Fix bug #9311 with loading on MS-Windows .elc files in root directories.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob7beb4d4b4cc5d0c08f0b567f3b0ace3683aaf624
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "26339d9571f9485bf34fa6d2ae38fc84")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
185 \(fn)" nil nil)
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil)
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil)
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
202 \(fn X Y)" nil nil)
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
207 \(fn X Y)" nil nil)
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
212 \(fn X)" nil nil)
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil)
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (defalias 'remprop 'cl-remprop)
247 (defalias 'cl-gethash 'gethash)
249 (defalias 'cl-puthash 'puthash)
251 (defalias 'cl-remhash 'remhash)
253 (defalias 'cl-clrhash 'clrhash)
255 (defalias 'cl-maphash 'maphash)
257 (defalias 'cl-make-hash-table 'make-hash-table)
259 (defalias 'cl-hash-table-p 'hash-table-p)
261 (defalias 'cl-hash-table-count 'hash-table-count)
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil)
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
272 \(fn FORM &optional FULL)" nil nil)
274 ;;;***
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
281 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283 ;;;;;; do* do loop return-from return block etypecase typecase ecase
284 ;;;;;; case load-time-value eval-when destructuring-bind function*
285 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "0907093f7720996444ededb4edfe8072")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
292 \(fn &optional PREFIX)" nil nil)
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
298 \(fn &optional PREFIX)" nil nil)
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
319 \(fn FUNC)" nil (quote macro))
321 (autoload 'destructuring-bind "cl-macs" "\
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
332 \(fn (WHEN...) BODY...)" nil (quote macro))
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
382 \(fn NAME &rest BODY)" nil (quote macro))
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil (quote macro))
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil (quote macro))
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
413 \(fn CLAUSE...)" nil (quote macro))
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
429 An implicit nil block is established around the loop.
431 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
433 (autoload 'dotimes "cl-macs" "\
434 Loop a certain number of times.
435 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
436 to COUNT, exclusive. Then evaluate RESULT to get return value, default
437 nil.
439 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
441 (autoload 'do-symbols "cl-macs" "\
442 Loop over all symbols.
443 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
444 from OBARRAY.
446 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
448 (autoload 'do-all-symbols "cl-macs" "\
451 \(fn SPEC &rest BODY)" nil (quote macro))
453 (autoload 'psetq "cl-macs" "\
454 Set SYMs to the values VALs in parallel.
455 This is like `setq', except that all VAL forms are evaluated (in order)
456 before assigning any symbols SYM to the corresponding values.
458 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
460 (autoload 'progv "cl-macs" "\
461 Bind SYMBOLS to VALUES dynamically in BODY.
462 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
463 Each symbol in the first list is bound to the corresponding value in the
464 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
465 BODY forms are executed and their result is returned. This is much like
466 a `let' form, except that the list of symbols can be computed at run-time.
468 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
470 (autoload 'flet "cl-macs" "\
471 Make temporary function definitions.
472 This is an analogue of `let' that operates on the function cell of FUNC
473 rather than its value cell. The FORMs are evaluated with the specified
474 function definitions in place, then the definitions are undone (the FUNCs
475 go back to their previous definitions, or lack thereof).
477 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
479 (autoload 'labels "cl-macs" "\
480 Make temporary function bindings.
481 This is like `flet', except the bindings are lexical instead of dynamic.
482 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
484 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
486 (autoload 'macrolet "cl-macs" "\
487 Make temporary macro definitions.
488 This is like `flet', but for macros instead of functions.
490 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
492 (autoload 'symbol-macrolet "cl-macs" "\
493 Make symbol macro definitions.
494 Within the body FORMs, references to the variable NAME will be replaced
495 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
497 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
499 (autoload 'lexical-let "cl-macs" "\
500 Like `let', but lexically scoped.
501 The main visible difference is that lambdas inside BODY will create
502 lexical closures as in Common Lisp.
504 \(fn BINDINGS BODY)" nil (quote macro))
506 (autoload 'lexical-let* "cl-macs" "\
507 Like `let*', but lexically scoped.
508 The main visible difference is that lambdas inside BODY, and in
509 successive bindings within BINDINGS, will create lexical closures
510 as in Common Lisp. This is similar to the behavior of `let*' in
511 Common Lisp.
513 \(fn BINDINGS BODY)" nil (quote macro))
515 (autoload 'multiple-value-bind "cl-macs" "\
516 Collect multiple return values.
517 FORM must return a list; the BODY is then executed with the first N elements
518 of this list bound (`let'-style) to each of the symbols SYM in turn. This
519 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
520 simulate true multiple return values. For compatibility, (values A B C) is
521 a synonym for (list A B C).
523 \(fn (SYM...) FORM BODY)" nil (quote macro))
525 (autoload 'multiple-value-setq "cl-macs" "\
526 Collect multiple return values.
527 FORM must return a list; the first N elements of this list are stored in
528 each of the symbols SYM in turn. This is analogous to the Common Lisp
529 `multiple-value-setq' macro, using lists to simulate true multiple return
530 values. For compatibility, (values A B C) is a synonym for (list A B C).
532 \(fn (SYM...) FORM)" nil (quote macro))
534 (autoload 'locally "cl-macs" "\
537 \(fn &rest BODY)" nil (quote macro))
539 (autoload 'the "cl-macs" "\
542 \(fn TYPE FORM)" nil (quote macro))
544 (autoload 'declare "cl-macs" "\
545 Declare SPECS about the current function while compiling.
546 For instance
548 (declare (warn 0))
550 will turn off byte-compile warnings in the function.
551 See Info node `(cl)Declarations' for details.
553 \(fn &rest SPECS)" nil (quote macro))
555 (autoload 'define-setf-method "cl-macs" "\
556 Define a `setf' method.
557 This method shows how to handle `setf's to places of the form (NAME ARGS...).
558 The argument forms ARGS are bound according to ARGLIST, as if NAME were
559 going to be expanded as a macro, then the BODY forms are executed and must
560 return a list of five elements: a temporary-variables list, a value-forms
561 list, a store-variables list (of length one), a store-form, and an access-
562 form. See `defsetf' for a simpler way to define most setf-methods.
564 \(fn NAME ARGLIST BODY...)" nil (quote macro))
566 (autoload 'defsetf "cl-macs" "\
567 Define a `setf' method.
568 This macro is an easy-to-use substitute for `define-setf-method' that works
569 well for simple place forms. In the simple `defsetf' form, `setf's of
570 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
571 calls of the form (FUNC ARGS... VAL). Example:
573 (defsetf aref aset)
575 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
576 Here, the above `setf' call is expanded by binding the argument forms ARGS
577 according to ARGLIST, binding the value form VAL to STORE, then executing
578 BODY, which must return a Lisp form that does the necessary `setf' operation.
579 Actually, ARGLIST and STORE may be bound to temporary variables which are
580 introduced automatically to preserve proper execution order of the arguments.
581 Example:
583 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
585 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
587 (autoload 'get-setf-method "cl-macs" "\
588 Return a list of five values describing the setf-method for PLACE.
589 PLACE may be any Lisp form which can appear as the PLACE argument to
590 a macro like `setf' or `incf'.
592 \(fn PLACE &optional ENV)" nil nil)
594 (autoload 'setf "cl-macs" "\
595 Set each PLACE to the value of its VAL.
596 This is a generalized version of `setq'; the PLACEs may be symbolic
597 references such as (car x) or (aref x i), as well as plain symbols.
598 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
599 The return value is the last VAL in the list.
601 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
603 (autoload 'psetf "cl-macs" "\
604 Set PLACEs to the values VALs in parallel.
605 This is like `setf', except that all VAL forms are evaluated (in order)
606 before assigning any PLACEs to the corresponding values.
608 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
610 (autoload 'cl-do-pop "cl-macs" "\
613 \(fn PLACE)" nil nil)
615 (autoload 'remf "cl-macs" "\
616 Remove TAG from property list PLACE.
617 PLACE may be a symbol, or any generalized variable allowed by `setf'.
618 The form returns true if TAG was found and removed, nil otherwise.
620 \(fn PLACE TAG)" nil (quote macro))
622 (autoload 'shiftf "cl-macs" "\
623 Shift left among PLACEs.
624 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
625 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
627 \(fn PLACE... VAL)" nil (quote macro))
629 (autoload 'rotatef "cl-macs" "\
630 Rotate left among PLACEs.
631 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
632 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
634 \(fn PLACE...)" nil (quote macro))
636 (autoload 'letf "cl-macs" "\
637 Temporarily bind to PLACEs.
638 This is the analogue of `let', but with generalized variables (in the
639 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
640 VALUE, then the BODY forms are executed. On exit, either normally or
641 because of a `throw' or error, the PLACEs are set back to their original
642 values. Note that this macro is *not* available in Common Lisp.
643 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
644 the PLACE is not modified before executing BODY.
646 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
648 (autoload 'letf* "cl-macs" "\
649 Temporarily bind to PLACEs.
650 This is the analogue of `let*', but with generalized variables (in the
651 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
652 VALUE, then the BODY forms are executed. On exit, either normally or
653 because of a `throw' or error, the PLACEs are set back to their original
654 values. Note that this macro is *not* available in Common Lisp.
655 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
656 the PLACE is not modified before executing BODY.
658 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
660 (autoload 'callf "cl-macs" "\
661 Set PLACE to (FUNC PLACE ARGS...).
662 FUNC should be an unquoted function name. PLACE may be a symbol,
663 or any generalized variable allowed by `setf'.
665 \(fn FUNC PLACE ARGS...)" nil (quote macro))
667 (autoload 'callf2 "cl-macs" "\
668 Set PLACE to (FUNC ARG1 PLACE ARGS...).
669 Like `callf', but PLACE is the second argument of FUNC, not the first.
671 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
673 (autoload 'define-modify-macro "cl-macs" "\
674 Define a `setf'-like modify macro.
675 If NAME is called, it combines its PLACE argument with the other arguments
676 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
678 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
680 (autoload 'defstruct "cl-macs" "\
681 Define a struct type.
682 This macro defines a new data type called NAME that stores data
683 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
684 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
685 You can use the accessors to set the corresponding slots, via `setf'.
687 NAME may instead take the form (NAME OPTIONS...), where each
688 OPTION is either a single keyword or (KEYWORD VALUE).
689 See Info node `(cl)Structures' for a list of valid keywords.
691 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
692 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
693 one keyword is supported, `:read-only'. If this has a non-nil
694 value, that slot cannot be set via `setf'.
696 \(fn NAME SLOTS...)" nil (quote macro))
698 (autoload 'cl-struct-setf-expander "cl-macs" "\
701 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
703 (autoload 'deftype "cl-macs" "\
704 Define NAME as a new data type.
705 The type name can then be used in `typecase', `check-type', etc.
707 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
709 (autoload 'typep "cl-macs" "\
710 Check that OBJECT is of type TYPE.
711 TYPE is a Common Lisp-style type specifier.
713 \(fn OBJECT TYPE)" nil nil)
715 (autoload 'check-type "cl-macs" "\
716 Verify that FORM is of type TYPE; signal an error if not.
717 STRING is an optional description of the desired type.
719 \(fn FORM TYPE &optional STRING)" nil (quote macro))
721 (autoload 'assert "cl-macs" "\
722 Verify that FORM returns non-nil; signal an error if not.
723 Second arg SHOW-ARGS means to include arguments of FORM in message.
724 Other args STRING and ARGS... are arguments to be passed to `error'.
725 They are not evaluated unless the assertion fails. If STRING is
726 omitted, a default message listing FORM itself is used.
728 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
730 (autoload 'define-compiler-macro "cl-macs" "\
731 Define a compiler-only macro.
732 This is like `defmacro', but macro expansion occurs only if the call to
733 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
734 for optimizing the way calls to FUNC are compiled; the form returned by
735 BODY should do the same thing as a call to the normal function called
736 FUNC, though possibly more efficiently. Note that, like regular macros,
737 compiler macros are expanded repeatedly until no further expansions are
738 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
739 original function call alone by declaring an initial `&whole foo' parameter
740 and then returning foo.
742 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
744 (autoload 'compiler-macroexpand "cl-macs" "\
747 \(fn FORM)" nil nil)
749 (autoload 'defsubst* "cl-macs" "\
750 Define NAME as a function.
751 Like `defun', except the function is automatically declared `inline',
752 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
753 surrounded by (block NAME ...).
755 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
757 ;;;***
759 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
760 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
761 ;;;;;; nset-difference set-difference nintersection intersection
762 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
763 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
764 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
765 ;;;;;; count position-if-not position-if position find-if-not find-if
766 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
767 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
768 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
769 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "df375ddc313f0c1c262cacab5cffd3e4")
770 ;;; Generated autoloads from cl-seq.el
772 (autoload 'reduce "cl-seq" "\
773 Reduce two-argument FUNCTION across SEQ.
775 Keywords supported: :start :end :from-end :initial-value :key
777 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
779 (autoload 'fill "cl-seq" "\
780 Fill the elements of SEQ with ITEM.
782 Keywords supported: :start :end
784 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
786 (autoload 'replace "cl-seq" "\
787 Replace the elements of SEQ1 with the elements of SEQ2.
788 SEQ1 is destructively modified, then returned.
790 Keywords supported: :start1 :end1 :start2 :end2
792 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
794 (autoload 'remove* "cl-seq" "\
795 Remove all occurrences of ITEM in SEQ.
796 This is a non-destructive function; it makes a copy of SEQ if necessary
797 to avoid corrupting the original SEQ.
799 Keywords supported: :test :test-not :key :count :start :end :from-end
801 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
803 (autoload 'remove-if "cl-seq" "\
804 Remove all items satisfying PREDICATE in SEQ.
805 This is a non-destructive function; it makes a copy of SEQ if necessary
806 to avoid corrupting the original SEQ.
808 Keywords supported: :key :count :start :end :from-end
810 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
812 (autoload 'remove-if-not "cl-seq" "\
813 Remove all items not satisfying PREDICATE in SEQ.
814 This is a non-destructive function; it makes a copy of SEQ if necessary
815 to avoid corrupting the original SEQ.
817 Keywords supported: :key :count :start :end :from-end
819 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
821 (autoload 'delete* "cl-seq" "\
822 Remove all occurrences of ITEM in SEQ.
823 This is a destructive function; it reuses the storage of SEQ whenever possible.
825 Keywords supported: :test :test-not :key :count :start :end :from-end
827 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
829 (autoload 'delete-if "cl-seq" "\
830 Remove all items satisfying PREDICATE in SEQ.
831 This is a destructive function; it reuses the storage of SEQ whenever possible.
833 Keywords supported: :key :count :start :end :from-end
835 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
837 (autoload 'delete-if-not "cl-seq" "\
838 Remove all items not satisfying PREDICATE in SEQ.
839 This is a destructive function; it reuses the storage of SEQ whenever possible.
841 Keywords supported: :key :count :start :end :from-end
843 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
845 (autoload 'remove-duplicates "cl-seq" "\
846 Return a copy of SEQ with all duplicate elements removed.
848 Keywords supported: :test :test-not :key :start :end :from-end
850 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
852 (autoload 'delete-duplicates "cl-seq" "\
853 Remove all duplicate elements from SEQ (destructively).
855 Keywords supported: :test :test-not :key :start :end :from-end
857 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
859 (autoload 'substitute "cl-seq" "\
860 Substitute NEW for OLD in SEQ.
861 This is a non-destructive function; it makes a copy of SEQ if necessary
862 to avoid corrupting the original SEQ.
864 Keywords supported: :test :test-not :key :count :start :end :from-end
866 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
868 (autoload 'substitute-if "cl-seq" "\
869 Substitute NEW for all items satisfying PREDICATE in SEQ.
870 This is a non-destructive function; it makes a copy of SEQ if necessary
871 to avoid corrupting the original SEQ.
873 Keywords supported: :key :count :start :end :from-end
875 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
877 (autoload 'substitute-if-not "cl-seq" "\
878 Substitute NEW for all items not satisfying PREDICATE in SEQ.
879 This is a non-destructive function; it makes a copy of SEQ if necessary
880 to avoid corrupting the original SEQ.
882 Keywords supported: :key :count :start :end :from-end
884 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
886 (autoload 'nsubstitute "cl-seq" "\
887 Substitute NEW for OLD in SEQ.
888 This is a destructive function; it reuses the storage of SEQ whenever possible.
890 Keywords supported: :test :test-not :key :count :start :end :from-end
892 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
894 (autoload 'nsubstitute-if "cl-seq" "\
895 Substitute NEW for all items satisfying PREDICATE in SEQ.
896 This is a destructive function; it reuses the storage of SEQ whenever possible.
898 Keywords supported: :key :count :start :end :from-end
900 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
902 (autoload 'nsubstitute-if-not "cl-seq" "\
903 Substitute NEW for all items not satisfying PREDICATE in SEQ.
904 This is a destructive function; it reuses the storage of SEQ whenever possible.
906 Keywords supported: :key :count :start :end :from-end
908 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
910 (autoload 'find "cl-seq" "\
911 Find the first occurrence of ITEM in SEQ.
912 Return the matching ITEM, or nil if not found.
914 Keywords supported: :test :test-not :key :start :end :from-end
916 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
918 (autoload 'find-if "cl-seq" "\
919 Find the first item satisfying PREDICATE in SEQ.
920 Return the matching item, or nil if not found.
922 Keywords supported: :key :start :end :from-end
924 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
926 (autoload 'find-if-not "cl-seq" "\
927 Find the first item not satisfying PREDICATE in SEQ.
928 Return the matching item, or nil if not found.
930 Keywords supported: :key :start :end :from-end
932 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
934 (autoload 'position "cl-seq" "\
935 Find the first occurrence of ITEM in SEQ.
936 Return the index of the matching item, or nil if not found.
938 Keywords supported: :test :test-not :key :start :end :from-end
940 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
942 (autoload 'position-if "cl-seq" "\
943 Find the first item satisfying PREDICATE in SEQ.
944 Return the index of the matching item, or nil if not found.
946 Keywords supported: :key :start :end :from-end
948 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950 (autoload 'position-if-not "cl-seq" "\
951 Find the first item not satisfying PREDICATE in SEQ.
952 Return the index of the matching item, or nil if not found.
954 Keywords supported: :key :start :end :from-end
956 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
958 (autoload 'count "cl-seq" "\
959 Count the number of occurrences of ITEM in SEQ.
961 Keywords supported: :test :test-not :key :start :end
963 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
965 (autoload 'count-if "cl-seq" "\
966 Count the number of items satisfying PREDICATE in SEQ.
968 Keywords supported: :key :start :end
970 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
972 (autoload 'count-if-not "cl-seq" "\
973 Count the number of items not satisfying PREDICATE in SEQ.
975 Keywords supported: :key :start :end
977 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
979 (autoload 'mismatch "cl-seq" "\
980 Compare SEQ1 with SEQ2, return index of first mismatching element.
981 Return nil if the sequences match. If one sequence is a prefix of the
982 other, the return value indicates the end of the shorter sequence.
984 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
986 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
988 (autoload 'search "cl-seq" "\
989 Search for SEQ1 as a subsequence of SEQ2.
990 Return the index of the leftmost element of the first match found;
991 return nil if there are no matches.
993 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
995 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
997 (autoload 'sort* "cl-seq" "\
998 Sort the argument SEQ according to PREDICATE.
999 This is a destructive function; it reuses the storage of SEQ if possible.
1001 Keywords supported: :key
1003 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1005 (autoload 'stable-sort "cl-seq" "\
1006 Sort the argument SEQ stably according to PREDICATE.
1007 This is a destructive function; it reuses the storage of SEQ if possible.
1009 Keywords supported: :key
1011 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1013 (autoload 'merge "cl-seq" "\
1014 Destructively merge the two sequences to produce a new sequence.
1015 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1016 sequences, and PREDICATE is a `less-than' predicate on the elements.
1018 Keywords supported: :key
1020 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1022 (autoload 'member* "cl-seq" "\
1023 Find the first occurrence of ITEM in LIST.
1024 Return the sublist of LIST whose car is ITEM.
1026 Keywords supported: :test :test-not :key
1028 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1030 (autoload 'member-if "cl-seq" "\
1031 Find the first item satisfying PREDICATE in LIST.
1032 Return the sublist of LIST whose car matches.
1034 Keywords supported: :key
1036 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1038 (autoload 'member-if-not "cl-seq" "\
1039 Find the first item not satisfying PREDICATE in LIST.
1040 Return the sublist of LIST whose car matches.
1042 Keywords supported: :key
1044 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1046 (autoload 'cl-adjoin "cl-seq" "\
1047 Not documented
1049 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1051 (autoload 'assoc* "cl-seq" "\
1052 Find the first item whose car matches ITEM in LIST.
1054 Keywords supported: :test :test-not :key
1056 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1058 (autoload 'assoc-if "cl-seq" "\
1059 Find the first item whose car satisfies PREDICATE in LIST.
1061 Keywords supported: :key
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1065 (autoload 'assoc-if-not "cl-seq" "\
1066 Find the first item whose car does not satisfy PREDICATE in LIST.
1068 Keywords supported: :key
1070 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1072 (autoload 'rassoc* "cl-seq" "\
1073 Find the first item whose cdr matches ITEM in LIST.
1075 Keywords supported: :test :test-not :key
1077 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1079 (autoload 'rassoc-if "cl-seq" "\
1080 Find the first item whose cdr satisfies PREDICATE in LIST.
1082 Keywords supported: :key
1084 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1086 (autoload 'rassoc-if-not "cl-seq" "\
1087 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1089 Keywords supported: :key
1091 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1093 (autoload 'union "cl-seq" "\
1094 Combine LIST1 and LIST2 using a set-union operation.
1095 The resulting list contains all items that appear in either LIST1 or LIST2.
1096 This is a non-destructive function; it makes a copy of the data if necessary
1097 to avoid corrupting the original LIST1 and LIST2.
1099 Keywords supported: :test :test-not :key
1101 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1103 (autoload 'nunion "cl-seq" "\
1104 Combine LIST1 and LIST2 using a set-union operation.
1105 The resulting list contains all items that appear in either LIST1 or LIST2.
1106 This is a destructive function; it reuses the storage of LIST1 and LIST2
1107 whenever possible.
1109 Keywords supported: :test :test-not :key
1111 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1113 (autoload 'intersection "cl-seq" "\
1114 Combine LIST1 and LIST2 using a set-intersection operation.
1115 The resulting list contains all items that appear in both LIST1 and LIST2.
1116 This is a non-destructive function; it makes a copy of the data if necessary
1117 to avoid corrupting the original LIST1 and LIST2.
1119 Keywords supported: :test :test-not :key
1121 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1123 (autoload 'nintersection "cl-seq" "\
1124 Combine LIST1 and LIST2 using a set-intersection operation.
1125 The resulting list contains all items that appear in both LIST1 and LIST2.
1126 This is a destructive function; it reuses the storage of LIST1 and LIST2
1127 whenever possible.
1129 Keywords supported: :test :test-not :key
1131 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1133 (autoload 'set-difference "cl-seq" "\
1134 Combine LIST1 and LIST2 using a set-difference operation.
1135 The resulting list contains all items that appear in LIST1 but not LIST2.
1136 This is a non-destructive function; it makes a copy of the data if necessary
1137 to avoid corrupting the original LIST1 and LIST2.
1139 Keywords supported: :test :test-not :key
1141 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1143 (autoload 'nset-difference "cl-seq" "\
1144 Combine LIST1 and LIST2 using a set-difference operation.
1145 The resulting list contains all items that appear in LIST1 but not LIST2.
1146 This is a destructive function; it reuses the storage of LIST1 and LIST2
1147 whenever possible.
1149 Keywords supported: :test :test-not :key
1151 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1153 (autoload 'set-exclusive-or "cl-seq" "\
1154 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1155 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1156 This is a non-destructive function; it makes a copy of the data if necessary
1157 to avoid corrupting the original LIST1 and LIST2.
1159 Keywords supported: :test :test-not :key
1161 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1163 (autoload 'nset-exclusive-or "cl-seq" "\
1164 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1165 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1166 This is a destructive function; it reuses the storage of LIST1 and LIST2
1167 whenever possible.
1169 Keywords supported: :test :test-not :key
1171 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1173 (autoload 'subsetp "cl-seq" "\
1174 Return true if LIST1 is a subset of LIST2.
1175 I.e., if every element of LIST1 also appears in LIST2.
1177 Keywords supported: :test :test-not :key
1179 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1181 (autoload 'subst-if "cl-seq" "\
1182 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1183 Return a copy of TREE with all matching elements replaced by NEW.
1185 Keywords supported: :key
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1189 (autoload 'subst-if-not "cl-seq" "\
1190 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1191 Return a copy of TREE with all non-matching elements replaced by NEW.
1193 Keywords supported: :key
1195 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1197 (autoload 'nsubst "cl-seq" "\
1198 Substitute NEW for OLD everywhere in TREE (destructively).
1199 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1200 to `setcar').
1202 Keywords supported: :test :test-not :key
1204 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1206 (autoload 'nsubst-if "cl-seq" "\
1207 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1208 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1210 Keywords supported: :key
1212 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1214 (autoload 'nsubst-if-not "cl-seq" "\
1215 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1216 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1218 Keywords supported: :key
1220 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1222 (autoload 'sublis "cl-seq" "\
1223 Perform substitutions indicated by ALIST in TREE (non-destructively).
1224 Return a copy of TREE with all matching elements replaced.
1226 Keywords supported: :test :test-not :key
1228 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1230 (autoload 'nsublis "cl-seq" "\
1231 Perform substitutions indicated by ALIST in TREE (destructively).
1232 Any matching element of TREE is changed via a call to `setcar'.
1234 Keywords supported: :test :test-not :key
1236 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1238 (autoload 'tree-equal "cl-seq" "\
1239 Return t if trees TREE1 and TREE2 have `eql' leaves.
1240 Atoms are compared by `eql'; cons cells are compared recursively.
1242 Keywords supported: :test :test-not :key
1244 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1246 ;;;***
1248 ;; Local Variables:
1249 ;; version-control: never
1250 ;; no-byte-compile: t
1251 ;; no-update-autoloads: t
1252 ;; coding: utf-8
1253 ;; End:
1254 ;;; cl-loaddefs.el ends here