Implement native scrolling of the webkit xwidget
[emacs.git] / src / alloc.c
blob22a15b4ac59e63e5ffa21d1f3f2eb23cd5595b8b
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
87 #include <unistd.h>
88 #include <fcntl.h>
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
98 #ifdef DOUG_LEA_MALLOC
100 #include <malloc.h>
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold;
140 /* True during GC. */
142 bool gc_in_progress;
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
148 bool abort_on_gc;
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg;
179 static ptrdiff_t pure_size;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp;
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
202 const char *pending_malloc_warning;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object;
218 void *backtrace[128];
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
264 #endif /* MAX_SAVE_STACK > 0 */
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer *);
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
282 enum mem_type
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
294 MEM_TYPE_VECTORLIKE,
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK,
297 /* Special type to denote reserved memory. */
298 MEM_TYPE_SPARE
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 static Lisp_Object Vdead;
307 #define DEADP(x) EQ (x, Vdead)
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
320 A red-black tree is a balanced binary tree with the following
321 properties:
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
339 struct mem_node
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
348 /* Start and end of allocated region. */
349 void *start, *end;
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
354 /* Memory type. */
355 enum mem_type type;
358 /* Base address of stack. Set in main. */
360 Lisp_Object *stack_base;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node *mem_root;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address, *max_heap_address;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
375 static struct mem_node *mem_insert (void *, void *, enum mem_type);
376 static void mem_insert_fixup (struct mem_node *);
377 static void mem_rotate_left (struct mem_node *);
378 static void mem_rotate_right (struct mem_node *);
379 static void mem_delete (struct mem_node *);
380 static void mem_delete_fixup (struct mem_node *);
381 static struct mem_node *mem_find (void *);
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
385 #ifndef DEADP
386 # define DEADP(x) 0
387 #endif
389 /* Recording what needs to be marked for gc. */
391 struct gcpro *gcprolist;
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
396 enum { NSTATICS = 2048 };
397 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
399 /* Index of next unused slot in staticvec. */
401 static int staticidx;
403 static void *pure_alloc (size_t, int);
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
415 static void *
416 ALIGN (void *ptr, int alignment)
418 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
421 static void
422 XFLOAT_INIT (Lisp_Object f, double n)
424 XFLOAT (f)->u.data = n;
427 static bool
428 pointers_fit_in_lispobj_p (void)
430 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
433 static bool
434 mmap_lisp_allowed_p (void)
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
440 regions. */
441 return pointers_fit_in_lispobj_p () && !might_dump;
445 /************************************************************************
446 Malloc
447 ************************************************************************/
449 /* Function malloc calls this if it finds we are near exhausting storage. */
451 void
452 malloc_warning (const char *str)
454 pending_malloc_warning = str;
458 /* Display an already-pending malloc warning. */
460 void
461 display_malloc_warning (void)
463 call3 (intern ("display-warning"),
464 intern ("alloc"),
465 build_string (pending_malloc_warning),
466 intern ("emergency"));
467 pending_malloc_warning = 0;
470 /* Called if we can't allocate relocatable space for a buffer. */
472 void
473 buffer_memory_full (ptrdiff_t nbytes)
475 /* If buffers use the relocating allocator, no need to free
476 spare_memory, because we may have plenty of malloc space left
477 that we could get, and if we don't, the malloc that fails will
478 itself cause spare_memory to be freed. If buffers don't use the
479 relocating allocator, treat this like any other failing
480 malloc. */
482 #ifndef REL_ALLOC
483 memory_full (nbytes);
484 #else
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil, Vmemory_signal_data);
488 #endif
491 /* A common multiple of the positive integers A and B. Ideally this
492 would be the least common multiple, but there's no way to do that
493 as a constant expression in C, so do the best that we can easily do. */
494 #define COMMON_MULTIPLE(a, b) \
495 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
497 #ifndef XMALLOC_OVERRUN_CHECK
498 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
499 #else
501 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
502 around each block.
504 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
505 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
506 block size in little-endian order. The trailer consists of
507 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions, as some low-level libc functions may
511 bypass the malloc hooks. */
513 #define XMALLOC_OVERRUN_CHECK_SIZE 16
514 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
515 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
517 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
518 hold a size_t value and (2) the header size is a multiple of the
519 alignment that Emacs needs for C types and for USE_LSB_TAG. */
520 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
522 #if USE_LSB_TAG
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
546 /* Insert and extract the block size in the header. */
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 size <<= CHAR_BIT;
568 size += *ptr++;
570 return size;
574 /* Like malloc, but wraps allocated block with header and trailer. */
576 static void *
577 overrun_check_malloc (size_t size)
579 register unsigned char *val;
580 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
581 emacs_abort ();
583 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 if (val)
586 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
587 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
588 xmalloc_put_size (val, size);
589 memcpy (val + size, xmalloc_overrun_check_trailer,
590 XMALLOC_OVERRUN_CHECK_SIZE);
592 return val;
596 /* Like realloc, but checks old block for overrun, and wraps new block
597 with header and trailer. */
599 static void *
600 overrun_check_realloc (void *block, size_t size)
602 register unsigned char *val = (unsigned char *) block;
603 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
604 emacs_abort ();
606 if (val
607 && memcmp (xmalloc_overrun_check_header,
608 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
609 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
611 size_t osize = xmalloc_get_size (val);
612 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
613 XMALLOC_OVERRUN_CHECK_SIZE))
614 emacs_abort ();
615 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
616 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
617 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
620 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
622 if (val)
624 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
625 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
626 xmalloc_put_size (val, size);
627 memcpy (val + size, xmalloc_overrun_check_trailer,
628 XMALLOC_OVERRUN_CHECK_SIZE);
630 return val;
633 /* Like free, but checks block for overrun. */
635 static void
636 overrun_check_free (void *block)
638 unsigned char *val = (unsigned char *) block;
640 if (val
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
645 size_t osize = xmalloc_get_size (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 emacs_abort ();
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
652 #else
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 #endif
659 free (val);
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
670 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
671 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
672 If that variable is set, block input while in one of Emacs's memory
673 allocation functions. There should be no need for this debugging
674 option, since signal handlers do not allocate memory, but Emacs
675 formerly allocated memory in signal handlers and this compile-time
676 option remains as a way to help debug the issue should it rear its
677 ugly head again. */
678 #ifdef XMALLOC_BLOCK_INPUT_CHECK
679 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
680 static void
681 malloc_block_input (void)
683 if (block_input_in_memory_allocators)
684 block_input ();
686 static void
687 malloc_unblock_input (void)
689 if (block_input_in_memory_allocators)
690 unblock_input ();
692 # define MALLOC_BLOCK_INPUT malloc_block_input ()
693 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
694 #else
695 # define MALLOC_BLOCK_INPUT ((void) 0)
696 # define MALLOC_UNBLOCK_INPUT ((void) 0)
697 #endif
699 #define MALLOC_PROBE(size) \
700 do { \
701 if (profiler_memory_running) \
702 malloc_probe (size); \
703 } while (0)
706 /* Like malloc but check for no memory and block interrupt input.. */
708 void *
709 xmalloc (size_t size)
711 void *val;
713 MALLOC_BLOCK_INPUT;
714 val = malloc (size);
715 MALLOC_UNBLOCK_INPUT;
717 if (!val && size)
718 memory_full (size);
719 MALLOC_PROBE (size);
720 return val;
723 /* Like the above, but zeroes out the memory just allocated. */
725 void *
726 xzalloc (size_t size)
728 void *val;
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
734 if (!val && size)
735 memory_full (size);
736 memset (val, 0, size);
737 MALLOC_PROBE (size);
738 return val;
741 /* Like realloc but check for no memory and block interrupt input.. */
743 void *
744 xrealloc (void *block, size_t size)
746 void *val;
748 MALLOC_BLOCK_INPUT;
749 /* We must call malloc explicitly when BLOCK is 0, since some
750 reallocs don't do this. */
751 if (! block)
752 val = malloc (size);
753 else
754 val = realloc (block, size);
755 MALLOC_UNBLOCK_INPUT;
757 if (!val && size)
758 memory_full (size);
759 MALLOC_PROBE (size);
760 return val;
764 /* Like free but block interrupt input. */
766 void
767 xfree (void *block)
769 if (!block)
770 return;
771 MALLOC_BLOCK_INPUT;
772 free (block);
773 MALLOC_UNBLOCK_INPUT;
774 /* We don't call refill_memory_reserve here
775 because in practice the call in r_alloc_free seems to suffice. */
779 /* Other parts of Emacs pass large int values to allocator functions
780 expecting ptrdiff_t. This is portable in practice, but check it to
781 be safe. */
782 verify (INT_MAX <= PTRDIFF_MAX);
785 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
786 Signal an error on memory exhaustion, and block interrupt input. */
788 void *
789 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
791 eassert (0 <= nitems && 0 < item_size);
792 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
793 memory_full (SIZE_MAX);
794 return xmalloc (nitems * item_size);
798 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
801 void *
802 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
804 eassert (0 <= nitems && 0 < item_size);
805 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
806 memory_full (SIZE_MAX);
807 return xrealloc (pa, nitems * item_size);
811 /* Grow PA, which points to an array of *NITEMS items, and return the
812 location of the reallocated array, updating *NITEMS to reflect its
813 new size. The new array will contain at least NITEMS_INCR_MIN more
814 items, but will not contain more than NITEMS_MAX items total.
815 ITEM_SIZE is the size of each item, in bytes.
817 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
818 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
819 infinity.
821 If PA is null, then allocate a new array instead of reallocating
822 the old one.
824 Block interrupt input as needed. If memory exhaustion occurs, set
825 *NITEMS to zero if PA is null, and signal an error (i.e., do not
826 return).
828 Thus, to grow an array A without saving its old contents, do
829 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
830 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
831 and signals an error, and later this code is reexecuted and
832 attempts to free A. */
834 void *
835 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
836 ptrdiff_t nitems_max, ptrdiff_t item_size)
838 /* The approximate size to use for initial small allocation
839 requests. This is the largest "small" request for the GNU C
840 library malloc. */
841 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
843 /* If the array is tiny, grow it to about (but no greater than)
844 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
845 ptrdiff_t n = *nitems;
846 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
847 ptrdiff_t half_again = n >> 1;
848 ptrdiff_t incr_estimate = max (tiny_max, half_again);
850 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
851 NITEMS_MAX, and what the C language can represent safely. */
852 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
853 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
854 ? nitems_max : C_language_max);
855 ptrdiff_t nitems_incr_max = n_max - n;
856 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
858 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
859 if (! pa)
860 *nitems = 0;
861 if (nitems_incr_max < incr)
862 memory_full (SIZE_MAX);
863 n += incr;
864 pa = xrealloc (pa, n * item_size);
865 *nitems = n;
866 return pa;
870 /* Like strdup, but uses xmalloc. */
872 char *
873 xstrdup (const char *s)
875 ptrdiff_t size;
876 eassert (s);
877 size = strlen (s) + 1;
878 return memcpy (xmalloc (size), s, size);
881 /* Like above, but duplicates Lisp string to C string. */
883 char *
884 xlispstrdup (Lisp_Object string)
886 ptrdiff_t size = SBYTES (string) + 1;
887 return memcpy (xmalloc (size), SSDATA (string), size);
890 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
891 pointed to. If STRING is null, assign it without copying anything.
892 Allocate before freeing, to avoid a dangling pointer if allocation
893 fails. */
895 void
896 dupstring (char **ptr, char const *string)
898 char *old = *ptr;
899 *ptr = string ? xstrdup (string) : 0;
900 xfree (old);
904 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
905 argument is a const pointer. */
907 void
908 xputenv (char const *string)
910 if (putenv ((char *) string) != 0)
911 memory_full (0);
914 /* Return a newly allocated memory block of SIZE bytes, remembering
915 to free it when unwinding. */
916 void *
917 record_xmalloc (size_t size)
919 void *p = xmalloc (size);
920 record_unwind_protect_ptr (xfree, p);
921 return p;
925 /* Like malloc but used for allocating Lisp data. NBYTES is the
926 number of bytes to allocate, TYPE describes the intended use of the
927 allocated memory block (for strings, for conses, ...). */
929 #if ! USE_LSB_TAG
930 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
931 #endif
933 static void *
934 lisp_malloc (size_t nbytes, enum mem_type type)
936 register void *val;
938 MALLOC_BLOCK_INPUT;
940 #ifdef GC_MALLOC_CHECK
941 allocated_mem_type = type;
942 #endif
944 val = malloc (nbytes);
946 #if ! USE_LSB_TAG
947 /* If the memory just allocated cannot be addressed thru a Lisp
948 object's pointer, and it needs to be,
949 that's equivalent to running out of memory. */
950 if (val && type != MEM_TYPE_NON_LISP)
952 Lisp_Object tem;
953 XSETCONS (tem, (char *) val + nbytes - 1);
954 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
956 lisp_malloc_loser = val;
957 free (val);
958 val = 0;
961 #endif
963 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
964 if (val && type != MEM_TYPE_NON_LISP)
965 mem_insert (val, (char *) val + nbytes, type);
966 #endif
968 MALLOC_UNBLOCK_INPUT;
969 if (!val && nbytes)
970 memory_full (nbytes);
971 MALLOC_PROBE (nbytes);
972 return val;
975 /* Free BLOCK. This must be called to free memory allocated with a
976 call to lisp_malloc. */
978 static void
979 lisp_free (void *block)
981 MALLOC_BLOCK_INPUT;
982 free (block);
983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
984 mem_delete (mem_find (block));
985 #endif
986 MALLOC_UNBLOCK_INPUT;
989 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
991 /* The entry point is lisp_align_malloc which returns blocks of at most
992 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
994 /* Use aligned_alloc if it or a simple substitute is available.
995 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
996 clang 3.3 anyway. */
998 #if ! ADDRESS_SANITIZER
999 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1000 # define USE_ALIGNED_ALLOC 1
1001 /* Defined in gmalloc.c. */
1002 void *aligned_alloc (size_t, size_t);
1003 # elif defined HYBRID_MALLOC
1004 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1005 # define USE_ALIGNED_ALLOC 1
1006 # define aligned_alloc hybrid_aligned_alloc
1007 /* Defined in gmalloc.c. */
1008 void *aligned_alloc (size_t, size_t);
1009 # endif
1010 # elif defined HAVE_ALIGNED_ALLOC
1011 # define USE_ALIGNED_ALLOC 1
1012 # elif defined HAVE_POSIX_MEMALIGN
1013 # define USE_ALIGNED_ALLOC 1
1014 static void *
1015 aligned_alloc (size_t alignment, size_t size)
1017 void *p;
1018 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1020 # endif
1021 #endif
1023 /* BLOCK_ALIGN has to be a power of 2. */
1024 #define BLOCK_ALIGN (1 << 10)
1026 /* Padding to leave at the end of a malloc'd block. This is to give
1027 malloc a chance to minimize the amount of memory wasted to alignment.
1028 It should be tuned to the particular malloc library used.
1029 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1030 aligned_alloc on the other hand would ideally prefer a value of 4
1031 because otherwise, there's 1020 bytes wasted between each ablocks.
1032 In Emacs, testing shows that those 1020 can most of the time be
1033 efficiently used by malloc to place other objects, so a value of 0 can
1034 still preferable unless you have a lot of aligned blocks and virtually
1035 nothing else. */
1036 #define BLOCK_PADDING 0
1037 #define BLOCK_BYTES \
1038 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1040 /* Internal data structures and constants. */
1042 #define ABLOCKS_SIZE 16
1044 /* An aligned block of memory. */
1045 struct ablock
1047 union
1049 char payload[BLOCK_BYTES];
1050 struct ablock *next_free;
1051 } x;
1052 /* `abase' is the aligned base of the ablocks. */
1053 /* It is overloaded to hold the virtual `busy' field that counts
1054 the number of used ablock in the parent ablocks.
1055 The first ablock has the `busy' field, the others have the `abase'
1056 field. To tell the difference, we assume that pointers will have
1057 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1058 is used to tell whether the real base of the parent ablocks is `abase'
1059 (if not, the word before the first ablock holds a pointer to the
1060 real base). */
1061 struct ablocks *abase;
1062 /* The padding of all but the last ablock is unused. The padding of
1063 the last ablock in an ablocks is not allocated. */
1064 #if BLOCK_PADDING
1065 char padding[BLOCK_PADDING];
1066 #endif
1069 /* A bunch of consecutive aligned blocks. */
1070 struct ablocks
1072 struct ablock blocks[ABLOCKS_SIZE];
1075 /* Size of the block requested from malloc or aligned_alloc. */
1076 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1078 #define ABLOCK_ABASE(block) \
1079 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1080 ? (struct ablocks *)(block) \
1081 : (block)->abase)
1083 /* Virtual `busy' field. */
1084 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1086 /* Pointer to the (not necessarily aligned) malloc block. */
1087 #ifdef USE_ALIGNED_ALLOC
1088 #define ABLOCKS_BASE(abase) (abase)
1089 #else
1090 #define ABLOCKS_BASE(abase) \
1091 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1092 #endif
1094 /* The list of free ablock. */
1095 static struct ablock *free_ablock;
1097 /* Allocate an aligned block of nbytes.
1098 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1099 smaller or equal to BLOCK_BYTES. */
1100 static void *
1101 lisp_align_malloc (size_t nbytes, enum mem_type type)
1103 void *base, *val;
1104 struct ablocks *abase;
1106 eassert (nbytes <= BLOCK_BYTES);
1108 MALLOC_BLOCK_INPUT;
1110 #ifdef GC_MALLOC_CHECK
1111 allocated_mem_type = type;
1112 #endif
1114 if (!free_ablock)
1116 int i;
1117 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1119 #ifdef DOUG_LEA_MALLOC
1120 if (!mmap_lisp_allowed_p ())
1121 mallopt (M_MMAP_MAX, 0);
1122 #endif
1124 #ifdef USE_ALIGNED_ALLOC
1125 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1126 #else
1127 base = malloc (ABLOCKS_BYTES);
1128 abase = ALIGN (base, BLOCK_ALIGN);
1129 #endif
1131 if (base == 0)
1133 MALLOC_UNBLOCK_INPUT;
1134 memory_full (ABLOCKS_BYTES);
1137 aligned = (base == abase);
1138 if (!aligned)
1139 ((void **) abase)[-1] = base;
1141 #ifdef DOUG_LEA_MALLOC
1142 if (!mmap_lisp_allowed_p ())
1143 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1144 #endif
1146 #if ! USE_LSB_TAG
1147 /* If the memory just allocated cannot be addressed thru a Lisp
1148 object's pointer, and it needs to be, that's equivalent to
1149 running out of memory. */
1150 if (type != MEM_TYPE_NON_LISP)
1152 Lisp_Object tem;
1153 char *end = (char *) base + ABLOCKS_BYTES - 1;
1154 XSETCONS (tem, end);
1155 if ((char *) XCONS (tem) != end)
1157 lisp_malloc_loser = base;
1158 free (base);
1159 MALLOC_UNBLOCK_INPUT;
1160 memory_full (SIZE_MAX);
1163 #endif
1165 /* Initialize the blocks and put them on the free list.
1166 If `base' was not properly aligned, we can't use the last block. */
1167 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1169 abase->blocks[i].abase = abase;
1170 abase->blocks[i].x.next_free = free_ablock;
1171 free_ablock = &abase->blocks[i];
1173 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1175 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1176 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1177 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1178 eassert (ABLOCKS_BASE (abase) == base);
1179 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1182 abase = ABLOCK_ABASE (free_ablock);
1183 ABLOCKS_BUSY (abase)
1184 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1185 val = free_ablock;
1186 free_ablock = free_ablock->x.next_free;
1188 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1189 if (type != MEM_TYPE_NON_LISP)
1190 mem_insert (val, (char *) val + nbytes, type);
1191 #endif
1193 MALLOC_UNBLOCK_INPUT;
1195 MALLOC_PROBE (nbytes);
1197 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1198 return val;
1201 static void
1202 lisp_align_free (void *block)
1204 struct ablock *ablock = block;
1205 struct ablocks *abase = ABLOCK_ABASE (ablock);
1207 MALLOC_BLOCK_INPUT;
1208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1209 mem_delete (mem_find (block));
1210 #endif
1211 /* Put on free list. */
1212 ablock->x.next_free = free_ablock;
1213 free_ablock = ablock;
1214 /* Update busy count. */
1215 ABLOCKS_BUSY (abase)
1216 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1218 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1219 { /* All the blocks are free. */
1220 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1221 struct ablock **tem = &free_ablock;
1222 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1224 while (*tem)
1226 if (*tem >= (struct ablock *) abase && *tem < atop)
1228 i++;
1229 *tem = (*tem)->x.next_free;
1231 else
1232 tem = &(*tem)->x.next_free;
1234 eassert ((aligned & 1) == aligned);
1235 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1236 #ifdef USE_POSIX_MEMALIGN
1237 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1238 #endif
1239 free (ABLOCKS_BASE (abase));
1241 MALLOC_UNBLOCK_INPUT;
1245 /***********************************************************************
1246 Interval Allocation
1247 ***********************************************************************/
1249 /* Number of intervals allocated in an interval_block structure.
1250 The 1020 is 1024 minus malloc overhead. */
1252 #define INTERVAL_BLOCK_SIZE \
1253 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1255 /* Intervals are allocated in chunks in the form of an interval_block
1256 structure. */
1258 struct interval_block
1260 /* Place `intervals' first, to preserve alignment. */
1261 struct interval intervals[INTERVAL_BLOCK_SIZE];
1262 struct interval_block *next;
1265 /* Current interval block. Its `next' pointer points to older
1266 blocks. */
1268 static struct interval_block *interval_block;
1270 /* Index in interval_block above of the next unused interval
1271 structure. */
1273 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1275 /* Number of free and live intervals. */
1277 static EMACS_INT total_free_intervals, total_intervals;
1279 /* List of free intervals. */
1281 static INTERVAL interval_free_list;
1283 /* Return a new interval. */
1285 INTERVAL
1286 make_interval (void)
1288 INTERVAL val;
1290 MALLOC_BLOCK_INPUT;
1292 if (interval_free_list)
1294 val = interval_free_list;
1295 interval_free_list = INTERVAL_PARENT (interval_free_list);
1297 else
1299 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1301 struct interval_block *newi
1302 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1304 newi->next = interval_block;
1305 interval_block = newi;
1306 interval_block_index = 0;
1307 total_free_intervals += INTERVAL_BLOCK_SIZE;
1309 val = &interval_block->intervals[interval_block_index++];
1312 MALLOC_UNBLOCK_INPUT;
1314 consing_since_gc += sizeof (struct interval);
1315 intervals_consed++;
1316 total_free_intervals--;
1317 RESET_INTERVAL (val);
1318 val->gcmarkbit = 0;
1319 return val;
1323 /* Mark Lisp objects in interval I. */
1325 static void
1326 mark_interval (register INTERVAL i, Lisp_Object dummy)
1328 /* Intervals should never be shared. So, if extra internal checking is
1329 enabled, GC aborts if it seems to have visited an interval twice. */
1330 eassert (!i->gcmarkbit);
1331 i->gcmarkbit = 1;
1332 mark_object (i->plist);
1335 /* Mark the interval tree rooted in I. */
1337 #define MARK_INTERVAL_TREE(i) \
1338 do { \
1339 if (i && !i->gcmarkbit) \
1340 traverse_intervals_noorder (i, mark_interval, Qnil); \
1341 } while (0)
1343 /***********************************************************************
1344 String Allocation
1345 ***********************************************************************/
1347 /* Lisp_Strings are allocated in string_block structures. When a new
1348 string_block is allocated, all the Lisp_Strings it contains are
1349 added to a free-list string_free_list. When a new Lisp_String is
1350 needed, it is taken from that list. During the sweep phase of GC,
1351 string_blocks that are entirely free are freed, except two which
1352 we keep.
1354 String data is allocated from sblock structures. Strings larger
1355 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1356 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1358 Sblocks consist internally of sdata structures, one for each
1359 Lisp_String. The sdata structure points to the Lisp_String it
1360 belongs to. The Lisp_String points back to the `u.data' member of
1361 its sdata structure.
1363 When a Lisp_String is freed during GC, it is put back on
1364 string_free_list, and its `data' member and its sdata's `string'
1365 pointer is set to null. The size of the string is recorded in the
1366 `n.nbytes' member of the sdata. So, sdata structures that are no
1367 longer used, can be easily recognized, and it's easy to compact the
1368 sblocks of small strings which we do in compact_small_strings. */
1370 /* Size in bytes of an sblock structure used for small strings. This
1371 is 8192 minus malloc overhead. */
1373 #define SBLOCK_SIZE 8188
1375 /* Strings larger than this are considered large strings. String data
1376 for large strings is allocated from individual sblocks. */
1378 #define LARGE_STRING_BYTES 1024
1380 /* The SDATA typedef is a struct or union describing string memory
1381 sub-allocated from an sblock. This is where the contents of Lisp
1382 strings are stored. */
1384 struct sdata
1386 /* Back-pointer to the string this sdata belongs to. If null, this
1387 structure is free, and NBYTES (in this structure or in the union below)
1388 contains the string's byte size (the same value that STRING_BYTES
1389 would return if STRING were non-null). If non-null, STRING_BYTES
1390 (STRING) is the size of the data, and DATA contains the string's
1391 contents. */
1392 struct Lisp_String *string;
1394 #ifdef GC_CHECK_STRING_BYTES
1395 ptrdiff_t nbytes;
1396 #endif
1398 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1401 #ifdef GC_CHECK_STRING_BYTES
1403 typedef struct sdata sdata;
1404 #define SDATA_NBYTES(S) (S)->nbytes
1405 #define SDATA_DATA(S) (S)->data
1407 #else
1409 typedef union
1411 struct Lisp_String *string;
1413 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1414 which has a flexible array member. However, if implemented by
1415 giving this union a member of type 'struct sdata', the union
1416 could not be the last (flexible) member of 'struct sblock',
1417 because C99 prohibits a flexible array member from having a type
1418 that is itself a flexible array. So, comment this member out here,
1419 but remember that the option's there when using this union. */
1420 #if 0
1421 struct sdata u;
1422 #endif
1424 /* When STRING is null. */
1425 struct
1427 struct Lisp_String *string;
1428 ptrdiff_t nbytes;
1429 } n;
1430 } sdata;
1432 #define SDATA_NBYTES(S) (S)->n.nbytes
1433 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1435 #endif /* not GC_CHECK_STRING_BYTES */
1437 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1439 /* Structure describing a block of memory which is sub-allocated to
1440 obtain string data memory for strings. Blocks for small strings
1441 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1442 as large as needed. */
1444 struct sblock
1446 /* Next in list. */
1447 struct sblock *next;
1449 /* Pointer to the next free sdata block. This points past the end
1450 of the sblock if there isn't any space left in this block. */
1451 sdata *next_free;
1453 /* String data. */
1454 sdata data[FLEXIBLE_ARRAY_MEMBER];
1457 /* Number of Lisp strings in a string_block structure. The 1020 is
1458 1024 minus malloc overhead. */
1460 #define STRING_BLOCK_SIZE \
1461 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1463 /* Structure describing a block from which Lisp_String structures
1464 are allocated. */
1466 struct string_block
1468 /* Place `strings' first, to preserve alignment. */
1469 struct Lisp_String strings[STRING_BLOCK_SIZE];
1470 struct string_block *next;
1473 /* Head and tail of the list of sblock structures holding Lisp string
1474 data. We always allocate from current_sblock. The NEXT pointers
1475 in the sblock structures go from oldest_sblock to current_sblock. */
1477 static struct sblock *oldest_sblock, *current_sblock;
1479 /* List of sblocks for large strings. */
1481 static struct sblock *large_sblocks;
1483 /* List of string_block structures. */
1485 static struct string_block *string_blocks;
1487 /* Free-list of Lisp_Strings. */
1489 static struct Lisp_String *string_free_list;
1491 /* Number of live and free Lisp_Strings. */
1493 static EMACS_INT total_strings, total_free_strings;
1495 /* Number of bytes used by live strings. */
1497 static EMACS_INT total_string_bytes;
1499 /* Given a pointer to a Lisp_String S which is on the free-list
1500 string_free_list, return a pointer to its successor in the
1501 free-list. */
1503 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1505 /* Return a pointer to the sdata structure belonging to Lisp string S.
1506 S must be live, i.e. S->data must not be null. S->data is actually
1507 a pointer to the `u.data' member of its sdata structure; the
1508 structure starts at a constant offset in front of that. */
1510 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1513 #ifdef GC_CHECK_STRING_OVERRUN
1515 /* We check for overrun in string data blocks by appending a small
1516 "cookie" after each allocated string data block, and check for the
1517 presence of this cookie during GC. */
1519 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1520 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1521 { '\xde', '\xad', '\xbe', '\xef' };
1523 #else
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1525 #endif
1527 /* Value is the size of an sdata structure large enough to hold NBYTES
1528 bytes of string data. The value returned includes a terminating
1529 NUL byte, the size of the sdata structure, and padding. */
1531 #ifdef GC_CHECK_STRING_BYTES
1533 #define SDATA_SIZE(NBYTES) \
1534 ((SDATA_DATA_OFFSET \
1535 + (NBYTES) + 1 \
1536 + sizeof (ptrdiff_t) - 1) \
1537 & ~(sizeof (ptrdiff_t) - 1))
1539 #else /* not GC_CHECK_STRING_BYTES */
1541 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1542 less than the size of that member. The 'max' is not needed when
1543 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1544 alignment code reserves enough space. */
1546 #define SDATA_SIZE(NBYTES) \
1547 ((SDATA_DATA_OFFSET \
1548 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1549 ? NBYTES \
1550 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1551 + 1 \
1552 + sizeof (ptrdiff_t) - 1) \
1553 & ~(sizeof (ptrdiff_t) - 1))
1555 #endif /* not GC_CHECK_STRING_BYTES */
1557 /* Extra bytes to allocate for each string. */
1559 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1561 /* Exact bound on the number of bytes in a string, not counting the
1562 terminating null. A string cannot contain more bytes than
1563 STRING_BYTES_BOUND, nor can it be so long that the size_t
1564 arithmetic in allocate_string_data would overflow while it is
1565 calculating a value to be passed to malloc. */
1566 static ptrdiff_t const STRING_BYTES_MAX =
1567 min (STRING_BYTES_BOUND,
1568 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1569 - GC_STRING_EXTRA
1570 - offsetof (struct sblock, data)
1571 - SDATA_DATA_OFFSET)
1572 & ~(sizeof (EMACS_INT) - 1)));
1574 /* Initialize string allocation. Called from init_alloc_once. */
1576 static void
1577 init_strings (void)
1579 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1580 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 #ifdef GC_CHECK_STRING_BYTES
1586 static int check_string_bytes_count;
1588 /* Like STRING_BYTES, but with debugging check. Can be
1589 called during GC, so pay attention to the mark bit. */
1591 ptrdiff_t
1592 string_bytes (struct Lisp_String *s)
1594 ptrdiff_t nbytes =
1595 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1597 if (!PURE_POINTER_P (s)
1598 && s->data
1599 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1600 emacs_abort ();
1601 return nbytes;
1604 /* Check validity of Lisp strings' string_bytes member in B. */
1606 static void
1607 check_sblock (struct sblock *b)
1609 sdata *from, *end, *from_end;
1611 end = b->next_free;
1613 for (from = b->data; from < end; from = from_end)
1615 /* Compute the next FROM here because copying below may
1616 overwrite data we need to compute it. */
1617 ptrdiff_t nbytes;
1619 /* Check that the string size recorded in the string is the
1620 same as the one recorded in the sdata structure. */
1621 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1622 : SDATA_NBYTES (from));
1623 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1628 /* Check validity of Lisp strings' string_bytes member. ALL_P
1629 means check all strings, otherwise check only most
1630 recently allocated strings. Used for hunting a bug. */
1632 static void
1633 check_string_bytes (bool all_p)
1635 if (all_p)
1637 struct sblock *b;
1639 for (b = large_sblocks; b; b = b->next)
1641 struct Lisp_String *s = b->data[0].string;
1642 if (s)
1643 string_bytes (s);
1646 for (b = oldest_sblock; b; b = b->next)
1647 check_sblock (b);
1649 else if (current_sblock)
1650 check_sblock (current_sblock);
1653 #else /* not GC_CHECK_STRING_BYTES */
1655 #define check_string_bytes(all) ((void) 0)
1657 #endif /* GC_CHECK_STRING_BYTES */
1659 #ifdef GC_CHECK_STRING_FREE_LIST
1661 /* Walk through the string free list looking for bogus next pointers.
1662 This may catch buffer overrun from a previous string. */
1664 static void
1665 check_string_free_list (void)
1667 struct Lisp_String *s;
1669 /* Pop a Lisp_String off the free-list. */
1670 s = string_free_list;
1671 while (s != NULL)
1673 if ((uintptr_t) s < 1024)
1674 emacs_abort ();
1675 s = NEXT_FREE_LISP_STRING (s);
1678 #else
1679 #define check_string_free_list()
1680 #endif
1682 /* Return a new Lisp_String. */
1684 static struct Lisp_String *
1685 allocate_string (void)
1687 struct Lisp_String *s;
1689 MALLOC_BLOCK_INPUT;
1691 /* If the free-list is empty, allocate a new string_block, and
1692 add all the Lisp_Strings in it to the free-list. */
1693 if (string_free_list == NULL)
1695 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1696 int i;
1698 b->next = string_blocks;
1699 string_blocks = b;
1701 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1703 s = b->strings + i;
1704 /* Every string on a free list should have NULL data pointer. */
1705 s->data = NULL;
1706 NEXT_FREE_LISP_STRING (s) = string_free_list;
1707 string_free_list = s;
1710 total_free_strings += STRING_BLOCK_SIZE;
1713 check_string_free_list ();
1715 /* Pop a Lisp_String off the free-list. */
1716 s = string_free_list;
1717 string_free_list = NEXT_FREE_LISP_STRING (s);
1719 MALLOC_UNBLOCK_INPUT;
1721 --total_free_strings;
1722 ++total_strings;
1723 ++strings_consed;
1724 consing_since_gc += sizeof *s;
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (!noninteractive)
1729 if (++check_string_bytes_count == 200)
1731 check_string_bytes_count = 0;
1732 check_string_bytes (1);
1734 else
1735 check_string_bytes (0);
1737 #endif /* GC_CHECK_STRING_BYTES */
1739 return s;
1743 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1744 plus a NUL byte at the end. Allocate an sdata structure for S, and
1745 set S->data to its `u.data' member. Store a NUL byte at the end of
1746 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1747 S->data if it was initially non-null. */
1749 void
1750 allocate_string_data (struct Lisp_String *s,
1751 EMACS_INT nchars, EMACS_INT nbytes)
1753 sdata *data, *old_data;
1754 struct sblock *b;
1755 ptrdiff_t needed, old_nbytes;
1757 if (STRING_BYTES_MAX < nbytes)
1758 string_overflow ();
1760 /* Determine the number of bytes needed to store NBYTES bytes
1761 of string data. */
1762 needed = SDATA_SIZE (nbytes);
1763 if (s->data)
1765 old_data = SDATA_OF_STRING (s);
1766 old_nbytes = STRING_BYTES (s);
1768 else
1769 old_data = NULL;
1771 MALLOC_BLOCK_INPUT;
1773 if (nbytes > LARGE_STRING_BYTES)
1775 size_t size = offsetof (struct sblock, data) + needed;
1777 #ifdef DOUG_LEA_MALLOC
1778 if (!mmap_lisp_allowed_p ())
1779 mallopt (M_MMAP_MAX, 0);
1780 #endif
1782 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1784 #ifdef DOUG_LEA_MALLOC
1785 if (!mmap_lisp_allowed_p ())
1786 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1787 #endif
1789 b->next_free = b->data;
1790 b->data[0].string = NULL;
1791 b->next = large_sblocks;
1792 large_sblocks = b;
1794 else if (current_sblock == NULL
1795 || (((char *) current_sblock + SBLOCK_SIZE
1796 - (char *) current_sblock->next_free)
1797 < (needed + GC_STRING_EXTRA)))
1799 /* Not enough room in the current sblock. */
1800 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1801 b->next_free = b->data;
1802 b->data[0].string = NULL;
1803 b->next = NULL;
1805 if (current_sblock)
1806 current_sblock->next = b;
1807 else
1808 oldest_sblock = b;
1809 current_sblock = b;
1811 else
1812 b = current_sblock;
1814 data = b->next_free;
1815 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1817 MALLOC_UNBLOCK_INPUT;
1819 data->string = s;
1820 s->data = SDATA_DATA (data);
1821 #ifdef GC_CHECK_STRING_BYTES
1822 SDATA_NBYTES (data) = nbytes;
1823 #endif
1824 s->size = nchars;
1825 s->size_byte = nbytes;
1826 s->data[nbytes] = '\0';
1827 #ifdef GC_CHECK_STRING_OVERRUN
1828 memcpy ((char *) data + needed, string_overrun_cookie,
1829 GC_STRING_OVERRUN_COOKIE_SIZE);
1830 #endif
1832 /* Note that Faset may call to this function when S has already data
1833 assigned. In this case, mark data as free by setting it's string
1834 back-pointer to null, and record the size of the data in it. */
1835 if (old_data)
1837 SDATA_NBYTES (old_data) = old_nbytes;
1838 old_data->string = NULL;
1841 consing_since_gc += needed;
1845 /* Sweep and compact strings. */
1847 NO_INLINE /* For better stack traces */
1848 static void
1849 sweep_strings (void)
1851 struct string_block *b, *next;
1852 struct string_block *live_blocks = NULL;
1854 string_free_list = NULL;
1855 total_strings = total_free_strings = 0;
1856 total_string_bytes = 0;
1858 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1859 for (b = string_blocks; b; b = next)
1861 int i, nfree = 0;
1862 struct Lisp_String *free_list_before = string_free_list;
1864 next = b->next;
1866 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1868 struct Lisp_String *s = b->strings + i;
1870 if (s->data)
1872 /* String was not on free-list before. */
1873 if (STRING_MARKED_P (s))
1875 /* String is live; unmark it and its intervals. */
1876 UNMARK_STRING (s);
1878 /* Do not use string_(set|get)_intervals here. */
1879 s->intervals = balance_intervals (s->intervals);
1881 ++total_strings;
1882 total_string_bytes += STRING_BYTES (s);
1884 else
1886 /* String is dead. Put it on the free-list. */
1887 sdata *data = SDATA_OF_STRING (s);
1889 /* Save the size of S in its sdata so that we know
1890 how large that is. Reset the sdata's string
1891 back-pointer so that we know it's free. */
1892 #ifdef GC_CHECK_STRING_BYTES
1893 if (string_bytes (s) != SDATA_NBYTES (data))
1894 emacs_abort ();
1895 #else
1896 data->n.nbytes = STRING_BYTES (s);
1897 #endif
1898 data->string = NULL;
1900 /* Reset the strings's `data' member so that we
1901 know it's free. */
1902 s->data = NULL;
1904 /* Put the string on the free-list. */
1905 NEXT_FREE_LISP_STRING (s) = string_free_list;
1906 string_free_list = s;
1907 ++nfree;
1910 else
1912 /* S was on the free-list before. Put it there again. */
1913 NEXT_FREE_LISP_STRING (s) = string_free_list;
1914 string_free_list = s;
1915 ++nfree;
1919 /* Free blocks that contain free Lisp_Strings only, except
1920 the first two of them. */
1921 if (nfree == STRING_BLOCK_SIZE
1922 && total_free_strings > STRING_BLOCK_SIZE)
1924 lisp_free (b);
1925 string_free_list = free_list_before;
1927 else
1929 total_free_strings += nfree;
1930 b->next = live_blocks;
1931 live_blocks = b;
1935 check_string_free_list ();
1937 string_blocks = live_blocks;
1938 free_large_strings ();
1939 compact_small_strings ();
1941 check_string_free_list ();
1945 /* Free dead large strings. */
1947 static void
1948 free_large_strings (void)
1950 struct sblock *b, *next;
1951 struct sblock *live_blocks = NULL;
1953 for (b = large_sblocks; b; b = next)
1955 next = b->next;
1957 if (b->data[0].string == NULL)
1958 lisp_free (b);
1959 else
1961 b->next = live_blocks;
1962 live_blocks = b;
1966 large_sblocks = live_blocks;
1970 /* Compact data of small strings. Free sblocks that don't contain
1971 data of live strings after compaction. */
1973 static void
1974 compact_small_strings (void)
1976 struct sblock *b, *tb, *next;
1977 sdata *from, *to, *end, *tb_end;
1978 sdata *to_end, *from_end;
1980 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1981 to, and TB_END is the end of TB. */
1982 tb = oldest_sblock;
1983 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1984 to = tb->data;
1986 /* Step through the blocks from the oldest to the youngest. We
1987 expect that old blocks will stabilize over time, so that less
1988 copying will happen this way. */
1989 for (b = oldest_sblock; b; b = b->next)
1991 end = b->next_free;
1992 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1994 for (from = b->data; from < end; from = from_end)
1996 /* Compute the next FROM here because copying below may
1997 overwrite data we need to compute it. */
1998 ptrdiff_t nbytes;
1999 struct Lisp_String *s = from->string;
2001 #ifdef GC_CHECK_STRING_BYTES
2002 /* Check that the string size recorded in the string is the
2003 same as the one recorded in the sdata structure. */
2004 if (s && string_bytes (s) != SDATA_NBYTES (from))
2005 emacs_abort ();
2006 #endif /* GC_CHECK_STRING_BYTES */
2008 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2009 eassert (nbytes <= LARGE_STRING_BYTES);
2011 nbytes = SDATA_SIZE (nbytes);
2012 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2014 #ifdef GC_CHECK_STRING_OVERRUN
2015 if (memcmp (string_overrun_cookie,
2016 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2017 GC_STRING_OVERRUN_COOKIE_SIZE))
2018 emacs_abort ();
2019 #endif
2021 /* Non-NULL S means it's alive. Copy its data. */
2022 if (s)
2024 /* If TB is full, proceed with the next sblock. */
2025 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2026 if (to_end > tb_end)
2028 tb->next_free = to;
2029 tb = tb->next;
2030 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2031 to = tb->data;
2032 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2035 /* Copy, and update the string's `data' pointer. */
2036 if (from != to)
2038 eassert (tb != b || to < from);
2039 memmove (to, from, nbytes + GC_STRING_EXTRA);
2040 to->string->data = SDATA_DATA (to);
2043 /* Advance past the sdata we copied to. */
2044 to = to_end;
2049 /* The rest of the sblocks following TB don't contain live data, so
2050 we can free them. */
2051 for (b = tb->next; b; b = next)
2053 next = b->next;
2054 lisp_free (b);
2057 tb->next_free = to;
2058 tb->next = NULL;
2059 current_sblock = tb;
2062 void
2063 string_overflow (void)
2065 error ("Maximum string size exceeded");
2068 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2069 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2070 LENGTH must be an integer.
2071 INIT must be an integer that represents a character. */)
2072 (Lisp_Object length, Lisp_Object init)
2074 register Lisp_Object val;
2075 int c;
2076 EMACS_INT nbytes;
2078 CHECK_NATNUM (length);
2079 CHECK_CHARACTER (init);
2081 c = XFASTINT (init);
2082 if (ASCII_CHAR_P (c))
2084 nbytes = XINT (length);
2085 val = make_uninit_string (nbytes);
2086 memset (SDATA (val), c, nbytes);
2087 SDATA (val)[nbytes] = 0;
2089 else
2091 unsigned char str[MAX_MULTIBYTE_LENGTH];
2092 ptrdiff_t len = CHAR_STRING (c, str);
2093 EMACS_INT string_len = XINT (length);
2094 unsigned char *p, *beg, *end;
2096 if (string_len > STRING_BYTES_MAX / len)
2097 string_overflow ();
2098 nbytes = len * string_len;
2099 val = make_uninit_multibyte_string (string_len, nbytes);
2100 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2102 /* First time we just copy `str' to the data of `val'. */
2103 if (p == beg)
2104 memcpy (p, str, len);
2105 else
2107 /* Next time we copy largest possible chunk from
2108 initialized to uninitialized part of `val'. */
2109 len = min (p - beg, end - p);
2110 memcpy (p, beg, len);
2113 *p = 0;
2116 return val;
2119 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2120 Return A. */
2122 Lisp_Object
2123 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2125 EMACS_INT nbits = bool_vector_size (a);
2126 if (0 < nbits)
2128 unsigned char *data = bool_vector_uchar_data (a);
2129 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2130 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2131 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2132 memset (data, pattern, nbytes - 1);
2133 data[nbytes - 1] = pattern & last_mask;
2135 return a;
2138 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2140 Lisp_Object
2141 make_uninit_bool_vector (EMACS_INT nbits)
2143 Lisp_Object val;
2144 EMACS_INT words = bool_vector_words (nbits);
2145 EMACS_INT word_bytes = words * sizeof (bits_word);
2146 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2147 + word_size - 1)
2148 / word_size);
2149 struct Lisp_Bool_Vector *p
2150 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2151 XSETVECTOR (val, p);
2152 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2153 p->size = nbits;
2155 /* Clear padding at the end. */
2156 if (words)
2157 p->data[words - 1] = 0;
2159 return val;
2162 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2163 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2164 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2165 (Lisp_Object length, Lisp_Object init)
2167 Lisp_Object val;
2169 CHECK_NATNUM (length);
2170 val = make_uninit_bool_vector (XFASTINT (length));
2171 return bool_vector_fill (val, init);
2174 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2175 doc: /* Return a new bool-vector with specified arguments as elements.
2176 Any number of arguments, even zero arguments, are allowed.
2177 usage: (bool-vector &rest OBJECTS) */)
2178 (ptrdiff_t nargs, Lisp_Object *args)
2180 ptrdiff_t i;
2181 Lisp_Object vector;
2183 vector = make_uninit_bool_vector (nargs);
2184 for (i = 0; i < nargs; i++)
2185 bool_vector_set (vector, i, !NILP (args[i]));
2187 return vector;
2190 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2191 of characters from the contents. This string may be unibyte or
2192 multibyte, depending on the contents. */
2194 Lisp_Object
2195 make_string (const char *contents, ptrdiff_t nbytes)
2197 register Lisp_Object val;
2198 ptrdiff_t nchars, multibyte_nbytes;
2200 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2201 &nchars, &multibyte_nbytes);
2202 if (nbytes == nchars || nbytes != multibyte_nbytes)
2203 /* CONTENTS contains no multibyte sequences or contains an invalid
2204 multibyte sequence. We must make unibyte string. */
2205 val = make_unibyte_string (contents, nbytes);
2206 else
2207 val = make_multibyte_string (contents, nchars, nbytes);
2208 return val;
2211 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2213 Lisp_Object
2214 make_unibyte_string (const char *contents, ptrdiff_t length)
2216 register Lisp_Object val;
2217 val = make_uninit_string (length);
2218 memcpy (SDATA (val), contents, length);
2219 return val;
2223 /* Make a multibyte string from NCHARS characters occupying NBYTES
2224 bytes at CONTENTS. */
2226 Lisp_Object
2227 make_multibyte_string (const char *contents,
2228 ptrdiff_t nchars, ptrdiff_t nbytes)
2230 register Lisp_Object val;
2231 val = make_uninit_multibyte_string (nchars, nbytes);
2232 memcpy (SDATA (val), contents, nbytes);
2233 return val;
2237 /* Make a string from NCHARS characters occupying NBYTES bytes at
2238 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2240 Lisp_Object
2241 make_string_from_bytes (const char *contents,
2242 ptrdiff_t nchars, ptrdiff_t nbytes)
2244 register Lisp_Object val;
2245 val = make_uninit_multibyte_string (nchars, nbytes);
2246 memcpy (SDATA (val), contents, nbytes);
2247 if (SBYTES (val) == SCHARS (val))
2248 STRING_SET_UNIBYTE (val);
2249 return val;
2253 /* Make a string from NCHARS characters occupying NBYTES bytes at
2254 CONTENTS. The argument MULTIBYTE controls whether to label the
2255 string as multibyte. If NCHARS is negative, it counts the number of
2256 characters by itself. */
2258 Lisp_Object
2259 make_specified_string (const char *contents,
2260 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2262 Lisp_Object val;
2264 if (nchars < 0)
2266 if (multibyte)
2267 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2268 nbytes);
2269 else
2270 nchars = nbytes;
2272 val = make_uninit_multibyte_string (nchars, nbytes);
2273 memcpy (SDATA (val), contents, nbytes);
2274 if (!multibyte)
2275 STRING_SET_UNIBYTE (val);
2276 return val;
2280 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2281 occupying LENGTH bytes. */
2283 Lisp_Object
2284 make_uninit_string (EMACS_INT length)
2286 Lisp_Object val;
2288 if (!length)
2289 return empty_unibyte_string;
2290 val = make_uninit_multibyte_string (length, length);
2291 STRING_SET_UNIBYTE (val);
2292 return val;
2296 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2297 which occupy NBYTES bytes. */
2299 Lisp_Object
2300 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2302 Lisp_Object string;
2303 struct Lisp_String *s;
2305 if (nchars < 0)
2306 emacs_abort ();
2307 if (!nbytes)
2308 return empty_multibyte_string;
2310 s = allocate_string ();
2311 s->intervals = NULL;
2312 allocate_string_data (s, nchars, nbytes);
2313 XSETSTRING (string, s);
2314 string_chars_consed += nbytes;
2315 return string;
2318 /* Print arguments to BUF according to a FORMAT, then return
2319 a Lisp_String initialized with the data from BUF. */
2321 Lisp_Object
2322 make_formatted_string (char *buf, const char *format, ...)
2324 va_list ap;
2325 int length;
2327 va_start (ap, format);
2328 length = vsprintf (buf, format, ap);
2329 va_end (ap);
2330 return make_string (buf, length);
2334 /***********************************************************************
2335 Float Allocation
2336 ***********************************************************************/
2338 /* We store float cells inside of float_blocks, allocating a new
2339 float_block with malloc whenever necessary. Float cells reclaimed
2340 by GC are put on a free list to be reallocated before allocating
2341 any new float cells from the latest float_block. */
2343 #define FLOAT_BLOCK_SIZE \
2344 (((BLOCK_BYTES - sizeof (struct float_block *) \
2345 /* The compiler might add padding at the end. */ \
2346 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2347 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2349 #define GETMARKBIT(block,n) \
2350 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2351 >> ((n) % BITS_PER_BITS_WORD)) \
2352 & 1)
2354 #define SETMARKBIT(block,n) \
2355 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2358 #define UNSETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2362 #define FLOAT_BLOCK(fptr) \
2363 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2365 #define FLOAT_INDEX(fptr) \
2366 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2368 struct float_block
2370 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2371 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2372 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2373 struct float_block *next;
2376 #define FLOAT_MARKED_P(fptr) \
2377 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2379 #define FLOAT_MARK(fptr) \
2380 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382 #define FLOAT_UNMARK(fptr) \
2383 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385 /* Current float_block. */
2387 static struct float_block *float_block;
2389 /* Index of first unused Lisp_Float in the current float_block. */
2391 static int float_block_index = FLOAT_BLOCK_SIZE;
2393 /* Free-list of Lisp_Floats. */
2395 static struct Lisp_Float *float_free_list;
2397 /* Return a new float object with value FLOAT_VALUE. */
2399 Lisp_Object
2400 make_float (double float_value)
2402 register Lisp_Object val;
2404 MALLOC_BLOCK_INPUT;
2406 if (float_free_list)
2408 /* We use the data field for chaining the free list
2409 so that we won't use the same field that has the mark bit. */
2410 XSETFLOAT (val, float_free_list);
2411 float_free_list = float_free_list->u.chain;
2413 else
2415 if (float_block_index == FLOAT_BLOCK_SIZE)
2417 struct float_block *new
2418 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2419 new->next = float_block;
2420 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2421 float_block = new;
2422 float_block_index = 0;
2423 total_free_floats += FLOAT_BLOCK_SIZE;
2425 XSETFLOAT (val, &float_block->floats[float_block_index]);
2426 float_block_index++;
2429 MALLOC_UNBLOCK_INPUT;
2431 XFLOAT_INIT (val, float_value);
2432 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2433 consing_since_gc += sizeof (struct Lisp_Float);
2434 floats_consed++;
2435 total_free_floats--;
2436 return val;
2441 /***********************************************************************
2442 Cons Allocation
2443 ***********************************************************************/
2445 /* We store cons cells inside of cons_blocks, allocating a new
2446 cons_block with malloc whenever necessary. Cons cells reclaimed by
2447 GC are put on a free list to be reallocated before allocating
2448 any new cons cells from the latest cons_block. */
2450 #define CONS_BLOCK_SIZE \
2451 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2452 /* The compiler might add padding at the end. */ \
2453 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2454 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2456 #define CONS_BLOCK(fptr) \
2457 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2459 #define CONS_INDEX(fptr) \
2460 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2462 struct cons_block
2464 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2465 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2466 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2467 struct cons_block *next;
2470 #define CONS_MARKED_P(fptr) \
2471 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2473 #define CONS_MARK(fptr) \
2474 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476 #define CONS_UNMARK(fptr) \
2477 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479 /* Current cons_block. */
2481 static struct cons_block *cons_block;
2483 /* Index of first unused Lisp_Cons in the current block. */
2485 static int cons_block_index = CONS_BLOCK_SIZE;
2487 /* Free-list of Lisp_Cons structures. */
2489 static struct Lisp_Cons *cons_free_list;
2491 /* Explicitly free a cons cell by putting it on the free-list. */
2493 void
2494 free_cons (struct Lisp_Cons *ptr)
2496 ptr->u.chain = cons_free_list;
2497 #if GC_MARK_STACK
2498 ptr->car = Vdead;
2499 #endif
2500 cons_free_list = ptr;
2501 consing_since_gc -= sizeof *ptr;
2502 total_free_conses++;
2505 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2506 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2507 (Lisp_Object car, Lisp_Object cdr)
2509 register Lisp_Object val;
2511 MALLOC_BLOCK_INPUT;
2513 if (cons_free_list)
2515 /* We use the cdr for chaining the free list
2516 so that we won't use the same field that has the mark bit. */
2517 XSETCONS (val, cons_free_list);
2518 cons_free_list = cons_free_list->u.chain;
2520 else
2522 if (cons_block_index == CONS_BLOCK_SIZE)
2524 struct cons_block *new
2525 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2526 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2527 new->next = cons_block;
2528 cons_block = new;
2529 cons_block_index = 0;
2530 total_free_conses += CONS_BLOCK_SIZE;
2532 XSETCONS (val, &cons_block->conses[cons_block_index]);
2533 cons_block_index++;
2536 MALLOC_UNBLOCK_INPUT;
2538 XSETCAR (val, car);
2539 XSETCDR (val, cdr);
2540 eassert (!CONS_MARKED_P (XCONS (val)));
2541 consing_since_gc += sizeof (struct Lisp_Cons);
2542 total_free_conses--;
2543 cons_cells_consed++;
2544 return val;
2547 #ifdef GC_CHECK_CONS_LIST
2548 /* Get an error now if there's any junk in the cons free list. */
2549 void
2550 check_cons_list (void)
2552 struct Lisp_Cons *tail = cons_free_list;
2554 while (tail)
2555 tail = tail->u.chain;
2557 #endif
2559 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2561 Lisp_Object
2562 list1 (Lisp_Object arg1)
2564 return Fcons (arg1, Qnil);
2567 Lisp_Object
2568 list2 (Lisp_Object arg1, Lisp_Object arg2)
2570 return Fcons (arg1, Fcons (arg2, Qnil));
2574 Lisp_Object
2575 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2577 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2581 Lisp_Object
2582 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2584 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2588 Lisp_Object
2589 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2591 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2592 Fcons (arg5, Qnil)))));
2595 /* Make a list of COUNT Lisp_Objects, where ARG is the
2596 first one. Allocate conses from pure space if TYPE
2597 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2599 Lisp_Object
2600 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2602 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2603 switch (type)
2605 case CONSTYPE_PURE: cons = pure_cons; break;
2606 case CONSTYPE_HEAP: cons = Fcons; break;
2607 default: emacs_abort ();
2610 eassume (0 < count);
2611 Lisp_Object val = cons (arg, Qnil);
2612 Lisp_Object tail = val;
2614 va_list ap;
2615 va_start (ap, arg);
2616 for (ptrdiff_t i = 1; i < count; i++)
2618 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2619 XSETCDR (tail, elem);
2620 tail = elem;
2622 va_end (ap);
2624 return val;
2627 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2628 doc: /* Return a newly created list with specified arguments as elements.
2629 Any number of arguments, even zero arguments, are allowed.
2630 usage: (list &rest OBJECTS) */)
2631 (ptrdiff_t nargs, Lisp_Object *args)
2633 register Lisp_Object val;
2634 val = Qnil;
2636 while (nargs > 0)
2638 nargs--;
2639 val = Fcons (args[nargs], val);
2641 return val;
2645 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2646 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2647 (register Lisp_Object length, Lisp_Object init)
2649 register Lisp_Object val;
2650 register EMACS_INT size;
2652 CHECK_NATNUM (length);
2653 size = XFASTINT (length);
2655 val = Qnil;
2656 while (size > 0)
2658 val = Fcons (init, val);
2659 --size;
2661 if (size > 0)
2663 val = Fcons (init, val);
2664 --size;
2666 if (size > 0)
2668 val = Fcons (init, val);
2669 --size;
2671 if (size > 0)
2673 val = Fcons (init, val);
2674 --size;
2676 if (size > 0)
2678 val = Fcons (init, val);
2679 --size;
2685 QUIT;
2688 return val;
2693 /***********************************************************************
2694 Vector Allocation
2695 ***********************************************************************/
2697 /* Sometimes a vector's contents are merely a pointer internally used
2698 in vector allocation code. On the rare platforms where a null
2699 pointer cannot be tagged, represent it with a Lisp 0.
2700 Usually you don't want to touch this. */
2702 static struct Lisp_Vector *
2703 next_vector (struct Lisp_Vector *v)
2705 return XUNTAG (v->contents[0], Lisp_Int0);
2708 static void
2709 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2711 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2714 /* This value is balanced well enough to avoid too much internal overhead
2715 for the most common cases; it's not required to be a power of two, but
2716 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2718 #define VECTOR_BLOCK_SIZE 4096
2720 enum
2722 /* Alignment of struct Lisp_Vector objects. */
2723 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2724 USE_LSB_TAG ? GCALIGNMENT : 1),
2726 /* Vector size requests are a multiple of this. */
2727 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2730 /* Verify assumptions described above. */
2731 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2732 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2734 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2735 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2736 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2737 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2739 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2741 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2743 /* Size of the minimal vector allocated from block. */
2745 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2747 /* Size of the largest vector allocated from block. */
2749 #define VBLOCK_BYTES_MAX \
2750 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2752 /* We maintain one free list for each possible block-allocated
2753 vector size, and this is the number of free lists we have. */
2755 #define VECTOR_MAX_FREE_LIST_INDEX \
2756 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2758 /* Common shortcut to advance vector pointer over a block data. */
2760 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2762 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2764 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2766 /* Common shortcut to setup vector on a free list. */
2768 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2769 do { \
2770 (tmp) = ((nbytes - header_size) / word_size); \
2771 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2772 eassert ((nbytes) % roundup_size == 0); \
2773 (tmp) = VINDEX (nbytes); \
2774 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2775 set_next_vector (v, vector_free_lists[tmp]); \
2776 vector_free_lists[tmp] = (v); \
2777 total_free_vector_slots += (nbytes) / word_size; \
2778 } while (0)
2780 /* This internal type is used to maintain the list of large vectors
2781 which are allocated at their own, e.g. outside of vector blocks.
2783 struct large_vector itself cannot contain a struct Lisp_Vector, as
2784 the latter contains a flexible array member and C99 does not allow
2785 such structs to be nested. Instead, each struct large_vector
2786 object LV is followed by a struct Lisp_Vector, which is at offset
2787 large_vector_offset from LV, and whose address is therefore
2788 large_vector_vec (&LV). */
2790 struct large_vector
2792 struct large_vector *next;
2795 enum
2797 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2800 static struct Lisp_Vector *
2801 large_vector_vec (struct large_vector *p)
2803 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2806 /* This internal type is used to maintain an underlying storage
2807 for small vectors. */
2809 struct vector_block
2811 char data[VECTOR_BLOCK_BYTES];
2812 struct vector_block *next;
2815 /* Chain of vector blocks. */
2817 static struct vector_block *vector_blocks;
2819 /* Vector free lists, where NTH item points to a chain of free
2820 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2822 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2824 /* Singly-linked list of large vectors. */
2826 static struct large_vector *large_vectors;
2828 /* The only vector with 0 slots, allocated from pure space. */
2830 Lisp_Object zero_vector;
2832 /* Number of live vectors. */
2834 static EMACS_INT total_vectors;
2836 /* Total size of live and free vectors, in Lisp_Object units. */
2838 static EMACS_INT total_vector_slots, total_free_vector_slots;
2840 /* Get a new vector block. */
2842 static struct vector_block *
2843 allocate_vector_block (void)
2845 struct vector_block *block = xmalloc (sizeof *block);
2847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2848 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2849 MEM_TYPE_VECTOR_BLOCK);
2850 #endif
2852 block->next = vector_blocks;
2853 vector_blocks = block;
2854 return block;
2857 /* Called once to initialize vector allocation. */
2859 static void
2860 init_vectors (void)
2862 zero_vector = make_pure_vector (0);
2865 /* Allocate vector from a vector block. */
2867 static struct Lisp_Vector *
2868 allocate_vector_from_block (size_t nbytes)
2870 struct Lisp_Vector *vector;
2871 struct vector_block *block;
2872 size_t index, restbytes;
2874 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2875 eassert (nbytes % roundup_size == 0);
2877 /* First, try to allocate from a free list
2878 containing vectors of the requested size. */
2879 index = VINDEX (nbytes);
2880 if (vector_free_lists[index])
2882 vector = vector_free_lists[index];
2883 vector_free_lists[index] = next_vector (vector);
2884 total_free_vector_slots -= nbytes / word_size;
2885 return vector;
2888 /* Next, check free lists containing larger vectors. Since
2889 we will split the result, we should have remaining space
2890 large enough to use for one-slot vector at least. */
2891 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2892 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2893 if (vector_free_lists[index])
2895 /* This vector is larger than requested. */
2896 vector = vector_free_lists[index];
2897 vector_free_lists[index] = next_vector (vector);
2898 total_free_vector_slots -= nbytes / word_size;
2900 /* Excess bytes are used for the smaller vector,
2901 which should be set on an appropriate free list. */
2902 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2903 eassert (restbytes % roundup_size == 0);
2904 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2905 return vector;
2908 /* Finally, need a new vector block. */
2909 block = allocate_vector_block ();
2911 /* New vector will be at the beginning of this block. */
2912 vector = (struct Lisp_Vector *) block->data;
2914 /* If the rest of space from this block is large enough
2915 for one-slot vector at least, set up it on a free list. */
2916 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2917 if (restbytes >= VBLOCK_BYTES_MIN)
2919 eassert (restbytes % roundup_size == 0);
2920 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2922 return vector;
2925 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2927 #define VECTOR_IN_BLOCK(vector, block) \
2928 ((char *) (vector) <= (block)->data \
2929 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2931 /* Return the memory footprint of V in bytes. */
2933 static ptrdiff_t
2934 vector_nbytes (struct Lisp_Vector *v)
2936 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2937 ptrdiff_t nwords;
2939 if (size & PSEUDOVECTOR_FLAG)
2941 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2943 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2944 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2945 * sizeof (bits_word));
2946 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2947 verify (header_size <= bool_header_size);
2948 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2950 else
2951 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2952 + ((size & PSEUDOVECTOR_REST_MASK)
2953 >> PSEUDOVECTOR_SIZE_BITS));
2955 else
2956 nwords = size;
2957 return vroundup (header_size + word_size * nwords);
2960 /* Release extra resources still in use by VECTOR, which may be any
2961 vector-like object. For now, this is used just to free data in
2962 font objects. */
2964 static void
2965 cleanup_vector (struct Lisp_Vector *vector)
2967 detect_suspicious_free (vector);
2968 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2969 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2970 == FONT_OBJECT_MAX))
2972 struct font_driver *drv = ((struct font *) vector)->driver;
2974 /* The font driver might sometimes be NULL, e.g. if Emacs was
2975 interrupted before it had time to set it up. */
2976 if (drv)
2978 /* Attempt to catch subtle bugs like Bug#16140. */
2979 eassert (valid_font_driver (drv));
2980 drv->close ((struct font *) vector);
2985 /* Reclaim space used by unmarked vectors. */
2987 NO_INLINE /* For better stack traces */
2988 static void
2989 sweep_vectors (void)
2991 struct vector_block *block, **bprev = &vector_blocks;
2992 struct large_vector *lv, **lvprev = &large_vectors;
2993 struct Lisp_Vector *vector, *next;
2995 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2996 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2998 /* Looking through vector blocks. */
3000 for (block = vector_blocks; block; block = *bprev)
3002 bool free_this_block = 0;
3003 ptrdiff_t nbytes;
3005 for (vector = (struct Lisp_Vector *) block->data;
3006 VECTOR_IN_BLOCK (vector, block); vector = next)
3008 if (VECTOR_MARKED_P (vector))
3010 VECTOR_UNMARK (vector);
3011 total_vectors++;
3012 nbytes = vector_nbytes (vector);
3013 total_vector_slots += nbytes / word_size;
3014 next = ADVANCE (vector, nbytes);
3016 else
3018 ptrdiff_t total_bytes;
3020 cleanup_vector (vector);
3021 nbytes = vector_nbytes (vector);
3022 total_bytes = nbytes;
3023 next = ADVANCE (vector, nbytes);
3025 /* While NEXT is not marked, try to coalesce with VECTOR,
3026 thus making VECTOR of the largest possible size. */
3028 while (VECTOR_IN_BLOCK (next, block))
3030 if (VECTOR_MARKED_P (next))
3031 break;
3032 cleanup_vector (next);
3033 nbytes = vector_nbytes (next);
3034 total_bytes += nbytes;
3035 next = ADVANCE (next, nbytes);
3038 eassert (total_bytes % roundup_size == 0);
3040 if (vector == (struct Lisp_Vector *) block->data
3041 && !VECTOR_IN_BLOCK (next, block))
3042 /* This block should be freed because all of its
3043 space was coalesced into the only free vector. */
3044 free_this_block = 1;
3045 else
3047 size_t tmp;
3048 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3053 if (free_this_block)
3055 *bprev = block->next;
3056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3057 mem_delete (mem_find (block->data));
3058 #endif
3059 xfree (block);
3061 else
3062 bprev = &block->next;
3065 /* Sweep large vectors. */
3067 for (lv = large_vectors; lv; lv = *lvprev)
3069 vector = large_vector_vec (lv);
3070 if (VECTOR_MARKED_P (vector))
3072 VECTOR_UNMARK (vector);
3073 total_vectors++;
3074 if (vector->header.size & PSEUDOVECTOR_FLAG)
3076 /* All non-bool pseudovectors are small enough to be allocated
3077 from vector blocks. This code should be redesigned if some
3078 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3079 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3080 total_vector_slots += vector_nbytes (vector) / word_size;
3082 else
3083 total_vector_slots
3084 += header_size / word_size + vector->header.size;
3085 lvprev = &lv->next;
3087 else
3089 *lvprev = lv->next;
3090 lisp_free (lv);
3095 /* Value is a pointer to a newly allocated Lisp_Vector structure
3096 with room for LEN Lisp_Objects. */
3098 static struct Lisp_Vector *
3099 allocate_vectorlike (ptrdiff_t len)
3101 struct Lisp_Vector *p;
3103 MALLOC_BLOCK_INPUT;
3105 if (len == 0)
3106 p = XVECTOR (zero_vector);
3107 else
3109 size_t nbytes = header_size + len * word_size;
3111 #ifdef DOUG_LEA_MALLOC
3112 if (!mmap_lisp_allowed_p ())
3113 mallopt (M_MMAP_MAX, 0);
3114 #endif
3116 if (nbytes <= VBLOCK_BYTES_MAX)
3117 p = allocate_vector_from_block (vroundup (nbytes));
3118 else
3120 struct large_vector *lv
3121 = lisp_malloc ((large_vector_offset + header_size
3122 + len * word_size),
3123 MEM_TYPE_VECTORLIKE);
3124 lv->next = large_vectors;
3125 large_vectors = lv;
3126 p = large_vector_vec (lv);
3129 #ifdef DOUG_LEA_MALLOC
3130 if (!mmap_lisp_allowed_p ())
3131 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3132 #endif
3134 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3135 emacs_abort ();
3137 consing_since_gc += nbytes;
3138 vector_cells_consed += len;
3141 MALLOC_UNBLOCK_INPUT;
3143 return p;
3147 /* Allocate a vector with LEN slots. */
3149 struct Lisp_Vector *
3150 allocate_vector (EMACS_INT len)
3152 struct Lisp_Vector *v;
3153 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3155 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3156 memory_full (SIZE_MAX);
3157 v = allocate_vectorlike (len);
3158 v->header.size = len;
3159 return v;
3163 /* Allocate other vector-like structures. */
3165 struct Lisp_Vector *
3166 allocate_pseudovector (int memlen, int lisplen,
3167 int zerolen, enum pvec_type tag)
3169 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3171 /* Catch bogus values. */
3172 eassert (tag <= PVEC_FONT);
3173 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3174 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3176 /* Only the first lisplen slots will be traced normally by the GC.
3177 But since Qnil == 0, we can memset Lisp_Object slots as well. */
3178 memset (v->contents, 0, zerolen * word_size);
3180 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3181 return v;
3184 struct buffer *
3185 allocate_buffer (void)
3187 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3189 BUFFER_PVEC_INIT (b);
3190 /* Put B on the chain of all buffers including killed ones. */
3191 b->next = all_buffers;
3192 all_buffers = b;
3193 /* Note that the rest fields of B are not initialized. */
3194 return b;
3197 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3198 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3199 See also the function `vector'. */)
3200 (register Lisp_Object length, Lisp_Object init)
3202 Lisp_Object vector;
3203 register ptrdiff_t sizei;
3204 register ptrdiff_t i;
3205 register struct Lisp_Vector *p;
3207 CHECK_NATNUM (length);
3209 p = allocate_vector (XFASTINT (length));
3210 sizei = XFASTINT (length);
3211 for (i = 0; i < sizei; i++)
3212 p->contents[i] = init;
3214 XSETVECTOR (vector, p);
3215 return vector;
3218 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3219 doc: /* Return a newly created vector with specified arguments as elements.
3220 Any number of arguments, even zero arguments, are allowed.
3221 usage: (vector &rest OBJECTS) */)
3222 (ptrdiff_t nargs, Lisp_Object *args)
3224 ptrdiff_t i;
3225 register Lisp_Object val = make_uninit_vector (nargs);
3226 register struct Lisp_Vector *p = XVECTOR (val);
3228 for (i = 0; i < nargs; i++)
3229 p->contents[i] = args[i];
3230 return val;
3233 void
3234 make_byte_code (struct Lisp_Vector *v)
3236 /* Don't allow the global zero_vector to become a byte code object. */
3237 eassert (0 < v->header.size);
3239 if (v->header.size > 1 && STRINGP (v->contents[1])
3240 && STRING_MULTIBYTE (v->contents[1]))
3241 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3242 earlier because they produced a raw 8-bit string for byte-code
3243 and now such a byte-code string is loaded as multibyte while
3244 raw 8-bit characters converted to multibyte form. Thus, now we
3245 must convert them back to the original unibyte form. */
3246 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3247 XSETPVECTYPE (v, PVEC_COMPILED);
3250 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3251 doc: /* Create a byte-code object with specified arguments as elements.
3252 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3253 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3254 and (optional) INTERACTIVE-SPEC.
3255 The first four arguments are required; at most six have any
3256 significance.
3257 The ARGLIST can be either like the one of `lambda', in which case the arguments
3258 will be dynamically bound before executing the byte code, or it can be an
3259 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3260 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3261 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3262 argument to catch the left-over arguments. If such an integer is used, the
3263 arguments will not be dynamically bound but will be instead pushed on the
3264 stack before executing the byte-code.
3265 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3266 (ptrdiff_t nargs, Lisp_Object *args)
3268 ptrdiff_t i;
3269 register Lisp_Object val = make_uninit_vector (nargs);
3270 register struct Lisp_Vector *p = XVECTOR (val);
3272 /* We used to purecopy everything here, if purify-flag was set. This worked
3273 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3274 dangerous, since make-byte-code is used during execution to build
3275 closures, so any closure built during the preload phase would end up
3276 copied into pure space, including its free variables, which is sometimes
3277 just wasteful and other times plainly wrong (e.g. those free vars may want
3278 to be setcar'd). */
3280 for (i = 0; i < nargs; i++)
3281 p->contents[i] = args[i];
3282 make_byte_code (p);
3283 XSETCOMPILED (val, p);
3284 return val;
3289 /***********************************************************************
3290 Symbol Allocation
3291 ***********************************************************************/
3293 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3294 of the required alignment if LSB tags are used. */
3296 union aligned_Lisp_Symbol
3298 struct Lisp_Symbol s;
3299 #if USE_LSB_TAG
3300 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3301 & -GCALIGNMENT];
3302 #endif
3305 /* Each symbol_block is just under 1020 bytes long, since malloc
3306 really allocates in units of powers of two and uses 4 bytes for its
3307 own overhead. */
3309 #define SYMBOL_BLOCK_SIZE \
3310 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3312 struct symbol_block
3314 /* Place `symbols' first, to preserve alignment. */
3315 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3316 struct symbol_block *next;
3319 /* Current symbol block and index of first unused Lisp_Symbol
3320 structure in it. */
3322 static struct symbol_block *symbol_block;
3323 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3324 /* Pointer to the first symbol_block that contains pinned symbols.
3325 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3326 10K of which are pinned (and all but 250 of them are interned in obarray),
3327 whereas a "typical session" has in the order of 30K symbols.
3328 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3329 than 30K to find the 10K symbols we need to mark. */
3330 static struct symbol_block *symbol_block_pinned;
3332 /* List of free symbols. */
3334 static struct Lisp_Symbol *symbol_free_list;
3336 static void
3337 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3339 XSYMBOL (sym)->name = name;
3342 void
3343 init_symbol (Lisp_Object val, Lisp_Object name)
3345 struct Lisp_Symbol *p = XSYMBOL (val);
3346 set_symbol_name (val, name);
3347 set_symbol_plist (val, Qnil);
3348 p->redirect = SYMBOL_PLAINVAL;
3349 SET_SYMBOL_VAL (p, Qunbound);
3350 set_symbol_function (val, Qnil);
3351 set_symbol_next (val, NULL);
3352 p->gcmarkbit = false;
3353 p->interned = SYMBOL_UNINTERNED;
3354 p->constant = 0;
3355 p->declared_special = false;
3356 p->pinned = false;
3359 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3360 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3361 Its value is void, and its function definition and property list are nil. */)
3362 (Lisp_Object name)
3364 Lisp_Object val;
3366 CHECK_STRING (name);
3368 MALLOC_BLOCK_INPUT;
3370 if (symbol_free_list)
3372 XSETSYMBOL (val, symbol_free_list);
3373 symbol_free_list = symbol_free_list->next;
3375 else
3377 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3379 struct symbol_block *new
3380 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3381 new->next = symbol_block;
3382 symbol_block = new;
3383 symbol_block_index = 0;
3384 total_free_symbols += SYMBOL_BLOCK_SIZE;
3386 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3387 symbol_block_index++;
3390 MALLOC_UNBLOCK_INPUT;
3392 init_symbol (val, name);
3393 consing_since_gc += sizeof (struct Lisp_Symbol);
3394 symbols_consed++;
3395 total_free_symbols--;
3396 return val;
3401 /***********************************************************************
3402 Marker (Misc) Allocation
3403 ***********************************************************************/
3405 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3406 the required alignment when LSB tags are used. */
3408 union aligned_Lisp_Misc
3410 union Lisp_Misc m;
3411 #if USE_LSB_TAG
3412 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3413 & -GCALIGNMENT];
3414 #endif
3417 /* Allocation of markers and other objects that share that structure.
3418 Works like allocation of conses. */
3420 #define MARKER_BLOCK_SIZE \
3421 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3423 struct marker_block
3425 /* Place `markers' first, to preserve alignment. */
3426 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3427 struct marker_block *next;
3430 static struct marker_block *marker_block;
3431 static int marker_block_index = MARKER_BLOCK_SIZE;
3433 static union Lisp_Misc *marker_free_list;
3435 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3437 static Lisp_Object
3438 allocate_misc (enum Lisp_Misc_Type type)
3440 Lisp_Object val;
3442 MALLOC_BLOCK_INPUT;
3444 if (marker_free_list)
3446 XSETMISC (val, marker_free_list);
3447 marker_free_list = marker_free_list->u_free.chain;
3449 else
3451 if (marker_block_index == MARKER_BLOCK_SIZE)
3453 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3454 new->next = marker_block;
3455 marker_block = new;
3456 marker_block_index = 0;
3457 total_free_markers += MARKER_BLOCK_SIZE;
3459 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3460 marker_block_index++;
3463 MALLOC_UNBLOCK_INPUT;
3465 --total_free_markers;
3466 consing_since_gc += sizeof (union Lisp_Misc);
3467 misc_objects_consed++;
3468 XMISCANY (val)->type = type;
3469 XMISCANY (val)->gcmarkbit = 0;
3470 return val;
3473 /* Free a Lisp_Misc object. */
3475 void
3476 free_misc (Lisp_Object misc)
3478 XMISCANY (misc)->type = Lisp_Misc_Free;
3479 XMISC (misc)->u_free.chain = marker_free_list;
3480 marker_free_list = XMISC (misc);
3481 consing_since_gc -= sizeof (union Lisp_Misc);
3482 total_free_markers++;
3485 /* Verify properties of Lisp_Save_Value's representation
3486 that are assumed here and elsewhere. */
3488 verify (SAVE_UNUSED == 0);
3489 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3490 >> SAVE_SLOT_BITS)
3491 == 0);
3493 /* Return Lisp_Save_Value objects for the various combinations
3494 that callers need. */
3496 Lisp_Object
3497 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3499 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3500 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3501 p->save_type = SAVE_TYPE_INT_INT_INT;
3502 p->data[0].integer = a;
3503 p->data[1].integer = b;
3504 p->data[2].integer = c;
3505 return val;
3508 Lisp_Object
3509 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3510 Lisp_Object d)
3512 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3513 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3514 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3515 p->data[0].object = a;
3516 p->data[1].object = b;
3517 p->data[2].object = c;
3518 p->data[3].object = d;
3519 return val;
3522 Lisp_Object
3523 make_save_ptr (void *a)
3525 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3526 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3527 p->save_type = SAVE_POINTER;
3528 p->data[0].pointer = a;
3529 return val;
3532 Lisp_Object
3533 make_save_ptr_int (void *a, ptrdiff_t b)
3535 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3536 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3537 p->save_type = SAVE_TYPE_PTR_INT;
3538 p->data[0].pointer = a;
3539 p->data[1].integer = b;
3540 return val;
3543 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3544 Lisp_Object
3545 make_save_ptr_ptr (void *a, void *b)
3547 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3548 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3549 p->save_type = SAVE_TYPE_PTR_PTR;
3550 p->data[0].pointer = a;
3551 p->data[1].pointer = b;
3552 return val;
3554 #endif
3556 Lisp_Object
3557 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3559 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3560 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3561 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3562 p->data[0].funcpointer = a;
3563 p->data[1].pointer = b;
3564 p->data[2].object = c;
3565 return val;
3568 /* Return a Lisp_Save_Value object that represents an array A
3569 of N Lisp objects. */
3571 Lisp_Object
3572 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3574 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3575 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3576 p->save_type = SAVE_TYPE_MEMORY;
3577 p->data[0].pointer = a;
3578 p->data[1].integer = n;
3579 return val;
3582 /* Free a Lisp_Save_Value object. Do not use this function
3583 if SAVE contains pointer other than returned by xmalloc. */
3585 void
3586 free_save_value (Lisp_Object save)
3588 xfree (XSAVE_POINTER (save, 0));
3589 free_misc (save);
3592 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3594 Lisp_Object
3595 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3597 register Lisp_Object overlay;
3599 overlay = allocate_misc (Lisp_Misc_Overlay);
3600 OVERLAY_START (overlay) = start;
3601 OVERLAY_END (overlay) = end;
3602 set_overlay_plist (overlay, plist);
3603 XOVERLAY (overlay)->next = NULL;
3604 return overlay;
3607 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3608 doc: /* Return a newly allocated marker which does not point at any place. */)
3609 (void)
3611 register Lisp_Object val;
3612 register struct Lisp_Marker *p;
3614 val = allocate_misc (Lisp_Misc_Marker);
3615 p = XMARKER (val);
3616 p->buffer = 0;
3617 p->bytepos = 0;
3618 p->charpos = 0;
3619 p->next = NULL;
3620 p->insertion_type = 0;
3621 p->need_adjustment = 0;
3622 return val;
3625 /* Return a newly allocated marker which points into BUF
3626 at character position CHARPOS and byte position BYTEPOS. */
3628 Lisp_Object
3629 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3631 Lisp_Object obj;
3632 struct Lisp_Marker *m;
3634 /* No dead buffers here. */
3635 eassert (BUFFER_LIVE_P (buf));
3637 /* Every character is at least one byte. */
3638 eassert (charpos <= bytepos);
3640 obj = allocate_misc (Lisp_Misc_Marker);
3641 m = XMARKER (obj);
3642 m->buffer = buf;
3643 m->charpos = charpos;
3644 m->bytepos = bytepos;
3645 m->insertion_type = 0;
3646 m->need_adjustment = 0;
3647 m->next = BUF_MARKERS (buf);
3648 BUF_MARKERS (buf) = m;
3649 return obj;
3652 /* Put MARKER back on the free list after using it temporarily. */
3654 void
3655 free_marker (Lisp_Object marker)
3657 unchain_marker (XMARKER (marker));
3658 free_misc (marker);
3662 /* Return a newly created vector or string with specified arguments as
3663 elements. If all the arguments are characters that can fit
3664 in a string of events, make a string; otherwise, make a vector.
3666 Any number of arguments, even zero arguments, are allowed. */
3668 Lisp_Object
3669 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3671 ptrdiff_t i;
3673 for (i = 0; i < nargs; i++)
3674 /* The things that fit in a string
3675 are characters that are in 0...127,
3676 after discarding the meta bit and all the bits above it. */
3677 if (!INTEGERP (args[i])
3678 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3679 return Fvector (nargs, args);
3681 /* Since the loop exited, we know that all the things in it are
3682 characters, so we can make a string. */
3684 Lisp_Object result;
3686 result = Fmake_string (make_number (nargs), make_number (0));
3687 for (i = 0; i < nargs; i++)
3689 SSET (result, i, XINT (args[i]));
3690 /* Move the meta bit to the right place for a string char. */
3691 if (XINT (args[i]) & CHAR_META)
3692 SSET (result, i, SREF (result, i) | 0x80);
3695 return result;
3701 /************************************************************************
3702 Memory Full Handling
3703 ************************************************************************/
3706 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3707 there may have been size_t overflow so that malloc was never
3708 called, or perhaps malloc was invoked successfully but the
3709 resulting pointer had problems fitting into a tagged EMACS_INT. In
3710 either case this counts as memory being full even though malloc did
3711 not fail. */
3713 void
3714 memory_full (size_t nbytes)
3716 /* Do not go into hysterics merely because a large request failed. */
3717 bool enough_free_memory = 0;
3718 if (SPARE_MEMORY < nbytes)
3720 void *p;
3722 MALLOC_BLOCK_INPUT;
3723 p = malloc (SPARE_MEMORY);
3724 if (p)
3726 free (p);
3727 enough_free_memory = 1;
3729 MALLOC_UNBLOCK_INPUT;
3732 if (! enough_free_memory)
3734 int i;
3736 Vmemory_full = Qt;
3738 memory_full_cons_threshold = sizeof (struct cons_block);
3740 /* The first time we get here, free the spare memory. */
3741 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3742 if (spare_memory[i])
3744 if (i == 0)
3745 free (spare_memory[i]);
3746 else if (i >= 1 && i <= 4)
3747 lisp_align_free (spare_memory[i]);
3748 else
3749 lisp_free (spare_memory[i]);
3750 spare_memory[i] = 0;
3754 /* This used to call error, but if we've run out of memory, we could
3755 get infinite recursion trying to build the string. */
3756 xsignal (Qnil, Vmemory_signal_data);
3759 /* If we released our reserve (due to running out of memory),
3760 and we have a fair amount free once again,
3761 try to set aside another reserve in case we run out once more.
3763 This is called when a relocatable block is freed in ralloc.c,
3764 and also directly from this file, in case we're not using ralloc.c. */
3766 void
3767 refill_memory_reserve (void)
3769 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3770 if (spare_memory[0] == 0)
3771 spare_memory[0] = malloc (SPARE_MEMORY);
3772 if (spare_memory[1] == 0)
3773 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3774 MEM_TYPE_SPARE);
3775 if (spare_memory[2] == 0)
3776 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3777 MEM_TYPE_SPARE);
3778 if (spare_memory[3] == 0)
3779 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3780 MEM_TYPE_SPARE);
3781 if (spare_memory[4] == 0)
3782 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3783 MEM_TYPE_SPARE);
3784 if (spare_memory[5] == 0)
3785 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3786 MEM_TYPE_SPARE);
3787 if (spare_memory[6] == 0)
3788 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3789 MEM_TYPE_SPARE);
3790 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3791 Vmemory_full = Qnil;
3792 #endif
3795 /************************************************************************
3796 C Stack Marking
3797 ************************************************************************/
3799 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3801 /* Conservative C stack marking requires a method to identify possibly
3802 live Lisp objects given a pointer value. We do this by keeping
3803 track of blocks of Lisp data that are allocated in a red-black tree
3804 (see also the comment of mem_node which is the type of nodes in
3805 that tree). Function lisp_malloc adds information for an allocated
3806 block to the red-black tree with calls to mem_insert, and function
3807 lisp_free removes it with mem_delete. Functions live_string_p etc
3808 call mem_find to lookup information about a given pointer in the
3809 tree, and use that to determine if the pointer points to a Lisp
3810 object or not. */
3812 /* Initialize this part of alloc.c. */
3814 static void
3815 mem_init (void)
3817 mem_z.left = mem_z.right = MEM_NIL;
3818 mem_z.parent = NULL;
3819 mem_z.color = MEM_BLACK;
3820 mem_z.start = mem_z.end = NULL;
3821 mem_root = MEM_NIL;
3825 /* Value is a pointer to the mem_node containing START. Value is
3826 MEM_NIL if there is no node in the tree containing START. */
3828 static struct mem_node *
3829 mem_find (void *start)
3831 struct mem_node *p;
3833 if (start < min_heap_address || start > max_heap_address)
3834 return MEM_NIL;
3836 /* Make the search always successful to speed up the loop below. */
3837 mem_z.start = start;
3838 mem_z.end = (char *) start + 1;
3840 p = mem_root;
3841 while (start < p->start || start >= p->end)
3842 p = start < p->start ? p->left : p->right;
3843 return p;
3847 /* Insert a new node into the tree for a block of memory with start
3848 address START, end address END, and type TYPE. Value is a
3849 pointer to the node that was inserted. */
3851 static struct mem_node *
3852 mem_insert (void *start, void *end, enum mem_type type)
3854 struct mem_node *c, *parent, *x;
3856 if (min_heap_address == NULL || start < min_heap_address)
3857 min_heap_address = start;
3858 if (max_heap_address == NULL || end > max_heap_address)
3859 max_heap_address = end;
3861 /* See where in the tree a node for START belongs. In this
3862 particular application, it shouldn't happen that a node is already
3863 present. For debugging purposes, let's check that. */
3864 c = mem_root;
3865 parent = NULL;
3867 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3869 while (c != MEM_NIL)
3871 if (start >= c->start && start < c->end)
3872 emacs_abort ();
3873 parent = c;
3874 c = start < c->start ? c->left : c->right;
3877 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3879 while (c != MEM_NIL)
3881 parent = c;
3882 c = start < c->start ? c->left : c->right;
3885 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3887 /* Create a new node. */
3888 #ifdef GC_MALLOC_CHECK
3889 x = malloc (sizeof *x);
3890 if (x == NULL)
3891 emacs_abort ();
3892 #else
3893 x = xmalloc (sizeof *x);
3894 #endif
3895 x->start = start;
3896 x->end = end;
3897 x->type = type;
3898 x->parent = parent;
3899 x->left = x->right = MEM_NIL;
3900 x->color = MEM_RED;
3902 /* Insert it as child of PARENT or install it as root. */
3903 if (parent)
3905 if (start < parent->start)
3906 parent->left = x;
3907 else
3908 parent->right = x;
3910 else
3911 mem_root = x;
3913 /* Re-establish red-black tree properties. */
3914 mem_insert_fixup (x);
3916 return x;
3920 /* Re-establish the red-black properties of the tree, and thereby
3921 balance the tree, after node X has been inserted; X is always red. */
3923 static void
3924 mem_insert_fixup (struct mem_node *x)
3926 while (x != mem_root && x->parent->color == MEM_RED)
3928 /* X is red and its parent is red. This is a violation of
3929 red-black tree property #3. */
3931 if (x->parent == x->parent->parent->left)
3933 /* We're on the left side of our grandparent, and Y is our
3934 "uncle". */
3935 struct mem_node *y = x->parent->parent->right;
3937 if (y->color == MEM_RED)
3939 /* Uncle and parent are red but should be black because
3940 X is red. Change the colors accordingly and proceed
3941 with the grandparent. */
3942 x->parent->color = MEM_BLACK;
3943 y->color = MEM_BLACK;
3944 x->parent->parent->color = MEM_RED;
3945 x = x->parent->parent;
3947 else
3949 /* Parent and uncle have different colors; parent is
3950 red, uncle is black. */
3951 if (x == x->parent->right)
3953 x = x->parent;
3954 mem_rotate_left (x);
3957 x->parent->color = MEM_BLACK;
3958 x->parent->parent->color = MEM_RED;
3959 mem_rotate_right (x->parent->parent);
3962 else
3964 /* This is the symmetrical case of above. */
3965 struct mem_node *y = x->parent->parent->left;
3967 if (y->color == MEM_RED)
3969 x->parent->color = MEM_BLACK;
3970 y->color = MEM_BLACK;
3971 x->parent->parent->color = MEM_RED;
3972 x = x->parent->parent;
3974 else
3976 if (x == x->parent->left)
3978 x = x->parent;
3979 mem_rotate_right (x);
3982 x->parent->color = MEM_BLACK;
3983 x->parent->parent->color = MEM_RED;
3984 mem_rotate_left (x->parent->parent);
3989 /* The root may have been changed to red due to the algorithm. Set
3990 it to black so that property #5 is satisfied. */
3991 mem_root->color = MEM_BLACK;
3995 /* (x) (y)
3996 / \ / \
3997 a (y) ===> (x) c
3998 / \ / \
3999 b c a b */
4001 static void
4002 mem_rotate_left (struct mem_node *x)
4004 struct mem_node *y;
4006 /* Turn y's left sub-tree into x's right sub-tree. */
4007 y = x->right;
4008 x->right = y->left;
4009 if (y->left != MEM_NIL)
4010 y->left->parent = x;
4012 /* Y's parent was x's parent. */
4013 if (y != MEM_NIL)
4014 y->parent = x->parent;
4016 /* Get the parent to point to y instead of x. */
4017 if (x->parent)
4019 if (x == x->parent->left)
4020 x->parent->left = y;
4021 else
4022 x->parent->right = y;
4024 else
4025 mem_root = y;
4027 /* Put x on y's left. */
4028 y->left = x;
4029 if (x != MEM_NIL)
4030 x->parent = y;
4034 /* (x) (Y)
4035 / \ / \
4036 (y) c ===> a (x)
4037 / \ / \
4038 a b b c */
4040 static void
4041 mem_rotate_right (struct mem_node *x)
4043 struct mem_node *y = x->left;
4045 x->left = y->right;
4046 if (y->right != MEM_NIL)
4047 y->right->parent = x;
4049 if (y != MEM_NIL)
4050 y->parent = x->parent;
4051 if (x->parent)
4053 if (x == x->parent->right)
4054 x->parent->right = y;
4055 else
4056 x->parent->left = y;
4058 else
4059 mem_root = y;
4061 y->right = x;
4062 if (x != MEM_NIL)
4063 x->parent = y;
4067 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4069 static void
4070 mem_delete (struct mem_node *z)
4072 struct mem_node *x, *y;
4074 if (!z || z == MEM_NIL)
4075 return;
4077 if (z->left == MEM_NIL || z->right == MEM_NIL)
4078 y = z;
4079 else
4081 y = z->right;
4082 while (y->left != MEM_NIL)
4083 y = y->left;
4086 if (y->left != MEM_NIL)
4087 x = y->left;
4088 else
4089 x = y->right;
4091 x->parent = y->parent;
4092 if (y->parent)
4094 if (y == y->parent->left)
4095 y->parent->left = x;
4096 else
4097 y->parent->right = x;
4099 else
4100 mem_root = x;
4102 if (y != z)
4104 z->start = y->start;
4105 z->end = y->end;
4106 z->type = y->type;
4109 if (y->color == MEM_BLACK)
4110 mem_delete_fixup (x);
4112 #ifdef GC_MALLOC_CHECK
4113 free (y);
4114 #else
4115 xfree (y);
4116 #endif
4120 /* Re-establish the red-black properties of the tree, after a
4121 deletion. */
4123 static void
4124 mem_delete_fixup (struct mem_node *x)
4126 while (x != mem_root && x->color == MEM_BLACK)
4128 if (x == x->parent->left)
4130 struct mem_node *w = x->parent->right;
4132 if (w->color == MEM_RED)
4134 w->color = MEM_BLACK;
4135 x->parent->color = MEM_RED;
4136 mem_rotate_left (x->parent);
4137 w = x->parent->right;
4140 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4142 w->color = MEM_RED;
4143 x = x->parent;
4145 else
4147 if (w->right->color == MEM_BLACK)
4149 w->left->color = MEM_BLACK;
4150 w->color = MEM_RED;
4151 mem_rotate_right (w);
4152 w = x->parent->right;
4154 w->color = x->parent->color;
4155 x->parent->color = MEM_BLACK;
4156 w->right->color = MEM_BLACK;
4157 mem_rotate_left (x->parent);
4158 x = mem_root;
4161 else
4163 struct mem_node *w = x->parent->left;
4165 if (w->color == MEM_RED)
4167 w->color = MEM_BLACK;
4168 x->parent->color = MEM_RED;
4169 mem_rotate_right (x->parent);
4170 w = x->parent->left;
4173 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4175 w->color = MEM_RED;
4176 x = x->parent;
4178 else
4180 if (w->left->color == MEM_BLACK)
4182 w->right->color = MEM_BLACK;
4183 w->color = MEM_RED;
4184 mem_rotate_left (w);
4185 w = x->parent->left;
4188 w->color = x->parent->color;
4189 x->parent->color = MEM_BLACK;
4190 w->left->color = MEM_BLACK;
4191 mem_rotate_right (x->parent);
4192 x = mem_root;
4197 x->color = MEM_BLACK;
4201 /* Value is non-zero if P is a pointer to a live Lisp string on
4202 the heap. M is a pointer to the mem_block for P. */
4204 static bool
4205 live_string_p (struct mem_node *m, void *p)
4207 if (m->type == MEM_TYPE_STRING)
4209 struct string_block *b = m->start;
4210 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4212 /* P must point to the start of a Lisp_String structure, and it
4213 must not be on the free-list. */
4214 return (offset >= 0
4215 && offset % sizeof b->strings[0] == 0
4216 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4217 && ((struct Lisp_String *) p)->data != NULL);
4219 else
4220 return 0;
4224 /* Value is non-zero if P is a pointer to a live Lisp cons on
4225 the heap. M is a pointer to the mem_block for P. */
4227 static bool
4228 live_cons_p (struct mem_node *m, void *p)
4230 if (m->type == MEM_TYPE_CONS)
4232 struct cons_block *b = m->start;
4233 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4235 /* P must point to the start of a Lisp_Cons, not be
4236 one of the unused cells in the current cons block,
4237 and not be on the free-list. */
4238 return (offset >= 0
4239 && offset % sizeof b->conses[0] == 0
4240 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4241 && (b != cons_block
4242 || offset / sizeof b->conses[0] < cons_block_index)
4243 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4245 else
4246 return 0;
4250 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4251 the heap. M is a pointer to the mem_block for P. */
4253 static bool
4254 live_symbol_p (struct mem_node *m, void *p)
4256 if (m->type == MEM_TYPE_SYMBOL)
4258 struct symbol_block *b = m->start;
4259 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4261 /* P must point to the start of a Lisp_Symbol, not be
4262 one of the unused cells in the current symbol block,
4263 and not be on the free-list. */
4264 return (offset >= 0
4265 && offset % sizeof b->symbols[0] == 0
4266 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4267 && (b != symbol_block
4268 || offset / sizeof b->symbols[0] < symbol_block_index)
4269 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4271 else
4272 return 0;
4276 /* Value is non-zero if P is a pointer to a live Lisp float on
4277 the heap. M is a pointer to the mem_block for P. */
4279 static bool
4280 live_float_p (struct mem_node *m, void *p)
4282 if (m->type == MEM_TYPE_FLOAT)
4284 struct float_block *b = m->start;
4285 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4287 /* P must point to the start of a Lisp_Float and not be
4288 one of the unused cells in the current float block. */
4289 return (offset >= 0
4290 && offset % sizeof b->floats[0] == 0
4291 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4292 && (b != float_block
4293 || offset / sizeof b->floats[0] < float_block_index));
4295 else
4296 return 0;
4300 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4301 the heap. M is a pointer to the mem_block for P. */
4303 static bool
4304 live_misc_p (struct mem_node *m, void *p)
4306 if (m->type == MEM_TYPE_MISC)
4308 struct marker_block *b = m->start;
4309 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4311 /* P must point to the start of a Lisp_Misc, not be
4312 one of the unused cells in the current misc block,
4313 and not be on the free-list. */
4314 return (offset >= 0
4315 && offset % sizeof b->markers[0] == 0
4316 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4317 && (b != marker_block
4318 || offset / sizeof b->markers[0] < marker_block_index)
4319 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4321 else
4322 return 0;
4326 /* Value is non-zero if P is a pointer to a live vector-like object.
4327 M is a pointer to the mem_block for P. */
4329 static bool
4330 live_vector_p (struct mem_node *m, void *p)
4332 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4334 /* This memory node corresponds to a vector block. */
4335 struct vector_block *block = m->start;
4336 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4338 /* P is in the block's allocation range. Scan the block
4339 up to P and see whether P points to the start of some
4340 vector which is not on a free list. FIXME: check whether
4341 some allocation patterns (probably a lot of short vectors)
4342 may cause a substantial overhead of this loop. */
4343 while (VECTOR_IN_BLOCK (vector, block)
4344 && vector <= (struct Lisp_Vector *) p)
4346 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4347 return 1;
4348 else
4349 vector = ADVANCE (vector, vector_nbytes (vector));
4352 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4353 /* This memory node corresponds to a large vector. */
4354 return 1;
4355 return 0;
4359 /* Value is non-zero if P is a pointer to a live buffer. M is a
4360 pointer to the mem_block for P. */
4362 static bool
4363 live_buffer_p (struct mem_node *m, void *p)
4365 /* P must point to the start of the block, and the buffer
4366 must not have been killed. */
4367 return (m->type == MEM_TYPE_BUFFER
4368 && p == m->start
4369 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4372 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4374 #if GC_MARK_STACK
4376 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4378 /* Currently not used, but may be called from gdb. */
4380 void dump_zombies (void) EXTERNALLY_VISIBLE;
4382 /* Array of objects that are kept alive because the C stack contains
4383 a pattern that looks like a reference to them. */
4385 #define MAX_ZOMBIES 10
4386 static Lisp_Object zombies[MAX_ZOMBIES];
4388 /* Number of zombie objects. */
4390 static EMACS_INT nzombies;
4392 /* Number of garbage collections. */
4394 static EMACS_INT ngcs;
4396 /* Average percentage of zombies per collection. */
4398 static double avg_zombies;
4400 /* Max. number of live and zombie objects. */
4402 static EMACS_INT max_live, max_zombies;
4404 /* Average number of live objects per GC. */
4406 static double avg_live;
4408 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4409 doc: /* Show information about live and zombie objects. */)
4410 (void)
4412 Lisp_Object args[8], zombie_list = Qnil;
4413 EMACS_INT i;
4414 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4415 zombie_list = Fcons (zombies[i], zombie_list);
4416 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4417 args[1] = make_number (ngcs);
4418 args[2] = make_float (avg_live);
4419 args[3] = make_float (avg_zombies);
4420 args[4] = make_float (avg_zombies / avg_live / 100);
4421 args[5] = make_number (max_live);
4422 args[6] = make_number (max_zombies);
4423 args[7] = zombie_list;
4424 return Fmessage (8, args);
4427 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4430 /* Mark OBJ if we can prove it's a Lisp_Object. */
4432 static void
4433 mark_maybe_object (Lisp_Object obj)
4435 void *po;
4436 struct mem_node *m;
4438 #if USE_VALGRIND
4439 if (valgrind_p)
4440 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4441 #endif
4443 if (INTEGERP (obj))
4444 return;
4446 po = (void *) XPNTR (obj);
4447 m = mem_find (po);
4449 if (m != MEM_NIL)
4451 bool mark_p = 0;
4453 switch (XTYPE (obj))
4455 case Lisp_String:
4456 mark_p = (live_string_p (m, po)
4457 && !STRING_MARKED_P ((struct Lisp_String *) po));
4458 break;
4460 case Lisp_Cons:
4461 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4462 break;
4464 case Lisp_Symbol:
4465 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4466 break;
4468 case Lisp_Float:
4469 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4470 break;
4472 case Lisp_Vectorlike:
4473 /* Note: can't check BUFFERP before we know it's a
4474 buffer because checking that dereferences the pointer
4475 PO which might point anywhere. */
4476 if (live_vector_p (m, po))
4477 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4478 else if (live_buffer_p (m, po))
4479 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4480 break;
4482 case Lisp_Misc:
4483 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4484 break;
4486 default:
4487 break;
4490 if (mark_p)
4492 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4493 if (nzombies < MAX_ZOMBIES)
4494 zombies[nzombies] = obj;
4495 ++nzombies;
4496 #endif
4497 mark_object (obj);
4502 /* Return true if P can point to Lisp data, and false otherwise.
4503 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4504 Otherwise, assume that Lisp data is aligned on even addresses. */
4506 static bool
4507 maybe_lisp_pointer (void *p)
4509 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4512 /* If P points to Lisp data, mark that as live if it isn't already
4513 marked. */
4515 static void
4516 mark_maybe_pointer (void *p)
4518 struct mem_node *m;
4520 #if USE_VALGRIND
4521 if (valgrind_p)
4522 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4523 #endif
4525 if (!maybe_lisp_pointer (p))
4526 return;
4528 m = mem_find (p);
4529 if (m != MEM_NIL)
4531 Lisp_Object obj = Qnil;
4533 switch (m->type)
4535 case MEM_TYPE_NON_LISP:
4536 case MEM_TYPE_SPARE:
4537 /* Nothing to do; not a pointer to Lisp memory. */
4538 break;
4540 case MEM_TYPE_BUFFER:
4541 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4542 XSETVECTOR (obj, p);
4543 break;
4545 case MEM_TYPE_CONS:
4546 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4547 XSETCONS (obj, p);
4548 break;
4550 case MEM_TYPE_STRING:
4551 if (live_string_p (m, p)
4552 && !STRING_MARKED_P ((struct Lisp_String *) p))
4553 XSETSTRING (obj, p);
4554 break;
4556 case MEM_TYPE_MISC:
4557 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4558 XSETMISC (obj, p);
4559 break;
4561 case MEM_TYPE_SYMBOL:
4562 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4563 XSETSYMBOL (obj, p);
4564 break;
4566 case MEM_TYPE_FLOAT:
4567 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4568 XSETFLOAT (obj, p);
4569 break;
4571 case MEM_TYPE_VECTORLIKE:
4572 case MEM_TYPE_VECTOR_BLOCK:
4573 if (live_vector_p (m, p))
4575 Lisp_Object tem;
4576 XSETVECTOR (tem, p);
4577 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4578 obj = tem;
4580 break;
4582 default:
4583 emacs_abort ();
4586 if (!NILP (obj))
4587 mark_object (obj);
4592 /* Alignment of pointer values. Use alignof, as it sometimes returns
4593 a smaller alignment than GCC's __alignof__ and mark_memory might
4594 miss objects if __alignof__ were used. */
4595 #define GC_POINTER_ALIGNMENT alignof (void *)
4597 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4598 not suffice, which is the typical case. A host where a Lisp_Object is
4599 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4600 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4601 suffice to widen it to to a Lisp_Object and check it that way. */
4602 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4603 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4604 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4605 nor mark_maybe_object can follow the pointers. This should not occur on
4606 any practical porting target. */
4607 # error "MSB type bits straddle pointer-word boundaries"
4608 # endif
4609 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4610 pointer words that hold pointers ORed with type bits. */
4611 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4612 #else
4613 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4614 words that hold unmodified pointers. */
4615 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4616 #endif
4618 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4619 or END+OFFSET..START. */
4621 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4622 mark_memory (void *start, void *end)
4624 void **pp;
4625 int i;
4627 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4628 nzombies = 0;
4629 #endif
4631 /* Make START the pointer to the start of the memory region,
4632 if it isn't already. */
4633 if (end < start)
4635 void *tem = start;
4636 start = end;
4637 end = tem;
4640 /* Mark Lisp data pointed to. This is necessary because, in some
4641 situations, the C compiler optimizes Lisp objects away, so that
4642 only a pointer to them remains. Example:
4644 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4647 Lisp_Object obj = build_string ("test");
4648 struct Lisp_String *s = XSTRING (obj);
4649 Fgarbage_collect ();
4650 fprintf (stderr, "test `%s'\n", s->data);
4651 return Qnil;
4654 Here, `obj' isn't really used, and the compiler optimizes it
4655 away. The only reference to the life string is through the
4656 pointer `s'. */
4658 for (pp = start; (void *) pp < end; pp++)
4659 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4661 void *p = *(void **) ((char *) pp + i);
4662 mark_maybe_pointer (p);
4663 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4664 mark_maybe_object (XIL ((intptr_t) p));
4668 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4670 static bool setjmp_tested_p;
4671 static int longjmps_done;
4673 #define SETJMP_WILL_LIKELY_WORK "\
4675 Emacs garbage collector has been changed to use conservative stack\n\
4676 marking. Emacs has determined that the method it uses to do the\n\
4677 marking will likely work on your system, but this isn't sure.\n\
4679 If you are a system-programmer, or can get the help of a local wizard\n\
4680 who is, please take a look at the function mark_stack in alloc.c, and\n\
4681 verify that the methods used are appropriate for your system.\n\
4683 Please mail the result to <emacs-devel@gnu.org>.\n\
4686 #define SETJMP_WILL_NOT_WORK "\
4688 Emacs garbage collector has been changed to use conservative stack\n\
4689 marking. Emacs has determined that the default method it uses to do the\n\
4690 marking will not work on your system. We will need a system-dependent\n\
4691 solution for your system.\n\
4693 Please take a look at the function mark_stack in alloc.c, and\n\
4694 try to find a way to make it work on your system.\n\
4696 Note that you may get false negatives, depending on the compiler.\n\
4697 In particular, you need to use -O with GCC for this test.\n\
4699 Please mail the result to <emacs-devel@gnu.org>.\n\
4703 /* Perform a quick check if it looks like setjmp saves registers in a
4704 jmp_buf. Print a message to stderr saying so. When this test
4705 succeeds, this is _not_ a proof that setjmp is sufficient for
4706 conservative stack marking. Only the sources or a disassembly
4707 can prove that. */
4709 static void
4710 test_setjmp (void)
4712 char buf[10];
4713 register int x;
4714 sys_jmp_buf jbuf;
4716 /* Arrange for X to be put in a register. */
4717 sprintf (buf, "1");
4718 x = strlen (buf);
4719 x = 2 * x - 1;
4721 sys_setjmp (jbuf);
4722 if (longjmps_done == 1)
4724 /* Came here after the longjmp at the end of the function.
4726 If x == 1, the longjmp has restored the register to its
4727 value before the setjmp, and we can hope that setjmp
4728 saves all such registers in the jmp_buf, although that
4729 isn't sure.
4731 For other values of X, either something really strange is
4732 taking place, or the setjmp just didn't save the register. */
4734 if (x == 1)
4735 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4736 else
4738 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4739 exit (1);
4743 ++longjmps_done;
4744 x = 2;
4745 if (longjmps_done == 1)
4746 sys_longjmp (jbuf, 1);
4749 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4752 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4754 /* Abort if anything GCPRO'd doesn't survive the GC. */
4756 static void
4757 check_gcpros (void)
4759 struct gcpro *p;
4760 ptrdiff_t i;
4762 for (p = gcprolist; p; p = p->next)
4763 for (i = 0; i < p->nvars; ++i)
4764 if (!survives_gc_p (p->var[i]))
4765 /* FIXME: It's not necessarily a bug. It might just be that the
4766 GCPRO is unnecessary or should release the object sooner. */
4767 emacs_abort ();
4770 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4772 void
4773 dump_zombies (void)
4775 int i;
4777 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4778 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4780 fprintf (stderr, " %d = ", i);
4781 debug_print (zombies[i]);
4785 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4788 /* Mark live Lisp objects on the C stack.
4790 There are several system-dependent problems to consider when
4791 porting this to new architectures:
4793 Processor Registers
4795 We have to mark Lisp objects in CPU registers that can hold local
4796 variables or are used to pass parameters.
4798 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4799 something that either saves relevant registers on the stack, or
4800 calls mark_maybe_object passing it each register's contents.
4802 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4803 implementation assumes that calling setjmp saves registers we need
4804 to see in a jmp_buf which itself lies on the stack. This doesn't
4805 have to be true! It must be verified for each system, possibly
4806 by taking a look at the source code of setjmp.
4808 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4809 can use it as a machine independent method to store all registers
4810 to the stack. In this case the macros described in the previous
4811 two paragraphs are not used.
4813 Stack Layout
4815 Architectures differ in the way their processor stack is organized.
4816 For example, the stack might look like this
4818 +----------------+
4819 | Lisp_Object | size = 4
4820 +----------------+
4821 | something else | size = 2
4822 +----------------+
4823 | Lisp_Object | size = 4
4824 +----------------+
4825 | ... |
4827 In such a case, not every Lisp_Object will be aligned equally. To
4828 find all Lisp_Object on the stack it won't be sufficient to walk
4829 the stack in steps of 4 bytes. Instead, two passes will be
4830 necessary, one starting at the start of the stack, and a second
4831 pass starting at the start of the stack + 2. Likewise, if the
4832 minimal alignment of Lisp_Objects on the stack is 1, four passes
4833 would be necessary, each one starting with one byte more offset
4834 from the stack start. */
4836 static void
4837 mark_stack (void *end)
4840 /* This assumes that the stack is a contiguous region in memory. If
4841 that's not the case, something has to be done here to iterate
4842 over the stack segments. */
4843 mark_memory (stack_base, end);
4845 /* Allow for marking a secondary stack, like the register stack on the
4846 ia64. */
4847 #ifdef GC_MARK_SECONDARY_STACK
4848 GC_MARK_SECONDARY_STACK ();
4849 #endif
4851 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4852 check_gcpros ();
4853 #endif
4856 #else /* GC_MARK_STACK == 0 */
4858 #define mark_maybe_object(obj) emacs_abort ()
4860 #endif /* GC_MARK_STACK != 0 */
4862 static bool
4863 c_symbol_p (struct Lisp_Symbol *sym)
4865 char *lispsym_ptr = (char *) lispsym;
4866 char *sym_ptr = (char *) sym;
4867 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4868 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4871 /* Determine whether it is safe to access memory at address P. */
4872 static int
4873 valid_pointer_p (void *p)
4875 #ifdef WINDOWSNT
4876 return w32_valid_pointer_p (p, 16);
4877 #else
4879 if (ADDRESS_SANITIZER)
4880 return p ? -1 : 0;
4882 int fd[2];
4884 /* Obviously, we cannot just access it (we would SEGV trying), so we
4885 trick the o/s to tell us whether p is a valid pointer.
4886 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4887 not validate p in that case. */
4889 if (emacs_pipe (fd) == 0)
4891 bool valid = emacs_write (fd[1], p, 16) == 16;
4892 emacs_close (fd[1]);
4893 emacs_close (fd[0]);
4894 return valid;
4897 return -1;
4898 #endif
4901 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4902 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4903 cannot validate OBJ. This function can be quite slow, so its primary
4904 use is the manual debugging. The only exception is print_object, where
4905 we use it to check whether the memory referenced by the pointer of
4906 Lisp_Save_Value object contains valid objects. */
4909 valid_lisp_object_p (Lisp_Object obj)
4911 void *p;
4912 #if GC_MARK_STACK
4913 struct mem_node *m;
4914 #endif
4916 if (INTEGERP (obj))
4917 return 1;
4919 p = (void *) XPNTR (obj);
4920 if (PURE_POINTER_P (p))
4921 return 1;
4923 if (SYMBOLP (obj) && c_symbol_p (p))
4924 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4926 if (p == &buffer_defaults || p == &buffer_local_symbols)
4927 return 2;
4929 #if !GC_MARK_STACK
4930 return valid_pointer_p (p);
4931 #else
4933 m = mem_find (p);
4935 if (m == MEM_NIL)
4937 int valid = valid_pointer_p (p);
4938 if (valid <= 0)
4939 return valid;
4941 if (SUBRP (obj))
4942 return 1;
4944 return 0;
4947 switch (m->type)
4949 case MEM_TYPE_NON_LISP:
4950 case MEM_TYPE_SPARE:
4951 return 0;
4953 case MEM_TYPE_BUFFER:
4954 return live_buffer_p (m, p) ? 1 : 2;
4956 case MEM_TYPE_CONS:
4957 return live_cons_p (m, p);
4959 case MEM_TYPE_STRING:
4960 return live_string_p (m, p);
4962 case MEM_TYPE_MISC:
4963 return live_misc_p (m, p);
4965 case MEM_TYPE_SYMBOL:
4966 return live_symbol_p (m, p);
4968 case MEM_TYPE_FLOAT:
4969 return live_float_p (m, p);
4971 case MEM_TYPE_VECTORLIKE:
4972 case MEM_TYPE_VECTOR_BLOCK:
4973 return live_vector_p (m, p);
4975 default:
4976 break;
4979 return 0;
4980 #endif
4983 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
4984 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
4985 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
4986 This function is slow and should be used for debugging purposes. */
4989 relocatable_string_data_p (const char *str)
4991 if (PURE_POINTER_P (str))
4992 return 0;
4993 #if GC_MARK_STACK
4994 if (str)
4996 struct sdata *sdata
4997 = (struct sdata *) (str - offsetof (struct sdata, data));
4999 if (0 < valid_pointer_p (sdata)
5000 && 0 < valid_pointer_p (sdata->string)
5001 && maybe_lisp_pointer (sdata->string))
5002 return (valid_lisp_object_p
5003 (make_lisp_ptr (sdata->string, Lisp_String))
5004 && (const char *) sdata->string->data == str);
5006 return 0;
5007 #endif /* GC_MARK_STACK */
5008 return -1;
5011 /***********************************************************************
5012 Pure Storage Management
5013 ***********************************************************************/
5015 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5016 pointer to it. TYPE is the Lisp type for which the memory is
5017 allocated. TYPE < 0 means it's not used for a Lisp object. */
5019 static void *
5020 pure_alloc (size_t size, int type)
5022 void *result;
5023 #if USE_LSB_TAG
5024 size_t alignment = GCALIGNMENT;
5025 #else
5026 size_t alignment = alignof (EMACS_INT);
5028 /* Give Lisp_Floats an extra alignment. */
5029 if (type == Lisp_Float)
5030 alignment = alignof (struct Lisp_Float);
5031 #endif
5033 again:
5034 if (type >= 0)
5036 /* Allocate space for a Lisp object from the beginning of the free
5037 space with taking account of alignment. */
5038 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5039 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5041 else
5043 /* Allocate space for a non-Lisp object from the end of the free
5044 space. */
5045 pure_bytes_used_non_lisp += size;
5046 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5048 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5050 if (pure_bytes_used <= pure_size)
5051 return result;
5053 /* Don't allocate a large amount here,
5054 because it might get mmap'd and then its address
5055 might not be usable. */
5056 purebeg = xmalloc (10000);
5057 pure_size = 10000;
5058 pure_bytes_used_before_overflow += pure_bytes_used - size;
5059 pure_bytes_used = 0;
5060 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5061 goto again;
5065 /* Print a warning if PURESIZE is too small. */
5067 void
5068 check_pure_size (void)
5070 if (pure_bytes_used_before_overflow)
5071 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5072 " bytes needed)"),
5073 pure_bytes_used + pure_bytes_used_before_overflow);
5077 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5078 the non-Lisp data pool of the pure storage, and return its start
5079 address. Return NULL if not found. */
5081 static char *
5082 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5084 int i;
5085 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5086 const unsigned char *p;
5087 char *non_lisp_beg;
5089 if (pure_bytes_used_non_lisp <= nbytes)
5090 return NULL;
5092 /* Set up the Boyer-Moore table. */
5093 skip = nbytes + 1;
5094 for (i = 0; i < 256; i++)
5095 bm_skip[i] = skip;
5097 p = (const unsigned char *) data;
5098 while (--skip > 0)
5099 bm_skip[*p++] = skip;
5101 last_char_skip = bm_skip['\0'];
5103 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5104 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5106 /* See the comments in the function `boyer_moore' (search.c) for the
5107 use of `infinity'. */
5108 infinity = pure_bytes_used_non_lisp + 1;
5109 bm_skip['\0'] = infinity;
5111 p = (const unsigned char *) non_lisp_beg + nbytes;
5112 start = 0;
5115 /* Check the last character (== '\0'). */
5118 start += bm_skip[*(p + start)];
5120 while (start <= start_max);
5122 if (start < infinity)
5123 /* Couldn't find the last character. */
5124 return NULL;
5126 /* No less than `infinity' means we could find the last
5127 character at `p[start - infinity]'. */
5128 start -= infinity;
5130 /* Check the remaining characters. */
5131 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5132 /* Found. */
5133 return non_lisp_beg + start;
5135 start += last_char_skip;
5137 while (start <= start_max);
5139 return NULL;
5143 /* Return a string allocated in pure space. DATA is a buffer holding
5144 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5145 means make the result string multibyte.
5147 Must get an error if pure storage is full, since if it cannot hold
5148 a large string it may be able to hold conses that point to that
5149 string; then the string is not protected from gc. */
5151 Lisp_Object
5152 make_pure_string (const char *data,
5153 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5155 Lisp_Object string;
5156 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5157 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5158 if (s->data == NULL)
5160 s->data = pure_alloc (nbytes + 1, -1);
5161 memcpy (s->data, data, nbytes);
5162 s->data[nbytes] = '\0';
5164 s->size = nchars;
5165 s->size_byte = multibyte ? nbytes : -1;
5166 s->intervals = NULL;
5167 XSETSTRING (string, s);
5168 return string;
5171 /* Return a string allocated in pure space. Do not
5172 allocate the string data, just point to DATA. */
5174 Lisp_Object
5175 make_pure_c_string (const char *data, ptrdiff_t nchars)
5177 Lisp_Object string;
5178 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5179 s->size = nchars;
5180 s->size_byte = -1;
5181 s->data = (unsigned char *) data;
5182 s->intervals = NULL;
5183 XSETSTRING (string, s);
5184 return string;
5187 static Lisp_Object purecopy (Lisp_Object obj);
5189 /* Return a cons allocated from pure space. Give it pure copies
5190 of CAR as car and CDR as cdr. */
5192 Lisp_Object
5193 pure_cons (Lisp_Object car, Lisp_Object cdr)
5195 Lisp_Object new;
5196 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5197 XSETCONS (new, p);
5198 XSETCAR (new, purecopy (car));
5199 XSETCDR (new, purecopy (cdr));
5200 return new;
5204 /* Value is a float object with value NUM allocated from pure space. */
5206 static Lisp_Object
5207 make_pure_float (double num)
5209 Lisp_Object new;
5210 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5211 XSETFLOAT (new, p);
5212 XFLOAT_INIT (new, num);
5213 return new;
5217 /* Return a vector with room for LEN Lisp_Objects allocated from
5218 pure space. */
5220 static Lisp_Object
5221 make_pure_vector (ptrdiff_t len)
5223 Lisp_Object new;
5224 size_t size = header_size + len * word_size;
5225 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5226 XSETVECTOR (new, p);
5227 XVECTOR (new)->header.size = len;
5228 return new;
5232 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5233 doc: /* Make a copy of object OBJ in pure storage.
5234 Recursively copies contents of vectors and cons cells.
5235 Does not copy symbols. Copies strings without text properties. */)
5236 (register Lisp_Object obj)
5238 if (NILP (Vpurify_flag))
5239 return obj;
5240 else if (MARKERP (obj) || OVERLAYP (obj)
5241 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5242 /* Can't purify those. */
5243 return obj;
5244 else
5245 return purecopy (obj);
5248 static Lisp_Object
5249 purecopy (Lisp_Object obj)
5251 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5252 return obj; /* Already pure. */
5254 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5256 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5257 if (!NILP (tmp))
5258 return tmp;
5261 if (CONSP (obj))
5262 obj = pure_cons (XCAR (obj), XCDR (obj));
5263 else if (FLOATP (obj))
5264 obj = make_pure_float (XFLOAT_DATA (obj));
5265 else if (STRINGP (obj))
5266 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5267 SBYTES (obj),
5268 STRING_MULTIBYTE (obj));
5269 else if (COMPILEDP (obj) || VECTORP (obj))
5271 register struct Lisp_Vector *vec;
5272 register ptrdiff_t i;
5273 ptrdiff_t size;
5275 size = ASIZE (obj);
5276 if (size & PSEUDOVECTOR_FLAG)
5277 size &= PSEUDOVECTOR_SIZE_MASK;
5278 vec = XVECTOR (make_pure_vector (size));
5279 for (i = 0; i < size; i++)
5280 vec->contents[i] = purecopy (AREF (obj, i));
5281 if (COMPILEDP (obj))
5283 XSETPVECTYPE (vec, PVEC_COMPILED);
5284 XSETCOMPILED (obj, vec);
5286 else
5287 XSETVECTOR (obj, vec);
5289 else if (SYMBOLP (obj))
5291 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5292 { /* We can't purify them, but they appear in many pure objects.
5293 Mark them as `pinned' so we know to mark them at every GC cycle. */
5294 XSYMBOL (obj)->pinned = true;
5295 symbol_block_pinned = symbol_block;
5297 return obj;
5299 else
5301 Lisp_Object args[2];
5302 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5303 args[1] = obj;
5304 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5307 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5308 Fputhash (obj, obj, Vpurify_flag);
5310 return obj;
5315 /***********************************************************************
5316 Protection from GC
5317 ***********************************************************************/
5319 /* Put an entry in staticvec, pointing at the variable with address
5320 VARADDRESS. */
5322 void
5323 staticpro (Lisp_Object *varaddress)
5325 if (staticidx >= NSTATICS)
5326 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5327 staticvec[staticidx++] = varaddress;
5331 /***********************************************************************
5332 Protection from GC
5333 ***********************************************************************/
5335 /* Temporarily prevent garbage collection. */
5337 ptrdiff_t
5338 inhibit_garbage_collection (void)
5340 ptrdiff_t count = SPECPDL_INDEX ();
5342 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5343 return count;
5346 /* Used to avoid possible overflows when
5347 converting from C to Lisp integers. */
5349 static Lisp_Object
5350 bounded_number (EMACS_INT number)
5352 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5355 /* Calculate total bytes of live objects. */
5357 static size_t
5358 total_bytes_of_live_objects (void)
5360 size_t tot = 0;
5361 tot += total_conses * sizeof (struct Lisp_Cons);
5362 tot += total_symbols * sizeof (struct Lisp_Symbol);
5363 tot += total_markers * sizeof (union Lisp_Misc);
5364 tot += total_string_bytes;
5365 tot += total_vector_slots * word_size;
5366 tot += total_floats * sizeof (struct Lisp_Float);
5367 tot += total_intervals * sizeof (struct interval);
5368 tot += total_strings * sizeof (struct Lisp_String);
5369 return tot;
5372 #ifdef HAVE_WINDOW_SYSTEM
5374 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5376 #if !defined (HAVE_NTGUI)
5378 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5379 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5381 static Lisp_Object
5382 compact_font_cache_entry (Lisp_Object entry)
5384 Lisp_Object tail, *prev = &entry;
5386 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5388 bool drop = 0;
5389 Lisp_Object obj = XCAR (tail);
5391 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5392 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5393 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5394 && VECTORP (XCDR (obj)))
5396 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5398 /* If font-spec is not marked, most likely all font-entities
5399 are not marked too. But we must be sure that nothing is
5400 marked within OBJ before we really drop it. */
5401 for (i = 0; i < size; i++)
5402 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5403 break;
5405 if (i == size)
5406 drop = 1;
5408 if (drop)
5409 *prev = XCDR (tail);
5410 else
5411 prev = xcdr_addr (tail);
5413 return entry;
5416 #endif /* not HAVE_NTGUI */
5418 /* Compact font caches on all terminals and mark
5419 everything which is still here after compaction. */
5421 static void
5422 compact_font_caches (void)
5424 struct terminal *t;
5426 for (t = terminal_list; t; t = t->next_terminal)
5428 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5429 #if !defined (HAVE_NTGUI)
5430 if (CONSP (cache))
5432 Lisp_Object entry;
5434 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5435 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5437 #endif /* not HAVE_NTGUI */
5438 mark_object (cache);
5442 #else /* not HAVE_WINDOW_SYSTEM */
5444 #define compact_font_caches() (void)(0)
5446 #endif /* HAVE_WINDOW_SYSTEM */
5448 /* Remove (MARKER . DATA) entries with unmarked MARKER
5449 from buffer undo LIST and return changed list. */
5451 static Lisp_Object
5452 compact_undo_list (Lisp_Object list)
5454 Lisp_Object tail, *prev = &list;
5456 for (tail = list; CONSP (tail); tail = XCDR (tail))
5458 if (CONSP (XCAR (tail))
5459 && MARKERP (XCAR (XCAR (tail)))
5460 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5461 *prev = XCDR (tail);
5462 else
5463 prev = xcdr_addr (tail);
5465 return list;
5468 static void
5469 mark_pinned_symbols (void)
5471 struct symbol_block *sblk;
5472 int lim = (symbol_block_pinned == symbol_block
5473 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5475 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5477 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5478 for (; sym < end; ++sym)
5479 if (sym->s.pinned)
5480 mark_object (make_lisp_symbol (&sym->s));
5482 lim = SYMBOL_BLOCK_SIZE;
5486 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5487 separate function so that we could limit mark_stack in searching
5488 the stack frames below this function, thus avoiding the rare cases
5489 where mark_stack finds values that look like live Lisp objects on
5490 portions of stack that couldn't possibly contain such live objects.
5491 For more details of this, see the discussion at
5492 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5493 static Lisp_Object
5494 garbage_collect_1 (void *end)
5496 struct buffer *nextb;
5497 char stack_top_variable;
5498 ptrdiff_t i;
5499 bool message_p;
5500 ptrdiff_t count = SPECPDL_INDEX ();
5501 struct timespec start;
5502 Lisp_Object retval = Qnil;
5503 size_t tot_before = 0;
5505 if (abort_on_gc)
5506 emacs_abort ();
5508 /* Can't GC if pure storage overflowed because we can't determine
5509 if something is a pure object or not. */
5510 if (pure_bytes_used_before_overflow)
5511 return Qnil;
5513 /* Record this function, so it appears on the profiler's backtraces. */
5514 record_in_backtrace (Qautomatic_gc, 0, 0);
5516 check_cons_list ();
5518 /* Don't keep undo information around forever.
5519 Do this early on, so it is no problem if the user quits. */
5520 FOR_EACH_BUFFER (nextb)
5521 compact_buffer (nextb);
5523 if (profiler_memory_running)
5524 tot_before = total_bytes_of_live_objects ();
5526 start = current_timespec ();
5528 /* In case user calls debug_print during GC,
5529 don't let that cause a recursive GC. */
5530 consing_since_gc = 0;
5532 /* Save what's currently displayed in the echo area. */
5533 message_p = push_message ();
5534 record_unwind_protect_void (pop_message_unwind);
5536 /* Save a copy of the contents of the stack, for debugging. */
5537 #if MAX_SAVE_STACK > 0
5538 if (NILP (Vpurify_flag))
5540 char *stack;
5541 ptrdiff_t stack_size;
5542 if (&stack_top_variable < stack_bottom)
5544 stack = &stack_top_variable;
5545 stack_size = stack_bottom - &stack_top_variable;
5547 else
5549 stack = stack_bottom;
5550 stack_size = &stack_top_variable - stack_bottom;
5552 if (stack_size <= MAX_SAVE_STACK)
5554 if (stack_copy_size < stack_size)
5556 stack_copy = xrealloc (stack_copy, stack_size);
5557 stack_copy_size = stack_size;
5559 no_sanitize_memcpy (stack_copy, stack, stack_size);
5562 #endif /* MAX_SAVE_STACK > 0 */
5564 if (garbage_collection_messages)
5565 message1_nolog ("Garbage collecting...");
5567 block_input ();
5569 shrink_regexp_cache ();
5571 gc_in_progress = 1;
5573 /* Mark all the special slots that serve as the roots of accessibility. */
5575 mark_buffer (&buffer_defaults);
5576 mark_buffer (&buffer_local_symbols);
5578 for (i = 0; i < ARRAYELTS (lispsym); i++)
5579 mark_object (builtin_lisp_symbol (i));
5581 for (i = 0; i < staticidx; i++)
5582 mark_object (*staticvec[i]);
5584 mark_pinned_symbols ();
5585 mark_specpdl ();
5586 mark_terminals ();
5587 mark_kboards ();
5589 #ifdef USE_GTK
5590 xg_mark_data ();
5591 #endif
5593 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5594 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5595 mark_stack (end);
5596 #else
5598 register struct gcpro *tail;
5599 for (tail = gcprolist; tail; tail = tail->next)
5600 for (i = 0; i < tail->nvars; i++)
5601 mark_object (tail->var[i]);
5603 mark_byte_stack ();
5604 #endif
5606 struct handler *handler;
5607 for (handler = handlerlist; handler; handler = handler->next)
5609 mark_object (handler->tag_or_ch);
5610 mark_object (handler->val);
5613 #ifdef HAVE_WINDOW_SYSTEM
5614 mark_fringe_data ();
5615 #endif
5617 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5618 mark_stack (end);
5619 #endif
5621 /* Everything is now marked, except for the data in font caches
5622 and undo lists. They're compacted by removing an items which
5623 aren't reachable otherwise. */
5625 compact_font_caches ();
5627 FOR_EACH_BUFFER (nextb)
5629 if (!EQ (BVAR (nextb, undo_list), Qt))
5630 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5631 /* Now that we have stripped the elements that need not be
5632 in the undo_list any more, we can finally mark the list. */
5633 mark_object (BVAR (nextb, undo_list));
5636 gc_sweep ();
5638 /* Clear the mark bits that we set in certain root slots. */
5640 unmark_byte_stack ();
5641 VECTOR_UNMARK (&buffer_defaults);
5642 VECTOR_UNMARK (&buffer_local_symbols);
5644 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5645 dump_zombies ();
5646 #endif
5648 check_cons_list ();
5650 gc_in_progress = 0;
5652 unblock_input ();
5654 consing_since_gc = 0;
5655 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5656 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5658 gc_relative_threshold = 0;
5659 if (FLOATP (Vgc_cons_percentage))
5660 { /* Set gc_cons_combined_threshold. */
5661 double tot = total_bytes_of_live_objects ();
5663 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5664 if (0 < tot)
5666 if (tot < TYPE_MAXIMUM (EMACS_INT))
5667 gc_relative_threshold = tot;
5668 else
5669 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5673 if (garbage_collection_messages)
5675 if (message_p || minibuf_level > 0)
5676 restore_message ();
5677 else
5678 message1_nolog ("Garbage collecting...done");
5681 unbind_to (count, Qnil);
5683 Lisp_Object total[11];
5684 int total_size = 10;
5686 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5687 bounded_number (total_conses),
5688 bounded_number (total_free_conses));
5690 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5691 bounded_number (total_symbols),
5692 bounded_number (total_free_symbols));
5694 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5695 bounded_number (total_markers),
5696 bounded_number (total_free_markers));
5698 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5699 bounded_number (total_strings),
5700 bounded_number (total_free_strings));
5702 total[4] = list3 (Qstring_bytes, make_number (1),
5703 bounded_number (total_string_bytes));
5705 total[5] = list3 (Qvectors,
5706 make_number (header_size + sizeof (Lisp_Object)),
5707 bounded_number (total_vectors));
5709 total[6] = list4 (Qvector_slots, make_number (word_size),
5710 bounded_number (total_vector_slots),
5711 bounded_number (total_free_vector_slots));
5713 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5714 bounded_number (total_floats),
5715 bounded_number (total_free_floats));
5717 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5718 bounded_number (total_intervals),
5719 bounded_number (total_free_intervals));
5721 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5722 bounded_number (total_buffers));
5724 #ifdef DOUG_LEA_MALLOC
5725 total_size++;
5726 total[10] = list4 (Qheap, make_number (1024),
5727 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5728 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5729 #endif
5730 retval = Flist (total_size, total);
5733 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5735 /* Compute average percentage of zombies. */
5736 double nlive
5737 = (total_conses + total_symbols + total_markers + total_strings
5738 + total_vectors + total_floats + total_intervals + total_buffers);
5740 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5741 max_live = max (nlive, max_live);
5742 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5743 max_zombies = max (nzombies, max_zombies);
5744 ++ngcs;
5746 #endif
5748 if (!NILP (Vpost_gc_hook))
5750 ptrdiff_t gc_count = inhibit_garbage_collection ();
5751 safe_run_hooks (Qpost_gc_hook);
5752 unbind_to (gc_count, Qnil);
5755 /* Accumulate statistics. */
5756 if (FLOATP (Vgc_elapsed))
5758 struct timespec since_start = timespec_sub (current_timespec (), start);
5759 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5760 + timespectod (since_start));
5763 gcs_done++;
5765 /* Collect profiling data. */
5766 if (profiler_memory_running)
5768 size_t swept = 0;
5769 size_t tot_after = total_bytes_of_live_objects ();
5770 if (tot_before > tot_after)
5771 swept = tot_before - tot_after;
5772 malloc_probe (swept);
5775 return retval;
5778 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5779 doc: /* Reclaim storage for Lisp objects no longer needed.
5780 Garbage collection happens automatically if you cons more than
5781 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5782 `garbage-collect' normally returns a list with info on amount of space in use,
5783 where each entry has the form (NAME SIZE USED FREE), where:
5784 - NAME is a symbol describing the kind of objects this entry represents,
5785 - SIZE is the number of bytes used by each one,
5786 - USED is the number of those objects that were found live in the heap,
5787 - FREE is the number of those objects that are not live but that Emacs
5788 keeps around for future allocations (maybe because it does not know how
5789 to return them to the OS).
5790 However, if there was overflow in pure space, `garbage-collect'
5791 returns nil, because real GC can't be done.
5792 See Info node `(elisp)Garbage Collection'. */)
5793 (void)
5795 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5796 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5797 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5798 void *end;
5800 #ifdef HAVE___BUILTIN_UNWIND_INIT
5801 /* Force callee-saved registers and register windows onto the stack.
5802 This is the preferred method if available, obviating the need for
5803 machine dependent methods. */
5804 __builtin_unwind_init ();
5805 end = &end;
5806 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5807 #ifndef GC_SAVE_REGISTERS_ON_STACK
5808 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5809 union aligned_jmpbuf {
5810 Lisp_Object o;
5811 sys_jmp_buf j;
5812 } j;
5813 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5814 #endif
5815 /* This trick flushes the register windows so that all the state of
5816 the process is contained in the stack. */
5817 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5818 needed on ia64 too. See mach_dep.c, where it also says inline
5819 assembler doesn't work with relevant proprietary compilers. */
5820 #ifdef __sparc__
5821 #if defined (__sparc64__) && defined (__FreeBSD__)
5822 /* FreeBSD does not have a ta 3 handler. */
5823 asm ("flushw");
5824 #else
5825 asm ("ta 3");
5826 #endif
5827 #endif
5829 /* Save registers that we need to see on the stack. We need to see
5830 registers used to hold register variables and registers used to
5831 pass parameters. */
5832 #ifdef GC_SAVE_REGISTERS_ON_STACK
5833 GC_SAVE_REGISTERS_ON_STACK (end);
5834 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5836 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5837 setjmp will definitely work, test it
5838 and print a message with the result
5839 of the test. */
5840 if (!setjmp_tested_p)
5842 setjmp_tested_p = 1;
5843 test_setjmp ();
5845 #endif /* GC_SETJMP_WORKS */
5847 sys_setjmp (j.j);
5848 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5849 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5850 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5851 return garbage_collect_1 (end);
5852 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5853 /* Old GCPROs-based method without stack marking. */
5854 return garbage_collect_1 (NULL);
5855 #else
5856 emacs_abort ();
5857 #endif /* GC_MARK_STACK */
5860 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5861 only interesting objects referenced from glyphs are strings. */
5863 static void
5864 mark_glyph_matrix (struct glyph_matrix *matrix)
5866 struct glyph_row *row = matrix->rows;
5867 struct glyph_row *end = row + matrix->nrows;
5869 for (; row < end; ++row)
5870 if (row->enabled_p)
5872 int area;
5873 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5875 struct glyph *glyph = row->glyphs[area];
5876 struct glyph *end_glyph = glyph + row->used[area];
5878 for (; glyph < end_glyph; ++glyph)
5879 if (STRINGP (glyph->object)
5880 && !STRING_MARKED_P (XSTRING (glyph->object)))
5881 mark_object (glyph->object);
5886 /* Mark reference to a Lisp_Object.
5887 If the object referred to has not been seen yet, recursively mark
5888 all the references contained in it. */
5890 #define LAST_MARKED_SIZE 500
5891 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5892 static int last_marked_index;
5894 /* For debugging--call abort when we cdr down this many
5895 links of a list, in mark_object. In debugging,
5896 the call to abort will hit a breakpoint.
5897 Normally this is zero and the check never goes off. */
5898 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5900 static void
5901 mark_vectorlike (struct Lisp_Vector *ptr)
5903 ptrdiff_t size = ptr->header.size;
5904 ptrdiff_t i;
5906 eassert (!VECTOR_MARKED_P (ptr));
5907 VECTOR_MARK (ptr); /* Else mark it. */
5908 if (size & PSEUDOVECTOR_FLAG)
5909 size &= PSEUDOVECTOR_SIZE_MASK;
5911 /* Note that this size is not the memory-footprint size, but only
5912 the number of Lisp_Object fields that we should trace.
5913 The distinction is used e.g. by Lisp_Process which places extra
5914 non-Lisp_Object fields at the end of the structure... */
5915 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5916 mark_object (ptr->contents[i]);
5919 /* Like mark_vectorlike but optimized for char-tables (and
5920 sub-char-tables) assuming that the contents are mostly integers or
5921 symbols. */
5923 static void
5924 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5926 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5927 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5928 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5930 eassert (!VECTOR_MARKED_P (ptr));
5931 VECTOR_MARK (ptr);
5932 for (i = idx; i < size; i++)
5934 Lisp_Object val = ptr->contents[i];
5936 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5937 continue;
5938 if (SUB_CHAR_TABLE_P (val))
5940 if (! VECTOR_MARKED_P (XVECTOR (val)))
5941 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5943 else
5944 mark_object (val);
5948 NO_INLINE /* To reduce stack depth in mark_object. */
5949 static Lisp_Object
5950 mark_compiled (struct Lisp_Vector *ptr)
5952 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5954 VECTOR_MARK (ptr);
5955 for (i = 0; i < size; i++)
5956 if (i != COMPILED_CONSTANTS)
5957 mark_object (ptr->contents[i]);
5958 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5961 /* Mark the chain of overlays starting at PTR. */
5963 static void
5964 mark_overlay (struct Lisp_Overlay *ptr)
5966 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5968 ptr->gcmarkbit = 1;
5969 /* These two are always markers and can be marked fast. */
5970 XMARKER (ptr->start)->gcmarkbit = 1;
5971 XMARKER (ptr->end)->gcmarkbit = 1;
5972 mark_object (ptr->plist);
5976 /* Mark Lisp_Objects and special pointers in BUFFER. */
5978 static void
5979 mark_buffer (struct buffer *buffer)
5981 /* This is handled much like other pseudovectors... */
5982 mark_vectorlike ((struct Lisp_Vector *) buffer);
5984 /* ...but there are some buffer-specific things. */
5986 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5988 /* For now, we just don't mark the undo_list. It's done later in
5989 a special way just before the sweep phase, and after stripping
5990 some of its elements that are not needed any more. */
5992 mark_overlay (buffer->overlays_before);
5993 mark_overlay (buffer->overlays_after);
5995 /* If this is an indirect buffer, mark its base buffer. */
5996 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5997 mark_buffer (buffer->base_buffer);
6000 /* Mark Lisp faces in the face cache C. */
6002 NO_INLINE /* To reduce stack depth in mark_object. */
6003 static void
6004 mark_face_cache (struct face_cache *c)
6006 if (c)
6008 int i, j;
6009 for (i = 0; i < c->used; ++i)
6011 struct face *face = FACE_FROM_ID (c->f, i);
6013 if (face)
6015 if (face->font && !VECTOR_MARKED_P (face->font))
6016 mark_vectorlike ((struct Lisp_Vector *) face->font);
6018 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6019 mark_object (face->lface[j]);
6025 NO_INLINE /* To reduce stack depth in mark_object. */
6026 static void
6027 mark_localized_symbol (struct Lisp_Symbol *ptr)
6029 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6030 Lisp_Object where = blv->where;
6031 /* If the value is set up for a killed buffer or deleted
6032 frame, restore its global binding. If the value is
6033 forwarded to a C variable, either it's not a Lisp_Object
6034 var, or it's staticpro'd already. */
6035 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6036 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6037 swap_in_global_binding (ptr);
6038 mark_object (blv->where);
6039 mark_object (blv->valcell);
6040 mark_object (blv->defcell);
6043 NO_INLINE /* To reduce stack depth in mark_object. */
6044 static void
6045 mark_save_value (struct Lisp_Save_Value *ptr)
6047 /* If `save_type' is zero, `data[0].pointer' is the address
6048 of a memory area containing `data[1].integer' potential
6049 Lisp_Objects. */
6050 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6052 Lisp_Object *p = ptr->data[0].pointer;
6053 ptrdiff_t nelt;
6054 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6055 mark_maybe_object (*p);
6057 else
6059 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6060 int i;
6061 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6062 if (save_type (ptr, i) == SAVE_OBJECT)
6063 mark_object (ptr->data[i].object);
6067 /* Remove killed buffers or items whose car is a killed buffer from
6068 LIST, and mark other items. Return changed LIST, which is marked. */
6070 static Lisp_Object
6071 mark_discard_killed_buffers (Lisp_Object list)
6073 Lisp_Object tail, *prev = &list;
6075 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6076 tail = XCDR (tail))
6078 Lisp_Object tem = XCAR (tail);
6079 if (CONSP (tem))
6080 tem = XCAR (tem);
6081 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6082 *prev = XCDR (tail);
6083 else
6085 CONS_MARK (XCONS (tail));
6086 mark_object (XCAR (tail));
6087 prev = xcdr_addr (tail);
6090 mark_object (tail);
6091 return list;
6094 /* Determine type of generic Lisp_Object and mark it accordingly.
6096 This function implements a straightforward depth-first marking
6097 algorithm and so the recursion depth may be very high (a few
6098 tens of thousands is not uncommon). To minimize stack usage,
6099 a few cold paths are moved out to NO_INLINE functions above.
6100 In general, inlining them doesn't help you to gain more speed. */
6102 void
6103 mark_object (Lisp_Object arg)
6105 register Lisp_Object obj = arg;
6106 void *po;
6107 #ifdef GC_CHECK_MARKED_OBJECTS
6108 struct mem_node *m;
6109 #endif
6110 ptrdiff_t cdr_count = 0;
6112 loop:
6114 po = XPNTR (obj);
6115 if (PURE_POINTER_P (po))
6116 return;
6118 last_marked[last_marked_index++] = obj;
6119 if (last_marked_index == LAST_MARKED_SIZE)
6120 last_marked_index = 0;
6122 /* Perform some sanity checks on the objects marked here. Abort if
6123 we encounter an object we know is bogus. This increases GC time
6124 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6125 #ifdef GC_CHECK_MARKED_OBJECTS
6127 /* Check that the object pointed to by PO is known to be a Lisp
6128 structure allocated from the heap. */
6129 #define CHECK_ALLOCATED() \
6130 do { \
6131 m = mem_find (po); \
6132 if (m == MEM_NIL) \
6133 emacs_abort (); \
6134 } while (0)
6136 /* Check that the object pointed to by PO is live, using predicate
6137 function LIVEP. */
6138 #define CHECK_LIVE(LIVEP) \
6139 do { \
6140 if (!LIVEP (m, po)) \
6141 emacs_abort (); \
6142 } while (0)
6144 /* Check both of the above conditions, for non-symbols. */
6145 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6146 do { \
6147 CHECK_ALLOCATED (); \
6148 CHECK_LIVE (LIVEP); \
6149 } while (0) \
6151 /* Check both of the above conditions, for symbols. */
6152 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6153 do { \
6154 if (!c_symbol_p (ptr)) \
6156 CHECK_ALLOCATED (); \
6157 CHECK_LIVE (live_symbol_p); \
6159 } while (0) \
6161 #else /* not GC_CHECK_MARKED_OBJECTS */
6163 #define CHECK_LIVE(LIVEP) ((void) 0)
6164 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6165 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6167 #endif /* not GC_CHECK_MARKED_OBJECTS */
6169 switch (XTYPE (obj))
6171 case Lisp_String:
6173 register struct Lisp_String *ptr = XSTRING (obj);
6174 if (STRING_MARKED_P (ptr))
6175 break;
6176 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6177 MARK_STRING (ptr);
6178 MARK_INTERVAL_TREE (ptr->intervals);
6179 #ifdef GC_CHECK_STRING_BYTES
6180 /* Check that the string size recorded in the string is the
6181 same as the one recorded in the sdata structure. */
6182 string_bytes (ptr);
6183 #endif /* GC_CHECK_STRING_BYTES */
6185 break;
6187 case Lisp_Vectorlike:
6189 register struct Lisp_Vector *ptr = XVECTOR (obj);
6190 register ptrdiff_t pvectype;
6192 if (VECTOR_MARKED_P (ptr))
6193 break;
6195 #ifdef GC_CHECK_MARKED_OBJECTS
6196 m = mem_find (po);
6197 if (m == MEM_NIL && !SUBRP (obj))
6198 emacs_abort ();
6199 #endif /* GC_CHECK_MARKED_OBJECTS */
6201 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6202 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6203 >> PSEUDOVECTOR_AREA_BITS);
6204 else
6205 pvectype = PVEC_NORMAL_VECTOR;
6207 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6208 CHECK_LIVE (live_vector_p);
6210 switch (pvectype)
6212 case PVEC_BUFFER:
6213 #ifdef GC_CHECK_MARKED_OBJECTS
6215 struct buffer *b;
6216 FOR_EACH_BUFFER (b)
6217 if (b == po)
6218 break;
6219 if (b == NULL)
6220 emacs_abort ();
6222 #endif /* GC_CHECK_MARKED_OBJECTS */
6223 mark_buffer ((struct buffer *) ptr);
6224 break;
6226 case PVEC_COMPILED:
6227 /* Although we could treat this just like a vector, mark_compiled
6228 returns the COMPILED_CONSTANTS element, which is marked at the
6229 next iteration of goto-loop here. This is done to avoid a few
6230 recursive calls to mark_object. */
6231 obj = mark_compiled (ptr);
6232 if (!NILP (obj))
6233 goto loop;
6234 break;
6236 case PVEC_FRAME:
6238 struct frame *f = (struct frame *) ptr;
6240 mark_vectorlike (ptr);
6241 mark_face_cache (f->face_cache);
6242 #ifdef HAVE_WINDOW_SYSTEM
6243 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6245 struct font *font = FRAME_FONT (f);
6247 if (font && !VECTOR_MARKED_P (font))
6248 mark_vectorlike ((struct Lisp_Vector *) font);
6250 #endif
6252 break;
6254 case PVEC_WINDOW:
6256 struct window *w = (struct window *) ptr;
6258 mark_vectorlike (ptr);
6260 /* Mark glyph matrices, if any. Marking window
6261 matrices is sufficient because frame matrices
6262 use the same glyph memory. */
6263 if (w->current_matrix)
6265 mark_glyph_matrix (w->current_matrix);
6266 mark_glyph_matrix (w->desired_matrix);
6269 /* Filter out killed buffers from both buffer lists
6270 in attempt to help GC to reclaim killed buffers faster.
6271 We can do it elsewhere for live windows, but this is the
6272 best place to do it for dead windows. */
6273 wset_prev_buffers
6274 (w, mark_discard_killed_buffers (w->prev_buffers));
6275 wset_next_buffers
6276 (w, mark_discard_killed_buffers (w->next_buffers));
6278 break;
6280 case PVEC_HASH_TABLE:
6282 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6284 mark_vectorlike (ptr);
6285 mark_object (h->test.name);
6286 mark_object (h->test.user_hash_function);
6287 mark_object (h->test.user_cmp_function);
6288 /* If hash table is not weak, mark all keys and values.
6289 For weak tables, mark only the vector. */
6290 if (NILP (h->weak))
6291 mark_object (h->key_and_value);
6292 else
6293 VECTOR_MARK (XVECTOR (h->key_and_value));
6295 break;
6297 case PVEC_CHAR_TABLE:
6298 case PVEC_SUB_CHAR_TABLE:
6299 mark_char_table (ptr, (enum pvec_type) pvectype);
6300 break;
6302 case PVEC_BOOL_VECTOR:
6303 /* No Lisp_Objects to mark in a bool vector. */
6304 VECTOR_MARK (ptr);
6305 break;
6307 case PVEC_SUBR:
6308 break;
6310 case PVEC_FREE:
6311 emacs_abort ();
6313 default:
6314 mark_vectorlike (ptr);
6317 break;
6319 case Lisp_Symbol:
6321 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6322 nextsym:
6323 if (ptr->gcmarkbit)
6324 break;
6325 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6326 ptr->gcmarkbit = 1;
6327 /* Attempt to catch bogus objects. */
6328 eassert (valid_lisp_object_p (ptr->function));
6329 mark_object (ptr->function);
6330 mark_object (ptr->plist);
6331 switch (ptr->redirect)
6333 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6334 case SYMBOL_VARALIAS:
6336 Lisp_Object tem;
6337 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6338 mark_object (tem);
6339 break;
6341 case SYMBOL_LOCALIZED:
6342 mark_localized_symbol (ptr);
6343 break;
6344 case SYMBOL_FORWARDED:
6345 /* If the value is forwarded to a buffer or keyboard field,
6346 these are marked when we see the corresponding object.
6347 And if it's forwarded to a C variable, either it's not
6348 a Lisp_Object var, or it's staticpro'd already. */
6349 break;
6350 default: emacs_abort ();
6352 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6353 MARK_STRING (XSTRING (ptr->name));
6354 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6355 /* Inner loop to mark next symbol in this bucket, if any. */
6356 ptr = ptr->next;
6357 if (ptr)
6358 goto nextsym;
6360 break;
6362 case Lisp_Misc:
6363 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6365 if (XMISCANY (obj)->gcmarkbit)
6366 break;
6368 switch (XMISCTYPE (obj))
6370 case Lisp_Misc_Marker:
6371 /* DO NOT mark thru the marker's chain.
6372 The buffer's markers chain does not preserve markers from gc;
6373 instead, markers are removed from the chain when freed by gc. */
6374 XMISCANY (obj)->gcmarkbit = 1;
6375 break;
6377 case Lisp_Misc_Save_Value:
6378 XMISCANY (obj)->gcmarkbit = 1;
6379 mark_save_value (XSAVE_VALUE (obj));
6380 break;
6382 case Lisp_Misc_Overlay:
6383 mark_overlay (XOVERLAY (obj));
6384 break;
6386 default:
6387 emacs_abort ();
6389 break;
6391 case Lisp_Cons:
6393 register struct Lisp_Cons *ptr = XCONS (obj);
6394 if (CONS_MARKED_P (ptr))
6395 break;
6396 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6397 CONS_MARK (ptr);
6398 /* If the cdr is nil, avoid recursion for the car. */
6399 if (EQ (ptr->u.cdr, Qnil))
6401 obj = ptr->car;
6402 cdr_count = 0;
6403 goto loop;
6405 mark_object (ptr->car);
6406 obj = ptr->u.cdr;
6407 cdr_count++;
6408 if (cdr_count == mark_object_loop_halt)
6409 emacs_abort ();
6410 goto loop;
6413 case Lisp_Float:
6414 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6415 FLOAT_MARK (XFLOAT (obj));
6416 break;
6418 case_Lisp_Int:
6419 break;
6421 default:
6422 emacs_abort ();
6425 #undef CHECK_LIVE
6426 #undef CHECK_ALLOCATED
6427 #undef CHECK_ALLOCATED_AND_LIVE
6429 /* Mark the Lisp pointers in the terminal objects.
6430 Called by Fgarbage_collect. */
6432 static void
6433 mark_terminals (void)
6435 struct terminal *t;
6436 for (t = terminal_list; t; t = t->next_terminal)
6438 eassert (t->name != NULL);
6439 #ifdef HAVE_WINDOW_SYSTEM
6440 /* If a terminal object is reachable from a stacpro'ed object,
6441 it might have been marked already. Make sure the image cache
6442 gets marked. */
6443 mark_image_cache (t->image_cache);
6444 #endif /* HAVE_WINDOW_SYSTEM */
6445 if (!VECTOR_MARKED_P (t))
6446 mark_vectorlike ((struct Lisp_Vector *)t);
6452 /* Value is non-zero if OBJ will survive the current GC because it's
6453 either marked or does not need to be marked to survive. */
6455 bool
6456 survives_gc_p (Lisp_Object obj)
6458 bool survives_p;
6460 switch (XTYPE (obj))
6462 case_Lisp_Int:
6463 survives_p = 1;
6464 break;
6466 case Lisp_Symbol:
6467 survives_p = XSYMBOL (obj)->gcmarkbit;
6468 break;
6470 case Lisp_Misc:
6471 survives_p = XMISCANY (obj)->gcmarkbit;
6472 break;
6474 case Lisp_String:
6475 survives_p = STRING_MARKED_P (XSTRING (obj));
6476 break;
6478 case Lisp_Vectorlike:
6479 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6480 break;
6482 case Lisp_Cons:
6483 survives_p = CONS_MARKED_P (XCONS (obj));
6484 break;
6486 case Lisp_Float:
6487 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6488 break;
6490 default:
6491 emacs_abort ();
6494 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6500 NO_INLINE /* For better stack traces */
6501 static void
6502 sweep_conses (void)
6504 struct cons_block *cblk;
6505 struct cons_block **cprev = &cons_block;
6506 int lim = cons_block_index;
6507 EMACS_INT num_free = 0, num_used = 0;
6509 cons_free_list = 0;
6511 for (cblk = cons_block; cblk; cblk = *cprev)
6513 int i = 0;
6514 int this_free = 0;
6515 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6517 /* Scan the mark bits an int at a time. */
6518 for (i = 0; i < ilim; i++)
6520 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6522 /* Fast path - all cons cells for this int are marked. */
6523 cblk->gcmarkbits[i] = 0;
6524 num_used += BITS_PER_BITS_WORD;
6526 else
6528 /* Some cons cells for this int are not marked.
6529 Find which ones, and free them. */
6530 int start, pos, stop;
6532 start = i * BITS_PER_BITS_WORD;
6533 stop = lim - start;
6534 if (stop > BITS_PER_BITS_WORD)
6535 stop = BITS_PER_BITS_WORD;
6536 stop += start;
6538 for (pos = start; pos < stop; pos++)
6540 if (!CONS_MARKED_P (&cblk->conses[pos]))
6542 this_free++;
6543 cblk->conses[pos].u.chain = cons_free_list;
6544 cons_free_list = &cblk->conses[pos];
6545 #if GC_MARK_STACK
6546 cons_free_list->car = Vdead;
6547 #endif
6549 else
6551 num_used++;
6552 CONS_UNMARK (&cblk->conses[pos]);
6558 lim = CONS_BLOCK_SIZE;
6559 /* If this block contains only free conses and we have already
6560 seen more than two blocks worth of free conses then deallocate
6561 this block. */
6562 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6564 *cprev = cblk->next;
6565 /* Unhook from the free list. */
6566 cons_free_list = cblk->conses[0].u.chain;
6567 lisp_align_free (cblk);
6569 else
6571 num_free += this_free;
6572 cprev = &cblk->next;
6575 total_conses = num_used;
6576 total_free_conses = num_free;
6579 NO_INLINE /* For better stack traces */
6580 static void
6581 sweep_floats (void)
6583 register struct float_block *fblk;
6584 struct float_block **fprev = &float_block;
6585 register int lim = float_block_index;
6586 EMACS_INT num_free = 0, num_used = 0;
6588 float_free_list = 0;
6590 for (fblk = float_block; fblk; fblk = *fprev)
6592 register int i;
6593 int this_free = 0;
6594 for (i = 0; i < lim; i++)
6595 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6597 this_free++;
6598 fblk->floats[i].u.chain = float_free_list;
6599 float_free_list = &fblk->floats[i];
6601 else
6603 num_used++;
6604 FLOAT_UNMARK (&fblk->floats[i]);
6606 lim = FLOAT_BLOCK_SIZE;
6607 /* If this block contains only free floats and we have already
6608 seen more than two blocks worth of free floats then deallocate
6609 this block. */
6610 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6612 *fprev = fblk->next;
6613 /* Unhook from the free list. */
6614 float_free_list = fblk->floats[0].u.chain;
6615 lisp_align_free (fblk);
6617 else
6619 num_free += this_free;
6620 fprev = &fblk->next;
6623 total_floats = num_used;
6624 total_free_floats = num_free;
6627 NO_INLINE /* For better stack traces */
6628 static void
6629 sweep_intervals (void)
6631 register struct interval_block *iblk;
6632 struct interval_block **iprev = &interval_block;
6633 register int lim = interval_block_index;
6634 EMACS_INT num_free = 0, num_used = 0;
6636 interval_free_list = 0;
6638 for (iblk = interval_block; iblk; iblk = *iprev)
6640 register int i;
6641 int this_free = 0;
6643 for (i = 0; i < lim; i++)
6645 if (!iblk->intervals[i].gcmarkbit)
6647 set_interval_parent (&iblk->intervals[i], interval_free_list);
6648 interval_free_list = &iblk->intervals[i];
6649 this_free++;
6651 else
6653 num_used++;
6654 iblk->intervals[i].gcmarkbit = 0;
6657 lim = INTERVAL_BLOCK_SIZE;
6658 /* If this block contains only free intervals and we have already
6659 seen more than two blocks worth of free intervals then
6660 deallocate this block. */
6661 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6663 *iprev = iblk->next;
6664 /* Unhook from the free list. */
6665 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6666 lisp_free (iblk);
6668 else
6670 num_free += this_free;
6671 iprev = &iblk->next;
6674 total_intervals = num_used;
6675 total_free_intervals = num_free;
6678 NO_INLINE /* For better stack traces */
6679 static void
6680 sweep_symbols (void)
6682 struct symbol_block *sblk;
6683 struct symbol_block **sprev = &symbol_block;
6684 int lim = symbol_block_index;
6685 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6687 symbol_free_list = NULL;
6689 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6690 lispsym[i].gcmarkbit = 0;
6692 for (sblk = symbol_block; sblk; sblk = *sprev)
6694 int this_free = 0;
6695 union aligned_Lisp_Symbol *sym = sblk->symbols;
6696 union aligned_Lisp_Symbol *end = sym + lim;
6698 for (; sym < end; ++sym)
6700 if (!sym->s.gcmarkbit)
6702 if (sym->s.redirect == SYMBOL_LOCALIZED)
6703 xfree (SYMBOL_BLV (&sym->s));
6704 sym->s.next = symbol_free_list;
6705 symbol_free_list = &sym->s;
6706 #if GC_MARK_STACK
6707 symbol_free_list->function = Vdead;
6708 #endif
6709 ++this_free;
6711 else
6713 ++num_used;
6714 sym->s.gcmarkbit = 0;
6715 /* Attempt to catch bogus objects. */
6716 eassert (valid_lisp_object_p (sym->s.function));
6720 lim = SYMBOL_BLOCK_SIZE;
6721 /* If this block contains only free symbols and we have already
6722 seen more than two blocks worth of free symbols then deallocate
6723 this block. */
6724 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6726 *sprev = sblk->next;
6727 /* Unhook from the free list. */
6728 symbol_free_list = sblk->symbols[0].s.next;
6729 lisp_free (sblk);
6731 else
6733 num_free += this_free;
6734 sprev = &sblk->next;
6737 total_symbols = num_used;
6738 total_free_symbols = num_free;
6741 NO_INLINE /* For better stack traces */
6742 static void
6743 sweep_misc (void)
6745 register struct marker_block *mblk;
6746 struct marker_block **mprev = &marker_block;
6747 register int lim = marker_block_index;
6748 EMACS_INT num_free = 0, num_used = 0;
6750 /* Put all unmarked misc's on free list. For a marker, first
6751 unchain it from the buffer it points into. */
6753 marker_free_list = 0;
6755 for (mblk = marker_block; mblk; mblk = *mprev)
6757 register int i;
6758 int this_free = 0;
6760 for (i = 0; i < lim; i++)
6762 if (!mblk->markers[i].m.u_any.gcmarkbit)
6764 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6765 unchain_marker (&mblk->markers[i].m.u_marker);
6766 /* Set the type of the freed object to Lisp_Misc_Free.
6767 We could leave the type alone, since nobody checks it,
6768 but this might catch bugs faster. */
6769 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6770 mblk->markers[i].m.u_free.chain = marker_free_list;
6771 marker_free_list = &mblk->markers[i].m;
6772 this_free++;
6774 else
6776 num_used++;
6777 mblk->markers[i].m.u_any.gcmarkbit = 0;
6780 lim = MARKER_BLOCK_SIZE;
6781 /* If this block contains only free markers and we have already
6782 seen more than two blocks worth of free markers then deallocate
6783 this block. */
6784 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6786 *mprev = mblk->next;
6787 /* Unhook from the free list. */
6788 marker_free_list = mblk->markers[0].m.u_free.chain;
6789 lisp_free (mblk);
6791 else
6793 num_free += this_free;
6794 mprev = &mblk->next;
6798 total_markers = num_used;
6799 total_free_markers = num_free;
6802 NO_INLINE /* For better stack traces */
6803 static void
6804 sweep_buffers (void)
6806 register struct buffer *buffer, **bprev = &all_buffers;
6808 total_buffers = 0;
6809 for (buffer = all_buffers; buffer; buffer = *bprev)
6810 if (!VECTOR_MARKED_P (buffer))
6812 *bprev = buffer->next;
6813 lisp_free (buffer);
6815 else
6817 VECTOR_UNMARK (buffer);
6818 /* Do not use buffer_(set|get)_intervals here. */
6819 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6820 total_buffers++;
6821 bprev = &buffer->next;
6825 /* Sweep: find all structures not marked, and free them. */
6826 static void
6827 gc_sweep (void)
6829 /* Remove or mark entries in weak hash tables.
6830 This must be done before any object is unmarked. */
6831 sweep_weak_hash_tables ();
6833 sweep_strings ();
6834 check_string_bytes (!noninteractive);
6835 sweep_conses ();
6836 sweep_floats ();
6837 sweep_intervals ();
6838 sweep_symbols ();
6839 sweep_misc ();
6840 sweep_buffers ();
6841 sweep_vectors ();
6842 check_string_bytes (!noninteractive);
6845 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6846 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6847 All values are in Kbytes. If there is no swap space,
6848 last two values are zero. If the system is not supported
6849 or memory information can't be obtained, return nil. */)
6850 (void)
6852 #if defined HAVE_LINUX_SYSINFO
6853 struct sysinfo si;
6854 uintmax_t units;
6856 if (sysinfo (&si))
6857 return Qnil;
6858 #ifdef LINUX_SYSINFO_UNIT
6859 units = si.mem_unit;
6860 #else
6861 units = 1;
6862 #endif
6863 return list4i ((uintmax_t) si.totalram * units / 1024,
6864 (uintmax_t) si.freeram * units / 1024,
6865 (uintmax_t) si.totalswap * units / 1024,
6866 (uintmax_t) si.freeswap * units / 1024);
6867 #elif defined WINDOWSNT
6868 unsigned long long totalram, freeram, totalswap, freeswap;
6870 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6871 return list4i ((uintmax_t) totalram / 1024,
6872 (uintmax_t) freeram / 1024,
6873 (uintmax_t) totalswap / 1024,
6874 (uintmax_t) freeswap / 1024);
6875 else
6876 return Qnil;
6877 #elif defined MSDOS
6878 unsigned long totalram, freeram, totalswap, freeswap;
6880 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6881 return list4i ((uintmax_t) totalram / 1024,
6882 (uintmax_t) freeram / 1024,
6883 (uintmax_t) totalswap / 1024,
6884 (uintmax_t) freeswap / 1024);
6885 else
6886 return Qnil;
6887 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6888 /* FIXME: add more systems. */
6889 return Qnil;
6890 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6893 /* Debugging aids. */
6895 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6896 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6897 This may be helpful in debugging Emacs's memory usage.
6898 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6899 (void)
6901 Lisp_Object end;
6903 #ifdef HAVE_NS
6904 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6905 XSETINT (end, 0);
6906 #else
6907 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6908 #endif
6910 return end;
6913 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6914 doc: /* Return a list of counters that measure how much consing there has been.
6915 Each of these counters increments for a certain kind of object.
6916 The counters wrap around from the largest positive integer to zero.
6917 Garbage collection does not decrease them.
6918 The elements of the value are as follows:
6919 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6920 All are in units of 1 = one object consed
6921 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6922 objects consed.
6923 MISCS include overlays, markers, and some internal types.
6924 Frames, windows, buffers, and subprocesses count as vectors
6925 (but the contents of a buffer's text do not count here). */)
6926 (void)
6928 return listn (CONSTYPE_HEAP, 8,
6929 bounded_number (cons_cells_consed),
6930 bounded_number (floats_consed),
6931 bounded_number (vector_cells_consed),
6932 bounded_number (symbols_consed),
6933 bounded_number (string_chars_consed),
6934 bounded_number (misc_objects_consed),
6935 bounded_number (intervals_consed),
6936 bounded_number (strings_consed));
6939 static bool
6940 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6942 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6943 Lisp_Object val = find_symbol_value (symbol);
6944 return (EQ (val, obj)
6945 || EQ (sym->function, obj)
6946 || (!NILP (sym->function)
6947 && COMPILEDP (sym->function)
6948 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6949 || (!NILP (val)
6950 && COMPILEDP (val)
6951 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
6954 /* Find at most FIND_MAX symbols which have OBJ as their value or
6955 function. This is used in gdbinit's `xwhichsymbols' command. */
6957 Lisp_Object
6958 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6960 struct symbol_block *sblk;
6961 ptrdiff_t gc_count = inhibit_garbage_collection ();
6962 Lisp_Object found = Qnil;
6964 if (! DEADP (obj))
6966 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6968 Lisp_Object sym = builtin_lisp_symbol (i);
6969 if (symbol_uses_obj (sym, obj))
6971 found = Fcons (sym, found);
6972 if (--find_max == 0)
6973 goto out;
6977 for (sblk = symbol_block; sblk; sblk = sblk->next)
6979 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6980 int bn;
6982 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6984 if (sblk == symbol_block && bn >= symbol_block_index)
6985 break;
6987 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
6988 if (symbol_uses_obj (sym, obj))
6990 found = Fcons (sym, found);
6991 if (--find_max == 0)
6992 goto out;
6998 out:
6999 unbind_to (gc_count, Qnil);
7000 return found;
7003 #ifdef SUSPICIOUS_OBJECT_CHECKING
7005 static void *
7006 find_suspicious_object_in_range (void *begin, void *end)
7008 char *begin_a = begin;
7009 char *end_a = end;
7010 int i;
7012 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7014 char *suspicious_object = suspicious_objects[i];
7015 if (begin_a <= suspicious_object && suspicious_object < end_a)
7016 return suspicious_object;
7019 return NULL;
7022 static void
7023 note_suspicious_free (void* ptr)
7025 struct suspicious_free_record* rec;
7027 rec = &suspicious_free_history[suspicious_free_history_index++];
7028 if (suspicious_free_history_index ==
7029 ARRAYELTS (suspicious_free_history))
7031 suspicious_free_history_index = 0;
7034 memset (rec, 0, sizeof (*rec));
7035 rec->suspicious_object = ptr;
7036 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7039 static void
7040 detect_suspicious_free (void* ptr)
7042 int i;
7044 eassert (ptr != NULL);
7046 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7047 if (suspicious_objects[i] == ptr)
7049 note_suspicious_free (ptr);
7050 suspicious_objects[i] = NULL;
7054 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7056 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7057 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7058 If Emacs is compiled with suspicious object checking, capture
7059 a stack trace when OBJ is freed in order to help track down
7060 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7061 (Lisp_Object obj)
7063 #ifdef SUSPICIOUS_OBJECT_CHECKING
7064 /* Right now, we care only about vectors. */
7065 if (VECTORLIKEP (obj))
7067 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7068 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7069 suspicious_object_index = 0;
7071 #endif
7072 return obj;
7075 #ifdef ENABLE_CHECKING
7077 bool suppress_checking;
7079 void
7080 die (const char *msg, const char *file, int line)
7082 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7083 file, line, msg);
7084 terminate_due_to_signal (SIGABRT, INT_MAX);
7087 #endif /* ENABLE_CHECKING */
7089 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7091 /* Debugging check whether STR is ASCII-only. */
7093 const char *
7094 verify_ascii (const char *str)
7096 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7097 while (ptr < end)
7099 int c = STRING_CHAR_ADVANCE (ptr);
7100 if (!ASCII_CHAR_P (c))
7101 emacs_abort ();
7103 return str;
7106 /* Stress alloca with inconveniently sized requests and check
7107 whether all allocated areas may be used for Lisp_Object. */
7109 NO_INLINE static void
7110 verify_alloca (void)
7112 int i;
7113 enum { ALLOCA_CHECK_MAX = 256 };
7114 /* Start from size of the smallest Lisp object. */
7115 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7117 void *ptr = alloca (i);
7118 make_lisp_ptr (ptr, Lisp_Cons);
7122 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7124 #define verify_alloca() ((void) 0)
7126 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7128 /* Initialization. */
7130 void
7131 init_alloc_once (void)
7133 /* Even though Qt's contents are not set up, its address is known. */
7134 Vpurify_flag = Qt;
7136 purebeg = PUREBEG;
7137 pure_size = PURESIZE;
7139 verify_alloca ();
7141 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7142 mem_init ();
7143 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7144 #endif
7146 #ifdef DOUG_LEA_MALLOC
7147 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7148 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7149 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7150 #endif
7151 init_strings ();
7152 init_vectors ();
7154 refill_memory_reserve ();
7155 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7158 void
7159 init_alloc (void)
7161 gcprolist = 0;
7162 byte_stack_list = 0;
7163 #if GC_MARK_STACK
7164 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7165 setjmp_tested_p = longjmps_done = 0;
7166 #endif
7167 #endif
7168 Vgc_elapsed = make_float (0.0);
7169 gcs_done = 0;
7171 #if USE_VALGRIND
7172 valgrind_p = RUNNING_ON_VALGRIND != 0;
7173 #endif
7176 void
7177 syms_of_alloc (void)
7179 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7180 doc: /* Number of bytes of consing between garbage collections.
7181 Garbage collection can happen automatically once this many bytes have been
7182 allocated since the last garbage collection. All data types count.
7184 Garbage collection happens automatically only when `eval' is called.
7186 By binding this temporarily to a large number, you can effectively
7187 prevent garbage collection during a part of the program.
7188 See also `gc-cons-percentage'. */);
7190 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7191 doc: /* Portion of the heap used for allocation.
7192 Garbage collection can happen automatically once this portion of the heap
7193 has been allocated since the last garbage collection.
7194 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7195 Vgc_cons_percentage = make_float (0.1);
7197 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7198 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7200 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7201 doc: /* Number of cons cells that have been consed so far. */);
7203 DEFVAR_INT ("floats-consed", floats_consed,
7204 doc: /* Number of floats that have been consed so far. */);
7206 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7207 doc: /* Number of vector cells that have been consed so far. */);
7209 DEFVAR_INT ("symbols-consed", symbols_consed,
7210 doc: /* Number of symbols that have been consed so far. */);
7211 symbols_consed += ARRAYELTS (lispsym);
7213 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7214 doc: /* Number of string characters that have been consed so far. */);
7216 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7217 doc: /* Number of miscellaneous objects that have been consed so far.
7218 These include markers and overlays, plus certain objects not visible
7219 to users. */);
7221 DEFVAR_INT ("intervals-consed", intervals_consed,
7222 doc: /* Number of intervals that have been consed so far. */);
7224 DEFVAR_INT ("strings-consed", strings_consed,
7225 doc: /* Number of strings that have been consed so far. */);
7227 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7228 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7229 This means that certain objects should be allocated in shared (pure) space.
7230 It can also be set to a hash-table, in which case this table is used to
7231 do hash-consing of the objects allocated to pure space. */);
7233 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7234 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7235 garbage_collection_messages = 0;
7237 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7238 doc: /* Hook run after garbage collection has finished. */);
7239 Vpost_gc_hook = Qnil;
7240 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7242 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7243 doc: /* Precomputed `signal' argument for memory-full error. */);
7244 /* We build this in advance because if we wait until we need it, we might
7245 not be able to allocate the memory to hold it. */
7246 Vmemory_signal_data
7247 = listn (CONSTYPE_PURE, 2, Qerror,
7248 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7250 DEFVAR_LISP ("memory-full", Vmemory_full,
7251 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7252 Vmemory_full = Qnil;
7254 DEFSYM (Qconses, "conses");
7255 DEFSYM (Qsymbols, "symbols");
7256 DEFSYM (Qmiscs, "miscs");
7257 DEFSYM (Qstrings, "strings");
7258 DEFSYM (Qvectors, "vectors");
7259 DEFSYM (Qfloats, "floats");
7260 DEFSYM (Qintervals, "intervals");
7261 DEFSYM (Qbuffers, "buffers");
7262 DEFSYM (Qstring_bytes, "string-bytes");
7263 DEFSYM (Qvector_slots, "vector-slots");
7264 DEFSYM (Qheap, "heap");
7265 DEFSYM (Qautomatic_gc, "Automatic GC");
7267 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7268 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7270 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7271 doc: /* Accumulated time elapsed in garbage collections.
7272 The time is in seconds as a floating point value. */);
7273 DEFVAR_INT ("gcs-done", gcs_done,
7274 doc: /* Accumulated number of garbage collections done. */);
7276 defsubr (&Scons);
7277 defsubr (&Slist);
7278 defsubr (&Svector);
7279 defsubr (&Sbool_vector);
7280 defsubr (&Smake_byte_code);
7281 defsubr (&Smake_list);
7282 defsubr (&Smake_vector);
7283 defsubr (&Smake_string);
7284 defsubr (&Smake_bool_vector);
7285 defsubr (&Smake_symbol);
7286 defsubr (&Smake_marker);
7287 defsubr (&Spurecopy);
7288 defsubr (&Sgarbage_collect);
7289 defsubr (&Smemory_limit);
7290 defsubr (&Smemory_info);
7291 defsubr (&Smemory_use_counts);
7292 defsubr (&Ssuspicious_object);
7294 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7295 defsubr (&Sgc_status);
7296 #endif
7299 /* When compiled with GCC, GDB might say "No enum type named
7300 pvec_type" if we don't have at least one symbol with that type, and
7301 then xbacktrace could fail. Similarly for the other enums and
7302 their values. Some non-GCC compilers don't like these constructs. */
7303 #ifdef __GNUC__
7304 union
7306 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7307 enum char_table_specials char_table_specials;
7308 enum char_bits char_bits;
7309 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7310 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7311 enum Lisp_Bits Lisp_Bits;
7312 enum Lisp_Compiled Lisp_Compiled;
7313 enum maxargs maxargs;
7314 enum MAX_ALLOCA MAX_ALLOCA;
7315 enum More_Lisp_Bits More_Lisp_Bits;
7316 enum pvec_type pvec_type;
7317 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7318 #endif /* __GNUC__ */