1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2017 Free Software Foundation,
6 Author: Wolfgang Rupprecht (according to ack.texi)
8 This file is part of GNU Emacs.
10 GNU Emacs is free software: you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation, either version 3 of the License, or (at
13 your option) any later version.
15 GNU Emacs is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
24 /* C89 requires only the following math.h functions, and Emacs omits
25 the starred functions since we haven't found a use for them:
26 acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh,
30 C99 and C11 require the following math.h functions in addition to
31 the C89 functions. Of these, Emacs currently exports only the
32 starred ones to Lisp, since we haven't found a use for the others:
33 acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma,
34 fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater,
35 isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan,
36 isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb
37 (approximately), lrint/llrint, lround/llround, nan, nearbyint,
38 nextafter, nexttoward, remainder, remquo, *rint, round, scalbln,
39 scalbn, signbit, tgamma, *trunc.
48 #include <count-leading-zeros.h>
51 # define isfinite(x) ((x) - (x) == 0)
54 # define isnan(x) ((x) != (x))
57 /* Check that X is a floating point number. */
60 CHECK_FLOAT (Lisp_Object x
)
62 CHECK_TYPE (FLOATP (x
), Qfloatp
, x
);
65 /* Extract a Lisp number as a `double', or signal an error. */
68 extract_float (Lisp_Object num
)
70 CHECK_NUMBER_OR_FLOAT (num
);
71 return XFLOATINT (num
);
76 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
77 doc
: /* Return the inverse cosine of ARG. */)
80 double d
= extract_float (arg
);
82 return make_float (d
);
85 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
86 doc
: /* Return the inverse sine of ARG. */)
89 double d
= extract_float (arg
);
91 return make_float (d
);
94 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
95 doc
: /* Return the inverse tangent of the arguments.
96 If only one argument Y is given, return the inverse tangent of Y.
97 If two arguments Y and X are given, return the inverse tangent of Y
98 divided by X, i.e. the angle in radians between the vector (X, Y)
100 (Lisp_Object y
, Lisp_Object x
)
102 double d
= extract_float (y
);
108 double d2
= extract_float (x
);
111 return make_float (d
);
114 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
115 doc
: /* Return the cosine of ARG. */)
118 double d
= extract_float (arg
);
120 return make_float (d
);
123 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
124 doc
: /* Return the sine of ARG. */)
127 double d
= extract_float (arg
);
129 return make_float (d
);
132 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
133 doc
: /* Return the tangent of ARG. */)
136 double d
= extract_float (arg
);
138 return make_float (d
);
141 DEFUN ("isnan", Fisnan
, Sisnan
, 1, 1, 0,
142 doc
: /* Return non nil if argument X is a NaN. */)
146 return isnan (XFLOAT_DATA (x
)) ? Qt
: Qnil
;
149 /* Although the substitute does not work on NaNs, it is good enough
150 for platforms lacking the signbit macro. */
152 # define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0))
155 DEFUN ("copysign", Fcopysign
, Scopysign
, 2, 2, 0,
156 doc
: /* Copy sign of X2 to value of X1, and return the result.
157 Cause an error if X1 or X2 is not a float. */)
158 (Lisp_Object x1
, Lisp_Object x2
)
165 f1
= XFLOAT_DATA (x1
);
166 f2
= XFLOAT_DATA (x2
);
168 /* Use signbit instead of copysign, to avoid calling make_float when
170 return signbit (f1
) != signbit (f2
) ? make_float (-f1
) : x1
;
173 DEFUN ("frexp", Ffrexp
, Sfrexp
, 1, 1, 0,
174 doc
: /* Get significand and exponent of a floating point number.
175 Breaks the floating point number X into its binary significand SGNFCAND
176 \(a floating point value between 0.5 (included) and 1.0 (excluded))
177 and an integral exponent EXP for 2, such that:
181 The function returns the cons cell (SGNFCAND . EXP).
182 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
185 double f
= extract_float (x
);
187 double sgnfcand
= frexp (f
, &exponent
);
188 return Fcons (make_float (sgnfcand
), make_number (exponent
));
191 DEFUN ("ldexp", Fldexp
, Sldexp
, 2, 2, 0,
192 doc
: /* Return SGNFCAND * 2**EXPONENT, as a floating point number.
193 EXPONENT must be an integer. */)
194 (Lisp_Object sgnfcand
, Lisp_Object exponent
)
196 CHECK_NUMBER (exponent
);
197 int e
= min (max (INT_MIN
, XINT (exponent
)), INT_MAX
);
198 return make_float (ldexp (extract_float (sgnfcand
), e
));
201 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
202 doc
: /* Return the exponential base e of ARG. */)
205 double d
= extract_float (arg
);
207 return make_float (d
);
210 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
211 doc
: /* Return the exponential ARG1 ** ARG2. */)
212 (Lisp_Object arg1
, Lisp_Object arg2
)
214 CHECK_NUMBER_OR_FLOAT (arg1
);
215 CHECK_NUMBER_OR_FLOAT (arg2
);
216 if (INTEGERP (arg1
) /* common lisp spec */
217 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
218 && XINT (arg2
) >= 0) /* we are sure the result is not fractional */
219 { /* this can be improved by pre-calculating */
220 EMACS_INT y
; /* some binary powers of x then accumulating */
221 EMACS_UINT acc
, x
; /* Unsigned so that overflow is well defined. */
226 acc
= (y
& 1 ? x
: 1);
228 while ((y
>>= 1) != 0)
237 return make_float (pow (XFLOATINT (arg1
), XFLOATINT (arg2
)));
240 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
241 doc
: /* Return the natural logarithm of ARG.
242 If the optional argument BASE is given, return log ARG using that base. */)
243 (Lisp_Object arg
, Lisp_Object base
)
245 double d
= extract_float (arg
);
251 double b
= extract_float (base
);
260 d
= log (d
) / log (b
);
262 return make_float (d
);
265 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
266 doc
: /* Return the square root of ARG. */)
269 double d
= extract_float (arg
);
271 return make_float (d
);
274 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
275 doc
: /* Return the absolute value of ARG. */)
276 (register Lisp_Object arg
)
278 CHECK_NUMBER_OR_FLOAT (arg
);
281 arg
= make_float (fabs (XFLOAT_DATA (arg
)));
282 else if (XINT (arg
) < 0)
283 XSETINT (arg
, - XINT (arg
));
288 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
289 doc
: /* Return the floating point number equal to ARG. */)
290 (register Lisp_Object arg
)
292 CHECK_NUMBER_OR_FLOAT (arg
);
295 return make_float ((double) XINT (arg
));
296 else /* give 'em the same float back */
301 ecount_leading_zeros (EMACS_UINT x
)
303 return (EMACS_UINT_WIDTH
== UINT_WIDTH
? count_leading_zeros (x
)
304 : EMACS_UINT_WIDTH
== ULONG_WIDTH
? count_leading_zeros_l (x
)
305 : count_leading_zeros_ll (x
));
308 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
309 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
310 This is the same as the exponent of a float. */)
314 CHECK_NUMBER_OR_FLOAT (arg
);
318 double f
= XFLOAT_DATA (arg
);
321 value
= MOST_NEGATIVE_FIXNUM
;
322 else if (isfinite (f
))
329 value
= MOST_POSITIVE_FIXNUM
;
333 EMACS_INT i
= eabs (XINT (arg
));
335 ? MOST_NEGATIVE_FIXNUM
336 : EMACS_UINT_WIDTH
- 1 - ecount_leading_zeros (i
));
339 return make_number (value
);
343 /* the rounding functions */
346 rounding_driver (Lisp_Object arg
, Lisp_Object divisor
,
347 double (*double_round
) (double),
348 EMACS_INT (*int_round2
) (EMACS_INT
, EMACS_INT
),
351 CHECK_NUMBER_OR_FLOAT (arg
);
358 d
= XFLOAT_DATA (arg
);
362 CHECK_NUMBER_OR_FLOAT (divisor
);
363 if (!FLOATP (arg
) && !FLOATP (divisor
))
365 if (XINT (divisor
) == 0)
366 xsignal0 (Qarith_error
);
367 return make_number (int_round2 (XINT (arg
), XINT (divisor
)));
370 double f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
371 double f2
= FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
);
372 if (! IEEE_FLOATING_POINT
&& f2
== 0)
373 xsignal0 (Qarith_error
);
377 /* Round, coarsely test for fixnum overflow before converting to
378 EMACS_INT (to avoid undefined C behavior), and then exactly test
379 for overflow after converting (as FIXNUM_OVERFLOW_P is inaccurate
381 double dr
= double_round (d
);
382 if (fabs (dr
) < 2 * (MOST_POSITIVE_FIXNUM
+ 1))
385 if (! FIXNUM_OVERFLOW_P (ir
))
386 return make_number (ir
);
388 xsignal2 (Qrange_error
, build_string (name
), arg
);
392 ceiling2 (EMACS_INT i1
, EMACS_INT i2
)
394 return i1
/ i2
+ ((i1
% i2
!= 0) & ((i1
< 0) == (i2
< 0)));
398 floor2 (EMACS_INT i1
, EMACS_INT i2
)
400 return i1
/ i2
- ((i1
% i2
!= 0) & ((i1
< 0) != (i2
< 0)));
404 truncate2 (EMACS_INT i1
, EMACS_INT i2
)
410 round2 (EMACS_INT i1
, EMACS_INT i2
)
412 /* The C language's division operator gives us one remainder R, but
413 we want the remainder R1 on the other side of 0 if R1 is closer
414 to 0 than R is; because we want to round to even, we also want R1
415 if R and R1 are the same distance from 0 and if C's quotient is
417 EMACS_INT q
= i1
/ i2
;
418 EMACS_INT r
= i1
% i2
;
419 EMACS_INT abs_r
= eabs (r
);
420 EMACS_INT abs_r1
= eabs (i2
) - abs_r
;
421 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
424 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
425 if `rint' exists but does not work right. */
427 #define emacs_rint rint
430 emacs_rint (double d
)
433 double r
= floor (d1
);
434 return r
- (r
== d1
&& fmod (r
, 2) != 0);
439 #define emacs_trunc trunc
442 emacs_trunc (double d
)
444 return (d
< 0 ? ceil
: floor
) (d
);
448 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
449 doc
: /* Return the smallest integer no less than ARG.
450 This rounds the value towards +inf.
451 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
452 (Lisp_Object arg
, Lisp_Object divisor
)
454 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
457 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
458 doc
: /* Return the largest integer no greater than ARG.
459 This rounds the value towards -inf.
460 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
461 (Lisp_Object arg
, Lisp_Object divisor
)
463 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
466 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
467 doc
: /* Return the nearest integer to ARG.
468 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
470 Rounding a value equidistant between two integers may choose the
471 integer closer to zero, or it may prefer an even integer, depending on
472 your machine. For example, (round 2.5) can return 3 on some
473 systems, but 2 on others. */)
474 (Lisp_Object arg
, Lisp_Object divisor
)
476 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
479 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
480 doc
: /* Truncate a floating point number to an int.
481 Rounds ARG toward zero.
482 With optional DIVISOR, truncate ARG/DIVISOR. */)
483 (Lisp_Object arg
, Lisp_Object divisor
)
485 return rounding_driver (arg
, divisor
, emacs_trunc
, truncate2
,
491 fmod_float (Lisp_Object x
, Lisp_Object y
)
495 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
496 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
500 /* If the "remainder" comes out with the wrong sign, fix it. */
501 if (f2
< 0 ? f1
> 0 : f1
< 0)
504 return make_float (f1
);
507 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
508 doc
: /* Return the smallest integer no less than ARG, as a float.
509 \(Round toward +inf.) */)
513 double d
= XFLOAT_DATA (arg
);
515 return make_float (d
);
518 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
519 doc
: /* Return the largest integer no greater than ARG, as a float.
520 \(Round toward -inf.) */)
524 double d
= XFLOAT_DATA (arg
);
526 return make_float (d
);
529 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
530 doc
: /* Return the nearest integer to ARG, as a float. */)
534 double d
= XFLOAT_DATA (arg
);
536 return make_float (d
);
539 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
540 doc
: /* Truncate a floating point number to an integral float value.
541 \(Round toward zero.) */)
545 double d
= XFLOAT_DATA (arg
);
547 return make_float (d
);
551 syms_of_floatfns (void)
560 defsubr (&Scopysign
);
563 defsubr (&Sfceiling
);
566 defsubr (&Sftruncate
);
578 defsubr (&Struncate
);