* dispextern.h (struct redisplay_interface): Rename param
[emacs.git] / src / alloc.c
blob16cd183aaa180c3c787fb345b7e0e4395b3e1269
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
115 static pthread_mutex_t alloc_mutex;
117 #define BLOCK_INPUT_ALLOC \
118 do \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
132 while (0)
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
142 /* Value of _bytes_used, when spare_memory was freed. */
144 static __malloc_size_t bytes_used_when_full;
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
157 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
159 strings. */
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163 /* Global variables. */
164 struct emacs_globals globals;
166 /* Number of bytes of consing done since the last gc. */
168 int consing_since_gc;
170 /* Similar minimum, computed from Vgc_cons_percentage. */
172 EMACS_INT gc_relative_threshold;
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
177 EMACS_INT memory_full_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Number of live and free conses etc. */
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
199 static char *spare_memory[7];
201 /* Amount of spare memory to keep in large reserve block. */
203 #define SPARE_MEMORY (1 << 14)
205 /* Number of extra blocks malloc should get when it needs more core. */
207 static int malloc_hysteresis;
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
215 #ifndef VIRT_ADDR_VARIES
216 static
217 #endif
218 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
219 #define PUREBEG (char *) pure
221 /* Pointer to the pure area, and its size. */
223 static char *purebeg;
224 static size_t pure_size;
226 /* Number of bytes of pure storage used before pure storage overflowed.
227 If this is non-zero, this implies that an overflow occurred. */
229 static size_t pure_bytes_used_before_overflow;
231 /* Value is non-zero if P points into pure space. */
233 #define PURE_POINTER_P(P) \
234 (((PNTR_COMPARISON_TYPE) (P) \
235 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
236 && ((PNTR_COMPARISON_TYPE) (P) \
237 >= (PNTR_COMPARISON_TYPE) purebeg))
239 /* Index in pure at which next pure Lisp object will be allocated.. */
241 static EMACS_INT pure_bytes_used_lisp;
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
245 static EMACS_INT pure_bytes_used_non_lisp;
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
250 const char *pending_malloc_warning;
252 /* Maximum amount of C stack to save when a GC happens. */
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
258 /* Buffer in which we save a copy of the C stack at each GC. */
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static size_t stack_copy_size;
263 #endif
265 /* Non-zero means ignore malloc warnings. Set during initialization.
266 Currently not used. */
268 static int ignore_warnings;
270 static Lisp_Object Qgc_cons_threshold;
271 Lisp_Object Qchar_table_extra_slots;
273 /* Hook run after GC has finished. */
275 static Lisp_Object Qpost_gc_hook;
277 static void mark_buffer (Lisp_Object);
278 static void mark_terminals (void);
279 static void gc_sweep (void);
280 static void mark_glyph_matrix (struct glyph_matrix *);
281 static void mark_face_cache (struct face_cache *);
283 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
284 static void refill_memory_reserve (void);
285 #endif
286 static struct Lisp_String *allocate_string (void);
287 static void compact_small_strings (void);
288 static void free_large_strings (void);
289 static void sweep_strings (void);
290 static void free_misc (Lisp_Object);
292 /* When scanning the C stack for live Lisp objects, Emacs keeps track
293 of what memory allocated via lisp_malloc is intended for what
294 purpose. This enumeration specifies the type of memory. */
296 enum mem_type
298 MEM_TYPE_NON_LISP,
299 MEM_TYPE_BUFFER,
300 MEM_TYPE_CONS,
301 MEM_TYPE_STRING,
302 MEM_TYPE_MISC,
303 MEM_TYPE_SYMBOL,
304 MEM_TYPE_FLOAT,
305 /* We used to keep separate mem_types for subtypes of vectors such as
306 process, hash_table, frame, terminal, and window, but we never made
307 use of the distinction, so it only caused source-code complexity
308 and runtime slowdown. Minor but pointless. */
309 MEM_TYPE_VECTORLIKE
312 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
313 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
316 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
318 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
319 #include <stdio.h> /* For fprintf. */
320 #endif
322 /* A unique object in pure space used to make some Lisp objects
323 on free lists recognizable in O(1). */
325 static Lisp_Object Vdead;
327 #ifdef GC_MALLOC_CHECK
329 enum mem_type allocated_mem_type;
330 static int dont_register_blocks;
332 #endif /* GC_MALLOC_CHECK */
334 /* A node in the red-black tree describing allocated memory containing
335 Lisp data. Each such block is recorded with its start and end
336 address when it is allocated, and removed from the tree when it
337 is freed.
339 A red-black tree is a balanced binary tree with the following
340 properties:
342 1. Every node is either red or black.
343 2. Every leaf is black.
344 3. If a node is red, then both of its children are black.
345 4. Every simple path from a node to a descendant leaf contains
346 the same number of black nodes.
347 5. The root is always black.
349 When nodes are inserted into the tree, or deleted from the tree,
350 the tree is "fixed" so that these properties are always true.
352 A red-black tree with N internal nodes has height at most 2
353 log(N+1). Searches, insertions and deletions are done in O(log N).
354 Please see a text book about data structures for a detailed
355 description of red-black trees. Any book worth its salt should
356 describe them. */
358 struct mem_node
360 /* Children of this node. These pointers are never NULL. When there
361 is no child, the value is MEM_NIL, which points to a dummy node. */
362 struct mem_node *left, *right;
364 /* The parent of this node. In the root node, this is NULL. */
365 struct mem_node *parent;
367 /* Start and end of allocated region. */
368 void *start, *end;
370 /* Node color. */
371 enum {MEM_BLACK, MEM_RED} color;
373 /* Memory type. */
374 enum mem_type type;
377 /* Base address of stack. Set in main. */
379 Lisp_Object *stack_base;
381 /* Root of the tree describing allocated Lisp memory. */
383 static struct mem_node *mem_root;
385 /* Lowest and highest known address in the heap. */
387 static void *min_heap_address, *max_heap_address;
389 /* Sentinel node of the tree. */
391 static struct mem_node mem_z;
392 #define MEM_NIL &mem_z
394 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
395 static void lisp_free (POINTER_TYPE *);
396 static void mark_stack (void);
397 static int live_vector_p (struct mem_node *, void *);
398 static int live_buffer_p (struct mem_node *, void *);
399 static int live_string_p (struct mem_node *, void *);
400 static int live_cons_p (struct mem_node *, void *);
401 static int live_symbol_p (struct mem_node *, void *);
402 static int live_float_p (struct mem_node *, void *);
403 static int live_misc_p (struct mem_node *, void *);
404 static void mark_maybe_object (Lisp_Object);
405 static void mark_memory (void *, void *, int);
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static INLINE struct mem_node *mem_find (void *);
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422 /* Recording what needs to be marked for gc. */
424 struct gcpro *gcprolist;
426 /* Addresses of staticpro'd variables. Initialize it to a nonzero
427 value; otherwise some compilers put it into BSS. */
429 #define NSTATICS 0x640
430 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
432 /* Index of next unused slot in staticvec. */
434 static int staticidx = 0;
436 static POINTER_TYPE *pure_alloc (size_t, int);
439 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
440 ALIGNMENT must be a power of 2. */
442 #define ALIGN(ptr, ALIGNMENT) \
443 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
444 & ~((ALIGNMENT) - 1)))
448 /************************************************************************
449 Malloc
450 ************************************************************************/
452 /* Function malloc calls this if it finds we are near exhausting storage. */
454 void
455 malloc_warning (const char *str)
457 pending_malloc_warning = str;
461 /* Display an already-pending malloc warning. */
463 void
464 display_malloc_warning (void)
466 call3 (intern ("display-warning"),
467 intern ("alloc"),
468 build_string (pending_malloc_warning),
469 intern ("emergency"));
470 pending_malloc_warning = 0;
474 #ifdef DOUG_LEA_MALLOC
475 # define BYTES_USED (mallinfo ().uordblks)
476 #else
477 # define BYTES_USED _bytes_used
478 #endif
480 /* Called if we can't allocate relocatable space for a buffer. */
482 void
483 buffer_memory_full (void)
485 /* If buffers use the relocating allocator, no need to free
486 spare_memory, because we may have plenty of malloc space left
487 that we could get, and if we don't, the malloc that fails will
488 itself cause spare_memory to be freed. If buffers don't use the
489 relocating allocator, treat this like any other failing
490 malloc. */
492 #ifndef REL_ALLOC
493 memory_full ();
494 #endif
496 /* This used to call error, but if we've run out of memory, we could
497 get infinite recursion trying to build the string. */
498 xsignal (Qnil, Vmemory_signal_data);
502 #ifdef XMALLOC_OVERRUN_CHECK
504 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
505 and a 16 byte trailer around each block.
507 The header consists of 12 fixed bytes + a 4 byte integer contaning the
508 original block size, while the trailer consists of 16 fixed bytes.
510 The header is used to detect whether this block has been allocated
511 through these functions -- as it seems that some low-level libc
512 functions may bypass the malloc hooks.
516 #define XMALLOC_OVERRUN_CHECK_SIZE 16
518 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
519 { 0x9a, 0x9b, 0xae, 0xaf,
520 0xbf, 0xbe, 0xce, 0xcf,
521 0xea, 0xeb, 0xec, 0xed };
523 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
524 { 0xaa, 0xab, 0xac, 0xad,
525 0xba, 0xbb, 0xbc, 0xbd,
526 0xca, 0xcb, 0xcc, 0xcd,
527 0xda, 0xdb, 0xdc, 0xdd };
529 /* Macros to insert and extract the block size in the header. */
531 #define XMALLOC_PUT_SIZE(ptr, size) \
532 (ptr[-1] = (size & 0xff), \
533 ptr[-2] = ((size >> 8) & 0xff), \
534 ptr[-3] = ((size >> 16) & 0xff), \
535 ptr[-4] = ((size >> 24) & 0xff))
537 #define XMALLOC_GET_SIZE(ptr) \
538 (size_t)((unsigned)(ptr[-1]) | \
539 ((unsigned)(ptr[-2]) << 8) | \
540 ((unsigned)(ptr[-3]) << 16) | \
541 ((unsigned)(ptr[-4]) << 24))
544 /* The call depth in overrun_check functions. For example, this might happen:
545 xmalloc()
546 overrun_check_malloc()
547 -> malloc -> (via hook)_-> emacs_blocked_malloc
548 -> overrun_check_malloc
549 call malloc (hooks are NULL, so real malloc is called).
550 malloc returns 10000.
551 add overhead, return 10016.
552 <- (back in overrun_check_malloc)
553 add overhead again, return 10032
554 xmalloc returns 10032.
556 (time passes).
558 xfree(10032)
559 overrun_check_free(10032)
560 decrease overhed
561 free(10016) <- crash, because 10000 is the original pointer. */
563 static int check_depth;
565 /* Like malloc, but wraps allocated block with header and trailer. */
567 POINTER_TYPE *
568 overrun_check_malloc (size_t size)
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
583 --check_depth;
584 return (POINTER_TYPE *)val;
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
591 POINTER_TYPE *
592 overrun_check_realloc (POINTER_TYPE *block, size_t size)
594 register unsigned char *val = (unsigned char *) block;
595 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
597 if (val
598 && check_depth == 1
599 && memcmp (xmalloc_overrun_check_header,
600 val - XMALLOC_OVERRUN_CHECK_SIZE,
601 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
603 size_t osize = XMALLOC_GET_SIZE (val);
604 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
605 XMALLOC_OVERRUN_CHECK_SIZE))
606 abort ();
607 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
608 val -= XMALLOC_OVERRUN_CHECK_SIZE;
609 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
612 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
614 if (val && check_depth == 1)
616 memcpy (val, xmalloc_overrun_check_header,
617 XMALLOC_OVERRUN_CHECK_SIZE - 4);
618 val += XMALLOC_OVERRUN_CHECK_SIZE;
619 XMALLOC_PUT_SIZE(val, size);
620 memcpy (val + size, xmalloc_overrun_check_trailer,
621 XMALLOC_OVERRUN_CHECK_SIZE);
623 --check_depth;
624 return (POINTER_TYPE *)val;
627 /* Like free, but checks block for overrun. */
629 void
630 overrun_check_free (POINTER_TYPE *block)
632 unsigned char *val = (unsigned char *) block;
634 ++check_depth;
635 if (val
636 && check_depth == 1
637 && memcmp (xmalloc_overrun_check_header,
638 val - XMALLOC_OVERRUN_CHECK_SIZE,
639 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
641 size_t osize = XMALLOC_GET_SIZE (val);
642 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
643 XMALLOC_OVERRUN_CHECK_SIZE))
644 abort ();
645 #ifdef XMALLOC_CLEAR_FREE_MEMORY
646 val -= XMALLOC_OVERRUN_CHECK_SIZE;
647 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
648 #else
649 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
650 val -= XMALLOC_OVERRUN_CHECK_SIZE;
651 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
652 #endif
655 free (val);
656 --check_depth;
659 #undef malloc
660 #undef realloc
661 #undef free
662 #define malloc overrun_check_malloc
663 #define realloc overrun_check_realloc
664 #define free overrun_check_free
665 #endif
667 #ifdef SYNC_INPUT
668 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
669 there's no need to block input around malloc. */
670 #define MALLOC_BLOCK_INPUT ((void)0)
671 #define MALLOC_UNBLOCK_INPUT ((void)0)
672 #else
673 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
674 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
675 #endif
677 /* Like malloc but check for no memory and block interrupt input.. */
679 POINTER_TYPE *
680 xmalloc (size_t size)
682 register POINTER_TYPE *val;
684 MALLOC_BLOCK_INPUT;
685 val = (POINTER_TYPE *) malloc (size);
686 MALLOC_UNBLOCK_INPUT;
688 if (!val && size)
689 memory_full ();
690 return val;
694 /* Like realloc but check for no memory and block interrupt input.. */
696 POINTER_TYPE *
697 xrealloc (POINTER_TYPE *block, size_t size)
699 register POINTER_TYPE *val;
701 MALLOC_BLOCK_INPUT;
702 /* We must call malloc explicitly when BLOCK is 0, since some
703 reallocs don't do this. */
704 if (! block)
705 val = (POINTER_TYPE *) malloc (size);
706 else
707 val = (POINTER_TYPE *) realloc (block, size);
708 MALLOC_UNBLOCK_INPUT;
710 if (!val && size) memory_full ();
711 return val;
715 /* Like free but block interrupt input. */
717 void
718 xfree (POINTER_TYPE *block)
720 if (!block)
721 return;
722 MALLOC_BLOCK_INPUT;
723 free (block);
724 MALLOC_UNBLOCK_INPUT;
725 /* We don't call refill_memory_reserve here
726 because that duplicates doing so in emacs_blocked_free
727 and the criterion should go there. */
731 /* Like strdup, but uses xmalloc. */
733 char *
734 xstrdup (const char *s)
736 size_t len = strlen (s) + 1;
737 char *p = (char *) xmalloc (len);
738 memcpy (p, s, len);
739 return p;
743 /* Unwind for SAFE_ALLOCA */
745 Lisp_Object
746 safe_alloca_unwind (Lisp_Object arg)
748 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
750 p->dogc = 0;
751 xfree (p->pointer);
752 p->pointer = 0;
753 free_misc (arg);
754 return Qnil;
758 /* Like malloc but used for allocating Lisp data. NBYTES is the
759 number of bytes to allocate, TYPE describes the intended use of the
760 allcated memory block (for strings, for conses, ...). */
762 #ifndef USE_LSB_TAG
763 static void *lisp_malloc_loser;
764 #endif
766 static POINTER_TYPE *
767 lisp_malloc (size_t nbytes, enum mem_type type)
769 register void *val;
771 MALLOC_BLOCK_INPUT;
773 #ifdef GC_MALLOC_CHECK
774 allocated_mem_type = type;
775 #endif
777 val = (void *) malloc (nbytes);
779 #ifndef USE_LSB_TAG
780 /* If the memory just allocated cannot be addressed thru a Lisp
781 object's pointer, and it needs to be,
782 that's equivalent to running out of memory. */
783 if (val && type != MEM_TYPE_NON_LISP)
785 Lisp_Object tem;
786 XSETCONS (tem, (char *) val + nbytes - 1);
787 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
789 lisp_malloc_loser = val;
790 free (val);
791 val = 0;
794 #endif
796 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
797 if (val && type != MEM_TYPE_NON_LISP)
798 mem_insert (val, (char *) val + nbytes, type);
799 #endif
801 MALLOC_UNBLOCK_INPUT;
802 if (!val && nbytes)
803 memory_full ();
804 return val;
807 /* Free BLOCK. This must be called to free memory allocated with a
808 call to lisp_malloc. */
810 static void
811 lisp_free (POINTER_TYPE *block)
813 MALLOC_BLOCK_INPUT;
814 free (block);
815 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
816 mem_delete (mem_find (block));
817 #endif
818 MALLOC_UNBLOCK_INPUT;
821 /* Allocation of aligned blocks of memory to store Lisp data. */
822 /* The entry point is lisp_align_malloc which returns blocks of at most */
823 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
825 /* Use posix_memalloc if the system has it and we're using the system's
826 malloc (because our gmalloc.c routines don't have posix_memalign although
827 its memalloc could be used). */
828 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
829 #define USE_POSIX_MEMALIGN 1
830 #endif
832 /* BLOCK_ALIGN has to be a power of 2. */
833 #define BLOCK_ALIGN (1 << 10)
835 /* Padding to leave at the end of a malloc'd block. This is to give
836 malloc a chance to minimize the amount of memory wasted to alignment.
837 It should be tuned to the particular malloc library used.
838 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
839 posix_memalign on the other hand would ideally prefer a value of 4
840 because otherwise, there's 1020 bytes wasted between each ablocks.
841 In Emacs, testing shows that those 1020 can most of the time be
842 efficiently used by malloc to place other objects, so a value of 0 can
843 still preferable unless you have a lot of aligned blocks and virtually
844 nothing else. */
845 #define BLOCK_PADDING 0
846 #define BLOCK_BYTES \
847 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
849 /* Internal data structures and constants. */
851 #define ABLOCKS_SIZE 16
853 /* An aligned block of memory. */
854 struct ablock
856 union
858 char payload[BLOCK_BYTES];
859 struct ablock *next_free;
860 } x;
861 /* `abase' is the aligned base of the ablocks. */
862 /* It is overloaded to hold the virtual `busy' field that counts
863 the number of used ablock in the parent ablocks.
864 The first ablock has the `busy' field, the others have the `abase'
865 field. To tell the difference, we assume that pointers will have
866 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
867 is used to tell whether the real base of the parent ablocks is `abase'
868 (if not, the word before the first ablock holds a pointer to the
869 real base). */
870 struct ablocks *abase;
871 /* The padding of all but the last ablock is unused. The padding of
872 the last ablock in an ablocks is not allocated. */
873 #if BLOCK_PADDING
874 char padding[BLOCK_PADDING];
875 #endif
878 /* A bunch of consecutive aligned blocks. */
879 struct ablocks
881 struct ablock blocks[ABLOCKS_SIZE];
884 /* Size of the block requested from malloc or memalign. */
885 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
887 #define ABLOCK_ABASE(block) \
888 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
889 ? (struct ablocks *)(block) \
890 : (block)->abase)
892 /* Virtual `busy' field. */
893 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
895 /* Pointer to the (not necessarily aligned) malloc block. */
896 #ifdef USE_POSIX_MEMALIGN
897 #define ABLOCKS_BASE(abase) (abase)
898 #else
899 #define ABLOCKS_BASE(abase) \
900 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
901 #endif
903 /* The list of free ablock. */
904 static struct ablock *free_ablock;
906 /* Allocate an aligned block of nbytes.
907 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
908 smaller or equal to BLOCK_BYTES. */
909 static POINTER_TYPE *
910 lisp_align_malloc (size_t nbytes, enum mem_type type)
912 void *base, *val;
913 struct ablocks *abase;
915 eassert (nbytes <= BLOCK_BYTES);
917 MALLOC_BLOCK_INPUT;
919 #ifdef GC_MALLOC_CHECK
920 allocated_mem_type = type;
921 #endif
923 if (!free_ablock)
925 int i;
926 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
928 #ifdef DOUG_LEA_MALLOC
929 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
930 because mapped region contents are not preserved in
931 a dumped Emacs. */
932 mallopt (M_MMAP_MAX, 0);
933 #endif
935 #ifdef USE_POSIX_MEMALIGN
937 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
938 if (err)
939 base = NULL;
940 abase = base;
942 #else
943 base = malloc (ABLOCKS_BYTES);
944 abase = ALIGN (base, BLOCK_ALIGN);
945 #endif
947 if (base == 0)
949 MALLOC_UNBLOCK_INPUT;
950 memory_full ();
953 aligned = (base == abase);
954 if (!aligned)
955 ((void**)abase)[-1] = base;
957 #ifdef DOUG_LEA_MALLOC
958 /* Back to a reasonable maximum of mmap'ed areas. */
959 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
960 #endif
962 #ifndef USE_LSB_TAG
963 /* If the memory just allocated cannot be addressed thru a Lisp
964 object's pointer, and it needs to be, that's equivalent to
965 running out of memory. */
966 if (type != MEM_TYPE_NON_LISP)
968 Lisp_Object tem;
969 char *end = (char *) base + ABLOCKS_BYTES - 1;
970 XSETCONS (tem, end);
971 if ((char *) XCONS (tem) != end)
973 lisp_malloc_loser = base;
974 free (base);
975 MALLOC_UNBLOCK_INPUT;
976 memory_full ();
979 #endif
981 /* Initialize the blocks and put them on the free list.
982 Is `base' was not properly aligned, we can't use the last block. */
983 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
985 abase->blocks[i].abase = abase;
986 abase->blocks[i].x.next_free = free_ablock;
987 free_ablock = &abase->blocks[i];
989 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
991 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
992 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
993 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
994 eassert (ABLOCKS_BASE (abase) == base);
995 eassert (aligned == (long) ABLOCKS_BUSY (abase));
998 abase = ABLOCK_ABASE (free_ablock);
999 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1000 val = free_ablock;
1001 free_ablock = free_ablock->x.next_free;
1003 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1004 if (val && type != MEM_TYPE_NON_LISP)
1005 mem_insert (val, (char *) val + nbytes, type);
1006 #endif
1008 MALLOC_UNBLOCK_INPUT;
1009 if (!val && nbytes)
1010 memory_full ();
1012 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1013 return val;
1016 static void
1017 lisp_align_free (POINTER_TYPE *block)
1019 struct ablock *ablock = block;
1020 struct ablocks *abase = ABLOCK_ABASE (ablock);
1022 MALLOC_BLOCK_INPUT;
1023 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1024 mem_delete (mem_find (block));
1025 #endif
1026 /* Put on free list. */
1027 ablock->x.next_free = free_ablock;
1028 free_ablock = ablock;
1029 /* Update busy count. */
1030 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1032 if (2 > (long) ABLOCKS_BUSY (abase))
1033 { /* All the blocks are free. */
1034 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1035 struct ablock **tem = &free_ablock;
1036 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1038 while (*tem)
1040 if (*tem >= (struct ablock *) abase && *tem < atop)
1042 i++;
1043 *tem = (*tem)->x.next_free;
1045 else
1046 tem = &(*tem)->x.next_free;
1048 eassert ((aligned & 1) == aligned);
1049 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1050 #ifdef USE_POSIX_MEMALIGN
1051 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1052 #endif
1053 free (ABLOCKS_BASE (abase));
1055 MALLOC_UNBLOCK_INPUT;
1058 /* Return a new buffer structure allocated from the heap with
1059 a call to lisp_malloc. */
1061 struct buffer *
1062 allocate_buffer (void)
1064 struct buffer *b
1065 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1066 MEM_TYPE_BUFFER);
1067 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1068 XSETPVECTYPE (b, PVEC_BUFFER);
1069 return b;
1073 #ifndef SYSTEM_MALLOC
1075 /* Arranging to disable input signals while we're in malloc.
1077 This only works with GNU malloc. To help out systems which can't
1078 use GNU malloc, all the calls to malloc, realloc, and free
1079 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1080 pair; unfortunately, we have no idea what C library functions
1081 might call malloc, so we can't really protect them unless you're
1082 using GNU malloc. Fortunately, most of the major operating systems
1083 can use GNU malloc. */
1085 #ifndef SYNC_INPUT
1086 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1087 there's no need to block input around malloc. */
1089 #ifndef DOUG_LEA_MALLOC
1090 extern void * (*__malloc_hook) (size_t, const void *);
1091 extern void * (*__realloc_hook) (void *, size_t, const void *);
1092 extern void (*__free_hook) (void *, const void *);
1093 /* Else declared in malloc.h, perhaps with an extra arg. */
1094 #endif /* DOUG_LEA_MALLOC */
1095 static void * (*old_malloc_hook) (size_t, const void *);
1096 static void * (*old_realloc_hook) (void *, size_t, const void*);
1097 static void (*old_free_hook) (void*, const void*);
1099 static __malloc_size_t bytes_used_when_reconsidered;
1101 /* This function is used as the hook for free to call. */
1103 static void
1104 emacs_blocked_free (void *ptr, const void *ptr2)
1106 BLOCK_INPUT_ALLOC;
1108 #ifdef GC_MALLOC_CHECK
1109 if (ptr)
1111 struct mem_node *m;
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1120 else
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1126 #endif /* GC_MALLOC_CHECK */
1128 __free_hook = old_free_hook;
1129 free (ptr);
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
1134 if (! NILP (Vmemory_full)
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
1140 > ((bytes_used_when_reconsidered = BYTES_USED)
1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1142 refill_memory_reserve ();
1144 __free_hook = emacs_blocked_free;
1145 UNBLOCK_INPUT_ALLOC;
1149 /* This function is the malloc hook that Emacs uses. */
1151 static void *
1152 emacs_blocked_malloc (size_t size, const void *ptr)
1154 void *value;
1156 BLOCK_INPUT_ALLOC;
1157 __malloc_hook = old_malloc_hook;
1158 #ifdef DOUG_LEA_MALLOC
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1161 #else
1162 __malloc_extra_blocks = malloc_hysteresis;
1163 #endif
1165 value = (void *) malloc (size);
1167 #ifdef GC_MALLOC_CHECK
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1180 if (!dont_register_blocks)
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1186 #endif /* GC_MALLOC_CHECK */
1188 __malloc_hook = emacs_blocked_malloc;
1189 UNBLOCK_INPUT_ALLOC;
1191 /* fprintf (stderr, "%p malloc\n", value); */
1192 return value;
1196 /* This function is the realloc hook that Emacs uses. */
1198 static void *
1199 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1201 void *value;
1203 BLOCK_INPUT_ALLOC;
1204 __realloc_hook = old_realloc_hook;
1206 #ifdef GC_MALLOC_CHECK
1207 if (ptr)
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1218 mem_delete (m);
1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225 #endif /* GC_MALLOC_CHECK */
1227 value = (void *) realloc (ptr, size);
1229 #ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245 #endif /* GC_MALLOC_CHECK */
1247 __realloc_hook = emacs_blocked_realloc;
1248 UNBLOCK_INPUT_ALLOC;
1250 return value;
1254 #ifdef HAVE_GTK_AND_PTHREAD
1255 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1260 void
1261 reset_malloc_hooks ()
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
1267 #endif /* HAVE_GTK_AND_PTHREAD */
1270 /* Called from main to set up malloc to use our hooks. */
1272 void
1273 uninterrupt_malloc (void)
1275 #ifdef HAVE_GTK_AND_PTHREAD
1276 #ifdef DOUG_LEA_MALLOC
1277 pthread_mutexattr_t attr;
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
1284 #else /* !DOUG_LEA_MALLOC */
1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288 #endif /* !DOUG_LEA_MALLOC */
1289 #endif /* HAVE_GTK_AND_PTHREAD */
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
1293 __free_hook = emacs_blocked_free;
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
1297 __malloc_hook = emacs_blocked_malloc;
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
1301 __realloc_hook = emacs_blocked_realloc;
1304 #endif /* not SYNC_INPUT */
1305 #endif /* not SYSTEM_MALLOC */
1309 /***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1313 /* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1316 #define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1319 /* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1322 struct interval_block
1324 /* Place `intervals' first, to preserve alignment. */
1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
1326 struct interval_block *next;
1329 /* Current interval block. Its `next' pointer points to older
1330 blocks. */
1332 static struct interval_block *interval_block;
1334 /* Index in interval_block above of the next unused interval
1335 structure. */
1337 static int interval_block_index;
1339 /* Number of free and live intervals. */
1341 static int total_free_intervals, total_intervals;
1343 /* List of free intervals. */
1345 static INTERVAL interval_free_list;
1347 /* Total number of interval blocks now in use. */
1349 static int n_interval_blocks;
1352 /* Initialize interval allocation. */
1354 static void
1355 init_intervals (void)
1357 interval_block = NULL;
1358 interval_block_index = INTERVAL_BLOCK_SIZE;
1359 interval_free_list = 0;
1360 n_interval_blocks = 0;
1364 /* Return a new interval. */
1366 INTERVAL
1367 make_interval (void)
1369 INTERVAL val;
1371 /* eassert (!handling_signal); */
1373 MALLOC_BLOCK_INPUT;
1375 if (interval_free_list)
1377 val = interval_free_list;
1378 interval_free_list = INTERVAL_PARENT (interval_free_list);
1380 else
1382 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1384 register struct interval_block *newi;
1386 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1387 MEM_TYPE_NON_LISP);
1389 newi->next = interval_block;
1390 interval_block = newi;
1391 interval_block_index = 0;
1392 n_interval_blocks++;
1394 val = &interval_block->intervals[interval_block_index++];
1397 MALLOC_UNBLOCK_INPUT;
1399 consing_since_gc += sizeof (struct interval);
1400 intervals_consed++;
1401 RESET_INTERVAL (val);
1402 val->gcmarkbit = 0;
1403 return val;
1407 /* Mark Lisp objects in interval I. */
1409 static void
1410 mark_interval (register INTERVAL i, Lisp_Object dummy)
1412 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1413 i->gcmarkbit = 1;
1414 mark_object (i->plist);
1418 /* Mark the interval tree rooted in TREE. Don't call this directly;
1419 use the macro MARK_INTERVAL_TREE instead. */
1421 static void
1422 mark_interval_tree (register INTERVAL tree)
1424 /* No need to test if this tree has been marked already; this
1425 function is always called through the MARK_INTERVAL_TREE macro,
1426 which takes care of that. */
1428 traverse_intervals_noorder (tree, mark_interval, Qnil);
1432 /* Mark the interval tree rooted in I. */
1434 #define MARK_INTERVAL_TREE(i) \
1435 do { \
1436 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1437 mark_interval_tree (i); \
1438 } while (0)
1441 #define UNMARK_BALANCE_INTERVALS(i) \
1442 do { \
1443 if (! NULL_INTERVAL_P (i)) \
1444 (i) = balance_intervals (i); \
1445 } while (0)
1448 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1449 can't create number objects in macros. */
1450 #ifndef make_number
1451 Lisp_Object
1452 make_number (EMACS_INT n)
1454 Lisp_Object obj;
1455 obj.s.val = n;
1456 obj.s.type = Lisp_Int;
1457 return obj;
1459 #endif
1461 /***********************************************************************
1462 String Allocation
1463 ***********************************************************************/
1465 /* Lisp_Strings are allocated in string_block structures. When a new
1466 string_block is allocated, all the Lisp_Strings it contains are
1467 added to a free-list string_free_list. When a new Lisp_String is
1468 needed, it is taken from that list. During the sweep phase of GC,
1469 string_blocks that are entirely free are freed, except two which
1470 we keep.
1472 String data is allocated from sblock structures. Strings larger
1473 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1474 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1476 Sblocks consist internally of sdata structures, one for each
1477 Lisp_String. The sdata structure points to the Lisp_String it
1478 belongs to. The Lisp_String points back to the `u.data' member of
1479 its sdata structure.
1481 When a Lisp_String is freed during GC, it is put back on
1482 string_free_list, and its `data' member and its sdata's `string'
1483 pointer is set to null. The size of the string is recorded in the
1484 `u.nbytes' member of the sdata. So, sdata structures that are no
1485 longer used, can be easily recognized, and it's easy to compact the
1486 sblocks of small strings which we do in compact_small_strings. */
1488 /* Size in bytes of an sblock structure used for small strings. This
1489 is 8192 minus malloc overhead. */
1491 #define SBLOCK_SIZE 8188
1493 /* Strings larger than this are considered large strings. String data
1494 for large strings is allocated from individual sblocks. */
1496 #define LARGE_STRING_BYTES 1024
1498 /* Structure describing string memory sub-allocated from an sblock.
1499 This is where the contents of Lisp strings are stored. */
1501 struct sdata
1503 /* Back-pointer to the string this sdata belongs to. If null, this
1504 structure is free, and the NBYTES member of the union below
1505 contains the string's byte size (the same value that STRING_BYTES
1506 would return if STRING were non-null). If non-null, STRING_BYTES
1507 (STRING) is the size of the data, and DATA contains the string's
1508 contents. */
1509 struct Lisp_String *string;
1511 #ifdef GC_CHECK_STRING_BYTES
1513 EMACS_INT nbytes;
1514 unsigned char data[1];
1516 #define SDATA_NBYTES(S) (S)->nbytes
1517 #define SDATA_DATA(S) (S)->data
1519 #else /* not GC_CHECK_STRING_BYTES */
1521 union
1523 /* When STRING in non-null. */
1524 unsigned char data[1];
1526 /* When STRING is null. */
1527 EMACS_INT nbytes;
1528 } u;
1531 #define SDATA_NBYTES(S) (S)->u.nbytes
1532 #define SDATA_DATA(S) (S)->u.data
1534 #endif /* not GC_CHECK_STRING_BYTES */
1538 /* Structure describing a block of memory which is sub-allocated to
1539 obtain string data memory for strings. Blocks for small strings
1540 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1541 as large as needed. */
1543 struct sblock
1545 /* Next in list. */
1546 struct sblock *next;
1548 /* Pointer to the next free sdata block. This points past the end
1549 of the sblock if there isn't any space left in this block. */
1550 struct sdata *next_free;
1552 /* Start of data. */
1553 struct sdata first_data;
1556 /* Number of Lisp strings in a string_block structure. The 1020 is
1557 1024 minus malloc overhead. */
1559 #define STRING_BLOCK_SIZE \
1560 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1562 /* Structure describing a block from which Lisp_String structures
1563 are allocated. */
1565 struct string_block
1567 /* Place `strings' first, to preserve alignment. */
1568 struct Lisp_String strings[STRING_BLOCK_SIZE];
1569 struct string_block *next;
1572 /* Head and tail of the list of sblock structures holding Lisp string
1573 data. We always allocate from current_sblock. The NEXT pointers
1574 in the sblock structures go from oldest_sblock to current_sblock. */
1576 static struct sblock *oldest_sblock, *current_sblock;
1578 /* List of sblocks for large strings. */
1580 static struct sblock *large_sblocks;
1582 /* List of string_block structures, and how many there are. */
1584 static struct string_block *string_blocks;
1585 static int n_string_blocks;
1587 /* Free-list of Lisp_Strings. */
1589 static struct Lisp_String *string_free_list;
1591 /* Number of live and free Lisp_Strings. */
1593 static int total_strings, total_free_strings;
1595 /* Number of bytes used by live strings. */
1597 static EMACS_INT total_string_size;
1599 /* Given a pointer to a Lisp_String S which is on the free-list
1600 string_free_list, return a pointer to its successor in the
1601 free-list. */
1603 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1605 /* Return a pointer to the sdata structure belonging to Lisp string S.
1606 S must be live, i.e. S->data must not be null. S->data is actually
1607 a pointer to the `u.data' member of its sdata structure; the
1608 structure starts at a constant offset in front of that. */
1610 #ifdef GC_CHECK_STRING_BYTES
1612 #define SDATA_OF_STRING(S) \
1613 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1614 - sizeof (EMACS_INT)))
1616 #else /* not GC_CHECK_STRING_BYTES */
1618 #define SDATA_OF_STRING(S) \
1619 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1621 #endif /* not GC_CHECK_STRING_BYTES */
1624 #ifdef GC_CHECK_STRING_OVERRUN
1626 /* We check for overrun in string data blocks by appending a small
1627 "cookie" after each allocated string data block, and check for the
1628 presence of this cookie during GC. */
1630 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1631 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1632 { 0xde, 0xad, 0xbe, 0xef };
1634 #else
1635 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1636 #endif
1638 /* Value is the size of an sdata structure large enough to hold NBYTES
1639 bytes of string data. The value returned includes a terminating
1640 NUL byte, the size of the sdata structure, and padding. */
1642 #ifdef GC_CHECK_STRING_BYTES
1644 #define SDATA_SIZE(NBYTES) \
1645 ((sizeof (struct Lisp_String *) \
1646 + (NBYTES) + 1 \
1647 + sizeof (EMACS_INT) \
1648 + sizeof (EMACS_INT) - 1) \
1649 & ~(sizeof (EMACS_INT) - 1))
1651 #else /* not GC_CHECK_STRING_BYTES */
1653 #define SDATA_SIZE(NBYTES) \
1654 ((sizeof (struct Lisp_String *) \
1655 + (NBYTES) + 1 \
1656 + sizeof (EMACS_INT) - 1) \
1657 & ~(sizeof (EMACS_INT) - 1))
1659 #endif /* not GC_CHECK_STRING_BYTES */
1661 /* Extra bytes to allocate for each string. */
1663 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1665 /* Initialize string allocation. Called from init_alloc_once. */
1667 static void
1668 init_strings (void)
1670 total_strings = total_free_strings = total_string_size = 0;
1671 oldest_sblock = current_sblock = large_sblocks = NULL;
1672 string_blocks = NULL;
1673 n_string_blocks = 0;
1674 string_free_list = NULL;
1675 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1676 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1680 #ifdef GC_CHECK_STRING_BYTES
1682 static int check_string_bytes_count;
1684 static void check_string_bytes (int);
1685 static void check_sblock (struct sblock *);
1687 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1690 /* Like GC_STRING_BYTES, but with debugging check. */
1692 EMACS_INT
1693 string_bytes (struct Lisp_String *s)
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1705 /* Check validity of Lisp strings' string_bytes member in B. */
1707 static void
1708 check_sblock (b)
1709 struct sblock *b;
1711 struct sdata *from, *end, *from_end;
1713 end = b->next_free;
1715 for (from = &b->first_data; from < end; from = from_end)
1717 /* Compute the next FROM here because copying below may
1718 overwrite data we need to compute it. */
1719 EMACS_INT nbytes;
1721 /* Check that the string size recorded in the string is the
1722 same as the one recorded in the sdata structure. */
1723 if (from->string)
1724 CHECK_STRING_BYTES (from->string);
1726 if (from->string)
1727 nbytes = GC_STRING_BYTES (from->string);
1728 else
1729 nbytes = SDATA_NBYTES (from);
1731 nbytes = SDATA_SIZE (nbytes);
1732 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1737 /* Check validity of Lisp strings' string_bytes member. ALL_P
1738 non-zero means check all strings, otherwise check only most
1739 recently allocated strings. Used for hunting a bug. */
1741 static void
1742 check_string_bytes (all_p)
1743 int all_p;
1745 if (all_p)
1747 struct sblock *b;
1749 for (b = large_sblocks; b; b = b->next)
1751 struct Lisp_String *s = b->first_data.string;
1752 if (s)
1753 CHECK_STRING_BYTES (s);
1756 for (b = oldest_sblock; b; b = b->next)
1757 check_sblock (b);
1759 else
1760 check_sblock (current_sblock);
1763 #endif /* GC_CHECK_STRING_BYTES */
1765 #ifdef GC_CHECK_STRING_FREE_LIST
1767 /* Walk through the string free list looking for bogus next pointers.
1768 This may catch buffer overrun from a previous string. */
1770 static void
1771 check_string_free_list ()
1773 struct Lisp_String *s;
1775 /* Pop a Lisp_String off the free-list. */
1776 s = string_free_list;
1777 while (s != NULL)
1779 if ((unsigned long)s < 1024)
1780 abort();
1781 s = NEXT_FREE_LISP_STRING (s);
1784 #else
1785 #define check_string_free_list()
1786 #endif
1788 /* Return a new Lisp_String. */
1790 static struct Lisp_String *
1791 allocate_string (void)
1793 struct Lisp_String *s;
1795 /* eassert (!handling_signal); */
1797 MALLOC_BLOCK_INPUT;
1799 /* If the free-list is empty, allocate a new string_block, and
1800 add all the Lisp_Strings in it to the free-list. */
1801 if (string_free_list == NULL)
1803 struct string_block *b;
1804 int i;
1806 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1807 memset (b, 0, sizeof *b);
1808 b->next = string_blocks;
1809 string_blocks = b;
1810 ++n_string_blocks;
1812 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1814 s = b->strings + i;
1815 NEXT_FREE_LISP_STRING (s) = string_free_list;
1816 string_free_list = s;
1819 total_free_strings += STRING_BLOCK_SIZE;
1822 check_string_free_list ();
1824 /* Pop a Lisp_String off the free-list. */
1825 s = string_free_list;
1826 string_free_list = NEXT_FREE_LISP_STRING (s);
1828 MALLOC_UNBLOCK_INPUT;
1830 /* Probably not strictly necessary, but play it safe. */
1831 memset (s, 0, sizeof *s);
1833 --total_free_strings;
1834 ++total_strings;
1835 ++strings_consed;
1836 consing_since_gc += sizeof *s;
1838 #ifdef GC_CHECK_STRING_BYTES
1839 if (!noninteractive)
1841 if (++check_string_bytes_count == 200)
1843 check_string_bytes_count = 0;
1844 check_string_bytes (1);
1846 else
1847 check_string_bytes (0);
1849 #endif /* GC_CHECK_STRING_BYTES */
1851 return s;
1855 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1856 plus a NUL byte at the end. Allocate an sdata structure for S, and
1857 set S->data to its `u.data' member. Store a NUL byte at the end of
1858 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1859 S->data if it was initially non-null. */
1861 void
1862 allocate_string_data (struct Lisp_String *s,
1863 EMACS_INT nchars, EMACS_INT nbytes)
1865 struct sdata *data, *old_data;
1866 struct sblock *b;
1867 EMACS_INT needed, old_nbytes;
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1875 MALLOC_BLOCK_INPUT;
1877 if (nbytes > LARGE_STRING_BYTES)
1879 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1881 #ifdef DOUG_LEA_MALLOC
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
1884 a dumped Emacs.
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
1891 mallopt (M_MMAP_MAX, 0);
1892 #endif
1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1896 #ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899 #endif
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
1909 < (needed + GC_STRING_EXTRA)))
1911 /* Not enough room in the current sblock. */
1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1923 else
1924 b = current_sblock;
1926 data = b->next_free;
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1929 MALLOC_UNBLOCK_INPUT;
1931 data->string = s;
1932 s->data = SDATA_DATA (data);
1933 #ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935 #endif
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1941 #endif
1943 /* If S had already data assigned, mark that as free by setting its
1944 string back-pointer to null, and recording the size of the data
1945 in it. */
1946 if (old_data)
1948 SDATA_NBYTES (old_data) = old_nbytes;
1949 old_data->string = NULL;
1952 consing_since_gc += needed;
1956 /* Sweep and compact strings. */
1958 static void
1959 sweep_strings (void)
1961 struct string_block *b, *next;
1962 struct string_block *live_blocks = NULL;
1964 string_free_list = NULL;
1965 total_strings = total_free_strings = 0;
1966 total_string_size = 0;
1968 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1969 for (b = string_blocks; b; b = next)
1971 int i, nfree = 0;
1972 struct Lisp_String *free_list_before = string_free_list;
1974 next = b->next;
1976 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1978 struct Lisp_String *s = b->strings + i;
1980 if (s->data)
1982 /* String was not on free-list before. */
1983 if (STRING_MARKED_P (s))
1985 /* String is live; unmark it and its intervals. */
1986 UNMARK_STRING (s);
1988 if (!NULL_INTERVAL_P (s->intervals))
1989 UNMARK_BALANCE_INTERVALS (s->intervals);
1991 ++total_strings;
1992 total_string_size += STRING_BYTES (s);
1994 else
1996 /* String is dead. Put it on the free-list. */
1997 struct sdata *data = SDATA_OF_STRING (s);
1999 /* Save the size of S in its sdata so that we know
2000 how large that is. Reset the sdata's string
2001 back-pointer so that we know it's free. */
2002 #ifdef GC_CHECK_STRING_BYTES
2003 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2004 abort ();
2005 #else
2006 data->u.nbytes = GC_STRING_BYTES (s);
2007 #endif
2008 data->string = NULL;
2010 /* Reset the strings's `data' member so that we
2011 know it's free. */
2012 s->data = NULL;
2014 /* Put the string on the free-list. */
2015 NEXT_FREE_LISP_STRING (s) = string_free_list;
2016 string_free_list = s;
2017 ++nfree;
2020 else
2022 /* S was on the free-list before. Put it there again. */
2023 NEXT_FREE_LISP_STRING (s) = string_free_list;
2024 string_free_list = s;
2025 ++nfree;
2029 /* Free blocks that contain free Lisp_Strings only, except
2030 the first two of them. */
2031 if (nfree == STRING_BLOCK_SIZE
2032 && total_free_strings > STRING_BLOCK_SIZE)
2034 lisp_free (b);
2035 --n_string_blocks;
2036 string_free_list = free_list_before;
2038 else
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2046 check_string_free_list ();
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
2052 check_string_free_list ();
2056 /* Free dead large strings. */
2058 static void
2059 free_large_strings (void)
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
2064 for (b = large_sblocks; b; b = next)
2066 next = b->next;
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2072 b->next = live_blocks;
2073 live_blocks = b;
2077 large_sblocks = live_blocks;
2081 /* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2084 static void
2085 compact_small_strings (void)
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2105 for (from = &b->first_data; from < end; from = from_end)
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
2109 EMACS_INT nbytes;
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117 #endif /* GC_CHECK_STRING_BYTES */
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
2122 nbytes = SDATA_NBYTES (from);
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
2127 nbytes = SDATA_SIZE (nbytes);
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2130 #ifdef GC_CHECK_STRING_OVERRUN
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
2134 abort ();
2135 #endif
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2140 /* If TB is full, proceed with the next sblock. */
2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2142 if (to_end > tb_end)
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2154 xassert (tb != b || to <= from);
2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
2156 to->string->data = SDATA_DATA (to);
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2169 next = b->next;
2170 lisp_free (b);
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2179 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2180 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2181 LENGTH must be an integer.
2182 INIT must be an integer that represents a character. */)
2183 (Lisp_Object length, Lisp_Object init)
2185 register Lisp_Object val;
2186 register unsigned char *p, *end;
2187 int c;
2188 EMACS_INT nbytes;
2190 CHECK_NATNUM (length);
2191 CHECK_NUMBER (init);
2193 c = XINT (init);
2194 if (ASCII_CHAR_P (c))
2196 nbytes = XINT (length);
2197 val = make_uninit_string (nbytes);
2198 p = SDATA (val);
2199 end = p + SCHARS (val);
2200 while (p != end)
2201 *p++ = c;
2203 else
2205 unsigned char str[MAX_MULTIBYTE_LENGTH];
2206 int len = CHAR_STRING (c, str);
2207 EMACS_INT string_len = XINT (length);
2209 if (string_len > MOST_POSITIVE_FIXNUM / len)
2210 error ("Maximum string size exceeded");
2211 nbytes = len * string_len;
2212 val = make_uninit_multibyte_string (string_len, nbytes);
2213 p = SDATA (val);
2214 end = p + nbytes;
2215 while (p != end)
2217 memcpy (p, str, len);
2218 p += len;
2222 *p = 0;
2223 return val;
2227 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2228 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2229 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2230 (Lisp_Object length, Lisp_Object init)
2232 register Lisp_Object val;
2233 struct Lisp_Bool_Vector *p;
2234 int real_init, i;
2235 EMACS_INT length_in_chars, length_in_elts;
2236 int bits_per_value;
2238 CHECK_NATNUM (length);
2240 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2242 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2243 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2244 / BOOL_VECTOR_BITS_PER_CHAR);
2246 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2247 slot `size' of the struct Lisp_Bool_Vector. */
2248 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2250 /* Get rid of any bits that would cause confusion. */
2251 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2252 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2253 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2255 p = XBOOL_VECTOR (val);
2256 p->size = XFASTINT (length);
2258 real_init = (NILP (init) ? 0 : -1);
2259 for (i = 0; i < length_in_chars ; i++)
2260 p->data[i] = real_init;
2262 /* Clear the extraneous bits in the last byte. */
2263 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2264 p->data[length_in_chars - 1]
2265 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2267 return val;
2271 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2272 of characters from the contents. This string may be unibyte or
2273 multibyte, depending on the contents. */
2275 Lisp_Object
2276 make_string (const char *contents, EMACS_INT nbytes)
2278 register Lisp_Object val;
2279 EMACS_INT nchars, multibyte_nbytes;
2281 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2282 &nchars, &multibyte_nbytes);
2283 if (nbytes == nchars || nbytes != multibyte_nbytes)
2284 /* CONTENTS contains no multibyte sequences or contains an invalid
2285 multibyte sequence. We must make unibyte string. */
2286 val = make_unibyte_string (contents, nbytes);
2287 else
2288 val = make_multibyte_string (contents, nchars, nbytes);
2289 return val;
2293 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2295 Lisp_Object
2296 make_unibyte_string (const char *contents, EMACS_INT length)
2298 register Lisp_Object val;
2299 val = make_uninit_string (length);
2300 memcpy (SDATA (val), contents, length);
2301 return val;
2305 /* Make a multibyte string from NCHARS characters occupying NBYTES
2306 bytes at CONTENTS. */
2308 Lisp_Object
2309 make_multibyte_string (const char *contents,
2310 EMACS_INT nchars, EMACS_INT nbytes)
2312 register Lisp_Object val;
2313 val = make_uninit_multibyte_string (nchars, nbytes);
2314 memcpy (SDATA (val), contents, nbytes);
2315 return val;
2319 /* Make a string from NCHARS characters occupying NBYTES bytes at
2320 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2322 Lisp_Object
2323 make_string_from_bytes (const char *contents,
2324 EMACS_INT nchars, EMACS_INT nbytes)
2326 register Lisp_Object val;
2327 val = make_uninit_multibyte_string (nchars, nbytes);
2328 memcpy (SDATA (val), contents, nbytes);
2329 if (SBYTES (val) == SCHARS (val))
2330 STRING_SET_UNIBYTE (val);
2331 return val;
2335 /* Make a string from NCHARS characters occupying NBYTES bytes at
2336 CONTENTS. The argument MULTIBYTE controls whether to label the
2337 string as multibyte. If NCHARS is negative, it counts the number of
2338 characters by itself. */
2340 Lisp_Object
2341 make_specified_string (const char *contents,
2342 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2344 register Lisp_Object val;
2346 if (nchars < 0)
2348 if (multibyte)
2349 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2350 nbytes);
2351 else
2352 nchars = nbytes;
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 if (!multibyte)
2357 STRING_SET_UNIBYTE (val);
2358 return val;
2362 /* Make a string from the data at STR, treating it as multibyte if the
2363 data warrants. */
2365 Lisp_Object
2366 build_string (const char *str)
2368 return make_string (str, strlen (str));
2372 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2373 occupying LENGTH bytes. */
2375 Lisp_Object
2376 make_uninit_string (EMACS_INT length)
2378 Lisp_Object val;
2380 if (!length)
2381 return empty_unibyte_string;
2382 val = make_uninit_multibyte_string (length, length);
2383 STRING_SET_UNIBYTE (val);
2384 return val;
2388 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2389 which occupy NBYTES bytes. */
2391 Lisp_Object
2392 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2394 Lisp_Object string;
2395 struct Lisp_String *s;
2397 if (nchars < 0)
2398 abort ();
2399 if (!nbytes)
2400 return empty_multibyte_string;
2402 s = allocate_string ();
2403 allocate_string_data (s, nchars, nbytes);
2404 XSETSTRING (string, s);
2405 string_chars_consed += nbytes;
2406 return string;
2411 /***********************************************************************
2412 Float Allocation
2413 ***********************************************************************/
2415 /* We store float cells inside of float_blocks, allocating a new
2416 float_block with malloc whenever necessary. Float cells reclaimed
2417 by GC are put on a free list to be reallocated before allocating
2418 any new float cells from the latest float_block. */
2420 #define FLOAT_BLOCK_SIZE \
2421 (((BLOCK_BYTES - sizeof (struct float_block *) \
2422 /* The compiler might add padding at the end. */ \
2423 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2424 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2426 #define GETMARKBIT(block,n) \
2427 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2428 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2429 & 1)
2431 #define SETMARKBIT(block,n) \
2432 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2433 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2435 #define UNSETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2439 #define FLOAT_BLOCK(fptr) \
2440 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2442 #define FLOAT_INDEX(fptr) \
2443 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2445 struct float_block
2447 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2448 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2449 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2450 struct float_block *next;
2453 #define FLOAT_MARKED_P(fptr) \
2454 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456 #define FLOAT_MARK(fptr) \
2457 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459 #define FLOAT_UNMARK(fptr) \
2460 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462 /* Current float_block. */
2464 static struct float_block *float_block;
2466 /* Index of first unused Lisp_Float in the current float_block. */
2468 static int float_block_index;
2470 /* Total number of float blocks now in use. */
2472 static int n_float_blocks;
2474 /* Free-list of Lisp_Floats. */
2476 static struct Lisp_Float *float_free_list;
2479 /* Initialize float allocation. */
2481 static void
2482 init_float (void)
2484 float_block = NULL;
2485 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2486 float_free_list = 0;
2487 n_float_blocks = 0;
2491 /* Return a new float object with value FLOAT_VALUE. */
2493 Lisp_Object
2494 make_float (double float_value)
2496 register Lisp_Object val;
2498 /* eassert (!handling_signal); */
2500 MALLOC_BLOCK_INPUT;
2502 if (float_free_list)
2504 /* We use the data field for chaining the free list
2505 so that we won't use the same field that has the mark bit. */
2506 XSETFLOAT (val, float_free_list);
2507 float_free_list = float_free_list->u.chain;
2509 else
2511 if (float_block_index == FLOAT_BLOCK_SIZE)
2513 register struct float_block *new;
2515 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2516 MEM_TYPE_FLOAT);
2517 new->next = float_block;
2518 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2519 float_block = new;
2520 float_block_index = 0;
2521 n_float_blocks++;
2523 XSETFLOAT (val, &float_block->floats[float_block_index]);
2524 float_block_index++;
2527 MALLOC_UNBLOCK_INPUT;
2529 XFLOAT_INIT (val, float_value);
2530 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2531 consing_since_gc += sizeof (struct Lisp_Float);
2532 floats_consed++;
2533 return val;
2538 /***********************************************************************
2539 Cons Allocation
2540 ***********************************************************************/
2542 /* We store cons cells inside of cons_blocks, allocating a new
2543 cons_block with malloc whenever necessary. Cons cells reclaimed by
2544 GC are put on a free list to be reallocated before allocating
2545 any new cons cells from the latest cons_block. */
2547 #define CONS_BLOCK_SIZE \
2548 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2549 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2551 #define CONS_BLOCK(fptr) \
2552 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2554 #define CONS_INDEX(fptr) \
2555 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2557 struct cons_block
2559 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2560 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2561 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2562 struct cons_block *next;
2565 #define CONS_MARKED_P(fptr) \
2566 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568 #define CONS_MARK(fptr) \
2569 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571 #define CONS_UNMARK(fptr) \
2572 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574 /* Current cons_block. */
2576 static struct cons_block *cons_block;
2578 /* Index of first unused Lisp_Cons in the current block. */
2580 static int cons_block_index;
2582 /* Free-list of Lisp_Cons structures. */
2584 static struct Lisp_Cons *cons_free_list;
2586 /* Total number of cons blocks now in use. */
2588 static int n_cons_blocks;
2591 /* Initialize cons allocation. */
2593 static void
2594 init_cons (void)
2596 cons_block = NULL;
2597 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2598 cons_free_list = 0;
2599 n_cons_blocks = 0;
2603 /* Explicitly free a cons cell by putting it on the free-list. */
2605 void
2606 free_cons (struct Lisp_Cons *ptr)
2608 ptr->u.chain = cons_free_list;
2609 #if GC_MARK_STACK
2610 ptr->car = Vdead;
2611 #endif
2612 cons_free_list = ptr;
2615 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2616 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2617 (Lisp_Object car, Lisp_Object cdr)
2619 register Lisp_Object val;
2621 /* eassert (!handling_signal); */
2623 MALLOC_BLOCK_INPUT;
2625 if (cons_free_list)
2627 /* We use the cdr for chaining the free list
2628 so that we won't use the same field that has the mark bit. */
2629 XSETCONS (val, cons_free_list);
2630 cons_free_list = cons_free_list->u.chain;
2632 else
2634 if (cons_block_index == CONS_BLOCK_SIZE)
2636 register struct cons_block *new;
2637 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2638 MEM_TYPE_CONS);
2639 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2640 new->next = cons_block;
2641 cons_block = new;
2642 cons_block_index = 0;
2643 n_cons_blocks++;
2645 XSETCONS (val, &cons_block->conses[cons_block_index]);
2646 cons_block_index++;
2649 MALLOC_UNBLOCK_INPUT;
2651 XSETCAR (val, car);
2652 XSETCDR (val, cdr);
2653 eassert (!CONS_MARKED_P (XCONS (val)));
2654 consing_since_gc += sizeof (struct Lisp_Cons);
2655 cons_cells_consed++;
2656 return val;
2659 #ifdef GC_CHECK_CONS_LIST
2660 /* Get an error now if there's any junk in the cons free list. */
2661 void
2662 check_cons_list (void)
2664 struct Lisp_Cons *tail = cons_free_list;
2666 while (tail)
2667 tail = tail->u.chain;
2669 #endif
2671 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2673 Lisp_Object
2674 list1 (Lisp_Object arg1)
2676 return Fcons (arg1, Qnil);
2679 Lisp_Object
2680 list2 (Lisp_Object arg1, Lisp_Object arg2)
2682 return Fcons (arg1, Fcons (arg2, Qnil));
2686 Lisp_Object
2687 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2689 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693 Lisp_Object
2694 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2696 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700 Lisp_Object
2701 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2703 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2704 Fcons (arg5, Qnil)))));
2708 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2709 doc: /* Return a newly created list with specified arguments as elements.
2710 Any number of arguments, even zero arguments, are allowed.
2711 usage: (list &rest OBJECTS) */)
2712 (size_t nargs, register Lisp_Object *args)
2714 register Lisp_Object val;
2715 val = Qnil;
2717 while (nargs > 0)
2719 nargs--;
2720 val = Fcons (args[nargs], val);
2722 return val;
2726 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2727 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2728 (register Lisp_Object length, Lisp_Object init)
2730 register Lisp_Object val;
2731 register EMACS_INT size;
2733 CHECK_NATNUM (length);
2734 size = XFASTINT (length);
2736 val = Qnil;
2737 while (size > 0)
2739 val = Fcons (init, val);
2740 --size;
2742 if (size > 0)
2744 val = Fcons (init, val);
2745 --size;
2747 if (size > 0)
2749 val = Fcons (init, val);
2750 --size;
2752 if (size > 0)
2754 val = Fcons (init, val);
2755 --size;
2757 if (size > 0)
2759 val = Fcons (init, val);
2760 --size;
2766 QUIT;
2769 return val;
2774 /***********************************************************************
2775 Vector Allocation
2776 ***********************************************************************/
2778 /* Singly-linked list of all vectors. */
2780 static struct Lisp_Vector *all_vectors;
2782 /* Total number of vector-like objects now in use. */
2784 static int n_vectors;
2787 /* Value is a pointer to a newly allocated Lisp_Vector structure
2788 with room for LEN Lisp_Objects. */
2790 static struct Lisp_Vector *
2791 allocate_vectorlike (EMACS_INT len)
2793 struct Lisp_Vector *p;
2794 size_t nbytes;
2796 MALLOC_BLOCK_INPUT;
2798 #ifdef DOUG_LEA_MALLOC
2799 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2800 because mapped region contents are not preserved in
2801 a dumped Emacs. */
2802 mallopt (M_MMAP_MAX, 0);
2803 #endif
2805 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2806 /* eassert (!handling_signal); */
2808 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2809 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2811 #ifdef DOUG_LEA_MALLOC
2812 /* Back to a reasonable maximum of mmap'ed areas. */
2813 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2814 #endif
2816 consing_since_gc += nbytes;
2817 vector_cells_consed += len;
2819 p->next = all_vectors;
2820 all_vectors = p;
2822 MALLOC_UNBLOCK_INPUT;
2824 ++n_vectors;
2825 return p;
2829 /* Allocate a vector with NSLOTS slots. */
2831 struct Lisp_Vector *
2832 allocate_vector (EMACS_INT nslots)
2834 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2835 v->size = nslots;
2836 return v;
2840 /* Allocate other vector-like structures. */
2842 struct Lisp_Vector *
2843 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2845 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2846 EMACS_INT i;
2848 /* Only the first lisplen slots will be traced normally by the GC. */
2849 v->size = lisplen;
2850 for (i = 0; i < lisplen; ++i)
2851 v->contents[i] = Qnil;
2853 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2854 return v;
2857 struct Lisp_Hash_Table *
2858 allocate_hash_table (void)
2860 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2864 struct window *
2865 allocate_window (void)
2867 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2871 struct terminal *
2872 allocate_terminal (void)
2874 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2875 next_terminal, PVEC_TERMINAL);
2876 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2877 memset (&t->next_terminal, 0,
2878 (char*) (t + 1) - (char*) &t->next_terminal);
2880 return t;
2883 struct frame *
2884 allocate_frame (void)
2886 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2887 face_cache, PVEC_FRAME);
2888 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2889 memset (&f->face_cache, 0,
2890 (char *) (f + 1) - (char *) &f->face_cache);
2891 return f;
2895 struct Lisp_Process *
2896 allocate_process (void)
2898 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2902 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2903 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2904 See also the function `vector'. */)
2905 (register Lisp_Object length, Lisp_Object init)
2907 Lisp_Object vector;
2908 register EMACS_INT sizei;
2909 register EMACS_INT i;
2910 register struct Lisp_Vector *p;
2912 CHECK_NATNUM (length);
2913 sizei = XFASTINT (length);
2915 p = allocate_vector (sizei);
2916 for (i = 0; i < sizei; i++)
2917 p->contents[i] = init;
2919 XSETVECTOR (vector, p);
2920 return vector;
2924 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2925 doc: /* Return a newly created vector with specified arguments as elements.
2926 Any number of arguments, even zero arguments, are allowed.
2927 usage: (vector &rest OBJECTS) */)
2928 (register size_t nargs, Lisp_Object *args)
2930 register Lisp_Object len, val;
2931 register size_t i;
2932 register struct Lisp_Vector *p;
2934 XSETFASTINT (len, nargs);
2935 val = Fmake_vector (len, Qnil);
2936 p = XVECTOR (val);
2937 for (i = 0; i < nargs; i++)
2938 p->contents[i] = args[i];
2939 return val;
2943 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2944 doc: /* Create a byte-code object with specified arguments as elements.
2945 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2946 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2947 and (optional) INTERACTIVE-SPEC.
2948 The first four arguments are required; at most six have any
2949 significance.
2950 The ARGLIST can be either like the one of `lambda', in which case the arguments
2951 will be dynamically bound before executing the byte code, or it can be an
2952 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2953 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2954 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2955 argument to catch the left-over arguments. If such an integer is used, the
2956 arguments will not be dynamically bound but will be instead pushed on the
2957 stack before executing the byte-code.
2958 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2959 (register size_t nargs, Lisp_Object *args)
2961 register Lisp_Object len, val;
2962 register size_t i;
2963 register struct Lisp_Vector *p;
2965 XSETFASTINT (len, nargs);
2966 if (!NILP (Vpurify_flag))
2967 val = make_pure_vector ((EMACS_INT) nargs);
2968 else
2969 val = Fmake_vector (len, Qnil);
2971 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2972 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2973 earlier because they produced a raw 8-bit string for byte-code
2974 and now such a byte-code string is loaded as multibyte while
2975 raw 8-bit characters converted to multibyte form. Thus, now we
2976 must convert them back to the original unibyte form. */
2977 args[1] = Fstring_as_unibyte (args[1]);
2979 p = XVECTOR (val);
2980 for (i = 0; i < nargs; i++)
2982 if (!NILP (Vpurify_flag))
2983 args[i] = Fpurecopy (args[i]);
2984 p->contents[i] = args[i];
2986 XSETPVECTYPE (p, PVEC_COMPILED);
2987 XSETCOMPILED (val, p);
2988 return val;
2993 /***********************************************************************
2994 Symbol Allocation
2995 ***********************************************************************/
2997 /* Each symbol_block is just under 1020 bytes long, since malloc
2998 really allocates in units of powers of two and uses 4 bytes for its
2999 own overhead. */
3001 #define SYMBOL_BLOCK_SIZE \
3002 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3004 struct symbol_block
3006 /* Place `symbols' first, to preserve alignment. */
3007 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3008 struct symbol_block *next;
3011 /* Current symbol block and index of first unused Lisp_Symbol
3012 structure in it. */
3014 static struct symbol_block *symbol_block;
3015 static int symbol_block_index;
3017 /* List of free symbols. */
3019 static struct Lisp_Symbol *symbol_free_list;
3021 /* Total number of symbol blocks now in use. */
3023 static int n_symbol_blocks;
3026 /* Initialize symbol allocation. */
3028 static void
3029 init_symbol (void)
3031 symbol_block = NULL;
3032 symbol_block_index = SYMBOL_BLOCK_SIZE;
3033 symbol_free_list = 0;
3034 n_symbol_blocks = 0;
3038 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3039 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3040 Its value and function definition are void, and its property list is nil. */)
3041 (Lisp_Object name)
3043 register Lisp_Object val;
3044 register struct Lisp_Symbol *p;
3046 CHECK_STRING (name);
3048 /* eassert (!handling_signal); */
3050 MALLOC_BLOCK_INPUT;
3052 if (symbol_free_list)
3054 XSETSYMBOL (val, symbol_free_list);
3055 symbol_free_list = symbol_free_list->next;
3057 else
3059 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3061 struct symbol_block *new;
3062 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3063 MEM_TYPE_SYMBOL);
3064 new->next = symbol_block;
3065 symbol_block = new;
3066 symbol_block_index = 0;
3067 n_symbol_blocks++;
3069 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3070 symbol_block_index++;
3073 MALLOC_UNBLOCK_INPUT;
3075 p = XSYMBOL (val);
3076 p->xname = name;
3077 p->plist = Qnil;
3078 p->redirect = SYMBOL_PLAINVAL;
3079 SET_SYMBOL_VAL (p, Qunbound);
3080 p->function = Qunbound;
3081 p->next = NULL;
3082 p->gcmarkbit = 0;
3083 p->interned = SYMBOL_UNINTERNED;
3084 p->constant = 0;
3085 p->declared_special = 0;
3086 consing_since_gc += sizeof (struct Lisp_Symbol);
3087 symbols_consed++;
3088 return val;
3093 /***********************************************************************
3094 Marker (Misc) Allocation
3095 ***********************************************************************/
3097 /* Allocation of markers and other objects that share that structure.
3098 Works like allocation of conses. */
3100 #define MARKER_BLOCK_SIZE \
3101 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3103 struct marker_block
3105 /* Place `markers' first, to preserve alignment. */
3106 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3107 struct marker_block *next;
3110 static struct marker_block *marker_block;
3111 static int marker_block_index;
3113 static union Lisp_Misc *marker_free_list;
3115 /* Total number of marker blocks now in use. */
3117 static int n_marker_blocks;
3119 static void
3120 init_marker (void)
3122 marker_block = NULL;
3123 marker_block_index = MARKER_BLOCK_SIZE;
3124 marker_free_list = 0;
3125 n_marker_blocks = 0;
3128 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3130 Lisp_Object
3131 allocate_misc (void)
3133 Lisp_Object val;
3135 /* eassert (!handling_signal); */
3137 MALLOC_BLOCK_INPUT;
3139 if (marker_free_list)
3141 XSETMISC (val, marker_free_list);
3142 marker_free_list = marker_free_list->u_free.chain;
3144 else
3146 if (marker_block_index == MARKER_BLOCK_SIZE)
3148 struct marker_block *new;
3149 new = (struct marker_block *) lisp_malloc (sizeof *new,
3150 MEM_TYPE_MISC);
3151 new->next = marker_block;
3152 marker_block = new;
3153 marker_block_index = 0;
3154 n_marker_blocks++;
3155 total_free_markers += MARKER_BLOCK_SIZE;
3157 XSETMISC (val, &marker_block->markers[marker_block_index]);
3158 marker_block_index++;
3161 MALLOC_UNBLOCK_INPUT;
3163 --total_free_markers;
3164 consing_since_gc += sizeof (union Lisp_Misc);
3165 misc_objects_consed++;
3166 XMISCANY (val)->gcmarkbit = 0;
3167 return val;
3170 /* Free a Lisp_Misc object */
3172 static void
3173 free_misc (Lisp_Object misc)
3175 XMISCTYPE (misc) = Lisp_Misc_Free;
3176 XMISC (misc)->u_free.chain = marker_free_list;
3177 marker_free_list = XMISC (misc);
3179 total_free_markers++;
3182 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3183 INTEGER. This is used to package C values to call record_unwind_protect.
3184 The unwind function can get the C values back using XSAVE_VALUE. */
3186 Lisp_Object
3187 make_save_value (void *pointer, int integer)
3189 register Lisp_Object val;
3190 register struct Lisp_Save_Value *p;
3192 val = allocate_misc ();
3193 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3194 p = XSAVE_VALUE (val);
3195 p->pointer = pointer;
3196 p->integer = integer;
3197 p->dogc = 0;
3198 return val;
3201 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3202 doc: /* Return a newly allocated marker which does not point at any place. */)
3203 (void)
3205 register Lisp_Object val;
3206 register struct Lisp_Marker *p;
3208 val = allocate_misc ();
3209 XMISCTYPE (val) = Lisp_Misc_Marker;
3210 p = XMARKER (val);
3211 p->buffer = 0;
3212 p->bytepos = 0;
3213 p->charpos = 0;
3214 p->next = NULL;
3215 p->insertion_type = 0;
3216 return val;
3219 /* Put MARKER back on the free list after using it temporarily. */
3221 void
3222 free_marker (Lisp_Object marker)
3224 unchain_marker (XMARKER (marker));
3225 free_misc (marker);
3229 /* Return a newly created vector or string with specified arguments as
3230 elements. If all the arguments are characters that can fit
3231 in a string of events, make a string; otherwise, make a vector.
3233 Any number of arguments, even zero arguments, are allowed. */
3235 Lisp_Object
3236 make_event_array (register int nargs, Lisp_Object *args)
3238 int i;
3240 for (i = 0; i < nargs; i++)
3241 /* The things that fit in a string
3242 are characters that are in 0...127,
3243 after discarding the meta bit and all the bits above it. */
3244 if (!INTEGERP (args[i])
3245 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3246 return Fvector (nargs, args);
3248 /* Since the loop exited, we know that all the things in it are
3249 characters, so we can make a string. */
3251 Lisp_Object result;
3253 result = Fmake_string (make_number (nargs), make_number (0));
3254 for (i = 0; i < nargs; i++)
3256 SSET (result, i, XINT (args[i]));
3257 /* Move the meta bit to the right place for a string char. */
3258 if (XINT (args[i]) & CHAR_META)
3259 SSET (result, i, SREF (result, i) | 0x80);
3262 return result;
3268 /************************************************************************
3269 Memory Full Handling
3270 ************************************************************************/
3273 /* Called if malloc returns zero. */
3275 void
3276 memory_full (void)
3278 int i;
3280 Vmemory_full = Qt;
3282 memory_full_cons_threshold = sizeof (struct cons_block);
3284 /* The first time we get here, free the spare memory. */
3285 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3286 if (spare_memory[i])
3288 if (i == 0)
3289 free (spare_memory[i]);
3290 else if (i >= 1 && i <= 4)
3291 lisp_align_free (spare_memory[i]);
3292 else
3293 lisp_free (spare_memory[i]);
3294 spare_memory[i] = 0;
3297 /* Record the space now used. When it decreases substantially,
3298 we can refill the memory reserve. */
3299 #ifndef SYSTEM_MALLOC
3300 bytes_used_when_full = BYTES_USED;
3301 #endif
3303 /* This used to call error, but if we've run out of memory, we could
3304 get infinite recursion trying to build the string. */
3305 xsignal (Qnil, Vmemory_signal_data);
3308 /* If we released our reserve (due to running out of memory),
3309 and we have a fair amount free once again,
3310 try to set aside another reserve in case we run out once more.
3312 This is called when a relocatable block is freed in ralloc.c,
3313 and also directly from this file, in case we're not using ralloc.c. */
3315 void
3316 refill_memory_reserve (void)
3318 #ifndef SYSTEM_MALLOC
3319 if (spare_memory[0] == 0)
3320 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3321 if (spare_memory[1] == 0)
3322 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[2] == 0)
3325 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[3] == 0)
3328 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[4] == 0)
3331 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3332 MEM_TYPE_CONS);
3333 if (spare_memory[5] == 0)
3334 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3335 MEM_TYPE_STRING);
3336 if (spare_memory[6] == 0)
3337 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3338 MEM_TYPE_STRING);
3339 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3340 Vmemory_full = Qnil;
3341 #endif
3344 /************************************************************************
3345 C Stack Marking
3346 ************************************************************************/
3348 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3350 /* Conservative C stack marking requires a method to identify possibly
3351 live Lisp objects given a pointer value. We do this by keeping
3352 track of blocks of Lisp data that are allocated in a red-black tree
3353 (see also the comment of mem_node which is the type of nodes in
3354 that tree). Function lisp_malloc adds information for an allocated
3355 block to the red-black tree with calls to mem_insert, and function
3356 lisp_free removes it with mem_delete. Functions live_string_p etc
3357 call mem_find to lookup information about a given pointer in the
3358 tree, and use that to determine if the pointer points to a Lisp
3359 object or not. */
3361 /* Initialize this part of alloc.c. */
3363 static void
3364 mem_init (void)
3366 mem_z.left = mem_z.right = MEM_NIL;
3367 mem_z.parent = NULL;
3368 mem_z.color = MEM_BLACK;
3369 mem_z.start = mem_z.end = NULL;
3370 mem_root = MEM_NIL;
3374 /* Value is a pointer to the mem_node containing START. Value is
3375 MEM_NIL if there is no node in the tree containing START. */
3377 static INLINE struct mem_node *
3378 mem_find (void *start)
3380 struct mem_node *p;
3382 if (start < min_heap_address || start > max_heap_address)
3383 return MEM_NIL;
3385 /* Make the search always successful to speed up the loop below. */
3386 mem_z.start = start;
3387 mem_z.end = (char *) start + 1;
3389 p = mem_root;
3390 while (start < p->start || start >= p->end)
3391 p = start < p->start ? p->left : p->right;
3392 return p;
3396 /* Insert a new node into the tree for a block of memory with start
3397 address START, end address END, and type TYPE. Value is a
3398 pointer to the node that was inserted. */
3400 static struct mem_node *
3401 mem_insert (void *start, void *end, enum mem_type type)
3403 struct mem_node *c, *parent, *x;
3405 if (min_heap_address == NULL || start < min_heap_address)
3406 min_heap_address = start;
3407 if (max_heap_address == NULL || end > max_heap_address)
3408 max_heap_address = end;
3410 /* See where in the tree a node for START belongs. In this
3411 particular application, it shouldn't happen that a node is already
3412 present. For debugging purposes, let's check that. */
3413 c = mem_root;
3414 parent = NULL;
3416 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3418 while (c != MEM_NIL)
3420 if (start >= c->start && start < c->end)
3421 abort ();
3422 parent = c;
3423 c = start < c->start ? c->left : c->right;
3426 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3428 while (c != MEM_NIL)
3430 parent = c;
3431 c = start < c->start ? c->left : c->right;
3434 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3436 /* Create a new node. */
3437 #ifdef GC_MALLOC_CHECK
3438 x = (struct mem_node *) _malloc_internal (sizeof *x);
3439 if (x == NULL)
3440 abort ();
3441 #else
3442 x = (struct mem_node *) xmalloc (sizeof *x);
3443 #endif
3444 x->start = start;
3445 x->end = end;
3446 x->type = type;
3447 x->parent = parent;
3448 x->left = x->right = MEM_NIL;
3449 x->color = MEM_RED;
3451 /* Insert it as child of PARENT or install it as root. */
3452 if (parent)
3454 if (start < parent->start)
3455 parent->left = x;
3456 else
3457 parent->right = x;
3459 else
3460 mem_root = x;
3462 /* Re-establish red-black tree properties. */
3463 mem_insert_fixup (x);
3465 return x;
3469 /* Re-establish the red-black properties of the tree, and thereby
3470 balance the tree, after node X has been inserted; X is always red. */
3472 static void
3473 mem_insert_fixup (struct mem_node *x)
3475 while (x != mem_root && x->parent->color == MEM_RED)
3477 /* X is red and its parent is red. This is a violation of
3478 red-black tree property #3. */
3480 if (x->parent == x->parent->parent->left)
3482 /* We're on the left side of our grandparent, and Y is our
3483 "uncle". */
3484 struct mem_node *y = x->parent->parent->right;
3486 if (y->color == MEM_RED)
3488 /* Uncle and parent are red but should be black because
3489 X is red. Change the colors accordingly and proceed
3490 with the grandparent. */
3491 x->parent->color = MEM_BLACK;
3492 y->color = MEM_BLACK;
3493 x->parent->parent->color = MEM_RED;
3494 x = x->parent->parent;
3496 else
3498 /* Parent and uncle have different colors; parent is
3499 red, uncle is black. */
3500 if (x == x->parent->right)
3502 x = x->parent;
3503 mem_rotate_left (x);
3506 x->parent->color = MEM_BLACK;
3507 x->parent->parent->color = MEM_RED;
3508 mem_rotate_right (x->parent->parent);
3511 else
3513 /* This is the symmetrical case of above. */
3514 struct mem_node *y = x->parent->parent->left;
3516 if (y->color == MEM_RED)
3518 x->parent->color = MEM_BLACK;
3519 y->color = MEM_BLACK;
3520 x->parent->parent->color = MEM_RED;
3521 x = x->parent->parent;
3523 else
3525 if (x == x->parent->left)
3527 x = x->parent;
3528 mem_rotate_right (x);
3531 x->parent->color = MEM_BLACK;
3532 x->parent->parent->color = MEM_RED;
3533 mem_rotate_left (x->parent->parent);
3538 /* The root may have been changed to red due to the algorithm. Set
3539 it to black so that property #5 is satisfied. */
3540 mem_root->color = MEM_BLACK;
3544 /* (x) (y)
3545 / \ / \
3546 a (y) ===> (x) c
3547 / \ / \
3548 b c a b */
3550 static void
3551 mem_rotate_left (struct mem_node *x)
3553 struct mem_node *y;
3555 /* Turn y's left sub-tree into x's right sub-tree. */
3556 y = x->right;
3557 x->right = y->left;
3558 if (y->left != MEM_NIL)
3559 y->left->parent = x;
3561 /* Y's parent was x's parent. */
3562 if (y != MEM_NIL)
3563 y->parent = x->parent;
3565 /* Get the parent to point to y instead of x. */
3566 if (x->parent)
3568 if (x == x->parent->left)
3569 x->parent->left = y;
3570 else
3571 x->parent->right = y;
3573 else
3574 mem_root = y;
3576 /* Put x on y's left. */
3577 y->left = x;
3578 if (x != MEM_NIL)
3579 x->parent = y;
3583 /* (x) (Y)
3584 / \ / \
3585 (y) c ===> a (x)
3586 / \ / \
3587 a b b c */
3589 static void
3590 mem_rotate_right (struct mem_node *x)
3592 struct mem_node *y = x->left;
3594 x->left = y->right;
3595 if (y->right != MEM_NIL)
3596 y->right->parent = x;
3598 if (y != MEM_NIL)
3599 y->parent = x->parent;
3600 if (x->parent)
3602 if (x == x->parent->right)
3603 x->parent->right = y;
3604 else
3605 x->parent->left = y;
3607 else
3608 mem_root = y;
3610 y->right = x;
3611 if (x != MEM_NIL)
3612 x->parent = y;
3616 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3618 static void
3619 mem_delete (struct mem_node *z)
3621 struct mem_node *x, *y;
3623 if (!z || z == MEM_NIL)
3624 return;
3626 if (z->left == MEM_NIL || z->right == MEM_NIL)
3627 y = z;
3628 else
3630 y = z->right;
3631 while (y->left != MEM_NIL)
3632 y = y->left;
3635 if (y->left != MEM_NIL)
3636 x = y->left;
3637 else
3638 x = y->right;
3640 x->parent = y->parent;
3641 if (y->parent)
3643 if (y == y->parent->left)
3644 y->parent->left = x;
3645 else
3646 y->parent->right = x;
3648 else
3649 mem_root = x;
3651 if (y != z)
3653 z->start = y->start;
3654 z->end = y->end;
3655 z->type = y->type;
3658 if (y->color == MEM_BLACK)
3659 mem_delete_fixup (x);
3661 #ifdef GC_MALLOC_CHECK
3662 _free_internal (y);
3663 #else
3664 xfree (y);
3665 #endif
3669 /* Re-establish the red-black properties of the tree, after a
3670 deletion. */
3672 static void
3673 mem_delete_fixup (struct mem_node *x)
3675 while (x != mem_root && x->color == MEM_BLACK)
3677 if (x == x->parent->left)
3679 struct mem_node *w = x->parent->right;
3681 if (w->color == MEM_RED)
3683 w->color = MEM_BLACK;
3684 x->parent->color = MEM_RED;
3685 mem_rotate_left (x->parent);
3686 w = x->parent->right;
3689 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3691 w->color = MEM_RED;
3692 x = x->parent;
3694 else
3696 if (w->right->color == MEM_BLACK)
3698 w->left->color = MEM_BLACK;
3699 w->color = MEM_RED;
3700 mem_rotate_right (w);
3701 w = x->parent->right;
3703 w->color = x->parent->color;
3704 x->parent->color = MEM_BLACK;
3705 w->right->color = MEM_BLACK;
3706 mem_rotate_left (x->parent);
3707 x = mem_root;
3710 else
3712 struct mem_node *w = x->parent->left;
3714 if (w->color == MEM_RED)
3716 w->color = MEM_BLACK;
3717 x->parent->color = MEM_RED;
3718 mem_rotate_right (x->parent);
3719 w = x->parent->left;
3722 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3724 w->color = MEM_RED;
3725 x = x->parent;
3727 else
3729 if (w->left->color == MEM_BLACK)
3731 w->right->color = MEM_BLACK;
3732 w->color = MEM_RED;
3733 mem_rotate_left (w);
3734 w = x->parent->left;
3737 w->color = x->parent->color;
3738 x->parent->color = MEM_BLACK;
3739 w->left->color = MEM_BLACK;
3740 mem_rotate_right (x->parent);
3741 x = mem_root;
3746 x->color = MEM_BLACK;
3750 /* Value is non-zero if P is a pointer to a live Lisp string on
3751 the heap. M is a pointer to the mem_block for P. */
3753 static INLINE int
3754 live_string_p (struct mem_node *m, void *p)
3756 if (m->type == MEM_TYPE_STRING)
3758 struct string_block *b = (struct string_block *) m->start;
3759 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3761 /* P must point to the start of a Lisp_String structure, and it
3762 must not be on the free-list. */
3763 return (offset >= 0
3764 && offset % sizeof b->strings[0] == 0
3765 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3766 && ((struct Lisp_String *) p)->data != NULL);
3768 else
3769 return 0;
3773 /* Value is non-zero if P is a pointer to a live Lisp cons on
3774 the heap. M is a pointer to the mem_block for P. */
3776 static INLINE int
3777 live_cons_p (struct mem_node *m, void *p)
3779 if (m->type == MEM_TYPE_CONS)
3781 struct cons_block *b = (struct cons_block *) m->start;
3782 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3784 /* P must point to the start of a Lisp_Cons, not be
3785 one of the unused cells in the current cons block,
3786 and not be on the free-list. */
3787 return (offset >= 0
3788 && offset % sizeof b->conses[0] == 0
3789 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3790 && (b != cons_block
3791 || offset / sizeof b->conses[0] < cons_block_index)
3792 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3794 else
3795 return 0;
3799 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3800 the heap. M is a pointer to the mem_block for P. */
3802 static INLINE int
3803 live_symbol_p (struct mem_node *m, void *p)
3805 if (m->type == MEM_TYPE_SYMBOL)
3807 struct symbol_block *b = (struct symbol_block *) m->start;
3808 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3810 /* P must point to the start of a Lisp_Symbol, not be
3811 one of the unused cells in the current symbol block,
3812 and not be on the free-list. */
3813 return (offset >= 0
3814 && offset % sizeof b->symbols[0] == 0
3815 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3816 && (b != symbol_block
3817 || offset / sizeof b->symbols[0] < symbol_block_index)
3818 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3820 else
3821 return 0;
3825 /* Value is non-zero if P is a pointer to a live Lisp float on
3826 the heap. M is a pointer to the mem_block for P. */
3828 static INLINE int
3829 live_float_p (struct mem_node *m, void *p)
3831 if (m->type == MEM_TYPE_FLOAT)
3833 struct float_block *b = (struct float_block *) m->start;
3834 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3836 /* P must point to the start of a Lisp_Float and not be
3837 one of the unused cells in the current float block. */
3838 return (offset >= 0
3839 && offset % sizeof b->floats[0] == 0
3840 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3841 && (b != float_block
3842 || offset / sizeof b->floats[0] < float_block_index));
3844 else
3845 return 0;
3849 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3850 the heap. M is a pointer to the mem_block for P. */
3852 static INLINE int
3853 live_misc_p (struct mem_node *m, void *p)
3855 if (m->type == MEM_TYPE_MISC)
3857 struct marker_block *b = (struct marker_block *) m->start;
3858 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3860 /* P must point to the start of a Lisp_Misc, not be
3861 one of the unused cells in the current misc block,
3862 and not be on the free-list. */
3863 return (offset >= 0
3864 && offset % sizeof b->markers[0] == 0
3865 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3866 && (b != marker_block
3867 || offset / sizeof b->markers[0] < marker_block_index)
3868 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3870 else
3871 return 0;
3875 /* Value is non-zero if P is a pointer to a live vector-like object.
3876 M is a pointer to the mem_block for P. */
3878 static INLINE int
3879 live_vector_p (struct mem_node *m, void *p)
3881 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3885 /* Value is non-zero if P is a pointer to a live buffer. M is a
3886 pointer to the mem_block for P. */
3888 static INLINE int
3889 live_buffer_p (struct mem_node *m, void *p)
3891 /* P must point to the start of the block, and the buffer
3892 must not have been killed. */
3893 return (m->type == MEM_TYPE_BUFFER
3894 && p == m->start
3895 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3898 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3900 #if GC_MARK_STACK
3902 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3904 /* Array of objects that are kept alive because the C stack contains
3905 a pattern that looks like a reference to them . */
3907 #define MAX_ZOMBIES 10
3908 static Lisp_Object zombies[MAX_ZOMBIES];
3910 /* Number of zombie objects. */
3912 static int nzombies;
3914 /* Number of garbage collections. */
3916 static int ngcs;
3918 /* Average percentage of zombies per collection. */
3920 static double avg_zombies;
3922 /* Max. number of live and zombie objects. */
3924 static int max_live, max_zombies;
3926 /* Average number of live objects per GC. */
3928 static double avg_live;
3930 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3931 doc: /* Show information about live and zombie objects. */)
3932 (void)
3934 Lisp_Object args[8], zombie_list = Qnil;
3935 int i;
3936 for (i = 0; i < nzombies; i++)
3937 zombie_list = Fcons (zombies[i], zombie_list);
3938 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3939 args[1] = make_number (ngcs);
3940 args[2] = make_float (avg_live);
3941 args[3] = make_float (avg_zombies);
3942 args[4] = make_float (avg_zombies / avg_live / 100);
3943 args[5] = make_number (max_live);
3944 args[6] = make_number (max_zombies);
3945 args[7] = zombie_list;
3946 return Fmessage (8, args);
3949 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3952 /* Mark OBJ if we can prove it's a Lisp_Object. */
3954 static INLINE void
3955 mark_maybe_object (Lisp_Object obj)
3957 void *po;
3958 struct mem_node *m;
3960 if (INTEGERP (obj))
3961 return;
3963 po = (void *) XPNTR (obj);
3964 m = mem_find (po);
3966 if (m != MEM_NIL)
3968 int mark_p = 0;
3970 switch (XTYPE (obj))
3972 case Lisp_String:
3973 mark_p = (live_string_p (m, po)
3974 && !STRING_MARKED_P ((struct Lisp_String *) po));
3975 break;
3977 case Lisp_Cons:
3978 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3979 break;
3981 case Lisp_Symbol:
3982 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3983 break;
3985 case Lisp_Float:
3986 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3987 break;
3989 case Lisp_Vectorlike:
3990 /* Note: can't check BUFFERP before we know it's a
3991 buffer because checking that dereferences the pointer
3992 PO which might point anywhere. */
3993 if (live_vector_p (m, po))
3994 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3995 else if (live_buffer_p (m, po))
3996 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3997 break;
3999 case Lisp_Misc:
4000 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4001 break;
4003 default:
4004 break;
4007 if (mark_p)
4009 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4010 if (nzombies < MAX_ZOMBIES)
4011 zombies[nzombies] = obj;
4012 ++nzombies;
4013 #endif
4014 mark_object (obj);
4020 /* If P points to Lisp data, mark that as live if it isn't already
4021 marked. */
4023 static INLINE void
4024 mark_maybe_pointer (void *p)
4026 struct mem_node *m;
4028 /* Quickly rule out some values which can't point to Lisp data. */
4029 if ((EMACS_INT) p %
4030 #ifdef USE_LSB_TAG
4031 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4032 #else
4033 2 /* We assume that Lisp data is aligned on even addresses. */
4034 #endif
4036 return;
4038 m = mem_find (p);
4039 if (m != MEM_NIL)
4041 Lisp_Object obj = Qnil;
4043 switch (m->type)
4045 case MEM_TYPE_NON_LISP:
4046 /* Nothing to do; not a pointer to Lisp memory. */
4047 break;
4049 case MEM_TYPE_BUFFER:
4050 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4051 XSETVECTOR (obj, p);
4052 break;
4054 case MEM_TYPE_CONS:
4055 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4056 XSETCONS (obj, p);
4057 break;
4059 case MEM_TYPE_STRING:
4060 if (live_string_p (m, p)
4061 && !STRING_MARKED_P ((struct Lisp_String *) p))
4062 XSETSTRING (obj, p);
4063 break;
4065 case MEM_TYPE_MISC:
4066 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4067 XSETMISC (obj, p);
4068 break;
4070 case MEM_TYPE_SYMBOL:
4071 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4072 XSETSYMBOL (obj, p);
4073 break;
4075 case MEM_TYPE_FLOAT:
4076 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4077 XSETFLOAT (obj, p);
4078 break;
4080 case MEM_TYPE_VECTORLIKE:
4081 if (live_vector_p (m, p))
4083 Lisp_Object tem;
4084 XSETVECTOR (tem, p);
4085 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4086 obj = tem;
4088 break;
4090 default:
4091 abort ();
4094 if (!NILP (obj))
4095 mark_object (obj);
4100 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4101 or END+OFFSET..START. */
4103 static void
4104 mark_memory (void *start, void *end, int offset)
4106 Lisp_Object *p;
4107 void **pp;
4109 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4110 nzombies = 0;
4111 #endif
4113 /* Make START the pointer to the start of the memory region,
4114 if it isn't already. */
4115 if (end < start)
4117 void *tem = start;
4118 start = end;
4119 end = tem;
4122 /* Mark Lisp_Objects. */
4123 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4124 mark_maybe_object (*p);
4126 /* Mark Lisp data pointed to. This is necessary because, in some
4127 situations, the C compiler optimizes Lisp objects away, so that
4128 only a pointer to them remains. Example:
4130 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4133 Lisp_Object obj = build_string ("test");
4134 struct Lisp_String *s = XSTRING (obj);
4135 Fgarbage_collect ();
4136 fprintf (stderr, "test `%s'\n", s->data);
4137 return Qnil;
4140 Here, `obj' isn't really used, and the compiler optimizes it
4141 away. The only reference to the life string is through the
4142 pointer `s'. */
4144 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4145 mark_maybe_pointer (*pp);
4148 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4149 the GCC system configuration. In gcc 3.2, the only systems for
4150 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4151 by others?) and ns32k-pc532-min. */
4153 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4155 static int setjmp_tested_p, longjmps_done;
4157 #define SETJMP_WILL_LIKELY_WORK "\
4159 Emacs garbage collector has been changed to use conservative stack\n\
4160 marking. Emacs has determined that the method it uses to do the\n\
4161 marking will likely work on your system, but this isn't sure.\n\
4163 If you are a system-programmer, or can get the help of a local wizard\n\
4164 who is, please take a look at the function mark_stack in alloc.c, and\n\
4165 verify that the methods used are appropriate for your system.\n\
4167 Please mail the result to <emacs-devel@gnu.org>.\n\
4170 #define SETJMP_WILL_NOT_WORK "\
4172 Emacs garbage collector has been changed to use conservative stack\n\
4173 marking. Emacs has determined that the default method it uses to do the\n\
4174 marking will not work on your system. We will need a system-dependent\n\
4175 solution for your system.\n\
4177 Please take a look at the function mark_stack in alloc.c, and\n\
4178 try to find a way to make it work on your system.\n\
4180 Note that you may get false negatives, depending on the compiler.\n\
4181 In particular, you need to use -O with GCC for this test.\n\
4183 Please mail the result to <emacs-devel@gnu.org>.\n\
4187 /* Perform a quick check if it looks like setjmp saves registers in a
4188 jmp_buf. Print a message to stderr saying so. When this test
4189 succeeds, this is _not_ a proof that setjmp is sufficient for
4190 conservative stack marking. Only the sources or a disassembly
4191 can prove that. */
4193 static void
4194 test_setjmp (void)
4196 char buf[10];
4197 register int x;
4198 jmp_buf jbuf;
4199 int result = 0;
4201 /* Arrange for X to be put in a register. */
4202 sprintf (buf, "1");
4203 x = strlen (buf);
4204 x = 2 * x - 1;
4206 setjmp (jbuf);
4207 if (longjmps_done == 1)
4209 /* Came here after the longjmp at the end of the function.
4211 If x == 1, the longjmp has restored the register to its
4212 value before the setjmp, and we can hope that setjmp
4213 saves all such registers in the jmp_buf, although that
4214 isn't sure.
4216 For other values of X, either something really strange is
4217 taking place, or the setjmp just didn't save the register. */
4219 if (x == 1)
4220 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4221 else
4223 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4224 exit (1);
4228 ++longjmps_done;
4229 x = 2;
4230 if (longjmps_done == 1)
4231 longjmp (jbuf, 1);
4234 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4237 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4239 /* Abort if anything GCPRO'd doesn't survive the GC. */
4241 static void
4242 check_gcpros (void)
4244 struct gcpro *p;
4245 size_t i;
4247 for (p = gcprolist; p; p = p->next)
4248 for (i = 0; i < p->nvars; ++i)
4249 if (!survives_gc_p (p->var[i]))
4250 /* FIXME: It's not necessarily a bug. It might just be that the
4251 GCPRO is unnecessary or should release the object sooner. */
4252 abort ();
4255 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4257 static void
4258 dump_zombies (void)
4260 int i;
4262 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4263 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4265 fprintf (stderr, " %d = ", i);
4266 debug_print (zombies[i]);
4270 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4273 /* Mark live Lisp objects on the C stack.
4275 There are several system-dependent problems to consider when
4276 porting this to new architectures:
4278 Processor Registers
4280 We have to mark Lisp objects in CPU registers that can hold local
4281 variables or are used to pass parameters.
4283 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4284 something that either saves relevant registers on the stack, or
4285 calls mark_maybe_object passing it each register's contents.
4287 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4288 implementation assumes that calling setjmp saves registers we need
4289 to see in a jmp_buf which itself lies on the stack. This doesn't
4290 have to be true! It must be verified for each system, possibly
4291 by taking a look at the source code of setjmp.
4293 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4294 can use it as a machine independent method to store all registers
4295 to the stack. In this case the macros described in the previous
4296 two paragraphs are not used.
4298 Stack Layout
4300 Architectures differ in the way their processor stack is organized.
4301 For example, the stack might look like this
4303 +----------------+
4304 | Lisp_Object | size = 4
4305 +----------------+
4306 | something else | size = 2
4307 +----------------+
4308 | Lisp_Object | size = 4
4309 +----------------+
4310 | ... |
4312 In such a case, not every Lisp_Object will be aligned equally. To
4313 find all Lisp_Object on the stack it won't be sufficient to walk
4314 the stack in steps of 4 bytes. Instead, two passes will be
4315 necessary, one starting at the start of the stack, and a second
4316 pass starting at the start of the stack + 2. Likewise, if the
4317 minimal alignment of Lisp_Objects on the stack is 1, four passes
4318 would be necessary, each one starting with one byte more offset
4319 from the stack start.
4321 The current code assumes by default that Lisp_Objects are aligned
4322 equally on the stack. */
4324 static void
4325 mark_stack (void)
4327 int i;
4328 void *end;
4330 #ifdef HAVE___BUILTIN_UNWIND_INIT
4331 /* Force callee-saved registers and register windows onto the stack.
4332 This is the preferred method if available, obviating the need for
4333 machine dependent methods. */
4334 __builtin_unwind_init ();
4335 end = &end;
4336 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4337 #ifndef GC_SAVE_REGISTERS_ON_STACK
4338 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4339 union aligned_jmpbuf {
4340 Lisp_Object o;
4341 jmp_buf j;
4342 } j;
4343 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4344 #endif
4345 /* This trick flushes the register windows so that all the state of
4346 the process is contained in the stack. */
4347 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4348 needed on ia64 too. See mach_dep.c, where it also says inline
4349 assembler doesn't work with relevant proprietary compilers. */
4350 #ifdef __sparc__
4351 #if defined (__sparc64__) && defined (__FreeBSD__)
4352 /* FreeBSD does not have a ta 3 handler. */
4353 asm ("flushw");
4354 #else
4355 asm ("ta 3");
4356 #endif
4357 #endif
4359 /* Save registers that we need to see on the stack. We need to see
4360 registers used to hold register variables and registers used to
4361 pass parameters. */
4362 #ifdef GC_SAVE_REGISTERS_ON_STACK
4363 GC_SAVE_REGISTERS_ON_STACK (end);
4364 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4366 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4367 setjmp will definitely work, test it
4368 and print a message with the result
4369 of the test. */
4370 if (!setjmp_tested_p)
4372 setjmp_tested_p = 1;
4373 test_setjmp ();
4375 #endif /* GC_SETJMP_WORKS */
4377 setjmp (j.j);
4378 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4379 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4380 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4382 /* This assumes that the stack is a contiguous region in memory. If
4383 that's not the case, something has to be done here to iterate
4384 over the stack segments. */
4385 #ifndef GC_LISP_OBJECT_ALIGNMENT
4386 #ifdef __GNUC__
4387 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4388 #else
4389 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4390 #endif
4391 #endif
4392 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4393 mark_memory (stack_base, end, i);
4394 /* Allow for marking a secondary stack, like the register stack on the
4395 ia64. */
4396 #ifdef GC_MARK_SECONDARY_STACK
4397 GC_MARK_SECONDARY_STACK ();
4398 #endif
4400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4401 check_gcpros ();
4402 #endif
4405 #endif /* GC_MARK_STACK != 0 */
4408 /* Determine whether it is safe to access memory at address P. */
4409 static int
4410 valid_pointer_p (void *p)
4412 #ifdef WINDOWSNT
4413 return w32_valid_pointer_p (p, 16);
4414 #else
4415 int fd;
4417 /* Obviously, we cannot just access it (we would SEGV trying), so we
4418 trick the o/s to tell us whether p is a valid pointer.
4419 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4420 not validate p in that case. */
4422 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4424 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4425 emacs_close (fd);
4426 unlink ("__Valid__Lisp__Object__");
4427 return valid;
4430 return -1;
4431 #endif
4434 /* Return 1 if OBJ is a valid lisp object.
4435 Return 0 if OBJ is NOT a valid lisp object.
4436 Return -1 if we cannot validate OBJ.
4437 This function can be quite slow,
4438 so it should only be used in code for manual debugging. */
4441 valid_lisp_object_p (Lisp_Object obj)
4443 void *p;
4444 #if GC_MARK_STACK
4445 struct mem_node *m;
4446 #endif
4448 if (INTEGERP (obj))
4449 return 1;
4451 p = (void *) XPNTR (obj);
4452 if (PURE_POINTER_P (p))
4453 return 1;
4455 #if !GC_MARK_STACK
4456 return valid_pointer_p (p);
4457 #else
4459 m = mem_find (p);
4461 if (m == MEM_NIL)
4463 int valid = valid_pointer_p (p);
4464 if (valid <= 0)
4465 return valid;
4467 if (SUBRP (obj))
4468 return 1;
4470 return 0;
4473 switch (m->type)
4475 case MEM_TYPE_NON_LISP:
4476 return 0;
4478 case MEM_TYPE_BUFFER:
4479 return live_buffer_p (m, p);
4481 case MEM_TYPE_CONS:
4482 return live_cons_p (m, p);
4484 case MEM_TYPE_STRING:
4485 return live_string_p (m, p);
4487 case MEM_TYPE_MISC:
4488 return live_misc_p (m, p);
4490 case MEM_TYPE_SYMBOL:
4491 return live_symbol_p (m, p);
4493 case MEM_TYPE_FLOAT:
4494 return live_float_p (m, p);
4496 case MEM_TYPE_VECTORLIKE:
4497 return live_vector_p (m, p);
4499 default:
4500 break;
4503 return 0;
4504 #endif
4510 /***********************************************************************
4511 Pure Storage Management
4512 ***********************************************************************/
4514 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4515 pointer to it. TYPE is the Lisp type for which the memory is
4516 allocated. TYPE < 0 means it's not used for a Lisp object. */
4518 static POINTER_TYPE *
4519 pure_alloc (size_t size, int type)
4521 POINTER_TYPE *result;
4522 #ifdef USE_LSB_TAG
4523 size_t alignment = (1 << GCTYPEBITS);
4524 #else
4525 size_t alignment = sizeof (EMACS_INT);
4527 /* Give Lisp_Floats an extra alignment. */
4528 if (type == Lisp_Float)
4530 #if defined __GNUC__ && __GNUC__ >= 2
4531 alignment = __alignof (struct Lisp_Float);
4532 #else
4533 alignment = sizeof (struct Lisp_Float);
4534 #endif
4536 #endif
4538 again:
4539 if (type >= 0)
4541 /* Allocate space for a Lisp object from the beginning of the free
4542 space with taking account of alignment. */
4543 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4544 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4546 else
4548 /* Allocate space for a non-Lisp object from the end of the free
4549 space. */
4550 pure_bytes_used_non_lisp += size;
4551 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4553 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4555 if (pure_bytes_used <= pure_size)
4556 return result;
4558 /* Don't allocate a large amount here,
4559 because it might get mmap'd and then its address
4560 might not be usable. */
4561 purebeg = (char *) xmalloc (10000);
4562 pure_size = 10000;
4563 pure_bytes_used_before_overflow += pure_bytes_used - size;
4564 pure_bytes_used = 0;
4565 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4566 goto again;
4570 /* Print a warning if PURESIZE is too small. */
4572 void
4573 check_pure_size (void)
4575 if (pure_bytes_used_before_overflow)
4576 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4577 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4581 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4582 the non-Lisp data pool of the pure storage, and return its start
4583 address. Return NULL if not found. */
4585 static char *
4586 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4588 int i;
4589 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4590 const unsigned char *p;
4591 char *non_lisp_beg;
4593 if (pure_bytes_used_non_lisp < nbytes + 1)
4594 return NULL;
4596 /* Set up the Boyer-Moore table. */
4597 skip = nbytes + 1;
4598 for (i = 0; i < 256; i++)
4599 bm_skip[i] = skip;
4601 p = (const unsigned char *) data;
4602 while (--skip > 0)
4603 bm_skip[*p++] = skip;
4605 last_char_skip = bm_skip['\0'];
4607 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4608 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4610 /* See the comments in the function `boyer_moore' (search.c) for the
4611 use of `infinity'. */
4612 infinity = pure_bytes_used_non_lisp + 1;
4613 bm_skip['\0'] = infinity;
4615 p = (const unsigned char *) non_lisp_beg + nbytes;
4616 start = 0;
4619 /* Check the last character (== '\0'). */
4622 start += bm_skip[*(p + start)];
4624 while (start <= start_max);
4626 if (start < infinity)
4627 /* Couldn't find the last character. */
4628 return NULL;
4630 /* No less than `infinity' means we could find the last
4631 character at `p[start - infinity]'. */
4632 start -= infinity;
4634 /* Check the remaining characters. */
4635 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4636 /* Found. */
4637 return non_lisp_beg + start;
4639 start += last_char_skip;
4641 while (start <= start_max);
4643 return NULL;
4647 /* Return a string allocated in pure space. DATA is a buffer holding
4648 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4649 non-zero means make the result string multibyte.
4651 Must get an error if pure storage is full, since if it cannot hold
4652 a large string it may be able to hold conses that point to that
4653 string; then the string is not protected from gc. */
4655 Lisp_Object
4656 make_pure_string (const char *data,
4657 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4659 Lisp_Object string;
4660 struct Lisp_String *s;
4662 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4663 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4664 if (s->data == NULL)
4666 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4667 memcpy (s->data, data, nbytes);
4668 s->data[nbytes] = '\0';
4670 s->size = nchars;
4671 s->size_byte = multibyte ? nbytes : -1;
4672 s->intervals = NULL_INTERVAL;
4673 XSETSTRING (string, s);
4674 return string;
4677 /* Return a string a string allocated in pure space. Do not allocate
4678 the string data, just point to DATA. */
4680 Lisp_Object
4681 make_pure_c_string (const char *data)
4683 Lisp_Object string;
4684 struct Lisp_String *s;
4685 EMACS_INT nchars = strlen (data);
4687 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4688 s->size = nchars;
4689 s->size_byte = -1;
4690 s->data = (unsigned char *) data;
4691 s->intervals = NULL_INTERVAL;
4692 XSETSTRING (string, s);
4693 return string;
4696 /* Return a cons allocated from pure space. Give it pure copies
4697 of CAR as car and CDR as cdr. */
4699 Lisp_Object
4700 pure_cons (Lisp_Object car, Lisp_Object cdr)
4702 register Lisp_Object new;
4703 struct Lisp_Cons *p;
4705 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4706 XSETCONS (new, p);
4707 XSETCAR (new, Fpurecopy (car));
4708 XSETCDR (new, Fpurecopy (cdr));
4709 return new;
4713 /* Value is a float object with value NUM allocated from pure space. */
4715 static Lisp_Object
4716 make_pure_float (double num)
4718 register Lisp_Object new;
4719 struct Lisp_Float *p;
4721 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4722 XSETFLOAT (new, p);
4723 XFLOAT_INIT (new, num);
4724 return new;
4728 /* Return a vector with room for LEN Lisp_Objects allocated from
4729 pure space. */
4731 Lisp_Object
4732 make_pure_vector (EMACS_INT len)
4734 Lisp_Object new;
4735 struct Lisp_Vector *p;
4736 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4738 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4739 XSETVECTOR (new, p);
4740 XVECTOR (new)->size = len;
4741 return new;
4745 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4746 doc: /* Make a copy of object OBJ in pure storage.
4747 Recursively copies contents of vectors and cons cells.
4748 Does not copy symbols. Copies strings without text properties. */)
4749 (register Lisp_Object obj)
4751 if (NILP (Vpurify_flag))
4752 return obj;
4754 if (PURE_POINTER_P (XPNTR (obj)))
4755 return obj;
4757 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4759 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4760 if (!NILP (tmp))
4761 return tmp;
4764 if (CONSP (obj))
4765 obj = pure_cons (XCAR (obj), XCDR (obj));
4766 else if (FLOATP (obj))
4767 obj = make_pure_float (XFLOAT_DATA (obj));
4768 else if (STRINGP (obj))
4769 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4770 SBYTES (obj),
4771 STRING_MULTIBYTE (obj));
4772 else if (COMPILEDP (obj) || VECTORP (obj))
4774 register struct Lisp_Vector *vec;
4775 register EMACS_INT i;
4776 EMACS_INT size;
4778 size = XVECTOR (obj)->size;
4779 if (size & PSEUDOVECTOR_FLAG)
4780 size &= PSEUDOVECTOR_SIZE_MASK;
4781 vec = XVECTOR (make_pure_vector (size));
4782 for (i = 0; i < size; i++)
4783 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4784 if (COMPILEDP (obj))
4786 XSETPVECTYPE (vec, PVEC_COMPILED);
4787 XSETCOMPILED (obj, vec);
4789 else
4790 XSETVECTOR (obj, vec);
4792 else if (MARKERP (obj))
4793 error ("Attempt to copy a marker to pure storage");
4794 else
4795 /* Not purified, don't hash-cons. */
4796 return obj;
4798 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4799 Fputhash (obj, obj, Vpurify_flag);
4801 return obj;
4806 /***********************************************************************
4807 Protection from GC
4808 ***********************************************************************/
4810 /* Put an entry in staticvec, pointing at the variable with address
4811 VARADDRESS. */
4813 void
4814 staticpro (Lisp_Object *varaddress)
4816 staticvec[staticidx++] = varaddress;
4817 if (staticidx >= NSTATICS)
4818 abort ();
4822 /***********************************************************************
4823 Protection from GC
4824 ***********************************************************************/
4826 /* Temporarily prevent garbage collection. */
4829 inhibit_garbage_collection (void)
4831 int count = SPECPDL_INDEX ();
4832 int nbits = min (VALBITS, BITS_PER_INT);
4834 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4835 return count;
4839 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4840 doc: /* Reclaim storage for Lisp objects no longer needed.
4841 Garbage collection happens automatically if you cons more than
4842 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4843 `garbage-collect' normally returns a list with info on amount of space in use:
4844 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4845 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4846 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4847 (USED-STRINGS . FREE-STRINGS))
4848 However, if there was overflow in pure space, `garbage-collect'
4849 returns nil, because real GC can't be done. */)
4850 (void)
4852 register struct specbinding *bind;
4853 char stack_top_variable;
4854 register size_t i;
4855 int message_p;
4856 Lisp_Object total[8];
4857 int count = SPECPDL_INDEX ();
4858 EMACS_TIME t1, t2, t3;
4860 if (abort_on_gc)
4861 abort ();
4863 /* Can't GC if pure storage overflowed because we can't determine
4864 if something is a pure object or not. */
4865 if (pure_bytes_used_before_overflow)
4866 return Qnil;
4868 CHECK_CONS_LIST ();
4870 /* Don't keep undo information around forever.
4871 Do this early on, so it is no problem if the user quits. */
4873 register struct buffer *nextb = all_buffers;
4875 while (nextb)
4877 /* If a buffer's undo list is Qt, that means that undo is
4878 turned off in that buffer. Calling truncate_undo_list on
4879 Qt tends to return NULL, which effectively turns undo back on.
4880 So don't call truncate_undo_list if undo_list is Qt. */
4881 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4882 truncate_undo_list (nextb);
4884 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4885 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4886 && ! nextb->text->inhibit_shrinking)
4888 /* If a buffer's gap size is more than 10% of the buffer
4889 size, or larger than 2000 bytes, then shrink it
4890 accordingly. Keep a minimum size of 20 bytes. */
4891 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4893 if (nextb->text->gap_size > size)
4895 struct buffer *save_current = current_buffer;
4896 current_buffer = nextb;
4897 make_gap (-(nextb->text->gap_size - size));
4898 current_buffer = save_current;
4902 nextb = nextb->next;
4906 EMACS_GET_TIME (t1);
4908 /* In case user calls debug_print during GC,
4909 don't let that cause a recursive GC. */
4910 consing_since_gc = 0;
4912 /* Save what's currently displayed in the echo area. */
4913 message_p = push_message ();
4914 record_unwind_protect (pop_message_unwind, Qnil);
4916 /* Save a copy of the contents of the stack, for debugging. */
4917 #if MAX_SAVE_STACK > 0
4918 if (NILP (Vpurify_flag))
4920 char *stack;
4921 size_t stack_size;
4922 if (&stack_top_variable < stack_bottom)
4924 stack = &stack_top_variable;
4925 stack_size = stack_bottom - &stack_top_variable;
4927 else
4929 stack = stack_bottom;
4930 stack_size = &stack_top_variable - stack_bottom;
4932 if (stack_size <= MAX_SAVE_STACK)
4934 if (stack_copy_size < stack_size)
4936 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4937 stack_copy_size = stack_size;
4939 memcpy (stack_copy, stack, stack_size);
4942 #endif /* MAX_SAVE_STACK > 0 */
4944 if (garbage_collection_messages)
4945 message1_nolog ("Garbage collecting...");
4947 BLOCK_INPUT;
4949 shrink_regexp_cache ();
4951 gc_in_progress = 1;
4953 /* clear_marks (); */
4955 /* Mark all the special slots that serve as the roots of accessibility. */
4957 for (i = 0; i < staticidx; i++)
4958 mark_object (*staticvec[i]);
4960 for (bind = specpdl; bind != specpdl_ptr; bind++)
4962 mark_object (bind->symbol);
4963 mark_object (bind->old_value);
4965 mark_terminals ();
4966 mark_kboards ();
4967 mark_ttys ();
4969 #ifdef USE_GTK
4971 extern void xg_mark_data (void);
4972 xg_mark_data ();
4974 #endif
4976 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4977 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4978 mark_stack ();
4979 #else
4981 register struct gcpro *tail;
4982 for (tail = gcprolist; tail; tail = tail->next)
4983 for (i = 0; i < tail->nvars; i++)
4984 mark_object (tail->var[i]);
4986 mark_byte_stack ();
4988 struct catchtag *catch;
4989 struct handler *handler;
4991 for (catch = catchlist; catch; catch = catch->next)
4993 mark_object (catch->tag);
4994 mark_object (catch->val);
4996 for (handler = handlerlist; handler; handler = handler->next)
4998 mark_object (handler->handler);
4999 mark_object (handler->var);
5002 mark_backtrace ();
5003 #endif
5005 #ifdef HAVE_WINDOW_SYSTEM
5006 mark_fringe_data ();
5007 #endif
5009 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5010 mark_stack ();
5011 #endif
5013 /* Everything is now marked, except for the things that require special
5014 finalization, i.e. the undo_list.
5015 Look thru every buffer's undo list
5016 for elements that update markers that were not marked,
5017 and delete them. */
5019 register struct buffer *nextb = all_buffers;
5021 while (nextb)
5023 /* If a buffer's undo list is Qt, that means that undo is
5024 turned off in that buffer. Calling truncate_undo_list on
5025 Qt tends to return NULL, which effectively turns undo back on.
5026 So don't call truncate_undo_list if undo_list is Qt. */
5027 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5029 Lisp_Object tail, prev;
5030 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5031 prev = Qnil;
5032 while (CONSP (tail))
5034 if (CONSP (XCAR (tail))
5035 && MARKERP (XCAR (XCAR (tail)))
5036 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5038 if (NILP (prev))
5039 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5040 else
5042 tail = XCDR (tail);
5043 XSETCDR (prev, tail);
5046 else
5048 prev = tail;
5049 tail = XCDR (tail);
5053 /* Now that we have stripped the elements that need not be in the
5054 undo_list any more, we can finally mark the list. */
5055 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5057 nextb = nextb->next;
5061 gc_sweep ();
5063 /* Clear the mark bits that we set in certain root slots. */
5065 unmark_byte_stack ();
5066 VECTOR_UNMARK (&buffer_defaults);
5067 VECTOR_UNMARK (&buffer_local_symbols);
5069 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5070 dump_zombies ();
5071 #endif
5073 UNBLOCK_INPUT;
5075 CHECK_CONS_LIST ();
5077 /* clear_marks (); */
5078 gc_in_progress = 0;
5080 consing_since_gc = 0;
5081 if (gc_cons_threshold < 10000)
5082 gc_cons_threshold = 10000;
5084 if (FLOATP (Vgc_cons_percentage))
5085 { /* Set gc_cons_combined_threshold. */
5086 EMACS_INT tot = 0;
5088 tot += total_conses * sizeof (struct Lisp_Cons);
5089 tot += total_symbols * sizeof (struct Lisp_Symbol);
5090 tot += total_markers * sizeof (union Lisp_Misc);
5091 tot += total_string_size;
5092 tot += total_vector_size * sizeof (Lisp_Object);
5093 tot += total_floats * sizeof (struct Lisp_Float);
5094 tot += total_intervals * sizeof (struct interval);
5095 tot += total_strings * sizeof (struct Lisp_String);
5097 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5099 else
5100 gc_relative_threshold = 0;
5102 if (garbage_collection_messages)
5104 if (message_p || minibuf_level > 0)
5105 restore_message ();
5106 else
5107 message1_nolog ("Garbage collecting...done");
5110 unbind_to (count, Qnil);
5112 total[0] = Fcons (make_number (total_conses),
5113 make_number (total_free_conses));
5114 total[1] = Fcons (make_number (total_symbols),
5115 make_number (total_free_symbols));
5116 total[2] = Fcons (make_number (total_markers),
5117 make_number (total_free_markers));
5118 total[3] = make_number (total_string_size);
5119 total[4] = make_number (total_vector_size);
5120 total[5] = Fcons (make_number (total_floats),
5121 make_number (total_free_floats));
5122 total[6] = Fcons (make_number (total_intervals),
5123 make_number (total_free_intervals));
5124 total[7] = Fcons (make_number (total_strings),
5125 make_number (total_free_strings));
5127 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5129 /* Compute average percentage of zombies. */
5130 double nlive = 0;
5132 for (i = 0; i < 7; ++i)
5133 if (CONSP (total[i]))
5134 nlive += XFASTINT (XCAR (total[i]));
5136 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5137 max_live = max (nlive, max_live);
5138 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5139 max_zombies = max (nzombies, max_zombies);
5140 ++ngcs;
5142 #endif
5144 if (!NILP (Vpost_gc_hook))
5146 int gc_count = inhibit_garbage_collection ();
5147 safe_run_hooks (Qpost_gc_hook);
5148 unbind_to (gc_count, Qnil);
5151 /* Accumulate statistics. */
5152 EMACS_GET_TIME (t2);
5153 EMACS_SUB_TIME (t3, t2, t1);
5154 if (FLOATP (Vgc_elapsed))
5155 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5156 EMACS_SECS (t3) +
5157 EMACS_USECS (t3) * 1.0e-6);
5158 gcs_done++;
5160 return Flist (sizeof total / sizeof *total, total);
5164 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5165 only interesting objects referenced from glyphs are strings. */
5167 static void
5168 mark_glyph_matrix (struct glyph_matrix *matrix)
5170 struct glyph_row *row = matrix->rows;
5171 struct glyph_row *end = row + matrix->nrows;
5173 for (; row < end; ++row)
5174 if (row->enabled_p)
5176 int area;
5177 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5179 struct glyph *glyph = row->glyphs[area];
5180 struct glyph *end_glyph = glyph + row->used[area];
5182 for (; glyph < end_glyph; ++glyph)
5183 if (STRINGP (glyph->object)
5184 && !STRING_MARKED_P (XSTRING (glyph->object)))
5185 mark_object (glyph->object);
5191 /* Mark Lisp faces in the face cache C. */
5193 static void
5194 mark_face_cache (struct face_cache *c)
5196 if (c)
5198 int i, j;
5199 for (i = 0; i < c->used; ++i)
5201 struct face *face = FACE_FROM_ID (c->f, i);
5203 if (face)
5205 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5206 mark_object (face->lface[j]);
5214 /* Mark reference to a Lisp_Object.
5215 If the object referred to has not been seen yet, recursively mark
5216 all the references contained in it. */
5218 #define LAST_MARKED_SIZE 500
5219 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5220 static int last_marked_index;
5222 /* For debugging--call abort when we cdr down this many
5223 links of a list, in mark_object. In debugging,
5224 the call to abort will hit a breakpoint.
5225 Normally this is zero and the check never goes off. */
5226 static size_t mark_object_loop_halt;
5228 static void
5229 mark_vectorlike (struct Lisp_Vector *ptr)
5231 register EMACS_UINT size = ptr->size;
5232 register EMACS_UINT i;
5234 eassert (!VECTOR_MARKED_P (ptr));
5235 VECTOR_MARK (ptr); /* Else mark it */
5236 if (size & PSEUDOVECTOR_FLAG)
5237 size &= PSEUDOVECTOR_SIZE_MASK;
5239 /* Note that this size is not the memory-footprint size, but only
5240 the number of Lisp_Object fields that we should trace.
5241 The distinction is used e.g. by Lisp_Process which places extra
5242 non-Lisp_Object fields at the end of the structure. */
5243 for (i = 0; i < size; i++) /* and then mark its elements */
5244 mark_object (ptr->contents[i]);
5247 /* Like mark_vectorlike but optimized for char-tables (and
5248 sub-char-tables) assuming that the contents are mostly integers or
5249 symbols. */
5251 static void
5252 mark_char_table (struct Lisp_Vector *ptr)
5254 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5255 register EMACS_UINT i;
5257 eassert (!VECTOR_MARKED_P (ptr));
5258 VECTOR_MARK (ptr);
5259 for (i = 0; i < size; i++)
5261 Lisp_Object val = ptr->contents[i];
5263 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5264 continue;
5265 if (SUB_CHAR_TABLE_P (val))
5267 if (! VECTOR_MARKED_P (XVECTOR (val)))
5268 mark_char_table (XVECTOR (val));
5270 else
5271 mark_object (val);
5275 void
5276 mark_object (Lisp_Object arg)
5278 register Lisp_Object obj = arg;
5279 #ifdef GC_CHECK_MARKED_OBJECTS
5280 void *po;
5281 struct mem_node *m;
5282 #endif
5283 size_t cdr_count = 0;
5285 loop:
5287 if (PURE_POINTER_P (XPNTR (obj)))
5288 return;
5290 last_marked[last_marked_index++] = obj;
5291 if (last_marked_index == LAST_MARKED_SIZE)
5292 last_marked_index = 0;
5294 /* Perform some sanity checks on the objects marked here. Abort if
5295 we encounter an object we know is bogus. This increases GC time
5296 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5297 #ifdef GC_CHECK_MARKED_OBJECTS
5299 po = (void *) XPNTR (obj);
5301 /* Check that the object pointed to by PO is known to be a Lisp
5302 structure allocated from the heap. */
5303 #define CHECK_ALLOCATED() \
5304 do { \
5305 m = mem_find (po); \
5306 if (m == MEM_NIL) \
5307 abort (); \
5308 } while (0)
5310 /* Check that the object pointed to by PO is live, using predicate
5311 function LIVEP. */
5312 #define CHECK_LIVE(LIVEP) \
5313 do { \
5314 if (!LIVEP (m, po)) \
5315 abort (); \
5316 } while (0)
5318 /* Check both of the above conditions. */
5319 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5320 do { \
5321 CHECK_ALLOCATED (); \
5322 CHECK_LIVE (LIVEP); \
5323 } while (0) \
5325 #else /* not GC_CHECK_MARKED_OBJECTS */
5327 #define CHECK_LIVE(LIVEP) (void) 0
5328 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5330 #endif /* not GC_CHECK_MARKED_OBJECTS */
5332 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5334 case Lisp_String:
5336 register struct Lisp_String *ptr = XSTRING (obj);
5337 if (STRING_MARKED_P (ptr))
5338 break;
5339 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5340 MARK_INTERVAL_TREE (ptr->intervals);
5341 MARK_STRING (ptr);
5342 #ifdef GC_CHECK_STRING_BYTES
5343 /* Check that the string size recorded in the string is the
5344 same as the one recorded in the sdata structure. */
5345 CHECK_STRING_BYTES (ptr);
5346 #endif /* GC_CHECK_STRING_BYTES */
5348 break;
5350 case Lisp_Vectorlike:
5351 if (VECTOR_MARKED_P (XVECTOR (obj)))
5352 break;
5353 #ifdef GC_CHECK_MARKED_OBJECTS
5354 m = mem_find (po);
5355 if (m == MEM_NIL && !SUBRP (obj)
5356 && po != &buffer_defaults
5357 && po != &buffer_local_symbols)
5358 abort ();
5359 #endif /* GC_CHECK_MARKED_OBJECTS */
5361 if (BUFFERP (obj))
5363 #ifdef GC_CHECK_MARKED_OBJECTS
5364 if (po != &buffer_defaults && po != &buffer_local_symbols)
5366 struct buffer *b;
5367 for (b = all_buffers; b && b != po; b = b->next)
5369 if (b == NULL)
5370 abort ();
5372 #endif /* GC_CHECK_MARKED_OBJECTS */
5373 mark_buffer (obj);
5375 else if (SUBRP (obj))
5376 break;
5377 else if (COMPILEDP (obj))
5378 /* We could treat this just like a vector, but it is better to
5379 save the COMPILED_CONSTANTS element for last and avoid
5380 recursion there. */
5382 register struct Lisp_Vector *ptr = XVECTOR (obj);
5383 register EMACS_UINT size = ptr->size;
5384 register EMACS_UINT i;
5386 CHECK_LIVE (live_vector_p);
5387 VECTOR_MARK (ptr); /* Else mark it */
5388 size &= PSEUDOVECTOR_SIZE_MASK;
5389 for (i = 0; i < size; i++) /* and then mark its elements */
5391 if (i != COMPILED_CONSTANTS)
5392 mark_object (ptr->contents[i]);
5394 obj = ptr->contents[COMPILED_CONSTANTS];
5395 goto loop;
5397 else if (FRAMEP (obj))
5399 register struct frame *ptr = XFRAME (obj);
5400 mark_vectorlike (XVECTOR (obj));
5401 mark_face_cache (ptr->face_cache);
5403 else if (WINDOWP (obj))
5405 register struct Lisp_Vector *ptr = XVECTOR (obj);
5406 struct window *w = XWINDOW (obj);
5407 mark_vectorlike (ptr);
5408 /* Mark glyphs for leaf windows. Marking window matrices is
5409 sufficient because frame matrices use the same glyph
5410 memory. */
5411 if (NILP (w->hchild)
5412 && NILP (w->vchild)
5413 && w->current_matrix)
5415 mark_glyph_matrix (w->current_matrix);
5416 mark_glyph_matrix (w->desired_matrix);
5419 else if (HASH_TABLE_P (obj))
5421 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5422 mark_vectorlike ((struct Lisp_Vector *)h);
5423 /* If hash table is not weak, mark all keys and values.
5424 For weak tables, mark only the vector. */
5425 if (NILP (h->weak))
5426 mark_object (h->key_and_value);
5427 else
5428 VECTOR_MARK (XVECTOR (h->key_and_value));
5430 else if (CHAR_TABLE_P (obj))
5431 mark_char_table (XVECTOR (obj));
5432 else
5433 mark_vectorlike (XVECTOR (obj));
5434 break;
5436 case Lisp_Symbol:
5438 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5439 struct Lisp_Symbol *ptrx;
5441 if (ptr->gcmarkbit)
5442 break;
5443 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5444 ptr->gcmarkbit = 1;
5445 mark_object (ptr->function);
5446 mark_object (ptr->plist);
5447 switch (ptr->redirect)
5449 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5450 case SYMBOL_VARALIAS:
5452 Lisp_Object tem;
5453 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5454 mark_object (tem);
5455 break;
5457 case SYMBOL_LOCALIZED:
5459 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5460 /* If the value is forwarded to a buffer or keyboard field,
5461 these are marked when we see the corresponding object.
5462 And if it's forwarded to a C variable, either it's not
5463 a Lisp_Object var, or it's staticpro'd already. */
5464 mark_object (blv->where);
5465 mark_object (blv->valcell);
5466 mark_object (blv->defcell);
5467 break;
5469 case SYMBOL_FORWARDED:
5470 /* If the value is forwarded to a buffer or keyboard field,
5471 these are marked when we see the corresponding object.
5472 And if it's forwarded to a C variable, either it's not
5473 a Lisp_Object var, or it's staticpro'd already. */
5474 break;
5475 default: abort ();
5477 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5478 MARK_STRING (XSTRING (ptr->xname));
5479 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5481 ptr = ptr->next;
5482 if (ptr)
5484 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5485 XSETSYMBOL (obj, ptrx);
5486 goto loop;
5489 break;
5491 case Lisp_Misc:
5492 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5493 if (XMISCANY (obj)->gcmarkbit)
5494 break;
5495 XMISCANY (obj)->gcmarkbit = 1;
5497 switch (XMISCTYPE (obj))
5500 case Lisp_Misc_Marker:
5501 /* DO NOT mark thru the marker's chain.
5502 The buffer's markers chain does not preserve markers from gc;
5503 instead, markers are removed from the chain when freed by gc. */
5504 break;
5506 case Lisp_Misc_Save_Value:
5507 #if GC_MARK_STACK
5509 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5510 /* If DOGC is set, POINTER is the address of a memory
5511 area containing INTEGER potential Lisp_Objects. */
5512 if (ptr->dogc)
5514 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5515 int nelt;
5516 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5517 mark_maybe_object (*p);
5520 #endif
5521 break;
5523 case Lisp_Misc_Overlay:
5525 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5526 mark_object (ptr->start);
5527 mark_object (ptr->end);
5528 mark_object (ptr->plist);
5529 if (ptr->next)
5531 XSETMISC (obj, ptr->next);
5532 goto loop;
5535 break;
5537 default:
5538 abort ();
5540 break;
5542 case Lisp_Cons:
5544 register struct Lisp_Cons *ptr = XCONS (obj);
5545 if (CONS_MARKED_P (ptr))
5546 break;
5547 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5548 CONS_MARK (ptr);
5549 /* If the cdr is nil, avoid recursion for the car. */
5550 if (EQ (ptr->u.cdr, Qnil))
5552 obj = ptr->car;
5553 cdr_count = 0;
5554 goto loop;
5556 mark_object (ptr->car);
5557 obj = ptr->u.cdr;
5558 cdr_count++;
5559 if (cdr_count == mark_object_loop_halt)
5560 abort ();
5561 goto loop;
5564 case Lisp_Float:
5565 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5566 FLOAT_MARK (XFLOAT (obj));
5567 break;
5569 case_Lisp_Int:
5570 break;
5572 default:
5573 abort ();
5576 #undef CHECK_LIVE
5577 #undef CHECK_ALLOCATED
5578 #undef CHECK_ALLOCATED_AND_LIVE
5581 /* Mark the pointers in a buffer structure. */
5583 static void
5584 mark_buffer (Lisp_Object buf)
5586 register struct buffer *buffer = XBUFFER (buf);
5587 register Lisp_Object *ptr, tmp;
5588 Lisp_Object base_buffer;
5590 eassert (!VECTOR_MARKED_P (buffer));
5591 VECTOR_MARK (buffer);
5593 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5595 /* For now, we just don't mark the undo_list. It's done later in
5596 a special way just before the sweep phase, and after stripping
5597 some of its elements that are not needed any more. */
5599 if (buffer->overlays_before)
5601 XSETMISC (tmp, buffer->overlays_before);
5602 mark_object (tmp);
5604 if (buffer->overlays_after)
5606 XSETMISC (tmp, buffer->overlays_after);
5607 mark_object (tmp);
5610 /* buffer-local Lisp variables start at `undo_list',
5611 tho only the ones from `name' on are GC'd normally. */
5612 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5613 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5614 ptr++)
5615 mark_object (*ptr);
5617 /* If this is an indirect buffer, mark its base buffer. */
5618 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5620 XSETBUFFER (base_buffer, buffer->base_buffer);
5621 mark_buffer (base_buffer);
5625 /* Mark the Lisp pointers in the terminal objects.
5626 Called by the Fgarbage_collector. */
5628 static void
5629 mark_terminals (void)
5631 struct terminal *t;
5632 for (t = terminal_list; t; t = t->next_terminal)
5634 eassert (t->name != NULL);
5635 #ifdef HAVE_WINDOW_SYSTEM
5636 /* If a terminal object is reachable from a stacpro'ed object,
5637 it might have been marked already. Make sure the image cache
5638 gets marked. */
5639 mark_image_cache (t->image_cache);
5640 #endif /* HAVE_WINDOW_SYSTEM */
5641 if (!VECTOR_MARKED_P (t))
5642 mark_vectorlike ((struct Lisp_Vector *)t);
5648 /* Value is non-zero if OBJ will survive the current GC because it's
5649 either marked or does not need to be marked to survive. */
5652 survives_gc_p (Lisp_Object obj)
5654 int survives_p;
5656 switch (XTYPE (obj))
5658 case_Lisp_Int:
5659 survives_p = 1;
5660 break;
5662 case Lisp_Symbol:
5663 survives_p = XSYMBOL (obj)->gcmarkbit;
5664 break;
5666 case Lisp_Misc:
5667 survives_p = XMISCANY (obj)->gcmarkbit;
5668 break;
5670 case Lisp_String:
5671 survives_p = STRING_MARKED_P (XSTRING (obj));
5672 break;
5674 case Lisp_Vectorlike:
5675 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5676 break;
5678 case Lisp_Cons:
5679 survives_p = CONS_MARKED_P (XCONS (obj));
5680 break;
5682 case Lisp_Float:
5683 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5684 break;
5686 default:
5687 abort ();
5690 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5695 /* Sweep: find all structures not marked, and free them. */
5697 static void
5698 gc_sweep (void)
5700 /* Remove or mark entries in weak hash tables.
5701 This must be done before any object is unmarked. */
5702 sweep_weak_hash_tables ();
5704 sweep_strings ();
5705 #ifdef GC_CHECK_STRING_BYTES
5706 if (!noninteractive)
5707 check_string_bytes (1);
5708 #endif
5710 /* Put all unmarked conses on free list */
5712 register struct cons_block *cblk;
5713 struct cons_block **cprev = &cons_block;
5714 register int lim = cons_block_index;
5715 register int num_free = 0, num_used = 0;
5717 cons_free_list = 0;
5719 for (cblk = cons_block; cblk; cblk = *cprev)
5721 register int i = 0;
5722 int this_free = 0;
5723 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5725 /* Scan the mark bits an int at a time. */
5726 for (i = 0; i <= ilim; i++)
5728 if (cblk->gcmarkbits[i] == -1)
5730 /* Fast path - all cons cells for this int are marked. */
5731 cblk->gcmarkbits[i] = 0;
5732 num_used += BITS_PER_INT;
5734 else
5736 /* Some cons cells for this int are not marked.
5737 Find which ones, and free them. */
5738 int start, pos, stop;
5740 start = i * BITS_PER_INT;
5741 stop = lim - start;
5742 if (stop > BITS_PER_INT)
5743 stop = BITS_PER_INT;
5744 stop += start;
5746 for (pos = start; pos < stop; pos++)
5748 if (!CONS_MARKED_P (&cblk->conses[pos]))
5750 this_free++;
5751 cblk->conses[pos].u.chain = cons_free_list;
5752 cons_free_list = &cblk->conses[pos];
5753 #if GC_MARK_STACK
5754 cons_free_list->car = Vdead;
5755 #endif
5757 else
5759 num_used++;
5760 CONS_UNMARK (&cblk->conses[pos]);
5766 lim = CONS_BLOCK_SIZE;
5767 /* If this block contains only free conses and we have already
5768 seen more than two blocks worth of free conses then deallocate
5769 this block. */
5770 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5772 *cprev = cblk->next;
5773 /* Unhook from the free list. */
5774 cons_free_list = cblk->conses[0].u.chain;
5775 lisp_align_free (cblk);
5776 n_cons_blocks--;
5778 else
5780 num_free += this_free;
5781 cprev = &cblk->next;
5784 total_conses = num_used;
5785 total_free_conses = num_free;
5788 /* Put all unmarked floats on free list */
5790 register struct float_block *fblk;
5791 struct float_block **fprev = &float_block;
5792 register int lim = float_block_index;
5793 register int num_free = 0, num_used = 0;
5795 float_free_list = 0;
5797 for (fblk = float_block; fblk; fblk = *fprev)
5799 register int i;
5800 int this_free = 0;
5801 for (i = 0; i < lim; i++)
5802 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5804 this_free++;
5805 fblk->floats[i].u.chain = float_free_list;
5806 float_free_list = &fblk->floats[i];
5808 else
5810 num_used++;
5811 FLOAT_UNMARK (&fblk->floats[i]);
5813 lim = FLOAT_BLOCK_SIZE;
5814 /* If this block contains only free floats and we have already
5815 seen more than two blocks worth of free floats then deallocate
5816 this block. */
5817 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5819 *fprev = fblk->next;
5820 /* Unhook from the free list. */
5821 float_free_list = fblk->floats[0].u.chain;
5822 lisp_align_free (fblk);
5823 n_float_blocks--;
5825 else
5827 num_free += this_free;
5828 fprev = &fblk->next;
5831 total_floats = num_used;
5832 total_free_floats = num_free;
5835 /* Put all unmarked intervals on free list */
5837 register struct interval_block *iblk;
5838 struct interval_block **iprev = &interval_block;
5839 register int lim = interval_block_index;
5840 register int num_free = 0, num_used = 0;
5842 interval_free_list = 0;
5844 for (iblk = interval_block; iblk; iblk = *iprev)
5846 register int i;
5847 int this_free = 0;
5849 for (i = 0; i < lim; i++)
5851 if (!iblk->intervals[i].gcmarkbit)
5853 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5854 interval_free_list = &iblk->intervals[i];
5855 this_free++;
5857 else
5859 num_used++;
5860 iblk->intervals[i].gcmarkbit = 0;
5863 lim = INTERVAL_BLOCK_SIZE;
5864 /* If this block contains only free intervals and we have already
5865 seen more than two blocks worth of free intervals then
5866 deallocate this block. */
5867 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5869 *iprev = iblk->next;
5870 /* Unhook from the free list. */
5871 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5872 lisp_free (iblk);
5873 n_interval_blocks--;
5875 else
5877 num_free += this_free;
5878 iprev = &iblk->next;
5881 total_intervals = num_used;
5882 total_free_intervals = num_free;
5885 /* Put all unmarked symbols on free list */
5887 register struct symbol_block *sblk;
5888 struct symbol_block **sprev = &symbol_block;
5889 register int lim = symbol_block_index;
5890 register int num_free = 0, num_used = 0;
5892 symbol_free_list = NULL;
5894 for (sblk = symbol_block; sblk; sblk = *sprev)
5896 int this_free = 0;
5897 struct Lisp_Symbol *sym = sblk->symbols;
5898 struct Lisp_Symbol *end = sym + lim;
5900 for (; sym < end; ++sym)
5902 /* Check if the symbol was created during loadup. In such a case
5903 it might be pointed to by pure bytecode which we don't trace,
5904 so we conservatively assume that it is live. */
5905 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5907 if (!sym->gcmarkbit && !pure_p)
5909 if (sym->redirect == SYMBOL_LOCALIZED)
5910 xfree (SYMBOL_BLV (sym));
5911 sym->next = symbol_free_list;
5912 symbol_free_list = sym;
5913 #if GC_MARK_STACK
5914 symbol_free_list->function = Vdead;
5915 #endif
5916 ++this_free;
5918 else
5920 ++num_used;
5921 if (!pure_p)
5922 UNMARK_STRING (XSTRING (sym->xname));
5923 sym->gcmarkbit = 0;
5927 lim = SYMBOL_BLOCK_SIZE;
5928 /* If this block contains only free symbols and we have already
5929 seen more than two blocks worth of free symbols then deallocate
5930 this block. */
5931 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5933 *sprev = sblk->next;
5934 /* Unhook from the free list. */
5935 symbol_free_list = sblk->symbols[0].next;
5936 lisp_free (sblk);
5937 n_symbol_blocks--;
5939 else
5941 num_free += this_free;
5942 sprev = &sblk->next;
5945 total_symbols = num_used;
5946 total_free_symbols = num_free;
5949 /* Put all unmarked misc's on free list.
5950 For a marker, first unchain it from the buffer it points into. */
5952 register struct marker_block *mblk;
5953 struct marker_block **mprev = &marker_block;
5954 register int lim = marker_block_index;
5955 register int num_free = 0, num_used = 0;
5957 marker_free_list = 0;
5959 for (mblk = marker_block; mblk; mblk = *mprev)
5961 register int i;
5962 int this_free = 0;
5964 for (i = 0; i < lim; i++)
5966 if (!mblk->markers[i].u_any.gcmarkbit)
5968 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5969 unchain_marker (&mblk->markers[i].u_marker);
5970 /* Set the type of the freed object to Lisp_Misc_Free.
5971 We could leave the type alone, since nobody checks it,
5972 but this might catch bugs faster. */
5973 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5974 mblk->markers[i].u_free.chain = marker_free_list;
5975 marker_free_list = &mblk->markers[i];
5976 this_free++;
5978 else
5980 num_used++;
5981 mblk->markers[i].u_any.gcmarkbit = 0;
5984 lim = MARKER_BLOCK_SIZE;
5985 /* If this block contains only free markers and we have already
5986 seen more than two blocks worth of free markers then deallocate
5987 this block. */
5988 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5990 *mprev = mblk->next;
5991 /* Unhook from the free list. */
5992 marker_free_list = mblk->markers[0].u_free.chain;
5993 lisp_free (mblk);
5994 n_marker_blocks--;
5996 else
5998 num_free += this_free;
5999 mprev = &mblk->next;
6003 total_markers = num_used;
6004 total_free_markers = num_free;
6007 /* Free all unmarked buffers */
6009 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6011 while (buffer)
6012 if (!VECTOR_MARKED_P (buffer))
6014 if (prev)
6015 prev->next = buffer->next;
6016 else
6017 all_buffers = buffer->next;
6018 next = buffer->next;
6019 lisp_free (buffer);
6020 buffer = next;
6022 else
6024 VECTOR_UNMARK (buffer);
6025 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6026 prev = buffer, buffer = buffer->next;
6030 /* Free all unmarked vectors */
6032 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6033 total_vector_size = 0;
6035 while (vector)
6036 if (!VECTOR_MARKED_P (vector))
6038 if (prev)
6039 prev->next = vector->next;
6040 else
6041 all_vectors = vector->next;
6042 next = vector->next;
6043 lisp_free (vector);
6044 n_vectors--;
6045 vector = next;
6048 else
6050 VECTOR_UNMARK (vector);
6051 if (vector->size & PSEUDOVECTOR_FLAG)
6052 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6053 else
6054 total_vector_size += vector->size;
6055 prev = vector, vector = vector->next;
6059 #ifdef GC_CHECK_STRING_BYTES
6060 if (!noninteractive)
6061 check_string_bytes (1);
6062 #endif
6068 /* Debugging aids. */
6070 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6071 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6072 This may be helpful in debugging Emacs's memory usage.
6073 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6074 (void)
6076 Lisp_Object end;
6078 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6080 return end;
6083 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6084 doc: /* Return a list of counters that measure how much consing there has been.
6085 Each of these counters increments for a certain kind of object.
6086 The counters wrap around from the largest positive integer to zero.
6087 Garbage collection does not decrease them.
6088 The elements of the value are as follows:
6089 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6090 All are in units of 1 = one object consed
6091 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6092 objects consed.
6093 MISCS include overlays, markers, and some internal types.
6094 Frames, windows, buffers, and subprocesses count as vectors
6095 (but the contents of a buffer's text do not count here). */)
6096 (void)
6098 Lisp_Object consed[8];
6100 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6101 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6102 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6103 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6104 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6105 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6106 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6107 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6109 return Flist (8, consed);
6112 #ifdef ENABLE_CHECKING
6113 int suppress_checking;
6115 void
6116 die (const char *msg, const char *file, int line)
6118 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6119 file, line, msg);
6120 abort ();
6122 #endif
6124 /* Initialization */
6126 void
6127 init_alloc_once (void)
6129 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6130 purebeg = PUREBEG;
6131 pure_size = PURESIZE;
6132 pure_bytes_used = 0;
6133 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6134 pure_bytes_used_before_overflow = 0;
6136 /* Initialize the list of free aligned blocks. */
6137 free_ablock = NULL;
6139 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6140 mem_init ();
6141 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6142 #endif
6144 all_vectors = 0;
6145 ignore_warnings = 1;
6146 #ifdef DOUG_LEA_MALLOC
6147 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6148 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6149 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6150 #endif
6151 init_strings ();
6152 init_cons ();
6153 init_symbol ();
6154 init_marker ();
6155 init_float ();
6156 init_intervals ();
6157 init_weak_hash_tables ();
6159 #ifdef REL_ALLOC
6160 malloc_hysteresis = 32;
6161 #else
6162 malloc_hysteresis = 0;
6163 #endif
6165 refill_memory_reserve ();
6167 ignore_warnings = 0;
6168 gcprolist = 0;
6169 byte_stack_list = 0;
6170 staticidx = 0;
6171 consing_since_gc = 0;
6172 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6173 gc_relative_threshold = 0;
6176 void
6177 init_alloc (void)
6179 gcprolist = 0;
6180 byte_stack_list = 0;
6181 #if GC_MARK_STACK
6182 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6183 setjmp_tested_p = longjmps_done = 0;
6184 #endif
6185 #endif
6186 Vgc_elapsed = make_float (0.0);
6187 gcs_done = 0;
6190 void
6191 syms_of_alloc (void)
6193 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6194 doc: /* *Number of bytes of consing between garbage collections.
6195 Garbage collection can happen automatically once this many bytes have been
6196 allocated since the last garbage collection. All data types count.
6198 Garbage collection happens automatically only when `eval' is called.
6200 By binding this temporarily to a large number, you can effectively
6201 prevent garbage collection during a part of the program.
6202 See also `gc-cons-percentage'. */);
6204 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6205 doc: /* *Portion of the heap used for allocation.
6206 Garbage collection can happen automatically once this portion of the heap
6207 has been allocated since the last garbage collection.
6208 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6209 Vgc_cons_percentage = make_float (0.1);
6211 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6212 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6214 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6215 doc: /* Number of cons cells that have been consed so far. */);
6217 DEFVAR_INT ("floats-consed", floats_consed,
6218 doc: /* Number of floats that have been consed so far. */);
6220 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6221 doc: /* Number of vector cells that have been consed so far. */);
6223 DEFVAR_INT ("symbols-consed", symbols_consed,
6224 doc: /* Number of symbols that have been consed so far. */);
6226 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6227 doc: /* Number of string characters that have been consed so far. */);
6229 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6230 doc: /* Number of miscellaneous objects that have been consed so far. */);
6232 DEFVAR_INT ("intervals-consed", intervals_consed,
6233 doc: /* Number of intervals that have been consed so far. */);
6235 DEFVAR_INT ("strings-consed", strings_consed,
6236 doc: /* Number of strings that have been consed so far. */);
6238 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6239 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6240 This means that certain objects should be allocated in shared (pure) space.
6241 It can also be set to a hash-table, in which case this table is used to
6242 do hash-consing of the objects allocated to pure space. */);
6244 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6245 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6246 garbage_collection_messages = 0;
6248 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6249 doc: /* Hook run after garbage collection has finished. */);
6250 Vpost_gc_hook = Qnil;
6251 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6252 staticpro (&Qpost_gc_hook);
6254 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6255 doc: /* Precomputed `signal' argument for memory-full error. */);
6256 /* We build this in advance because if we wait until we need it, we might
6257 not be able to allocate the memory to hold it. */
6258 Vmemory_signal_data
6259 = pure_cons (Qerror,
6260 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6262 DEFVAR_LISP ("memory-full", Vmemory_full,
6263 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6264 Vmemory_full = Qnil;
6266 staticpro (&Qgc_cons_threshold);
6267 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6269 staticpro (&Qchar_table_extra_slots);
6270 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6272 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6273 doc: /* Accumulated time elapsed in garbage collections.
6274 The time is in seconds as a floating point value. */);
6275 DEFVAR_INT ("gcs-done", gcs_done,
6276 doc: /* Accumulated number of garbage collections done. */);
6278 defsubr (&Scons);
6279 defsubr (&Slist);
6280 defsubr (&Svector);
6281 defsubr (&Smake_byte_code);
6282 defsubr (&Smake_list);
6283 defsubr (&Smake_vector);
6284 defsubr (&Smake_string);
6285 defsubr (&Smake_bool_vector);
6286 defsubr (&Smake_symbol);
6287 defsubr (&Smake_marker);
6288 defsubr (&Spurecopy);
6289 defsubr (&Sgarbage_collect);
6290 defsubr (&Smemory_limit);
6291 defsubr (&Smemory_use_counts);
6293 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6294 defsubr (&Sgc_status);
6295 #endif