1 /* Low-level bidirectional buffer-scanning functions for GNU Emacs.
2 Copyright (C) 2000, 2001, 2004, 2005, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* Written by Eli Zaretskii <eliz@gnu.org>.
22 A sequential implementation of the Unicode Bidirectional algorithm,
23 as per UAX#9, a part of the Unicode Standard.
25 Unlike the reference and most other implementations, this one is
26 designed to be called once for every character in the buffer or
29 The main entry point is bidi_get_next_char_visually. Each time it
30 is called, it finds the next character in the visual order, and
31 returns its information in a special structure. The caller is then
32 expected to process this character for display or any other
33 purposes, and call bidi_get_next_char_visually for the next
34 character. See the comments in bidi_get_next_char_visually for
35 more details about its algorithm that finds the next visual-order
36 character by resolving their levels on the fly.
38 The two other entry points are bidi_paragraph_init and
39 bidi_mirror_char. The first determines the base direction of a
40 paragraph, while the second returns the mirrored version of its
43 If you want to understand the code, you will have to read it
44 together with the relevant portions of UAX#9. The comments include
45 references to UAX#9 rules, for that very reason.
47 A note about references to UAX#9 rules: if the reference says
48 something like "X9/Retaining", it means that you need to refer to
49 rule X9 and to its modifications decribed in the "Implementation
50 Notes" section of UAX#9, under "Retaining Format Codes". */
66 #include "character.h"
67 #include "dispextern.h"
69 static int bidi_initialized
= 0;
71 static Lisp_Object bidi_type_table
;
73 /* FIXME: Remove these when bidi_explicit_dir_char uses a lookup table. */
74 #define LRM_CHAR 0x200E
75 #define RLM_CHAR 0x200F
76 #define LRE_CHAR 0x202A
77 #define RLE_CHAR 0x202B
78 #define PDF_CHAR 0x202C
79 #define LRO_CHAR 0x202D
80 #define RLO_CHAR 0x202E
83 #define BIDI_BOB -2 /* FIXME: Is this needed? */
85 /* Local data structures. (Look in dispextern.h for the rest.) */
87 /* What we need to know about the current paragraph. */
88 struct bidi_paragraph_info
{
89 int start_bytepos
; /* byte position where it begins */
90 int end_bytepos
; /* byte position where it ends */
91 int embedding_level
; /* its basic embedding level */
92 bidi_dir_t base_dir
; /* its base direction */
95 /* Data type for describing the bidirectional character categories. */
103 int bidi_ignore_explicit_marks_for_paragraph_level
= 1;
105 static Lisp_Object paragraph_start_re
, paragraph_separate_re
;
106 static Lisp_Object Qparagraph_start
, Qparagraph_separate
;
111 /* FIXME: This should come from the Unicode Database. */
116 { { 0x0000, 0x0008, WEAK_BN
},
117 { 0x0009, 0x0000, NEUTRAL_S
},
118 { 0x000A, 0x0000, NEUTRAL_B
},
119 { 0x000B, 0x0000, NEUTRAL_S
},
120 { 0x000C, 0x0000, NEUTRAL_WS
},
121 { 0x000D, 0x0000, NEUTRAL_B
},
122 { 0x000E, 0x001B, WEAK_BN
},
123 { 0x001C, 0x001E, NEUTRAL_B
},
124 { 0x001F, 0x0000, NEUTRAL_S
},
125 { 0x0020, 0x0000, NEUTRAL_WS
},
126 { 0x0021, 0x0022, NEUTRAL_ON
},
127 { 0x0023, 0x0025, WEAK_ET
},
128 { 0x0026, 0x002A, NEUTRAL_ON
},
129 { 0x002B, 0x0000, WEAK_ES
},
130 { 0x002C, 0x0000, WEAK_CS
},
131 { 0x002D, 0x0000, WEAK_ES
},
132 { 0x002E, 0x002F, WEAK_CS
},
133 { 0x0030, 0x0039, WEAK_EN
},
134 { 0x003A, 0x0000, WEAK_CS
},
135 { 0x003B, 0x0040, NEUTRAL_ON
},
136 { 0x005B, 0x0060, NEUTRAL_ON
},
137 { 0x007B, 0x007E, NEUTRAL_ON
},
138 { 0x007F, 0x0084, WEAK_BN
},
139 { 0x0085, 0x0000, NEUTRAL_B
},
140 { 0x0086, 0x009F, WEAK_BN
},
141 { 0x00A0, 0x0000, WEAK_CS
},
142 { 0x00A1, 0x0000, NEUTRAL_ON
},
143 { 0x00A2, 0x00A5, WEAK_ET
},
144 { 0x00A6, 0x00A9, NEUTRAL_ON
},
145 { 0x00AB, 0x00AC, NEUTRAL_ON
},
146 { 0x00AD, 0x0000, WEAK_BN
},
147 { 0x00AE, 0x00Af, NEUTRAL_ON
},
148 { 0x00B0, 0x00B1, WEAK_ET
},
149 { 0x00B2, 0x00B3, WEAK_EN
},
150 { 0x00B4, 0x0000, NEUTRAL_ON
},
151 { 0x00B6, 0x00B8, NEUTRAL_ON
},
152 { 0x00B9, 0x0000, WEAK_EN
},
153 { 0x00BB, 0x00BF, NEUTRAL_ON
},
154 { 0x00D7, 0x0000, NEUTRAL_ON
},
155 { 0x00F7, 0x0000, NEUTRAL_ON
},
156 { 0x02B9, 0x02BA, NEUTRAL_ON
},
157 { 0x02C2, 0x02CF, NEUTRAL_ON
},
158 { 0x02D2, 0x02DF, NEUTRAL_ON
},
159 { 0x02E5, 0x02ED, NEUTRAL_ON
},
160 { 0x0300, 0x036F, WEAK_NSM
},
161 { 0x0374, 0x0375, NEUTRAL_ON
},
162 { 0x037E, 0x0385, NEUTRAL_ON
},
163 { 0x0387, 0x0000, NEUTRAL_ON
},
164 { 0x03F6, 0x0000, NEUTRAL_ON
},
165 { 0x0483, 0x0489, WEAK_NSM
},
166 { 0x058A, 0x0000, NEUTRAL_ON
},
167 { 0x0591, 0x05BD, WEAK_NSM
},
168 { 0x05BE, 0x0000, STRONG_R
},
169 { 0x05BF, 0x0000, WEAK_NSM
},
170 { 0x05C0, 0x0000, STRONG_R
},
171 { 0x05C1, 0x05C2, WEAK_NSM
},
172 { 0x05C3, 0x0000, STRONG_R
},
173 { 0x05C4, 0x05C5, WEAK_NSM
},
174 { 0x05C6, 0x0000, STRONG_R
},
175 { 0x05C7, 0x0000, WEAK_NSM
},
176 { 0x05D0, 0x05F4, STRONG_R
},
177 { 0x060C, 0x0000, WEAK_CS
},
178 { 0x061B, 0x064A, STRONG_AL
},
179 { 0x064B, 0x0655, WEAK_NSM
},
180 { 0x0660, 0x0669, WEAK_AN
},
181 { 0x066A, 0x0000, WEAK_ET
},
182 { 0x066B, 0x066C, WEAK_AN
},
183 { 0x066D, 0x066F, STRONG_AL
},
184 { 0x0670, 0x0000, WEAK_NSM
},
185 { 0x0671, 0x06D5, STRONG_AL
},
186 { 0x06D6, 0x06DC, WEAK_NSM
},
187 { 0x06DD, 0x0000, STRONG_AL
},
188 { 0x06DE, 0x06E4, WEAK_NSM
},
189 { 0x06E5, 0x06E6, STRONG_AL
},
190 { 0x06E7, 0x06E8, WEAK_NSM
},
191 { 0x06E9, 0x0000, NEUTRAL_ON
},
192 { 0x06EA, 0x06ED, WEAK_NSM
},
193 { 0x06F0, 0x06F9, WEAK_EN
},
194 { 0x06FA, 0x070D, STRONG_AL
},
195 { 0x070F, 0x0000, WEAK_BN
},
196 { 0x0710, 0x0000, STRONG_AL
},
197 { 0x0711, 0x0000, WEAK_NSM
},
198 { 0x0712, 0x072C, STRONG_AL
},
199 { 0x0730, 0x074A, WEAK_NSM
},
200 { 0x0780, 0x07A5, STRONG_AL
},
201 { 0x07A6, 0x07B0, WEAK_NSM
},
202 { 0x07B1, 0x0000, STRONG_AL
},
203 { 0x0901, 0x0902, WEAK_NSM
},
204 { 0x093C, 0x0000, WEAK_NSM
},
205 { 0x0941, 0x0948, WEAK_NSM
},
206 { 0x094D, 0x0000, WEAK_NSM
},
207 { 0x0951, 0x0954, WEAK_NSM
},
208 { 0x0962, 0x0963, WEAK_NSM
},
209 { 0x0981, 0x0000, WEAK_NSM
},
210 { 0x09BC, 0x0000, WEAK_NSM
},
211 { 0x09C1, 0x09C4, WEAK_NSM
},
212 { 0x09CD, 0x0000, WEAK_NSM
},
213 { 0x09E2, 0x09E3, WEAK_NSM
},
214 { 0x09F2, 0x09F3, WEAK_ET
},
215 { 0x0A02, 0x0000, WEAK_NSM
},
216 { 0x0A3C, 0x0000, WEAK_NSM
},
217 { 0x0A41, 0x0A4D, WEAK_NSM
},
218 { 0x0A70, 0x0A71, WEAK_NSM
},
219 { 0x0A81, 0x0A82, WEAK_NSM
},
220 { 0x0ABC, 0x0000, WEAK_NSM
},
221 { 0x0AC1, 0x0AC8, WEAK_NSM
},
222 { 0x0ACD, 0x0000, WEAK_NSM
},
223 { 0x0B01, 0x0000, WEAK_NSM
},
224 { 0x0B3C, 0x0000, WEAK_NSM
},
225 { 0x0B3F, 0x0000, WEAK_NSM
},
226 { 0x0B41, 0x0B43, WEAK_NSM
},
227 { 0x0B4D, 0x0B56, WEAK_NSM
},
228 { 0x0B82, 0x0000, WEAK_NSM
},
229 { 0x0BC0, 0x0000, WEAK_NSM
},
230 { 0x0BCD, 0x0000, WEAK_NSM
},
231 { 0x0C3E, 0x0C40, WEAK_NSM
},
232 { 0x0C46, 0x0C56, WEAK_NSM
},
233 { 0x0CBF, 0x0000, WEAK_NSM
},
234 { 0x0CC6, 0x0000, WEAK_NSM
},
235 { 0x0CCC, 0x0CCD, WEAK_NSM
},
236 { 0x0D41, 0x0D43, WEAK_NSM
},
237 { 0x0D4D, 0x0000, WEAK_NSM
},
238 { 0x0DCA, 0x0000, WEAK_NSM
},
239 { 0x0DD2, 0x0DD6, WEAK_NSM
},
240 { 0x0E31, 0x0000, WEAK_NSM
},
241 { 0x0E34, 0x0E3A, WEAK_NSM
},
242 { 0x0E3F, 0x0000, WEAK_ET
},
243 { 0x0E47, 0x0E4E, WEAK_NSM
},
244 { 0x0EB1, 0x0000, WEAK_NSM
},
245 { 0x0EB4, 0x0EBC, WEAK_NSM
},
246 { 0x0EC8, 0x0ECD, WEAK_NSM
},
247 { 0x0F18, 0x0F19, WEAK_NSM
},
248 { 0x0F35, 0x0000, WEAK_NSM
},
249 { 0x0F37, 0x0000, WEAK_NSM
},
250 { 0x0F39, 0x0000, WEAK_NSM
},
251 { 0x0F3A, 0x0F3D, NEUTRAL_ON
},
252 { 0x0F71, 0x0F7E, WEAK_NSM
},
253 { 0x0F80, 0x0F84, WEAK_NSM
},
254 { 0x0F86, 0x0F87, WEAK_NSM
},
255 { 0x0F90, 0x0FBC, WEAK_NSM
},
256 { 0x0FC6, 0x0000, WEAK_NSM
},
257 { 0x102D, 0x1030, WEAK_NSM
},
258 { 0x1032, 0x1037, WEAK_NSM
},
259 { 0x1039, 0x0000, WEAK_NSM
},
260 { 0x1058, 0x1059, WEAK_NSM
},
261 { 0x1680, 0x0000, NEUTRAL_WS
},
262 { 0x169B, 0x169C, NEUTRAL_ON
},
263 { 0x1712, 0x1714, WEAK_NSM
},
264 { 0x1732, 0x1734, WEAK_NSM
},
265 { 0x1752, 0x1753, WEAK_NSM
},
266 { 0x1772, 0x1773, WEAK_NSM
},
267 { 0x17B7, 0x17BD, WEAK_NSM
},
268 { 0x17C6, 0x0000, WEAK_NSM
},
269 { 0x17C9, 0x17D3, WEAK_NSM
},
270 { 0x17DB, 0x0000, WEAK_ET
},
271 { 0x1800, 0x180A, NEUTRAL_ON
},
272 { 0x180B, 0x180D, WEAK_NSM
},
273 { 0x180E, 0x0000, WEAK_BN
},
274 { 0x18A9, 0x0000, WEAK_NSM
},
275 { 0x1FBD, 0x0000, NEUTRAL_ON
},
276 { 0x1FBF, 0x1FC1, NEUTRAL_ON
},
277 { 0x1FCD, 0x1FCF, NEUTRAL_ON
},
278 { 0x1FDD, 0x1FDF, NEUTRAL_ON
},
279 { 0x1FED, 0x1FEF, NEUTRAL_ON
},
280 { 0x1FFD, 0x1FFE, NEUTRAL_ON
},
281 { 0x2000, 0x200A, NEUTRAL_WS
},
282 { 0x200B, 0x200D, WEAK_BN
},
283 { 0x200F, 0x0000, STRONG_R
},
284 { 0x2010, 0x2027, NEUTRAL_ON
},
285 { 0x2028, 0x0000, NEUTRAL_WS
},
286 { 0x2029, 0x0000, NEUTRAL_B
},
287 { 0x202A, 0x0000, LRE
},
288 { 0x202B, 0x0000, RLE
},
289 { 0x202C, 0x0000, PDF
},
290 { 0x202D, 0x0000, LRO
},
291 { 0x202E, 0x0000, RLO
},
292 { 0x202F, 0x0000, NEUTRAL_WS
},
293 { 0x2030, 0x2034, WEAK_ET
},
294 { 0x2035, 0x2057, NEUTRAL_ON
},
295 { 0x205F, 0x0000, NEUTRAL_WS
},
296 { 0x2060, 0x206F, WEAK_BN
},
297 { 0x2070, 0x0000, WEAK_EN
},
298 { 0x2074, 0x2079, WEAK_EN
},
299 { 0x207A, 0x207B, WEAK_ET
},
300 { 0x207C, 0x207E, NEUTRAL_ON
},
301 { 0x2080, 0x2089, WEAK_EN
},
302 { 0x208A, 0x208B, WEAK_ET
},
303 { 0x208C, 0x208E, NEUTRAL_ON
},
304 { 0x20A0, 0x20B1, WEAK_ET
},
305 { 0x20D0, 0x20EA, WEAK_NSM
},
306 { 0x2100, 0x2101, NEUTRAL_ON
},
307 { 0x2103, 0x2106, NEUTRAL_ON
},
308 { 0x2108, 0x2109, NEUTRAL_ON
},
309 { 0x2114, 0x0000, NEUTRAL_ON
},
310 { 0x2116, 0x2118, NEUTRAL_ON
},
311 { 0x211E, 0x2123, NEUTRAL_ON
},
312 { 0x2125, 0x0000, NEUTRAL_ON
},
313 { 0x2127, 0x0000, NEUTRAL_ON
},
314 { 0x2129, 0x0000, NEUTRAL_ON
},
315 { 0x212E, 0x0000, WEAK_ET
},
316 { 0x2132, 0x0000, NEUTRAL_ON
},
317 { 0x213A, 0x0000, NEUTRAL_ON
},
318 { 0x2140, 0x2144, NEUTRAL_ON
},
319 { 0x214A, 0x215F, NEUTRAL_ON
},
320 { 0x2190, 0x2211, NEUTRAL_ON
},
321 { 0x2212, 0x2213, WEAK_ET
},
322 { 0x2214, 0x2335, NEUTRAL_ON
},
323 { 0x237B, 0x2394, NEUTRAL_ON
},
324 { 0x2396, 0x244A, NEUTRAL_ON
},
325 { 0x2460, 0x249B, WEAK_EN
},
326 { 0x24EA, 0x0000, WEAK_EN
},
327 { 0x24EB, 0x2FFB, NEUTRAL_ON
},
328 { 0x3000, 0x0000, NEUTRAL_WS
},
329 { 0x3001, 0x3004, NEUTRAL_ON
},
330 { 0x3008, 0x3020, NEUTRAL_ON
},
331 { 0x302A, 0x302F, WEAK_NSM
},
332 { 0x3030, 0x0000, NEUTRAL_ON
},
333 { 0x3036, 0x3037, NEUTRAL_ON
},
334 { 0x303D, 0x303F, NEUTRAL_ON
},
335 { 0x3099, 0x309A, WEAK_NSM
},
336 { 0x309B, 0x309C, NEUTRAL_ON
},
337 { 0x30A0, 0x0000, NEUTRAL_ON
},
338 { 0x30FB, 0x0000, NEUTRAL_ON
},
339 { 0x3251, 0x325F, NEUTRAL_ON
},
340 { 0x32B1, 0x32BF, NEUTRAL_ON
},
341 { 0xA490, 0xA4C6, NEUTRAL_ON
},
342 { 0xFB1D, 0x0000, STRONG_R
},
343 { 0xFB1E, 0x0000, WEAK_NSM
},
344 { 0xFB1F, 0xFB28, STRONG_R
},
345 { 0xFB29, 0x0000, WEAK_ET
},
346 { 0xFB2A, 0xFB4F, STRONG_R
},
347 { 0xFB50, 0xFD3D, STRONG_AL
},
348 { 0xFD3E, 0xFD3F, NEUTRAL_ON
},
349 { 0xFD50, 0xFDFC, STRONG_AL
},
350 { 0xFE00, 0xFE23, WEAK_NSM
},
351 { 0xFE30, 0xFE4F, NEUTRAL_ON
},
352 { 0xFE50, 0x0000, WEAK_CS
},
353 { 0xFE51, 0x0000, NEUTRAL_ON
},
354 { 0xFE52, 0x0000, WEAK_CS
},
355 { 0xFE54, 0x0000, NEUTRAL_ON
},
356 { 0xFE55, 0x0000, WEAK_CS
},
357 { 0xFE56, 0xFE5E, NEUTRAL_ON
},
358 { 0xFE5F, 0x0000, WEAK_ET
},
359 { 0xFE60, 0xFE61, NEUTRAL_ON
},
360 { 0xFE62, 0xFE63, WEAK_ET
},
361 { 0xFE64, 0xFE68, NEUTRAL_ON
},
362 { 0xFE69, 0xFE6A, WEAK_ET
},
363 { 0xFE6B, 0x0000, NEUTRAL_ON
},
364 { 0xFE70, 0xFEFC, STRONG_AL
},
365 { 0xFEFF, 0x0000, WEAK_BN
},
366 { 0xFF01, 0xFF02, NEUTRAL_ON
},
367 { 0xFF03, 0xFF05, WEAK_ET
},
368 { 0xFF06, 0xFF0A, NEUTRAL_ON
},
369 { 0xFF0B, 0x0000, WEAK_ET
},
370 { 0xFF0C, 0x0000, WEAK_CS
},
371 { 0xFF0D, 0x0000, WEAK_ET
},
372 { 0xFF0E, 0x0000, WEAK_CS
},
373 { 0xFF0F, 0x0000, WEAK_ES
},
374 { 0xFF10, 0xFF19, WEAK_EN
},
375 { 0xFF1A, 0x0000, WEAK_CS
},
376 { 0xFF1B, 0xFF20, NEUTRAL_ON
},
377 { 0xFF3B, 0xFF40, NEUTRAL_ON
},
378 { 0xFF5B, 0xFF65, NEUTRAL_ON
},
379 { 0xFFE0, 0xFFE1, WEAK_ET
},
380 { 0xFFE2, 0xFFE4, NEUTRAL_ON
},
381 { 0xFFE5, 0xFFE6, WEAK_ET
},
382 { 0xFFE8, 0xFFEE, NEUTRAL_ON
},
383 { 0xFFF9, 0xFFFB, WEAK_BN
},
384 { 0xFFFC, 0xFFFD, NEUTRAL_ON
},
385 { 0x1D167, 0x1D169, WEAK_NSM
},
386 { 0x1D173, 0x1D17A, WEAK_BN
},
387 { 0x1D17B, 0x1D182, WEAK_NSM
},
388 { 0x1D185, 0x1D18B, WEAK_NSM
},
389 { 0x1D1AA, 0x1D1AD, WEAK_NSM
},
390 { 0x1D7CE, 0x1D7FF, WEAK_EN
},
391 { 0xE0001, 0xE007F, WEAK_BN
} };
394 bidi_type_table
= Fmake_char_table (Qnil
, make_number (STRONG_L
));
395 staticpro (&bidi_type_table
);
397 for (i
= 0; i
< sizeof bidi_type
/ sizeof bidi_type
[0]; i
++)
398 char_table_set_range (bidi_type_table
, bidi_type
[i
].from
,
399 bidi_type
[i
].to
? bidi_type
[i
].to
: bidi_type
[i
].from
,
400 make_number (bidi_type
[i
].type
));
402 Qparagraph_start
= intern ("paragraph-start");
403 staticpro (&Qparagraph_start
);
404 paragraph_start_re
= Fsymbol_value (Qparagraph_start
);
405 if (!STRINGP (paragraph_start_re
))
406 paragraph_start_re
= build_string ("\f\\|[ \t]*$");
407 staticpro (¶graph_start_re
);
408 Qparagraph_separate
= intern ("paragraph-separate");
409 staticpro (&Qparagraph_separate
);
410 paragraph_separate_re
= Fsymbol_value (Qparagraph_separate
);
411 if (!STRINGP (paragraph_separate_re
))
412 paragraph_separate_re
= build_string ("[ \t\f]*$");
413 staticpro (¶graph_separate_re
);
414 bidi_initialized
= 1;
417 /* Return the bidi type of a character CH, subject to the current
418 directional OVERRIDE. */
419 static INLINE bidi_type_t
420 bidi_get_type (int ch
, bidi_dir_t override
)
422 bidi_type_t default_type
;
426 if (ch
< 0 || ch
> MAX_CHAR
)
429 default_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
431 if (override
== NEUTRAL_DIR
)
434 switch (default_type
)
436 /* Although UAX#9 does not tell, it doesn't make sense to
437 override NEUTRAL_B and LRM/RLM characters. */
452 if (override
== L2R
) /* X6 */
454 else if (override
== R2L
)
457 abort (); /* can't happen: handled above */
463 bidi_check_type (bidi_type_t type
)
465 if (type
< UNKNOWN_BT
|| type
> NEUTRAL_ON
)
469 /* Given a bidi TYPE of a character, return its category. */
470 static INLINE bidi_category_t
471 bidi_get_category (bidi_type_t type
)
485 case PDF
: /* ??? really?? */
504 /* Return the mirrored character of C, if any.
506 Note: The conditions in UAX#9 clause L4 must be tested by the
508 /* FIXME: exceedingly temporary! Should consult the Unicode database
509 of character properties. */
511 bidi_mirror_char (int c
)
513 static const char mirrored_pairs
[] = "()<>[]{}";
514 const char *p
= c
> 0 && c
< 128 ? strchr (mirrored_pairs
, c
) : NULL
;
518 size_t i
= p
- mirrored_pairs
;
520 return mirrored_pairs
[(i
^ 1)];
525 /* Copy the bidi iterator from FROM to TO. To save cycles, this only
526 copies the part of the level stack that is actually in use. */
528 bidi_copy_it (struct bidi_it
*to
, struct bidi_it
*from
)
532 /* Copy everything except the level stack and beyond. */
533 memcpy (to
, from
, ((size_t)&((struct bidi_it
*)0)->level_stack
[0]));
535 /* Copy the active part of the level stack. */
536 to
->level_stack
[0] = from
->level_stack
[0]; /* level zero is always in use */
537 for (i
= 1; i
<= from
->stack_idx
; i
++)
538 to
->level_stack
[i
] = from
->level_stack
[i
];
541 /* Caching the bidi iterator states. */
543 static struct bidi_it bidi_cache
[1000]; /* FIXME: make this dynamically allocated! */
544 static int bidi_cache_idx
;
545 static int bidi_cache_last_idx
;
548 bidi_cache_reset (void)
551 bidi_cache_last_idx
= -1;
555 bidi_cache_fetch_state (int idx
, struct bidi_it
*bidi_it
)
557 int current_scan_dir
= bidi_it
->scan_dir
;
559 if (idx
< 0 || idx
>= bidi_cache_idx
)
562 bidi_copy_it (bidi_it
, &bidi_cache
[idx
]);
563 bidi_it
->scan_dir
= current_scan_dir
;
564 bidi_cache_last_idx
= idx
;
567 /* Find a cached state with a given CHARPOS and resolved embedding
568 level less or equal to LEVEL. if LEVEL is -1, disregard the
569 resolved levels in cached states. DIR, if non-zero, means search
570 in that direction from the last cache hit. */
572 bidi_cache_search (int charpos
, int level
, int dir
)
578 if (charpos
< bidi_cache
[bidi_cache_last_idx
].charpos
)
580 else if (charpos
> bidi_cache
[bidi_cache_last_idx
].charpos
)
583 i_start
= bidi_cache_last_idx
;
587 i_start
= bidi_cache_idx
- 1;
592 /* Linear search for now; FIXME! */
593 for (i
= i_start
; i
>= 0; i
--)
594 if (bidi_cache
[i
].charpos
== charpos
595 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
600 for (i
= i_start
; i
< bidi_cache_idx
; i
++)
601 if (bidi_cache
[i
].charpos
== charpos
602 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
610 /* Find a cached state where the resolved level changes to a value
611 that is lower than LEVEL, and return its cache slot index. DIR is
612 the direction to search, starting with the last used cache slot.
613 BEFORE, if non-zero, means return the index of the slot that is
614 ``before'' the level change in the search direction. That is,
615 given the cached levels like this:
620 and assuming we are at the position cached at the slot marked with
621 C, searching backwards (DIR = -1) for LEVEL = 2 will return the
622 index of slot B or A, depending whether BEFORE is, respectively,
625 bidi_cache_find_level_change (int level
, int dir
, int before
)
629 int i
= dir
? bidi_cache_last_idx
: bidi_cache_idx
- 1;
630 int incr
= before
? 1 : 0;
641 if (bidi_cache
[i
- incr
].resolved_level
>= 0
642 && bidi_cache
[i
- incr
].resolved_level
< level
)
649 while (i
< bidi_cache_idx
- incr
)
651 if (bidi_cache
[i
+ incr
].resolved_level
>= 0
652 && bidi_cache
[i
+ incr
].resolved_level
< level
)
663 bidi_cache_iterator_state (struct bidi_it
*bidi_it
, int resolved
)
667 /* We should never cache on backward scans. */
668 if (bidi_it
->scan_dir
== -1)
670 idx
= bidi_cache_search (bidi_it
->charpos
, -1, 1);
674 idx
= bidi_cache_idx
;
675 /* Don't overrun the cache limit. */
676 if (idx
> sizeof (bidi_cache
) / sizeof (bidi_cache
[0]) - 1)
678 /* Character positions should correspond to cache positions 1:1.
679 If we are outside the range of cached positions, the cache is
680 useless and must be reset. */
682 (bidi_it
->charpos
> bidi_cache
[idx
- 1].charpos
+ 1
683 || bidi_it
->charpos
< bidi_cache
[0].charpos
))
688 bidi_copy_it (&bidi_cache
[idx
], bidi_it
);
690 bidi_cache
[idx
].resolved_level
= -1;
691 bidi_cache
[idx
].new_paragraph
= 0;
695 /* Copy only the members which could have changed, to avoid
696 costly copying of the entire struct. */
697 bidi_cache
[idx
].type
= bidi_it
->type
;
698 bidi_check_type (bidi_it
->type
);
699 bidi_cache
[idx
].type_after_w1
= bidi_it
->type_after_w1
;
700 bidi_check_type (bidi_it
->type_after_w1
);
702 bidi_cache
[idx
].resolved_level
= bidi_it
->resolved_level
;
704 bidi_cache
[idx
].resolved_level
= -1;
705 bidi_cache
[idx
].invalid_levels
= bidi_it
->invalid_levels
;
706 bidi_cache
[idx
].invalid_rl_levels
= bidi_it
->invalid_rl_levels
;
707 bidi_cache
[idx
].next_for_neutral
= bidi_it
->next_for_neutral
;
708 bidi_cache
[idx
].next_for_ws
= bidi_it
->next_for_ws
;
709 bidi_cache
[idx
].ignore_bn_limit
= bidi_it
->ignore_bn_limit
;
712 bidi_cache_last_idx
= idx
;
713 if (idx
>= bidi_cache_idx
)
714 bidi_cache_idx
= idx
+ 1;
717 static INLINE bidi_type_t
718 bidi_cache_find (int charpos
, int level
, struct bidi_it
*bidi_it
)
720 int i
= bidi_cache_search (charpos
, level
, bidi_it
->scan_dir
);
724 bidi_dir_t current_scan_dir
= bidi_it
->scan_dir
;
726 bidi_copy_it (bidi_it
, &bidi_cache
[i
]);
727 bidi_cache_last_idx
= i
;
728 /* Don't let scan direction from from the cached state override
729 the current scan direction. */
730 bidi_it
->scan_dir
= current_scan_dir
;
731 return bidi_it
->type
;
738 bidi_peek_at_next_level (struct bidi_it
*bidi_it
)
740 if (bidi_cache_idx
== 0 || bidi_cache_last_idx
== -1)
742 return bidi_cache
[bidi_cache_last_idx
+ bidi_it
->scan_dir
].resolved_level
;
745 /* Check if buffer position CHARPOS/BYTEPOS is the end of a paragraph.
746 Value is the non-negative length of the paragraph separator
747 following the buffer position, -1 if position is at the beginning
748 of a new paragraph, or -2 if position is neither at beginning nor
749 at end of a paragraph. */
751 bidi_at_paragraph_end (EMACS_INT charpos
, EMACS_INT bytepos
)
753 /* FIXME: Why Fbuffer_local_value rather than just Fsymbol_value? */
755 Lisp_Object start_re
;
758 sep_re
= paragraph_separate_re
;
759 start_re
= paragraph_start_re
;
761 val
= fast_looking_at (sep_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
);
764 if (fast_looking_at (start_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
) >= 0)
773 /* Determine the start-of-run (sor) directional type given the two
774 embedding levels on either side of the run boundary. Also, update
775 the saved info about previously seen characters, since that info is
776 generally valid for a single level run. */
778 bidi_set_sor_type (struct bidi_it
*bidi_it
, int level_before
, int level_after
)
780 int higher_level
= level_before
> level_after
? level_before
: level_after
;
782 /* The prev_was_pdf gork is required for when we have several PDFs
783 in a row. In that case, we want to compute the sor type for the
784 next level run only once: when we see the first PDF. That's
785 because the sor type depends only on the higher of the two levels
786 that we find on the two sides of the level boundary (see UAX#9,
787 clause X10), and so we don't need to know the final embedding
788 level to which we descend after processing all the PDFs. */
789 if (!bidi_it
->prev_was_pdf
|| level_before
< level_after
)
790 /* FIXME: should the default sor direction be user selectable? */
791 bidi_it
->sor
= (higher_level
& 1) != 0 ? R2L
: L2R
;
792 if (level_before
> level_after
)
793 bidi_it
->prev_was_pdf
= 1;
795 bidi_it
->prev
.type
= UNKNOWN_BT
;
796 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
=
797 bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
798 bidi_it
->prev_for_neutral
.type
= bidi_it
->sor
== R2L
? STRONG_R
: STRONG_L
;
799 bidi_it
->prev_for_neutral
.charpos
= bidi_it
->charpos
;
800 bidi_it
->prev_for_neutral
.bytepos
= bidi_it
->bytepos
;
801 bidi_it
->next_for_neutral
.type
= bidi_it
->next_for_neutral
.type_after_w1
=
802 bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
803 bidi_it
->ignore_bn_limit
= 0; /* meaning it's unknown */
807 bidi_line_init (struct bidi_it
*bidi_it
)
809 bidi_it
->scan_dir
= 1; /* FIXME: do we need to have control on this? */
810 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
811 bidi_it
->level_stack
[0].override
= NEUTRAL_DIR
; /* X1 */
812 bidi_it
->invalid_levels
= 0;
813 bidi_it
->invalid_rl_levels
= -1;
814 bidi_it
->next_en_pos
= -1;
815 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
816 bidi_set_sor_type (bidi_it
,
817 bidi_it
->paragraph_dir
== R2L
? 1 : 0,
818 bidi_it
->level_stack
[0].level
); /* X10 */
823 /* Find the beginning of this paragraph by looking back in the buffer.
824 Value is the byte position of the paragraph's beginning. */
826 bidi_find_paragraph_start (EMACS_INT pos
, EMACS_INT pos_byte
)
828 Lisp_Object re
= paragraph_start_re
;
829 EMACS_INT limit
= ZV
, limit_byte
= ZV_BYTE
;
831 while (pos_byte
> BEGV_BYTE
832 && fast_looking_at (re
, pos
, pos_byte
, limit
, limit_byte
, Qnil
) < 0)
834 pos
= find_next_newline_no_quit (pos
- 1, -1);
835 pos_byte
= CHAR_TO_BYTE (pos
);
840 /* Determine the direction, a.k.a. base embedding level, of the
841 paragraph we are about to iterate through. If DIR is either L2R or
842 R2L, just use that. Otherwise, determine the paragraph direction
843 from the first strong character of the paragraph.
845 Note that this gives the paragraph separator the same direction as
846 the preceding paragraph, even though Emacs generally views the
847 separartor as not belonging to any paragraph. */
849 bidi_paragraph_init (bidi_dir_t dir
, struct bidi_it
*bidi_it
)
851 EMACS_INT bytepos
= bidi_it
->bytepos
;
853 /* Special case for an empty buffer. */
854 if (bytepos
== BEGV_BYTE
&& bytepos
== ZV_BYTE
)
856 /* We should never be called at EOB or before BEGV. */
857 else if (bytepos
>= ZV_BYTE
|| bytepos
< BEGV_BYTE
)
862 bidi_it
->paragraph_dir
= L2R
;
863 bidi_it
->new_paragraph
= 0;
867 bidi_it
->paragraph_dir
= R2L
;
868 bidi_it
->new_paragraph
= 0;
870 else if (dir
== NEUTRAL_DIR
) /* P2 */
876 /* If we are inside a paragraph separator, we are just waiting
877 for the separator to be exhausted; use the previous paragraph
878 direction. But don't do that if we have been just reseated,
879 because we need to reinitialize below in that case. */
880 if (!bidi_it
->first_elt
881 && bidi_it
->charpos
< bidi_it
->separator_limit
)
884 /* If we are on a newline, get past it to where the next
885 paragraph might start. But don't do that at BEGV since then
886 we are potentially in a new paragraph that doesn't yet
888 pos
= bidi_it
->charpos
;
889 if (bytepos
> BEGV_BYTE
&& FETCH_CHAR (bytepos
) == '\n')
895 /* We are either at the beginning of a paragraph or in the
896 middle of it. Find where this paragraph starts. */
897 bytepos
= bidi_find_paragraph_start (pos
, bytepos
);
899 /* We should always be at the beginning of a new line at this
901 if (!(bytepos
== BEGV_BYTE
|| FETCH_CHAR (bytepos
- 1) == '\n'))
904 bidi_it
->separator_limit
= -1;
905 bidi_it
->new_paragraph
= 0;
906 ch
= FETCH_CHAR (bytepos
);
907 ch_len
= CHAR_BYTES (ch
);
908 pos
= BYTE_TO_CHAR (bytepos
);
909 type
= bidi_get_type (ch
, NEUTRAL_DIR
);
911 for (pos
++, bytepos
+= ch_len
;
912 /* NOTE: UAX#9 says to search only for L, AL, or R types of
913 characters, and ignore RLE, RLO, LRE, and LRO. However,
914 I'm not sure it makes sense to omit those 4; should try
915 with and without that to see the effect. */
916 (bidi_get_category (type
) != STRONG
)
917 || (bidi_ignore_explicit_marks_for_paragraph_level
918 && (type
== RLE
|| type
== RLO
919 || type
== LRE
|| type
== LRO
));
920 type
= bidi_get_type (ch
, NEUTRAL_DIR
))
922 if (type
== NEUTRAL_B
&& bidi_at_paragraph_end (pos
, bytepos
) >= -1)
924 if (bytepos
>= ZV_BYTE
)
926 /* Pretend there's a paragraph separator at end of buffer. */
930 FETCH_CHAR_ADVANCE (ch
, pos
, bytepos
);
932 if (type
== STRONG_R
|| type
== STRONG_AL
) /* P3 */
933 bidi_it
->paragraph_dir
= R2L
;
934 else if (type
== STRONG_L
)
935 bidi_it
->paragraph_dir
= L2R
;
940 /* Contrary to UAX#9 clause P3, we only default the paragraph
941 direction to L2R if we have no previous usable paragraph
943 if (bidi_it
->paragraph_dir
== NEUTRAL_DIR
)
944 bidi_it
->paragraph_dir
= L2R
; /* P3 and ``higher protocols'' */
945 if (bidi_it
->paragraph_dir
== R2L
)
946 bidi_it
->level_stack
[0].level
= 1;
948 bidi_it
->level_stack
[0].level
= 0;
950 bidi_line_init (bidi_it
);
953 /* Do whatever UAX#9 clause X8 says should be done at paragraph's
956 bidi_set_paragraph_end (struct bidi_it
*bidi_it
)
958 bidi_it
->invalid_levels
= 0;
959 bidi_it
->invalid_rl_levels
= -1;
960 bidi_it
->stack_idx
= 0;
961 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
964 /* Initialize the bidi iterator from buffer position CHARPOS. */
966 bidi_init_it (EMACS_INT charpos
, EMACS_INT bytepos
, struct bidi_it
*bidi_it
)
968 if (! bidi_initialized
)
970 bidi_it
->charpos
= charpos
;
971 bidi_it
->bytepos
= bytepos
;
972 bidi_it
->first_elt
= 1;
973 bidi_set_paragraph_end (bidi_it
);
974 bidi_it
->new_paragraph
= 1;
975 bidi_it
->separator_limit
= -1;
976 bidi_it
->type
= NEUTRAL_B
;
977 bidi_it
->type_after_w1
= NEUTRAL_B
;
978 bidi_it
->orig_type
= NEUTRAL_B
;
979 bidi_it
->prev_was_pdf
= 0;
980 bidi_it
->prev
.type
= bidi_it
->prev
.type_after_w1
=
981 bidi_it
->prev
.orig_type
= UNKNOWN_BT
;
982 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
=
983 bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
984 bidi_it
->next_for_neutral
.charpos
= -1;
985 bidi_it
->next_for_neutral
.type
=
986 bidi_it
->next_for_neutral
.type_after_w1
=
987 bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
988 bidi_it
->prev_for_neutral
.charpos
= -1;
989 bidi_it
->prev_for_neutral
.type
=
990 bidi_it
->prev_for_neutral
.type_after_w1
=
991 bidi_it
->prev_for_neutral
.orig_type
= UNKNOWN_BT
;
992 bidi_it
->sor
= L2R
; /* FIXME: should it be user-selectable? */
995 /* Push the current embedding level and override status; reset the
996 current level to LEVEL and the current override status to OVERRIDE. */
998 bidi_push_embedding_level (struct bidi_it
*bidi_it
,
999 int level
, bidi_dir_t override
)
1001 bidi_it
->stack_idx
++;
1002 if (bidi_it
->stack_idx
>= BIDI_MAXLEVEL
)
1004 bidi_it
->level_stack
[bidi_it
->stack_idx
].level
= level
;
1005 bidi_it
->level_stack
[bidi_it
->stack_idx
].override
= override
;
1008 /* Pop the embedding level and directional override status from the
1009 stack, and return the new level. */
1011 bidi_pop_embedding_level (struct bidi_it
*bidi_it
)
1013 /* UAX#9 says to ignore invalid PDFs. */
1014 if (bidi_it
->stack_idx
> 0)
1015 bidi_it
->stack_idx
--;
1016 return bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1019 /* Record in SAVED_INFO the information about the current character. */
1021 bidi_remember_char (struct bidi_saved_info
*saved_info
,
1022 struct bidi_it
*bidi_it
)
1024 saved_info
->charpos
= bidi_it
->charpos
;
1025 saved_info
->bytepos
= bidi_it
->bytepos
;
1026 saved_info
->type
= bidi_it
->type
;
1027 bidi_check_type (bidi_it
->type
);
1028 saved_info
->type_after_w1
= bidi_it
->type_after_w1
;
1029 bidi_check_type (bidi_it
->type_after_w1
);
1030 saved_info
->orig_type
= bidi_it
->orig_type
;
1031 bidi_check_type (bidi_it
->orig_type
);
1034 /* Resolve the type of a neutral character according to the type of
1035 surrounding strong text and the current embedding level. */
1036 static INLINE bidi_type_t
1037 bidi_resolve_neutral_1 (bidi_type_t prev_type
, bidi_type_t next_type
, int lev
)
1039 /* N1: European and Arabic numbers are treated as though they were R. */
1040 if (next_type
== WEAK_EN
|| next_type
== WEAK_AN
)
1041 next_type
= STRONG_R
;
1042 if (prev_type
== WEAK_EN
|| prev_type
== WEAK_AN
)
1043 prev_type
= STRONG_R
;
1045 if (next_type
== prev_type
) /* N1 */
1047 else if ((lev
& 1) == 0) /* N2 */
1054 bidi_explicit_dir_char (int c
)
1056 /* FIXME: this should be replaced with a lookup table with suitable
1057 bits set, like standard C ctype macros do. */
1058 return (c
== LRE_CHAR
|| c
== LRO_CHAR
1059 || c
== RLE_CHAR
|| c
== RLO_CHAR
|| c
== PDF_CHAR
);
1062 /* A helper function for bidi_resolve_explicit. It advances to the
1063 next character in logical order and determines the new embedding
1064 level and directional override, but does not take into account
1065 empty embeddings. */
1067 bidi_resolve_explicit_1 (struct bidi_it
*bidi_it
)
1073 bidi_dir_t override
;
1075 if (bidi_it
->bytepos
< BEGV_BYTE
/* after reseat to BEGV? */
1076 || bidi_it
->first_elt
)
1078 bidi_it
->first_elt
= 0;
1079 if (bidi_it
->charpos
< BEGV
)
1080 bidi_it
->charpos
= BEGV
;
1081 bidi_it
->bytepos
= CHAR_TO_BYTE (bidi_it
->charpos
);
1083 else if (bidi_it
->bytepos
< ZV_BYTE
) /* don't move at ZV */
1086 if (bidi_it
->ch_len
== 0)
1088 bidi_it
->bytepos
+= bidi_it
->ch_len
;
1091 current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
; /* X1 */
1092 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1093 new_level
= current_level
;
1095 /* in case it is a unibyte character (not yet implemented) */
1096 /* _fetch_multibyte_char_len = 1; */
1097 if (bidi_it
->bytepos
>= ZV_BYTE
)
1100 bidi_it
->ch_len
= 1;
1104 curchar
= FETCH_CHAR (bidi_it
->bytepos
);
1105 bidi_it
->ch_len
= CHAR_BYTES (curchar
);
1107 bidi_it
->ch
= curchar
;
1109 /* Don't apply directional override here, as all the types we handle
1110 below will not be affected by the override anyway, and we need
1111 the original type unaltered. The override will be applied in
1112 bidi_resolve_weak. */
1113 type
= bidi_get_type (curchar
, NEUTRAL_DIR
);
1114 bidi_it
->orig_type
= type
;
1115 bidi_check_type (bidi_it
->orig_type
);
1118 bidi_it
->prev_was_pdf
= 0;
1120 bidi_it
->type_after_w1
= UNKNOWN_BT
;
1126 bidi_it
->type_after_w1
= type
;
1127 bidi_check_type (bidi_it
->type_after_w1
);
1128 type
= WEAK_BN
; /* X9/Retaining */
1129 if (bidi_it
->ignore_bn_limit
<= 0)
1131 if (current_level
<= BIDI_MAXLEVEL
- 4)
1133 /* Compute the least odd embedding level greater than
1134 the current level. */
1135 new_level
= ((current_level
+ 1) & ~1) + 1;
1136 if (bidi_it
->type_after_w1
== RLE
)
1137 override
= NEUTRAL_DIR
;
1140 if (current_level
== BIDI_MAXLEVEL
- 4)
1141 bidi_it
->invalid_rl_levels
= 0;
1142 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1146 bidi_it
->invalid_levels
++;
1147 /* See the commentary about invalid_rl_levels below. */
1148 if (bidi_it
->invalid_rl_levels
< 0)
1149 bidi_it
->invalid_rl_levels
= 0;
1150 bidi_it
->invalid_rl_levels
++;
1153 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1154 || bidi_it
->next_en_pos
> bidi_it
->charpos
)
1159 bidi_it
->type_after_w1
= type
;
1160 bidi_check_type (bidi_it
->type_after_w1
);
1161 type
= WEAK_BN
; /* X9/Retaining */
1162 if (bidi_it
->ignore_bn_limit
<= 0)
1164 if (current_level
<= BIDI_MAXLEVEL
- 5)
1166 /* Compute the least even embedding level greater than
1167 the current level. */
1168 new_level
= ((current_level
+ 2) & ~1);
1169 if (bidi_it
->type_after_w1
== LRE
)
1170 override
= NEUTRAL_DIR
;
1173 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1177 bidi_it
->invalid_levels
++;
1178 /* invalid_rl_levels counts invalid levels encountered
1179 while the embedding level was already too high for
1180 LRE/LRO, but not for RLE/RLO. That is because
1181 there may be exactly one PDF which we should not
1182 ignore even though invalid_levels is non-zero.
1183 invalid_rl_levels helps to know what PDF is
1185 if (bidi_it
->invalid_rl_levels
>= 0)
1186 bidi_it
->invalid_rl_levels
++;
1189 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1190 || bidi_it
->next_en_pos
> bidi_it
->charpos
)
1194 bidi_it
->type_after_w1
= type
;
1195 bidi_check_type (bidi_it
->type_after_w1
);
1196 type
= WEAK_BN
; /* X9/Retaining */
1197 if (bidi_it
->ignore_bn_limit
<= 0)
1199 if (!bidi_it
->invalid_rl_levels
)
1201 new_level
= bidi_pop_embedding_level (bidi_it
);
1202 bidi_it
->invalid_rl_levels
= -1;
1203 if (bidi_it
->invalid_levels
)
1204 bidi_it
->invalid_levels
--;
1205 /* else nothing: UAX#9 says to ignore invalid PDFs */
1207 if (!bidi_it
->invalid_levels
)
1208 new_level
= bidi_pop_embedding_level (bidi_it
);
1211 bidi_it
->invalid_levels
--;
1212 bidi_it
->invalid_rl_levels
--;
1215 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1216 || bidi_it
->next_en_pos
> bidi_it
->charpos
)
1224 bidi_it
->type
= type
;
1225 bidi_check_type (bidi_it
->type
);
1230 /* Given an iterator state in BIDI_IT, advance one character position
1231 in the buffer to the next character (in the logical order), resolve
1232 any explicit embeddings and directional overrides, and return the
1233 embedding level of the character after resolving explicit
1234 directives and ignoring empty embeddings. */
1236 bidi_resolve_explicit (struct bidi_it
*bidi_it
)
1238 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1239 int new_level
= bidi_resolve_explicit_1 (bidi_it
);
1241 if (prev_level
< new_level
1242 && bidi_it
->type
== WEAK_BN
1243 && bidi_it
->ignore_bn_limit
== 0 /* only if not already known */
1244 && bidi_it
->bytepos
< ZV_BYTE
/* not already at EOB */
1245 && bidi_explicit_dir_char (FETCH_CHAR (bidi_it
->bytepos
1246 + bidi_it
->ch_len
)))
1248 /* Avoid pushing and popping embedding levels if the level run
1249 is empty, as this breaks level runs where it shouldn't.
1250 UAX#9 removes all the explicit embedding and override codes,
1251 so empty embeddings disappear without a trace. We need to
1252 behave as if we did the same. */
1253 struct bidi_it saved_it
;
1254 int level
= prev_level
;
1256 bidi_copy_it (&saved_it
, bidi_it
);
1258 while (bidi_explicit_dir_char (FETCH_CHAR (bidi_it
->bytepos
1259 + bidi_it
->ch_len
)))
1261 level
= bidi_resolve_explicit_1 (bidi_it
);
1264 if (level
== prev_level
) /* empty embedding */
1265 saved_it
.ignore_bn_limit
= bidi_it
->charpos
+ 1;
1266 else /* this embedding is non-empty */
1267 saved_it
.ignore_bn_limit
= -1;
1269 bidi_copy_it (bidi_it
, &saved_it
);
1270 if (bidi_it
->ignore_bn_limit
> 0)
1272 /* We pushed a level, but we shouldn't have. Undo that. */
1273 if (!bidi_it
->invalid_rl_levels
)
1275 new_level
= bidi_pop_embedding_level (bidi_it
);
1276 bidi_it
->invalid_rl_levels
= -1;
1277 if (bidi_it
->invalid_levels
)
1278 bidi_it
->invalid_levels
--;
1280 if (!bidi_it
->invalid_levels
)
1281 new_level
= bidi_pop_embedding_level (bidi_it
);
1284 bidi_it
->invalid_levels
--;
1285 bidi_it
->invalid_rl_levels
--;
1290 if (bidi_it
->type
== NEUTRAL_B
) /* X8 */
1292 bidi_set_paragraph_end (bidi_it
);
1293 /* This is needed by bidi_resolve_weak below, and in L1. */
1294 bidi_it
->type_after_w1
= bidi_it
->type
;
1295 bidi_check_type (bidi_it
->type_after_w1
);
1301 /* Advance in the buffer, resolve weak types and return the type of
1302 the next character after weak type resolution. */
1304 bidi_resolve_weak (struct bidi_it
*bidi_it
)
1307 bidi_dir_t override
;
1308 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1309 int new_level
= bidi_resolve_explicit (bidi_it
);
1311 bidi_type_t type_of_next
;
1312 struct bidi_it saved_it
;
1314 type
= bidi_it
->type
;
1315 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1317 if (type
== UNKNOWN_BT
1325 if (new_level
!= prev_level
1326 || bidi_it
->type
== NEUTRAL_B
)
1328 /* We've got a new embedding level run, compute the directional
1329 type of sor and initialize per-run variables (UAX#9, clause
1331 bidi_set_sor_type (bidi_it
, prev_level
, new_level
);
1333 else if (type
== NEUTRAL_S
|| type
== NEUTRAL_WS
1334 || type
== WEAK_BN
|| type
== STRONG_AL
)
1335 bidi_it
->type_after_w1
= type
; /* needed in L1 */
1336 bidi_check_type (bidi_it
->type_after_w1
);
1338 /* Level and directional override status are already recorded in
1339 bidi_it, and do not need any change; see X6. */
1340 if (override
== R2L
) /* X6 */
1342 else if (override
== L2R
)
1346 if (type
== WEAK_NSM
) /* W1 */
1348 /* Note that we don't need to consider the case where the
1349 prev character has its type overridden by an RLO or LRO,
1350 because then either the type of this NSM would have been
1351 also overridden, or the previous character is outside the
1352 current level run, and thus not relevant to this NSM.
1353 This is why NSM gets the type_after_w1 of the previous
1355 if (bidi_it
->prev
.type_after_w1
!= UNKNOWN_BT
1356 /* if type_after_w1 is NEUTRAL_B, this NSM is at sor */
1357 && bidi_it
->prev
.type_after_w1
!= NEUTRAL_B
)
1358 type
= bidi_it
->prev
.type_after_w1
;
1359 else if (bidi_it
->sor
== R2L
)
1361 else if (bidi_it
->sor
== L2R
)
1363 else /* shouldn't happen! */
1366 if (type
== WEAK_EN
/* W2 */
1367 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)
1369 else if (type
== STRONG_AL
) /* W3 */
1371 else if ((type
== WEAK_ES
/* W4 */
1372 && bidi_it
->prev
.type_after_w1
== WEAK_EN
1373 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1375 && ((bidi_it
->prev
.type_after_w1
== WEAK_EN
1376 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1377 || bidi_it
->prev
.type_after_w1
== WEAK_AN
)))
1380 bidi_it
->bytepos
+ bidi_it
->ch_len
>= ZV_BYTE
1381 ? BIDI_EOB
: FETCH_CHAR (bidi_it
->bytepos
+ bidi_it
->ch_len
);
1382 type_of_next
= bidi_get_type (next_char
, override
);
1384 if (type_of_next
== WEAK_BN
1385 || bidi_explicit_dir_char (next_char
))
1387 bidi_copy_it (&saved_it
, bidi_it
);
1388 while (bidi_resolve_explicit (bidi_it
) == new_level
1389 && bidi_it
->type
== WEAK_BN
)
1391 type_of_next
= bidi_it
->type
;
1392 bidi_copy_it (bidi_it
, &saved_it
);
1395 /* If the next character is EN, but the last strong-type
1396 character is AL, that next EN will be changed to AN when
1397 we process it in W2 above. So in that case, this ES
1398 should not be changed into EN. */
1400 && type_of_next
== WEAK_EN
1401 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1403 else if (type
== WEAK_CS
)
1405 if (bidi_it
->prev
.type_after_w1
== WEAK_AN
1406 && (type_of_next
== WEAK_AN
1407 /* If the next character is EN, but the last
1408 strong-type character is AL, EN will be later
1409 changed to AN when we process it in W2 above.
1410 So in that case, this ES should not be
1412 || (type_of_next
== WEAK_EN
1413 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)))
1415 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
1416 && type_of_next
== WEAK_EN
1417 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1421 else if (type
== WEAK_ET
/* W5: ET with EN before or after it */
1422 || type
== WEAK_BN
) /* W5/Retaining */
1424 if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* ET/BN w/EN before it */
1425 || bidi_it
->next_en_pos
> bidi_it
->charpos
)
1427 else /* W5: ET/BN with EN after it. */
1429 EMACS_INT en_pos
= bidi_it
->charpos
+ 1;
1432 bidi_it
->bytepos
+ bidi_it
->ch_len
>= ZV_BYTE
1433 ? BIDI_EOB
: FETCH_CHAR (bidi_it
->bytepos
+ bidi_it
->ch_len
);
1434 type_of_next
= bidi_get_type (next_char
, override
);
1436 if (type_of_next
== WEAK_ET
1437 || type_of_next
== WEAK_BN
1438 || bidi_explicit_dir_char (next_char
))
1440 bidi_copy_it (&saved_it
, bidi_it
);
1441 while (bidi_resolve_explicit (bidi_it
) == new_level
1442 && (bidi_it
->type
== WEAK_BN
1443 || bidi_it
->type
== WEAK_ET
))
1445 type_of_next
= bidi_it
->type
;
1446 en_pos
= bidi_it
->charpos
;
1447 bidi_copy_it (bidi_it
, &saved_it
);
1449 if (type_of_next
== WEAK_EN
)
1451 /* If the last strong character is AL, the EN we've
1452 found will become AN when we get to it (W2). */
1453 if (bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1456 /* Remember this EN position, to speed up processing
1458 bidi_it
->next_en_pos
= en_pos
;
1460 else if (type
== WEAK_BN
)
1461 type
= NEUTRAL_ON
; /* W6/Retaining */
1467 if (type
== WEAK_ES
|| type
== WEAK_ET
|| type
== WEAK_CS
/* W6 */
1469 && (bidi_it
->prev
.type_after_w1
== WEAK_CS
/* W6/Retaining */
1470 || bidi_it
->prev
.type_after_w1
== WEAK_ES
1471 || bidi_it
->prev
.type_after_w1
== WEAK_ET
)))
1474 /* Store the type we've got so far, before we clobber it with strong
1475 types in W7 and while resolving neutral types. But leave alone
1476 the original types that were recorded above, because we will need
1477 them for the L1 clause. */
1478 if (bidi_it
->type_after_w1
== UNKNOWN_BT
)
1479 bidi_it
->type_after_w1
= type
;
1480 bidi_check_type (bidi_it
->type_after_w1
);
1482 if (type
== WEAK_EN
) /* W7 */
1484 if ((bidi_it
->last_strong
.type_after_w1
== STRONG_L
)
1485 || (bidi_it
->last_strong
.type
== UNKNOWN_BT
&& bidi_it
->sor
== L2R
))
1489 bidi_it
->type
= type
;
1490 bidi_check_type (bidi_it
->type
);
1495 bidi_resolve_neutral (struct bidi_it
*bidi_it
)
1497 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1498 bidi_type_t type
= bidi_resolve_weak (bidi_it
);
1499 int current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1501 if (!(type
== STRONG_R
1506 || type
== NEUTRAL_B
1507 || type
== NEUTRAL_S
1508 || type
== NEUTRAL_WS
1509 || type
== NEUTRAL_ON
))
1512 if (bidi_get_category (type
) == NEUTRAL
1513 || (type
== WEAK_BN
&& prev_level
== current_level
))
1515 if (bidi_it
->next_for_neutral
.type
!= UNKNOWN_BT
)
1516 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
1517 bidi_it
->next_for_neutral
.type
,
1521 /* Arrrgh!! The UAX#9 algorithm is too deeply entrenched in
1522 the assumption of batch-style processing; see clauses W4,
1523 W5, and especially N1, which require to look far forward
1524 (as well as back) in the buffer. May the fleas of a
1525 thousand camels infest the armpits of those who design
1526 supposedly general-purpose algorithms by looking at their
1527 own implementations, and fail to consider other possible
1529 struct bidi_it saved_it
;
1530 bidi_type_t next_type
;
1532 if (bidi_it
->scan_dir
== -1)
1535 bidi_copy_it (&saved_it
, bidi_it
);
1536 /* Scan the text forward until we find the first non-neutral
1537 character, and then use that to resolve the neutral we
1538 are dealing with now. We also cache the scanned iterator
1539 states, to salvage some of the effort later. */
1540 bidi_cache_iterator_state (bidi_it
, 0);
1542 /* Record the info about the previous character, so that
1543 it will be cached below with this state. */
1544 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
1545 && bidi_it
->type
!= WEAK_BN
)
1546 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
1547 type
= bidi_resolve_weak (bidi_it
);
1548 /* Paragraph separators have their levels fully resolved
1549 at this point, so cache them as resolved. */
1550 bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
);
1551 /* FIXME: implement L1 here, by testing for a newline and
1552 resetting the level for any sequence of whitespace
1553 characters adjacent to it. */
1554 } while (!(type
== NEUTRAL_B
1556 && bidi_get_category (type
) != NEUTRAL
)
1557 /* This is all per level run, so stop when we
1558 reach the end of this level run. */
1559 || bidi_it
->level_stack
[bidi_it
->stack_idx
].level
!=
1562 bidi_remember_char (&saved_it
.next_for_neutral
, bidi_it
);
1573 /* N1: ``European and Arabic numbers are treated as
1574 though they were R.'' */
1575 next_type
= STRONG_R
;
1576 saved_it
.next_for_neutral
.type
= STRONG_R
;
1579 if (!bidi_explicit_dir_char (bidi_it
->ch
))
1580 abort (); /* can't happen: BNs are skipped */
1583 /* Marched all the way to the end of this level run.
1584 We need to use the eor type, whose information is
1585 stored by bidi_set_sor_type in the prev_for_neutral
1587 if (saved_it
.type
!= WEAK_BN
1588 || bidi_get_category (bidi_it
->prev
.type_after_w1
) == NEUTRAL
)
1590 next_type
= bidi_it
->prev_for_neutral
.type
;
1591 saved_it
.next_for_neutral
.type
= next_type
;
1592 bidi_check_type (next_type
);
1596 /* This is a BN which does not adjoin neutrals.
1597 Leave its type alone. */
1598 bidi_copy_it (bidi_it
, &saved_it
);
1599 return bidi_it
->type
;
1605 type
= bidi_resolve_neutral_1 (saved_it
.prev_for_neutral
.type
,
1606 next_type
, current_level
);
1607 saved_it
.type
= type
;
1608 bidi_check_type (type
);
1609 bidi_copy_it (bidi_it
, &saved_it
);
1615 /* Given an iterator state in BIDI_IT, advance one character position
1616 in the buffer to the next character (in the logical order), resolve
1617 the bidi type of that next character, and return that type. */
1619 bidi_type_of_next_char (struct bidi_it
*bidi_it
)
1623 /* This should always be called during a forward scan. */
1624 if (bidi_it
->scan_dir
!= 1)
1627 /* Reset the limit until which to ignore BNs if we step out of the
1628 area where we found only empty levels. */
1629 if ((bidi_it
->ignore_bn_limit
> 0
1630 && bidi_it
->ignore_bn_limit
<= bidi_it
->charpos
)
1631 || (bidi_it
->ignore_bn_limit
== -1
1632 && !bidi_explicit_dir_char (bidi_it
->ch
)))
1633 bidi_it
->ignore_bn_limit
= 0;
1635 type
= bidi_resolve_neutral (bidi_it
);
1640 /* Given an iterator state BIDI_IT, advance one character position in
1641 the buffer to the next character (in the logical order), resolve
1642 the embedding and implicit levels of that next character, and
1643 return the resulting level. */
1645 bidi_level_of_next_char (struct bidi_it
*bidi_it
)
1648 int level
, prev_level
= -1;
1649 struct bidi_saved_info next_for_neutral
;
1651 if (bidi_it
->scan_dir
== 1)
1653 /* There's no sense in trying to advance if we hit end of text. */
1654 if (bidi_it
->bytepos
>= ZV_BYTE
)
1655 return bidi_it
->resolved_level
;
1657 /* Record the info about the previous character. */
1658 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
1659 && bidi_it
->type
!= WEAK_BN
)
1660 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
1661 if (bidi_it
->type_after_w1
== STRONG_R
1662 || bidi_it
->type_after_w1
== STRONG_L
1663 || bidi_it
->type_after_w1
== STRONG_AL
)
1664 bidi_remember_char (&bidi_it
->last_strong
, bidi_it
);
1665 /* FIXME: it sounds like we don't need both prev and
1666 prev_for_neutral members, but I'm leaving them both for now. */
1667 if (bidi_it
->type
== STRONG_R
|| bidi_it
->type
== STRONG_L
1668 || bidi_it
->type
== WEAK_EN
|| bidi_it
->type
== WEAK_AN
)
1669 bidi_remember_char (&bidi_it
->prev_for_neutral
, bidi_it
);
1671 /* If we overstepped the characters used for resolving neutrals
1672 and whitespace, invalidate their info in the iterator. */
1673 if (bidi_it
->charpos
>= bidi_it
->next_for_neutral
.charpos
)
1674 bidi_it
->next_for_neutral
.type
= UNKNOWN_BT
;
1675 if (bidi_it
->next_en_pos
>= 0
1676 && bidi_it
->charpos
>= bidi_it
->next_en_pos
)
1677 bidi_it
->next_en_pos
= -1;
1678 if (bidi_it
->next_for_ws
.type
!= UNKNOWN_BT
1679 && bidi_it
->charpos
>= bidi_it
->next_for_ws
.charpos
)
1680 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
1682 /* This must be taken before we fill the iterator with the info
1683 about the next char. If we scan backwards, the iterator
1684 state must be already cached, so there's no need to know the
1685 embedding level of the previous character, since we will be
1686 returning to our caller shortly. */
1687 prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1689 next_for_neutral
= bidi_it
->next_for_neutral
;
1691 /* Perhaps it is already cached. */
1692 type
= bidi_cache_find (bidi_it
->charpos
+ bidi_it
->scan_dir
, -1, bidi_it
);
1693 if (type
!= UNKNOWN_BT
)
1695 /* Don't lose the information for resolving neutrals! The
1696 cached states could have been cached before their
1697 next_for_neutral member was computed. If we are on our way
1698 forward, we can simply take the info from the previous
1700 if (bidi_it
->scan_dir
== 1
1701 && bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
1702 bidi_it
->next_for_neutral
= next_for_neutral
;
1704 /* If resolved_level is -1, it means this state was cached
1705 before it was completely resolved, so we cannot return
1707 if (bidi_it
->resolved_level
!= -1)
1708 return bidi_it
->resolved_level
;
1710 if (bidi_it
->scan_dir
== -1)
1711 /* If we are going backwards, the iterator state is already cached
1712 from previous scans, and should be fully resolved. */
1715 if (type
== UNKNOWN_BT
)
1716 type
= bidi_type_of_next_char (bidi_it
);
1718 if (type
== NEUTRAL_B
)
1719 return bidi_it
->resolved_level
;
1721 level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1722 if ((bidi_get_category (type
) == NEUTRAL
/* && type != NEUTRAL_B */)
1723 || (type
== WEAK_BN
&& prev_level
== level
))
1725 if (bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
1728 /* If the cached state shows a neutral character, it was not
1729 resolved by bidi_resolve_neutral, so do it now. */
1730 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
1731 bidi_it
->next_for_neutral
.type
,
1735 if (!(type
== STRONG_R
1739 || type
== WEAK_AN
))
1741 bidi_it
->type
= type
;
1742 bidi_check_type (bidi_it
->type
);
1744 /* For L1 below, we need to know, for each WS character, whether
1745 it belongs to a sequence of WS characters preceeding a newline
1746 or a TAB or a paragraph separator. */
1747 if (bidi_it
->orig_type
== NEUTRAL_WS
1748 && bidi_it
->next_for_ws
.type
== UNKNOWN_BT
)
1751 int clen
= bidi_it
->ch_len
;
1752 EMACS_INT bpos
= bidi_it
->bytepos
;
1753 EMACS_INT cpos
= bidi_it
->charpos
;
1757 /*_fetch_multibyte_char_len = 1;*/
1758 ch
= bpos
+ clen
>= ZV_BYTE
? BIDI_EOB
: FETCH_CHAR (bpos
+ clen
);
1761 clen
= (ch
== BIDI_EOB
? 1 : CHAR_BYTES (ch
));
1762 if (ch
== '\n' || ch
== BIDI_EOB
/* || ch == LINESEP_CHAR */)
1765 chtype
= bidi_get_type (ch
, NEUTRAL_DIR
);
1766 } while (chtype
== NEUTRAL_WS
|| chtype
== WEAK_BN
1767 || bidi_explicit_dir_char (ch
)); /* L1/Retaining */
1768 bidi_it
->next_for_ws
.type
= chtype
;
1769 bidi_check_type (bidi_it
->next_for_ws
.type
);
1770 bidi_it
->next_for_ws
.charpos
= cpos
;
1771 bidi_it
->next_for_ws
.bytepos
= bpos
;
1774 /* Resolve implicit levels, with a twist: PDFs get the embedding
1775 level of the enbedding they terminate. See below for the
1777 if (bidi_it
->orig_type
== PDF
1778 /* Don't do this if this formatting code didn't change the
1779 embedding level due to invalid or empty embeddings. */
1780 && prev_level
!= level
)
1782 /* Don't look in UAX#9 for the reason for this: it's our own
1783 private quirk. The reason is that we want the formatting
1784 codes to be delivered so that they bracket the text of their
1785 embedding. For example, given the text
1789 we want it to be displayed as
1797 which will result because we bump up the embedding level as
1798 soon as we see the RLO and pop it as soon as we see the PDF,
1799 so RLO itself has the same embedding level as "teST", and
1800 thus would be normally delivered last, just before the PDF.
1801 The switch below fiddles with the level of PDF so that this
1802 ugly side effect does not happen.
1804 (This is, of course, only important if the formatting codes
1805 are actually displayed, but Emacs does need to display them
1806 if the user wants to.) */
1809 else if (bidi_it
->orig_type
== NEUTRAL_B
/* L1 */
1810 || bidi_it
->orig_type
== NEUTRAL_S
1811 || bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
1812 /* || bidi_it->ch == LINESEP_CHAR */
1813 || (bidi_it
->orig_type
== NEUTRAL_WS
1814 && (bidi_it
->next_for_ws
.type
== NEUTRAL_B
1815 || bidi_it
->next_for_ws
.type
== NEUTRAL_S
)))
1816 level
= bidi_it
->level_stack
[0].level
;
1817 else if ((level
& 1) == 0) /* I1 */
1819 if (type
== STRONG_R
)
1821 else if (type
== WEAK_EN
|| type
== WEAK_AN
)
1826 if (type
== STRONG_L
|| type
== WEAK_EN
|| type
== WEAK_AN
)
1830 bidi_it
->resolved_level
= level
;
1834 /* Move to the other edge of a level given by LEVEL. If END_FLAG is
1835 non-zero, we are at the end of a level, and we need to prepare to
1836 resume the scan of the lower level.
1838 If this level's other edge is cached, we simply jump to it, filling
1839 the iterator structure with the iterator state on the other edge.
1840 Otherwise, we walk the buffer until we come back to the same level
1843 Note: we are not talking here about a ``level run'' in the UAX#9
1844 sense of the term, but rather about a ``level'' which includes
1845 all the levels higher than it. In other words, given the levels
1848 11111112222222333333334443343222222111111112223322111
1851 and assuming we are at point A scanning left to right, this
1852 function moves to point C, whereas the UAX#9 ``level 2 run'' ends
1855 bidi_find_other_level_edge (struct bidi_it
*bidi_it
, int level
, int end_flag
)
1857 int dir
= end_flag
? -bidi_it
->scan_dir
: bidi_it
->scan_dir
;
1860 /* Try the cache first. */
1861 if ((idx
= bidi_cache_find_level_change (level
, dir
, end_flag
)) >= 0)
1862 bidi_cache_fetch_state (idx
, bidi_it
);
1868 abort (); /* if we are at end of level, its edges must be cached */
1870 bidi_cache_iterator_state (bidi_it
, 1);
1872 new_level
= bidi_level_of_next_char (bidi_it
);
1873 bidi_cache_iterator_state (bidi_it
, 1);
1874 } while (new_level
>= level
);
1879 bidi_get_next_char_visually (struct bidi_it
*bidi_it
)
1881 int old_level
, new_level
, next_level
;
1882 struct bidi_it sentinel
;
1884 if (bidi_it
->scan_dir
== 0)
1886 bidi_it
->scan_dir
= 1; /* default to logical order */
1889 /* If we just passed a newline, initialize for the next line. */
1890 if (!bidi_it
->first_elt
&& bidi_it
->orig_type
== NEUTRAL_B
)
1891 bidi_line_init (bidi_it
);
1893 /* Prepare the sentinel iterator state. */
1894 if (bidi_cache_idx
== 0)
1896 bidi_copy_it (&sentinel
, bidi_it
);
1897 if (bidi_it
->first_elt
)
1899 sentinel
.charpos
--; /* cached charpos needs to be monotonic */
1901 sentinel
.ch
= '\n'; /* doesn't matter, but why not? */
1902 sentinel
.ch_len
= 1;
1906 old_level
= bidi_it
->resolved_level
;
1907 new_level
= bidi_level_of_next_char (bidi_it
);
1909 /* Reordering of resolved levels (clause L2) is implemented by
1910 jumping to the other edge of the level and flipping direction of
1911 scanning the text whenever we find a level change. */
1912 if (new_level
!= old_level
)
1914 int ascending
= new_level
> old_level
;
1915 int level_to_search
= ascending
? old_level
+ 1 : old_level
;
1916 int incr
= ascending
? 1 : -1;
1917 int expected_next_level
= old_level
+ incr
;
1919 /* If we don't have anything cached yet, we need to cache the
1920 sentinel state, since we'll need it to record where to jump
1921 when the last non-base level is exhausted. */
1922 if (bidi_cache_idx
== 0)
1923 bidi_cache_iterator_state (&sentinel
, 1);
1924 /* Jump (or walk) to the other edge of this level. */
1925 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
1926 /* Switch scan direction and peek at the next character in the
1928 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
1930 /* The following loop handles the case where the resolved level
1931 jumps by more than one. This is typical for numbers inside a
1932 run of text with left-to-right embedding direction, but can
1933 also happen in other situations. In those cases the decision
1934 where to continue after a level change, and in what direction,
1935 is tricky. For example, given a text like below:
1940 (where the numbers below the text show the resolved levels),
1941 the result of reordering according to UAX#9 should be this:
1945 This is implemented by the loop below which flips direction
1946 and jumps to the other edge of the level each time it finds
1947 the new level not to be the expected one. The expected level
1948 is always one more or one less than the previous one. */
1949 next_level
= bidi_peek_at_next_level (bidi_it
);
1950 while (next_level
!= expected_next_level
)
1952 expected_next_level
+= incr
;
1953 level_to_search
+= incr
;
1954 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
1955 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
1956 next_level
= bidi_peek_at_next_level (bidi_it
);
1959 /* Finally, deliver the next character in the new direction. */
1960 next_level
= bidi_level_of_next_char (bidi_it
);
1963 /* Take note when we have just processed the newline that precedes
1964 the end of the paragraph. The next time we are about to be
1965 called, set_iterator_to_next will automatically reinit the
1966 paragraph direction, if needed. We do this at the newline before
1967 the paragraph separator, because the next character might not be
1968 the first character of the next paragraph, due to the bidi
1969 reordering, whereas we _must_ know the paragraph base direction
1970 _before_ we process the paragraph's text, since the base
1971 direction affects the reordering. */
1972 if (bidi_it
->scan_dir
== 1
1973 && bidi_it
->orig_type
== NEUTRAL_B
1974 && bidi_it
->bytepos
< ZV_BYTE
)
1977 bidi_at_paragraph_end (bidi_it
->charpos
+ 1,
1978 bidi_it
->bytepos
+ bidi_it
->ch_len
);
1981 bidi_it
->new_paragraph
= 1;
1982 /* Record the buffer position of the last character of the
1983 paragraph separator. */
1984 bidi_it
->separator_limit
= bidi_it
->charpos
+ 1 + sep_len
;
1988 if (bidi_it
->scan_dir
== 1 && bidi_cache_idx
)
1990 /* If we are at paragraph's base embedding level and beyond the
1991 last cached position, the cache's job is done and we can
1993 if (bidi_it
->resolved_level
== bidi_it
->level_stack
[0].level
1994 && bidi_it
->charpos
> bidi_cache
[bidi_cache_idx
- 1].charpos
)
1995 bidi_cache_reset ();
1996 /* But as long as we are caching during forward scan, we must
1997 cache each state, or else the cache integrity will be
1998 compromised: it assumes cached states correspond to buffer
2001 bidi_cache_iterator_state (bidi_it
, 1);
2005 /* This is meant to be called from within the debugger, whenever you
2006 wish to examine the cache contents. */
2008 bidi_dump_cached_states (void)
2013 if (bidi_cache_idx
== 0)
2015 fprintf (stderr
, "The cache is empty.\n");
2018 fprintf (stderr
, "Total of %d state%s in cache:\n",
2019 bidi_cache_idx
, bidi_cache_idx
== 1 ? "" : "s");
2021 for (i
= bidi_cache
[bidi_cache_idx
- 1].charpos
; i
> 0; i
/= 10)
2023 fputs ("ch ", stderr
);
2024 for (i
= 0; i
< bidi_cache_idx
; i
++)
2025 fprintf (stderr
, "%*c", ndigits
, bidi_cache
[i
].ch
);
2026 fputs ("\n", stderr
);
2027 fputs ("lvl ", stderr
);
2028 for (i
= 0; i
< bidi_cache_idx
; i
++)
2029 fprintf (stderr
, "%*d", ndigits
, bidi_cache
[i
].resolved_level
);
2030 fputs ("\n", stderr
);
2031 fputs ("pos ", stderr
);
2032 for (i
= 0; i
< bidi_cache_idx
; i
++)
2033 fprintf (stderr
, "%*d", ndigits
, bidi_cache
[i
].charpos
);
2034 fputs ("\n", stderr
);