* tramp.texi (Frequently Asked Questions): Add fish shell settings.
[emacs.git] / lisp / calc / calc-cplx.el
blob7f1d18a047b12b75aac358ca01b4ff80c42b7233
1 ;;; calc-cplx.el --- Complex number functions for Calc
3 ;; Copyright (C) 1990-1993, 2001-2014 Free Software Foundation, Inc.
5 ;; Author: David Gillespie <daveg@synaptics.com>
6 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
8 ;; This file is part of GNU Emacs.
10 ;; GNU Emacs is free software: you can redistribute it and/or modify
11 ;; it under the terms of the GNU General Public License as published by
12 ;; the Free Software Foundation, either version 3 of the License, or
13 ;; (at your option) any later version.
15 ;; GNU Emacs is distributed in the hope that it will be useful,
16 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 ;; GNU General Public License for more details.
20 ;; You should have received a copy of the GNU General Public License
21 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
23 ;;; Commentary:
25 ;;; Code:
27 ;; This file is autoloaded from calc-ext.el.
29 (require 'calc-ext)
30 (require 'calc-macs)
32 (defun calc-argument (arg)
33 (interactive "P")
34 (calc-slow-wrapper
35 (calc-unary-op "arg" 'calcFunc-arg arg)))
37 (defun calc-re (arg)
38 (interactive "P")
39 (calc-slow-wrapper
40 (calc-unary-op "re" 'calcFunc-re arg)))
42 (defun calc-im (arg)
43 (interactive "P")
44 (calc-slow-wrapper
45 (calc-unary-op "im" 'calcFunc-im arg)))
48 (defun calc-polar ()
49 (interactive)
50 (calc-slow-wrapper
51 (let ((arg (calc-top-n 1)))
52 (if (or (calc-is-inverse)
53 (eq (car-safe arg) 'polar))
54 (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg))
55 (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg))))))
60 (defun calc-complex-notation ()
61 (interactive)
62 (calc-wrapper
63 (calc-change-mode 'calc-complex-format nil t)
64 (message "Displaying complex numbers in (X,Y) format")))
66 (defun calc-i-notation ()
67 (interactive)
68 (calc-wrapper
69 (calc-change-mode 'calc-complex-format 'i t)
70 (message "Displaying complex numbers in X+Yi format")))
72 (defun calc-j-notation ()
73 (interactive)
74 (calc-wrapper
75 (calc-change-mode 'calc-complex-format 'j t)
76 (message "Displaying complex numbers in X+Yj format")))
79 (defun calc-polar-mode (n)
80 (interactive "P")
81 (calc-wrapper
82 (if (if n
83 (> (prefix-numeric-value n) 0)
84 (eq calc-complex-mode 'cplx))
85 (progn
86 (calc-change-mode 'calc-complex-mode 'polar)
87 (message "Preferred complex form is polar"))
88 (calc-change-mode 'calc-complex-mode 'cplx)
89 (message "Preferred complex form is rectangular"))))
92 ;;;; Complex numbers.
94 (defun math-normalize-polar (a)
95 (let ((r (math-normalize (nth 1 a)))
96 (th (math-normalize (nth 2 a))))
97 (cond ((math-zerop r)
98 '(polar 0 0))
99 ((or (math-zerop th))
101 ((and (not (eq calc-angle-mode 'rad))
102 (or (equal th '(float 18 1))
103 (equal th 180)))
104 (math-neg r))
105 ((math-negp r)
106 (math-neg (list 'polar (math-neg r) th)))
108 (list 'polar r th)))))
111 ;;; Coerce A to be complex (rectangular form). [c N]
112 (defun math-complex (a)
113 (cond ((eq (car-safe a) 'cplx) a)
114 ((eq (car-safe a) 'polar)
115 (if (math-zerop (nth 1 a))
116 (nth 1 a)
117 (let ((sc (calcFunc-sincos (nth 2 a))))
118 (list 'cplx
119 (math-mul (nth 1 a) (nth 1 sc))
120 (math-mul (nth 1 a) (nth 2 sc))))))
121 (t (list 'cplx a 0))))
123 ;;; Coerce A to be complex (polar form). [c N]
124 (defun math-polar (a)
125 (cond ((eq (car-safe a) 'polar) a)
126 ((math-zerop a) '(polar 0 0))
128 (list 'polar
129 (math-abs a)
130 (calcFunc-arg a)))))
132 ;;; Multiply A by the imaginary constant i. [N N] [Public]
133 (defun math-imaginary (a)
134 (if (and (or (Math-objvecp a) (math-infinitep a))
135 (not calc-symbolic-mode))
136 (math-mul a
137 (if (or (eq (car-safe a) 'polar)
138 (and (not (eq (car-safe a) 'cplx))
139 (eq calc-complex-mode 'polar)))
140 (list 'polar 1 (math-quarter-circle nil))
141 '(cplx 0 1)))
142 (math-mul a '(var i var-i))))
147 (defun math-want-polar (a b)
148 (cond ((eq (car-safe a) 'polar)
149 (if (eq (car-safe b) 'cplx)
150 (eq calc-complex-mode 'polar)
152 ((eq (car-safe a) 'cplx)
153 (if (eq (car-safe b) 'polar)
154 (eq calc-complex-mode 'polar)
155 nil))
156 ((eq (car-safe b) 'polar)
158 ((eq (car-safe b) 'cplx)
159 nil)
160 (t (eq calc-complex-mode 'polar))))
162 ;;; Force A to be in the (-pi,pi] or (-180,180] range.
163 (defun math-fix-circular (a &optional dir) ; [R R]
164 (cond ((eq (car-safe a) 'hms)
165 (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1)))
166 (math-fix-circular (math-add a '(float -36 1)) -1))
167 ((or (Math-lessp -180 (nth 1 a)) (eq dir -1))
170 (math-fix-circular (math-add a '(float 36 1)) 1))))
171 ((eq calc-angle-mode 'rad)
172 (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1)))
173 (math-fix-circular (math-sub a (math-two-pi)) -1))
174 ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1))
177 (math-fix-circular (math-add a (math-two-pi)) 1))))
179 (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1)))
180 (math-fix-circular (math-add a '(float -36 1)) -1))
181 ((or (Math-lessp '(float -18 1) a) (eq dir -1))
184 (math-fix-circular (math-add a '(float 36 1)) 1))))))
187 ;;;; Complex numbers.
189 (defun calcFunc-polar (a) ; [C N] [Public]
190 (cond ((Math-vectorp a)
191 (math-map-vec 'calcFunc-polar a))
192 ((Math-realp a) a)
193 ((Math-numberp a)
194 (math-normalize (math-polar a)))
195 (t (list 'calcFunc-polar a))))
197 (defun calcFunc-rect (a) ; [N N] [Public]
198 (cond ((Math-vectorp a)
199 (math-map-vec 'calcFunc-rect a))
200 ((Math-realp a) a)
201 ((Math-numberp a)
202 (math-normalize (math-complex a)))
203 (t (list 'calcFunc-rect a))))
205 ;;; Compute the complex conjugate of A. [O O] [Public]
206 (defun calcFunc-conj (a)
207 (let (aa bb)
208 (cond ((Math-realp a)
210 ((eq (car a) 'cplx)
211 (list 'cplx (nth 1 a) (math-neg (nth 2 a))))
212 ((eq (car a) 'polar)
213 (list 'polar (nth 1 a) (math-neg (nth 2 a))))
214 ((eq (car a) 'vec)
215 (math-map-vec 'calcFunc-conj a))
216 ((eq (car a) 'calcFunc-conj)
217 (nth 1 a))
218 ((math-known-realp a)
220 ((and (equal a '(var i var-i))
221 (math-imaginary-i))
222 (math-neg a))
223 ((and (memq (car a) '(+ - * /))
224 (progn
225 (setq aa (calcFunc-conj (nth 1 a))
226 bb (calcFunc-conj (nth 2 a)))
227 (or (not (eq (car-safe aa) 'calcFunc-conj))
228 (not (eq (car-safe bb) 'calcFunc-conj)))))
229 (if (eq (car a) '+)
230 (math-add aa bb)
231 (if (eq (car a) '-)
232 (math-sub aa bb)
233 (if (eq (car a) '*)
234 (math-mul aa bb)
235 (math-div aa bb)))))
236 ((eq (car a) 'neg)
237 (math-neg (calcFunc-conj (nth 1 a))))
238 ((let ((inf (math-infinitep a)))
239 (and inf
240 (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf))))
241 (t (calc-record-why 'numberp a)
242 (list 'calcFunc-conj a)))))
245 ;;; Compute the complex argument of A. [F N] [Public]
246 (defun calcFunc-arg (a)
247 (cond ((Math-anglep a)
248 (if (math-negp a) (math-half-circle nil) 0))
249 ((eq (car-safe a) 'cplx)
250 (calcFunc-arctan2 (nth 2 a) (nth 1 a)))
251 ((eq (car-safe a) 'polar)
252 (nth 2 a))
253 ((eq (car a) 'vec)
254 (math-map-vec 'calcFunc-arg a))
255 ((and (equal a '(var i var-i))
256 (math-imaginary-i))
257 (math-quarter-circle t))
258 ((and (equal a '(neg (var i var-i)))
259 (math-imaginary-i))
260 (math-neg (math-quarter-circle t)))
261 ((let ((signs (math-possible-signs a)))
262 (or (and (memq signs '(2 4 6)) 0)
263 (and (eq signs 1) (math-half-circle nil)))))
264 ((math-infinitep a)
265 (if (or (equal a '(var uinf var-uinf))
266 (equal a '(var nan var-nan)))
267 '(var nan var-nan)
268 (calcFunc-arg (math-infinite-dir a))))
269 (t (calc-record-why 'numvecp a)
270 (list 'calcFunc-arg a))))
272 (defun math-imaginary-i ()
273 (let ((val (calc-var-value 'var-i)))
274 (or (eq (car-safe val) 'special-const)
275 (equal val '(cplx 0 1))
276 (and (eq (car-safe val) 'polar)
277 (eq (nth 1 val) 0)
278 (Math-equal (nth 1 val) (math-quarter-circle nil))))))
280 ;;; Extract the real or complex part of a complex number. [R N] [Public]
281 ;;; Also extracts the real part of a modulo form.
282 (defun calcFunc-re (a)
283 (let (aa bb)
284 (cond ((Math-realp a) a)
285 ((memq (car a) '(mod cplx))
286 (nth 1 a))
287 ((eq (car a) 'polar)
288 (math-mul (nth 1 a) (calcFunc-cos (nth 2 a))))
289 ((eq (car a) 'vec)
290 (math-map-vec 'calcFunc-re a))
291 ((math-known-realp a) a)
292 ((eq (car a) 'calcFunc-conj)
293 (calcFunc-re (nth 1 a)))
294 ((and (equal a '(var i var-i))
295 (math-imaginary-i))
297 ((and (memq (car a) '(+ - *))
298 (progn
299 (setq aa (calcFunc-re (nth 1 a))
300 bb (calcFunc-re (nth 2 a)))
301 (or (not (eq (car-safe aa) 'calcFunc-re))
302 (not (eq (car-safe bb) 'calcFunc-re)))))
303 (if (eq (car a) '+)
304 (math-add aa bb)
305 (if (eq (car a) '-)
306 (math-sub aa bb)
307 (math-sub (math-mul aa bb)
308 (math-mul (calcFunc-im (nth 1 a))
309 (calcFunc-im (nth 2 a)))))))
310 ((and (eq (car a) '/)
311 (math-known-realp (nth 2 a)))
312 (math-div (calcFunc-re (nth 1 a)) (nth 2 a)))
313 ((eq (car a) 'neg)
314 (math-neg (calcFunc-re (nth 1 a))))
315 (t (calc-record-why 'numberp a)
316 (list 'calcFunc-re a)))))
318 (defun calcFunc-im (a)
319 (let (aa bb)
320 (cond ((Math-realp a)
321 (if (math-floatp a) '(float 0 0) 0))
322 ((eq (car a) 'cplx)
323 (nth 2 a))
324 ((eq (car a) 'polar)
325 (math-mul (nth 1 a) (calcFunc-sin (nth 2 a))))
326 ((eq (car a) 'vec)
327 (math-map-vec 'calcFunc-im a))
328 ((math-known-realp a)
330 ((eq (car a) 'calcFunc-conj)
331 (math-neg (calcFunc-im (nth 1 a))))
332 ((and (equal a '(var i var-i))
333 (math-imaginary-i))
335 ((and (memq (car a) '(+ - *))
336 (progn
337 (setq aa (calcFunc-im (nth 1 a))
338 bb (calcFunc-im (nth 2 a)))
339 (or (not (eq (car-safe aa) 'calcFunc-im))
340 (not (eq (car-safe bb) 'calcFunc-im)))))
341 (if (eq (car a) '+)
342 (math-add aa bb)
343 (if (eq (car a) '-)
344 (math-sub aa bb)
345 (math-add (math-mul (calcFunc-re (nth 1 a)) bb)
346 (math-mul aa (calcFunc-re (nth 2 a)))))))
347 ((and (eq (car a) '/)
348 (math-known-realp (nth 2 a)))
349 (math-div (calcFunc-im (nth 1 a)) (nth 2 a)))
350 ((eq (car a) 'neg)
351 (math-neg (calcFunc-im (nth 1 a))))
352 (t (calc-record-why 'numberp a)
353 (list 'calcFunc-im a)))))
355 (provide 'calc-cplx)
357 ;;; calc-cplx.el ends here