1131 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1132 return val;
1135 static void
1136 lisp_align_free (POINTER_TYPE *block)
1138 struct ablock *ablock = block;
1139 struct ablocks *abase = ABLOCK_ABASE (ablock);
1141 MALLOC_BLOCK_INPUT;
1142 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1143 mem_delete (mem_find (block));
1144 #endif
1145 /* Put on free list. */
1146 ablock->x.next_free = free_ablock;
1147 free_ablock = ablock;
1148 /* Update busy count. */
1149 ABLOCKS_BUSY (abase) =
1150 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1152 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1153 { /* All the blocks are free. */
1154 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1155 struct ablock **tem = &free_ablock;
1156 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1158 while (*tem)
1160 if (*tem >= (struct ablock *) abase && *tem < atop)
1162 i++;
1163 *tem = (*tem)->x.next_free;
1165 else
1166 tem = &(*tem)->x.next_free;
1168 eassert ((aligned & 1) == aligned);
1169 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1170 #ifdef USE_POSIX_MEMALIGN
1171 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1172 #endif
1173 free (ABLOCKS_BASE (abase));
1175 MALLOC_UNBLOCK_INPUT;
1178 /* Return a new buffer structure allocated from the heap with
1179 a call to lisp_malloc. */
1181 struct buffer *
1182 allocate_buffer (void)
1184 struct buffer *b
1185 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1186 MEM_TYPE_BUFFER);
1187 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1188 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1189 / sizeof (EMACS_INT)));
1190 return b;
1194 #ifndef SYSTEM_MALLOC
1196 /* Arranging to disable input signals while we're in malloc.
1198 This only works with GNU malloc. To help out systems which can't
1199 use GNU malloc, all the calls to malloc, realloc, and free
1200 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1201 pair; unfortunately, we have no idea what C library functions
1202 might call malloc, so we can't really protect them unless you're
1203 using GNU malloc. Fortunately, most of the major operating systems
1204 can use GNU malloc. */
1206 #ifndef SYNC_INPUT
1207 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1208 there's no need to block input around malloc. */
1210 #ifndef DOUG_LEA_MALLOC
1211 extern void * (*__malloc_hook) (size_t, const void *);
1212 extern void * (*__realloc_hook) (void *, size_t, const void *);
1213 extern void (*__free_hook) (void *, const void *);
1214 /* Else declared in malloc.h, perhaps with an extra arg. */
1215 #endif /* DOUG_LEA_MALLOC */
1216 static void * (*old_malloc_hook) (size_t, const void *);
1217 static void * (*old_realloc_hook) (void *, size_t, const void*);
1218 static void (*old_free_hook) (void*, const void*);
1220 #ifdef DOUG_LEA_MALLOC
1221 # define BYTES_USED (mallinfo ().uordblks)
1222 #else
1223 # define BYTES_USED _bytes_used
1224 #endif
1226 static size_t bytes_used_when_reconsidered;
1228 /* Value of _bytes_used, when spare_memory was freed. */
1230 static size_t bytes_used_when_full;
1232 /* This function is used as the hook for free to call. */
1234 static void
1235 emacs_blocked_free (void *ptr, const void *ptr2)
1237 BLOCK_INPUT_ALLOC;
1239 #ifdef GC_MALLOC_CHECK
1240 if (ptr)
1242 struct mem_node *m;
1244 m = mem_find (ptr);
1245 if (m == MEM_NIL || m->start != ptr)
1247 fprintf (stderr,
1248 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1249 abort ();
1251 else
1253 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1254 mem_delete (m);
1257 #endif /* GC_MALLOC_CHECK */
1259 __free_hook = old_free_hook;
1260 free (ptr);
1262 /* If we released our reserve (due to running out of memory),
1263 and we have a fair amount free once again,
1264 try to set aside another reserve in case we run out once more. */
1265 if (! NILP (Vmemory_full)
1266 /* Verify there is enough space that even with the malloc
1267 hysteresis this call won't run out again.
1268 The code here is correct as long as SPARE_MEMORY
1269 is substantially larger than the block size malloc uses. */
1270 && (bytes_used_when_full
1271 > ((bytes_used_when_reconsidered = BYTES_USED)
1272 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1273 refill_memory_reserve ();
1275 __free_hook = emacs_blocked_free;
1276 UNBLOCK_INPUT_ALLOC;
1280 /* This function is the malloc hook that Emacs uses. */
1282 static void *
1283 emacs_blocked_malloc (size_t size, const void *ptr)
1285 void *value;
1287 BLOCK_INPUT_ALLOC;
1288 __malloc_hook = old_malloc_hook;
1289 #ifdef DOUG_LEA_MALLOC
1290 /* Segfaults on my system. --lorentey */
1291 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1292 #else
1293 __malloc_extra_blocks = malloc_hysteresis;
1294 #endif
1296 value = (void *) malloc (size);
1298 #ifdef GC_MALLOC_CHECK
1300 struct mem_node *m = mem_find (value);
1301 if (m != MEM_NIL)
1303 fprintf (stderr, "Malloc returned %p which is already in use\n",
1304 value);
1305 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1306 m->start, m->end, (char *) m->end - (char *) m->start,
1307 m->type);
1308 abort ();
1311 if (!dont_register_blocks)
1313 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1314 allocated_mem_type = MEM_TYPE_NON_LISP;
1317 #endif /* GC_MALLOC_CHECK */
1319 __malloc_hook = emacs_blocked_malloc;
1320 UNBLOCK_INPUT_ALLOC;
1322 /* fprintf (stderr, "%p malloc\n", value); */
1323 return value;
1327 /* This function is the realloc hook that Emacs uses. */
1329 static void *
1330 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1332 void *value;
1334 BLOCK_INPUT_ALLOC;
1335 __realloc_hook = old_realloc_hook;
1337 #ifdef GC_MALLOC_CHECK
1338 if (ptr)
1340 struct mem_node *m = mem_find (ptr);
1341 if (m == MEM_NIL || m->start != ptr)
1343 fprintf (stderr,
1344 "Realloc of %p which wasn't allocated with malloc\n",
1345 ptr);
1346 abort ();
1349 mem_delete (m);
1352 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1354 /* Prevent malloc from registering blocks. */
1355 dont_register_blocks = 1;
1356 #endif /* GC_MALLOC_CHECK */
1358 value = (void *) realloc (ptr, size);
1360 #ifdef GC_MALLOC_CHECK
1361 dont_register_blocks = 0;
1364 struct mem_node *m = mem_find (value);
1365 if (m != MEM_NIL)
1367 fprintf (stderr, "Realloc returns memory that is already in use\n");
1368 abort ();
1371 /* Can't handle zero size regions in the red-black tree. */
1372 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1375 /* fprintf (stderr, "%p <- realloc\n", value); */
1376 #endif /* GC_MALLOC_CHECK */
1378 __realloc_hook = emacs_blocked_realloc;
1379 UNBLOCK_INPUT_ALLOC;
1381 return value;
1385 #ifdef HAVE_PTHREAD
1386 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1387 normal malloc. Some thread implementations need this as they call
1388 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1389 calls malloc because it is the first call, and we have an endless loop. */
1391 void
1392 reset_malloc_hooks (void)
1394 __free_hook = old_free_hook;
1395 __malloc_hook = old_malloc_hook;
1396 __realloc_hook = old_realloc_hook;
1398 #endif /* HAVE_PTHREAD */
1401 /* Called from main to set up malloc to use our hooks. */
1403 void
1404 uninterrupt_malloc (void)
1406 #ifdef HAVE_PTHREAD
1407 #ifdef DOUG_LEA_MALLOC
1408 pthread_mutexattr_t attr;
1410 /* GLIBC has a faster way to do this, but let's keep it portable.
1411 This is according to the Single UNIX Specification. */
1412 pthread_mutexattr_init (&attr);
1413 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1414 pthread_mutex_init (&alloc_mutex, &attr);
1415 #else /* !DOUG_LEA_MALLOC */
1416 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1417 and the bundled gmalloc.c doesn't require it. */
1418 pthread_mutex_init (&alloc_mutex, NULL);
1419 #endif /* !DOUG_LEA_MALLOC */
1420 #endif /* HAVE_PTHREAD */
1422 if (__free_hook != emacs_blocked_free)
1423 old_free_hook = __free_hook;
1424 __free_hook = emacs_blocked_free;
1426 if (__malloc_hook != emacs_blocked_malloc)
1427 old_malloc_hook = __malloc_hook;
1428 __malloc_hook = emacs_blocked_malloc;
1430 if (__realloc_hook != emacs_blocked_realloc)
1431 old_realloc_hook = __realloc_hook;
1432 __realloc_hook = emacs_blocked_realloc;
1435 #endif /* not SYNC_INPUT */
1436 #endif /* not SYSTEM_MALLOC */
1440 /***********************************************************************
1441 Interval Allocation
1442 ***********************************************************************/
1444 /* Number of intervals allocated in an interval_block structure.
1445 The 1020 is 1024 minus malloc overhead. */
1447 #define INTERVAL_BLOCK_SIZE \
1448 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1450 /* Intervals are allocated in chunks in form of an interval_block
1451 structure. */
1453 struct interval_block
1455 /* Place `intervals' first, to preserve alignment. */
1456 struct interval intervals[INTERVAL_BLOCK_SIZE];
1457 struct interval_block *next;
1460 /* Current interval block. Its `next' pointer points to older
1461 blocks. */
1463 static struct interval_block *interval_block;
1465 /* Index in interval_block above of the next unused interval
1466 structure. */
1468 static int interval_block_index;
1470 /* Number of free and live intervals. */
1472 static EMACS_INT total_free_intervals, total_intervals;
1474 /* List of free intervals. */
1476 static INTERVAL interval_free_list;
1479 /* Initialize interval allocation. */
1481 static void
1482 init_intervals (void)
1484 interval_block = NULL;
1485 interval_block_index = INTERVAL_BLOCK_SIZE;
1486 interval_free_list = 0;
1490 /* Return a new interval. */
1492 INTERVAL
1493 make_interval (void)
1495 INTERVAL val;
1497 /* eassert (!handling_signal); */
1499 MALLOC_BLOCK_INPUT;
1501 if (interval_free_list)
1503 val = interval_free_list;
1504 interval_free_list = INTERVAL_PARENT (interval_free_list);
1506 else
1508 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1510 register struct interval_block *newi;
1512 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1513 MEM_TYPE_NON_LISP);
1515 newi->next = interval_block;
1516 interval_block = newi;
1517 interval_block_index = 0;
1519 val = &interval_block->intervals[interval_block_index++];
1522 MALLOC_UNBLOCK_INPUT;
1524 consing_since_gc += sizeof (struct interval);
1525 intervals_consed++;
1526 RESET_INTERVAL (val);
1527 val->gcmarkbit = 0;
1528 return val;
1532 /* Mark Lisp objects in interval I. */
1534 static void
1535 mark_interval (register INTERVAL i, Lisp_Object dummy)
1537 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1538 i->gcmarkbit = 1;
1539 mark_object (i->plist);
1543 /* Mark the interval tree rooted in TREE. Don't call this directly;
1544 use the macro MARK_INTERVAL_TREE instead. */
1546 static void
1547 mark_interval_tree (register INTERVAL tree)
1549 /* No need to test if this tree has been marked already; this
1550 function is always called through the MARK_INTERVAL_TREE macro,
1551 which takes care of that. */
1553 traverse_intervals_noorder (tree, mark_interval, Qnil);
1557 /* Mark the interval tree rooted in I. */
1559 #define MARK_INTERVAL_TREE(i) \
1560 do { \
1561 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1562 mark_interval_tree (i); \
1563 } while (0)
1566 #define UNMARK_BALANCE_INTERVALS(i) \
1567 do { \
1568 if (! NULL_INTERVAL_P (i)) \
1569 (i) = balance_intervals (i); \
1570 } while (0)
1573 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1574 can't create number objects in macros. */
1575 #ifndef make_number
1576 Lisp_Object
1577 make_number (EMACS_INT n)
1579 Lisp_Object obj;
1580 obj.s.val = n;
1581 obj.s.type = Lisp_Int;
1582 return obj;
1584 #endif
1586 /* Convert the pointer-sized word P to EMACS_INT while preserving its
1587 type and ptr fields. */
1588 static Lisp_Object
1589 widen_to_Lisp_Object (void *p)
1591 intptr_t i = (intptr_t) p;
1592 #ifdef USE_LISP_UNION_TYPE
1593 Lisp_Object obj;
1594 obj.i = i;
1595 return obj;
1596 #else
1597 return i;
1598 #endif
1601 /***********************************************************************
1602 String Allocation
1603 ***********************************************************************/
1605 /* Lisp_Strings are allocated in string_block structures. When a new
1606 string_block is allocated, all the Lisp_Strings it contains are
1607 added to a free-list string_free_list. When a new Lisp_String is
1608 needed, it is taken from that list. During the sweep phase of GC,
1609 string_blocks that are entirely free are freed, except two which
1610 we keep.
1612 String data is allocated from sblock structures. Strings larger
1613 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1614 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1616 Sblocks consist internally of sdata structures, one for each
1617 Lisp_String. The sdata structure points to the Lisp_String it
1618 belongs to. The Lisp_String points back to the `u.data' member of
1619 its sdata structure.
1621 When a Lisp_String is freed during GC, it is put back on
1622 string_free_list, and its `data' member and its sdata's `string'
1623 pointer is set to null. The size of the string is recorded in the
1624 `u.nbytes' member of the sdata. So, sdata structures that are no
1625 longer used, can be easily recognized, and it's easy to compact the
1626 sblocks of small strings which we do in compact_small_strings. */
1628 /* Size in bytes of an sblock structure used for small strings. This
1629 is 8192 minus malloc overhead. */
1631 #define SBLOCK_SIZE 8188
1633 /* Strings larger than this are considered large strings. String data
1634 for large strings is allocated from individual sblocks. */
1636 #define LARGE_STRING_BYTES 1024
1638 /* Structure describing string memory sub-allocated from an sblock.
1639 This is where the contents of Lisp strings are stored. */
1641 struct sdata
1643 /* Back-pointer to the string this sdata belongs to. If null, this
1644 structure is free, and the NBYTES member of the union below
1645 contains the string's byte size (the same value that STRING_BYTES
1646 would return if STRING were non-null). If non-null, STRING_BYTES
1647 (STRING) is the size of the data, and DATA contains the string's
1648 contents. */
1649 struct Lisp_String *string;
1651 #ifdef GC_CHECK_STRING_BYTES
1653 EMACS_INT nbytes;
1654 unsigned char data[1];
1656 #define SDATA_NBYTES(S) (S)->nbytes
1657 #define SDATA_DATA(S) (S)->data
1658 #define SDATA_SELECTOR(member) member
1660 #else /* not GC_CHECK_STRING_BYTES */
1662 union
1664 /* When STRING is non-null. */
1665 unsigned char data[1];
1667 /* When STRING is null. */
1668 EMACS_INT nbytes;
1669 } u;
1671 #define SDATA_NBYTES(S) (S)->u.nbytes
1672 #define SDATA_DATA(S) (S)->u.data
1673 #define SDATA_SELECTOR(member) u.member
1675 #endif /* not GC_CHECK_STRING_BYTES */
1677 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1681 /* Structure describing a block of memory which is sub-allocated to
1682 obtain string data memory for strings. Blocks for small strings
1683 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1684 as large as needed. */
1686 struct sblock
1688 /* Next in list. */
1689 struct sblock *next;
1691 /* Pointer to the next free sdata block. This points past the end
1692 of the sblock if there isn't any space left in this block. */
1693 struct sdata *next_free;
1695 /* Start of data. */
1696 struct sdata first_data;
1699 /* Number of Lisp strings in a string_block structure. The 1020 is
1700 1024 minus malloc overhead. */
1702 #define STRING_BLOCK_SIZE \
1703 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1705 /* Structure describing a block from which Lisp_String structures
1706 are allocated. */
1708 struct string_block
1710 /* Place `strings' first, to preserve alignment. */
1711 struct Lisp_String strings[STRING_BLOCK_SIZE];
1712 struct string_block *next;
1715 /* Head and tail of the list of sblock structures holding Lisp string
1716 data. We always allocate from current_sblock. The NEXT pointers
1717 in the sblock structures go from oldest_sblock to current_sblock. */
1719 static struct sblock *oldest_sblock, *current_sblock;
1721 /* List of sblocks for large strings. */
1723 static struct sblock *large_sblocks;
1725 /* List of string_block structures. */
1727 static struct string_block *string_blocks;
1729 /* Free-list of Lisp_Strings. */
1731 static struct Lisp_String *string_free_list;
1733 /* Number of live and free Lisp_Strings. */
1735 static EMACS_INT total_strings, total_free_strings;
1737 /* Number of bytes used by live strings. */
1739 static EMACS_INT total_string_size;
1741 /* Given a pointer to a Lisp_String S which is on the free-list
1742 string_free_list, return a pointer to its successor in the
1743 free-list. */
1745 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1747 /* Return a pointer to the sdata structure belonging to Lisp string S.
1748 S must be live, i.e. S->data must not be null. S->data is actually
1749 a pointer to the `u.data' member of its sdata structure; the
1750 structure starts at a constant offset in front of that. */
1752 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1755 #ifdef GC_CHECK_STRING_OVERRUN
1757 /* We check for overrun in string data blocks by appending a small
1758 "cookie" after each allocated string data block, and check for the
1759 presence of this cookie during GC. */
1761 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1762 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1763 { '\xde', '\xad', '\xbe', '\xef' };
1765 #else
1766 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1767 #endif
1769 /* Value is the size of an sdata structure large enough to hold NBYTES
1770 bytes of string data. The value returned includes a terminating
1771 NUL byte, the size of the sdata structure, and padding. */
1773 #ifdef GC_CHECK_STRING_BYTES
1775 #define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
1777 + (NBYTES) + 1 \
1778 + sizeof (EMACS_INT) - 1) \
1779 & ~(sizeof (EMACS_INT) - 1))
1781 #else /* not GC_CHECK_STRING_BYTES */
1783 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1784 less than the size of that member. The 'max' is not needed when
1785 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1786 alignment code reserves enough space. */
1788 #define SDATA_SIZE(NBYTES) \
1789 ((SDATA_DATA_OFFSET \
1790 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1791 ? NBYTES \
1792 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1793 + 1 \
1794 + sizeof (EMACS_INT) - 1) \
1795 & ~(sizeof (EMACS_INT) - 1))
1797 #endif /* not GC_CHECK_STRING_BYTES */
1799 /* Extra bytes to allocate for each string. */
1801 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1803 /* Exact bound on the number of bytes in a string, not counting the
1804 terminating null. A string cannot contain more bytes than
1805 STRING_BYTES_BOUND, nor can it be so long that the size_t
1806 arithmetic in allocate_string_data would overflow while it is
1807 calculating a value to be passed to malloc. */
1808 #define STRING_BYTES_MAX \
1809 min (STRING_BYTES_BOUND, \
1810 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1811 - GC_STRING_EXTRA \
1812 - offsetof (struct sblock, first_data) \
1813 - SDATA_DATA_OFFSET) \
1814 & ~(sizeof (EMACS_INT) - 1)))
1816 /* Initialize string allocation. Called from init_alloc_once. */
1818 static void
1819 init_strings (void)
1821 total_strings = total_free_strings = total_string_size = 0;
1822 oldest_sblock = current_sblock = large_sblocks = NULL;
1823 string_blocks = NULL;
1824 string_free_list = NULL;
1825 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1826 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1830 #ifdef GC_CHECK_STRING_BYTES
1832 static int check_string_bytes_count;
1834 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1837 /* Like GC_STRING_BYTES, but with debugging check. */
1839 EMACS_INT
1840 string_bytes (struct Lisp_String *s)
1842 EMACS_INT nbytes =
1843 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1845 if (!PURE_POINTER_P (s)
1846 && s->data
1847 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1848 abort ();
1849 return nbytes;
1852 /* Check validity of Lisp strings' string_bytes member in B. */
1854 static void
1855 check_sblock (struct sblock *b)
1857 struct sdata *from, *end, *from_end;
1859 end = b->next_free;
1861 for (from = &b->first_data; from < end; from = from_end)
1863 /* Compute the next FROM here because copying below may
1864 overwrite data we need to compute it. */
1865 EMACS_INT nbytes;
1867 /* Check that the string size recorded in the string is the
1868 same as the one recorded in the sdata structure. */
1869 if (from->string)
1870 CHECK_STRING_BYTES (from->string);
1872 if (from->string)
1873 nbytes = GC_STRING_BYTES (from->string);
1874 else
1875 nbytes = SDATA_NBYTES (from);
1877 nbytes = SDATA_SIZE (nbytes);
1878 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1883 /* Check validity of Lisp strings' string_bytes member. ALL_P
1884 non-zero means check all strings, otherwise check only most
1885 recently allocated strings. Used for hunting a bug. */
1887 static void
1888 check_string_bytes (int all_p)
1890 if (all_p)
1892 struct sblock *b;
1894 for (b = large_sblocks; b; b = b->next)
1896 struct Lisp_String *s = b->first_data.string;
1897 if (s)
1898 CHECK_STRING_BYTES (s);
1901 for (b = oldest_sblock; b; b = b->next)
1902 check_sblock (b);
1904 else
1905 check_sblock (current_sblock);
1908 #endif /* GC_CHECK_STRING_BYTES */
1910 #ifdef GC_CHECK_STRING_FREE_LIST
1912 /* Walk through the string free list looking for bogus next pointers.
1913 This may catch buffer overrun from a previous string. */
1915 static void
1916 check_string_free_list (void)
1918 struct Lisp_String *s;
1920 /* Pop a Lisp_String off the free-list. */
1921 s = string_free_list;
1922 while (s != NULL)
1924 if ((uintptr_t) s < 1024)
1925 abort ();
1926 s = NEXT_FREE_LISP_STRING (s);
1929 #else
1930 #define check_string_free_list()
1931 #endif
1933 /* Return a new Lisp_String. */
1935 static struct Lisp_String *
1936 allocate_string (void)
1938 struct Lisp_String *s;
1940 /* eassert (!handling_signal); */
1942 MALLOC_BLOCK_INPUT;
1944 /* If the free-list is empty, allocate a new string_block, and
1945 add all the Lisp_Strings in it to the free-list. */
1946 if (string_free_list == NULL)
1948 struct string_block *b;
1949 int i;
1951 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1952 memset (b, 0, sizeof *b);
1953 b->next = string_blocks;
1954 string_blocks = b;
1956 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1958 s = b->strings + i;
1959 NEXT_FREE_LISP_STRING (s) = string_free_list;
1960 string_free_list = s;
1963 total_free_strings += STRING_BLOCK_SIZE;
1966 check_string_free_list ();
1968 /* Pop a Lisp_String off the free-list. */
1969 s = string_free_list;
1970 string_free_list = NEXT_FREE_LISP_STRING (s);
1972 MALLOC_UNBLOCK_INPUT;
1974 /* Probably not strictly necessary, but play it safe. */
1975 memset (s, 0, sizeof *s);
1977 --total_free_strings;
1978 ++total_strings;
1979 ++strings_consed;
1980 consing_since_gc += sizeof *s;
1982 #ifdef GC_CHECK_STRING_BYTES
1983 if (!noninteractive)
1985 if (++check_string_bytes_count == 200)
1987 check_string_bytes_count = 0;
1988 check_string_bytes (1);
1990 else
1991 check_string_bytes (0);
1993 #endif /* GC_CHECK_STRING_BYTES */
1995 return s;
1999 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2000 plus a NUL byte at the end. Allocate an sdata structure for S, and
2001 set S->data to its `u.data' member. Store a NUL byte at the end of
2002 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2003 S->data if it was initially non-null. */
2005 void
2006 allocate_string_data (struct Lisp_String *s,
2007 EMACS_INT nchars, EMACS_INT nbytes)
2009 struct sdata *data, *old_data;
2010 struct sblock *b;
2011 EMACS_INT needed, old_nbytes;
2013 if (STRING_BYTES_MAX < nbytes)
2014 string_overflow ();
2016 /* Determine the number of bytes needed to store NBYTES bytes
2017 of string data. */
2018 needed = SDATA_SIZE (nbytes);
2019 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2020 old_nbytes = GC_STRING_BYTES (s);
2022 MALLOC_BLOCK_INPUT;
2024 if (nbytes > LARGE_STRING_BYTES)
2026 size_t size = offsetof (struct sblock, first_data) + needed;
2028 #ifdef DOUG_LEA_MALLOC
2029 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2030 because mapped region contents are not preserved in
2031 a dumped Emacs.
2033 In case you think of allowing it in a dumped Emacs at the
2034 cost of not being able to re-dump, there's another reason:
2035 mmap'ed data typically have an address towards the top of the
2036 address space, which won't fit into an EMACS_INT (at least on
2037 32-bit systems with the current tagging scheme). --fx */
2038 mallopt (M_MMAP_MAX, 0);
2039 #endif
2041 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2043 #ifdef DOUG_LEA_MALLOC
2044 /* Back to a reasonable maximum of mmap'ed areas. */
2045 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2046 #endif
2048 b->next_free = &b->first_data;
2049 b->first_data.string = NULL;
2050 b->next = large_sblocks;
2051 large_sblocks = b;
2053 else if (current_sblock == NULL
2054 || (((char *) current_sblock + SBLOCK_SIZE
2055 - (char *) current_sblock->next_free)
2056 < (needed + GC_STRING_EXTRA)))
2058 /* Not enough room in the current sblock. */
2059 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2060 b->next_free = &b->first_data;
2061 b->first_data.string = NULL;
2062 b->next = NULL;
2064 if (current_sblock)
2065 current_sblock->next = b;
2066 else
2067 oldest_sblock = b;
2068 current_sblock = b;
2070 else
2071 b = current_sblock;
2073 data = b->next_free;
2074 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2076 MALLOC_UNBLOCK_INPUT;
2078 data->string = s;
2079 s->data = SDATA_DATA (data);
2080 #ifdef GC_CHECK_STRING_BYTES
2081 SDATA_NBYTES (data) = nbytes;
2082 #endif
2083 s->size = nchars;
2084 s->size_byte = nbytes;
2085 s->data[nbytes] = '\0';
2086 #ifdef GC_CHECK_STRING_OVERRUN
2087 memcpy ((char *) data + needed, string_overrun_cookie,
2088 GC_STRING_OVERRUN_COOKIE_SIZE);
2089 #endif
2091 /* If S had already data assigned, mark that as free by setting its
2092 string back-pointer to null, and recording the size of the data
2093 in it. */
2094 if (old_data)
2096 SDATA_NBYTES (old_data) = old_nbytes;
2097 old_data->string = NULL;
2100 consing_since_gc += needed;
2104 /* Sweep and compact strings. */
2106 static void
2107 sweep_strings (void)
2109 struct string_block *b, *next;
2110 struct string_block *live_blocks = NULL;
2112 string_free_list = NULL;
2113 total_strings = total_free_strings = 0;
2114 total_string_size = 0;
2116 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2117 for (b = string_blocks; b; b = next)
2119 int i, nfree = 0;
2120 struct Lisp_String *free_list_before = string_free_list;
2122 next = b->next;
2124 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2126 struct Lisp_String *s = b->strings + i;
2128 if (s->data)
2130 /* String was not on free-list before. */
2131 if (STRING_MARKED_P (s))
2133 /* String is live; unmark it and its intervals. */
2134 UNMARK_STRING (s);
2136 if (!NULL_INTERVAL_P (s->intervals))
2137 UNMARK_BALANCE_INTERVALS (s->intervals);
2139 ++total_strings;
2140 total_string_size += STRING_BYTES (s);
2142 else
2144 /* String is dead. Put it on the free-list. */
2145 struct sdata *data = SDATA_OF_STRING (s);
2147 /* Save the size of S in its sdata so that we know
2148 how large that is. Reset the sdata's string
2149 back-pointer so that we know it's free. */
2150 #ifdef GC_CHECK_STRING_BYTES
2151 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2152 abort ();
2153 #else
2154 data->u.nbytes = GC_STRING_BYTES (s);
2155 #endif
2156 data->string = NULL;
2158 /* Reset the strings's `data' member so that we
2159 know it's free. */
2160 s->data = NULL;
2162 /* Put the string on the free-list. */
2163 NEXT_FREE_LISP_STRING (s) = string_free_list;
2164 string_free_list = s;
2165 ++nfree;
2168 else
2170 /* S was on the free-list before. Put it there again. */
2171 NEXT_FREE_LISP_STRING (s) = string_free_list;
2172 string_free_list = s;
2173 ++nfree;
2177 /* Free blocks that contain free Lisp_Strings only, except
2178 the first two of them. */
2179 if (nfree == STRING_BLOCK_SIZE
2180 && total_free_strings > STRING_BLOCK_SIZE)
2182 lisp_free (b);
2183 string_free_list = free_list_before;
2185 else
2187 total_free_strings += nfree;
2188 b->next = live_blocks;
2189 live_blocks = b;
2193 check_string_free_list ();
2195 string_blocks = live_blocks;
2196 free_large_strings ();
2197 compact_small_strings ();
2199 check_string_free_list ();
2203 /* Free dead large strings. */
2205 static void
2206 free_large_strings (void)
2208 struct sblock *b, *next;
2209 struct sblock *live_blocks = NULL;
2211 for (b = large_sblocks; b; b = next)
2213 next = b->next;
2215 if (b->first_data.string == NULL)
2216 lisp_free (b);
2217 else
2219 b->next = live_blocks;
2220 live_blocks = b;
2224 large_sblocks = live_blocks;
2228 /* Compact data of small strings. Free sblocks that don't contain
2229 data of live strings after compaction. */
2231 static void
2232 compact_small_strings (void)
2234 struct sblock *b, *tb, *next;
2235 struct sdata *from, *to, *end, *tb_end;
2236 struct sdata *to_end, *from_end;
2238 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2239 to, and TB_END is the end of TB. */
2240 tb = oldest_sblock;
2241 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2242 to = &tb->first_data;
2244 /* Step through the blocks from the oldest to the youngest. We
2245 expect that old blocks will stabilize over time, so that less
2246 copying will happen this way. */
2247 for (b = oldest_sblock; b; b = b->next)
2249 end = b->next_free;
2250 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2252 for (from = &b->first_data; from < end; from = from_end)
2254 /* Compute the next FROM here because copying below may
2255 overwrite data we need to compute it. */
2256 EMACS_INT nbytes;
2258 #ifdef GC_CHECK_STRING_BYTES
2259 /* Check that the string size recorded in the string is the
2260 same as the one recorded in the sdata structure. */
2261 if (from->string
2262 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2263 abort ();
2264 #endif /* GC_CHECK_STRING_BYTES */
2266 if (from->string)
2267 nbytes = GC_STRING_BYTES (from->string);
2268 else
2269 nbytes = SDATA_NBYTES (from);
2271 if (nbytes > LARGE_STRING_BYTES)
2272 abort ();
2274 nbytes = SDATA_SIZE (nbytes);
2275 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2277 #ifdef GC_CHECK_STRING_OVERRUN
2278 if (memcmp (string_overrun_cookie,
2279 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2280 GC_STRING_OVERRUN_COOKIE_SIZE))
2281 abort ();
2282 #endif
2284 /* FROM->string non-null means it's alive. Copy its data. */
2285 if (from->string)
2287 /* If TB is full, proceed with the next sblock. */
2288 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2289 if (to_end > tb_end)
2291 tb->next_free = to;
2292 tb = tb->next;
2293 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2294 to = &tb->first_data;
2295 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2298 /* Copy, and update the string's `data' pointer. */
2299 if (from != to)
2301 xassert (tb != b || to < from);
2302 memmove (to, from, nbytes + GC_STRING_EXTRA);
2303 to->string->data = SDATA_DATA (to);
2306 /* Advance past the sdata we copied to. */
2307 to = to_end;
2312 /* The rest of the sblocks following TB don't contain live data, so
2313 we can free them. */
2314 for (b = tb->next; b; b = next)
2316 next = b->next;
2317 lisp_free (b);
2320 tb->next_free = to;
2321 tb->next = NULL;
2322 current_sblock = tb;
2325 void
2326 string_overflow (void)
2328 error ("Maximum string size exceeded");
2331 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2332 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2333 LENGTH must be an integer.
2334 INIT must be an integer that represents a character. */)
2335 (Lisp_Object length, Lisp_Object init)
2337 register Lisp_Object val;
2338 register unsigned char *p, *end;
2339 int c;
2340 EMACS_INT nbytes;
2342 CHECK_NATNUM (length);
2343 CHECK_CHARACTER (init);
2345 c = XFASTINT (init);
2346 if (ASCII_CHAR_P (c))
2348 nbytes = XINT (length);
2349 val = make_uninit_string (nbytes);
2350 p = SDATA (val);
2351 end = p + SCHARS (val);
2352 while (p != end)
2353 *p++ = c;
2355 else
2357 unsigned char str[MAX_MULTIBYTE_LENGTH];
2358 int len = CHAR_STRING (c, str);
2359 EMACS_INT string_len = XINT (length);
2361 if (string_len > STRING_BYTES_MAX / len)
2362 string_overflow ();
2363 nbytes = len * string_len;
2364 val = make_uninit_multibyte_string (string_len, nbytes);
2365 p = SDATA (val);
2366 end = p + nbytes;
2367 while (p != end)
2369 memcpy (p, str, len);
2370 p += len;
2374 *p = 0;
2375 return val;
2379 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2380 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2381 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2382 (Lisp_Object length, Lisp_Object init)
2384 register Lisp_Object val;
2385 struct Lisp_Bool_Vector *p;
2386 EMACS_INT length_in_chars, length_in_elts;
2387 int bits_per_value;
2389 CHECK_NATNUM (length);
2391 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2393 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2394 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2395 / BOOL_VECTOR_BITS_PER_CHAR);
2397 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2398 slot `size' of the struct Lisp_Bool_Vector. */
2399 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2401 /* No Lisp_Object to trace in there. */
2402 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2404 p = XBOOL_VECTOR (val);
2405 p->size = XFASTINT (length);
2407 if (length_in_chars)
2409 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2411 /* Clear any extraneous bits in the last byte. */
2412 p->data[length_in_chars - 1]
2413 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2416 return val;
2420 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2421 of characters from the contents. This string may be unibyte or
2422 multibyte, depending on the contents. */
2424 Lisp_Object
2425 make_string (const char *contents, EMACS_INT nbytes)
2427 register Lisp_Object val;
2428 EMACS_INT nchars, multibyte_nbytes;
2430 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2431 &nchars, &multibyte_nbytes);
2432 if (nbytes == nchars || nbytes != multibyte_nbytes)
2433 /* CONTENTS contains no multibyte sequences or contains an invalid
2434 multibyte sequence. We must make unibyte string. */
2435 val = make_unibyte_string (contents, nbytes);
2436 else
2437 val = make_multibyte_string (contents, nchars, nbytes);
2438 return val;
2442 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2444 Lisp_Object
2445 make_unibyte_string (const char *contents, EMACS_INT length)
2447 register Lisp_Object val;
2448 val = make_uninit_string (length);
2449 memcpy (SDATA (val), contents, length);
2450 return val;
2454 /* Make a multibyte string from NCHARS characters occupying NBYTES
2455 bytes at CONTENTS. */
2457 Lisp_Object
2458 make_multibyte_string (const char *contents,
2459 EMACS_INT nchars, EMACS_INT nbytes)
2461 register Lisp_Object val;
2462 val = make_uninit_multibyte_string (nchars, nbytes);
2463 memcpy (SDATA (val), contents, nbytes);
2464 return val;
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2471 Lisp_Object
2472 make_string_from_bytes (const char *contents,
2473 EMACS_INT nchars, EMACS_INT nbytes)
2475 register Lisp_Object val;
2476 val = make_uninit_multibyte_string (nchars, nbytes);
2477 memcpy (SDATA (val), contents, nbytes);
2478 if (SBYTES (val) == SCHARS (val))
2479 STRING_SET_UNIBYTE (val);
2480 return val;
2484 /* Make a string from NCHARS characters occupying NBYTES bytes at
2485 CONTENTS. The argument MULTIBYTE controls whether to label the
2486 string as multibyte. If NCHARS is negative, it counts the number of
2487 characters by itself. */
2489 Lisp_Object
2490 make_specified_string (const char *contents,
2491 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2493 register Lisp_Object val;
2495 if (nchars < 0)
2497 if (multibyte)
2498 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2499 nbytes);
2500 else
2501 nchars = nbytes;
2503 val = make_uninit_multibyte_string (nchars, nbytes);
2504 memcpy (SDATA (val), contents, nbytes);
2505 if (!multibyte)
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2511 /* Make a string from the data at STR, treating it as multibyte if the
2512 data warrants. */
2514 Lisp_Object
2515 build_string (const char *str)
2517 return make_string (str, strlen (str));
2521 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2522 occupying LENGTH bytes. */
2524 Lisp_Object
2525 make_uninit_string (EMACS_INT length)
2527 Lisp_Object val;
2529 if (!length)
2530 return empty_unibyte_string;
2531 val = make_uninit_multibyte_string (length, length);
2532 STRING_SET_UNIBYTE (val);
2533 return val;
2537 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2538 which occupy NBYTES bytes. */
2540 Lisp_Object
2541 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2543 Lisp_Object string;
2544 struct Lisp_String *s;
2546 if (nchars < 0)
2547 abort ();
2548 if (!nbytes)
2549 return empty_multibyte_string;
2551 s = allocate_string ();
2552 allocate_string_data (s, nchars, nbytes);
2553 XSETSTRING (string, s);
2554 string_chars_consed += nbytes;
2555 return string;
2560 /***********************************************************************
2561 Float Allocation
2562 ***********************************************************************/
2564 /* We store float cells inside of float_blocks, allocating a new
2565 float_block with malloc whenever necessary. Float cells reclaimed
2566 by GC are put on a free list to be reallocated before allocating
2567 any new float cells from the latest float_block. */
2569 #define FLOAT_BLOCK_SIZE \
2570 (((BLOCK_BYTES - sizeof (struct float_block *) \
2571 /* The compiler might add padding at the end. */ \
2572 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2573 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2575 #define GETMARKBIT(block,n) \
2576 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2577 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2578 & 1)
2580 #define SETMARKBIT(block,n) \
2581 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2582 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2584 #define UNSETMARKBIT(block,n) \
2585 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2586 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2588 #define FLOAT_BLOCK(fptr) \
2589 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2591 #define FLOAT_INDEX(fptr) \
2592 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2594 struct float_block
2596 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2597 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2598 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2599 struct float_block *next;
2602 #define FLOAT_MARKED_P(fptr) \
2603 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2605 #define FLOAT_MARK(fptr) \
2606 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2608 #define FLOAT_UNMARK(fptr) \
2609 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2611 /* Current float_block. */
2613 static struct float_block *float_block;
2615 /* Index of first unused Lisp_Float in the current float_block. */
2617 static int float_block_index;
2619 /* Free-list of Lisp_Floats. */
2621 static struct Lisp_Float *float_free_list;
2624 /* Initialize float allocation. */
2626 static void
2627 init_float (void)
2629 float_block = NULL;
2630 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2631 float_free_list = 0;
2635 /* Return a new float object with value FLOAT_VALUE. */
2637 Lisp_Object
2638 make_float (double float_value)
2640 register Lisp_Object val;
2642 /* eassert (!handling_signal); */
2644 MALLOC_BLOCK_INPUT;
2646 if (float_free_list)
2648 /* We use the data field for chaining the free list
2649 so that we won't use the same field that has the mark bit. */
2650 XSETFLOAT (val, float_free_list);
2651 float_free_list = float_free_list->u.chain;
2653 else
2655 if (float_block_index == FLOAT_BLOCK_SIZE)
2657 register struct float_block *new;
2659 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2660 MEM_TYPE_FLOAT);
2661 new->next = float_block;
2662 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2663 float_block = new;
2664 float_block_index = 0;
2666 XSETFLOAT (val, &float_block->floats[float_block_index]);
2667 float_block_index++;
2670 MALLOC_UNBLOCK_INPUT;
2672 XFLOAT_INIT (val, float_value);
2673 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2674 consing_since_gc += sizeof (struct Lisp_Float);
2675 floats_consed++;
2676 return val;
2681 /***********************************************************************
2682 Cons Allocation
2683 ***********************************************************************/
2685 /* We store cons cells inside of cons_blocks, allocating a new
2686 cons_block with malloc whenever necessary. Cons cells reclaimed by
2687 GC are put on a free list to be reallocated before allocating
2688 any new cons cells from the latest cons_block. */
2690 #define CONS_BLOCK_SIZE \
2691 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2692 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2694 #define CONS_BLOCK(fptr) \
2695 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2697 #define CONS_INDEX(fptr) \
2698 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2700 struct cons_block
2702 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2703 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2704 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2705 struct cons_block *next;
2708 #define CONS_MARKED_P(fptr) \
2709 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2711 #define CONS_MARK(fptr) \
2712 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2714 #define CONS_UNMARK(fptr) \
2715 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2717 /* Current cons_block. */
2719 static struct cons_block *cons_block;
2721 /* Index of first unused Lisp_Cons in the current block. */
2723 static int cons_block_index;
2725 /* Free-list of Lisp_Cons structures. */
2727 static struct Lisp_Cons *cons_free_list;
2730 /* Initialize cons allocation. */
2732 static void
2733 init_cons (void)
2735 cons_block = NULL;
2736 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2737 cons_free_list = 0;
2741 /* Explicitly free a cons cell by putting it on the free-list. */
2743 void
2744 free_cons (struct Lisp_Cons *ptr)
2746 ptr->u.chain = cons_free_list;
2747 #if GC_MARK_STACK
2748 ptr->car = Vdead;
2749 #endif
2750 cons_free_list = ptr;
2753 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2754 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2755 (Lisp_Object car, Lisp_Object cdr)
2757 register Lisp_Object val;
2759 /* eassert (!handling_signal); */
2761 MALLOC_BLOCK_INPUT;
2763 if (cons_free_list)
2765 /* We use the cdr for chaining the free list
2766 so that we won't use the same field that has the mark bit. */
2767 XSETCONS (val, cons_free_list);
2768 cons_free_list = cons_free_list->u.chain;
2770 else
2772 if (cons_block_index == CONS_BLOCK_SIZE)
2774 register struct cons_block *new;
2775 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2776 MEM_TYPE_CONS);
2777 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2778 new->next = cons_block;
2779 cons_block = new;
2780 cons_block_index = 0;
2782 XSETCONS (val, &cons_block->conses[cons_block_index]);
2783 cons_block_index++;
2786 MALLOC_UNBLOCK_INPUT;
2788 XSETCAR (val, car);
2789 XSETCDR (val, cdr);
2790 eassert (!CONS_MARKED_P (XCONS (val)));
2791 consing_since_gc += sizeof (struct Lisp_Cons);
2792 cons_cells_consed++;
2793 return val;
2796 #ifdef GC_CHECK_CONS_LIST
2797 /* Get an error now if there's any junk in the cons free list. */
2798 void
2799 check_cons_list (void)
2801 struct Lisp_Cons *tail = cons_free_list;
2803 while (tail)
2804 tail = tail->u.chain;
2806 #endif
2808 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2810 Lisp_Object
2811 list1 (Lisp_Object arg1)
2813 return Fcons (arg1, Qnil);
2816 Lisp_Object
2817 list2 (Lisp_Object arg1, Lisp_Object arg2)
2819 return Fcons (arg1, Fcons (arg2, Qnil));
2823 Lisp_Object
2824 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2830 Lisp_Object
2831 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2833 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2837 Lisp_Object
2838 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2840 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2841 Fcons (arg5, Qnil)))));
2845 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2846 doc: /* Return a newly created list with specified arguments as elements.
2847 Any number of arguments, even zero arguments, are allowed.
2848 usage: (list &rest OBJECTS) */)
2849 (ptrdiff_t nargs, Lisp_Object *args)
2851 register Lisp_Object val;
2852 val = Qnil;
2854 while (nargs > 0)
2856 nargs--;
2857 val = Fcons (args[nargs], val);
2859 return val;
2863 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2864 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2865 (register Lisp_Object length, Lisp_Object init)
2867 register Lisp_Object val;
2868 register EMACS_INT size;
2870 CHECK_NATNUM (length);
2871 size = XFASTINT (length);
2873 val = Qnil;
2874 while (size > 0)
2876 val = Fcons (init, val);
2877 --size;
2879 if (size > 0)
2881 val = Fcons (init, val);
2882 --size;
2884 if (size > 0)
2886 val = Fcons (init, val);
2887 --size;
2889 if (size > 0)
2891 val = Fcons (init, val);
2892 --size;
2894 if (size > 0)
2896 val = Fcons (init, val);
2897 --size;
2903 QUIT;
2906 return val;
2911 /***********************************************************************
2912 Vector Allocation
2913 ***********************************************************************/
2915 /* Singly-linked list of all vectors. */
2917 static struct Lisp_Vector *all_vectors;
2919 /* Handy constants for vectorlike objects. */
2920 enum
2922 header_size = offsetof (struct Lisp_Vector, contents),
2923 word_size = sizeof (Lisp_Object)
2926 /* Value is a pointer to a newly allocated Lisp_Vector structure
2927 with room for LEN Lisp_Objects. */
2929 static struct Lisp_Vector *
2930 allocate_vectorlike (EMACS_INT len)
2932 struct Lisp_Vector *p;
2933 size_t nbytes;
2935 MALLOC_BLOCK_INPUT;
2937 #ifdef DOUG_LEA_MALLOC
2938 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2939 because mapped region contents are not preserved in
2940 a dumped Emacs. */
2941 mallopt (M_MMAP_MAX, 0);
2942 #endif
2944 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2945 /* eassert (!handling_signal); */
2947 nbytes = header_size + len * word_size;
2948 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2950 #ifdef DOUG_LEA_MALLOC
2951 /* Back to a reasonable maximum of mmap'ed areas. */
2952 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2953 #endif
2955 consing_since_gc += nbytes;
2956 vector_cells_consed += len;
2958 p->header.next.vector = all_vectors;
2959 all_vectors = p;
2961 MALLOC_UNBLOCK_INPUT;
2963 return p;
2967 /* Allocate a vector with LEN slots. */
2969 struct Lisp_Vector *
2970 allocate_vector (EMACS_INT len)
2972 struct Lisp_Vector *v;
2973 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2975 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2976 memory_full (SIZE_MAX);
2977 v = allocate_vectorlike (len);
2978 v->header.size = len;
2979 return v;
2983 /* Allocate other vector-like structures. */
2985 struct Lisp_Vector *
2986 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2988 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2989 int i;
2991 /* Only the first lisplen slots will be traced normally by the GC. */
2992 for (i = 0; i < lisplen; ++i)
2993 v->contents[i] = Qnil;
2995 XSETPVECTYPESIZE (v, tag, lisplen);
2996 return v;
2999 struct Lisp_Hash_Table *
3000 allocate_hash_table (void)
3002 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3006 struct window *
3007 allocate_window (void)
3009 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3013 struct terminal *
3014 allocate_terminal (void)
3016 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3017 next_terminal, PVEC_TERMINAL);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 memset (&t->next_terminal, 0,
3020 (char*) (t + 1) - (char*) &t->next_terminal);
3022 return t;
3025 struct frame *
3026 allocate_frame (void)
3028 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3029 face_cache, PVEC_FRAME);
3030 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3031 memset (&f->face_cache, 0,
3032 (char *) (f + 1) - (char *) &f->face_cache);
3033 return f;
3037 struct Lisp_Process *
3038 allocate_process (void)
3040 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3044 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3045 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3046 See also the function `vector'. */)
3047 (register Lisp_Object length, Lisp_Object init)
3049 Lisp_Object vector;
3050 register EMACS_INT sizei;
3051 register EMACS_INT i;
3052 register struct Lisp_Vector *p;
3054 CHECK_NATNUM (length);
3055 sizei = XFASTINT (length);
3057 p = allocate_vector (sizei);
3058 for (i = 0; i < sizei; i++)
3059 p->contents[i] = init;
3061 XSETVECTOR (vector, p);
3062 return vector;
3066 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3067 doc: /* Return a newly created vector with specified arguments as elements.
3068 Any number of arguments, even zero arguments, are allowed.
3069 usage: (vector &rest OBJECTS) */)
3070 (ptrdiff_t nargs, Lisp_Object *args)
3072 register Lisp_Object len, val;
3073 ptrdiff_t i;
3074 register struct Lisp_Vector *p;
3076 XSETFASTINT (len, nargs);
3077 val = Fmake_vector (len, Qnil);
3078 p = XVECTOR (val);
3079 for (i = 0; i < nargs; i++)
3080 p->contents[i] = args[i];
3081 return val;
3085 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3086 doc: /* Create a byte-code object with specified arguments as elements.
3087 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3088 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3089 and (optional) INTERACTIVE-SPEC.
3090 The first four arguments are required; at most six have any
3091 significance.
3092 The ARGLIST can be either like the one of `lambda', in which case the arguments
3093 will be dynamically bound before executing the byte code, or it can be an
3094 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3095 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3096 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3097 argument to catch the left-over arguments. If such an integer is used, the
3098 arguments will not be dynamically bound but will be instead pushed on the
3099 stack before executing the byte-code.
3100 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3101 (ptrdiff_t nargs, Lisp_Object *args)
3103 register Lisp_Object len, val;
3104 ptrdiff_t i;
3105 register struct Lisp_Vector *p;
3107 XSETFASTINT (len, nargs);
3108 if (!NILP (Vpurify_flag))
3109 val = make_pure_vector (nargs);
3110 else
3111 val = Fmake_vector (len, Qnil);
3113 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3114 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3115 earlier because they produced a raw 8-bit string for byte-code
3116 and now such a byte-code string is loaded as multibyte while
3117 raw 8-bit characters converted to multibyte form. Thus, now we
3118 must convert them back to the original unibyte form. */
3119 args[1] = Fstring_as_unibyte (args[1]);
3121 p = XVECTOR (val);
3122 for (i = 0; i < nargs; i++)
3124 if (!NILP (Vpurify_flag))
3125 args[i] = Fpurecopy (args[i]);
3126 p->contents[i] = args[i];
3128 XSETPVECTYPE (p, PVEC_COMPILED);
3129 XSETCOMPILED (val, p);
3130 return val;
3135 /***********************************************************************
3136 Symbol Allocation
3137 ***********************************************************************/
3139 /* Each symbol_block is just under 1020 bytes long, since malloc
3140 really allocates in units of powers of two and uses 4 bytes for its
3141 own overhead. */
3143 #define SYMBOL_BLOCK_SIZE \
3144 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3146 struct symbol_block
3148 /* Place `symbols' first, to preserve alignment. */
3149 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3150 struct symbol_block *next;
3153 /* Current symbol block and index of first unused Lisp_Symbol
3154 structure in it. */
3156 static struct symbol_block *symbol_block;
3157 static int symbol_block_index;
3159 /* List of free symbols. */
3161 static struct Lisp_Symbol *symbol_free_list;
3164 /* Initialize symbol allocation. */
3166 static void
3167 init_symbol (void)
3169 symbol_block = NULL;
3170 symbol_block_index = SYMBOL_BLOCK_SIZE;
3171 symbol_free_list = 0;
3175 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3176 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3177 Its value and function definition are void, and its property list is nil. */)
3178 (Lisp_Object name)
3180 register Lisp_Object val;
3181 register struct Lisp_Symbol *p;
3183 CHECK_STRING (name);
3185 /* eassert (!handling_signal); */
3187 MALLOC_BLOCK_INPUT;
3189 if (symbol_free_list)
3191 XSETSYMBOL (val, symbol_free_list);
3192 symbol_free_list = symbol_free_list->next;
3194 else
3196 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3198 struct symbol_block *new;
3199 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3200 MEM_TYPE_SYMBOL);
3201 new->next = symbol_block;
3202 symbol_block = new;
3203 symbol_block_index = 0;
3205 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3206 symbol_block_index++;
3209 MALLOC_UNBLOCK_INPUT;
3211 p = XSYMBOL (val);
3212 p->xname = name;
3213 p->plist = Qnil;
3214 p->redirect = SYMBOL_PLAINVAL;
3215 SET_SYMBOL_VAL (p, Qunbound);
3216 p->function = Qunbound;
3217 p->next = NULL;
3218 p->gcmarkbit = 0;
3219 p->interned = SYMBOL_UNINTERNED;
3220 p->constant = 0;
3221 p->declared_special = 0;
3222 consing_since_gc += sizeof (struct Lisp_Symbol);
3223 symbols_consed++;
3224 return val;
3229 /***********************************************************************
3230 Marker (Misc) Allocation
3231 ***********************************************************************/
3233 /* Allocation of markers and other objects that share that structure.
3234 Works like allocation of conses. */
3236 #define MARKER_BLOCK_SIZE \
3237 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3239 struct marker_block
3241 /* Place `markers' first, to preserve alignment. */
3242 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3243 struct marker_block *next;
3246 static struct marker_block *marker_block;
3247 static int marker_block_index;
3249 static union Lisp_Misc *marker_free_list;
3251 static void
3252 init_marker (void)
3254 marker_block = NULL;
3255 marker_block_index = MARKER_BLOCK_SIZE;
3256 marker_free_list = 0;
3259 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3261 Lisp_Object
3262 allocate_misc (void)
3264 Lisp_Object val;
3266 /* eassert (!handling_signal); */
3268 MALLOC_BLOCK_INPUT;
3270 if (marker_free_list)
3272 XSETMISC (val, marker_free_list);
3273 marker_free_list = marker_free_list->u_free.chain;
3275 else
3277 if (marker_block_index == MARKER_BLOCK_SIZE)
3279 struct marker_block *new;
3280 new = (struct marker_block *) lisp_malloc (sizeof *new,
3281 MEM_TYPE_MISC);
3282 new->next = marker_block;
3283 marker_block = new;
3284 marker_block_index = 0;
3285 total_free_markers += MARKER_BLOCK_SIZE;
3287 XSETMISC (val, &marker_block->markers[marker_block_index]);
3288 marker_block_index++;
3291 MALLOC_UNBLOCK_INPUT;
3293 --total_free_markers;
3294 consing_since_gc += sizeof (union Lisp_Misc);
3295 misc_objects_consed++;
3296 XMISCANY (val)->gcmarkbit = 0;
3297 return val;
3300 /* Free a Lisp_Misc object */
3302 static void
3303 free_misc (Lisp_Object misc)
3305 XMISCTYPE (misc) = Lisp_Misc_Free;
3306 XMISC (misc)->u_free.chain = marker_free_list;
3307 marker_free_list = XMISC (misc);
3309 total_free_markers++;
3312 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3313 INTEGER. This is used to package C values to call record_unwind_protect.
3314 The unwind function can get the C values back using XSAVE_VALUE. */
3316 Lisp_Object
3317 make_save_value (void *pointer, ptrdiff_t integer)
3319 register Lisp_Object val;
3320 register struct Lisp_Save_Value *p;
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3324 p = XSAVE_VALUE (val);
3325 p->pointer = pointer;
3326 p->integer = integer;
3327 p->dogc = 0;
3328 return val;
3331 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3332 doc: /* Return a newly allocated marker which does not point at any place. */)
3333 (void)
3335 register Lisp_Object val;
3336 register struct Lisp_Marker *p;
3338 val = allocate_misc ();
3339 XMISCTYPE (val) = Lisp_Misc_Marker;
3340 p = XMARKER (val);
3341 p->buffer = 0;
3342 p->bytepos = 0;
3343 p->charpos = 0;
3344 p->next = NULL;
3345 p->insertion_type = 0;
3346 return val;
3349 /* Put MARKER back on the free list after using it temporarily. */
3351 void
3352 free_marker (Lisp_Object marker)
3354 unchain_marker (XMARKER (marker));
3355 free_misc (marker);
3359 /* Return a newly created vector or string with specified arguments as
3360 elements. If all the arguments are characters that can fit
3361 in a string of events, make a string; otherwise, make a vector.
3363 Any number of arguments, even zero arguments, are allowed. */
3365 Lisp_Object
3366 make_event_array (register int nargs, Lisp_Object *args)
3368 int i;
3370 for (i = 0; i < nargs; i++)
3371 /* The things that fit in a string
3372 are characters that are in 0...127,
3373 after discarding the meta bit and all the bits above it. */
3374 if (!INTEGERP (args[i])
3375 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3376 return Fvector (nargs, args);
3378 /* Since the loop exited, we know that all the things in it are
3379 characters, so we can make a string. */
3381 Lisp_Object result;
3383 result = Fmake_string (make_number (nargs), make_number (0));
3384 for (i = 0; i < nargs; i++)
3386 SSET (result, i, XINT (args[i]));
3387 /* Move the meta bit to the right place for a string char. */
3388 if (XINT (args[i]) & CHAR_META)
3389 SSET (result, i, SREF (result, i) | 0x80);
3392 return result;
3398 /************************************************************************
3399 Memory Full Handling
3400 ************************************************************************/
3403 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3404 there may have been size_t overflow so that malloc was never
3405 called, or perhaps malloc was invoked successfully but the
3406 resulting pointer had problems fitting into a tagged EMACS_INT. In
3407 either case this counts as memory being full even though malloc did
3408 not fail. */
3410 void
3411 memory_full (size_t nbytes)
3413 /* Do not go into hysterics merely because a large request failed. */
3414 int enough_free_memory = 0;
3415 if (SPARE_MEMORY < nbytes)
3417 void *p;
3419 MALLOC_BLOCK_INPUT;
3420 p = malloc (SPARE_MEMORY);
3421 if (p)
3423 free (p);
3424 enough_free_memory = 1;
3426 MALLOC_UNBLOCK_INPUT;
3429 if (! enough_free_memory)
3431 int i;
3433 Vmemory_full = Qt;
3435 memory_full_cons_threshold = sizeof (struct cons_block);
3437 /* The first time we get here, free the spare memory. */
3438 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3439 if (spare_memory[i])
3441 if (i == 0)
3442 free (spare_memory[i]);
3443 else if (i >= 1 && i <= 4)
3444 lisp_align_free (spare_memory[i]);
3445 else
3446 lisp_free (spare_memory[i]);
3447 spare_memory[i] = 0;
3450 /* Record the space now used. When it decreases substantially,
3451 we can refill the memory reserve. */
3452 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3453 bytes_used_when_full = BYTES_USED;
3454 #endif
3457 /* This used to call error, but if we've run out of memory, we could
3458 get infinite recursion trying to build the string. */
3459 xsignal (Qnil, Vmemory_signal_data);
3462 /* If we released our reserve (due to running out of memory),
3463 and we have a fair amount free once again,
3464 try to set aside another reserve in case we run out once more.
3466 This is called when a relocatable block is freed in ralloc.c,
3467 and also directly from this file, in case we're not using ralloc.c. */
3469 void
3470 refill_memory_reserve (void)
3472 #ifndef SYSTEM_MALLOC
3473 if (spare_memory[0] == 0)
3474 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3475 if (spare_memory[1] == 0)
3476 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3477 MEM_TYPE_CONS);
3478 if (spare_memory[2] == 0)
3479 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3480 MEM_TYPE_CONS);
3481 if (spare_memory[3] == 0)
3482 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3483 MEM_TYPE_CONS);
3484 if (spare_memory[4] == 0)
3485 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3486 MEM_TYPE_CONS);
3487 if (spare_memory[5] == 0)
3488 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3489 MEM_TYPE_STRING);
3490 if (spare_memory[6] == 0)
3491 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3492 MEM_TYPE_STRING);
3493 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3494 Vmemory_full = Qnil;
3495 #endif
3498 /************************************************************************
3499 C Stack Marking
3500 ************************************************************************/
3502 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3504 /* Conservative C stack marking requires a method to identify possibly
3505 live Lisp objects given a pointer value. We do this by keeping
3506 track of blocks of Lisp data that are allocated in a red-black tree
3507 (see also the comment of mem_node which is the type of nodes in
3508 that tree). Function lisp_malloc adds information for an allocated
3509 block to the red-black tree with calls to mem_insert, and function
3510 lisp_free removes it with mem_delete. Functions live_string_p etc
3511 call mem_find to lookup information about a given pointer in the
3512 tree, and use that to determine if the pointer points to a Lisp
3513 object or not. */
3515 /* Initialize this part of alloc.c. */
3517 static void
3518 mem_init (void)
3520 mem_z.left = mem_z.right = MEM_NIL;
3521 mem_z.parent = NULL;
3522 mem_z.color = MEM_BLACK;
3523 mem_z.start = mem_z.end = NULL;
3524 mem_root = MEM_NIL;
3528 /* Value is a pointer to the mem_node containing START. Value is
3529 MEM_NIL if there is no node in the tree containing START. */
3531 static inline struct mem_node *
3532 mem_find (void *start)
3534 struct mem_node *p;
3536 if (start < min_heap_address || start > max_heap_address)
3537 return MEM_NIL;
3539 /* Make the search always successful to speed up the loop below. */
3540 mem_z.start = start;
3541 mem_z.end = (char *) start + 1;
3543 p = mem_root;
3544 while (start < p->start || start >= p->end)
3545 p = start < p->start ? p->left : p->right;
3546 return p;
3550 /* Insert a new node into the tree for a block of memory with start
3551 address START, end address END, and type TYPE. Value is a
3552 pointer to the node that was inserted. */
3554 static struct mem_node *
3555 mem_insert (void *start, void *end, enum mem_type type)
3557 struct mem_node *c, *parent, *x;
3559 if (min_heap_address == NULL || start < min_heap_address)
3560 min_heap_address = start;
3561 if (max_heap_address == NULL || end > max_heap_address)
3562 max_heap_address = end;
3564 /* See where in the tree a node for START belongs. In this
3565 particular application, it shouldn't happen that a node is already
3566 present. For debugging purposes, let's check that. */
3567 c = mem_root;
3568 parent = NULL;
3570 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3572 while (c != MEM_NIL)
3574 if (start >= c->start && start < c->end)
3575 abort ();
3576 parent = c;
3577 c = start < c->start ? c->left : c->right;
3580 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3582 while (c != MEM_NIL)
3584 parent = c;
3585 c = start < c->start ? c->left : c->right;
3588 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3590 /* Create a new node. */
3591 #ifdef GC_MALLOC_CHECK
3592 x = (struct mem_node *) _malloc_internal (sizeof *x);
3593 if (x == NULL)
3594 abort ();
3595 #else
3596 x = (struct mem_node *) xmalloc (sizeof *x);
3597 #endif
3598 x->start = start;
3599 x->end = end;
3600 x->type = type;
3601 x->parent = parent;
3602 x->left = x->right = MEM_NIL;
3603 x->color = MEM_RED;
3605 /* Insert it as child of PARENT or install it as root. */
3606 if (parent)
3608 if (start < parent->start)
3609 parent->left = x;
3610 else
3611 parent->right = x;
3613 else
3614 mem_root = x;
3616 /* Re-establish red-black tree properties. */
3617 mem_insert_fixup (x);
3619 return x;
3623 /* Re-establish the red-black properties of the tree, and thereby
3624 balance the tree, after node X has been inserted; X is always red. */
3626 static void
3627 mem_insert_fixup (struct mem_node *x)
3629 while (x != mem_root && x->parent->color == MEM_RED)
3631 /* X is red and its parent is red. This is a violation of
3632 red-black tree property #3. */
3634 if (x->parent == x->parent->parent->left)
3636 /* We're on the left side of our grandparent, and Y is our
3637 "uncle". */
3638 struct mem_node *y = x->parent->parent->right;
3640 if (y->color == MEM_RED)
3642 /* Uncle and parent are red but should be black because
3643 X is red. Change the colors accordingly and proceed
3644 with the grandparent. */
3645 x->parent->color = MEM_BLACK;
3646 y->color = MEM_BLACK;
3647 x->parent->parent->color = MEM_RED;
3648 x = x->parent->parent;
3650 else
3652 /* Parent and uncle have different colors; parent is
3653 red, uncle is black. */
3654 if (x == x->parent->right)
3656 x = x->parent;
3657 mem_rotate_left (x);
3660 x->parent->color = MEM_BLACK;
3661 x->parent->parent->color = MEM_RED;
3662 mem_rotate_right (x->parent->parent);
3665 else
3667 /* This is the symmetrical case of above. */
3668 struct mem_node *y = x->parent->parent->left;
3670 if (y->color == MEM_RED)
3672 x->parent->color = MEM_BLACK;
3673 y->color = MEM_BLACK;
3674 x->parent->parent->color = MEM_RED;
3675 x = x->parent->parent;
3677 else
3679 if (x == x->parent->left)
3681 x = x->parent;
3682 mem_rotate_right (x);
3685 x->parent->color = MEM_BLACK;
3686 x->parent->parent->color = MEM_RED;
3687 mem_rotate_left (x->parent->parent);
3692 /* The root may have been changed to red due to the algorithm. Set
3693 it to black so that property #5 is satisfied. */
3694 mem_root->color = MEM_BLACK;
3698 /* (x) (y)
3699 / \ / \
3700 a (y) ===> (x) c
3701 / \ / \
3702 b c a b */
3704 static void
3705 mem_rotate_left (struct mem_node *x)
3707 struct mem_node *y;
3709 /* Turn y's left sub-tree into x's right sub-tree. */
3710 y = x->right;
3711 x->right = y->left;
3712 if (y->left != MEM_NIL)
3713 y->left->parent = x;
3715 /* Y's parent was x's parent. */
3716 if (y != MEM_NIL)
3717 y->parent = x->parent;
3719 /* Get the parent to point to y instead of x. */
3720 if (x->parent)
3722 if (x == x->parent->left)
3723 x->parent->left = y;
3724 else
3725 x->parent->right = y;
3727 else
3728 mem_root = y;
3730 /* Put x on y's left. */
3731 y->left = x;
3732 if (x != MEM_NIL)
3733 x->parent = y;
3737 /* (x) (Y)
3738 / \ / \
3739 (y) c ===> a (x)
3740 / \ / \
3741 a b b c */
3743 static void
3744 mem_rotate_right (struct mem_node *x)
3746 struct mem_node *y = x->left;
3748 x->left = y->right;
3749 if (y->right != MEM_NIL)
3750 y->right->parent = x;
3752 if (y != MEM_NIL)
3753 y->parent = x->parent;
3754 if (x->parent)
3756 if (x == x->parent->right)
3757 x->parent->right = y;
3758 else
3759 x->parent->left = y;
3761 else
3762 mem_root = y;
3764 y->right = x;
3765 if (x != MEM_NIL)
3766 x->parent = y;
3770 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3772 static void
3773 mem_delete (struct mem_node *z)
3775 struct mem_node *x, *y;
3777 if (!z || z == MEM_NIL)
3778 return;
3780 if (z->left == MEM_NIL || z->right == MEM_NIL)
3781 y = z;
3782 else
3784 y = z->right;
3785 while (y->left != MEM_NIL)
3786 y = y->left;
3789 if (y->left != MEM_NIL)
3790 x = y->left;
3791 else
3792 x = y->right;
3794 x->parent = y->parent;
3795 if (y->parent)
3797 if (y == y->parent->left)
3798 y->parent->left = x;
3799 else
3800 y->parent->right = x;
3802 else
3803 mem_root = x;
3805 if (y != z)
3807 z->start = y->start;
3808 z->end = y->end;
3809 z->type = y->type;
3812 if (y->color == MEM_BLACK)
3813 mem_delete_fixup (x);
3815 #ifdef GC_MALLOC_CHECK
3816 _free_internal (y);
3817 #else
3818 xfree (y);
3819 #endif
3823 /* Re-establish the red-black properties of the tree, after a
3824 deletion. */
3826 static void
3827 mem_delete_fixup (struct mem_node *x)
3829 while (x != mem_root && x->color == MEM_BLACK)
3831 if (x == x->parent->left)
3833 struct mem_node *w = x->parent->right;
3835 if (w->color == MEM_RED)
3837 w->color = MEM_BLACK;
3838 x->parent->color = MEM_RED;
3839 mem_rotate_left (x->parent);
3840 w = x->parent->right;
3843 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3845 w->color = MEM_RED;
3846 x = x->parent;
3848 else
3850 if (w->right->color == MEM_BLACK)
3852 w->left->color = MEM_BLACK;
3853 w->color = MEM_RED;
3854 mem_rotate_right (w);
3855 w = x->parent->right;
3857 w->color = x->parent->color;
3858 x->parent->color = MEM_BLACK;
3859 w->right->color = MEM_BLACK;
3860 mem_rotate_left (x->parent);
3861 x = mem_root;
3864 else
3866 struct mem_node *w = x->parent->left;
3868 if (w->color == MEM_RED)
3870 w->color = MEM_BLACK;
3871 x->parent->color = MEM_RED;
3872 mem_rotate_right (x->parent);
3873 w = x->parent->left;
3876 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3878 w->color = MEM_RED;
3879 x = x->parent;
3881 else
3883 if (w->left->color == MEM_BLACK)
3885 w->right->color = MEM_BLACK;
3886 w->color = MEM_RED;
3887 mem_rotate_left (w);
3888 w = x->parent->left;
3891 w->color = x->parent->color;
3892 x->parent->color = MEM_BLACK;
3893 w->left->color = MEM_BLACK;
3894 mem_rotate_right (x->parent);
3895 x = mem_root;
3900 x->color = MEM_BLACK;
3904 /* Value is non-zero if P is a pointer to a live Lisp string on
3905 the heap. M is a pointer to the mem_block for P. */
3907 static inline int
3908 live_string_p (struct mem_node *m, void *p)
3910 if (m->type == MEM_TYPE_STRING)
3912 struct string_block *b = (struct string_block *) m->start;
3913 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3915 /* P must point to the start of a Lisp_String structure, and it
3916 must not be on the free-list. */
3917 return (offset >= 0
3918 && offset % sizeof b->strings[0] == 0
3919 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3920 && ((struct Lisp_String *) p)->data != NULL);
3922 else
3923 return 0;
3927 /* Value is non-zero if P is a pointer to a live Lisp cons on
3928 the heap. M is a pointer to the mem_block for P. */
3930 static inline int
3931 live_cons_p (struct mem_node *m, void *p)
3933 if (m->type == MEM_TYPE_CONS)
3935 struct cons_block *b = (struct cons_block *) m->start;
3936 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3938 /* P must point to the start of a Lisp_Cons, not be
3939 one of the unused cells in the current cons block,
3940 and not be on the free-list. */
3941 return (offset >= 0
3942 && offset % sizeof b->conses[0] == 0
3943 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3944 && (b != cons_block
3945 || offset / sizeof b->conses[0] < cons_block_index)
3946 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3948 else
3949 return 0;
3953 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3954 the heap. M is a pointer to the mem_block for P. */
3956 static inline int
3957 live_symbol_p (struct mem_node *m, void *p)
3959 if (m->type == MEM_TYPE_SYMBOL)
3961 struct symbol_block *b = (struct symbol_block *) m->start;
3962 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3964 /* P must point to the start of a Lisp_Symbol, not be
3965 one of the unused cells in the current symbol block,
3966 and not be on the free-list. */
3967 return (offset >= 0
3968 && offset % sizeof b->symbols[0] == 0
3969 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3970 && (b != symbol_block
3971 || offset / sizeof b->symbols[0] < symbol_block_index)
3972 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3974 else
3975 return 0;
3979 /* Value is non-zero if P is a pointer to a live Lisp float on
3980 the heap. M is a pointer to the mem_block for P. */
3982 static inline int
3983 live_float_p (struct mem_node *m, void *p)
3985 if (m->type == MEM_TYPE_FLOAT)
3987 struct float_block *b = (struct float_block *) m->start;
3988 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3990 /* P must point to the start of a Lisp_Float and not be
3991 one of the unused cells in the current float block. */
3992 return (offset >= 0
3993 && offset % sizeof b->floats[0] == 0
3994 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3995 && (b != float_block
3996 || offset / sizeof b->floats[0] < float_block_index));
3998 else
3999 return 0;
4003 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4004 the heap. M is a pointer to the mem_block for P. */
4006 static inline int
4007 live_misc_p (struct mem_node *m, void *p)
4009 if (m->type == MEM_TYPE_MISC)
4011 struct marker_block *b = (struct marker_block *) m->start;
4012 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4014 /* P must point to the start of a Lisp_Misc, not be
4015 one of the unused cells in the current misc block,
4016 and not be on the free-list. */
4017 return (offset >= 0
4018 && offset % sizeof b->markers[0] == 0
4019 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4020 && (b != marker_block
4021 || offset / sizeof b->markers[0] < marker_block_index)
4022 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4024 else
4025 return 0;
4029 /* Value is non-zero if P is a pointer to a live vector-like object.
4030 M is a pointer to the mem_block for P. */
4032 static inline int
4033 live_vector_p (struct mem_node *m, void *p)
4035 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4039 /* Value is non-zero if P is a pointer to a live buffer. M is a
4040 pointer to the mem_block for P. */
4042 static inline int
4043 live_buffer_p (struct mem_node *m, void *p)
4045 /* P must point to the start of the block, and the buffer
4046 must not have been killed. */
4047 return (m->type == MEM_TYPE_BUFFER
4048 && p == m->start
4049 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4052 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4054 #if GC_MARK_STACK
4056 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4058 /* Array of objects that are kept alive because the C stack contains
4059 a pattern that looks like a reference to them . */
4061 #define MAX_ZOMBIES 10
4062 static Lisp_Object zombies[MAX_ZOMBIES];
4064 /* Number of zombie objects. */
4066 static EMACS_INT nzombies;
4068 /* Number of garbage collections. */
4070 static EMACS_INT ngcs;
4072 /* Average percentage of zombies per collection. */
4074 static double avg_zombies;
4076 /* Max. number of live and zombie objects. */
4078 static EMACS_INT max_live, max_zombies;
4080 /* Average number of live objects per GC. */
4082 static double avg_live;
4084 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4085 doc: /* Show information about live and zombie objects. */)
4086 (void)
4088 Lisp_Object args[8], zombie_list = Qnil;
4089 EMACS_INT i;
4090 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4091 zombie_list = Fcons (zombies[i], zombie_list);
4092 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4093 args[1] = make_number (ngcs);
4094 args[2] = make_float (avg_live);
4095 args[3] = make_float (avg_zombies);
4096 args[4] = make_float (avg_zombies / avg_live / 100);
4097 args[5] = make_number (max_live);
4098 args[6] = make_number (max_zombies);
4099 args[7] = zombie_list;
4100 return Fmessage (8, args);
4103 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4106 /* Mark OBJ if we can prove it's a Lisp_Object. */
4108 static inline void
4109 mark_maybe_object (Lisp_Object obj)
4111 void *po;
4112 struct mem_node *m;
4114 if (INTEGERP (obj))
4115 return;
4117 po = (void *) XPNTR (obj);
4118 m = mem_find (po);
4120 if (m != MEM_NIL)
4122 int mark_p = 0;
4124 switch (XTYPE (obj))
4126 case Lisp_String:
4127 mark_p = (live_string_p (m, po)
4128 && !STRING_MARKED_P ((struct Lisp_String *) po));
4129 break;
4131 case Lisp_Cons:
4132 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4133 break;
4135 case Lisp_Symbol:
4136 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4137 break;
4139 case Lisp_Float:
4140 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4141 break;
4143 case Lisp_Vectorlike:
4144 /* Note: can't check BUFFERP before we know it's a
4145 buffer because checking that dereferences the pointer
4146 PO which might point anywhere. */
4147 if (live_vector_p (m, po))
4148 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4149 else if (live_buffer_p (m, po))
4150 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4151 break;
4153 case Lisp_Misc:
4154 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4155 break;
4157 default:
4158 break;
4161 if (mark_p)
4163 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4164 if (nzombies < MAX_ZOMBIES)
4165 zombies[nzombies] = obj;
4166 ++nzombies;
4167 #endif
4168 mark_object (obj);
4174 /* If P points to Lisp data, mark that as live if it isn't already
4175 marked. */
4177 static inline void
4178 mark_maybe_pointer (void *p)
4180 struct mem_node *m;
4182 /* Quickly rule out some values which can't point to Lisp data. */
4183 if ((intptr_t) p %
4184 #ifdef USE_LSB_TAG
4185 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4186 #else
4187 2 /* We assume that Lisp data is aligned on even addresses. */
4188 #endif
4190 return;
4192 m = mem_find (p);
4193 if (m != MEM_NIL)
4195 Lisp_Object obj = Qnil;
4197 switch (m->type)
4199 case MEM_TYPE_NON_LISP:
4200 /* Nothing to do; not a pointer to Lisp memory. */
4201 break;
4203 case MEM_TYPE_BUFFER:
4204 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4205 XSETVECTOR (obj, p);
4206 break;
4208 case MEM_TYPE_CONS:
4209 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4210 XSETCONS (obj, p);
4211 break;
4213 case MEM_TYPE_STRING:
4214 if (live_string_p (m, p)
4215 && !STRING_MARKED_P ((struct Lisp_String *) p))
4216 XSETSTRING (obj, p);
4217 break;
4219 case MEM_TYPE_MISC:
4220 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4221 XSETMISC (obj, p);
4222 break;
4224 case MEM_TYPE_SYMBOL:
4225 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4226 XSETSYMBOL (obj, p);
4227 break;
4229 case MEM_TYPE_FLOAT:
4230 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4231 XSETFLOAT (obj, p);
4232 break;
4234 case MEM_TYPE_VECTORLIKE:
4235 if (live_vector_p (m, p))
4237 Lisp_Object tem;
4238 XSETVECTOR (tem, p);
4239 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4240 obj = tem;
4242 break;
4244 default:
4245 abort ();
4248 if (!NILP (obj))
4249 mark_object (obj);
4254 /* Alignment of Lisp_Object and pointer values. Use offsetof, as it
4255 sometimes returns a smaller alignment than GCC's __alignof__ and
4256 mark_memory might miss objects if __alignof__ were used. For
4257 example, on x86 with WIDE_EMACS_INT, __alignof__ (Lisp_Object) is 8
4258 but GC_LISP_OBJECT_ALIGNMENT should be 4. */
4259 #ifndef GC_LISP_OBJECT_ALIGNMENT
4260 # define GC_LISP_OBJECT_ALIGNMENT offsetof (struct {char a; Lisp_Object b;}, b)
4261 #endif
4262 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4264 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4265 or END+OFFSET..START. */
4267 static void
4268 mark_memory (void *start, void *end)
4270 Lisp_Object *p;
4271 void **pp;
4272 int i;
4274 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4275 nzombies = 0;
4276 #endif
4278 /* Make START the pointer to the start of the memory region,
4279 if it isn't already. */
4280 if (end < start)
4282 void *tem = start;
4283 start = end;
4284 end = tem;
4287 /* Mark Lisp_Objects. */
4288 for (p = start; (void *) p < end; p++)
4289 for (i = 0; i < sizeof *p; i += GC_LISP_OBJECT_ALIGNMENT)
4290 mark_maybe_object (*(Lisp_Object *) ((char *) p + i));
4292 /* Mark Lisp data pointed to. This is necessary because, in some
4293 situations, the C compiler optimizes Lisp objects away, so that
4294 only a pointer to them remains. Example:
4296 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4299 Lisp_Object obj = build_string ("test");
4300 struct Lisp_String *s = XSTRING (obj);
4301 Fgarbage_collect ();
4302 fprintf (stderr, "test `%s'\n", s->data);
4303 return Qnil;
4306 Here, `obj' isn't really used, and the compiler optimizes it
4307 away. The only reference to the life string is through the
4308 pointer `s'. */
4310 for (pp = start; (void *) pp < end; pp++)
4311 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4313 void *w = *(void **) ((char *) pp + i);
4314 mark_maybe_pointer (w);
4316 #ifdef USE_LSB_TAG
4317 /* A host where a Lisp_Object is wider than a pointer might
4318 allocate a Lisp_Object in non-adjacent halves. If
4319 USE_LSB_TAG, the bottom half is not a valid pointer, so
4320 widen it to to a Lisp_Object and check it that way. */
4321 if (sizeof w < sizeof (Lisp_Object))
4322 mark_maybe_object (widen_to_Lisp_Object (w));
4323 #endif
4327 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4328 the GCC system configuration. In gcc 3.2, the only systems for
4329 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4330 by others?) and ns32k-pc532-min. */
4332 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4334 static int setjmp_tested_p, longjmps_done;
4336 #define SETJMP_WILL_LIKELY_WORK "\
4338 Emacs garbage collector has been changed to use conservative stack\n\
4339 marking. Emacs has determined that the method it uses to do the\n\
4340 marking will likely work on your system, but this isn't sure.\n\
4342 If you are a system-programmer, or can get the help of a local wizard\n\
4343 who is, please take a look at the function mark_stack in alloc.c, and\n\
4344 verify that the methods used are appropriate for your system.\n\
4346 Please mail the result to <emacs-devel@gnu.org>.\n\
4349 #define SETJMP_WILL_NOT_WORK "\
4351 Emacs garbage collector has been changed to use conservative stack\n\
4352 marking. Emacs has determined that the default method it uses to do the\n\
4353 marking will not work on your system. We will need a system-dependent\n\
4354 solution for your system.\n\
4356 Please take a look at the function mark_stack in alloc.c, and\n\
4357 try to find a way to make it work on your system.\n\
4359 Note that you may get false negatives, depending on the compiler.\n\
4360 In particular, you need to use -O with GCC for this test.\n\
4362 Please mail the result to <emacs-devel@gnu.org>.\n\
4366 /* Perform a quick check if it looks like setjmp saves registers in a
4367 jmp_buf. Print a message to stderr saying so. When this test
4368 succeeds, this is _not_ a proof that setjmp is sufficient for
4369 conservative stack marking. Only the sources or a disassembly
4370 can prove that. */
4372 static void
4373 test_setjmp (void)
4375 char buf[10];
4376 register int x;
4377 jmp_buf jbuf;
4378 int result = 0;
4380 /* Arrange for X to be put in a register. */
4381 sprintf (buf, "1");
4382 x = strlen (buf);
4383 x = 2 * x - 1;
4385 setjmp (jbuf);
4386 if (longjmps_done == 1)
4388 /* Came here after the longjmp at the end of the function.
4390 If x == 1, the longjmp has restored the register to its
4391 value before the setjmp, and we can hope that setjmp
4392 saves all such registers in the jmp_buf, although that
4393 isn't sure.
4395 For other values of X, either something really strange is
4396 taking place, or the setjmp just didn't save the register. */
4398 if (x == 1)
4399 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4400 else
4402 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4403 exit (1);
4407 ++longjmps_done;
4408 x = 2;
4409 if (longjmps_done == 1)
4410 longjmp (jbuf, 1);
4413 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4418 /* Abort if anything GCPRO'd doesn't survive the GC. */
4420 static void
4421 check_gcpros (void)
4423 struct gcpro *p;
4424 ptrdiff_t i;
4426 for (p = gcprolist; p; p = p->next)
4427 for (i = 0; i < p->nvars; ++i)
4428 if (!survives_gc_p (p->var[i]))
4429 /* FIXME: It's not necessarily a bug. It might just be that the
4430 GCPRO is unnecessary or should release the object sooner. */
4431 abort ();
4434 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4436 static void
4437 dump_zombies (void)
4439 int i;
4441 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4442 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4444 fprintf (stderr, " %d = ", i);
4445 debug_print (zombies[i]);
4449 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4452 /* Mark live Lisp objects on the C stack.
4454 There are several system-dependent problems to consider when
4455 porting this to new architectures:
4457 Processor Registers
4459 We have to mark Lisp objects in CPU registers that can hold local
4460 variables or are used to pass parameters.
4462 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4463 something that either saves relevant registers on the stack, or
4464 calls mark_maybe_object passing it each register's contents.
4466 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4467 implementation assumes that calling setjmp saves registers we need
4468 to see in a jmp_buf which itself lies on the stack. This doesn't
4469 have to be true! It must be verified for each system, possibly
4470 by taking a look at the source code of setjmp.
4472 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4473 can use it as a machine independent method to store all registers
4474 to the stack. In this case the macros described in the previous
4475 two paragraphs are not used.
4477 Stack Layout
4479 Architectures differ in the way their processor stack is organized.
4480 For example, the stack might look like this
4482 +----------------+
4483 | Lisp_Object | size = 4
4484 +----------------+
4485 | something else | size = 2
4486 +----------------+
4487 | Lisp_Object | size = 4
4488 +----------------+
4489 | ... |
4491 In such a case, not every Lisp_Object will be aligned equally. To
4492 find all Lisp_Object on the stack it won't be sufficient to walk
4493 the stack in steps of 4 bytes. Instead, two passes will be
4494 necessary, one starting at the start of the stack, and a second
4495 pass starting at the start of the stack + 2. Likewise, if the
4496 minimal alignment of Lisp_Objects on the stack is 1, four passes
4497 would be necessary, each one starting with one byte more offset
4498 from the stack start. */
4500 static void
4501 mark_stack (void)
4503 void *end;
4505 #ifdef HAVE___BUILTIN_UNWIND_INIT
4506 /* Force callee-saved registers and register windows onto the stack.
4507 This is the preferred method if available, obviating the need for
4508 machine dependent methods. */
4509 __builtin_unwind_init ();
4510 end = &end;
4511 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4512 #ifndef GC_SAVE_REGISTERS_ON_STACK
4513 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4514 union aligned_jmpbuf {
4515 Lisp_Object o;
4516 jmp_buf j;
4517 } j;
4518 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4519 #endif
4520 /* This trick flushes the register windows so that all the state of
4521 the process is contained in the stack. */
4522 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4523 needed on ia64 too. See mach_dep.c, where it also says inline
4524 assembler doesn't work with relevant proprietary compilers. */
4525 #ifdef __sparc__
4526 #if defined (__sparc64__) && defined (__FreeBSD__)
4527 /* FreeBSD does not have a ta 3 handler. */
4528 asm ("flushw");
4529 #else
4530 asm ("ta 3");
4531 #endif
4532 #endif
4534 /* Save registers that we need to see on the stack. We need to see
4535 registers used to hold register variables and registers used to
4536 pass parameters. */
4537 #ifdef GC_SAVE_REGISTERS_ON_STACK
4538 GC_SAVE_REGISTERS_ON_STACK (end);
4539 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4541 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4542 setjmp will definitely work, test it
4543 and print a message with the result
4544 of the test. */
4545 if (!setjmp_tested_p)
4547 setjmp_tested_p = 1;
4548 test_setjmp ();
4550 #endif /* GC_SETJMP_WORKS */
4552 setjmp (j.j);
4553 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4554 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4555 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4557 /* This assumes that the stack is a contiguous region in memory. If
4558 that's not the case, something has to be done here to iterate
4559 over the stack segments. */
4560 mark_memory (stack_base, end);
4562 /* Allow for marking a secondary stack, like the register stack on the
4563 ia64. */
4564 #ifdef GC_MARK_SECONDARY_STACK
4565 GC_MARK_SECONDARY_STACK ();
4566 #endif
4568 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4569 check_gcpros ();
4570 #endif
4573 #endif /* GC_MARK_STACK != 0 */
4576 /* Determine whether it is safe to access memory at address P. */
4577 static int
4578 valid_pointer_p (void *p)
4580 #ifdef WINDOWSNT
4581 return w32_valid_pointer_p (p, 16);
4582 #else
4583 int fd[2];
4585 /* Obviously, we cannot just access it (we would SEGV trying), so we
4586 trick the o/s to tell us whether p is a valid pointer.
4587 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4588 not validate p in that case. */
4590 if (pipe (fd) == 0)
4592 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4593 emacs_close (fd[1]);
4594 emacs_close (fd[0]);
4595 return valid;
4598 return -1;
4599 #endif
4602 /* Return 1 if OBJ is a valid lisp object.
4603 Return 0 if OBJ is NOT a valid lisp object.
4604 Return -1 if we cannot validate OBJ.
4605 This function can be quite slow,
4606 so it should only be used in code for manual debugging. */
4609 valid_lisp_object_p (Lisp_Object obj)
4611 void *p;
4612 #if GC_MARK_STACK
4613 struct mem_node *m;
4614 #endif
4616 if (INTEGERP (obj))
4617 return 1;
4619 p = (void *) XPNTR (obj);
4620 if (PURE_POINTER_P (p))
4621 return 1;
4623 #if !GC_MARK_STACK
4624 return valid_pointer_p (p);
4625 #else
4627 m = mem_find (p);
4629 if (m == MEM_NIL)
4631 int valid = valid_pointer_p (p);
4632 if (valid <= 0)
4633 return valid;
4635 if (SUBRP (obj))
4636 return 1;
4638 return 0;
4641 switch (m->type)
4643 case MEM_TYPE_NON_LISP:
4644 return 0;
4646 case MEM_TYPE_BUFFER:
4647 return live_buffer_p (m, p);
4649 case MEM_TYPE_CONS:
4650 return live_cons_p (m, p);
4652 case MEM_TYPE_STRING:
4653 return live_string_p (m, p);
4655 case MEM_TYPE_MISC:
4656 return live_misc_p (m, p);
4658 case MEM_TYPE_SYMBOL:
4659 return live_symbol_p (m, p);
4661 case MEM_TYPE_FLOAT:
4662 return live_float_p (m, p);
4664 case MEM_TYPE_VECTORLIKE:
4665 return live_vector_p (m, p);
4667 default:
4668 break;
4671 return 0;
4672 #endif
4678 /***********************************************************************
4679 Pure Storage Management
4680 ***********************************************************************/
4682 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4683 pointer to it. TYPE is the Lisp type for which the memory is
4684 allocated. TYPE < 0 means it's not used for a Lisp object. */
4686 static POINTER_TYPE *
4687 pure_alloc (size_t size, int type)
4689 POINTER_TYPE *result;
4690 #ifdef USE_LSB_TAG
4691 size_t alignment = (1 << GCTYPEBITS);
4692 #else
4693 size_t alignment = sizeof (EMACS_INT);
4695 /* Give Lisp_Floats an extra alignment. */
4696 if (type == Lisp_Float)
4698 #if defined __GNUC__ && __GNUC__ >= 2
4699 alignment = __alignof (struct Lisp_Float);
4700 #else
4701 alignment = sizeof (struct Lisp_Float);
4702 #endif
4704 #endif
4706 again:
4707 if (type >= 0)
4709 /* Allocate space for a Lisp object from the beginning of the free
4710 space with taking account of alignment. */
4711 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4712 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4714 else
4716 /* Allocate space for a non-Lisp object from the end of the free
4717 space. */
4718 pure_bytes_used_non_lisp += size;
4719 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4721 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4723 if (pure_bytes_used <= pure_size)
4724 return result;
4726 /* Don't allocate a large amount here,
4727 because it might get mmap'd and then its address
4728 might not be usable. */
4729 purebeg = (char *) xmalloc (10000);
4730 pure_size = 10000;
4731 pure_bytes_used_before_overflow += pure_bytes_used - size;
4732 pure_bytes_used = 0;
4733 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4734 goto again;
4738 /* Print a warning if PURESIZE is too small. */
4740 void
4741 check_pure_size (void)
4743 if (pure_bytes_used_before_overflow)
4744 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4745 " bytes needed)"),
4746 pure_bytes_used + pure_bytes_used_before_overflow);
4750 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4751 the non-Lisp data pool of the pure storage, and return its start
4752 address. Return NULL if not found. */
4754 static char *
4755 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4757 int i;
4758 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4759 const unsigned char *p;
4760 char *non_lisp_beg;
4762 if (pure_bytes_used_non_lisp < nbytes + 1)
4763 return NULL;
4765 /* Set up the Boyer-Moore table. */
4766 skip = nbytes + 1;
4767 for (i = 0; i < 256; i++)
4768 bm_skip[i] = skip;
4770 p = (const unsigned char *) data;
4771 while (--skip > 0)
4772 bm_skip[*p++] = skip;
4774 last_char_skip = bm_skip['\0'];
4776 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4777 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4779 /* See the comments in the function `boyer_moore' (search.c) for the
4780 use of `infinity'. */
4781 infinity = pure_bytes_used_non_lisp + 1;
4782 bm_skip['\0'] = infinity;
4784 p = (const unsigned char *) non_lisp_beg + nbytes;
4785 start = 0;
4788 /* Check the last character (== '\0'). */
4791 start += bm_skip[*(p + start)];
4793 while (start <= start_max);
4795 if (start < infinity)
4796 /* Couldn't find the last character. */
4797 return NULL;
4799 /* No less than `infinity' means we could find the last
4800 character at `p[start - infinity]'. */
4801 start -= infinity;
4803 /* Check the remaining characters. */
4804 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4805 /* Found. */
4806 return non_lisp_beg + start;
4808 start += last_char_skip;
4810 while (start <= start_max);
4812 return NULL;
4816 /* Return a string allocated in pure space. DATA is a buffer holding
4817 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4818 non-zero means make the result string multibyte.
4820 Must get an error if pure storage is full, since if it cannot hold
4821 a large string it may be able to hold conses that point to that
4822 string; then the string is not protected from gc. */
4824 Lisp_Object
4825 make_pure_string (const char *data,
4826 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4828 Lisp_Object string;
4829 struct Lisp_String *s;
4831 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4832 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4833 if (s->data == NULL)
4835 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4836 memcpy (s->data, data, nbytes);
4837 s->data[nbytes] = '\0';
4839 s->size = nchars;
4840 s->size_byte = multibyte ? nbytes : -1;
4841 s->intervals = NULL_INTERVAL;
4842 XSETSTRING (string, s);
4843 return string;
4846 /* Return a string a string allocated in pure space. Do not allocate
4847 the string data, just point to DATA. */
4849 Lisp_Object
4850 make_pure_c_string (const char *data)
4852 Lisp_Object string;
4853 struct Lisp_String *s;
4854 EMACS_INT nchars = strlen (data);
4856 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4857 s->size = nchars;
4858 s->size_byte = -1;
4859 s->data = (unsigned char *) data;
4860 s->intervals = NULL_INTERVAL;
4861 XSETSTRING (string, s);
4862 return string;
4865 /* Return a cons allocated from pure space. Give it pure copies
4866 of CAR as car and CDR as cdr. */
4868 Lisp_Object
4869 pure_cons (Lisp_Object car, Lisp_Object cdr)
4871 register Lisp_Object new;
4872 struct Lisp_Cons *p;
4874 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4875 XSETCONS (new, p);
4876 XSETCAR (new, Fpurecopy (car));
4877 XSETCDR (new, Fpurecopy (cdr));
4878 return new;
4882 /* Value is a float object with value NUM allocated from pure space. */
4884 static Lisp_Object
4885 make_pure_float (double num)
4887 register Lisp_Object new;
4888 struct Lisp_Float *p;
4890 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4891 XSETFLOAT (new, p);
4892 XFLOAT_INIT (new, num);
4893 return new;
4897 /* Return a vector with room for LEN Lisp_Objects allocated from
4898 pure space. */
4900 Lisp_Object
4901 make_pure_vector (EMACS_INT len)
4903 Lisp_Object new;
4904 struct Lisp_Vector *p;
4905 size_t size = (offsetof (struct Lisp_Vector, contents)
4906 + len * sizeof (Lisp_Object));
4908 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4909 XSETVECTOR (new, p);
4910 XVECTOR (new)->header.size = len;
4911 return new;
4915 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4916 doc: /* Make a copy of object OBJ in pure storage.
4917 Recursively copies contents of vectors and cons cells.
4918 Does not copy symbols. Copies strings without text properties. */)
4919 (register Lisp_Object obj)
4921 if (NILP (Vpurify_flag))
4922 return obj;
4924 if (PURE_POINTER_P (XPNTR (obj)))
4925 return obj;
4927 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4929 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4930 if (!NILP (tmp))
4931 return tmp;
4934 if (CONSP (obj))
4935 obj = pure_cons (XCAR (obj), XCDR (obj));
4936 else if (FLOATP (obj))
4937 obj = make_pure_float (XFLOAT_DATA (obj));
4938 else if (STRINGP (obj))
4939 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4940 SBYTES (obj),
4941 STRING_MULTIBYTE (obj));
4942 else if (COMPILEDP (obj) || VECTORP (obj))
4944 register struct Lisp_Vector *vec;
4945 register EMACS_INT i;
4946 EMACS_INT size;
4948 size = ASIZE (obj);
4949 if (size & PSEUDOVECTOR_FLAG)
4950 size &= PSEUDOVECTOR_SIZE_MASK;
4951 vec = XVECTOR (make_pure_vector (size));
4952 for (i = 0; i < size; i++)
4953 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4954 if (COMPILEDP (obj))
4956 XSETPVECTYPE (vec, PVEC_COMPILED);
4957 XSETCOMPILED (obj, vec);
4959 else
4960 XSETVECTOR (obj, vec);
4962 else if (MARKERP (obj))
4963 error ("Attempt to copy a marker to pure storage");
4964 else
4965 /* Not purified, don't hash-cons. */
4966 return obj;
4968 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4969 Fputhash (obj, obj, Vpurify_flag);
4971 return obj;
4976 /***********************************************************************
4977 Protection from GC
4978 ***********************************************************************/
4980 /* Put an entry in staticvec, pointing at the variable with address
4981 VARADDRESS. */
4983 void
4984 staticpro (Lisp_Object *varaddress)
4986 staticvec[staticidx++] = varaddress;
4987 if (staticidx >= NSTATICS)
4988 abort ();
4992 /***********************************************************************
4993 Protection from GC
4994 ***********************************************************************/
4996 /* Temporarily prevent garbage collection. */
4999 inhibit_garbage_collection (void)
5001 int count = SPECPDL_INDEX ();
5003 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5004 return count;
5008 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5009 doc: /* Reclaim storage for Lisp objects no longer needed.
5010 Garbage collection happens automatically if you cons more than
5011 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5012 `garbage-collect' normally returns a list with info on amount of space in use:
5013 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5014 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5015 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5016 (USED-STRINGS . FREE-STRINGS))
5017 However, if there was overflow in pure space, `garbage-collect'
5018 returns nil, because real GC can't be done.
5019 See Info node `(elisp)Garbage Collection'. */)
5020 (void)
5022 register struct specbinding *bind;
5023 char stack_top_variable;
5024 ptrdiff_t i;
5025 int message_p;
5026 Lisp_Object total[8];
5027 int count = SPECPDL_INDEX ();
5028 EMACS_TIME t1, t2, t3;
5030 if (abort_on_gc)
5031 abort ();
5033 /* Can't GC if pure storage overflowed because we can't determine
5034 if something is a pure object or not. */
5035 if (pure_bytes_used_before_overflow)
5036 return Qnil;
5038 CHECK_CONS_LIST ();
5040 /* Don't keep undo information around forever.
5041 Do this early on, so it is no problem if the user quits. */
5043 register struct buffer *nextb = all_buffers;
5045 while (nextb)
5047 /* If a buffer's undo list is Qt, that means that undo is
5048 turned off in that buffer. Calling truncate_undo_list on
5049 Qt tends to return NULL, which effectively turns undo back on.
5050 So don't call truncate_undo_list if undo_list is Qt. */
5051 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5052 truncate_undo_list (nextb);
5054 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5055 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5056 && ! nextb->text->inhibit_shrinking)
5058 /* If a buffer's gap size is more than 10% of the buffer
5059 size, or larger than 2000 bytes, then shrink it
5060 accordingly. Keep a minimum size of 20 bytes. */
5061 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5063 if (nextb->text->gap_size > size)
5065 struct buffer *save_current = current_buffer;
5066 current_buffer = nextb;
5067 make_gap (-(nextb->text->gap_size - size));
5068 current_buffer = save_current;
5072 nextb = nextb->header.next.buffer;
5076 EMACS_GET_TIME (t1);
5078 /* In case user calls debug_print during GC,
5079 don't let that cause a recursive GC. */
5080 consing_since_gc = 0;
5082 /* Save what's currently displayed in the echo area. */
5083 message_p = push_message ();
5084 record_unwind_protect (pop_message_unwind, Qnil);
5086 /* Save a copy of the contents of the stack, for debugging. */
5087 #if MAX_SAVE_STACK > 0
5088 if (NILP (Vpurify_flag))
5090 char *stack;
5091 ptrdiff_t stack_size;
5092 if (&stack_top_variable < stack_bottom)
5094 stack = &stack_top_variable;
5095 stack_size = stack_bottom - &stack_top_variable;
5097 else
5099 stack = stack_bottom;
5100 stack_size = &stack_top_variable - stack_bottom;
5102 if (stack_size <= MAX_SAVE_STACK)
5104 if (stack_copy_size < stack_size)
5106 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5107 stack_copy_size = stack_size;
5109 memcpy (stack_copy, stack, stack_size);
5112 #endif /* MAX_SAVE_STACK > 0 */
5114 if (garbage_collection_messages)
5115 message1_nolog ("Garbage collecting...");
5117 BLOCK_INPUT;
5119 shrink_regexp_cache ();
5121 gc_in_progress = 1;
5123 /* clear_marks (); */
5125 /* Mark all the special slots that serve as the roots of accessibility. */
5127 for (i = 0; i < staticidx; i++)
5128 mark_object (*staticvec[i]);
5130 for (bind = specpdl; bind != specpdl_ptr; bind++)
5132 mark_object (bind->symbol);
5133 mark_object (bind->old_value);
5135 mark_terminals ();
5136 mark_kboards ();
5137 mark_ttys ();
5139 #ifdef USE_GTK
5141 extern void xg_mark_data (void);
5142 xg_mark_data ();
5144 #endif
5146 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5147 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5148 mark_stack ();
5149 #else
5151 register struct gcpro *tail;
5152 for (tail = gcprolist; tail; tail = tail->next)
5153 for (i = 0; i < tail->nvars; i++)
5154 mark_object (tail->var[i]);
5156 mark_byte_stack ();
5158 struct catchtag *catch;
5159 struct handler *handler;
5161 for (catch = catchlist; catch; catch = catch->next)
5163 mark_object (catch->tag);
5164 mark_object (catch->val);
5166 for (handler = handlerlist; handler; handler = handler->next)
5168 mark_object (handler->handler);
5169 mark_object (handler->var);
5172 mark_backtrace ();
5173 #endif
5175 #ifdef HAVE_WINDOW_SYSTEM
5176 mark_fringe_data ();
5177 #endif
5179 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5180 mark_stack ();
5181 #endif
5183 /* Everything is now marked, except for the things that require special
5184 finalization, i.e. the undo_list.
5185 Look thru every buffer's undo list
5186 for elements that update markers that were not marked,
5187 and delete them. */
5189 register struct buffer *nextb = all_buffers;
5191 while (nextb)
5193 /* If a buffer's undo list is Qt, that means that undo is
5194 turned off in that buffer. Calling truncate_undo_list on
5195 Qt tends to return NULL, which effectively turns undo back on.
5196 So don't call truncate_undo_list if undo_list is Qt. */
5197 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5199 Lisp_Object tail, prev;
5200 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5201 prev = Qnil;
5202 while (CONSP (tail))
5204 if (CONSP (XCAR (tail))
5205 && MARKERP (XCAR (XCAR (tail)))
5206 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5208 if (NILP (prev))
5209 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5210 else
5212 tail = XCDR (tail);
5213 XSETCDR (prev, tail);
5216 else
5218 prev = tail;
5219 tail = XCDR (tail);
5223 /* Now that we have stripped the elements that need not be in the
5224 undo_list any more, we can finally mark the list. */
5225 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5227 nextb = nextb->header.next.buffer;
5231 gc_sweep ();
5233 /* Clear the mark bits that we set in certain root slots. */
5235 unmark_byte_stack ();
5236 VECTOR_UNMARK (&buffer_defaults);
5237 VECTOR_UNMARK (&buffer_local_symbols);
5239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5240 dump_zombies ();
5241 #endif
5243 UNBLOCK_INPUT;
5245 CHECK_CONS_LIST ();
5247 /* clear_marks (); */
5248 gc_in_progress = 0;
5250 consing_since_gc = 0;
5251 if (gc_cons_threshold < 10000)
5252 gc_cons_threshold = 10000;
5254 gc_relative_threshold = 0;
5255 if (FLOATP (Vgc_cons_percentage))
5256 { /* Set gc_cons_combined_threshold. */
5257 double tot = 0;
5259 tot += total_conses * sizeof (struct Lisp_Cons);
5260 tot += total_symbols * sizeof (struct Lisp_Symbol);
5261 tot += total_markers * sizeof (union Lisp_Misc);
5262 tot += total_string_size;
5263 tot += total_vector_size * sizeof (Lisp_Object);
5264 tot += total_floats * sizeof (struct Lisp_Float);
5265 tot += total_intervals * sizeof (struct interval);
5266 tot += total_strings * sizeof (struct Lisp_String);
5268 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5269 if (0 < tot)
5271 if (tot < TYPE_MAXIMUM (EMACS_INT))
5272 gc_relative_threshold = tot;
5273 else
5274 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5278 if (garbage_collection_messages)
5280 if (message_p || minibuf_level > 0)
5281 restore_message ();
5282 else
5283 message1_nolog ("Garbage collecting...done");
5286 unbind_to (count, Qnil);
5288 total[0] = Fcons (make_number (total_conses),
5289 make_number (total_free_conses));
5290 total[1] = Fcons (make_number (total_symbols),
5291 make_number (total_free_symbols));
5292 total[2] = Fcons (make_number (total_markers),
5293 make_number (total_free_markers));
5294 total[3] = make_number (total_string_size);
5295 total[4] = make_number (total_vector_size);
5296 total[5] = Fcons (make_number (total_floats),
5297 make_number (total_free_floats));
5298 total[6] = Fcons (make_number (total_intervals),
5299 make_number (total_free_intervals));
5300 total[7] = Fcons (make_number (total_strings),
5301 make_number (total_free_strings));
5303 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5305 /* Compute average percentage of zombies. */
5306 double nlive = 0;
5308 for (i = 0; i < 7; ++i)
5309 if (CONSP (total[i]))
5310 nlive += XFASTINT (XCAR (total[i]));
5312 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5313 max_live = max (nlive, max_live);
5314 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5315 max_zombies = max (nzombies, max_zombies);
5316 ++ngcs;
5318 #endif
5320 if (!NILP (Vpost_gc_hook))
5322 int gc_count = inhibit_garbage_collection ();
5323 safe_run_hooks (Qpost_gc_hook);
5324 unbind_to (gc_count, Qnil);
5327 /* Accumulate statistics. */
5328 EMACS_GET_TIME (t2);
5329 EMACS_SUB_TIME (t3, t2, t1);
5330 if (FLOATP (Vgc_elapsed))
5331 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5332 EMACS_SECS (t3) +
5333 EMACS_USECS (t3) * 1.0e-6);
5334 gcs_done++;
5336 return Flist (sizeof total / sizeof *total, total);
5340 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5341 only interesting objects referenced from glyphs are strings. */
5343 static void
5344 mark_glyph_matrix (struct glyph_matrix *matrix)
5346 struct glyph_row *row = matrix->rows;
5347 struct glyph_row *end = row + matrix->nrows;
5349 for (; row < end; ++row)
5350 if (row->enabled_p)
5352 int area;
5353 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5355 struct glyph *glyph = row->glyphs[area];
5356 struct glyph *end_glyph = glyph + row->used[area];
5358 for (; glyph < end_glyph; ++glyph)
5359 if (STRINGP (glyph->object)
5360 && !STRING_MARKED_P (XSTRING (glyph->object)))
5361 mark_object (glyph->object);
5367 /* Mark Lisp faces in the face cache C. */
5369 static void
5370 mark_face_cache (struct face_cache *c)
5372 if (c)
5374 int i, j;
5375 for (i = 0; i < c->used; ++i)
5377 struct face *face = FACE_FROM_ID (c->f, i);
5379 if (face)
5381 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5382 mark_object (face->lface[j]);
5390 /* Mark reference to a Lisp_Object.
5391 If the object referred to has not been seen yet, recursively mark
5392 all the references contained in it. */
5394 #define LAST_MARKED_SIZE 500
5395 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5396 static int last_marked_index;
5398 /* For debugging--call abort when we cdr down this many
5399 links of a list, in mark_object. In debugging,
5400 the call to abort will hit a breakpoint.
5401 Normally this is zero and the check never goes off. */
5402 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5404 static void
5405 mark_vectorlike (struct Lisp_Vector *ptr)
5407 EMACS_INT size = ptr->header.size;
5408 EMACS_INT i;
5410 eassert (!VECTOR_MARKED_P (ptr));
5411 VECTOR_MARK (ptr); /* Else mark it */
5412 if (size & PSEUDOVECTOR_FLAG)
5413 size &= PSEUDOVECTOR_SIZE_MASK;
5415 /* Note that this size is not the memory-footprint size, but only
5416 the number of Lisp_Object fields that we should trace.
5417 The distinction is used e.g. by Lisp_Process which places extra
5418 non-Lisp_Object fields at the end of the structure. */
5419 for (i = 0; i < size; i++) /* and then mark its elements */
5420 mark_object (ptr->contents[i]);
5423 /* Like mark_vectorlike but optimized for char-tables (and
5424 sub-char-tables) assuming that the contents are mostly integers or
5425 symbols. */
5427 static void
5428 mark_char_table (struct Lisp_Vector *ptr)
5430 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5431 int i;
5433 eassert (!VECTOR_MARKED_P (ptr));
5434 VECTOR_MARK (ptr);
5435 for (i = 0; i < size; i++)
5437 Lisp_Object val = ptr->contents[i];
5439 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5440 continue;
5441 if (SUB_CHAR_TABLE_P (val))
5443 if (! VECTOR_MARKED_P (XVECTOR (val)))
5444 mark_char_table (XVECTOR (val));
5446 else
5447 mark_object (val);
5451 void
5452 mark_object (Lisp_Object arg)
5454 register Lisp_Object obj = arg;
5455 #ifdef GC_CHECK_MARKED_OBJECTS
5456 void *po;
5457 struct mem_node *m;
5458 #endif
5459 ptrdiff_t cdr_count = 0;
5461 loop:
5463 if (PURE_POINTER_P (XPNTR (obj)))
5464 return;
5466 last_marked[last_marked_index++] = obj;
5467 if (last_marked_index == LAST_MARKED_SIZE)
5468 last_marked_index = 0;
5470 /* Perform some sanity checks on the objects marked here. Abort if
5471 we encounter an object we know is bogus. This increases GC time
5472 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5473 #ifdef GC_CHECK_MARKED_OBJECTS
5475 po = (void *) XPNTR (obj);
5477 /* Check that the object pointed to by PO is known to be a Lisp
5478 structure allocated from the heap. */
5479 #define CHECK_ALLOCATED() \
5480 do { \
5481 m = mem_find (po); \
5482 if (m == MEM_NIL) \
5483 abort (); \
5484 } while (0)
5486 /* Check that the object pointed to by PO is live, using predicate
5487 function LIVEP. */
5488 #define CHECK_LIVE(LIVEP) \
5489 do { \
5490 if (!LIVEP (m, po)) \
5491 abort (); \
5492 } while (0)
5494 /* Check both of the above conditions. */
5495 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5496 do { \
5497 CHECK_ALLOCATED (); \
5498 CHECK_LIVE (LIVEP); \
5499 } while (0) \
5501 #else /* not GC_CHECK_MARKED_OBJECTS */
5503 #define CHECK_LIVE(LIVEP) (void) 0
5504 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5506 #endif /* not GC_CHECK_MARKED_OBJECTS */
5508 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5510 case Lisp_String:
5512 register struct Lisp_String *ptr = XSTRING (obj);
5513 if (STRING_MARKED_P (ptr))
5514 break;
5515 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5516 MARK_INTERVAL_TREE (ptr->intervals);
5517 MARK_STRING (ptr);
5518 #ifdef GC_CHECK_STRING_BYTES
5519 /* Check that the string size recorded in the string is the
5520 same as the one recorded in the sdata structure. */
5521 CHECK_STRING_BYTES (ptr);
5522 #endif /* GC_CHECK_STRING_BYTES */
5524 break;
5526 case Lisp_Vectorlike:
5527 if (VECTOR_MARKED_P (XVECTOR (obj)))
5528 break;
5529 #ifdef GC_CHECK_MARKED_OBJECTS
5530 m = mem_find (po);
5531 if (m == MEM_NIL && !SUBRP (obj)
5532 && po != &buffer_defaults
5533 && po != &buffer_local_symbols)
5534 abort ();
5535 #endif /* GC_CHECK_MARKED_OBJECTS */
5537 if (BUFFERP (obj))
5539 #ifdef GC_CHECK_MARKED_OBJECTS
5540 if (po != &buffer_defaults && po != &buffer_local_symbols)
5542 struct buffer *b;
5543 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5545 if (b == NULL)
5546 abort ();
5548 #endif /* GC_CHECK_MARKED_OBJECTS */
5549 mark_buffer (obj);
5551 else if (SUBRP (obj))
5552 break;
5553 else if (COMPILEDP (obj))
5554 /* We could treat this just like a vector, but it is better to
5555 save the COMPILED_CONSTANTS element for last and avoid
5556 recursion there. */
5558 register struct Lisp_Vector *ptr = XVECTOR (obj);
5559 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5560 int i;
5562 CHECK_LIVE (live_vector_p);
5563 VECTOR_MARK (ptr); /* Else mark it */
5564 for (i = 0; i < size; i++) /* and then mark its elements */
5566 if (i != COMPILED_CONSTANTS)
5567 mark_object (ptr->contents[i]);
5569 obj = ptr->contents[COMPILED_CONSTANTS];
5570 goto loop;
5572 else if (FRAMEP (obj))
5574 register struct frame *ptr = XFRAME (obj);
5575 mark_vectorlike (XVECTOR (obj));
5576 mark_face_cache (ptr->face_cache);
5578 else if (WINDOWP (obj))
5580 register struct Lisp_Vector *ptr = XVECTOR (obj);
5581 struct window *w = XWINDOW (obj);
5582 mark_vectorlike (ptr);
5583 /* Mark glyphs for leaf windows. Marking window matrices is
5584 sufficient because frame matrices use the same glyph
5585 memory. */
5586 if (NILP (w->hchild)
5587 && NILP (w->vchild)
5588 && w->current_matrix)
5590 mark_glyph_matrix (w->current_matrix);
5591 mark_glyph_matrix (w->desired_matrix);
5594 else if (HASH_TABLE_P (obj))
5596 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5597 mark_vectorlike ((struct Lisp_Vector *)h);
5598 /* If hash table is not weak, mark all keys and values.
5599 For weak tables, mark only the vector. */
5600 if (NILP (h->weak))
5601 mark_object (h->key_and_value);
5602 else
5603 VECTOR_MARK (XVECTOR (h->key_and_value));
5605 else if (CHAR_TABLE_P (obj))
5606 mark_char_table (XVECTOR (obj));
5607 else
5608 mark_vectorlike (XVECTOR (obj));
5609 break;
5611 case Lisp_Symbol:
5613 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5614 struct Lisp_Symbol *ptrx;
5616 if (ptr->gcmarkbit)
5617 break;
5618 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5619 ptr->gcmarkbit = 1;
5620 mark_object (ptr->function);
5621 mark_object (ptr->plist);
5622 switch (ptr->redirect)
5624 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5625 case SYMBOL_VARALIAS:
5627 Lisp_Object tem;
5628 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5629 mark_object (tem);
5630 break;
5632 case SYMBOL_LOCALIZED:
5634 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5635 /* If the value is forwarded to a buffer or keyboard field,
5636 these are marked when we see the corresponding object.
5637 And if it's forwarded to a C variable, either it's not
5638 a Lisp_Object var, or it's staticpro'd already. */
5639 mark_object (blv->where);
5640 mark_object (blv->valcell);
5641 mark_object (blv->defcell);
5642 break;
5644 case SYMBOL_FORWARDED:
5645 /* If the value is forwarded to a buffer or keyboard field,
5646 these are marked when we see the corresponding object.
5647 And if it's forwarded to a C variable, either it's not
5648 a Lisp_Object var, or it's staticpro'd already. */
5649 break;
5650 default: abort ();
5652 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5653 MARK_STRING (XSTRING (ptr->xname));
5654 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5656 ptr = ptr->next;
5657 if (ptr)
5659 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5660 XSETSYMBOL (obj, ptrx);
5661 goto loop;
5664 break;
5666 case Lisp_Misc:
5667 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5668 if (XMISCANY (obj)->gcmarkbit)
5669 break;
5670 XMISCANY (obj)->gcmarkbit = 1;
5672 switch (XMISCTYPE (obj))
5675 case Lisp_Misc_Marker:
5676 /* DO NOT mark thru the marker's chain.
5677 The buffer's markers chain does not preserve markers from gc;
5678 instead, markers are removed from the chain when freed by gc. */
5679 break;
5681 case Lisp_Misc_Save_Value:
5682 #if GC_MARK_STACK
5684 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5685 /* If DOGC is set, POINTER is the address of a memory
5686 area containing INTEGER potential Lisp_Objects. */
5687 if (ptr->dogc)
5689 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5690 ptrdiff_t nelt;
5691 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5692 mark_maybe_object (*p);
5695 #endif
5696 break;
5698 case Lisp_Misc_Overlay:
5700 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5701 mark_object (ptr->start);
5702 mark_object (ptr->end);
5703 mark_object (ptr->plist);
5704 if (ptr->next)
5706 XSETMISC (obj, ptr->next);
5707 goto loop;
5710 break;
5712 default:
5713 abort ();
5715 break;
5717 case Lisp_Cons:
5719 register struct Lisp_Cons *ptr = XCONS (obj);
5720 if (CONS_MARKED_P (ptr))
5721 break;
5722 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5723 CONS_MARK (ptr);
5724 /* If the cdr is nil, avoid recursion for the car. */
5725 if (EQ (ptr->u.cdr, Qnil))
5727 obj = ptr->car;
5728 cdr_count = 0;
5729 goto loop;
5731 mark_object (ptr->car);
5732 obj = ptr->u.cdr;
5733 cdr_count++;
5734 if (cdr_count == mark_object_loop_halt)
5735 abort ();
5736 goto loop;
5739 case Lisp_Float:
5740 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5741 FLOAT_MARK (XFLOAT (obj));
5742 break;
5744 case_Lisp_Int:
5745 break;
5747 default:
5748 abort ();
5751 #undef CHECK_LIVE
5752 #undef CHECK_ALLOCATED
5753 #undef CHECK_ALLOCATED_AND_LIVE
5756 /* Mark the pointers in a buffer structure. */
5758 static void
5759 mark_buffer (Lisp_Object buf)
5761 register struct buffer *buffer = XBUFFER (buf);
5762 register Lisp_Object *ptr, tmp;
5763 Lisp_Object base_buffer;
5765 eassert (!VECTOR_MARKED_P (buffer));
5766 VECTOR_MARK (buffer);
5768 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5770 /* For now, we just don't mark the undo_list. It's done later in
5771 a special way just before the sweep phase, and after stripping
5772 some of its elements that are not needed any more. */
5774 if (buffer->overlays_before)
5776 XSETMISC (tmp, buffer->overlays_before);
5777 mark_object (tmp);
5779 if (buffer->overlays_after)
5781 XSETMISC (tmp, buffer->overlays_after);
5782 mark_object (tmp);
5785 /* buffer-local Lisp variables start at `undo_list',
5786 tho only the ones from `name' on are GC'd normally. */
5787 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5788 ptr <= &PER_BUFFER_VALUE (buffer,
5789 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
5790 ptr++)
5791 mark_object (*ptr);
5793 /* If this is an indirect buffer, mark its base buffer. */
5794 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5796 XSETBUFFER (base_buffer, buffer->base_buffer);
5797 mark_buffer (base_buffer);
5801 /* Mark the Lisp pointers in the terminal objects.
5802 Called by the Fgarbage_collector. */
5804 static void
5805 mark_terminals (void)
5807 struct terminal *t;
5808 for (t = terminal_list; t; t = t->next_terminal)
5810 eassert (t->name != NULL);
5811 #ifdef HAVE_WINDOW_SYSTEM
5812 /* If a terminal object is reachable from a stacpro'ed object,
5813 it might have been marked already. Make sure the image cache
5814 gets marked. */
5815 mark_image_cache (t->image_cache);
5816 #endif /* HAVE_WINDOW_SYSTEM */
5817 if (!VECTOR_MARKED_P (t))
5818 mark_vectorlike ((struct Lisp_Vector *)t);
5824 /* Value is non-zero if OBJ will survive the current GC because it's
5825 either marked or does not need to be marked to survive. */
5828 survives_gc_p (Lisp_Object obj)
5830 int survives_p;
5832 switch (XTYPE (obj))
5834 case_Lisp_Int:
5835 survives_p = 1;
5836 break;
5838 case Lisp_Symbol:
5839 survives_p = XSYMBOL (obj)->gcmarkbit;
5840 break;
5842 case Lisp_Misc:
5843 survives_p = XMISCANY (obj)->gcmarkbit;
5844 break;
5846 case Lisp_String:
5847 survives_p = STRING_MARKED_P (XSTRING (obj));
5848 break;
5850 case Lisp_Vectorlike:
5851 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5852 break;
5854 case Lisp_Cons:
5855 survives_p = CONS_MARKED_P (XCONS (obj));
5856 break;
5858 case Lisp_Float:
5859 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5860 break;
5862 default:
5863 abort ();
5866 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5871 /* Sweep: find all structures not marked, and free them. */
5873 static void
5874 gc_sweep (void)
5876 /* Remove or mark entries in weak hash tables.
5877 This must be done before any object is unmarked. */
5878 sweep_weak_hash_tables ();
5880 sweep_strings ();
5881 #ifdef GC_CHECK_STRING_BYTES
5882 if (!noninteractive)
5883 check_string_bytes (1);
5884 #endif
5886 /* Put all unmarked conses on free list */
5888 register struct cons_block *cblk;
5889 struct cons_block **cprev = &cons_block;
5890 register int lim = cons_block_index;
5891 EMACS_INT num_free = 0, num_used = 0;
5893 cons_free_list = 0;
5895 for (cblk = cons_block; cblk; cblk = *cprev)
5897 register int i = 0;
5898 int this_free = 0;
5899 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5901 /* Scan the mark bits an int at a time. */
5902 for (i = 0; i < ilim; i++)
5904 if (cblk->gcmarkbits[i] == -1)
5906 /* Fast path - all cons cells for this int are marked. */
5907 cblk->gcmarkbits[i] = 0;
5908 num_used += BITS_PER_INT;
5910 else
5912 /* Some cons cells for this int are not marked.
5913 Find which ones, and free them. */
5914 int start, pos, stop;
5916 start = i * BITS_PER_INT;
5917 stop = lim - start;
5918 if (stop > BITS_PER_INT)
5919 stop = BITS_PER_INT;
5920 stop += start;
5922 for (pos = start; pos < stop; pos++)
5924 if (!CONS_MARKED_P (&cblk->conses[pos]))
5926 this_free++;
5927 cblk->conses[pos].u.chain = cons_free_list;
5928 cons_free_list = &cblk->conses[pos];
5929 #if GC_MARK_STACK
5930 cons_free_list->car = Vdead;
5931 #endif
5933 else
5935 num_used++;
5936 CONS_UNMARK (&cblk->conses[pos]);
5942 lim = CONS_BLOCK_SIZE;
5943 /* If this block contains only free conses and we have already
5944 seen more than two blocks worth of free conses then deallocate
5945 this block. */
5946 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5948 *cprev = cblk->next;
5949 /* Unhook from the free list. */
5950 cons_free_list = cblk->conses[0].u.chain;
5951 lisp_align_free (cblk);
5953 else
5955 num_free += this_free;
5956 cprev = &cblk->next;
5959 total_conses = num_used;
5960 total_free_conses = num_free;
5963 /* Put all unmarked floats on free list */
5965 register struct float_block *fblk;
5966 struct float_block **fprev = &float_block;
5967 register int lim = float_block_index;
5968 EMACS_INT num_free = 0, num_used = 0;
5970 float_free_list = 0;
5972 for (fblk = float_block; fblk; fblk = *fprev)
5974 register int i;
5975 int this_free = 0;
5976 for (i = 0; i < lim; i++)
5977 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5979 this_free++;
5980 fblk->floats[i].u.chain = float_free_list;
5981 float_free_list = &fblk->floats[i];
5983 else
5985 num_used++;
5986 FLOAT_UNMARK (&fblk->floats[i]);
5988 lim = FLOAT_BLOCK_SIZE;
5989 /* If this block contains only free floats and we have already
5990 seen more than two blocks worth of free floats then deallocate
5991 this block. */
5992 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5994 *fprev = fblk->next;
5995 /* Unhook from the free list. */
5996 float_free_list = fblk->floats[0].u.chain;
5997 lisp_align_free (fblk);
5999 else
6001 num_free += this_free;
6002 fprev = &fblk->next;
6005 total_floats = num_used;
6006 total_free_floats = num_free;
6009 /* Put all unmarked intervals on free list */
6011 register struct interval_block *iblk;
6012 struct interval_block **iprev = &interval_block;
6013 register int lim = interval_block_index;
6014 EMACS_INT num_free = 0, num_used = 0;
6016 interval_free_list = 0;
6018 for (iblk = interval_block; iblk; iblk = *iprev)
6020 register int i;
6021 int this_free = 0;
6023 for (i = 0; i < lim; i++)
6025 if (!iblk->intervals[i].gcmarkbit)
6027 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6028 interval_free_list = &iblk->intervals[i];
6029 this_free++;
6031 else
6033 num_used++;
6034 iblk->intervals[i].gcmarkbit = 0;
6037 lim = INTERVAL_BLOCK_SIZE;
6038 /* If this block contains only free intervals and we have already
6039 seen more than two blocks worth of free intervals then
6040 deallocate this block. */
6041 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6043 *iprev = iblk->next;
6044 /* Unhook from the free list. */
6045 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6046 lisp_free (iblk);
6048 else
6050 num_free += this_free;
6051 iprev = &iblk->next;
6054 total_intervals = num_used;
6055 total_free_intervals = num_free;
6058 /* Put all unmarked symbols on free list */
6060 register struct symbol_block *sblk;
6061 struct symbol_block **sprev = &symbol_block;
6062 register int lim = symbol_block_index;
6063 EMACS_INT num_free = 0, num_used = 0;
6065 symbol_free_list = NULL;
6067 for (sblk = symbol_block; sblk; sblk = *sprev)
6069 int this_free = 0;
6070 struct Lisp_Symbol *sym = sblk->symbols;
6071 struct Lisp_Symbol *end = sym + lim;
6073 for (; sym < end; ++sym)
6075 /* Check if the symbol was created during loadup. In such a case
6076 it might be pointed to by pure bytecode which we don't trace,
6077 so we conservatively assume that it is live. */
6078 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6080 if (!sym->gcmarkbit && !pure_p)
6082 if (sym->redirect == SYMBOL_LOCALIZED)
6083 xfree (SYMBOL_BLV (sym));
6084 sym->next = symbol_free_list;
6085 symbol_free_list = sym;
6086 #if GC_MARK_STACK
6087 symbol_free_list->function = Vdead;
6088 #endif
6089 ++this_free;
6091 else
6093 ++num_used;
6094 if (!pure_p)
6095 UNMARK_STRING (XSTRING (sym->xname));
6096 sym->gcmarkbit = 0;
6100 lim = SYMBOL_BLOCK_SIZE;
6101 /* If this block contains only free symbols and we have already
6102 seen more than two blocks worth of free symbols then deallocate
6103 this block. */
6104 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6106 *sprev = sblk->next;
6107 /* Unhook from the free list. */
6108 symbol_free_list = sblk->symbols[0].next;
6109 lisp_free (sblk);
6111 else
6113 num_free += this_free;
6114 sprev = &sblk->next;
6117 total_symbols = num_used;
6118 total_free_symbols = num_free;
6121 /* Put all unmarked misc's on free list.
6122 For a marker, first unchain it from the buffer it points into. */
6124 register struct marker_block *mblk;
6125 struct marker_block **mprev = &marker_block;
6126 register int lim = marker_block_index;
6127 EMACS_INT num_free = 0, num_used = 0;
6129 marker_free_list = 0;
6131 for (mblk = marker_block; mblk; mblk = *mprev)
6133 register int i;
6134 int this_free = 0;
6136 for (i = 0; i < lim; i++)
6138 if (!mblk->markers[i].u_any.gcmarkbit)
6140 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6141 unchain_marker (&mblk->markers[i].u_marker);
6142 /* Set the type of the freed object to Lisp_Misc_Free.
6143 We could leave the type alone, since nobody checks it,
6144 but this might catch bugs faster. */
6145 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6146 mblk->markers[i].u_free.chain = marker_free_list;
6147 marker_free_list = &mblk->markers[i];
6148 this_free++;
6150 else
6152 num_used++;
6153 mblk->markers[i].u_any.gcmarkbit = 0;
6156 lim = MARKER_BLOCK_SIZE;
6157 /* If this block contains only free markers and we have already
6158 seen more than two blocks worth of free markers then deallocate
6159 this block. */
6160 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6162 *mprev = mblk->next;
6163 /* Unhook from the free list. */
6164 marker_free_list = mblk->markers[0].u_free.chain;
6165 lisp_free (mblk);
6167 else
6169 num_free += this_free;
6170 mprev = &mblk->next;
6174 total_markers = num_used;
6175 total_free_markers = num_free;
6178 /* Free all unmarked buffers */
6180 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6182 while (buffer)
6183 if (!VECTOR_MARKED_P (buffer))
6185 if (prev)
6186 prev->header.next = buffer->header.next;
6187 else
6188 all_buffers = buffer->header.next.buffer;
6189 next = buffer->header.next.buffer;
6190 lisp_free (buffer);
6191 buffer = next;
6193 else
6195 VECTOR_UNMARK (buffer);
6196 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6197 prev = buffer, buffer = buffer->header.next.buffer;
6201 /* Free all unmarked vectors */
6203 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6204 total_vector_size = 0;
6206 while (vector)
6207 if (!VECTOR_MARKED_P (vector))
6209 if (prev)
6210 prev->header.next = vector->header.next;
6211 else
6212 all_vectors = vector->header.next.vector;
6213 next = vector->header.next.vector;
6214 lisp_free (vector);
6215 vector = next;
6218 else
6220 VECTOR_UNMARK (vector);
6221 if (vector->header.size & PSEUDOVECTOR_FLAG)
6222 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6223 else
6224 total_vector_size += vector->header.size;
6225 prev = vector, vector = vector->header.next.vector;
6229 #ifdef GC_CHECK_STRING_BYTES
6230 if (!noninteractive)
6231 check_string_bytes (1);
6232 #endif
6238 /* Debugging aids. */
6240 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6241 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6242 This may be helpful in debugging Emacs's memory usage.
6243 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6244 (void)
6246 Lisp_Object end;
6248 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6250 return end;
6253 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6254 doc: /* Return a list of counters that measure how much consing there has been.
6255 Each of these counters increments for a certain kind of object.
6256 The counters wrap around from the largest positive integer to zero.
6257 Garbage collection does not decrease them.
6258 The elements of the value are as follows:
6259 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6260 All are in units of 1 = one object consed
6261 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6262 objects consed.
6263 MISCS include overlays, markers, and some internal types.
6264 Frames, windows, buffers, and subprocesses count as vectors
6265 (but the contents of a buffer's text do not count here). */)
6266 (void)
6268 Lisp_Object consed[8];
6270 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6271 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6272 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6273 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6274 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6275 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6276 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6277 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6279 return Flist (8, consed);
6282 /* Find at most FIND_MAX symbols which have OBJ as their value or
6283 function. This is used in gdbinit's `xwhichsymbols' command. */
6285 Lisp_Object
6286 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6288 struct symbol_block *sblk;
6289 int gc_count = inhibit_garbage_collection ();
6290 Lisp_Object found = Qnil;
6292 if (! DEADP (obj))
6294 for (sblk = symbol_block; sblk; sblk = sblk->next)
6296 struct Lisp_Symbol *sym = sblk->symbols;
6297 int bn;
6299 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, sym++)
6301 Lisp_Object val;
6302 Lisp_Object tem;
6304 if (sblk == symbol_block && bn >= symbol_block_index)
6305 break;
6307 XSETSYMBOL (tem, sym);
6308 val = find_symbol_value (tem);
6309 if (EQ (val, obj)
6310 || EQ (sym->function, obj)
6311 || (!NILP (sym->function)
6312 && COMPILEDP (sym->function)
6313 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6314 || (!NILP (val)
6315 && COMPILEDP (val)
6316 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6318 found = Fcons (tem, found);
6319 if (--find_max == 0)
6320 goto out;
6326 out:
6327 unbind_to (gc_count, Qnil);
6328 return found;
6331 #ifdef ENABLE_CHECKING
6332 int suppress_checking;
6334 void
6335 die (const char *msg, const char *file, int line)
6337 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6338 file, line, msg);
6339 abort ();
6341 #endif
6343 /* Initialization */
6345 void
6346 init_alloc_once (void)
6348 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6349 purebeg = PUREBEG;
6350 pure_size = PURESIZE;
6351 pure_bytes_used = 0;
6352 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6353 pure_bytes_used_before_overflow = 0;
6355 /* Initialize the list of free aligned blocks. */
6356 free_ablock = NULL;
6358 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6359 mem_init ();
6360 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6361 #endif
6363 all_vectors = 0;
6364 ignore_warnings = 1;
6365 #ifdef DOUG_LEA_MALLOC
6366 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6367 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6368 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6369 #endif
6370 init_strings ();
6371 init_cons ();
6372 init_symbol ();
6373 init_marker ();
6374 init_float ();
6375 init_intervals ();
6376 init_weak_hash_tables ();
6378 #ifdef REL_ALLOC
6379 malloc_hysteresis = 32;
6380 #else
6381 malloc_hysteresis = 0;
6382 #endif
6384 refill_memory_reserve ();
6386 ignore_warnings = 0;
6387 gcprolist = 0;
6388 byte_stack_list = 0;
6389 staticidx = 0;
6390 consing_since_gc = 0;
6391 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6392 gc_relative_threshold = 0;
6395 void
6396 init_alloc (void)
6398 gcprolist = 0;
6399 byte_stack_list = 0;
6400 #if GC_MARK_STACK
6401 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6402 setjmp_tested_p = longjmps_done = 0;
6403 #endif
6404 #endif
6405 Vgc_elapsed = make_float (0.0);
6406 gcs_done = 0;
6409 void
6410 syms_of_alloc (void)
6412 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6413 doc: /* *Number of bytes of consing between garbage collections.
6414 Garbage collection can happen automatically once this many bytes have been
6415 allocated since the last garbage collection. All data types count.
6417 Garbage collection happens automatically only when `eval' is called.
6419 By binding this temporarily to a large number, you can effectively
6420 prevent garbage collection during a part of the program.
6421 See also `gc-cons-percentage'. */);
6423 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6424 doc: /* *Portion of the heap used for allocation.
6425 Garbage collection can happen automatically once this portion of the heap
6426 has been allocated since the last garbage collection.
6427 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6428 Vgc_cons_percentage = make_float (0.1);
6430 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6431 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6433 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6434 doc: /* Number of cons cells that have been consed so far. */);
6436 DEFVAR_INT ("floats-consed", floats_consed,
6437 doc: /* Number of floats that have been consed so far. */);
6439 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6440 doc: /* Number of vector cells that have been consed so far. */);
6442 DEFVAR_INT ("symbols-consed", symbols_consed,
6443 doc: /* Number of symbols that have been consed so far. */);
6445 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6446 doc: /* Number of string characters that have been consed so far. */);
6448 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6449 doc: /* Number of miscellaneous objects that have been consed so far.
6450 These include markers and overlays, plus certain objects not visible
6451 to users. */);
6453 DEFVAR_INT ("intervals-consed", intervals_consed,
6454 doc: /* Number of intervals that have been consed so far. */);
6456 DEFVAR_INT ("strings-consed", strings_consed,
6457 doc: /* Number of strings that have been consed so far. */);
6459 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6460 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6461 This means that certain objects should be allocated in shared (pure) space.
6462 It can also be set to a hash-table, in which case this table is used to
6463 do hash-consing of the objects allocated to pure space. */);
6465 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6466 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6467 garbage_collection_messages = 0;
6469 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6470 doc: /* Hook run after garbage collection has finished. */);
6471 Vpost_gc_hook = Qnil;
6472 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6474 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6475 doc: /* Precomputed `signal' argument for memory-full error. */);
6476 /* We build this in advance because if we wait until we need it, we might
6477 not be able to allocate the memory to hold it. */
6478 Vmemory_signal_data
6479 = pure_cons (Qerror,
6480 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6482 DEFVAR_LISP ("memory-full", Vmemory_full,
6483 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6484 Vmemory_full = Qnil;
6486 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6487 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6489 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6490 doc: /* Accumulated time elapsed in garbage collections.
6491 The time is in seconds as a floating point value. */);
6492 DEFVAR_INT ("gcs-done", gcs_done,
6493 doc: /* Accumulated number of garbage collections done. */);
6495 defsubr (&Scons);
6496 defsubr (&Slist);
6497 defsubr (&Svector);
6498 defsubr (&Smake_byte_code);
6499 defsubr (&Smake_list);
6500 defsubr (&Smake_vector);
6501 defsubr (&Smake_string);
6502 defsubr (&Smake_bool_vector);
6503 defsubr (&Smake_symbol);
6504 defsubr (&Smake_marker);
6505 defsubr (&Spurecopy);
6506 defsubr (&Sgarbage_collect);
6507 defsubr (&Smemory_limit);
6508 defsubr (&Smemory_use_counts);
6510 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6511 defsubr (&Sgc_status);
6512 #endif