(FRAME_FOREGROUND_PIXEL, FRAME_BACKGROUND_PIXEL)
[emacs.git] / src / unexsgi.c
blobcd0067f08d93942f38b23eee49cd3275df90f23c
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
21 In other words, you are welcome to use, share and improve this program.
22 You are forbidden to forbid anyone else to use, share and improve
23 what you give them. Help stamp out software-hoarding! */
27 * unexec.c - Convert a running program into an a.out file.
29 * Author: Spencer W. Thomas
30 * Computer Science Dept.
31 * University of Utah
32 * Date: Tue Mar 2 1982
33 * Modified heavily since then.
35 * Synopsis:
36 * unexec (new_name, a_name, data_start, bss_start, entry_address)
37 * char *new_name, *a_name;
38 * unsigned data_start, bss_start, entry_address;
40 * Takes a snapshot of the program and makes an a.out format file in the
41 * file named by the string argument new_name.
42 * If a_name is non-NULL, the symbol table will be taken from the given file.
43 * On some machines, an existing a_name file is required.
45 * The boundaries within the a.out file may be adjusted with the data_start
46 * and bss_start arguments. Either or both may be given as 0 for defaults.
48 * Data_start gives the boundary between the text segment and the data
49 * segment of the program. The text segment can contain shared, read-only
50 * program code and literal data, while the data segment is always unshared
51 * and unprotected. Data_start gives the lowest unprotected address.
52 * The value you specify may be rounded down to a suitable boundary
53 * as required by the machine you are using.
55 * Specifying zero for data_start means the boundary between text and data
56 * should not be the same as when the program was loaded.
57 * If NO_REMAP is defined, the argument data_start is ignored and the
58 * segment boundaries are never changed.
60 * Bss_start indicates how much of the data segment is to be saved in the
61 * a.out file and restored when the program is executed. It gives the lowest
62 * unsaved address, and is rounded up to a page boundary. The default when 0
63 * is given assumes that the entire data segment is to be stored, including
64 * the previous data and bss as well as any additional storage allocated with
65 * break (2).
67 * The new file is set up to start at entry_address.
69 * If you make improvements I'd like to get them too.
70 * harpo!utah-cs!thomas, thomas@Utah-20
74 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
75 * ELF support added.
77 * Basic theory: the data space of the running process needs to be
78 * dumped to the output file. Normally we would just enlarge the size
79 * of .data, scooting everything down. But we can't do that in ELF,
80 * because there is often something between the .data space and the
81 * .bss space.
83 * In the temacs dump below, notice that the Global Offset Table
84 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
85 * .bss. It does not work to overlap .data with these fields.
87 * The solution is to create a new .data segment. This segment is
88 * filled with data from the current process. Since the contents of
89 * various sections refer to sections by index, the new .data segment
90 * is made the last in the table to avoid changing any existing index.
92 * This is an example of how the section headers are changed. "Addr"
93 * is a process virtual address. "Offset" is a file offset.
95 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
97 temacs:
99 **** SECTION HEADER TABLE ****
100 [No] Type Flags Addr Offset Size Name
101 Link Info Adralgn Entsize
103 [1] 1 2 0x80480d4 0xd4 0x13 .interp
104 0 0 0x1 0
106 [2] 5 2 0x80480e8 0xe8 0x388 .hash
107 3 0 0x4 0x4
109 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
110 4 1 0x4 0x10
112 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
113 0 0 0x1 0
115 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
116 3 7 0x4 0x8
118 [6] 1 6 0x8049348 0x1348 0x3 .init
119 0 0 0x4 0
121 [7] 1 6 0x804934c 0x134c 0x680 .plt
122 0 0 0x4 0x4
124 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
125 0 0 0x4 0
127 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
128 0 0 0x4 0
130 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
131 0 0 0x4 0
133 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
134 0 0 0x4 0
136 [12] 1 3 0x8088330 0x3f330 0x20afc .data
137 0 0 0x4 0
139 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
140 0 0 0x4 0
142 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
143 0 0 0x4 0x4
145 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
146 4 0 0x4 0x8
148 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
149 0 0 0x4 0
151 [17] 2 0 0 0x608f4 0x9b90 .symtab
152 18 371 0x4 0x10
154 [18] 3 0 0 0x6a484 0x8526 .strtab
155 0 0 0x1 0
157 [19] 3 0 0 0x729aa 0x93 .shstrtab
158 0 0 0x1 0
160 [20] 1 0 0 0x72a3d 0x68b7 .comment
161 0 0 0x1 0
163 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
165 xemacs:
167 **** SECTION HEADER TABLE ****
168 [No] Type Flags Addr Offset Size Name
169 Link Info Adralgn Entsize
171 [1] 1 2 0x80480d4 0xd4 0x13 .interp
172 0 0 0x1 0
174 [2] 5 2 0x80480e8 0xe8 0x388 .hash
175 3 0 0x4 0x4
177 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
178 4 1 0x4 0x10
180 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
181 0 0 0x1 0
183 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
184 3 7 0x4 0x8
186 [6] 1 6 0x8049348 0x1348 0x3 .init
187 0 0 0x4 0
189 [7] 1 6 0x804934c 0x134c 0x680 .plt
190 0 0 0x4 0x4
192 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
193 0 0 0x4 0
195 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
196 0 0 0x4 0
198 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
199 0 0 0x4 0
201 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
202 0 0 0x4 0
204 [12] 1 3 0x8088330 0x3f330 0x20afc .data
205 0 0 0x4 0
207 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
208 0 0 0x4 0
210 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
211 0 0 0x4 0x4
213 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
214 4 0 0x4 0x8
216 [16] 8 3 0x80c6800 0x7d800 0 .bss
217 0 0 0x4 0
219 [17] 2 0 0 0x7d800 0x9b90 .symtab
220 18 371 0x4 0x10
222 [18] 3 0 0 0x87390 0x8526 .strtab
223 0 0 0x1 0
225 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
226 0 0 0x1 0
228 [20] 1 0 0 0x8f949 0x68b7 .comment
229 0 0 0x1 0
231 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
232 0 0 0x4 0
234 * This is an example of how the file header is changed. "Shoff" is
235 * the section header offset within the file. Since that table is
236 * after the new .data section, it is moved. "Shnum" is the number of
237 * sections, which we increment.
239 * "Phoff" is the file offset to the program header. "Phentsize" and
240 * "Shentsz" are the program and section header entries sizes respectively.
241 * These can be larger than the apparent struct sizes.
243 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
245 temacs:
247 **** ELF HEADER ****
248 Class Data Type Machine Version
249 Entry Phoff Shoff Flags Ehsize
250 Phentsize Phnum Shentsz Shnum Shstrndx
252 1 1 2 3 1
253 0x80499cc 0x34 0x792f4 0 0x34
254 0x20 5 0x28 21 19
256 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
258 xemacs:
260 **** ELF HEADER ****
261 Class Data Type Machine Version
262 Entry Phoff Shoff Flags Ehsize
263 Phentsize Phnum Shentsz Shnum Shstrndx
265 1 1 2 3 1
266 0x80499cc 0x34 0x96200 0 0x34
267 0x20 5 0x28 22 19
269 * These are the program headers. "Offset" is the file offset to the
270 * segment. "Vaddr" is the memory load address. "Filesz" is the
271 * segment size as it appears in the file, and "Memsz" is the size in
272 * memory. Below, the third segment is the code and the fourth is the
273 * data: the difference between Filesz and Memsz is .bss
275 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
277 temacs:
278 ***** PROGRAM EXECUTION HEADER *****
279 Type Offset Vaddr Paddr
280 Filesz Memsz Flags Align
282 6 0x34 0x8048034 0
283 0xa0 0xa0 5 0
285 3 0xd4 0 0
286 0x13 0 4 0
288 1 0x34 0x8048034 0
289 0x3f2f9 0x3f2f9 5 0x1000
291 1 0x3f330 0x8088330 0
292 0x215c4 0x25a60 7 0x1000
294 2 0x60874 0x80a9874 0
295 0x80 0 7 0
297 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
299 xemacs:
300 ***** PROGRAM EXECUTION HEADER *****
301 Type Offset Vaddr Paddr
302 Filesz Memsz Flags Align
304 6 0x34 0x8048034 0
305 0xa0 0xa0 5 0
307 3 0xd4 0 0
308 0x13 0 4 0
310 1 0x34 0x8048034 0
311 0x3f2f9 0x3f2f9 5 0x1000
313 1 0x3f330 0x8088330 0
314 0x3e4d0 0x3e4d0 7 0x1000
316 2 0x60874 0x80a9874 0
317 0x80 0 7 0
322 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
324 * The above mechanism does not work if the unexeced ELF file is being
325 * re-layout by other applications (such as `strip'). All the applications
326 * that re-layout the internal of ELF will layout all sections in ascending
327 * order of their file offsets. After the re-layout, the data2 section will
328 * still be the LAST section in the section header vector, but its file offset
329 * is now being pushed far away down, and causes part of it not to be mapped
330 * in (ie. not covered by the load segment entry in PHDR vector), therefore
331 * causes the new binary to fail.
333 * The solution is to modify the unexec algorithm to insert the new data2
334 * section header right before the new bss section header, so their file
335 * offsets will be in the ascending order. Since some of the section's (all
336 * sections AFTER the bss section) indexes are now changed, we also need to
337 * modify some fields to make them point to the right sections. This is done
338 * by macro PATCH_INDEX. All the fields that need to be patched are:
340 * 1. ELF header e_shstrndx field.
341 * 2. section header sh_link and sh_info field.
342 * 3. symbol table entry st_shndx field.
344 * The above example now should look like:
346 **** SECTION HEADER TABLE ****
347 [No] Type Flags Addr Offset Size Name
348 Link Info Adralgn Entsize
350 [1] 1 2 0x80480d4 0xd4 0x13 .interp
351 0 0 0x1 0
353 [2] 5 2 0x80480e8 0xe8 0x388 .hash
354 3 0 0x4 0x4
356 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
357 4 1 0x4 0x10
359 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
360 0 0 0x1 0
362 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
363 3 7 0x4 0x8
365 [6] 1 6 0x8049348 0x1348 0x3 .init
366 0 0 0x4 0
368 [7] 1 6 0x804934c 0x134c 0x680 .plt
369 0 0 0x4 0x4
371 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
372 0 0 0x4 0
374 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
375 0 0 0x4 0
377 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
378 0 0 0x4 0
380 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
381 0 0 0x4 0
383 [12] 1 3 0x8088330 0x3f330 0x20afc .data
384 0 0 0x4 0
386 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
387 0 0 0x4 0
389 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
390 0 0 0x4 0x4
392 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
393 4 0 0x4 0x8
395 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
396 0 0 0x4 0
398 [17] 8 3 0x80c6800 0x7d800 0 .bss
399 0 0 0x4 0
401 [18] 2 0 0 0x7d800 0x9b90 .symtab
402 19 371 0x4 0x10
404 [19] 3 0 0 0x87390 0x8526 .strtab
405 0 0 0x1 0
407 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
408 0 0 0x1 0
410 [21] 1 0 0 0x8f949 0x68b7 .comment
411 0 0 0x1 0
415 #include <config.h>
416 #include <sys/types.h>
417 #include <stdio.h>
418 #include <sys/stat.h>
419 #include <memory.h>
420 #include <string.h>
421 #include <errno.h>
422 #include <unistd.h>
423 #include <fcntl.h>
424 #include <elf.h>
425 #include <syms.h> /* for HDRR declaration */
426 #include <sys/mman.h>
428 #ifndef emacs
429 #define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1)
430 #else
431 extern void fatal(char *, ...);
432 #endif
434 /* Get the address of a particular section or program header entry,
435 * accounting for the size of the entries.
438 #define OLD_SECTION_H(n) \
439 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
440 #define NEW_SECTION_H(n) \
441 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
442 #define OLD_PROGRAM_H(n) \
443 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
444 #define NEW_PROGRAM_H(n) \
445 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
447 #define PATCH_INDEX(n) \
448 do { \
449 if ((n) >= old_bss_index) \
450 (n)++; } while (0)
451 typedef unsigned char byte;
453 /* Round X up to a multiple of Y. */
456 round_up (x, y)
457 int x, y;
459 int rem = x % y;
460 if (rem == 0)
461 return x;
462 return x - rem + y;
465 /* Return the index of the section named NAME.
466 SECTION_NAMES, FILE_NAME and FILE_H give information
467 about the file we are looking in.
469 If we don't find the section NAME, that is a fatal error
470 if NOERROR is 0; we return -1 if NOERROR is nonzero. */
472 static int
473 find_section (name, section_names, file_name, old_file_h, old_section_h, noerror)
474 char *name;
475 char *section_names;
476 char *file_name;
477 Elf32_Ehdr *old_file_h;
478 Elf32_Shdr *old_section_h;
479 int noerror;
481 int idx;
483 for (idx = 1; idx < old_file_h->e_shnum; idx++)
485 #ifdef DEBUG
486 fprintf (stderr, "Looking for %s - found %s\n", name,
487 section_names + OLD_SECTION_H (idx).sh_name);
488 #endif
489 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name,
490 name))
491 break;
493 if (idx == old_file_h->e_shnum)
495 if (noerror)
496 return -1;
497 else
498 fatal ("Can't find .bss in %s.\n", file_name, 0);
501 return idx;
504 /* ****************************************************************
505 * unexec
507 * driving logic.
509 * In ELF, this works by replacing the old .bss section with a new
510 * .data section, and inserting an empty .bss immediately afterwards.
513 void
514 unexec (new_name, old_name, data_start, bss_start, entry_address)
515 char *new_name, *old_name;
516 unsigned data_start, bss_start, entry_address;
518 extern unsigned int bss_end;
519 int new_file, old_file, new_file_size;
521 /* Pointers to the base of the image of the two files. */
522 caddr_t old_base, new_base;
524 /* Pointers to the file, program and section headers for the old and new
525 files. */
526 Elf32_Ehdr *old_file_h, *new_file_h;
527 Elf32_Phdr *old_program_h, *new_program_h;
528 Elf32_Shdr *old_section_h, *new_section_h;
530 /* Point to the section name table in the old file. */
531 char *old_section_names;
533 Elf32_Addr old_bss_addr, new_bss_addr;
534 Elf32_Word old_bss_size, new_data2_size;
535 Elf32_Off new_data2_offset;
536 Elf32_Addr new_data2_addr;
537 Elf32_Addr new_offsets_shift;
539 int n, nn, old_bss_index, old_data_index, new_data2_index;
540 int old_mdebug_index;
541 struct stat stat_buf;
543 /* Open the old file & map it into the address space. */
545 old_file = open (old_name, O_RDONLY);
547 if (old_file < 0)
548 fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
550 if (fstat (old_file, &stat_buf) == -1)
551 fatal ("Can't fstat(%s): errno %d\n", old_name, errno);
553 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0);
555 if (old_base == (caddr_t) -1)
556 fatal ("Can't mmap(%s): errno %d\n", old_name, errno);
558 #ifdef DEBUG
559 fprintf (stderr, "mmap(%s, %x) -> %x\n", old_name, stat_buf.st_size,
560 old_base);
561 #endif
563 /* Get pointers to headers & section names. */
565 old_file_h = (Elf32_Ehdr *) old_base;
566 old_program_h = (Elf32_Phdr *) ((byte *) old_base + old_file_h->e_phoff);
567 old_section_h = (Elf32_Shdr *) ((byte *) old_base + old_file_h->e_shoff);
568 old_section_names
569 = (char *) old_base + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
571 /* Find the mdebug section, if any. */
573 old_mdebug_index = find_section (".mdebug", old_section_names,
574 old_name, old_file_h, old_section_h, 1);
576 /* Find the old .bss section. */
578 old_bss_index = find_section (".bss", old_section_names,
579 old_name, old_file_h, old_section_h, 0);
581 /* Find the old .data section. Figure out parameters of
582 the new data2 and bss sections. */
584 old_data_index = find_section (".data", old_section_names,
585 old_name, old_file_h, old_section_h, 0);
587 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
588 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
589 #if defined(emacs) || !defined(DEBUG)
590 bss_end = (unsigned int) sbrk (0);
591 new_bss_addr = (Elf32_Addr) bss_end;
592 #else
593 new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
594 #endif
595 new_data2_addr = old_bss_addr;
596 new_data2_size = new_bss_addr - old_bss_addr;
597 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset +
598 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr);
599 new_offsets_shift = new_bss_addr -
600 ((old_bss_addr & ~0xfff) + ((old_bss_addr & 0xfff) ? 0x1000 : 0));
602 #ifdef DEBUG
603 fprintf (stderr, "old_bss_index %d\n", old_bss_index);
604 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
605 fprintf (stderr, "old_bss_size %x\n", old_bss_size);
606 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
607 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
608 fprintf (stderr, "new_data2_size %x\n", new_data2_size);
609 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
610 fprintf (stderr, "new_offsets_shift %x\n", new_offsets_shift);
611 #endif
613 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
614 fatal (".bss shrank when undumping???\n", 0, 0);
616 /* Set the output file to the right size and mmap it. Set
617 pointers to various interesting objects. stat_buf still has
618 old_file data. */
620 new_file = open (new_name, O_RDWR | O_CREAT, 0666);
621 if (new_file < 0)
622 fatal ("Can't creat (%s): errno %d\n", new_name, errno);
624 new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_offsets_shift;
626 if (ftruncate (new_file, new_file_size))
627 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
629 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED,
630 new_file, 0);
632 if (new_base == (caddr_t) -1)
633 fatal ("Can't mmap (%s): errno %d\n", new_name, errno);
635 new_file_h = (Elf32_Ehdr *) new_base;
636 new_program_h = (Elf32_Phdr *) ((byte *) new_base + old_file_h->e_phoff);
637 new_section_h
638 = (Elf32_Shdr *) ((byte *) new_base + old_file_h->e_shoff
639 + new_offsets_shift);
641 /* Make our new file, program and section headers as copies of the
642 originals. */
644 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
645 memcpy (new_program_h, old_program_h,
646 old_file_h->e_phnum * old_file_h->e_phentsize);
648 /* Modify the e_shstrndx if necessary. */
649 PATCH_INDEX (new_file_h->e_shstrndx);
651 /* Fix up file header. We'll add one section. Section header is
652 further away now. */
654 new_file_h->e_shoff += new_offsets_shift;
655 new_file_h->e_shnum += 1;
657 #ifdef DEBUG
658 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
659 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
660 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
661 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
662 #endif
664 /* Fix up a new program header. Extend the writable data segment so
665 that the bss area is covered too. Find that segment by looking
666 for a segment that ends just before the .bss area. Make sure
667 that no segments are above the new .data2. Put a loop at the end
668 to adjust the offset and address of any segment that is above
669 data2, just in case we decide to allow this later. */
671 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
673 /* Compute maximum of all requirements for alignment of section. */
674 int alignment = (NEW_PROGRAM_H (n)).p_align;
675 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
676 alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
678 /* Supposedly this condition is okay for the SGI. */
679 #if 0
680 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_bss_addr)
681 fatal ("Program segment above .bss in %s\n", old_name, 0);
682 #endif
684 if (NEW_PROGRAM_H (n).p_type == PT_LOAD
685 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr
686 + (NEW_PROGRAM_H (n)).p_filesz,
687 alignment)
688 == round_up (old_bss_addr, alignment)))
689 break;
691 if (n < 0)
692 fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
694 NEW_PROGRAM_H (n).p_filesz += new_offsets_shift;
695 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
697 #if 1 /* Maybe allow section after data2 - does this ever happen? */
698 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
700 if (NEW_PROGRAM_H (n).p_vaddr
701 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
702 NEW_PROGRAM_H (n).p_vaddr += new_offsets_shift - old_bss_size;
704 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
705 NEW_PROGRAM_H (n).p_offset += new_offsets_shift;
707 #endif
709 /* Fix up section headers based on new .data2 section. Any section
710 whose offset or virtual address is after the new .data2 section
711 gets its value adjusted. .bss size becomes zero and new address
712 is set. data2 section header gets added by copying the existing
713 .data header and modifying the offset, address and size. */
714 for (old_data_index = 1; old_data_index < old_file_h->e_shnum;
715 old_data_index++)
716 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
717 ".data"))
718 break;
719 if (old_data_index == old_file_h->e_shnum)
720 fatal ("Can't find .data in %s.\n", old_name, 0);
722 /* Walk through all section headers, insert the new data2 section right
723 before the new bss section. */
724 for (n = 1, nn = 1; n < old_file_h->e_shnum; n++, nn++)
726 caddr_t src;
728 /* If it is bss section, insert the new data2 section before it. */
729 if (n == old_bss_index)
731 /* Steal the data section header for this data2 section. */
732 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
733 new_file_h->e_shentsize);
735 NEW_SECTION_H (nn).sh_addr = new_data2_addr;
736 NEW_SECTION_H (nn).sh_offset = new_data2_offset;
737 NEW_SECTION_H (nn).sh_size = new_data2_size;
738 /* Use the bss section's alignment. This will assure that the
739 new data2 section always be placed in the same spot as the old
740 bss section by any other application. */
741 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
743 /* Now copy over what we have in the memory now. */
744 memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
745 (caddr_t) OLD_SECTION_H (n).sh_addr,
746 new_data2_size);
747 nn++;
748 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
749 old_file_h->e_shentsize);
751 /* The new bss section's size is zero, and its file offset and virtual
752 address should be off by NEW_OFFSETS_SHIFT. */
753 NEW_SECTION_H (nn).sh_offset += new_offsets_shift;
754 NEW_SECTION_H (nn).sh_addr = new_bss_addr;
755 /* Let the new bss section address alignment be the same as the
756 section address alignment followed the old bss section, so
757 this section will be placed in exactly the same place. */
758 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
759 NEW_SECTION_H (nn).sh_size = 0;
761 else
763 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
764 old_file_h->e_shentsize);
766 /* Any section that was original placed AFTER the bss
767 section must now be adjusted by NEW_OFFSETS_SHIFT. */
769 if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
770 NEW_SECTION_H (nn).sh_offset += new_offsets_shift;
773 /* If any section hdr refers to the section after the new .data
774 section, make it refer to next one because we have inserted
775 a new section in between. */
777 PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
778 /* For symbol tables, info is a symbol table index,
779 so don't change it. */
780 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
781 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
782 PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
784 /* Now, start to copy the content of sections. */
785 if (NEW_SECTION_H (nn).sh_type == SHT_NULL
786 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
787 continue;
789 /* Write out the sections. .data and .data1 (and data2, called
790 ".data" in the strings table) get copied from the current process
791 instead of the old file. */
792 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data")
793 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data1")
794 #ifdef IRIX6_5
795 /* Under IRIX 6.5 gcc places objects with adresses relative to
796 shared symbols in the section .rodata, which are adjusted at
797 startup time. Unfortunately they aren't adjusted after unexec,
798 so with this configuration we must get .rodata also from memory.
799 Do any other configurations need this, too?
800 <Wolfgang.Glas@hfm.tu-graz.ac.at> 1999-06-08. */
801 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".rodata")
802 #endif
803 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".got"))
804 src = (caddr_t) OLD_SECTION_H (n).sh_addr;
805 else
806 src = old_base + OLD_SECTION_H (n).sh_offset;
808 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
809 NEW_SECTION_H (nn).sh_size);
811 /* Adjust the HDRR offsets in .mdebug and copy the
812 line data if it's in its usual 'hole' in the object.
813 Makes the new file debuggable with dbx.
814 patches up two problems: the absolute file offsets
815 in the HDRR record of .mdebug (see /usr/include/syms.h), and
816 the ld bug that gets the line table in a hole in the
817 elf file rather than in the .mdebug section proper.
818 David Anderson. davea@sgi.com Jan 16,1994. */
819 if (n == old_mdebug_index)
821 #define MDEBUGADJUST(__ct,__fileaddr) \
822 if (n_phdrr->__ct > 0) \
824 n_phdrr->__fileaddr += movement; \
827 HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset);
828 HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset);
829 unsigned movement = new_offsets_shift;
831 MDEBUGADJUST (idnMax, cbDnOffset);
832 MDEBUGADJUST (ipdMax, cbPdOffset);
833 MDEBUGADJUST (isymMax, cbSymOffset);
834 MDEBUGADJUST (ioptMax, cbOptOffset);
835 MDEBUGADJUST (iauxMax, cbAuxOffset);
836 MDEBUGADJUST (issMax, cbSsOffset);
837 MDEBUGADJUST (issExtMax, cbSsExtOffset);
838 MDEBUGADJUST (ifdMax, cbFdOffset);
839 MDEBUGADJUST (crfd, cbRfdOffset);
840 MDEBUGADJUST (iextMax, cbExtOffset);
841 /* The Line Section, being possible off in a hole of the object,
842 requires special handling. */
843 if (n_phdrr->cbLine > 0)
845 if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset
846 + OLD_SECTION_H (n).sh_size))
848 /* line data is in a hole in elf. do special copy and adjust
849 for this ld mistake.
851 n_phdrr->cbLineOffset += movement;
853 memcpy (n_phdrr->cbLineOffset + new_base,
854 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine);
856 else
858 /* somehow line data is in .mdebug as it is supposed to be. */
859 MDEBUGADJUST (cbLine, cbLineOffset);
864 /* If it is the symbol table, its st_shndx field needs to be patched. */
865 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
866 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
868 Elf32_Shdr *spt = &NEW_SECTION_H (nn);
869 unsigned int num = spt->sh_size / spt->sh_entsize;
870 Elf32_Sym * sym = (Elf32_Sym *) (NEW_SECTION_H (nn).sh_offset
871 + new_base);
872 for (; num--; sym++)
874 /* don't patch special section indices. */
875 if (sym->st_shndx == SHN_UNDEF
876 || sym->st_shndx >= SHN_LORESERVE)
877 continue;
879 PATCH_INDEX (sym->st_shndx);
884 /* Close the files and make the new file executable. */
886 if (close (old_file))
887 fatal ("Can't close (%s): errno %d\n", old_name, errno);
889 if (close (new_file))
890 fatal ("Can't close (%s): errno %d\n", new_name, errno);
892 if (stat (new_name, &stat_buf) == -1)
893 fatal ("Can't stat (%s): errno %d\n", new_name, errno);
895 n = umask (777);
896 umask (n);
897 stat_buf.st_mode |= 0111 & ~n;
898 if (chmod (new_name, stat_buf.st_mode) == -1)
899 fatal ("Can't chmod (%s): errno %d\n", new_name, errno);