1 /* Block-relocating memory allocator.
2 Copyright (C) 1993 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
23 rather than all of them. This means allowing for a possible
24 hole between the first bloc and the end of malloc storage. */
29 #include "lisp.h" /* Needed for VALBITS. */
33 /* The important properties of this type are that 1) it's a pointer, and
34 2) arithmetic on it should work as if the size of the object pointed
35 to has a size of 1. */
36 #if 0 /* Arithmetic on void* is a GCC extension. */
38 typedef void *POINTER
;
45 typedef char *POINTER
;
50 /* Unconditionally use char * for this. */
51 typedef char *POINTER
;
53 typedef unsigned long SIZE
;
55 /* Declared in dispnew.c, this version doesn't screw up if regions
57 extern void safe_bcopy ();
59 #include "getpagesize.h"
61 #else /* Not emacs. */
66 typedef void *POINTER
;
72 #define safe_bcopy(x, y, z) memmove (y, x, z)
76 #define NIL ((POINTER) 0)
78 /* A flag to indicate whether we have initialized ralloc yet. For
79 Emacs's sake, please do not make this local to malloc_init; on some
80 machines, the dumping procedure makes all static variables
81 read-only. On these machines, the word static is #defined to be
82 the empty string, meaning that r_alloc_initialized becomes an
83 automatic variable, and loses its value each time Emacs is started up. */
84 static int r_alloc_initialized
= 0;
86 static void r_alloc_init ();
88 /* Declarations for working with the malloc, ralloc, and system breaks. */
90 /* Function to set the real break value. */
91 static POINTER (*real_morecore
) ();
93 /* The break value, as seen by malloc (). */
94 static POINTER virtual_break_value
;
96 /* The break value, viewed by the relocatable blocs. */
97 static POINTER break_value
;
99 /* The REAL (i.e., page aligned) break value of the process. */
100 static POINTER page_break_value
;
102 /* This is the size of a page. We round memory requests to this boundary. */
103 static int page_size
;
105 /* Whenever we get memory from the system, get this many extra bytes. This
106 must be a multiple of page_size. */
107 static int extra_bytes
;
109 /* Macros for rounding. Note that rounding to any value is possible
110 by changing the definition of PAGE. */
111 #define PAGE (getpagesize ())
112 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
113 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
115 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
117 /* Functions to get and return memory from the system. */
119 /* Obtain SIZE bytes of space. If enough space is not presently available
120 in our process reserve, (i.e., (page_break_value - break_value)),
121 this means getting more page-aligned space from the system.
123 Return non-zero if all went well, or zero if we couldn't allocate
129 SIZE already_available
= page_break_value
- break_value
;
131 if (already_available
< size
)
133 SIZE get
= ROUNDUP (size
- already_available
);
134 /* Get some extra, so we can come here less often. */
137 if ((*real_morecore
) (get
) == 0)
140 page_break_value
+= get
;
148 /* Obtain SIZE bytes of space and return a pointer to the new area.
149 If we could not allocate the space, return zero. */
152 get_more_space (size
)
155 POINTER ptr
= break_value
;
162 /* Note that SIZE bytes of space have been relinquished by the process.
163 If SIZE is more than a page, return the space to the system. */
169 POINTER new_page_break
;
173 new_page_break
= (POINTER
) ROUNDUP (break_value
);
174 excess
= (char *) page_break_value
- (char *) new_page_break
;
176 if (excess
> extra_bytes
* 2)
178 /* Keep extra_bytes worth of empty space.
179 And don't free anything unless we can free at least extra_bytes. */
180 if ((*real_morecore
) (extra_bytes
- excess
) == 0)
183 page_break_value
+= extra_bytes
- excess
;
186 /* Zero the space from the end of the "official" break to the actual
187 break, so that bugs show up faster. */
188 bzero (break_value
, ((char *) page_break_value
- (char *) break_value
));
191 /* The meat - allocating, freeing, and relocating blocs. */
193 /* These structures are allocated in the malloc arena.
194 The linked list is kept in order of increasing '.data' members.
195 The data blocks abut each other; if b->next is non-nil, then
196 b->data + b->size == b->next->data. */
206 #define NIL_BLOC ((bloc_ptr) 0)
207 #define BLOC_PTR_SIZE (sizeof (struct bp))
209 /* Head and tail of the list of relocatable blocs. */
210 static bloc_ptr first_bloc
, last_bloc
;
212 /* Find the bloc referenced by the address in PTR. Returns a pointer
219 register bloc_ptr p
= first_bloc
;
221 while (p
!= NIL_BLOC
)
223 if (p
->variable
== ptr
&& p
->data
== *ptr
)
232 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
233 Returns a pointer to the new bloc, or zero if we couldn't allocate
234 memory for the new block. */
240 register bloc_ptr new_bloc
;
242 if (! (new_bloc
= (bloc_ptr
) malloc (BLOC_PTR_SIZE
))
243 || ! (new_bloc
->data
= get_more_space (size
)))
251 new_bloc
->size
= size
;
252 new_bloc
->next
= NIL_BLOC
;
253 new_bloc
->variable
= (POINTER
*) NIL
;
257 new_bloc
->prev
= last_bloc
;
258 last_bloc
->next
= new_bloc
;
259 last_bloc
= new_bloc
;
263 first_bloc
= last_bloc
= new_bloc
;
264 new_bloc
->prev
= NIL_BLOC
;
270 /* Relocate all blocs from BLOC on upward in the list to the zone
271 indicated by ADDRESS. Direction of relocation is determined by
272 the position of ADDRESS relative to BLOC->data.
274 If BLOC is NIL_BLOC, nothing is done.
276 Note that ordering of blocs is not affected by this function. */
279 relocate_some_blocs (bloc
, address
)
283 if (bloc
!= NIL_BLOC
)
285 register SIZE offset
= address
- bloc
->data
;
286 register SIZE data_size
= 0;
289 for (b
= bloc
; b
!= NIL_BLOC
; b
= b
->next
)
291 data_size
+= b
->size
;
293 *b
->variable
= b
->data
;
296 safe_bcopy (address
- offset
, address
, data_size
);
301 /* Free BLOC from the chain of blocs, relocating any blocs above it
302 and returning BLOC->size bytes to the free area. */
308 if (bloc
== first_bloc
&& bloc
== last_bloc
)
310 first_bloc
= last_bloc
= NIL_BLOC
;
312 else if (bloc
== last_bloc
)
314 last_bloc
= bloc
->prev
;
315 last_bloc
->next
= NIL_BLOC
;
317 else if (bloc
== first_bloc
)
319 first_bloc
= bloc
->next
;
320 first_bloc
->prev
= NIL_BLOC
;
324 bloc
->next
->prev
= bloc
->prev
;
325 bloc
->prev
->next
= bloc
->next
;
328 relocate_some_blocs (bloc
->next
, bloc
->data
);
329 relinquish (bloc
->size
);
333 /* Interface routines. */
335 static int use_relocatable_buffers
;
337 /* Obtain SIZE bytes of storage from the free pool, or the system, as
338 necessary. If relocatable blocs are in use, this means relocating
339 them. This function gets plugged into the GNU malloc's __morecore
342 We provide hysteresis, never relocating by less than extra_bytes.
344 If we're out of memory, we should return zero, to imitate the other
345 __morecore hook values - in particular, __default_morecore in the
346 GNU malloc package. */
352 /* This is the first address not currently available for the heap. */
354 /* Amount of empty space below that. */
355 /* It is not correct to use SIZE here, because that is usually unsigned.
356 ptrdiff_t would be okay, but is not always available.
357 `long' will work in all cases, in practice. */
358 long already_available
;
361 if (! use_relocatable_buffers
)
362 return (*real_morecore
) (size
);
364 top
= first_bloc
? first_bloc
->data
: page_break_value
;
365 already_available
= (char *) top
- (char *) virtual_break_value
;
367 /* Do we not have enough gap already? */
368 if (size
> 0 && already_available
< size
)
370 /* Get what we need, plus some extra so we can come here less often. */
371 SIZE get
= size
- already_available
+ extra_bytes
;
377 relocate_some_blocs (first_bloc
, first_bloc
->data
+ get
);
379 /* Zero out the space we just allocated, to help catch bugs
381 bzero (virtual_break_value
, get
);
383 /* Can we keep extra_bytes of gap while freeing at least extra_bytes? */
384 else if (size
< 0 && already_available
- size
> 2 * extra_bytes
)
386 /* Ok, do so. This is how many to free. */
387 SIZE give_back
= already_available
- size
- extra_bytes
;
390 relocate_some_blocs (first_bloc
, first_bloc
->data
- give_back
);
391 relinquish (give_back
);
394 ptr
= virtual_break_value
;
395 virtual_break_value
+= size
;
400 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
401 the data is returned in *PTR. PTR is thus the address of some variable
402 which will use the data area.
404 If we can't allocate the necessary memory, set *PTR to zero, and
412 register bloc_ptr new_bloc
;
414 if (! r_alloc_initialized
)
417 new_bloc
= get_bloc (size
);
420 new_bloc
->variable
= ptr
;
421 *ptr
= new_bloc
->data
;
429 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
430 Store 0 in *PTR to show there's no block allocated. */
434 register POINTER
*ptr
;
436 register bloc_ptr dead_bloc
;
438 dead_bloc
= find_bloc (ptr
);
439 if (dead_bloc
== NIL_BLOC
)
442 free_bloc (dead_bloc
);
446 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
447 Do this by shifting all blocks above this one up in memory, unless
448 SIZE is less than or equal to the current bloc size, in which case
451 Change *PTR to reflect the new bloc, and return this value.
453 If more memory cannot be allocated, then leave *PTR unchanged, and
457 r_re_alloc (ptr
, size
)
461 register bloc_ptr bloc
;
463 bloc
= find_bloc (ptr
);
464 if (bloc
== NIL_BLOC
)
467 if (size
<= bloc
->size
)
468 /* Wouldn't it be useful to actually resize the bloc here? */
471 if (! obtain (size
- bloc
->size
))
474 relocate_some_blocs (bloc
->next
, bloc
->data
+ size
);
476 /* Zero out the new space in the bloc, to help catch bugs faster. */
477 bzero (bloc
->data
+ bloc
->size
, size
- bloc
->size
);
479 /* Indicate that this block has a new size. */
485 /* The hook `malloc' uses for the function which gets more space
487 extern POINTER (*__morecore
) ();
489 /* Initialize various things for memory allocation. */
494 if (r_alloc_initialized
)
497 r_alloc_initialized
= 1;
498 real_morecore
= __morecore
;
499 __morecore
= r_alloc_sbrk
;
501 virtual_break_value
= break_value
= (*real_morecore
) (0);
502 if (break_value
== NIL
)
506 extra_bytes
= ROUNDUP (50000);
508 page_break_value
= (POINTER
) ROUNDUP (break_value
);
510 /* The extra call to real_morecore guarantees that the end of the
511 address space is a multiple of page_size, even if page_size is
512 not really the page size of the system running the binary in
513 which page_size is stored. This allows a binary to be built on a
514 system with one page size and run on a system with a smaller page
516 (*real_morecore
) (page_break_value
- break_value
);
518 /* Clear the rest of the last page; this memory is in our address space
519 even though it is after the sbrk value. */
520 /* Doubly true, with the additional call that explicitly adds the
521 rest of that page to the address space. */
522 bzero (break_value
, (page_break_value
- break_value
));
523 virtual_break_value
= break_value
= page_break_value
;
524 use_relocatable_buffers
= 1;