Various small changes in addition to:
[emacs.git] / src / alloc.c
blob7ec882f3dd30422f68ee81d881a8d4fcf46c8bfa
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
65 #ifdef DOUG_LEA_MALLOC
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold;
130 /* Nonzero during GC. */
132 int gc_in_progress;
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
138 int abort_on_gc;
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages;
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
160 /* Number of live and free conses etc. */
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
169 static char *spare_memory;
171 /* Amount of spare memory to keep in reserve. */
173 #define SPARE_MEMORY (1 << 14)
175 /* Number of extra blocks malloc should get when it needs more core. */
177 static int malloc_hysteresis;
179 /* Non-nil means defun should do purecopy on the function definition. */
181 Lisp_Object Vpurify_flag;
183 /* Non-nil means we are handling a memory-full error. */
185 Lisp_Object Vmemory_full;
187 #ifndef HAVE_SHM
189 /* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
192 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193 #define PUREBEG (char *) pure
195 #else /* HAVE_SHM */
197 #define pure PURE_SEG_BITS /* Use shared memory segment */
198 #define PUREBEG (char *)PURE_SEG_BITS
200 #endif /* HAVE_SHM */
202 /* Pointer to the pure area, and its size. */
204 static char *purebeg;
205 static size_t pure_size;
207 /* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
210 static size_t pure_bytes_used_before_overflow;
212 /* Value is non-zero if P points into pure space. */
214 #define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
220 /* Index in pure at which next pure object will be allocated.. */
222 EMACS_INT pure_bytes_used;
224 /* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
227 char *pending_malloc_warning;
229 /* Pre-computed signal argument for use when memory is exhausted. */
231 Lisp_Object Vmemory_signal_data;
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 char *stack_copy;
242 int stack_copy_size;
244 /* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
247 int ignore_warnings;
249 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
251 /* Hook run after GC has finished. */
253 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
255 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256 EMACS_INT gcs_done; /* accumulated GCs */
258 static void mark_buffer P_ ((Lisp_Object));
259 extern void mark_kboards P_ ((void));
260 extern void mark_backtrace P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
275 extern int message_enable_multibyte;
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
281 enum mem_type
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
309 Lisp_Object Vdead;
311 #ifdef GC_MALLOC_CHECK
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
316 #endif /* GC_MALLOC_CHECK */
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
323 A red-black tree is a balanced binary tree with the following
324 properties:
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
342 struct mem_node
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
351 /* Start and end of allocated region. */
352 void *start, *end;
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
357 /* Memory type. */
358 enum mem_type type;
361 /* Base address of stack. Set in main. */
363 Lisp_Object *stack_base;
365 /* Root of the tree describing allocated Lisp memory. */
367 static struct mem_node *mem_root;
369 /* Lowest and highest known address in the heap. */
371 static void *min_heap_address, *max_heap_address;
373 /* Sentinel node of the tree. */
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
406 /* Recording what needs to be marked for gc. */
408 struct gcpro *gcprolist;
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
413 #define NSTATICS 1280
414 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
416 /* Index of next unused slot in staticvec. */
418 int staticidx = 0;
420 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
423 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
426 #define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
432 /************************************************************************
433 Malloc
434 ************************************************************************/
436 /* Function malloc calls this if it finds we are near exhausting storage. */
438 void
439 malloc_warning (str)
440 char *str;
442 pending_malloc_warning = str;
446 /* Display an already-pending malloc warning. */
448 void
449 display_malloc_warning ()
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
459 #ifdef DOUG_LEA_MALLOC
460 # define BYTES_USED (mallinfo ().arena)
461 #else
462 # define BYTES_USED _bytes_used
463 #endif
466 /* Called if malloc returns zero. */
468 void
469 memory_full ()
471 Vmemory_full = Qt;
473 #ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475 #endif
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
480 free (spare_memory);
481 spare_memory = 0;
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
491 /* Called if we can't allocate relocatable space for a buffer. */
493 void
494 buffer_memory_full ()
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
503 #ifndef REL_ALLOC
504 memory_full ();
505 #endif
507 Vmemory_full = Qt;
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
516 /* Like malloc but check for no memory and block interrupt input.. */
518 POINTER_TYPE *
519 xmalloc (size)
520 size_t size;
522 register POINTER_TYPE *val;
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
528 if (!val && size)
529 memory_full ();
530 return val;
534 /* Like realloc but check for no memory and block interrupt input.. */
536 POINTER_TYPE *
537 xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
541 register POINTER_TYPE *val;
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
552 if (!val && size) memory_full ();
553 return val;
557 /* Like free but block interrupt input. */
559 void
560 xfree (block)
561 POINTER_TYPE *block;
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
569 /* Like strdup, but uses xmalloc. */
571 char *
572 xstrdup (s)
573 const char *s;
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
582 /* Unwind for SAFE_ALLOCA */
584 Lisp_Object
585 safe_alloca_unwind (arg)
586 Lisp_Object arg;
588 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
590 p->dogc = 0;
591 xfree (p->pointer);
592 p->pointer = 0;
593 free_misc (arg);
594 return Qnil;
598 /* Like malloc but used for allocating Lisp data. NBYTES is the
599 number of bytes to allocate, TYPE describes the intended use of the
600 allcated memory block (for strings, for conses, ...). */
602 static void *lisp_malloc_loser;
604 static POINTER_TYPE *
605 lisp_malloc (nbytes, type)
606 size_t nbytes;
607 enum mem_type type;
609 register void *val;
611 BLOCK_INPUT;
613 #ifdef GC_MALLOC_CHECK
614 allocated_mem_type = type;
615 #endif
617 val = (void *) malloc (nbytes);
619 #ifndef USE_LSB_TAG
620 /* If the memory just allocated cannot be addressed thru a Lisp
621 object's pointer, and it needs to be,
622 that's equivalent to running out of memory. */
623 if (val && type != MEM_TYPE_NON_LISP)
625 Lisp_Object tem;
626 XSETCONS (tem, (char *) val + nbytes - 1);
627 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
629 lisp_malloc_loser = val;
630 free (val);
631 val = 0;
634 #endif
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 if (val && type != MEM_TYPE_NON_LISP)
638 mem_insert (val, (char *) val + nbytes, type);
639 #endif
641 UNBLOCK_INPUT;
642 if (!val && nbytes)
643 memory_full ();
644 return val;
647 /* Free BLOCK. This must be called to free memory allocated with a
648 call to lisp_malloc. */
650 static void
651 lisp_free (block)
652 POINTER_TYPE *block;
654 BLOCK_INPUT;
655 free (block);
656 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
657 mem_delete (mem_find (block));
658 #endif
659 UNBLOCK_INPUT;
662 /* Allocation of aligned blocks of memory to store Lisp data. */
663 /* The entry point is lisp_align_malloc which returns blocks of at most */
664 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
667 /* BLOCK_ALIGN has to be a power of 2. */
668 #define BLOCK_ALIGN (1 << 10)
670 /* Padding to leave at the end of a malloc'd block. This is to give
671 malloc a chance to minimize the amount of memory wasted to alignment.
672 It should be tuned to the particular malloc library used.
673 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
674 posix_memalign on the other hand would ideally prefer a value of 4
675 because otherwise, there's 1020 bytes wasted between each ablocks.
676 But testing shows that those 1020 will most of the time be efficiently
677 used by malloc to place other objects, so a value of 0 is still preferable
678 unless you have a lot of cons&floats and virtually nothing else. */
679 #define BLOCK_PADDING 0
680 #define BLOCK_BYTES \
681 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
683 /* Internal data structures and constants. */
685 #define ABLOCKS_SIZE 16
687 /* An aligned block of memory. */
688 struct ablock
690 union
692 char payload[BLOCK_BYTES];
693 struct ablock *next_free;
694 } x;
695 /* `abase' is the aligned base of the ablocks. */
696 /* It is overloaded to hold the virtual `busy' field that counts
697 the number of used ablock in the parent ablocks.
698 The first ablock has the `busy' field, the others have the `abase'
699 field. To tell the difference, we assume that pointers will have
700 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
701 is used to tell whether the real base of the parent ablocks is `abase'
702 (if not, the word before the first ablock holds a pointer to the
703 real base). */
704 struct ablocks *abase;
705 /* The padding of all but the last ablock is unused. The padding of
706 the last ablock in an ablocks is not allocated. */
707 #if BLOCK_PADDING
708 char padding[BLOCK_PADDING];
709 #endif
712 /* A bunch of consecutive aligned blocks. */
713 struct ablocks
715 struct ablock blocks[ABLOCKS_SIZE];
718 /* Size of the block requested from malloc or memalign. */
719 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
721 #define ABLOCK_ABASE(block) \
722 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
723 ? (struct ablocks *)(block) \
724 : (block)->abase)
726 /* Virtual `busy' field. */
727 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
729 /* Pointer to the (not necessarily aligned) malloc block. */
730 #ifdef HAVE_POSIX_MEMALIGN
731 #define ABLOCKS_BASE(abase) (abase)
732 #else
733 #define ABLOCKS_BASE(abase) \
734 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
735 #endif
737 /* The list of free ablock. */
738 static struct ablock *free_ablock;
740 /* Allocate an aligned block of nbytes.
741 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
742 smaller or equal to BLOCK_BYTES. */
743 static POINTER_TYPE *
744 lisp_align_malloc (nbytes, type)
745 size_t nbytes;
746 enum mem_type type;
748 void *base, *val;
749 struct ablocks *abase;
751 eassert (nbytes <= BLOCK_BYTES);
753 BLOCK_INPUT;
755 #ifdef GC_MALLOC_CHECK
756 allocated_mem_type = type;
757 #endif
759 if (!free_ablock)
761 int i;
762 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
764 #ifdef DOUG_LEA_MALLOC
765 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
766 because mapped region contents are not preserved in
767 a dumped Emacs. */
768 mallopt (M_MMAP_MAX, 0);
769 #endif
771 #ifdef HAVE_POSIX_MEMALIGN
773 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
774 if (err)
775 base = NULL;
776 abase = base;
778 #else
779 base = malloc (ABLOCKS_BYTES);
780 abase = ALIGN (base, BLOCK_ALIGN);
781 #endif
783 if (base == 0)
785 UNBLOCK_INPUT;
786 memory_full ();
789 aligned = (base == abase);
790 if (!aligned)
791 ((void**)abase)[-1] = base;
793 #ifdef DOUG_LEA_MALLOC
794 /* Back to a reasonable maximum of mmap'ed areas. */
795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
796 #endif
798 #ifndef USE_LSB_TAG
799 /* If the memory just allocated cannot be addressed thru a Lisp
800 object's pointer, and it needs to be, that's equivalent to
801 running out of memory. */
802 if (type != MEM_TYPE_NON_LISP)
804 Lisp_Object tem;
805 char *end = (char *) base + ABLOCKS_BYTES - 1;
806 XSETCONS (tem, end);
807 if ((char *) XCONS (tem) != end)
809 lisp_malloc_loser = base;
810 free (base);
811 UNBLOCK_INPUT;
812 memory_full ();
815 #endif
817 /* Initialize the blocks and put them on the free list.
818 Is `base' was not properly aligned, we can't use the last block. */
819 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
821 abase->blocks[i].abase = abase;
822 abase->blocks[i].x.next_free = free_ablock;
823 free_ablock = &abase->blocks[i];
825 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
827 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
828 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
829 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
830 eassert (ABLOCKS_BASE (abase) == base);
831 eassert (aligned == (long) ABLOCKS_BUSY (abase));
834 abase = ABLOCK_ABASE (free_ablock);
835 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
836 val = free_ablock;
837 free_ablock = free_ablock->x.next_free;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 if (val && type != MEM_TYPE_NON_LISP)
841 mem_insert (val, (char *) val + nbytes, type);
842 #endif
844 UNBLOCK_INPUT;
845 if (!val && nbytes)
846 memory_full ();
848 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
849 return val;
852 static void
853 lisp_align_free (block)
854 POINTER_TYPE *block;
856 struct ablock *ablock = block;
857 struct ablocks *abase = ABLOCK_ABASE (ablock);
859 BLOCK_INPUT;
860 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 mem_delete (mem_find (block));
862 #endif
863 /* Put on free list. */
864 ablock->x.next_free = free_ablock;
865 free_ablock = ablock;
866 /* Update busy count. */
867 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
869 if (2 > (long) ABLOCKS_BUSY (abase))
870 { /* All the blocks are free. */
871 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
872 struct ablock **tem = &free_ablock;
873 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
875 while (*tem)
877 if (*tem >= (struct ablock *) abase && *tem < atop)
879 i++;
880 *tem = (*tem)->x.next_free;
882 else
883 tem = &(*tem)->x.next_free;
885 eassert ((aligned & 1) == aligned);
886 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
887 free (ABLOCKS_BASE (abase));
889 UNBLOCK_INPUT;
892 /* Return a new buffer structure allocated from the heap with
893 a call to lisp_malloc. */
895 struct buffer *
896 allocate_buffer ()
898 struct buffer *b
899 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
900 MEM_TYPE_BUFFER);
901 return b;
905 /* Arranging to disable input signals while we're in malloc.
907 This only works with GNU malloc. To help out systems which can't
908 use GNU malloc, all the calls to malloc, realloc, and free
909 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
910 pairs; unfortunately, we have no idea what C library functions
911 might call malloc, so we can't really protect them unless you're
912 using GNU malloc. Fortunately, most of the major operating systems
913 can use GNU malloc. */
915 #ifndef SYSTEM_MALLOC
916 #ifndef DOUG_LEA_MALLOC
917 extern void * (*__malloc_hook) P_ ((size_t));
918 extern void * (*__realloc_hook) P_ ((void *, size_t));
919 extern void (*__free_hook) P_ ((void *));
920 /* Else declared in malloc.h, perhaps with an extra arg. */
921 #endif /* DOUG_LEA_MALLOC */
922 static void * (*old_malloc_hook) ();
923 static void * (*old_realloc_hook) ();
924 static void (*old_free_hook) ();
926 /* This function is used as the hook for free to call. */
928 static void
929 emacs_blocked_free (ptr)
930 void *ptr;
932 BLOCK_INPUT;
934 #ifdef GC_MALLOC_CHECK
935 if (ptr)
937 struct mem_node *m;
939 m = mem_find (ptr);
940 if (m == MEM_NIL || m->start != ptr)
942 fprintf (stderr,
943 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
944 abort ();
946 else
948 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
949 mem_delete (m);
952 #endif /* GC_MALLOC_CHECK */
954 __free_hook = old_free_hook;
955 free (ptr);
957 /* If we released our reserve (due to running out of memory),
958 and we have a fair amount free once again,
959 try to set aside another reserve in case we run out once more. */
960 if (spare_memory == 0
961 /* Verify there is enough space that even with the malloc
962 hysteresis this call won't run out again.
963 The code here is correct as long as SPARE_MEMORY
964 is substantially larger than the block size malloc uses. */
965 && (bytes_used_when_full
966 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
967 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
969 __free_hook = emacs_blocked_free;
970 UNBLOCK_INPUT;
974 /* If we released our reserve (due to running out of memory),
975 and we have a fair amount free once again,
976 try to set aside another reserve in case we run out once more.
978 This is called when a relocatable block is freed in ralloc.c. */
980 void
981 refill_memory_reserve ()
983 if (spare_memory == 0)
984 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
988 /* This function is the malloc hook that Emacs uses. */
990 static void *
991 emacs_blocked_malloc (size)
992 size_t size;
994 void *value;
996 BLOCK_INPUT;
997 __malloc_hook = old_malloc_hook;
998 #ifdef DOUG_LEA_MALLOC
999 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1000 #else
1001 __malloc_extra_blocks = malloc_hysteresis;
1002 #endif
1004 value = (void *) malloc (size);
1006 #ifdef GC_MALLOC_CHECK
1008 struct mem_node *m = mem_find (value);
1009 if (m != MEM_NIL)
1011 fprintf (stderr, "Malloc returned %p which is already in use\n",
1012 value);
1013 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1014 m->start, m->end, (char *) m->end - (char *) m->start,
1015 m->type);
1016 abort ();
1019 if (!dont_register_blocks)
1021 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1022 allocated_mem_type = MEM_TYPE_NON_LISP;
1025 #endif /* GC_MALLOC_CHECK */
1027 __malloc_hook = emacs_blocked_malloc;
1028 UNBLOCK_INPUT;
1030 /* fprintf (stderr, "%p malloc\n", value); */
1031 return value;
1035 /* This function is the realloc hook that Emacs uses. */
1037 static void *
1038 emacs_blocked_realloc (ptr, size)
1039 void *ptr;
1040 size_t size;
1042 void *value;
1044 BLOCK_INPUT;
1045 __realloc_hook = old_realloc_hook;
1047 #ifdef GC_MALLOC_CHECK
1048 if (ptr)
1050 struct mem_node *m = mem_find (ptr);
1051 if (m == MEM_NIL || m->start != ptr)
1053 fprintf (stderr,
1054 "Realloc of %p which wasn't allocated with malloc\n",
1055 ptr);
1056 abort ();
1059 mem_delete (m);
1062 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1064 /* Prevent malloc from registering blocks. */
1065 dont_register_blocks = 1;
1066 #endif /* GC_MALLOC_CHECK */
1068 value = (void *) realloc (ptr, size);
1070 #ifdef GC_MALLOC_CHECK
1071 dont_register_blocks = 0;
1074 struct mem_node *m = mem_find (value);
1075 if (m != MEM_NIL)
1077 fprintf (stderr, "Realloc returns memory that is already in use\n");
1078 abort ();
1081 /* Can't handle zero size regions in the red-black tree. */
1082 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1085 /* fprintf (stderr, "%p <- realloc\n", value); */
1086 #endif /* GC_MALLOC_CHECK */
1088 __realloc_hook = emacs_blocked_realloc;
1089 UNBLOCK_INPUT;
1091 return value;
1095 /* Called from main to set up malloc to use our hooks. */
1097 void
1098 uninterrupt_malloc ()
1100 if (__free_hook != emacs_blocked_free)
1101 old_free_hook = __free_hook;
1102 __free_hook = emacs_blocked_free;
1104 if (__malloc_hook != emacs_blocked_malloc)
1105 old_malloc_hook = __malloc_hook;
1106 __malloc_hook = emacs_blocked_malloc;
1108 if (__realloc_hook != emacs_blocked_realloc)
1109 old_realloc_hook = __realloc_hook;
1110 __realloc_hook = emacs_blocked_realloc;
1113 #endif /* not SYSTEM_MALLOC */
1117 /***********************************************************************
1118 Interval Allocation
1119 ***********************************************************************/
1121 /* Number of intervals allocated in an interval_block structure.
1122 The 1020 is 1024 minus malloc overhead. */
1124 #define INTERVAL_BLOCK_SIZE \
1125 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1127 /* Intervals are allocated in chunks in form of an interval_block
1128 structure. */
1130 struct interval_block
1132 /* Place `intervals' first, to preserve alignment. */
1133 struct interval intervals[INTERVAL_BLOCK_SIZE];
1134 struct interval_block *next;
1137 /* Current interval block. Its `next' pointer points to older
1138 blocks. */
1140 struct interval_block *interval_block;
1142 /* Index in interval_block above of the next unused interval
1143 structure. */
1145 static int interval_block_index;
1147 /* Number of free and live intervals. */
1149 static int total_free_intervals, total_intervals;
1151 /* List of free intervals. */
1153 INTERVAL interval_free_list;
1155 /* Total number of interval blocks now in use. */
1157 int n_interval_blocks;
1160 /* Initialize interval allocation. */
1162 static void
1163 init_intervals ()
1165 interval_block = NULL;
1166 interval_block_index = INTERVAL_BLOCK_SIZE;
1167 interval_free_list = 0;
1168 n_interval_blocks = 0;
1172 /* Return a new interval. */
1174 INTERVAL
1175 make_interval ()
1177 INTERVAL val;
1179 if (interval_free_list)
1181 val = interval_free_list;
1182 interval_free_list = INTERVAL_PARENT (interval_free_list);
1184 else
1186 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1188 register struct interval_block *newi;
1190 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1191 MEM_TYPE_NON_LISP);
1193 newi->next = interval_block;
1194 interval_block = newi;
1195 interval_block_index = 0;
1196 n_interval_blocks++;
1198 val = &interval_block->intervals[interval_block_index++];
1200 consing_since_gc += sizeof (struct interval);
1201 intervals_consed++;
1202 RESET_INTERVAL (val);
1203 val->gcmarkbit = 0;
1204 return val;
1208 /* Mark Lisp objects in interval I. */
1210 static void
1211 mark_interval (i, dummy)
1212 register INTERVAL i;
1213 Lisp_Object dummy;
1215 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1216 i->gcmarkbit = 1;
1217 mark_object (i->plist);
1221 /* Mark the interval tree rooted in TREE. Don't call this directly;
1222 use the macro MARK_INTERVAL_TREE instead. */
1224 static void
1225 mark_interval_tree (tree)
1226 register INTERVAL tree;
1228 /* No need to test if this tree has been marked already; this
1229 function is always called through the MARK_INTERVAL_TREE macro,
1230 which takes care of that. */
1232 traverse_intervals_noorder (tree, mark_interval, Qnil);
1236 /* Mark the interval tree rooted in I. */
1238 #define MARK_INTERVAL_TREE(i) \
1239 do { \
1240 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1241 mark_interval_tree (i); \
1242 } while (0)
1245 #define UNMARK_BALANCE_INTERVALS(i) \
1246 do { \
1247 if (! NULL_INTERVAL_P (i)) \
1248 (i) = balance_intervals (i); \
1249 } while (0)
1252 /* Number support. If NO_UNION_TYPE isn't in effect, we
1253 can't create number objects in macros. */
1254 #ifndef make_number
1255 Lisp_Object
1256 make_number (n)
1257 int n;
1259 Lisp_Object obj;
1260 obj.s.val = n;
1261 obj.s.type = Lisp_Int;
1262 return obj;
1264 #endif
1266 /***********************************************************************
1267 String Allocation
1268 ***********************************************************************/
1270 /* Lisp_Strings are allocated in string_block structures. When a new
1271 string_block is allocated, all the Lisp_Strings it contains are
1272 added to a free-list string_free_list. When a new Lisp_String is
1273 needed, it is taken from that list. During the sweep phase of GC,
1274 string_blocks that are entirely free are freed, except two which
1275 we keep.
1277 String data is allocated from sblock structures. Strings larger
1278 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1279 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1281 Sblocks consist internally of sdata structures, one for each
1282 Lisp_String. The sdata structure points to the Lisp_String it
1283 belongs to. The Lisp_String points back to the `u.data' member of
1284 its sdata structure.
1286 When a Lisp_String is freed during GC, it is put back on
1287 string_free_list, and its `data' member and its sdata's `string'
1288 pointer is set to null. The size of the string is recorded in the
1289 `u.nbytes' member of the sdata. So, sdata structures that are no
1290 longer used, can be easily recognized, and it's easy to compact the
1291 sblocks of small strings which we do in compact_small_strings. */
1293 /* Size in bytes of an sblock structure used for small strings. This
1294 is 8192 minus malloc overhead. */
1296 #define SBLOCK_SIZE 8188
1298 /* Strings larger than this are considered large strings. String data
1299 for large strings is allocated from individual sblocks. */
1301 #define LARGE_STRING_BYTES 1024
1303 /* Structure describing string memory sub-allocated from an sblock.
1304 This is where the contents of Lisp strings are stored. */
1306 struct sdata
1308 /* Back-pointer to the string this sdata belongs to. If null, this
1309 structure is free, and the NBYTES member of the union below
1310 contains the string's byte size (the same value that STRING_BYTES
1311 would return if STRING were non-null). If non-null, STRING_BYTES
1312 (STRING) is the size of the data, and DATA contains the string's
1313 contents. */
1314 struct Lisp_String *string;
1316 #ifdef GC_CHECK_STRING_BYTES
1318 EMACS_INT nbytes;
1319 unsigned char data[1];
1321 #define SDATA_NBYTES(S) (S)->nbytes
1322 #define SDATA_DATA(S) (S)->data
1324 #else /* not GC_CHECK_STRING_BYTES */
1326 union
1328 /* When STRING in non-null. */
1329 unsigned char data[1];
1331 /* When STRING is null. */
1332 EMACS_INT nbytes;
1333 } u;
1336 #define SDATA_NBYTES(S) (S)->u.nbytes
1337 #define SDATA_DATA(S) (S)->u.data
1339 #endif /* not GC_CHECK_STRING_BYTES */
1343 /* Structure describing a block of memory which is sub-allocated to
1344 obtain string data memory for strings. Blocks for small strings
1345 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1346 as large as needed. */
1348 struct sblock
1350 /* Next in list. */
1351 struct sblock *next;
1353 /* Pointer to the next free sdata block. This points past the end
1354 of the sblock if there isn't any space left in this block. */
1355 struct sdata *next_free;
1357 /* Start of data. */
1358 struct sdata first_data;
1361 /* Number of Lisp strings in a string_block structure. The 1020 is
1362 1024 minus malloc overhead. */
1364 #define STRING_BLOCK_SIZE \
1365 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1367 /* Structure describing a block from which Lisp_String structures
1368 are allocated. */
1370 struct string_block
1372 /* Place `strings' first, to preserve alignment. */
1373 struct Lisp_String strings[STRING_BLOCK_SIZE];
1374 struct string_block *next;
1377 /* Head and tail of the list of sblock structures holding Lisp string
1378 data. We always allocate from current_sblock. The NEXT pointers
1379 in the sblock structures go from oldest_sblock to current_sblock. */
1381 static struct sblock *oldest_sblock, *current_sblock;
1383 /* List of sblocks for large strings. */
1385 static struct sblock *large_sblocks;
1387 /* List of string_block structures, and how many there are. */
1389 static struct string_block *string_blocks;
1390 static int n_string_blocks;
1392 /* Free-list of Lisp_Strings. */
1394 static struct Lisp_String *string_free_list;
1396 /* Number of live and free Lisp_Strings. */
1398 static int total_strings, total_free_strings;
1400 /* Number of bytes used by live strings. */
1402 static int total_string_size;
1404 /* Given a pointer to a Lisp_String S which is on the free-list
1405 string_free_list, return a pointer to its successor in the
1406 free-list. */
1408 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1410 /* Return a pointer to the sdata structure belonging to Lisp string S.
1411 S must be live, i.e. S->data must not be null. S->data is actually
1412 a pointer to the `u.data' member of its sdata structure; the
1413 structure starts at a constant offset in front of that. */
1415 #ifdef GC_CHECK_STRING_BYTES
1417 #define SDATA_OF_STRING(S) \
1418 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1419 - sizeof (EMACS_INT)))
1421 #else /* not GC_CHECK_STRING_BYTES */
1423 #define SDATA_OF_STRING(S) \
1424 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1426 #endif /* not GC_CHECK_STRING_BYTES */
1428 /* Value is the size of an sdata structure large enough to hold NBYTES
1429 bytes of string data. The value returned includes a terminating
1430 NUL byte, the size of the sdata structure, and padding. */
1432 #ifdef GC_CHECK_STRING_BYTES
1434 #define SDATA_SIZE(NBYTES) \
1435 ((sizeof (struct Lisp_String *) \
1436 + (NBYTES) + 1 \
1437 + sizeof (EMACS_INT) \
1438 + sizeof (EMACS_INT) - 1) \
1439 & ~(sizeof (EMACS_INT) - 1))
1441 #else /* not GC_CHECK_STRING_BYTES */
1443 #define SDATA_SIZE(NBYTES) \
1444 ((sizeof (struct Lisp_String *) \
1445 + (NBYTES) + 1 \
1446 + sizeof (EMACS_INT) - 1) \
1447 & ~(sizeof (EMACS_INT) - 1))
1449 #endif /* not GC_CHECK_STRING_BYTES */
1451 /* Initialize string allocation. Called from init_alloc_once. */
1453 void
1454 init_strings ()
1456 total_strings = total_free_strings = total_string_size = 0;
1457 oldest_sblock = current_sblock = large_sblocks = NULL;
1458 string_blocks = NULL;
1459 n_string_blocks = 0;
1460 string_free_list = NULL;
1464 #ifdef GC_CHECK_STRING_BYTES
1466 static int check_string_bytes_count;
1468 void check_string_bytes P_ ((int));
1469 void check_sblock P_ ((struct sblock *));
1471 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1474 /* Like GC_STRING_BYTES, but with debugging check. */
1477 string_bytes (s)
1478 struct Lisp_String *s;
1480 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 abort ();
1485 return nbytes;
1488 /* Check validity of Lisp strings' string_bytes member in B. */
1490 void
1491 check_sblock (b)
1492 struct sblock *b;
1494 struct sdata *from, *end, *from_end;
1496 end = b->next_free;
1498 for (from = &b->first_data; from < end; from = from_end)
1500 /* Compute the next FROM here because copying below may
1501 overwrite data we need to compute it. */
1502 int nbytes;
1504 /* Check that the string size recorded in the string is the
1505 same as the one recorded in the sdata structure. */
1506 if (from->string)
1507 CHECK_STRING_BYTES (from->string);
1509 if (from->string)
1510 nbytes = GC_STRING_BYTES (from->string);
1511 else
1512 nbytes = SDATA_NBYTES (from);
1514 nbytes = SDATA_SIZE (nbytes);
1515 from_end = (struct sdata *) ((char *) from + nbytes);
1520 /* Check validity of Lisp strings' string_bytes member. ALL_P
1521 non-zero means check all strings, otherwise check only most
1522 recently allocated strings. Used for hunting a bug. */
1524 void
1525 check_string_bytes (all_p)
1526 int all_p;
1528 if (all_p)
1530 struct sblock *b;
1532 for (b = large_sblocks; b; b = b->next)
1534 struct Lisp_String *s = b->first_data.string;
1535 if (s)
1536 CHECK_STRING_BYTES (s);
1539 for (b = oldest_sblock; b; b = b->next)
1540 check_sblock (b);
1542 else
1543 check_sblock (current_sblock);
1546 #endif /* GC_CHECK_STRING_BYTES */
1549 /* Return a new Lisp_String. */
1551 static struct Lisp_String *
1552 allocate_string ()
1554 struct Lisp_String *s;
1556 /* If the free-list is empty, allocate a new string_block, and
1557 add all the Lisp_Strings in it to the free-list. */
1558 if (string_free_list == NULL)
1560 struct string_block *b;
1561 int i;
1563 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1564 bzero (b, sizeof *b);
1565 b->next = string_blocks;
1566 string_blocks = b;
1567 ++n_string_blocks;
1569 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1571 s = b->strings + i;
1572 NEXT_FREE_LISP_STRING (s) = string_free_list;
1573 string_free_list = s;
1576 total_free_strings += STRING_BLOCK_SIZE;
1579 /* Pop a Lisp_String off the free-list. */
1580 s = string_free_list;
1581 string_free_list = NEXT_FREE_LISP_STRING (s);
1583 /* Probably not strictly necessary, but play it safe. */
1584 bzero (s, sizeof *s);
1586 --total_free_strings;
1587 ++total_strings;
1588 ++strings_consed;
1589 consing_since_gc += sizeof *s;
1591 #ifdef GC_CHECK_STRING_BYTES
1592 if (!noninteractive
1593 #ifdef MAC_OS8
1594 && current_sblock
1595 #endif
1598 if (++check_string_bytes_count == 200)
1600 check_string_bytes_count = 0;
1601 check_string_bytes (1);
1603 else
1604 check_string_bytes (0);
1606 #endif /* GC_CHECK_STRING_BYTES */
1608 return s;
1612 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1613 plus a NUL byte at the end. Allocate an sdata structure for S, and
1614 set S->data to its `u.data' member. Store a NUL byte at the end of
1615 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1616 S->data if it was initially non-null. */
1618 void
1619 allocate_string_data (s, nchars, nbytes)
1620 struct Lisp_String *s;
1621 int nchars, nbytes;
1623 struct sdata *data, *old_data;
1624 struct sblock *b;
1625 int needed, old_nbytes;
1627 /* Determine the number of bytes needed to store NBYTES bytes
1628 of string data. */
1629 needed = SDATA_SIZE (nbytes);
1631 if (nbytes > LARGE_STRING_BYTES)
1633 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1635 #ifdef DOUG_LEA_MALLOC
1636 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1637 because mapped region contents are not preserved in
1638 a dumped Emacs.
1640 In case you think of allowing it in a dumped Emacs at the
1641 cost of not being able to re-dump, there's another reason:
1642 mmap'ed data typically have an address towards the top of the
1643 address space, which won't fit into an EMACS_INT (at least on
1644 32-bit systems with the current tagging scheme). --fx */
1645 mallopt (M_MMAP_MAX, 0);
1646 #endif
1648 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1650 #ifdef DOUG_LEA_MALLOC
1651 /* Back to a reasonable maximum of mmap'ed areas. */
1652 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1653 #endif
1655 b->next_free = &b->first_data;
1656 b->first_data.string = NULL;
1657 b->next = large_sblocks;
1658 large_sblocks = b;
1660 else if (current_sblock == NULL
1661 || (((char *) current_sblock + SBLOCK_SIZE
1662 - (char *) current_sblock->next_free)
1663 < needed))
1665 /* Not enough room in the current sblock. */
1666 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1667 b->next_free = &b->first_data;
1668 b->first_data.string = NULL;
1669 b->next = NULL;
1671 if (current_sblock)
1672 current_sblock->next = b;
1673 else
1674 oldest_sblock = b;
1675 current_sblock = b;
1677 else
1678 b = current_sblock;
1680 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1681 old_nbytes = GC_STRING_BYTES (s);
1683 data = b->next_free;
1684 data->string = s;
1685 s->data = SDATA_DATA (data);
1686 #ifdef GC_CHECK_STRING_BYTES
1687 SDATA_NBYTES (data) = nbytes;
1688 #endif
1689 s->size = nchars;
1690 s->size_byte = nbytes;
1691 s->data[nbytes] = '\0';
1692 b->next_free = (struct sdata *) ((char *) data + needed);
1694 /* If S had already data assigned, mark that as free by setting its
1695 string back-pointer to null, and recording the size of the data
1696 in it. */
1697 if (old_data)
1699 SDATA_NBYTES (old_data) = old_nbytes;
1700 old_data->string = NULL;
1703 consing_since_gc += needed;
1707 /* Sweep and compact strings. */
1709 static void
1710 sweep_strings ()
1712 struct string_block *b, *next;
1713 struct string_block *live_blocks = NULL;
1715 string_free_list = NULL;
1716 total_strings = total_free_strings = 0;
1717 total_string_size = 0;
1719 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1720 for (b = string_blocks; b; b = next)
1722 int i, nfree = 0;
1723 struct Lisp_String *free_list_before = string_free_list;
1725 next = b->next;
1727 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1729 struct Lisp_String *s = b->strings + i;
1731 if (s->data)
1733 /* String was not on free-list before. */
1734 if (STRING_MARKED_P (s))
1736 /* String is live; unmark it and its intervals. */
1737 UNMARK_STRING (s);
1739 if (!NULL_INTERVAL_P (s->intervals))
1740 UNMARK_BALANCE_INTERVALS (s->intervals);
1742 ++total_strings;
1743 total_string_size += STRING_BYTES (s);
1745 else
1747 /* String is dead. Put it on the free-list. */
1748 struct sdata *data = SDATA_OF_STRING (s);
1750 /* Save the size of S in its sdata so that we know
1751 how large that is. Reset the sdata's string
1752 back-pointer so that we know it's free. */
1753 #ifdef GC_CHECK_STRING_BYTES
1754 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1755 abort ();
1756 #else
1757 data->u.nbytes = GC_STRING_BYTES (s);
1758 #endif
1759 data->string = NULL;
1761 /* Reset the strings's `data' member so that we
1762 know it's free. */
1763 s->data = NULL;
1765 /* Put the string on the free-list. */
1766 NEXT_FREE_LISP_STRING (s) = string_free_list;
1767 string_free_list = s;
1768 ++nfree;
1771 else
1773 /* S was on the free-list before. Put it there again. */
1774 NEXT_FREE_LISP_STRING (s) = string_free_list;
1775 string_free_list = s;
1776 ++nfree;
1780 /* Free blocks that contain free Lisp_Strings only, except
1781 the first two of them. */
1782 if (nfree == STRING_BLOCK_SIZE
1783 && total_free_strings > STRING_BLOCK_SIZE)
1785 lisp_free (b);
1786 --n_string_blocks;
1787 string_free_list = free_list_before;
1789 else
1791 total_free_strings += nfree;
1792 b->next = live_blocks;
1793 live_blocks = b;
1797 string_blocks = live_blocks;
1798 free_large_strings ();
1799 compact_small_strings ();
1803 /* Free dead large strings. */
1805 static void
1806 free_large_strings ()
1808 struct sblock *b, *next;
1809 struct sblock *live_blocks = NULL;
1811 for (b = large_sblocks; b; b = next)
1813 next = b->next;
1815 if (b->first_data.string == NULL)
1816 lisp_free (b);
1817 else
1819 b->next = live_blocks;
1820 live_blocks = b;
1824 large_sblocks = live_blocks;
1828 /* Compact data of small strings. Free sblocks that don't contain
1829 data of live strings after compaction. */
1831 static void
1832 compact_small_strings ()
1834 struct sblock *b, *tb, *next;
1835 struct sdata *from, *to, *end, *tb_end;
1836 struct sdata *to_end, *from_end;
1838 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1839 to, and TB_END is the end of TB. */
1840 tb = oldest_sblock;
1841 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1842 to = &tb->first_data;
1844 /* Step through the blocks from the oldest to the youngest. We
1845 expect that old blocks will stabilize over time, so that less
1846 copying will happen this way. */
1847 for (b = oldest_sblock; b; b = b->next)
1849 end = b->next_free;
1850 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1852 for (from = &b->first_data; from < end; from = from_end)
1854 /* Compute the next FROM here because copying below may
1855 overwrite data we need to compute it. */
1856 int nbytes;
1858 #ifdef GC_CHECK_STRING_BYTES
1859 /* Check that the string size recorded in the string is the
1860 same as the one recorded in the sdata structure. */
1861 if (from->string
1862 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1863 abort ();
1864 #endif /* GC_CHECK_STRING_BYTES */
1866 if (from->string)
1867 nbytes = GC_STRING_BYTES (from->string);
1868 else
1869 nbytes = SDATA_NBYTES (from);
1871 nbytes = SDATA_SIZE (nbytes);
1872 from_end = (struct sdata *) ((char *) from + nbytes);
1874 /* FROM->string non-null means it's alive. Copy its data. */
1875 if (from->string)
1877 /* If TB is full, proceed with the next sblock. */
1878 to_end = (struct sdata *) ((char *) to + nbytes);
1879 if (to_end > tb_end)
1881 tb->next_free = to;
1882 tb = tb->next;
1883 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1884 to = &tb->first_data;
1885 to_end = (struct sdata *) ((char *) to + nbytes);
1888 /* Copy, and update the string's `data' pointer. */
1889 if (from != to)
1891 xassert (tb != b || to <= from);
1892 safe_bcopy ((char *) from, (char *) to, nbytes);
1893 to->string->data = SDATA_DATA (to);
1896 /* Advance past the sdata we copied to. */
1897 to = to_end;
1902 /* The rest of the sblocks following TB don't contain live data, so
1903 we can free them. */
1904 for (b = tb->next; b; b = next)
1906 next = b->next;
1907 lisp_free (b);
1910 tb->next_free = to;
1911 tb->next = NULL;
1912 current_sblock = tb;
1916 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1917 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1918 LENGTH must be an integer.
1919 INIT must be an integer that represents a character. */)
1920 (length, init)
1921 Lisp_Object length, init;
1923 register Lisp_Object val;
1924 register unsigned char *p, *end;
1925 int c, nbytes;
1927 CHECK_NATNUM (length);
1928 CHECK_NUMBER (init);
1930 c = XINT (init);
1931 if (SINGLE_BYTE_CHAR_P (c))
1933 nbytes = XINT (length);
1934 val = make_uninit_string (nbytes);
1935 p = SDATA (val);
1936 end = p + SCHARS (val);
1937 while (p != end)
1938 *p++ = c;
1940 else
1942 unsigned char str[MAX_MULTIBYTE_LENGTH];
1943 int len = CHAR_STRING (c, str);
1945 nbytes = len * XINT (length);
1946 val = make_uninit_multibyte_string (XINT (length), nbytes);
1947 p = SDATA (val);
1948 end = p + nbytes;
1949 while (p != end)
1951 bcopy (str, p, len);
1952 p += len;
1956 *p = 0;
1957 return val;
1961 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1962 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1963 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1964 (length, init)
1965 Lisp_Object length, init;
1967 register Lisp_Object val;
1968 struct Lisp_Bool_Vector *p;
1969 int real_init, i;
1970 int length_in_chars, length_in_elts, bits_per_value;
1972 CHECK_NATNUM (length);
1974 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1976 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1977 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1978 / BOOL_VECTOR_BITS_PER_CHAR);
1980 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1981 slot `size' of the struct Lisp_Bool_Vector. */
1982 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1983 p = XBOOL_VECTOR (val);
1985 /* Get rid of any bits that would cause confusion. */
1986 p->vector_size = 0;
1987 XSETBOOL_VECTOR (val, p);
1988 p->size = XFASTINT (length);
1990 real_init = (NILP (init) ? 0 : -1);
1991 for (i = 0; i < length_in_chars ; i++)
1992 p->data[i] = real_init;
1994 /* Clear the extraneous bits in the last byte. */
1995 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1996 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1997 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1999 return val;
2003 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2004 of characters from the contents. This string may be unibyte or
2005 multibyte, depending on the contents. */
2007 Lisp_Object
2008 make_string (contents, nbytes)
2009 const char *contents;
2010 int nbytes;
2012 register Lisp_Object val;
2013 int nchars, multibyte_nbytes;
2015 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2016 if (nbytes == nchars || nbytes != multibyte_nbytes)
2017 /* CONTENTS contains no multibyte sequences or contains an invalid
2018 multibyte sequence. We must make unibyte string. */
2019 val = make_unibyte_string (contents, nbytes);
2020 else
2021 val = make_multibyte_string (contents, nchars, nbytes);
2022 return val;
2026 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2028 Lisp_Object
2029 make_unibyte_string (contents, length)
2030 const char *contents;
2031 int length;
2033 register Lisp_Object val;
2034 val = make_uninit_string (length);
2035 bcopy (contents, SDATA (val), length);
2036 STRING_SET_UNIBYTE (val);
2037 return val;
2041 /* Make a multibyte string from NCHARS characters occupying NBYTES
2042 bytes at CONTENTS. */
2044 Lisp_Object
2045 make_multibyte_string (contents, nchars, nbytes)
2046 const char *contents;
2047 int nchars, nbytes;
2049 register Lisp_Object val;
2050 val = make_uninit_multibyte_string (nchars, nbytes);
2051 bcopy (contents, SDATA (val), nbytes);
2052 return val;
2056 /* Make a string from NCHARS characters occupying NBYTES bytes at
2057 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2059 Lisp_Object
2060 make_string_from_bytes (contents, nchars, nbytes)
2061 const char *contents;
2062 int nchars, nbytes;
2064 register Lisp_Object val;
2065 val = make_uninit_multibyte_string (nchars, nbytes);
2066 bcopy (contents, SDATA (val), nbytes);
2067 if (SBYTES (val) == SCHARS (val))
2068 STRING_SET_UNIBYTE (val);
2069 return val;
2073 /* Make a string from NCHARS characters occupying NBYTES bytes at
2074 CONTENTS. The argument MULTIBYTE controls whether to label the
2075 string as multibyte. If NCHARS is negative, it counts the number of
2076 characters by itself. */
2078 Lisp_Object
2079 make_specified_string (contents, nchars, nbytes, multibyte)
2080 const char *contents;
2081 int nchars, nbytes;
2082 int multibyte;
2084 register Lisp_Object val;
2086 if (nchars < 0)
2088 if (multibyte)
2089 nchars = multibyte_chars_in_text (contents, nbytes);
2090 else
2091 nchars = nbytes;
2093 val = make_uninit_multibyte_string (nchars, nbytes);
2094 bcopy (contents, SDATA (val), nbytes);
2095 if (!multibyte)
2096 STRING_SET_UNIBYTE (val);
2097 return val;
2101 /* Make a string from the data at STR, treating it as multibyte if the
2102 data warrants. */
2104 Lisp_Object
2105 build_string (str)
2106 const char *str;
2108 return make_string (str, strlen (str));
2112 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2113 occupying LENGTH bytes. */
2115 Lisp_Object
2116 make_uninit_string (length)
2117 int length;
2119 Lisp_Object val;
2120 val = make_uninit_multibyte_string (length, length);
2121 STRING_SET_UNIBYTE (val);
2122 return val;
2126 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2127 which occupy NBYTES bytes. */
2129 Lisp_Object
2130 make_uninit_multibyte_string (nchars, nbytes)
2131 int nchars, nbytes;
2133 Lisp_Object string;
2134 struct Lisp_String *s;
2136 if (nchars < 0)
2137 abort ();
2139 s = allocate_string ();
2140 allocate_string_data (s, nchars, nbytes);
2141 XSETSTRING (string, s);
2142 string_chars_consed += nbytes;
2143 return string;
2148 /***********************************************************************
2149 Float Allocation
2150 ***********************************************************************/
2152 /* We store float cells inside of float_blocks, allocating a new
2153 float_block with malloc whenever necessary. Float cells reclaimed
2154 by GC are put on a free list to be reallocated before allocating
2155 any new float cells from the latest float_block. */
2157 #define FLOAT_BLOCK_SIZE \
2158 (((BLOCK_BYTES - sizeof (struct float_block *) \
2159 /* The compiler might add padding at the end. */ \
2160 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2161 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2163 #define GETMARKBIT(block,n) \
2164 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2166 & 1)
2168 #define SETMARKBIT(block,n) \
2169 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2170 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2172 #define UNSETMARKBIT(block,n) \
2173 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2174 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2176 #define FLOAT_BLOCK(fptr) \
2177 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2179 #define FLOAT_INDEX(fptr) \
2180 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2182 struct float_block
2184 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2185 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2186 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2187 struct float_block *next;
2190 #define FLOAT_MARKED_P(fptr) \
2191 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2193 #define FLOAT_MARK(fptr) \
2194 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2196 #define FLOAT_UNMARK(fptr) \
2197 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2199 /* Current float_block. */
2201 struct float_block *float_block;
2203 /* Index of first unused Lisp_Float in the current float_block. */
2205 int float_block_index;
2207 /* Total number of float blocks now in use. */
2209 int n_float_blocks;
2211 /* Free-list of Lisp_Floats. */
2213 struct Lisp_Float *float_free_list;
2216 /* Initialize float allocation. */
2218 void
2219 init_float ()
2221 float_block = NULL;
2222 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2223 float_free_list = 0;
2224 n_float_blocks = 0;
2228 /* Explicitly free a float cell by putting it on the free-list. */
2230 void
2231 free_float (ptr)
2232 struct Lisp_Float *ptr;
2234 *(struct Lisp_Float **)&ptr->data = float_free_list;
2235 float_free_list = ptr;
2239 /* Return a new float object with value FLOAT_VALUE. */
2241 Lisp_Object
2242 make_float (float_value)
2243 double float_value;
2245 register Lisp_Object val;
2247 if (float_free_list)
2249 /* We use the data field for chaining the free list
2250 so that we won't use the same field that has the mark bit. */
2251 XSETFLOAT (val, float_free_list);
2252 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2254 else
2256 if (float_block_index == FLOAT_BLOCK_SIZE)
2258 register struct float_block *new;
2260 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2261 MEM_TYPE_FLOAT);
2262 new->next = float_block;
2263 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2264 float_block = new;
2265 float_block_index = 0;
2266 n_float_blocks++;
2268 XSETFLOAT (val, &float_block->floats[float_block_index]);
2269 float_block_index++;
2272 XFLOAT_DATA (val) = float_value;
2273 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2274 consing_since_gc += sizeof (struct Lisp_Float);
2275 floats_consed++;
2276 return val;
2281 /***********************************************************************
2282 Cons Allocation
2283 ***********************************************************************/
2285 /* We store cons cells inside of cons_blocks, allocating a new
2286 cons_block with malloc whenever necessary. Cons cells reclaimed by
2287 GC are put on a free list to be reallocated before allocating
2288 any new cons cells from the latest cons_block. */
2290 #define CONS_BLOCK_SIZE \
2291 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2292 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2294 #define CONS_BLOCK(fptr) \
2295 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2297 #define CONS_INDEX(fptr) \
2298 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2300 struct cons_block
2302 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2303 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2304 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2305 struct cons_block *next;
2308 #define CONS_MARKED_P(fptr) \
2309 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2311 #define CONS_MARK(fptr) \
2312 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2314 #define CONS_UNMARK(fptr) \
2315 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2317 /* Current cons_block. */
2319 struct cons_block *cons_block;
2321 /* Index of first unused Lisp_Cons in the current block. */
2323 int cons_block_index;
2325 /* Free-list of Lisp_Cons structures. */
2327 struct Lisp_Cons *cons_free_list;
2329 /* Total number of cons blocks now in use. */
2331 int n_cons_blocks;
2334 /* Initialize cons allocation. */
2336 void
2337 init_cons ()
2339 cons_block = NULL;
2340 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2341 cons_free_list = 0;
2342 n_cons_blocks = 0;
2346 /* Explicitly free a cons cell by putting it on the free-list. */
2348 void
2349 free_cons (ptr)
2350 struct Lisp_Cons *ptr;
2352 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2353 #if GC_MARK_STACK
2354 ptr->car = Vdead;
2355 #endif
2356 cons_free_list = ptr;
2359 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2360 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2361 (car, cdr)
2362 Lisp_Object car, cdr;
2364 register Lisp_Object val;
2366 if (cons_free_list)
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2373 else
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2377 register struct cons_block *new;
2378 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2379 MEM_TYPE_CONS);
2380 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2381 new->next = cons_block;
2382 cons_block = new;
2383 cons_block_index = 0;
2384 n_cons_blocks++;
2386 XSETCONS (val, &cons_block->conses[cons_block_index]);
2387 cons_block_index++;
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 cons_cells_consed++;
2395 return val;
2399 /* Make a list of 2, 3, 4 or 5 specified objects. */
2401 Lisp_Object
2402 list2 (arg1, arg2)
2403 Lisp_Object arg1, arg2;
2405 return Fcons (arg1, Fcons (arg2, Qnil));
2409 Lisp_Object
2410 list3 (arg1, arg2, arg3)
2411 Lisp_Object arg1, arg2, arg3;
2413 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2417 Lisp_Object
2418 list4 (arg1, arg2, arg3, arg4)
2419 Lisp_Object arg1, arg2, arg3, arg4;
2421 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2425 Lisp_Object
2426 list5 (arg1, arg2, arg3, arg4, arg5)
2427 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2429 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2430 Fcons (arg5, Qnil)))));
2434 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2435 doc: /* Return a newly created list with specified arguments as elements.
2436 Any number of arguments, even zero arguments, are allowed.
2437 usage: (list &rest OBJECTS) */)
2438 (nargs, args)
2439 int nargs;
2440 register Lisp_Object *args;
2442 register Lisp_Object val;
2443 val = Qnil;
2445 while (nargs > 0)
2447 nargs--;
2448 val = Fcons (args[nargs], val);
2450 return val;
2454 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2455 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2456 (length, init)
2457 register Lisp_Object length, init;
2459 register Lisp_Object val;
2460 register int size;
2462 CHECK_NATNUM (length);
2463 size = XFASTINT (length);
2465 val = Qnil;
2466 while (size > 0)
2468 val = Fcons (init, val);
2469 --size;
2471 if (size > 0)
2473 val = Fcons (init, val);
2474 --size;
2476 if (size > 0)
2478 val = Fcons (init, val);
2479 --size;
2481 if (size > 0)
2483 val = Fcons (init, val);
2484 --size;
2486 if (size > 0)
2488 val = Fcons (init, val);
2489 --size;
2495 QUIT;
2498 return val;
2503 /***********************************************************************
2504 Vector Allocation
2505 ***********************************************************************/
2507 /* Singly-linked list of all vectors. */
2509 struct Lisp_Vector *all_vectors;
2511 /* Total number of vector-like objects now in use. */
2513 int n_vectors;
2516 /* Value is a pointer to a newly allocated Lisp_Vector structure
2517 with room for LEN Lisp_Objects. */
2519 static struct Lisp_Vector *
2520 allocate_vectorlike (len, type)
2521 EMACS_INT len;
2522 enum mem_type type;
2524 struct Lisp_Vector *p;
2525 size_t nbytes;
2527 #ifdef DOUG_LEA_MALLOC
2528 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2529 because mapped region contents are not preserved in
2530 a dumped Emacs. */
2531 BLOCK_INPUT;
2532 mallopt (M_MMAP_MAX, 0);
2533 UNBLOCK_INPUT;
2534 #endif
2536 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2537 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2539 #ifdef DOUG_LEA_MALLOC
2540 /* Back to a reasonable maximum of mmap'ed areas. */
2541 BLOCK_INPUT;
2542 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2543 UNBLOCK_INPUT;
2544 #endif
2546 consing_since_gc += nbytes;
2547 vector_cells_consed += len;
2549 p->next = all_vectors;
2550 all_vectors = p;
2551 ++n_vectors;
2552 return p;
2556 /* Allocate a vector with NSLOTS slots. */
2558 struct Lisp_Vector *
2559 allocate_vector (nslots)
2560 EMACS_INT nslots;
2562 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2563 v->size = nslots;
2564 return v;
2568 /* Allocate other vector-like structures. */
2570 struct Lisp_Hash_Table *
2571 allocate_hash_table ()
2573 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2574 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2575 EMACS_INT i;
2577 v->size = len;
2578 for (i = 0; i < len; ++i)
2579 v->contents[i] = Qnil;
2581 return (struct Lisp_Hash_Table *) v;
2585 struct window *
2586 allocate_window ()
2588 EMACS_INT len = VECSIZE (struct window);
2589 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2590 EMACS_INT i;
2592 for (i = 0; i < len; ++i)
2593 v->contents[i] = Qnil;
2594 v->size = len;
2596 return (struct window *) v;
2600 struct frame *
2601 allocate_frame ()
2603 EMACS_INT len = VECSIZE (struct frame);
2604 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2605 EMACS_INT i;
2607 for (i = 0; i < len; ++i)
2608 v->contents[i] = make_number (0);
2609 v->size = len;
2610 return (struct frame *) v;
2614 struct Lisp_Process *
2615 allocate_process ()
2617 EMACS_INT len = VECSIZE (struct Lisp_Process);
2618 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2619 EMACS_INT i;
2621 for (i = 0; i < len; ++i)
2622 v->contents[i] = Qnil;
2623 v->size = len;
2625 return (struct Lisp_Process *) v;
2629 struct Lisp_Vector *
2630 allocate_other_vector (len)
2631 EMACS_INT len;
2633 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2634 EMACS_INT i;
2636 for (i = 0; i < len; ++i)
2637 v->contents[i] = Qnil;
2638 v->size = len;
2640 return v;
2644 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2645 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2646 See also the function `vector'. */)
2647 (length, init)
2648 register Lisp_Object length, init;
2650 Lisp_Object vector;
2651 register EMACS_INT sizei;
2652 register int index;
2653 register struct Lisp_Vector *p;
2655 CHECK_NATNUM (length);
2656 sizei = XFASTINT (length);
2658 p = allocate_vector (sizei);
2659 for (index = 0; index < sizei; index++)
2660 p->contents[index] = init;
2662 XSETVECTOR (vector, p);
2663 return vector;
2667 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2668 doc: /* Return a newly created char-table, with purpose PURPOSE.
2669 Each element is initialized to INIT, which defaults to nil.
2670 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2671 The property's value should be an integer between 0 and 10. */)
2672 (purpose, init)
2673 register Lisp_Object purpose, init;
2675 Lisp_Object vector;
2676 Lisp_Object n;
2677 CHECK_SYMBOL (purpose);
2678 n = Fget (purpose, Qchar_table_extra_slots);
2679 CHECK_NUMBER (n);
2680 if (XINT (n) < 0 || XINT (n) > 10)
2681 args_out_of_range (n, Qnil);
2682 /* Add 2 to the size for the defalt and parent slots. */
2683 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2684 init);
2685 XCHAR_TABLE (vector)->top = Qt;
2686 XCHAR_TABLE (vector)->parent = Qnil;
2687 XCHAR_TABLE (vector)->purpose = purpose;
2688 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2689 return vector;
2693 /* Return a newly created sub char table with default value DEFALT.
2694 Since a sub char table does not appear as a top level Emacs Lisp
2695 object, we don't need a Lisp interface to make it. */
2697 Lisp_Object
2698 make_sub_char_table (defalt)
2699 Lisp_Object defalt;
2701 Lisp_Object vector
2702 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2703 XCHAR_TABLE (vector)->top = Qnil;
2704 XCHAR_TABLE (vector)->defalt = defalt;
2705 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2706 return vector;
2710 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2711 doc: /* Return a newly created vector with specified arguments as elements.
2712 Any number of arguments, even zero arguments, are allowed.
2713 usage: (vector &rest OBJECTS) */)
2714 (nargs, args)
2715 register int nargs;
2716 Lisp_Object *args;
2718 register Lisp_Object len, val;
2719 register int index;
2720 register struct Lisp_Vector *p;
2722 XSETFASTINT (len, nargs);
2723 val = Fmake_vector (len, Qnil);
2724 p = XVECTOR (val);
2725 for (index = 0; index < nargs; index++)
2726 p->contents[index] = args[index];
2727 return val;
2731 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2732 doc: /* Create a byte-code object with specified arguments as elements.
2733 The arguments should be the arglist, bytecode-string, constant vector,
2734 stack size, (optional) doc string, and (optional) interactive spec.
2735 The first four arguments are required; at most six have any
2736 significance.
2737 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2738 (nargs, args)
2739 register int nargs;
2740 Lisp_Object *args;
2742 register Lisp_Object len, val;
2743 register int index;
2744 register struct Lisp_Vector *p;
2746 XSETFASTINT (len, nargs);
2747 if (!NILP (Vpurify_flag))
2748 val = make_pure_vector ((EMACS_INT) nargs);
2749 else
2750 val = Fmake_vector (len, Qnil);
2752 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2753 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2754 earlier because they produced a raw 8-bit string for byte-code
2755 and now such a byte-code string is loaded as multibyte while
2756 raw 8-bit characters converted to multibyte form. Thus, now we
2757 must convert them back to the original unibyte form. */
2758 args[1] = Fstring_as_unibyte (args[1]);
2760 p = XVECTOR (val);
2761 for (index = 0; index < nargs; index++)
2763 if (!NILP (Vpurify_flag))
2764 args[index] = Fpurecopy (args[index]);
2765 p->contents[index] = args[index];
2767 XSETCOMPILED (val, p);
2768 return val;
2773 /***********************************************************************
2774 Symbol Allocation
2775 ***********************************************************************/
2777 /* Each symbol_block is just under 1020 bytes long, since malloc
2778 really allocates in units of powers of two and uses 4 bytes for its
2779 own overhead. */
2781 #define SYMBOL_BLOCK_SIZE \
2782 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2784 struct symbol_block
2786 /* Place `symbols' first, to preserve alignment. */
2787 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2788 struct symbol_block *next;
2791 /* Current symbol block and index of first unused Lisp_Symbol
2792 structure in it. */
2794 struct symbol_block *symbol_block;
2795 int symbol_block_index;
2797 /* List of free symbols. */
2799 struct Lisp_Symbol *symbol_free_list;
2801 /* Total number of symbol blocks now in use. */
2803 int n_symbol_blocks;
2806 /* Initialize symbol allocation. */
2808 void
2809 init_symbol ()
2811 symbol_block = NULL;
2812 symbol_block_index = SYMBOL_BLOCK_SIZE;
2813 symbol_free_list = 0;
2814 n_symbol_blocks = 0;
2818 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2819 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2820 Its value and function definition are void, and its property list is nil. */)
2821 (name)
2822 Lisp_Object name;
2824 register Lisp_Object val;
2825 register struct Lisp_Symbol *p;
2827 CHECK_STRING (name);
2829 if (symbol_free_list)
2831 XSETSYMBOL (val, symbol_free_list);
2832 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2834 else
2836 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2838 struct symbol_block *new;
2839 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2840 MEM_TYPE_SYMBOL);
2841 new->next = symbol_block;
2842 symbol_block = new;
2843 symbol_block_index = 0;
2844 n_symbol_blocks++;
2846 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2847 symbol_block_index++;
2850 p = XSYMBOL (val);
2851 p->xname = name;
2852 p->plist = Qnil;
2853 p->value = Qunbound;
2854 p->function = Qunbound;
2855 p->next = NULL;
2856 p->gcmarkbit = 0;
2857 p->interned = SYMBOL_UNINTERNED;
2858 p->constant = 0;
2859 p->indirect_variable = 0;
2860 consing_since_gc += sizeof (struct Lisp_Symbol);
2861 symbols_consed++;
2862 return val;
2867 /***********************************************************************
2868 Marker (Misc) Allocation
2869 ***********************************************************************/
2871 /* Allocation of markers and other objects that share that structure.
2872 Works like allocation of conses. */
2874 #define MARKER_BLOCK_SIZE \
2875 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2877 struct marker_block
2879 /* Place `markers' first, to preserve alignment. */
2880 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2881 struct marker_block *next;
2884 struct marker_block *marker_block;
2885 int marker_block_index;
2887 union Lisp_Misc *marker_free_list;
2889 /* Total number of marker blocks now in use. */
2891 int n_marker_blocks;
2893 void
2894 init_marker ()
2896 marker_block = NULL;
2897 marker_block_index = MARKER_BLOCK_SIZE;
2898 marker_free_list = 0;
2899 n_marker_blocks = 0;
2902 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2904 Lisp_Object
2905 allocate_misc ()
2907 Lisp_Object val;
2909 if (marker_free_list)
2911 XSETMISC (val, marker_free_list);
2912 marker_free_list = marker_free_list->u_free.chain;
2914 else
2916 if (marker_block_index == MARKER_BLOCK_SIZE)
2918 struct marker_block *new;
2919 new = (struct marker_block *) lisp_malloc (sizeof *new,
2920 MEM_TYPE_MISC);
2921 new->next = marker_block;
2922 marker_block = new;
2923 marker_block_index = 0;
2924 n_marker_blocks++;
2925 total_free_markers += MARKER_BLOCK_SIZE;
2927 XSETMISC (val, &marker_block->markers[marker_block_index]);
2928 marker_block_index++;
2931 --total_free_markers;
2932 consing_since_gc += sizeof (union Lisp_Misc);
2933 misc_objects_consed++;
2934 XMARKER (val)->gcmarkbit = 0;
2935 return val;
2938 /* Free a Lisp_Misc object */
2940 void
2941 free_misc (misc)
2942 Lisp_Object misc;
2944 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2945 XMISC (misc)->u_free.chain = marker_free_list;
2946 marker_free_list = XMISC (misc);
2948 total_free_markers++;
2951 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2952 INTEGER. This is used to package C values to call record_unwind_protect.
2953 The unwind function can get the C values back using XSAVE_VALUE. */
2955 Lisp_Object
2956 make_save_value (pointer, integer)
2957 void *pointer;
2958 int integer;
2960 register Lisp_Object val;
2961 register struct Lisp_Save_Value *p;
2963 val = allocate_misc ();
2964 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2965 p = XSAVE_VALUE (val);
2966 p->pointer = pointer;
2967 p->integer = integer;
2968 p->dogc = 0;
2969 return val;
2972 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2973 doc: /* Return a newly allocated marker which does not point at any place. */)
2976 register Lisp_Object val;
2977 register struct Lisp_Marker *p;
2979 val = allocate_misc ();
2980 XMISCTYPE (val) = Lisp_Misc_Marker;
2981 p = XMARKER (val);
2982 p->buffer = 0;
2983 p->bytepos = 0;
2984 p->charpos = 0;
2985 p->next = NULL;
2986 p->insertion_type = 0;
2987 return val;
2990 /* Put MARKER back on the free list after using it temporarily. */
2992 void
2993 free_marker (marker)
2994 Lisp_Object marker;
2996 unchain_marker (XMARKER (marker));
2997 free_misc (marker);
3001 /* Return a newly created vector or string with specified arguments as
3002 elements. If all the arguments are characters that can fit
3003 in a string of events, make a string; otherwise, make a vector.
3005 Any number of arguments, even zero arguments, are allowed. */
3007 Lisp_Object
3008 make_event_array (nargs, args)
3009 register int nargs;
3010 Lisp_Object *args;
3012 int i;
3014 for (i = 0; i < nargs; i++)
3015 /* The things that fit in a string
3016 are characters that are in 0...127,
3017 after discarding the meta bit and all the bits above it. */
3018 if (!INTEGERP (args[i])
3019 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3020 return Fvector (nargs, args);
3022 /* Since the loop exited, we know that all the things in it are
3023 characters, so we can make a string. */
3025 Lisp_Object result;
3027 result = Fmake_string (make_number (nargs), make_number (0));
3028 for (i = 0; i < nargs; i++)
3030 SSET (result, i, XINT (args[i]));
3031 /* Move the meta bit to the right place for a string char. */
3032 if (XINT (args[i]) & CHAR_META)
3033 SSET (result, i, SREF (result, i) | 0x80);
3036 return result;
3042 /************************************************************************
3043 C Stack Marking
3044 ************************************************************************/
3046 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3048 /* Conservative C stack marking requires a method to identify possibly
3049 live Lisp objects given a pointer value. We do this by keeping
3050 track of blocks of Lisp data that are allocated in a red-black tree
3051 (see also the comment of mem_node which is the type of nodes in
3052 that tree). Function lisp_malloc adds information for an allocated
3053 block to the red-black tree with calls to mem_insert, and function
3054 lisp_free removes it with mem_delete. Functions live_string_p etc
3055 call mem_find to lookup information about a given pointer in the
3056 tree, and use that to determine if the pointer points to a Lisp
3057 object or not. */
3059 /* Initialize this part of alloc.c. */
3061 static void
3062 mem_init ()
3064 mem_z.left = mem_z.right = MEM_NIL;
3065 mem_z.parent = NULL;
3066 mem_z.color = MEM_BLACK;
3067 mem_z.start = mem_z.end = NULL;
3068 mem_root = MEM_NIL;
3072 /* Value is a pointer to the mem_node containing START. Value is
3073 MEM_NIL if there is no node in the tree containing START. */
3075 static INLINE struct mem_node *
3076 mem_find (start)
3077 void *start;
3079 struct mem_node *p;
3081 if (start < min_heap_address || start > max_heap_address)
3082 return MEM_NIL;
3084 /* Make the search always successful to speed up the loop below. */
3085 mem_z.start = start;
3086 mem_z.end = (char *) start + 1;
3088 p = mem_root;
3089 while (start < p->start || start >= p->end)
3090 p = start < p->start ? p->left : p->right;
3091 return p;
3095 /* Insert a new node into the tree for a block of memory with start
3096 address START, end address END, and type TYPE. Value is a
3097 pointer to the node that was inserted. */
3099 static struct mem_node *
3100 mem_insert (start, end, type)
3101 void *start, *end;
3102 enum mem_type type;
3104 struct mem_node *c, *parent, *x;
3106 if (start < min_heap_address)
3107 min_heap_address = start;
3108 if (end > max_heap_address)
3109 max_heap_address = end;
3111 /* See where in the tree a node for START belongs. In this
3112 particular application, it shouldn't happen that a node is already
3113 present. For debugging purposes, let's check that. */
3114 c = mem_root;
3115 parent = NULL;
3117 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3119 while (c != MEM_NIL)
3121 if (start >= c->start && start < c->end)
3122 abort ();
3123 parent = c;
3124 c = start < c->start ? c->left : c->right;
3127 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3129 while (c != MEM_NIL)
3131 parent = c;
3132 c = start < c->start ? c->left : c->right;
3135 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3137 /* Create a new node. */
3138 #ifdef GC_MALLOC_CHECK
3139 x = (struct mem_node *) _malloc_internal (sizeof *x);
3140 if (x == NULL)
3141 abort ();
3142 #else
3143 x = (struct mem_node *) xmalloc (sizeof *x);
3144 #endif
3145 x->start = start;
3146 x->end = end;
3147 x->type = type;
3148 x->parent = parent;
3149 x->left = x->right = MEM_NIL;
3150 x->color = MEM_RED;
3152 /* Insert it as child of PARENT or install it as root. */
3153 if (parent)
3155 if (start < parent->start)
3156 parent->left = x;
3157 else
3158 parent->right = x;
3160 else
3161 mem_root = x;
3163 /* Re-establish red-black tree properties. */
3164 mem_insert_fixup (x);
3166 return x;
3170 /* Re-establish the red-black properties of the tree, and thereby
3171 balance the tree, after node X has been inserted; X is always red. */
3173 static void
3174 mem_insert_fixup (x)
3175 struct mem_node *x;
3177 while (x != mem_root && x->parent->color == MEM_RED)
3179 /* X is red and its parent is red. This is a violation of
3180 red-black tree property #3. */
3182 if (x->parent == x->parent->parent->left)
3184 /* We're on the left side of our grandparent, and Y is our
3185 "uncle". */
3186 struct mem_node *y = x->parent->parent->right;
3188 if (y->color == MEM_RED)
3190 /* Uncle and parent are red but should be black because
3191 X is red. Change the colors accordingly and proceed
3192 with the grandparent. */
3193 x->parent->color = MEM_BLACK;
3194 y->color = MEM_BLACK;
3195 x->parent->parent->color = MEM_RED;
3196 x = x->parent->parent;
3198 else
3200 /* Parent and uncle have different colors; parent is
3201 red, uncle is black. */
3202 if (x == x->parent->right)
3204 x = x->parent;
3205 mem_rotate_left (x);
3208 x->parent->color = MEM_BLACK;
3209 x->parent->parent->color = MEM_RED;
3210 mem_rotate_right (x->parent->parent);
3213 else
3215 /* This is the symmetrical case of above. */
3216 struct mem_node *y = x->parent->parent->left;
3218 if (y->color == MEM_RED)
3220 x->parent->color = MEM_BLACK;
3221 y->color = MEM_BLACK;
3222 x->parent->parent->color = MEM_RED;
3223 x = x->parent->parent;
3225 else
3227 if (x == x->parent->left)
3229 x = x->parent;
3230 mem_rotate_right (x);
3233 x->parent->color = MEM_BLACK;
3234 x->parent->parent->color = MEM_RED;
3235 mem_rotate_left (x->parent->parent);
3240 /* The root may have been changed to red due to the algorithm. Set
3241 it to black so that property #5 is satisfied. */
3242 mem_root->color = MEM_BLACK;
3246 /* (x) (y)
3247 / \ / \
3248 a (y) ===> (x) c
3249 / \ / \
3250 b c a b */
3252 static void
3253 mem_rotate_left (x)
3254 struct mem_node *x;
3256 struct mem_node *y;
3258 /* Turn y's left sub-tree into x's right sub-tree. */
3259 y = x->right;
3260 x->right = y->left;
3261 if (y->left != MEM_NIL)
3262 y->left->parent = x;
3264 /* Y's parent was x's parent. */
3265 if (y != MEM_NIL)
3266 y->parent = x->parent;
3268 /* Get the parent to point to y instead of x. */
3269 if (x->parent)
3271 if (x == x->parent->left)
3272 x->parent->left = y;
3273 else
3274 x->parent->right = y;
3276 else
3277 mem_root = y;
3279 /* Put x on y's left. */
3280 y->left = x;
3281 if (x != MEM_NIL)
3282 x->parent = y;
3286 /* (x) (Y)
3287 / \ / \
3288 (y) c ===> a (x)
3289 / \ / \
3290 a b b c */
3292 static void
3293 mem_rotate_right (x)
3294 struct mem_node *x;
3296 struct mem_node *y = x->left;
3298 x->left = y->right;
3299 if (y->right != MEM_NIL)
3300 y->right->parent = x;
3302 if (y != MEM_NIL)
3303 y->parent = x->parent;
3304 if (x->parent)
3306 if (x == x->parent->right)
3307 x->parent->right = y;
3308 else
3309 x->parent->left = y;
3311 else
3312 mem_root = y;
3314 y->right = x;
3315 if (x != MEM_NIL)
3316 x->parent = y;
3320 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3322 static void
3323 mem_delete (z)
3324 struct mem_node *z;
3326 struct mem_node *x, *y;
3328 if (!z || z == MEM_NIL)
3329 return;
3331 if (z->left == MEM_NIL || z->right == MEM_NIL)
3332 y = z;
3333 else
3335 y = z->right;
3336 while (y->left != MEM_NIL)
3337 y = y->left;
3340 if (y->left != MEM_NIL)
3341 x = y->left;
3342 else
3343 x = y->right;
3345 x->parent = y->parent;
3346 if (y->parent)
3348 if (y == y->parent->left)
3349 y->parent->left = x;
3350 else
3351 y->parent->right = x;
3353 else
3354 mem_root = x;
3356 if (y != z)
3358 z->start = y->start;
3359 z->end = y->end;
3360 z->type = y->type;
3363 if (y->color == MEM_BLACK)
3364 mem_delete_fixup (x);
3366 #ifdef GC_MALLOC_CHECK
3367 _free_internal (y);
3368 #else
3369 xfree (y);
3370 #endif
3374 /* Re-establish the red-black properties of the tree, after a
3375 deletion. */
3377 static void
3378 mem_delete_fixup (x)
3379 struct mem_node *x;
3381 while (x != mem_root && x->color == MEM_BLACK)
3383 if (x == x->parent->left)
3385 struct mem_node *w = x->parent->right;
3387 if (w->color == MEM_RED)
3389 w->color = MEM_BLACK;
3390 x->parent->color = MEM_RED;
3391 mem_rotate_left (x->parent);
3392 w = x->parent->right;
3395 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3397 w->color = MEM_RED;
3398 x = x->parent;
3400 else
3402 if (w->right->color == MEM_BLACK)
3404 w->left->color = MEM_BLACK;
3405 w->color = MEM_RED;
3406 mem_rotate_right (w);
3407 w = x->parent->right;
3409 w->color = x->parent->color;
3410 x->parent->color = MEM_BLACK;
3411 w->right->color = MEM_BLACK;
3412 mem_rotate_left (x->parent);
3413 x = mem_root;
3416 else
3418 struct mem_node *w = x->parent->left;
3420 if (w->color == MEM_RED)
3422 w->color = MEM_BLACK;
3423 x->parent->color = MEM_RED;
3424 mem_rotate_right (x->parent);
3425 w = x->parent->left;
3428 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3430 w->color = MEM_RED;
3431 x = x->parent;
3433 else
3435 if (w->left->color == MEM_BLACK)
3437 w->right->color = MEM_BLACK;
3438 w->color = MEM_RED;
3439 mem_rotate_left (w);
3440 w = x->parent->left;
3443 w->color = x->parent->color;
3444 x->parent->color = MEM_BLACK;
3445 w->left->color = MEM_BLACK;
3446 mem_rotate_right (x->parent);
3447 x = mem_root;
3452 x->color = MEM_BLACK;
3456 /* Value is non-zero if P is a pointer to a live Lisp string on
3457 the heap. M is a pointer to the mem_block for P. */
3459 static INLINE int
3460 live_string_p (m, p)
3461 struct mem_node *m;
3462 void *p;
3464 if (m->type == MEM_TYPE_STRING)
3466 struct string_block *b = (struct string_block *) m->start;
3467 int offset = (char *) p - (char *) &b->strings[0];
3469 /* P must point to the start of a Lisp_String structure, and it
3470 must not be on the free-list. */
3471 return (offset >= 0
3472 && offset % sizeof b->strings[0] == 0
3473 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3474 && ((struct Lisp_String *) p)->data != NULL);
3476 else
3477 return 0;
3481 /* Value is non-zero if P is a pointer to a live Lisp cons on
3482 the heap. M is a pointer to the mem_block for P. */
3484 static INLINE int
3485 live_cons_p (m, p)
3486 struct mem_node *m;
3487 void *p;
3489 if (m->type == MEM_TYPE_CONS)
3491 struct cons_block *b = (struct cons_block *) m->start;
3492 int offset = (char *) p - (char *) &b->conses[0];
3494 /* P must point to the start of a Lisp_Cons, not be
3495 one of the unused cells in the current cons block,
3496 and not be on the free-list. */
3497 return (offset >= 0
3498 && offset % sizeof b->conses[0] == 0
3499 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3500 && (b != cons_block
3501 || offset / sizeof b->conses[0] < cons_block_index)
3502 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3504 else
3505 return 0;
3509 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3510 the heap. M is a pointer to the mem_block for P. */
3512 static INLINE int
3513 live_symbol_p (m, p)
3514 struct mem_node *m;
3515 void *p;
3517 if (m->type == MEM_TYPE_SYMBOL)
3519 struct symbol_block *b = (struct symbol_block *) m->start;
3520 int offset = (char *) p - (char *) &b->symbols[0];
3522 /* P must point to the start of a Lisp_Symbol, not be
3523 one of the unused cells in the current symbol block,
3524 and not be on the free-list. */
3525 return (offset >= 0
3526 && offset % sizeof b->symbols[0] == 0
3527 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3528 && (b != symbol_block
3529 || offset / sizeof b->symbols[0] < symbol_block_index)
3530 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3532 else
3533 return 0;
3537 /* Value is non-zero if P is a pointer to a live Lisp float on
3538 the heap. M is a pointer to the mem_block for P. */
3540 static INLINE int
3541 live_float_p (m, p)
3542 struct mem_node *m;
3543 void *p;
3545 if (m->type == MEM_TYPE_FLOAT)
3547 struct float_block *b = (struct float_block *) m->start;
3548 int offset = (char *) p - (char *) &b->floats[0];
3550 /* P must point to the start of a Lisp_Float and not be
3551 one of the unused cells in the current float block. */
3552 return (offset >= 0
3553 && offset % sizeof b->floats[0] == 0
3554 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3555 && (b != float_block
3556 || offset / sizeof b->floats[0] < float_block_index));
3558 else
3559 return 0;
3563 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3564 the heap. M is a pointer to the mem_block for P. */
3566 static INLINE int
3567 live_misc_p (m, p)
3568 struct mem_node *m;
3569 void *p;
3571 if (m->type == MEM_TYPE_MISC)
3573 struct marker_block *b = (struct marker_block *) m->start;
3574 int offset = (char *) p - (char *) &b->markers[0];
3576 /* P must point to the start of a Lisp_Misc, not be
3577 one of the unused cells in the current misc block,
3578 and not be on the free-list. */
3579 return (offset >= 0
3580 && offset % sizeof b->markers[0] == 0
3581 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3582 && (b != marker_block
3583 || offset / sizeof b->markers[0] < marker_block_index)
3584 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3586 else
3587 return 0;
3591 /* Value is non-zero if P is a pointer to a live vector-like object.
3592 M is a pointer to the mem_block for P. */
3594 static INLINE int
3595 live_vector_p (m, p)
3596 struct mem_node *m;
3597 void *p;
3599 return (p == m->start
3600 && m->type >= MEM_TYPE_VECTOR
3601 && m->type <= MEM_TYPE_WINDOW);
3605 /* Value is non-zero if P is a pointer to a live buffer. M is a
3606 pointer to the mem_block for P. */
3608 static INLINE int
3609 live_buffer_p (m, p)
3610 struct mem_node *m;
3611 void *p;
3613 /* P must point to the start of the block, and the buffer
3614 must not have been killed. */
3615 return (m->type == MEM_TYPE_BUFFER
3616 && p == m->start
3617 && !NILP (((struct buffer *) p)->name));
3620 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3622 #if GC_MARK_STACK
3624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3626 /* Array of objects that are kept alive because the C stack contains
3627 a pattern that looks like a reference to them . */
3629 #define MAX_ZOMBIES 10
3630 static Lisp_Object zombies[MAX_ZOMBIES];
3632 /* Number of zombie objects. */
3634 static int nzombies;
3636 /* Number of garbage collections. */
3638 static int ngcs;
3640 /* Average percentage of zombies per collection. */
3642 static double avg_zombies;
3644 /* Max. number of live and zombie objects. */
3646 static int max_live, max_zombies;
3648 /* Average number of live objects per GC. */
3650 static double avg_live;
3652 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3653 doc: /* Show information about live and zombie objects. */)
3656 Lisp_Object args[8], zombie_list = Qnil;
3657 int i;
3658 for (i = 0; i < nzombies; i++)
3659 zombie_list = Fcons (zombies[i], zombie_list);
3660 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3661 args[1] = make_number (ngcs);
3662 args[2] = make_float (avg_live);
3663 args[3] = make_float (avg_zombies);
3664 args[4] = make_float (avg_zombies / avg_live / 100);
3665 args[5] = make_number (max_live);
3666 args[6] = make_number (max_zombies);
3667 args[7] = zombie_list;
3668 return Fmessage (8, args);
3671 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3674 /* Mark OBJ if we can prove it's a Lisp_Object. */
3676 static INLINE void
3677 mark_maybe_object (obj)
3678 Lisp_Object obj;
3680 void *po = (void *) XPNTR (obj);
3681 struct mem_node *m = mem_find (po);
3683 if (m != MEM_NIL)
3685 int mark_p = 0;
3687 switch (XGCTYPE (obj))
3689 case Lisp_String:
3690 mark_p = (live_string_p (m, po)
3691 && !STRING_MARKED_P ((struct Lisp_String *) po));
3692 break;
3694 case Lisp_Cons:
3695 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3696 break;
3698 case Lisp_Symbol:
3699 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3700 break;
3702 case Lisp_Float:
3703 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3704 break;
3706 case Lisp_Vectorlike:
3707 /* Note: can't check GC_BUFFERP before we know it's a
3708 buffer because checking that dereferences the pointer
3709 PO which might point anywhere. */
3710 if (live_vector_p (m, po))
3711 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3712 else if (live_buffer_p (m, po))
3713 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3714 break;
3716 case Lisp_Misc:
3717 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3718 break;
3720 case Lisp_Int:
3721 case Lisp_Type_Limit:
3722 break;
3725 if (mark_p)
3727 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3728 if (nzombies < MAX_ZOMBIES)
3729 zombies[nzombies] = obj;
3730 ++nzombies;
3731 #endif
3732 mark_object (obj);
3738 /* If P points to Lisp data, mark that as live if it isn't already
3739 marked. */
3741 static INLINE void
3742 mark_maybe_pointer (p)
3743 void *p;
3745 struct mem_node *m;
3747 /* Quickly rule out some values which can't point to Lisp data. We
3748 assume that Lisp data is aligned on even addresses. */
3749 if ((EMACS_INT) p & 1)
3750 return;
3752 m = mem_find (p);
3753 if (m != MEM_NIL)
3755 Lisp_Object obj = Qnil;
3757 switch (m->type)
3759 case MEM_TYPE_NON_LISP:
3760 /* Nothing to do; not a pointer to Lisp memory. */
3761 break;
3763 case MEM_TYPE_BUFFER:
3764 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3765 XSETVECTOR (obj, p);
3766 break;
3768 case MEM_TYPE_CONS:
3769 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3770 XSETCONS (obj, p);
3771 break;
3773 case MEM_TYPE_STRING:
3774 if (live_string_p (m, p)
3775 && !STRING_MARKED_P ((struct Lisp_String *) p))
3776 XSETSTRING (obj, p);
3777 break;
3779 case MEM_TYPE_MISC:
3780 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3781 XSETMISC (obj, p);
3782 break;
3784 case MEM_TYPE_SYMBOL:
3785 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3786 XSETSYMBOL (obj, p);
3787 break;
3789 case MEM_TYPE_FLOAT:
3790 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3791 XSETFLOAT (obj, p);
3792 break;
3794 case MEM_TYPE_VECTOR:
3795 case MEM_TYPE_PROCESS:
3796 case MEM_TYPE_HASH_TABLE:
3797 case MEM_TYPE_FRAME:
3798 case MEM_TYPE_WINDOW:
3799 if (live_vector_p (m, p))
3801 Lisp_Object tem;
3802 XSETVECTOR (tem, p);
3803 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3804 obj = tem;
3806 break;
3808 default:
3809 abort ();
3812 if (!GC_NILP (obj))
3813 mark_object (obj);
3818 /* Mark Lisp objects referenced from the address range START..END. */
3820 static void
3821 mark_memory (start, end)
3822 void *start, *end;
3824 Lisp_Object *p;
3825 void **pp;
3827 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3828 nzombies = 0;
3829 #endif
3831 /* Make START the pointer to the start of the memory region,
3832 if it isn't already. */
3833 if (end < start)
3835 void *tem = start;
3836 start = end;
3837 end = tem;
3840 /* Mark Lisp_Objects. */
3841 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3842 mark_maybe_object (*p);
3844 /* Mark Lisp data pointed to. This is necessary because, in some
3845 situations, the C compiler optimizes Lisp objects away, so that
3846 only a pointer to them remains. Example:
3848 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3851 Lisp_Object obj = build_string ("test");
3852 struct Lisp_String *s = XSTRING (obj);
3853 Fgarbage_collect ();
3854 fprintf (stderr, "test `%s'\n", s->data);
3855 return Qnil;
3858 Here, `obj' isn't really used, and the compiler optimizes it
3859 away. The only reference to the life string is through the
3860 pointer `s'. */
3862 for (pp = (void **) start; (void *) pp < end; ++pp)
3863 mark_maybe_pointer (*pp);
3866 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3867 the GCC system configuration. In gcc 3.2, the only systems for
3868 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3869 by others?) and ns32k-pc532-min. */
3871 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3873 static int setjmp_tested_p, longjmps_done;
3875 #define SETJMP_WILL_LIKELY_WORK "\
3877 Emacs garbage collector has been changed to use conservative stack\n\
3878 marking. Emacs has determined that the method it uses to do the\n\
3879 marking will likely work on your system, but this isn't sure.\n\
3881 If you are a system-programmer, or can get the help of a local wizard\n\
3882 who is, please take a look at the function mark_stack in alloc.c, and\n\
3883 verify that the methods used are appropriate for your system.\n\
3885 Please mail the result to <emacs-devel@gnu.org>.\n\
3888 #define SETJMP_WILL_NOT_WORK "\
3890 Emacs garbage collector has been changed to use conservative stack\n\
3891 marking. Emacs has determined that the default method it uses to do the\n\
3892 marking will not work on your system. We will need a system-dependent\n\
3893 solution for your system.\n\
3895 Please take a look at the function mark_stack in alloc.c, and\n\
3896 try to find a way to make it work on your system.\n\
3898 Note that you may get false negatives, depending on the compiler.\n\
3899 In particular, you need to use -O with GCC for this test.\n\
3901 Please mail the result to <emacs-devel@gnu.org>.\n\
3905 /* Perform a quick check if it looks like setjmp saves registers in a
3906 jmp_buf. Print a message to stderr saying so. When this test
3907 succeeds, this is _not_ a proof that setjmp is sufficient for
3908 conservative stack marking. Only the sources or a disassembly
3909 can prove that. */
3911 static void
3912 test_setjmp ()
3914 char buf[10];
3915 register int x;
3916 jmp_buf jbuf;
3917 int result = 0;
3919 /* Arrange for X to be put in a register. */
3920 sprintf (buf, "1");
3921 x = strlen (buf);
3922 x = 2 * x - 1;
3924 setjmp (jbuf);
3925 if (longjmps_done == 1)
3927 /* Came here after the longjmp at the end of the function.
3929 If x == 1, the longjmp has restored the register to its
3930 value before the setjmp, and we can hope that setjmp
3931 saves all such registers in the jmp_buf, although that
3932 isn't sure.
3934 For other values of X, either something really strange is
3935 taking place, or the setjmp just didn't save the register. */
3937 if (x == 1)
3938 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3939 else
3941 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3942 exit (1);
3946 ++longjmps_done;
3947 x = 2;
3948 if (longjmps_done == 1)
3949 longjmp (jbuf, 1);
3952 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3955 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3957 /* Abort if anything GCPRO'd doesn't survive the GC. */
3959 static void
3960 check_gcpros ()
3962 struct gcpro *p;
3963 int i;
3965 for (p = gcprolist; p; p = p->next)
3966 for (i = 0; i < p->nvars; ++i)
3967 if (!survives_gc_p (p->var[i]))
3968 /* FIXME: It's not necessarily a bug. It might just be that the
3969 GCPRO is unnecessary or should release the object sooner. */
3970 abort ();
3973 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3975 static void
3976 dump_zombies ()
3978 int i;
3980 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3981 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3983 fprintf (stderr, " %d = ", i);
3984 debug_print (zombies[i]);
3988 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3991 /* Mark live Lisp objects on the C stack.
3993 There are several system-dependent problems to consider when
3994 porting this to new architectures:
3996 Processor Registers
3998 We have to mark Lisp objects in CPU registers that can hold local
3999 variables or are used to pass parameters.
4001 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4002 something that either saves relevant registers on the stack, or
4003 calls mark_maybe_object passing it each register's contents.
4005 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4006 implementation assumes that calling setjmp saves registers we need
4007 to see in a jmp_buf which itself lies on the stack. This doesn't
4008 have to be true! It must be verified for each system, possibly
4009 by taking a look at the source code of setjmp.
4011 Stack Layout
4013 Architectures differ in the way their processor stack is organized.
4014 For example, the stack might look like this
4016 +----------------+
4017 | Lisp_Object | size = 4
4018 +----------------+
4019 | something else | size = 2
4020 +----------------+
4021 | Lisp_Object | size = 4
4022 +----------------+
4023 | ... |
4025 In such a case, not every Lisp_Object will be aligned equally. To
4026 find all Lisp_Object on the stack it won't be sufficient to walk
4027 the stack in steps of 4 bytes. Instead, two passes will be
4028 necessary, one starting at the start of the stack, and a second
4029 pass starting at the start of the stack + 2. Likewise, if the
4030 minimal alignment of Lisp_Objects on the stack is 1, four passes
4031 would be necessary, each one starting with one byte more offset
4032 from the stack start.
4034 The current code assumes by default that Lisp_Objects are aligned
4035 equally on the stack. */
4037 static void
4038 mark_stack ()
4040 int i;
4041 jmp_buf j;
4042 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4043 void *end;
4045 /* This trick flushes the register windows so that all the state of
4046 the process is contained in the stack. */
4047 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4048 needed on ia64 too. See mach_dep.c, where it also says inline
4049 assembler doesn't work with relevant proprietary compilers. */
4050 #ifdef sparc
4051 asm ("ta 3");
4052 #endif
4054 /* Save registers that we need to see on the stack. We need to see
4055 registers used to hold register variables and registers used to
4056 pass parameters. */
4057 #ifdef GC_SAVE_REGISTERS_ON_STACK
4058 GC_SAVE_REGISTERS_ON_STACK (end);
4059 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4061 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4062 setjmp will definitely work, test it
4063 and print a message with the result
4064 of the test. */
4065 if (!setjmp_tested_p)
4067 setjmp_tested_p = 1;
4068 test_setjmp ();
4070 #endif /* GC_SETJMP_WORKS */
4072 setjmp (j);
4073 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4074 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4076 /* This assumes that the stack is a contiguous region in memory. If
4077 that's not the case, something has to be done here to iterate
4078 over the stack segments. */
4079 #ifndef GC_LISP_OBJECT_ALIGNMENT
4080 #ifdef __GNUC__
4081 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4082 #else
4083 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4084 #endif
4085 #endif
4086 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4087 mark_memory ((char *) stack_base + i, end);
4089 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4090 check_gcpros ();
4091 #endif
4095 #endif /* GC_MARK_STACK != 0 */
4099 /***********************************************************************
4100 Pure Storage Management
4101 ***********************************************************************/
4103 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4104 pointer to it. TYPE is the Lisp type for which the memory is
4105 allocated. TYPE < 0 means it's not used for a Lisp object.
4107 If store_pure_type_info is set and TYPE is >= 0, the type of
4108 the allocated object is recorded in pure_types. */
4110 static POINTER_TYPE *
4111 pure_alloc (size, type)
4112 size_t size;
4113 int type;
4115 POINTER_TYPE *result;
4116 #ifdef USE_LSB_TAG
4117 size_t alignment = (1 << GCTYPEBITS);
4118 #else
4119 size_t alignment = sizeof (EMACS_INT);
4121 /* Give Lisp_Floats an extra alignment. */
4122 if (type == Lisp_Float)
4124 #if defined __GNUC__ && __GNUC__ >= 2
4125 alignment = __alignof (struct Lisp_Float);
4126 #else
4127 alignment = sizeof (struct Lisp_Float);
4128 #endif
4130 #endif
4132 again:
4133 result = ALIGN (purebeg + pure_bytes_used, alignment);
4134 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4136 if (pure_bytes_used <= pure_size)
4137 return result;
4139 /* Don't allocate a large amount here,
4140 because it might get mmap'd and then its address
4141 might not be usable. */
4142 purebeg = (char *) xmalloc (10000);
4143 pure_size = 10000;
4144 pure_bytes_used_before_overflow += pure_bytes_used - size;
4145 pure_bytes_used = 0;
4146 goto again;
4150 /* Print a warning if PURESIZE is too small. */
4152 void
4153 check_pure_size ()
4155 if (pure_bytes_used_before_overflow)
4156 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4157 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4161 /* Return a string allocated in pure space. DATA is a buffer holding
4162 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4163 non-zero means make the result string multibyte.
4165 Must get an error if pure storage is full, since if it cannot hold
4166 a large string it may be able to hold conses that point to that
4167 string; then the string is not protected from gc. */
4169 Lisp_Object
4170 make_pure_string (data, nchars, nbytes, multibyte)
4171 char *data;
4172 int nchars, nbytes;
4173 int multibyte;
4175 Lisp_Object string;
4176 struct Lisp_String *s;
4178 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4179 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4180 s->size = nchars;
4181 s->size_byte = multibyte ? nbytes : -1;
4182 bcopy (data, s->data, nbytes);
4183 s->data[nbytes] = '\0';
4184 s->intervals = NULL_INTERVAL;
4185 XSETSTRING (string, s);
4186 return string;
4190 /* Return a cons allocated from pure space. Give it pure copies
4191 of CAR as car and CDR as cdr. */
4193 Lisp_Object
4194 pure_cons (car, cdr)
4195 Lisp_Object car, cdr;
4197 register Lisp_Object new;
4198 struct Lisp_Cons *p;
4200 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4201 XSETCONS (new, p);
4202 XSETCAR (new, Fpurecopy (car));
4203 XSETCDR (new, Fpurecopy (cdr));
4204 return new;
4208 /* Value is a float object with value NUM allocated from pure space. */
4210 Lisp_Object
4211 make_pure_float (num)
4212 double num;
4214 register Lisp_Object new;
4215 struct Lisp_Float *p;
4217 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4218 XSETFLOAT (new, p);
4219 XFLOAT_DATA (new) = num;
4220 return new;
4224 /* Return a vector with room for LEN Lisp_Objects allocated from
4225 pure space. */
4227 Lisp_Object
4228 make_pure_vector (len)
4229 EMACS_INT len;
4231 Lisp_Object new;
4232 struct Lisp_Vector *p;
4233 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4235 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4236 XSETVECTOR (new, p);
4237 XVECTOR (new)->size = len;
4238 return new;
4242 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4243 doc: /* Make a copy of OBJECT in pure storage.
4244 Recursively copies contents of vectors and cons cells.
4245 Does not copy symbols. Copies strings without text properties. */)
4246 (obj)
4247 register Lisp_Object obj;
4249 if (NILP (Vpurify_flag))
4250 return obj;
4252 if (PURE_POINTER_P (XPNTR (obj)))
4253 return obj;
4255 if (CONSP (obj))
4256 return pure_cons (XCAR (obj), XCDR (obj));
4257 else if (FLOATP (obj))
4258 return make_pure_float (XFLOAT_DATA (obj));
4259 else if (STRINGP (obj))
4260 return make_pure_string (SDATA (obj), SCHARS (obj),
4261 SBYTES (obj),
4262 STRING_MULTIBYTE (obj));
4263 else if (COMPILEDP (obj) || VECTORP (obj))
4265 register struct Lisp_Vector *vec;
4266 register int i;
4267 EMACS_INT size;
4269 size = XVECTOR (obj)->size;
4270 if (size & PSEUDOVECTOR_FLAG)
4271 size &= PSEUDOVECTOR_SIZE_MASK;
4272 vec = XVECTOR (make_pure_vector (size));
4273 for (i = 0; i < size; i++)
4274 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4275 if (COMPILEDP (obj))
4276 XSETCOMPILED (obj, vec);
4277 else
4278 XSETVECTOR (obj, vec);
4279 return obj;
4281 else if (MARKERP (obj))
4282 error ("Attempt to copy a marker to pure storage");
4284 return obj;
4289 /***********************************************************************
4290 Protection from GC
4291 ***********************************************************************/
4293 /* Put an entry in staticvec, pointing at the variable with address
4294 VARADDRESS. */
4296 void
4297 staticpro (varaddress)
4298 Lisp_Object *varaddress;
4300 staticvec[staticidx++] = varaddress;
4301 if (staticidx >= NSTATICS)
4302 abort ();
4305 struct catchtag
4307 Lisp_Object tag;
4308 Lisp_Object val;
4309 struct catchtag *next;
4313 /***********************************************************************
4314 Protection from GC
4315 ***********************************************************************/
4317 /* Temporarily prevent garbage collection. */
4320 inhibit_garbage_collection ()
4322 int count = SPECPDL_INDEX ();
4323 int nbits = min (VALBITS, BITS_PER_INT);
4325 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4326 return count;
4330 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4331 doc: /* Reclaim storage for Lisp objects no longer needed.
4332 Garbage collection happens automatically if you cons more than
4333 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4334 `garbage-collect' normally returns a list with info on amount of space in use:
4335 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4336 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4337 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4338 (USED-STRINGS . FREE-STRINGS))
4339 However, if there was overflow in pure space, `garbage-collect'
4340 returns nil, because real GC can't be done. */)
4343 register struct specbinding *bind;
4344 struct catchtag *catch;
4345 struct handler *handler;
4346 char stack_top_variable;
4347 register int i;
4348 int message_p;
4349 Lisp_Object total[8];
4350 int count = SPECPDL_INDEX ();
4351 EMACS_TIME t1, t2, t3;
4353 if (abort_on_gc)
4354 abort ();
4356 EMACS_GET_TIME (t1);
4358 /* Can't GC if pure storage overflowed because we can't determine
4359 if something is a pure object or not. */
4360 if (pure_bytes_used_before_overflow)
4361 return Qnil;
4363 /* In case user calls debug_print during GC,
4364 don't let that cause a recursive GC. */
4365 consing_since_gc = 0;
4367 /* Save what's currently displayed in the echo area. */
4368 message_p = push_message ();
4369 record_unwind_protect (pop_message_unwind, Qnil);
4371 /* Save a copy of the contents of the stack, for debugging. */
4372 #if MAX_SAVE_STACK > 0
4373 if (NILP (Vpurify_flag))
4375 i = &stack_top_variable - stack_bottom;
4376 if (i < 0) i = -i;
4377 if (i < MAX_SAVE_STACK)
4379 if (stack_copy == 0)
4380 stack_copy = (char *) xmalloc (stack_copy_size = i);
4381 else if (stack_copy_size < i)
4382 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4383 if (stack_copy)
4385 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4386 bcopy (stack_bottom, stack_copy, i);
4387 else
4388 bcopy (&stack_top_variable, stack_copy, i);
4392 #endif /* MAX_SAVE_STACK > 0 */
4394 if (garbage_collection_messages)
4395 message1_nolog ("Garbage collecting...");
4397 BLOCK_INPUT;
4399 shrink_regexp_cache ();
4401 /* Don't keep undo information around forever. */
4403 register struct buffer *nextb = all_buffers;
4405 while (nextb)
4407 /* If a buffer's undo list is Qt, that means that undo is
4408 turned off in that buffer. Calling truncate_undo_list on
4409 Qt tends to return NULL, which effectively turns undo back on.
4410 So don't call truncate_undo_list if undo_list is Qt. */
4411 if (! EQ (nextb->undo_list, Qt))
4412 nextb->undo_list
4413 = truncate_undo_list (nextb->undo_list, undo_limit,
4414 undo_strong_limit, undo_outer_limit);
4416 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4417 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4419 /* If a buffer's gap size is more than 10% of the buffer
4420 size, or larger than 2000 bytes, then shrink it
4421 accordingly. Keep a minimum size of 20 bytes. */
4422 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4424 if (nextb->text->gap_size > size)
4426 struct buffer *save_current = current_buffer;
4427 current_buffer = nextb;
4428 make_gap (-(nextb->text->gap_size - size));
4429 current_buffer = save_current;
4433 nextb = nextb->next;
4437 gc_in_progress = 1;
4439 /* clear_marks (); */
4441 /* Mark all the special slots that serve as the roots of accessibility. */
4443 for (i = 0; i < staticidx; i++)
4444 mark_object (*staticvec[i]);
4446 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4447 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4448 mark_stack ();
4449 #else
4451 register struct gcpro *tail;
4452 for (tail = gcprolist; tail; tail = tail->next)
4453 for (i = 0; i < tail->nvars; i++)
4454 mark_object (tail->var[i]);
4456 #endif
4458 mark_byte_stack ();
4459 for (bind = specpdl; bind != specpdl_ptr; bind++)
4461 mark_object (bind->symbol);
4462 mark_object (bind->old_value);
4464 for (catch = catchlist; catch; catch = catch->next)
4466 mark_object (catch->tag);
4467 mark_object (catch->val);
4469 for (handler = handlerlist; handler; handler = handler->next)
4471 mark_object (handler->handler);
4472 mark_object (handler->var);
4474 mark_backtrace ();
4475 mark_kboards ();
4477 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4478 mark_stack ();
4479 #endif
4481 #ifdef USE_GTK
4483 extern void xg_mark_data ();
4484 xg_mark_data ();
4486 #endif
4488 /* Everything is now marked, except for the things that require special
4489 finalization, i.e. the undo_list.
4490 Look thru every buffer's undo list
4491 for elements that update markers that were not marked,
4492 and delete them. */
4494 register struct buffer *nextb = all_buffers;
4496 while (nextb)
4498 /* If a buffer's undo list is Qt, that means that undo is
4499 turned off in that buffer. Calling truncate_undo_list on
4500 Qt tends to return NULL, which effectively turns undo back on.
4501 So don't call truncate_undo_list if undo_list is Qt. */
4502 if (! EQ (nextb->undo_list, Qt))
4504 Lisp_Object tail, prev;
4505 tail = nextb->undo_list;
4506 prev = Qnil;
4507 while (CONSP (tail))
4509 if (GC_CONSP (XCAR (tail))
4510 && GC_MARKERP (XCAR (XCAR (tail)))
4511 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4513 if (NILP (prev))
4514 nextb->undo_list = tail = XCDR (tail);
4515 else
4517 tail = XCDR (tail);
4518 XSETCDR (prev, tail);
4521 else
4523 prev = tail;
4524 tail = XCDR (tail);
4528 /* Now that we have stripped the elements that need not be in the
4529 undo_list any more, we can finally mark the list. */
4530 mark_object (nextb->undo_list);
4532 nextb = nextb->next;
4536 gc_sweep ();
4538 /* Clear the mark bits that we set in certain root slots. */
4540 unmark_byte_stack ();
4541 VECTOR_UNMARK (&buffer_defaults);
4542 VECTOR_UNMARK (&buffer_local_symbols);
4544 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4545 dump_zombies ();
4546 #endif
4548 UNBLOCK_INPUT;
4550 /* clear_marks (); */
4551 gc_in_progress = 0;
4553 consing_since_gc = 0;
4554 if (gc_cons_threshold < 10000)
4555 gc_cons_threshold = 10000;
4557 if (garbage_collection_messages)
4559 if (message_p || minibuf_level > 0)
4560 restore_message ();
4561 else
4562 message1_nolog ("Garbage collecting...done");
4565 unbind_to (count, Qnil);
4567 total[0] = Fcons (make_number (total_conses),
4568 make_number (total_free_conses));
4569 total[1] = Fcons (make_number (total_symbols),
4570 make_number (total_free_symbols));
4571 total[2] = Fcons (make_number (total_markers),
4572 make_number (total_free_markers));
4573 total[3] = make_number (total_string_size);
4574 total[4] = make_number (total_vector_size);
4575 total[5] = Fcons (make_number (total_floats),
4576 make_number (total_free_floats));
4577 total[6] = Fcons (make_number (total_intervals),
4578 make_number (total_free_intervals));
4579 total[7] = Fcons (make_number (total_strings),
4580 make_number (total_free_strings));
4582 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4584 /* Compute average percentage of zombies. */
4585 double nlive = 0;
4587 for (i = 0; i < 7; ++i)
4588 if (CONSP (total[i]))
4589 nlive += XFASTINT (XCAR (total[i]));
4591 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4592 max_live = max (nlive, max_live);
4593 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4594 max_zombies = max (nzombies, max_zombies);
4595 ++ngcs;
4597 #endif
4599 if (!NILP (Vpost_gc_hook))
4601 int count = inhibit_garbage_collection ();
4602 safe_run_hooks (Qpost_gc_hook);
4603 unbind_to (count, Qnil);
4606 /* Accumulate statistics. */
4607 EMACS_GET_TIME (t2);
4608 EMACS_SUB_TIME (t3, t2, t1);
4609 if (FLOATP (Vgc_elapsed))
4610 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4611 EMACS_SECS (t3) +
4612 EMACS_USECS (t3) * 1.0e-6);
4613 gcs_done++;
4615 return Flist (sizeof total / sizeof *total, total);
4619 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4620 only interesting objects referenced from glyphs are strings. */
4622 static void
4623 mark_glyph_matrix (matrix)
4624 struct glyph_matrix *matrix;
4626 struct glyph_row *row = matrix->rows;
4627 struct glyph_row *end = row + matrix->nrows;
4629 for (; row < end; ++row)
4630 if (row->enabled_p)
4632 int area;
4633 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4635 struct glyph *glyph = row->glyphs[area];
4636 struct glyph *end_glyph = glyph + row->used[area];
4638 for (; glyph < end_glyph; ++glyph)
4639 if (GC_STRINGP (glyph->object)
4640 && !STRING_MARKED_P (XSTRING (glyph->object)))
4641 mark_object (glyph->object);
4647 /* Mark Lisp faces in the face cache C. */
4649 static void
4650 mark_face_cache (c)
4651 struct face_cache *c;
4653 if (c)
4655 int i, j;
4656 for (i = 0; i < c->used; ++i)
4658 struct face *face = FACE_FROM_ID (c->f, i);
4660 if (face)
4662 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4663 mark_object (face->lface[j]);
4670 #ifdef HAVE_WINDOW_SYSTEM
4672 /* Mark Lisp objects in image IMG. */
4674 static void
4675 mark_image (img)
4676 struct image *img;
4678 mark_object (img->spec);
4680 if (!NILP (img->data.lisp_val))
4681 mark_object (img->data.lisp_val);
4685 /* Mark Lisp objects in image cache of frame F. It's done this way so
4686 that we don't have to include xterm.h here. */
4688 static void
4689 mark_image_cache (f)
4690 struct frame *f;
4692 forall_images_in_image_cache (f, mark_image);
4695 #endif /* HAVE_X_WINDOWS */
4699 /* Mark reference to a Lisp_Object.
4700 If the object referred to has not been seen yet, recursively mark
4701 all the references contained in it. */
4703 #define LAST_MARKED_SIZE 500
4704 Lisp_Object last_marked[LAST_MARKED_SIZE];
4705 int last_marked_index;
4707 /* For debugging--call abort when we cdr down this many
4708 links of a list, in mark_object. In debugging,
4709 the call to abort will hit a breakpoint.
4710 Normally this is zero and the check never goes off. */
4711 int mark_object_loop_halt;
4713 void
4714 mark_object (arg)
4715 Lisp_Object arg;
4717 register Lisp_Object obj = arg;
4718 #ifdef GC_CHECK_MARKED_OBJECTS
4719 void *po;
4720 struct mem_node *m;
4721 #endif
4722 int cdr_count = 0;
4724 loop:
4726 if (PURE_POINTER_P (XPNTR (obj)))
4727 return;
4729 last_marked[last_marked_index++] = obj;
4730 if (last_marked_index == LAST_MARKED_SIZE)
4731 last_marked_index = 0;
4733 /* Perform some sanity checks on the objects marked here. Abort if
4734 we encounter an object we know is bogus. This increases GC time
4735 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4736 #ifdef GC_CHECK_MARKED_OBJECTS
4738 po = (void *) XPNTR (obj);
4740 /* Check that the object pointed to by PO is known to be a Lisp
4741 structure allocated from the heap. */
4742 #define CHECK_ALLOCATED() \
4743 do { \
4744 m = mem_find (po); \
4745 if (m == MEM_NIL) \
4746 abort (); \
4747 } while (0)
4749 /* Check that the object pointed to by PO is live, using predicate
4750 function LIVEP. */
4751 #define CHECK_LIVE(LIVEP) \
4752 do { \
4753 if (!LIVEP (m, po)) \
4754 abort (); \
4755 } while (0)
4757 /* Check both of the above conditions. */
4758 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4759 do { \
4760 CHECK_ALLOCATED (); \
4761 CHECK_LIVE (LIVEP); \
4762 } while (0) \
4764 #else /* not GC_CHECK_MARKED_OBJECTS */
4766 #define CHECK_ALLOCATED() (void) 0
4767 #define CHECK_LIVE(LIVEP) (void) 0
4768 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4770 #endif /* not GC_CHECK_MARKED_OBJECTS */
4772 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4774 case Lisp_String:
4776 register struct Lisp_String *ptr = XSTRING (obj);
4777 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4778 MARK_INTERVAL_TREE (ptr->intervals);
4779 MARK_STRING (ptr);
4780 #ifdef GC_CHECK_STRING_BYTES
4781 /* Check that the string size recorded in the string is the
4782 same as the one recorded in the sdata structure. */
4783 CHECK_STRING_BYTES (ptr);
4784 #endif /* GC_CHECK_STRING_BYTES */
4786 break;
4788 case Lisp_Vectorlike:
4789 #ifdef GC_CHECK_MARKED_OBJECTS
4790 m = mem_find (po);
4791 if (m == MEM_NIL && !GC_SUBRP (obj)
4792 && po != &buffer_defaults
4793 && po != &buffer_local_symbols)
4794 abort ();
4795 #endif /* GC_CHECK_MARKED_OBJECTS */
4797 if (GC_BUFFERP (obj))
4799 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4801 #ifdef GC_CHECK_MARKED_OBJECTS
4802 if (po != &buffer_defaults && po != &buffer_local_symbols)
4804 struct buffer *b;
4805 for (b = all_buffers; b && b != po; b = b->next)
4807 if (b == NULL)
4808 abort ();
4810 #endif /* GC_CHECK_MARKED_OBJECTS */
4811 mark_buffer (obj);
4814 else if (GC_SUBRP (obj))
4815 break;
4816 else if (GC_COMPILEDP (obj))
4817 /* We could treat this just like a vector, but it is better to
4818 save the COMPILED_CONSTANTS element for last and avoid
4819 recursion there. */
4821 register struct Lisp_Vector *ptr = XVECTOR (obj);
4822 register EMACS_INT size = ptr->size;
4823 register int i;
4825 if (VECTOR_MARKED_P (ptr))
4826 break; /* Already marked */
4828 CHECK_LIVE (live_vector_p);
4829 VECTOR_MARK (ptr); /* Else mark it */
4830 size &= PSEUDOVECTOR_SIZE_MASK;
4831 for (i = 0; i < size; i++) /* and then mark its elements */
4833 if (i != COMPILED_CONSTANTS)
4834 mark_object (ptr->contents[i]);
4836 obj = ptr->contents[COMPILED_CONSTANTS];
4837 goto loop;
4839 else if (GC_FRAMEP (obj))
4841 register struct frame *ptr = XFRAME (obj);
4843 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4844 VECTOR_MARK (ptr); /* Else mark it */
4846 CHECK_LIVE (live_vector_p);
4847 mark_object (ptr->name);
4848 mark_object (ptr->icon_name);
4849 mark_object (ptr->title);
4850 mark_object (ptr->focus_frame);
4851 mark_object (ptr->selected_window);
4852 mark_object (ptr->minibuffer_window);
4853 mark_object (ptr->param_alist);
4854 mark_object (ptr->scroll_bars);
4855 mark_object (ptr->condemned_scroll_bars);
4856 mark_object (ptr->menu_bar_items);
4857 mark_object (ptr->face_alist);
4858 mark_object (ptr->menu_bar_vector);
4859 mark_object (ptr->buffer_predicate);
4860 mark_object (ptr->buffer_list);
4861 mark_object (ptr->menu_bar_window);
4862 mark_object (ptr->tool_bar_window);
4863 mark_face_cache (ptr->face_cache);
4864 #ifdef HAVE_WINDOW_SYSTEM
4865 mark_image_cache (ptr);
4866 mark_object (ptr->tool_bar_items);
4867 mark_object (ptr->desired_tool_bar_string);
4868 mark_object (ptr->current_tool_bar_string);
4869 #endif /* HAVE_WINDOW_SYSTEM */
4871 else if (GC_BOOL_VECTOR_P (obj))
4873 register struct Lisp_Vector *ptr = XVECTOR (obj);
4875 if (VECTOR_MARKED_P (ptr))
4876 break; /* Already marked */
4877 CHECK_LIVE (live_vector_p);
4878 VECTOR_MARK (ptr); /* Else mark it */
4880 else if (GC_WINDOWP (obj))
4882 register struct Lisp_Vector *ptr = XVECTOR (obj);
4883 struct window *w = XWINDOW (obj);
4884 register int i;
4886 /* Stop if already marked. */
4887 if (VECTOR_MARKED_P (ptr))
4888 break;
4890 /* Mark it. */
4891 CHECK_LIVE (live_vector_p);
4892 VECTOR_MARK (ptr);
4894 /* There is no Lisp data above The member CURRENT_MATRIX in
4895 struct WINDOW. Stop marking when that slot is reached. */
4896 for (i = 0;
4897 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4898 i++)
4899 mark_object (ptr->contents[i]);
4901 /* Mark glyphs for leaf windows. Marking window matrices is
4902 sufficient because frame matrices use the same glyph
4903 memory. */
4904 if (NILP (w->hchild)
4905 && NILP (w->vchild)
4906 && w->current_matrix)
4908 mark_glyph_matrix (w->current_matrix);
4909 mark_glyph_matrix (w->desired_matrix);
4912 else if (GC_HASH_TABLE_P (obj))
4914 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4916 /* Stop if already marked. */
4917 if (VECTOR_MARKED_P (h))
4918 break;
4920 /* Mark it. */
4921 CHECK_LIVE (live_vector_p);
4922 VECTOR_MARK (h);
4924 /* Mark contents. */
4925 /* Do not mark next_free or next_weak.
4926 Being in the next_weak chain
4927 should not keep the hash table alive.
4928 No need to mark `count' since it is an integer. */
4929 mark_object (h->test);
4930 mark_object (h->weak);
4931 mark_object (h->rehash_size);
4932 mark_object (h->rehash_threshold);
4933 mark_object (h->hash);
4934 mark_object (h->next);
4935 mark_object (h->index);
4936 mark_object (h->user_hash_function);
4937 mark_object (h->user_cmp_function);
4939 /* If hash table is not weak, mark all keys and values.
4940 For weak tables, mark only the vector. */
4941 if (GC_NILP (h->weak))
4942 mark_object (h->key_and_value);
4943 else
4944 VECTOR_MARK (XVECTOR (h->key_and_value));
4946 else
4948 register struct Lisp_Vector *ptr = XVECTOR (obj);
4949 register EMACS_INT size = ptr->size;
4950 register int i;
4952 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4953 CHECK_LIVE (live_vector_p);
4954 VECTOR_MARK (ptr); /* Else mark it */
4955 if (size & PSEUDOVECTOR_FLAG)
4956 size &= PSEUDOVECTOR_SIZE_MASK;
4958 for (i = 0; i < size; i++) /* and then mark its elements */
4959 mark_object (ptr->contents[i]);
4961 break;
4963 case Lisp_Symbol:
4965 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4966 struct Lisp_Symbol *ptrx;
4968 if (ptr->gcmarkbit) break;
4969 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4970 ptr->gcmarkbit = 1;
4971 mark_object (ptr->value);
4972 mark_object (ptr->function);
4973 mark_object (ptr->plist);
4975 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4976 MARK_STRING (XSTRING (ptr->xname));
4977 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4979 /* Note that we do not mark the obarray of the symbol.
4980 It is safe not to do so because nothing accesses that
4981 slot except to check whether it is nil. */
4982 ptr = ptr->next;
4983 if (ptr)
4985 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4986 XSETSYMBOL (obj, ptrx);
4987 goto loop;
4990 break;
4992 case Lisp_Misc:
4993 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4994 if (XMARKER (obj)->gcmarkbit)
4995 break;
4996 XMARKER (obj)->gcmarkbit = 1;
4998 switch (XMISCTYPE (obj))
5000 case Lisp_Misc_Buffer_Local_Value:
5001 case Lisp_Misc_Some_Buffer_Local_Value:
5003 register struct Lisp_Buffer_Local_Value *ptr
5004 = XBUFFER_LOCAL_VALUE (obj);
5005 /* If the cdr is nil, avoid recursion for the car. */
5006 if (EQ (ptr->cdr, Qnil))
5008 obj = ptr->realvalue;
5009 goto loop;
5011 mark_object (ptr->realvalue);
5012 mark_object (ptr->buffer);
5013 mark_object (ptr->frame);
5014 obj = ptr->cdr;
5015 goto loop;
5018 case Lisp_Misc_Marker:
5019 /* DO NOT mark thru the marker's chain.
5020 The buffer's markers chain does not preserve markers from gc;
5021 instead, markers are removed from the chain when freed by gc. */
5022 break;
5024 case Lisp_Misc_Intfwd:
5025 case Lisp_Misc_Boolfwd:
5026 case Lisp_Misc_Objfwd:
5027 case Lisp_Misc_Buffer_Objfwd:
5028 case Lisp_Misc_Kboard_Objfwd:
5029 /* Don't bother with Lisp_Buffer_Objfwd,
5030 since all markable slots in current buffer marked anyway. */
5031 /* Don't need to do Lisp_Objfwd, since the places they point
5032 are protected with staticpro. */
5033 break;
5035 case Lisp_Misc_Save_Value:
5037 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5038 /* If DOGC is set, POINTER is the address of a memory
5039 area containing INTEGER potential Lisp_Objects. */
5040 if (ptr->dogc)
5042 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5043 int nelt;
5044 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5045 mark_maybe_object (*p);
5048 break;
5050 case Lisp_Misc_Overlay:
5052 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5053 mark_object (ptr->start);
5054 mark_object (ptr->end);
5055 mark_object (ptr->plist);
5056 if (ptr->next)
5058 XSETMISC (obj, ptr->next);
5059 goto loop;
5062 break;
5064 default:
5065 abort ();
5067 break;
5069 case Lisp_Cons:
5071 register struct Lisp_Cons *ptr = XCONS (obj);
5072 if (CONS_MARKED_P (ptr)) break;
5073 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5074 CONS_MARK (ptr);
5075 /* If the cdr is nil, avoid recursion for the car. */
5076 if (EQ (ptr->cdr, Qnil))
5078 obj = ptr->car;
5079 cdr_count = 0;
5080 goto loop;
5082 mark_object (ptr->car);
5083 obj = ptr->cdr;
5084 cdr_count++;
5085 if (cdr_count == mark_object_loop_halt)
5086 abort ();
5087 goto loop;
5090 case Lisp_Float:
5091 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5092 FLOAT_MARK (XFLOAT (obj));
5093 break;
5095 case Lisp_Int:
5096 break;
5098 default:
5099 abort ();
5102 #undef CHECK_LIVE
5103 #undef CHECK_ALLOCATED
5104 #undef CHECK_ALLOCATED_AND_LIVE
5107 /* Mark the pointers in a buffer structure. */
5109 static void
5110 mark_buffer (buf)
5111 Lisp_Object buf;
5113 register struct buffer *buffer = XBUFFER (buf);
5114 register Lisp_Object *ptr, tmp;
5115 Lisp_Object base_buffer;
5117 VECTOR_MARK (buffer);
5119 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5121 /* For now, we just don't mark the undo_list. It's done later in
5122 a special way just before the sweep phase, and after stripping
5123 some of its elements that are not needed any more. */
5125 if (buffer->overlays_before)
5127 XSETMISC (tmp, buffer->overlays_before);
5128 mark_object (tmp);
5130 if (buffer->overlays_after)
5132 XSETMISC (tmp, buffer->overlays_after);
5133 mark_object (tmp);
5136 for (ptr = &buffer->name;
5137 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5138 ptr++)
5139 mark_object (*ptr);
5141 /* If this is an indirect buffer, mark its base buffer. */
5142 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5144 XSETBUFFER (base_buffer, buffer->base_buffer);
5145 mark_buffer (base_buffer);
5150 /* Value is non-zero if OBJ will survive the current GC because it's
5151 either marked or does not need to be marked to survive. */
5154 survives_gc_p (obj)
5155 Lisp_Object obj;
5157 int survives_p;
5159 switch (XGCTYPE (obj))
5161 case Lisp_Int:
5162 survives_p = 1;
5163 break;
5165 case Lisp_Symbol:
5166 survives_p = XSYMBOL (obj)->gcmarkbit;
5167 break;
5169 case Lisp_Misc:
5170 survives_p = XMARKER (obj)->gcmarkbit;
5171 break;
5173 case Lisp_String:
5174 survives_p = STRING_MARKED_P (XSTRING (obj));
5175 break;
5177 case Lisp_Vectorlike:
5178 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5179 break;
5181 case Lisp_Cons:
5182 survives_p = CONS_MARKED_P (XCONS (obj));
5183 break;
5185 case Lisp_Float:
5186 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5187 break;
5189 default:
5190 abort ();
5193 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5198 /* Sweep: find all structures not marked, and free them. */
5200 static void
5201 gc_sweep ()
5203 /* Remove or mark entries in weak hash tables.
5204 This must be done before any object is unmarked. */
5205 sweep_weak_hash_tables ();
5207 sweep_strings ();
5208 #ifdef GC_CHECK_STRING_BYTES
5209 if (!noninteractive)
5210 check_string_bytes (1);
5211 #endif
5213 /* Put all unmarked conses on free list */
5215 register struct cons_block *cblk;
5216 struct cons_block **cprev = &cons_block;
5217 register int lim = cons_block_index;
5218 register int num_free = 0, num_used = 0;
5220 cons_free_list = 0;
5222 for (cblk = cons_block; cblk; cblk = *cprev)
5224 register int i;
5225 int this_free = 0;
5226 for (i = 0; i < lim; i++)
5227 if (!CONS_MARKED_P (&cblk->conses[i]))
5229 this_free++;
5230 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5231 cons_free_list = &cblk->conses[i];
5232 #if GC_MARK_STACK
5233 cons_free_list->car = Vdead;
5234 #endif
5236 else
5238 num_used++;
5239 CONS_UNMARK (&cblk->conses[i]);
5241 lim = CONS_BLOCK_SIZE;
5242 /* If this block contains only free conses and we have already
5243 seen more than two blocks worth of free conses then deallocate
5244 this block. */
5245 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5247 *cprev = cblk->next;
5248 /* Unhook from the free list. */
5249 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5250 lisp_align_free (cblk);
5251 n_cons_blocks--;
5253 else
5255 num_free += this_free;
5256 cprev = &cblk->next;
5259 total_conses = num_used;
5260 total_free_conses = num_free;
5263 /* Put all unmarked floats on free list */
5265 register struct float_block *fblk;
5266 struct float_block **fprev = &float_block;
5267 register int lim = float_block_index;
5268 register int num_free = 0, num_used = 0;
5270 float_free_list = 0;
5272 for (fblk = float_block; fblk; fblk = *fprev)
5274 register int i;
5275 int this_free = 0;
5276 for (i = 0; i < lim; i++)
5277 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5279 this_free++;
5280 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5281 float_free_list = &fblk->floats[i];
5283 else
5285 num_used++;
5286 FLOAT_UNMARK (&fblk->floats[i]);
5288 lim = FLOAT_BLOCK_SIZE;
5289 /* If this block contains only free floats and we have already
5290 seen more than two blocks worth of free floats then deallocate
5291 this block. */
5292 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5294 *fprev = fblk->next;
5295 /* Unhook from the free list. */
5296 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5297 lisp_align_free (fblk);
5298 n_float_blocks--;
5300 else
5302 num_free += this_free;
5303 fprev = &fblk->next;
5306 total_floats = num_used;
5307 total_free_floats = num_free;
5310 /* Put all unmarked intervals on free list */
5312 register struct interval_block *iblk;
5313 struct interval_block **iprev = &interval_block;
5314 register int lim = interval_block_index;
5315 register int num_free = 0, num_used = 0;
5317 interval_free_list = 0;
5319 for (iblk = interval_block; iblk; iblk = *iprev)
5321 register int i;
5322 int this_free = 0;
5324 for (i = 0; i < lim; i++)
5326 if (!iblk->intervals[i].gcmarkbit)
5328 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5329 interval_free_list = &iblk->intervals[i];
5330 this_free++;
5332 else
5334 num_used++;
5335 iblk->intervals[i].gcmarkbit = 0;
5338 lim = INTERVAL_BLOCK_SIZE;
5339 /* If this block contains only free intervals and we have already
5340 seen more than two blocks worth of free intervals then
5341 deallocate this block. */
5342 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5344 *iprev = iblk->next;
5345 /* Unhook from the free list. */
5346 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5347 lisp_free (iblk);
5348 n_interval_blocks--;
5350 else
5352 num_free += this_free;
5353 iprev = &iblk->next;
5356 total_intervals = num_used;
5357 total_free_intervals = num_free;
5360 /* Put all unmarked symbols on free list */
5362 register struct symbol_block *sblk;
5363 struct symbol_block **sprev = &symbol_block;
5364 register int lim = symbol_block_index;
5365 register int num_free = 0, num_used = 0;
5367 symbol_free_list = NULL;
5369 for (sblk = symbol_block; sblk; sblk = *sprev)
5371 int this_free = 0;
5372 struct Lisp_Symbol *sym = sblk->symbols;
5373 struct Lisp_Symbol *end = sym + lim;
5375 for (; sym < end; ++sym)
5377 /* Check if the symbol was created during loadup. In such a case
5378 it might be pointed to by pure bytecode which we don't trace,
5379 so we conservatively assume that it is live. */
5380 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5382 if (!sym->gcmarkbit && !pure_p)
5384 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5385 symbol_free_list = sym;
5386 #if GC_MARK_STACK
5387 symbol_free_list->function = Vdead;
5388 #endif
5389 ++this_free;
5391 else
5393 ++num_used;
5394 if (!pure_p)
5395 UNMARK_STRING (XSTRING (sym->xname));
5396 sym->gcmarkbit = 0;
5400 lim = SYMBOL_BLOCK_SIZE;
5401 /* If this block contains only free symbols and we have already
5402 seen more than two blocks worth of free symbols then deallocate
5403 this block. */
5404 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5406 *sprev = sblk->next;
5407 /* Unhook from the free list. */
5408 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5409 lisp_free (sblk);
5410 n_symbol_blocks--;
5412 else
5414 num_free += this_free;
5415 sprev = &sblk->next;
5418 total_symbols = num_used;
5419 total_free_symbols = num_free;
5422 /* Put all unmarked misc's on free list.
5423 For a marker, first unchain it from the buffer it points into. */
5425 register struct marker_block *mblk;
5426 struct marker_block **mprev = &marker_block;
5427 register int lim = marker_block_index;
5428 register int num_free = 0, num_used = 0;
5430 marker_free_list = 0;
5432 for (mblk = marker_block; mblk; mblk = *mprev)
5434 register int i;
5435 int this_free = 0;
5437 for (i = 0; i < lim; i++)
5439 if (!mblk->markers[i].u_marker.gcmarkbit)
5441 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5442 unchain_marker (&mblk->markers[i].u_marker);
5443 /* Set the type of the freed object to Lisp_Misc_Free.
5444 We could leave the type alone, since nobody checks it,
5445 but this might catch bugs faster. */
5446 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5447 mblk->markers[i].u_free.chain = marker_free_list;
5448 marker_free_list = &mblk->markers[i];
5449 this_free++;
5451 else
5453 num_used++;
5454 mblk->markers[i].u_marker.gcmarkbit = 0;
5457 lim = MARKER_BLOCK_SIZE;
5458 /* If this block contains only free markers and we have already
5459 seen more than two blocks worth of free markers then deallocate
5460 this block. */
5461 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5463 *mprev = mblk->next;
5464 /* Unhook from the free list. */
5465 marker_free_list = mblk->markers[0].u_free.chain;
5466 lisp_free (mblk);
5467 n_marker_blocks--;
5469 else
5471 num_free += this_free;
5472 mprev = &mblk->next;
5476 total_markers = num_used;
5477 total_free_markers = num_free;
5480 /* Free all unmarked buffers */
5482 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5484 while (buffer)
5485 if (!VECTOR_MARKED_P (buffer))
5487 if (prev)
5488 prev->next = buffer->next;
5489 else
5490 all_buffers = buffer->next;
5491 next = buffer->next;
5492 lisp_free (buffer);
5493 buffer = next;
5495 else
5497 VECTOR_UNMARK (buffer);
5498 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5499 prev = buffer, buffer = buffer->next;
5503 /* Free all unmarked vectors */
5505 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5506 total_vector_size = 0;
5508 while (vector)
5509 if (!VECTOR_MARKED_P (vector))
5511 if (prev)
5512 prev->next = vector->next;
5513 else
5514 all_vectors = vector->next;
5515 next = vector->next;
5516 lisp_free (vector);
5517 n_vectors--;
5518 vector = next;
5521 else
5523 VECTOR_UNMARK (vector);
5524 if (vector->size & PSEUDOVECTOR_FLAG)
5525 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5526 else
5527 total_vector_size += vector->size;
5528 prev = vector, vector = vector->next;
5532 #ifdef GC_CHECK_STRING_BYTES
5533 if (!noninteractive)
5534 check_string_bytes (1);
5535 #endif
5541 /* Debugging aids. */
5543 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5544 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5545 This may be helpful in debugging Emacs's memory usage.
5546 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5549 Lisp_Object end;
5551 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5553 return end;
5556 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5557 doc: /* Return a list of counters that measure how much consing there has been.
5558 Each of these counters increments for a certain kind of object.
5559 The counters wrap around from the largest positive integer to zero.
5560 Garbage collection does not decrease them.
5561 The elements of the value are as follows:
5562 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5563 All are in units of 1 = one object consed
5564 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5565 objects consed.
5566 MISCS include overlays, markers, and some internal types.
5567 Frames, windows, buffers, and subprocesses count as vectors
5568 (but the contents of a buffer's text do not count here). */)
5571 Lisp_Object consed[8];
5573 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5574 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5575 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5576 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5577 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5578 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5579 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5580 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5582 return Flist (8, consed);
5585 int suppress_checking;
5586 void
5587 die (msg, file, line)
5588 const char *msg;
5589 const char *file;
5590 int line;
5592 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5593 file, line, msg);
5594 abort ();
5597 /* Initialization */
5599 void
5600 init_alloc_once ()
5602 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5603 purebeg = PUREBEG;
5604 pure_size = PURESIZE;
5605 pure_bytes_used = 0;
5606 pure_bytes_used_before_overflow = 0;
5608 /* Initialize the list of free aligned blocks. */
5609 free_ablock = NULL;
5611 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5612 mem_init ();
5613 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5614 #endif
5616 all_vectors = 0;
5617 ignore_warnings = 1;
5618 #ifdef DOUG_LEA_MALLOC
5619 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5620 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5621 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5622 #endif
5623 init_strings ();
5624 init_cons ();
5625 init_symbol ();
5626 init_marker ();
5627 init_float ();
5628 init_intervals ();
5630 #ifdef REL_ALLOC
5631 malloc_hysteresis = 32;
5632 #else
5633 malloc_hysteresis = 0;
5634 #endif
5636 spare_memory = (char *) malloc (SPARE_MEMORY);
5638 ignore_warnings = 0;
5639 gcprolist = 0;
5640 byte_stack_list = 0;
5641 staticidx = 0;
5642 consing_since_gc = 0;
5643 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5644 #ifdef VIRT_ADDR_VARIES
5645 malloc_sbrk_unused = 1<<22; /* A large number */
5646 malloc_sbrk_used = 100000; /* as reasonable as any number */
5647 #endif /* VIRT_ADDR_VARIES */
5650 void
5651 init_alloc ()
5653 gcprolist = 0;
5654 byte_stack_list = 0;
5655 #if GC_MARK_STACK
5656 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5657 setjmp_tested_p = longjmps_done = 0;
5658 #endif
5659 #endif
5660 Vgc_elapsed = make_float (0.0);
5661 gcs_done = 0;
5664 void
5665 syms_of_alloc ()
5667 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5668 doc: /* *Number of bytes of consing between garbage collections.
5669 Garbage collection can happen automatically once this many bytes have been
5670 allocated since the last garbage collection. All data types count.
5672 Garbage collection happens automatically only when `eval' is called.
5674 By binding this temporarily to a large number, you can effectively
5675 prevent garbage collection during a part of the program. */);
5677 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5678 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5680 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5681 doc: /* Number of cons cells that have been consed so far. */);
5683 DEFVAR_INT ("floats-consed", &floats_consed,
5684 doc: /* Number of floats that have been consed so far. */);
5686 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5687 doc: /* Number of vector cells that have been consed so far. */);
5689 DEFVAR_INT ("symbols-consed", &symbols_consed,
5690 doc: /* Number of symbols that have been consed so far. */);
5692 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5693 doc: /* Number of string characters that have been consed so far. */);
5695 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5696 doc: /* Number of miscellaneous objects that have been consed so far. */);
5698 DEFVAR_INT ("intervals-consed", &intervals_consed,
5699 doc: /* Number of intervals that have been consed so far. */);
5701 DEFVAR_INT ("strings-consed", &strings_consed,
5702 doc: /* Number of strings that have been consed so far. */);
5704 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5705 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5706 This means that certain objects should be allocated in shared (pure) space. */);
5708 DEFVAR_INT ("undo-limit", &undo_limit,
5709 doc: /* Keep no more undo information once it exceeds this size.
5710 This limit is applied when garbage collection happens.
5711 The size is counted as the number of bytes occupied,
5712 which includes both saved text and other data. */);
5713 undo_limit = 20000;
5715 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5716 doc: /* Don't keep more than this much size of undo information.
5717 A previous command which pushes the undo list past this size
5718 is entirely forgotten when GC happens.
5719 The size is counted as the number of bytes occupied,
5720 which includes both saved text and other data. */);
5721 undo_strong_limit = 30000;
5723 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5724 doc: /* Don't keep more than this much size of undo information.
5725 If the current command has produced more than this much undo information,
5726 GC discards it. This is a last-ditch limit to prevent memory overflow.
5727 The size is counted as the number of bytes occupied,
5728 which includes both saved text and other data. */);
5729 undo_outer_limit = 300000;
5731 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5732 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5733 garbage_collection_messages = 0;
5735 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5736 doc: /* Hook run after garbage collection has finished. */);
5737 Vpost_gc_hook = Qnil;
5738 Qpost_gc_hook = intern ("post-gc-hook");
5739 staticpro (&Qpost_gc_hook);
5741 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5742 doc: /* Precomputed `signal' argument for memory-full error. */);
5743 /* We build this in advance because if we wait until we need it, we might
5744 not be able to allocate the memory to hold it. */
5745 Vmemory_signal_data
5746 = list2 (Qerror,
5747 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5749 DEFVAR_LISP ("memory-full", &Vmemory_full,
5750 doc: /* Non-nil means we are handling a memory-full error. */);
5751 Vmemory_full = Qnil;
5753 staticpro (&Qgc_cons_threshold);
5754 Qgc_cons_threshold = intern ("gc-cons-threshold");
5756 staticpro (&Qchar_table_extra_slots);
5757 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5759 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5760 doc: /* Accumulated time elapsed in garbage collections.
5761 The time is in seconds as a floating point value. */);
5762 DEFVAR_INT ("gcs-done", &gcs_done,
5763 doc: /* Accumulated number of garbage collections done. */);
5765 defsubr (&Scons);
5766 defsubr (&Slist);
5767 defsubr (&Svector);
5768 defsubr (&Smake_byte_code);
5769 defsubr (&Smake_list);
5770 defsubr (&Smake_vector);
5771 defsubr (&Smake_char_table);
5772 defsubr (&Smake_string);
5773 defsubr (&Smake_bool_vector);
5774 defsubr (&Smake_symbol);
5775 defsubr (&Smake_marker);
5776 defsubr (&Spurecopy);
5777 defsubr (&Sgarbage_collect);
5778 defsubr (&Smemory_limit);
5779 defsubr (&Smemory_use_counts);
5781 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5782 defsubr (&Sgc_status);
5783 #endif
5786 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5787 (do not change this comment) */