1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
40 #if defined STDC_HEADERS && !defined emacs
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
50 #define WIDE_CHAR_SUPPORT 1
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
98 # define WEAK_ALIAS(a,b)
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
105 # define gettext(msgid) (msgid)
109 /* This define is so xgettext can find the internationalizable
111 # define gettext_noop(String) String
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
125 # include "charset.h"
126 # include "category.h"
131 # define malloc xmalloc
135 # define realloc xrealloc
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
169 #else /* not emacs */
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
176 # if defined STDC_HEADERS || defined _LIBC
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
203 # define bzero(s, n) __bzero (s, n)
207 # include <strings.h>
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
217 /* Define the syntax stuff for \<, \>, etc. */
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
225 # define SWITCH_ENUM_CAST(x) (x)
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
255 /* Get the interface, including the syntax bits. */
258 /* isalpha etc. are used for the character classes. */
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269 /* The Emacs definitions should not be directly affected by locales. */
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281 /* The rest must handle multibyte characters. */
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
302 # define ISLOWER(c) (LOWERCASEP (c))
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313 # define ISUPPER(c) (UPPERCASEP (c))
315 # define ISWORD(c) (SYNTAX (c) == Sword)
317 #else /* not emacs */
319 /* Jim Meyering writes:
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
335 # define ISASCII(c) isascii(c)
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367 # define ISWORD(c) ISALPHA(c)
370 # define TOLOWER(c) _tolower(c)
372 # define TOLOWER(c) tolower(c)
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
380 extern char *re_syntax_table
;
382 # else /* not SYNTAX_TABLE */
384 static char re_syntax_table
[CHAR_SET_SIZE
];
395 bzero (re_syntax_table
, sizeof re_syntax_table
);
397 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
399 re_syntax_table
[c
] = Sword
;
401 re_syntax_table
['_'] = Ssymbol
;
406 # endif /* not SYNTAX_TABLE */
408 # define SYNTAX(c) re_syntax_table[(c)]
410 #endif /* not emacs */
413 # define NULL (void *)0
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
444 #else /* not REGEX_MALLOC */
446 /* Emacs already defines alloca, sometimes. */
449 /* Make alloca work the best possible way. */
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
458 # endif /* not alloca */
460 # define REGEX_ALLOCATE alloca
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470 #endif /* not REGEX_MALLOC */
472 /* Define how to allocate the failure stack. */
474 #if defined REL_ALLOC && defined REGEX_MALLOC
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
483 #else /* not using relocating allocator */
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
491 # else /* not REGEX_MALLOC */
493 # define REGEX_ALLOCATE_STACK alloca
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517 #define BYTEWIDTH 8 /* In bits. */
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char
;
529 typedef char boolean
;
533 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
534 re_char
*string1
, int size1
,
535 re_char
*string2
, int size2
,
537 struct re_registers
*regs
,
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
549 /* Succeed right away--no more backtracking. */
552 /* Followed by one byte giving n, then by n literal bytes. */
555 /* Matches any (more or less) character. */
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
594 /* Fail unless at beginning of line. */
597 /* Fail unless at end of line. */
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
604 /* Analogously, for end of buffer/string. */
607 /* Followed by two byte relative address to which to jump. */
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump
,
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
621 on_failure_jump_loop
,
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
627 on_failure_jump_nastyloop
,
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart
,
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
652 wordbeg
, /* Succeeds if at word beginning. */
653 wordend
, /* Succeeds if at word end. */
655 wordbound
, /* Succeeds if at a word boundary. */
656 notwordbound
, /* Succeeds if not at a word boundary. */
658 symbeg
, /* Succeeds if at symbol beginning. */
659 symend
, /* Succeeds if at symbol end. */
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
665 /* Matches any character whose syntax is not that specified. */
669 ,before_dot
, /* Succeeds if before point. */
670 at_dot
, /* Succeeds if at point. */
671 after_dot
, /* Succeeds if after point. */
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
685 /* Common operations on the compiled pattern. */
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689 #define STORE_NUMBER(destination, number) \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
699 #define STORE_NUMBER_AND_INCR(destination, number) \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
708 #define EXTRACT_NUMBER(destination, source) \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
715 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
717 extract_number (dest
, source
)
721 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
722 *dest
= *source
& 0377;
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
738 EXTRACT_NUMBER (destination, source); \
743 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
746 extract_number_and_incr (destination
, source
)
750 extract_number (destination
, *source
);
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
777 #define EXTRACT_CHARACTER(destination, source) \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
785 /* Macros for charset. */
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
822 re_wchar_t range_start, range_end; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
832 if (range_start <= (c) && (c) <= range_end) \
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
846 /* Number of ranges in range table. */ \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
863 /* We use standard I/O for debugging. */
866 /* It is useful to test things that ``must'' be true when debugging. */
869 static int debug
= -100000;
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
882 /* Print the fastmap in human-readable form. */
885 print_fastmap (fastmap
)
888 unsigned was_a_range
= 0;
891 while (i
< (1 << BYTEWIDTH
))
897 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
917 print_partial_compiled_pattern (start
, end
)
927 fprintf (stderr
, "(null)\n");
931 /* Loop over pattern commands. */
934 fprintf (stderr
, "%d:\t", p
- start
);
936 switch ((re_opcode_t
) *p
++)
939 fprintf (stderr
, "/no_op");
943 fprintf (stderr
, "/succeed");
948 fprintf (stderr
, "/exactn/%d", mcnt
);
951 fprintf (stderr
, "/%c", *p
++);
957 fprintf (stderr
, "/start_memory/%d", *p
++);
961 fprintf (stderr
, "/stop_memory/%d", *p
++);
965 fprintf (stderr
, "/duplicate/%d", *p
++);
969 fprintf (stderr
, "/anychar");
975 register int c
, last
= -100;
976 register int in_range
= 0;
977 int length
= CHARSET_BITMAP_SIZE (p
- 1);
978 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
980 fprintf (stderr
, "/charset [%s",
981 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
984 fprintf (stderr
, " !extends past end of pattern! ");
986 for (c
= 0; c
< 256; c
++)
988 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
990 /* Are we starting a range? */
991 if (last
+ 1 == c
&& ! in_range
)
993 fprintf (stderr
, "-");
996 /* Have we broken a range? */
997 else if (last
+ 1 != c
&& in_range
)
999 fprintf (stderr
, "%c", last
);
1004 fprintf (stderr
, "%c", c
);
1010 fprintf (stderr
, "%c", last
);
1012 fprintf (stderr
, "]");
1016 if (has_range_table
)
1019 fprintf (stderr
, "has-range-table");
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p
+= 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count
, p
);
1024 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1030 fprintf (stderr
, "/begline");
1034 fprintf (stderr
, "/endline");
1037 case on_failure_jump
:
1038 extract_number_and_incr (&mcnt
, &p
);
1039 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1042 case on_failure_keep_string_jump
:
1043 extract_number_and_incr (&mcnt
, &p
);
1044 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1047 case on_failure_jump_nastyloop
:
1048 extract_number_and_incr (&mcnt
, &p
);
1049 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1052 case on_failure_jump_loop
:
1053 extract_number_and_incr (&mcnt
, &p
);
1054 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1057 case on_failure_jump_smart
:
1058 extract_number_and_incr (&mcnt
, &p
);
1059 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1063 extract_number_and_incr (&mcnt
, &p
);
1064 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1068 extract_number_and_incr (&mcnt
, &p
);
1069 extract_number_and_incr (&mcnt2
, &p
);
1070 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1074 extract_number_and_incr (&mcnt
, &p
);
1075 extract_number_and_incr (&mcnt2
, &p
);
1076 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1080 extract_number_and_incr (&mcnt
, &p
);
1081 extract_number_and_incr (&mcnt2
, &p
);
1082 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1086 fprintf (stderr
, "/wordbound");
1090 fprintf (stderr
, "/notwordbound");
1094 fprintf (stderr
, "/wordbeg");
1098 fprintf (stderr
, "/wordend");
1109 fprintf (stderr
, "/syntaxspec");
1111 fprintf (stderr
, "/%d", mcnt
);
1115 fprintf (stderr
, "/notsyntaxspec");
1117 fprintf (stderr
, "/%d", mcnt
);
1122 fprintf (stderr
, "/before_dot");
1126 fprintf (stderr
, "/at_dot");
1130 fprintf (stderr
, "/after_dot");
1134 fprintf (stderr
, "/categoryspec");
1136 fprintf (stderr
, "/%d", mcnt
);
1139 case notcategoryspec
:
1140 fprintf (stderr
, "/notcategoryspec");
1142 fprintf (stderr
, "/%d", mcnt
);
1147 fprintf (stderr
, "/begbuf");
1151 fprintf (stderr
, "/endbuf");
1155 fprintf (stderr
, "?%d", *(p
-1));
1158 fprintf (stderr
, "\n");
1161 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1166 print_compiled_pattern (bufp
)
1167 struct re_pattern_buffer
*bufp
;
1169 re_char
*buffer
= bufp
->buffer
;
1171 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1172 printf ("%ld bytes used/%ld bytes allocated.\n",
1173 bufp
->used
, bufp
->allocated
);
1175 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1177 printf ("fastmap: ");
1178 print_fastmap (bufp
->fastmap
);
1181 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1182 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1183 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1184 printf ("no_sub: %d\t", bufp
->no_sub
);
1185 printf ("not_bol: %d\t", bufp
->not_bol
);
1186 printf ("not_eol: %d\t", bufp
->not_eol
);
1187 printf ("syntax: %lx\n", bufp
->syntax
);
1189 /* Perhaps we should print the translate table? */
1194 print_double_string (where
, string1
, size1
, string2
, size2
)
1207 if (FIRST_STRING_P (where
))
1209 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1210 putchar (string1
[this_char
]);
1215 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1216 putchar (string2
[this_char
]);
1220 #else /* not DEBUG */
1225 # define DEBUG_STATEMENT(e)
1226 # define DEBUG_PRINT1(x)
1227 # define DEBUG_PRINT2(x1, x2)
1228 # define DEBUG_PRINT3(x1, x2, x3)
1229 # define DEBUG_PRINT4(x1, x2, x3, x4)
1230 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1231 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1233 #endif /* not DEBUG */
1235 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1236 also be assigned to arbitrarily: each pattern buffer stores its own
1237 syntax, so it can be changed between regex compilations. */
1238 /* This has no initializer because initialized variables in Emacs
1239 become read-only after dumping. */
1240 reg_syntax_t re_syntax_options
;
1243 /* Specify the precise syntax of regexps for compilation. This provides
1244 for compatibility for various utilities which historically have
1245 different, incompatible syntaxes.
1247 The argument SYNTAX is a bit mask comprised of the various bits
1248 defined in regex.h. We return the old syntax. */
1251 re_set_syntax (syntax
)
1252 reg_syntax_t syntax
;
1254 reg_syntax_t ret
= re_syntax_options
;
1256 re_syntax_options
= syntax
;
1259 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1261 /* This table gives an error message for each of the error codes listed
1262 in regex.h. Obviously the order here has to be same as there.
1263 POSIX doesn't require that we do anything for REG_NOERROR,
1264 but why not be nice? */
1266 static const char *re_error_msgid
[] =
1268 gettext_noop ("Success"), /* REG_NOERROR */
1269 gettext_noop ("No match"), /* REG_NOMATCH */
1270 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1271 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1272 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1273 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1274 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1275 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1276 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1277 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1278 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1279 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1280 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1281 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1282 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1283 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1284 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1287 /* Avoiding alloca during matching, to placate r_alloc. */
1289 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1290 searching and matching functions should not call alloca. On some
1291 systems, alloca is implemented in terms of malloc, and if we're
1292 using the relocating allocator routines, then malloc could cause a
1293 relocation, which might (if the strings being searched are in the
1294 ralloc heap) shift the data out from underneath the regexp
1297 Here's another reason to avoid allocation: Emacs
1298 processes input from X in a signal handler; processing X input may
1299 call malloc; if input arrives while a matching routine is calling
1300 malloc, then we're scrod. But Emacs can't just block input while
1301 calling matching routines; then we don't notice interrupts when
1302 they come in. So, Emacs blocks input around all regexp calls
1303 except the matching calls, which it leaves unprotected, in the
1304 faith that they will not malloc. */
1306 /* Normally, this is fine. */
1307 #define MATCH_MAY_ALLOCATE
1309 /* When using GNU C, we are not REALLY using the C alloca, no matter
1310 what config.h may say. So don't take precautions for it. */
1315 /* The match routines may not allocate if (1) they would do it with malloc
1316 and (2) it's not safe for them to use malloc.
1317 Note that if REL_ALLOC is defined, matching would not use malloc for the
1318 failure stack, but we would still use it for the register vectors;
1319 so REL_ALLOC should not affect this. */
1320 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1321 # undef MATCH_MAY_ALLOCATE
1325 /* Failure stack declarations and macros; both re_compile_fastmap and
1326 re_match_2 use a failure stack. These have to be macros because of
1327 REGEX_ALLOCATE_STACK. */
1330 /* Approximate number of failure points for which to initially allocate space
1331 when matching. If this number is exceeded, we allocate more
1332 space, so it is not a hard limit. */
1333 #ifndef INIT_FAILURE_ALLOC
1334 # define INIT_FAILURE_ALLOC 20
1337 /* Roughly the maximum number of failure points on the stack. Would be
1338 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1339 This is a variable only so users of regex can assign to it; we never
1340 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1341 before using it, so it should probably be a byte-count instead. */
1342 # if defined MATCH_MAY_ALLOCATE
1343 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1344 whose default stack limit is 2mb. In order for a larger
1345 value to work reliably, you have to try to make it accord
1346 with the process stack limit. */
1347 size_t re_max_failures
= 40000;
1349 size_t re_max_failures
= 4000;
1352 union fail_stack_elt
1355 /* This should be the biggest `int' that's no bigger than a pointer. */
1359 typedef union fail_stack_elt fail_stack_elt_t
;
1363 fail_stack_elt_t
*stack
;
1365 size_t avail
; /* Offset of next open position. */
1366 size_t frame
; /* Offset of the cur constructed frame. */
1369 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1370 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1373 /* Define macros to initialize and free the failure stack.
1374 Do `return -2' if the alloc fails. */
1376 #ifdef MATCH_MAY_ALLOCATE
1377 # define INIT_FAIL_STACK() \
1379 fail_stack.stack = (fail_stack_elt_t *) \
1380 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1381 * sizeof (fail_stack_elt_t)); \
1383 if (fail_stack.stack == NULL) \
1386 fail_stack.size = INIT_FAILURE_ALLOC; \
1387 fail_stack.avail = 0; \
1388 fail_stack.frame = 0; \
1391 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1393 # define INIT_FAIL_STACK() \
1395 fail_stack.avail = 0; \
1396 fail_stack.frame = 0; \
1399 # define RESET_FAIL_STACK() ((void)0)
1403 /* Double the size of FAIL_STACK, up to a limit
1404 which allows approximately `re_max_failures' items.
1406 Return 1 if succeeds, and 0 if either ran out of memory
1407 allocating space for it or it was already too large.
1409 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1411 /* Factor to increase the failure stack size by
1412 when we increase it.
1413 This used to be 2, but 2 was too wasteful
1414 because the old discarded stacks added up to as much space
1415 were as ultimate, maximum-size stack. */
1416 #define FAIL_STACK_GROWTH_FACTOR 4
1418 #define GROW_FAIL_STACK(fail_stack) \
1419 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1422 : ((fail_stack).stack \
1423 = (fail_stack_elt_t *) \
1424 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1425 (fail_stack).size * sizeof (fail_stack_elt_t), \
1426 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1427 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1428 * FAIL_STACK_GROWTH_FACTOR))), \
1430 (fail_stack).stack == NULL \
1432 : ((fail_stack).size \
1433 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1434 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1435 * FAIL_STACK_GROWTH_FACTOR)) \
1436 / sizeof (fail_stack_elt_t)), \
1440 /* Push a pointer value onto the failure stack.
1441 Assumes the variable `fail_stack'. Probably should only
1442 be called from within `PUSH_FAILURE_POINT'. */
1443 #define PUSH_FAILURE_POINTER(item) \
1444 fail_stack.stack[fail_stack.avail++].pointer = (item)
1446 /* This pushes an integer-valued item onto the failure stack.
1447 Assumes the variable `fail_stack'. Probably should only
1448 be called from within `PUSH_FAILURE_POINT'. */
1449 #define PUSH_FAILURE_INT(item) \
1450 fail_stack.stack[fail_stack.avail++].integer = (item)
1452 /* Push a fail_stack_elt_t value onto the failure stack.
1453 Assumes the variable `fail_stack'. Probably should only
1454 be called from within `PUSH_FAILURE_POINT'. */
1455 #define PUSH_FAILURE_ELT(item) \
1456 fail_stack.stack[fail_stack.avail++] = (item)
1458 /* These three POP... operations complement the three PUSH... operations.
1459 All assume that `fail_stack' is nonempty. */
1460 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1461 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1462 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1464 /* Individual items aside from the registers. */
1465 #define NUM_NONREG_ITEMS 3
1467 /* Used to examine the stack (to detect infinite loops). */
1468 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1469 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1470 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1471 #define TOP_FAILURE_HANDLE() fail_stack.frame
1474 #define ENSURE_FAIL_STACK(space) \
1475 while (REMAINING_AVAIL_SLOTS <= space) { \
1476 if (!GROW_FAIL_STACK (fail_stack)) \
1478 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1479 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1482 /* Push register NUM onto the stack. */
1483 #define PUSH_FAILURE_REG(num) \
1485 char *destination; \
1486 ENSURE_FAIL_STACK(3); \
1487 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1488 num, regstart[num], regend[num]); \
1489 PUSH_FAILURE_POINTER (regstart[num]); \
1490 PUSH_FAILURE_POINTER (regend[num]); \
1491 PUSH_FAILURE_INT (num); \
1494 /* Change the counter's value to VAL, but make sure that it will
1495 be reset when backtracking. */
1496 #define PUSH_NUMBER(ptr,val) \
1498 char *destination; \
1500 ENSURE_FAIL_STACK(3); \
1501 EXTRACT_NUMBER (c, ptr); \
1502 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1503 PUSH_FAILURE_INT (c); \
1504 PUSH_FAILURE_POINTER (ptr); \
1505 PUSH_FAILURE_INT (-1); \
1506 STORE_NUMBER (ptr, val); \
1509 /* Pop a saved register off the stack. */
1510 #define POP_FAILURE_REG_OR_COUNT() \
1512 int reg = POP_FAILURE_INT (); \
1515 /* It's a counter. */ \
1516 /* Here, we discard `const', making re_match non-reentrant. */ \
1517 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1518 reg = POP_FAILURE_INT (); \
1519 STORE_NUMBER (ptr, reg); \
1520 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1524 regend[reg] = POP_FAILURE_POINTER (); \
1525 regstart[reg] = POP_FAILURE_POINTER (); \
1526 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1527 reg, regstart[reg], regend[reg]); \
1531 /* Check that we are not stuck in an infinite loop. */
1532 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1534 int failure = TOP_FAILURE_HANDLE (); \
1535 /* Check for infinite matching loops */ \
1536 while (failure > 0 \
1537 && (FAILURE_STR (failure) == string_place \
1538 || FAILURE_STR (failure) == NULL)) \
1540 assert (FAILURE_PAT (failure) >= bufp->buffer \
1541 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1542 if (FAILURE_PAT (failure) == pat_cur) \
1547 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1548 failure = NEXT_FAILURE_HANDLE(failure); \
1550 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1553 /* Push the information about the state we will need
1554 if we ever fail back to it.
1556 Requires variables fail_stack, regstart, regend and
1557 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1560 Does `return FAILURE_CODE' if runs out of memory. */
1562 #define PUSH_FAILURE_POINT(pattern, string_place) \
1564 char *destination; \
1565 /* Must be int, so when we don't save any registers, the arithmetic \
1566 of 0 + -1 isn't done as unsigned. */ \
1568 DEBUG_STATEMENT (nfailure_points_pushed++); \
1569 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1570 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1571 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1573 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1575 DEBUG_PRINT1 ("\n"); \
1577 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1578 PUSH_FAILURE_INT (fail_stack.frame); \
1580 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1581 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1582 DEBUG_PRINT1 ("'\n"); \
1583 PUSH_FAILURE_POINTER (string_place); \
1585 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1586 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1587 PUSH_FAILURE_POINTER (pattern); \
1589 /* Close the frame by moving the frame pointer past it. */ \
1590 fail_stack.frame = fail_stack.avail; \
1593 /* Estimate the size of data pushed by a typical failure stack entry.
1594 An estimate is all we need, because all we use this for
1595 is to choose a limit for how big to make the failure stack. */
1596 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1597 #define TYPICAL_FAILURE_SIZE 20
1599 /* How many items can still be added to the stack without overflowing it. */
1600 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1603 /* Pops what PUSH_FAIL_STACK pushes.
1605 We restore into the parameters, all of which should be lvalues:
1606 STR -- the saved data position.
1607 PAT -- the saved pattern position.
1608 REGSTART, REGEND -- arrays of string positions.
1610 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1611 `pend', `string1', `size1', `string2', and `size2'. */
1613 #define POP_FAILURE_POINT(str, pat) \
1615 assert (!FAIL_STACK_EMPTY ()); \
1617 /* Remove failure points and point to how many regs pushed. */ \
1618 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1619 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1620 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1622 /* Pop the saved registers. */ \
1623 while (fail_stack.frame < fail_stack.avail) \
1624 POP_FAILURE_REG_OR_COUNT (); \
1626 pat = POP_FAILURE_POINTER (); \
1627 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1628 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1630 /* If the saved string location is NULL, it came from an \
1631 on_failure_keep_string_jump opcode, and we want to throw away the \
1632 saved NULL, thus retaining our current position in the string. */ \
1633 str = POP_FAILURE_POINTER (); \
1634 DEBUG_PRINT2 (" Popping string %p: `", str); \
1635 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1636 DEBUG_PRINT1 ("'\n"); \
1638 fail_stack.frame = POP_FAILURE_INT (); \
1639 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1641 assert (fail_stack.avail >= 0); \
1642 assert (fail_stack.frame <= fail_stack.avail); \
1644 DEBUG_STATEMENT (nfailure_points_popped++); \
1645 } while (0) /* POP_FAILURE_POINT */
1649 /* Registers are set to a sentinel when they haven't yet matched. */
1650 #define REG_UNSET(e) ((e) == NULL)
1652 /* Subroutine declarations and macros for regex_compile. */
1654 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1655 reg_syntax_t syntax
,
1656 struct re_pattern_buffer
*bufp
));
1657 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1658 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1659 int arg1
, int arg2
));
1660 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1661 int arg
, unsigned char *end
));
1662 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1663 int arg1
, int arg2
, unsigned char *end
));
1664 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1666 reg_syntax_t syntax
));
1667 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1669 reg_syntax_t syntax
));
1670 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1671 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1672 char *fastmap
, const int multibyte
));
1674 /* Fetch the next character in the uncompiled pattern, with no
1676 #define PATFETCH(c) \
1679 if (p == pend) return REG_EEND; \
1680 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1685 /* If `translate' is non-null, return translate[D], else just D. We
1686 cast the subscript to translate because some data is declared as
1687 `char *', to avoid warnings when a string constant is passed. But
1688 when we use a character as a subscript we must make it unsigned. */
1690 # define TRANSLATE(d) \
1691 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1695 /* Macros for outputting the compiled pattern into `buffer'. */
1697 /* If the buffer isn't allocated when it comes in, use this. */
1698 #define INIT_BUF_SIZE 32
1700 /* Make sure we have at least N more bytes of space in buffer. */
1701 #define GET_BUFFER_SPACE(n) \
1702 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1705 /* Make sure we have one more byte of buffer space and then add C to it. */
1706 #define BUF_PUSH(c) \
1708 GET_BUFFER_SPACE (1); \
1709 *b++ = (unsigned char) (c); \
1713 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1714 #define BUF_PUSH_2(c1, c2) \
1716 GET_BUFFER_SPACE (2); \
1717 *b++ = (unsigned char) (c1); \
1718 *b++ = (unsigned char) (c2); \
1722 /* As with BUF_PUSH_2, except for three bytes. */
1723 #define BUF_PUSH_3(c1, c2, c3) \
1725 GET_BUFFER_SPACE (3); \
1726 *b++ = (unsigned char) (c1); \
1727 *b++ = (unsigned char) (c2); \
1728 *b++ = (unsigned char) (c3); \
1732 /* Store a jump with opcode OP at LOC to location TO. We store a
1733 relative address offset by the three bytes the jump itself occupies. */
1734 #define STORE_JUMP(op, loc, to) \
1735 store_op1 (op, loc, (to) - (loc) - 3)
1737 /* Likewise, for a two-argument jump. */
1738 #define STORE_JUMP2(op, loc, to, arg) \
1739 store_op2 (op, loc, (to) - (loc) - 3, arg)
1741 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1742 #define INSERT_JUMP(op, loc, to) \
1743 insert_op1 (op, loc, (to) - (loc) - 3, b)
1745 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1746 #define INSERT_JUMP2(op, loc, to, arg) \
1747 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1750 /* This is not an arbitrary limit: the arguments which represent offsets
1751 into the pattern are two bytes long. So if 2^15 bytes turns out to
1752 be too small, many things would have to change. */
1753 # define MAX_BUF_SIZE (1L << 15)
1755 #if 0 /* This is when we thought it could be 2^16 bytes. */
1756 /* Any other compiler which, like MSC, has allocation limit below 2^16
1757 bytes will have to use approach similar to what was done below for
1758 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1759 reallocating to 0 bytes. Such thing is not going to work too well.
1760 You have been warned!! */
1761 #if defined _MSC_VER && !defined WIN32
1762 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1763 # define MAX_BUF_SIZE 65500L
1765 # define MAX_BUF_SIZE (1L << 16)
1769 /* Extend the buffer by twice its current size via realloc and
1770 reset the pointers that pointed into the old block to point to the
1771 correct places in the new one. If extending the buffer results in it
1772 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1773 #if __BOUNDED_POINTERS__
1774 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1775 # define MOVE_BUFFER_POINTER(P) \
1776 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1777 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1780 SET_HIGH_BOUND (b); \
1781 SET_HIGH_BOUND (begalt); \
1782 if (fixup_alt_jump) \
1783 SET_HIGH_BOUND (fixup_alt_jump); \
1785 SET_HIGH_BOUND (laststart); \
1786 if (pending_exact) \
1787 SET_HIGH_BOUND (pending_exact); \
1790 # define MOVE_BUFFER_POINTER(P) (P) += incr
1791 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1793 #define EXTEND_BUFFER() \
1795 re_char *old_buffer = bufp->buffer; \
1796 if (bufp->allocated == MAX_BUF_SIZE) \
1798 bufp->allocated <<= 1; \
1799 if (bufp->allocated > MAX_BUF_SIZE) \
1800 bufp->allocated = MAX_BUF_SIZE; \
1801 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1802 if (bufp->buffer == NULL) \
1803 return REG_ESPACE; \
1804 /* If the buffer moved, move all the pointers into it. */ \
1805 if (old_buffer != bufp->buffer) \
1807 int incr = bufp->buffer - old_buffer; \
1808 MOVE_BUFFER_POINTER (b); \
1809 MOVE_BUFFER_POINTER (begalt); \
1810 if (fixup_alt_jump) \
1811 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1813 MOVE_BUFFER_POINTER (laststart); \
1814 if (pending_exact) \
1815 MOVE_BUFFER_POINTER (pending_exact); \
1817 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1821 /* Since we have one byte reserved for the register number argument to
1822 {start,stop}_memory, the maximum number of groups we can report
1823 things about is what fits in that byte. */
1824 #define MAX_REGNUM 255
1826 /* But patterns can have more than `MAX_REGNUM' registers. We just
1827 ignore the excess. */
1828 typedef int regnum_t
;
1831 /* Macros for the compile stack. */
1833 /* Since offsets can go either forwards or backwards, this type needs to
1834 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1835 /* int may be not enough when sizeof(int) == 2. */
1836 typedef long pattern_offset_t
;
1840 pattern_offset_t begalt_offset
;
1841 pattern_offset_t fixup_alt_jump
;
1842 pattern_offset_t laststart_offset
;
1844 } compile_stack_elt_t
;
1849 compile_stack_elt_t
*stack
;
1851 unsigned avail
; /* Offset of next open position. */
1852 } compile_stack_type
;
1855 #define INIT_COMPILE_STACK_SIZE 32
1857 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1858 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1860 /* The next available element. */
1861 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1863 /* Explicit quit checking is only used on NTemacs. */
1864 #if defined WINDOWSNT && defined emacs && defined QUIT
1865 extern int immediate_quit
;
1866 # define IMMEDIATE_QUIT_CHECK \
1868 if (immediate_quit) QUIT; \
1871 # define IMMEDIATE_QUIT_CHECK ((void)0)
1874 /* Structure to manage work area for range table. */
1875 struct range_table_work_area
1877 int *table
; /* actual work area. */
1878 int allocated
; /* allocated size for work area in bytes. */
1879 int used
; /* actually used size in words. */
1880 int bits
; /* flag to record character classes */
1883 /* Make sure that WORK_AREA can hold more N multibyte characters.
1884 This is used only in set_image_of_range and set_image_of_range_1.
1885 It expects WORK_AREA to be a pointer.
1886 If it can't get the space, it returns from the surrounding function. */
1888 #define EXTEND_RANGE_TABLE(work_area, n) \
1890 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1892 extend_range_table_work_area (work_area); \
1893 if ((work_area)->table == 0) \
1894 return (REG_ESPACE); \
1898 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1899 (work_area).bits |= (bit)
1901 /* Bits used to implement the multibyte-part of the various character classes
1902 such as [:alnum:] in a charset's range table. */
1903 #define BIT_WORD 0x1
1904 #define BIT_LOWER 0x2
1905 #define BIT_PUNCT 0x4
1906 #define BIT_SPACE 0x8
1907 #define BIT_UPPER 0x10
1908 #define BIT_MULTIBYTE 0x20
1910 /* Set a range START..END to WORK_AREA.
1911 The range is passed through TRANSLATE, so START and END
1912 should be untranslated. */
1913 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1916 tem = set_image_of_range (&work_area, start, end, translate); \
1918 FREE_STACK_RETURN (tem); \
1921 /* Free allocated memory for WORK_AREA. */
1922 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1924 if ((work_area).table) \
1925 free ((work_area).table); \
1928 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1929 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1930 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1931 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1934 /* Set the bit for character C in a list. */
1935 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1938 /* Get the next unsigned number in the uncompiled pattern. */
1939 #define GET_UNSIGNED_NUMBER(num) \
1940 do { if (p != pend) \
1944 FREE_STACK_RETURN (REG_BADBR); \
1945 while ('0' <= c && c <= '9') \
1951 num = num * 10 + c - '0'; \
1952 if (num / 10 != prev) \
1953 FREE_STACK_RETURN (REG_BADBR); \
1959 FREE_STACK_RETURN (REG_BADBR); \
1963 #if WIDE_CHAR_SUPPORT
1964 /* The GNU C library provides support for user-defined character classes
1965 and the functions from ISO C amendement 1. */
1966 # ifdef CHARCLASS_NAME_MAX
1967 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1969 /* This shouldn't happen but some implementation might still have this
1970 problem. Use a reasonable default value. */
1971 # define CHAR_CLASS_MAX_LENGTH 256
1973 typedef wctype_t re_wctype_t
;
1974 typedef wchar_t re_wchar_t
;
1975 # define re_wctype wctype
1976 # define re_iswctype iswctype
1977 # define re_wctype_to_bit(cc) 0
1979 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1982 /* Character classes. */
1983 typedef enum { RECC_ERROR
= 0,
1984 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1985 RECC_GRAPH
, RECC_PRINT
,
1986 RECC_LOWER
, RECC_UPPER
,
1987 RECC_PUNCT
, RECC_CNTRL
,
1988 RECC_DIGIT
, RECC_XDIGIT
,
1989 RECC_BLANK
, RECC_SPACE
,
1990 RECC_MULTIBYTE
, RECC_NONASCII
,
1991 RECC_ASCII
, RECC_UNIBYTE
1994 typedef int re_wchar_t
;
1996 /* Map a string to the char class it names (if any). */
2001 const char *string
= str
;
2002 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2003 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2004 else if (STREQ (string
, "word")) return RECC_WORD
;
2005 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2006 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2007 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2008 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2009 else if (STREQ (string
, "print")) return RECC_PRINT
;
2010 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2011 else if (STREQ (string
, "space")) return RECC_SPACE
;
2012 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2013 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2014 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2015 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2016 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2017 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2018 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2022 /* True iff CH is in the char class CC. */
2024 re_iswctype (ch
, cc
)
2030 case RECC_ALNUM
: return ISALNUM (ch
);
2031 case RECC_ALPHA
: return ISALPHA (ch
);
2032 case RECC_BLANK
: return ISBLANK (ch
);
2033 case RECC_CNTRL
: return ISCNTRL (ch
);
2034 case RECC_DIGIT
: return ISDIGIT (ch
);
2035 case RECC_GRAPH
: return ISGRAPH (ch
);
2036 case RECC_LOWER
: return ISLOWER (ch
);
2037 case RECC_PRINT
: return ISPRINT (ch
);
2038 case RECC_PUNCT
: return ISPUNCT (ch
);
2039 case RECC_SPACE
: return ISSPACE (ch
);
2040 case RECC_UPPER
: return ISUPPER (ch
);
2041 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2042 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2043 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2044 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2045 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2046 case RECC_WORD
: return ISWORD (ch
);
2047 case RECC_ERROR
: return false;
2053 /* Return a bit-pattern to use in the range-table bits to match multibyte
2054 chars of class CC. */
2056 re_wctype_to_bit (cc
)
2061 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2062 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2063 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2064 case RECC_LOWER
: return BIT_LOWER
;
2065 case RECC_UPPER
: return BIT_UPPER
;
2066 case RECC_PUNCT
: return BIT_PUNCT
;
2067 case RECC_SPACE
: return BIT_SPACE
;
2068 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2069 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2076 /* Filling in the work area of a range. */
2078 /* Actually extend the space in WORK_AREA. */
2081 extend_range_table_work_area (work_area
)
2082 struct range_table_work_area
*work_area
;
2084 work_area
->allocated
+= 16 * sizeof (int);
2085 if (work_area
->table
)
2087 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2090 = (int *) malloc (work_area
->allocated
);
2095 /* Carefully find the ranges of codes that are equivalent
2096 under case conversion to the range start..end when passed through
2097 TRANSLATE. Handle the case where non-letters can come in between
2098 two upper-case letters (which happens in Latin-1).
2099 Also handle the case of groups of more than 2 case-equivalent chars.
2101 The basic method is to look at consecutive characters and see
2102 if they can form a run that can be handled as one.
2104 Returns -1 if successful, REG_ESPACE if ran out of space. */
2107 set_image_of_range_1 (work_area
, start
, end
, translate
)
2108 RE_TRANSLATE_TYPE translate
;
2109 struct range_table_work_area
*work_area
;
2110 re_wchar_t start
, end
;
2112 /* `one_case' indicates a character, or a run of characters,
2113 each of which is an isolate (no case-equivalents).
2114 This includes all ASCII non-letters.
2116 `two_case' indicates a character, or a run of characters,
2117 each of which has two case-equivalent forms.
2118 This includes all ASCII letters.
2120 `strange' indicates a character that has more than one
2123 enum case_type
{one_case
, two_case
, strange
};
2125 /* Describe the run that is in progress,
2126 which the next character can try to extend.
2127 If run_type is strange, that means there really is no run.
2128 If run_type is one_case, then run_start...run_end is the run.
2129 If run_type is two_case, then the run is run_start...run_end,
2130 and the case-equivalents end at run_eqv_end. */
2132 enum case_type run_type
= strange
;
2133 int run_start
, run_end
, run_eqv_end
;
2135 Lisp_Object eqv_table
;
2137 if (!RE_TRANSLATE_P (translate
))
2139 EXTEND_RANGE_TABLE (work_area
, 2);
2140 work_area
->table
[work_area
->used
++] = (start
);
2141 work_area
->table
[work_area
->used
++] = (end
);
2145 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2147 for (; start
<= end
; start
++)
2149 enum case_type this_type
;
2150 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2151 int minchar
, maxchar
;
2153 /* Classify this character */
2155 this_type
= one_case
;
2156 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2157 this_type
= two_case
;
2159 this_type
= strange
;
2162 minchar
= start
, maxchar
= eqv
;
2164 minchar
= eqv
, maxchar
= start
;
2166 /* Can this character extend the run in progress? */
2167 if (this_type
== strange
|| this_type
!= run_type
2168 || !(minchar
== run_end
+ 1
2169 && (run_type
== two_case
2170 ? maxchar
== run_eqv_end
+ 1 : 1)))
2173 Record each of its equivalent ranges. */
2174 if (run_type
== one_case
)
2176 EXTEND_RANGE_TABLE (work_area
, 2);
2177 work_area
->table
[work_area
->used
++] = run_start
;
2178 work_area
->table
[work_area
->used
++] = run_end
;
2180 else if (run_type
== two_case
)
2182 EXTEND_RANGE_TABLE (work_area
, 4);
2183 work_area
->table
[work_area
->used
++] = run_start
;
2184 work_area
->table
[work_area
->used
++] = run_end
;
2185 work_area
->table
[work_area
->used
++]
2186 = RE_TRANSLATE (eqv_table
, run_start
);
2187 work_area
->table
[work_area
->used
++]
2188 = RE_TRANSLATE (eqv_table
, run_end
);
2193 if (this_type
== strange
)
2195 /* For a strange character, add each of its equivalents, one
2196 by one. Don't start a range. */
2199 EXTEND_RANGE_TABLE (work_area
, 2);
2200 work_area
->table
[work_area
->used
++] = eqv
;
2201 work_area
->table
[work_area
->used
++] = eqv
;
2202 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2204 while (eqv
!= start
);
2207 /* Add this char to the run, or start a new run. */
2208 else if (run_type
== strange
)
2210 /* Initialize a new range. */
2211 run_type
= this_type
;
2214 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2218 /* Extend a running range. */
2220 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2224 /* If a run is still in progress at the end, finish it now
2225 by recording its equivalent ranges. */
2226 if (run_type
== one_case
)
2228 EXTEND_RANGE_TABLE (work_area
, 2);
2229 work_area
->table
[work_area
->used
++] = run_start
;
2230 work_area
->table
[work_area
->used
++] = run_end
;
2232 else if (run_type
== two_case
)
2234 EXTEND_RANGE_TABLE (work_area
, 4);
2235 work_area
->table
[work_area
->used
++] = run_start
;
2236 work_area
->table
[work_area
->used
++] = run_end
;
2237 work_area
->table
[work_area
->used
++]
2238 = RE_TRANSLATE (eqv_table
, run_start
);
2239 work_area
->table
[work_area
->used
++]
2240 = RE_TRANSLATE (eqv_table
, run_end
);
2248 /* Record the the image of the range start..end when passed through
2249 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2250 and is not even necessarily contiguous.
2251 Normally we approximate it with the smallest contiguous range that contains
2252 all the chars we need. However, for Latin-1 we go to extra effort
2255 This function is not called for ASCII ranges.
2257 Returns -1 if successful, REG_ESPACE if ran out of space. */
2260 set_image_of_range (work_area
, start
, end
, translate
)
2261 RE_TRANSLATE_TYPE translate
;
2262 struct range_table_work_area
*work_area
;
2263 re_wchar_t start
, end
;
2265 re_wchar_t cmin
, cmax
;
2268 /* For Latin-1 ranges, use set_image_of_range_1
2269 to get proper handling of ranges that include letters and nonletters.
2270 For a range that includes the whole of Latin-1, this is not necessary.
2271 For other character sets, we don't bother to get this right. */
2272 if (RE_TRANSLATE_P (translate
) && start
< 04400
2273 && !(start
< 04200 && end
>= 04377))
2280 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2290 EXTEND_RANGE_TABLE (work_area
, 2);
2291 work_area
->table
[work_area
->used
++] = (start
);
2292 work_area
->table
[work_area
->used
++] = (end
);
2294 cmin
= -1, cmax
= -1;
2296 if (RE_TRANSLATE_P (translate
))
2300 for (ch
= start
; ch
<= end
; ch
++)
2302 re_wchar_t c
= TRANSLATE (ch
);
2303 if (! (start
<= c
&& c
<= end
))
2309 cmin
= MIN (cmin
, c
);
2310 cmax
= MAX (cmax
, c
);
2317 EXTEND_RANGE_TABLE (work_area
, 2);
2318 work_area
->table
[work_area
->used
++] = (cmin
);
2319 work_area
->table
[work_area
->used
++] = (cmax
);
2326 #ifndef MATCH_MAY_ALLOCATE
2328 /* If we cannot allocate large objects within re_match_2_internal,
2329 we make the fail stack and register vectors global.
2330 The fail stack, we grow to the maximum size when a regexp
2332 The register vectors, we adjust in size each time we
2333 compile a regexp, according to the number of registers it needs. */
2335 static fail_stack_type fail_stack
;
2337 /* Size with which the following vectors are currently allocated.
2338 That is so we can make them bigger as needed,
2339 but never make them smaller. */
2340 static int regs_allocated_size
;
2342 static re_char
** regstart
, ** regend
;
2343 static re_char
**best_regstart
, **best_regend
;
2345 /* Make the register vectors big enough for NUM_REGS registers,
2346 but don't make them smaller. */
2349 regex_grow_registers (num_regs
)
2352 if (num_regs
> regs_allocated_size
)
2354 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2355 RETALLOC_IF (regend
, num_regs
, re_char
*);
2356 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2357 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2359 regs_allocated_size
= num_regs
;
2363 #endif /* not MATCH_MAY_ALLOCATE */
2365 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2369 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2370 Returns one of error codes defined in `regex.h', or zero for success.
2372 Assumes the `allocated' (and perhaps `buffer') and `translate'
2373 fields are set in BUFP on entry.
2375 If it succeeds, results are put in BUFP (if it returns an error, the
2376 contents of BUFP are undefined):
2377 `buffer' is the compiled pattern;
2378 `syntax' is set to SYNTAX;
2379 `used' is set to the length of the compiled pattern;
2380 `fastmap_accurate' is zero;
2381 `re_nsub' is the number of subexpressions in PATTERN;
2382 `not_bol' and `not_eol' are zero;
2384 The `fastmap' field is neither examined nor set. */
2386 /* Insert the `jump' from the end of last alternative to "here".
2387 The space for the jump has already been allocated. */
2388 #define FIXUP_ALT_JUMP() \
2390 if (fixup_alt_jump) \
2391 STORE_JUMP (jump, fixup_alt_jump, b); \
2395 /* Return, freeing storage we allocated. */
2396 #define FREE_STACK_RETURN(value) \
2398 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2399 free (compile_stack.stack); \
2403 static reg_errcode_t
2404 regex_compile (pattern
, size
, syntax
, bufp
)
2407 reg_syntax_t syntax
;
2408 struct re_pattern_buffer
*bufp
;
2410 /* We fetch characters from PATTERN here. */
2411 register re_wchar_t c
, c1
;
2413 /* A random temporary spot in PATTERN. */
2416 /* Points to the end of the buffer, where we should append. */
2417 register unsigned char *b
;
2419 /* Keeps track of unclosed groups. */
2420 compile_stack_type compile_stack
;
2422 /* Points to the current (ending) position in the pattern. */
2424 /* `const' makes AIX compiler fail. */
2425 unsigned char *p
= pattern
;
2427 re_char
*p
= pattern
;
2429 re_char
*pend
= pattern
+ size
;
2431 /* How to translate the characters in the pattern. */
2432 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2434 /* Address of the count-byte of the most recently inserted `exactn'
2435 command. This makes it possible to tell if a new exact-match
2436 character can be added to that command or if the character requires
2437 a new `exactn' command. */
2438 unsigned char *pending_exact
= 0;
2440 /* Address of start of the most recently finished expression.
2441 This tells, e.g., postfix * where to find the start of its
2442 operand. Reset at the beginning of groups and alternatives. */
2443 unsigned char *laststart
= 0;
2445 /* Address of beginning of regexp, or inside of last group. */
2446 unsigned char *begalt
;
2448 /* Place in the uncompiled pattern (i.e., the {) to
2449 which to go back if the interval is invalid. */
2450 re_char
*beg_interval
;
2452 /* Address of the place where a forward jump should go to the end of
2453 the containing expression. Each alternative of an `or' -- except the
2454 last -- ends with a forward jump of this sort. */
2455 unsigned char *fixup_alt_jump
= 0;
2457 /* Counts open-groups as they are encountered. Remembered for the
2458 matching close-group on the compile stack, so the same register
2459 number is put in the stop_memory as the start_memory. */
2460 regnum_t regnum
= 0;
2462 /* Work area for range table of charset. */
2463 struct range_table_work_area range_table_work
;
2465 /* If the object matched can contain multibyte characters. */
2466 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2470 DEBUG_PRINT1 ("\nCompiling pattern: ");
2473 unsigned debug_count
;
2475 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2476 putchar (pattern
[debug_count
]);
2481 /* Initialize the compile stack. */
2482 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2483 if (compile_stack
.stack
== NULL
)
2486 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2487 compile_stack
.avail
= 0;
2489 range_table_work
.table
= 0;
2490 range_table_work
.allocated
= 0;
2492 /* Initialize the pattern buffer. */
2493 bufp
->syntax
= syntax
;
2494 bufp
->fastmap_accurate
= 0;
2495 bufp
->not_bol
= bufp
->not_eol
= 0;
2497 /* Set `used' to zero, so that if we return an error, the pattern
2498 printer (for debugging) will think there's no pattern. We reset it
2502 /* Always count groups, whether or not bufp->no_sub is set. */
2505 #if !defined emacs && !defined SYNTAX_TABLE
2506 /* Initialize the syntax table. */
2507 init_syntax_once ();
2510 if (bufp
->allocated
== 0)
2513 { /* If zero allocated, but buffer is non-null, try to realloc
2514 enough space. This loses if buffer's address is bogus, but
2515 that is the user's responsibility. */
2516 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2519 { /* Caller did not allocate a buffer. Do it for them. */
2520 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2522 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2524 bufp
->allocated
= INIT_BUF_SIZE
;
2527 begalt
= b
= bufp
->buffer
;
2529 /* Loop through the uncompiled pattern until we're at the end. */
2538 if ( /* If at start of pattern, it's an operator. */
2540 /* If context independent, it's an operator. */
2541 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2542 /* Otherwise, depends on what's come before. */
2543 || at_begline_loc_p (pattern
, p
, syntax
))
2544 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2553 if ( /* If at end of pattern, it's an operator. */
2555 /* If context independent, it's an operator. */
2556 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2557 /* Otherwise, depends on what's next. */
2558 || at_endline_loc_p (p
, pend
, syntax
))
2559 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2568 if ((syntax
& RE_BK_PLUS_QM
)
2569 || (syntax
& RE_LIMITED_OPS
))
2573 /* If there is no previous pattern... */
2576 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2577 FREE_STACK_RETURN (REG_BADRPT
);
2578 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2583 /* 1 means zero (many) matches is allowed. */
2584 boolean zero_times_ok
= 0, many_times_ok
= 0;
2587 /* If there is a sequence of repetition chars, collapse it
2588 down to just one (the right one). We can't combine
2589 interval operators with these because of, e.g., `a{2}*',
2590 which should only match an even number of `a's. */
2594 if ((syntax
& RE_FRUGAL
)
2595 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2599 zero_times_ok
|= c
!= '+';
2600 many_times_ok
|= c
!= '?';
2606 || (!(syntax
& RE_BK_PLUS_QM
)
2607 && (*p
== '+' || *p
== '?')))
2609 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2612 FREE_STACK_RETURN (REG_EESCAPE
);
2613 if (p
[1] == '+' || p
[1] == '?')
2614 PATFETCH (c
); /* Gobble up the backslash. */
2620 /* If we get here, we found another repeat character. */
2624 /* Star, etc. applied to an empty pattern is equivalent
2625 to an empty pattern. */
2626 if (!laststart
|| laststart
== b
)
2629 /* Now we know whether or not zero matches is allowed
2630 and also whether or not two or more matches is allowed. */
2635 boolean simple
= skip_one_char (laststart
) == b
;
2636 unsigned int startoffset
= 0;
2638 /* Check if the loop can match the empty string. */
2639 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2640 ? on_failure_jump
: on_failure_jump_loop
;
2641 assert (skip_one_char (laststart
) <= b
);
2643 if (!zero_times_ok
&& simple
)
2644 { /* Since simple * loops can be made faster by using
2645 on_failure_keep_string_jump, we turn simple P+
2646 into PP* if P is simple. */
2647 unsigned char *p1
, *p2
;
2648 startoffset
= b
- laststart
;
2649 GET_BUFFER_SPACE (startoffset
);
2650 p1
= b
; p2
= laststart
;
2656 GET_BUFFER_SPACE (6);
2659 STORE_JUMP (ofj
, b
, b
+ 6);
2661 /* Simple * loops can use on_failure_keep_string_jump
2662 depending on what follows. But since we don't know
2663 that yet, we leave the decision up to
2664 on_failure_jump_smart. */
2665 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2666 laststart
+ startoffset
, b
+ 6);
2668 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2673 /* A simple ? pattern. */
2674 assert (zero_times_ok
);
2675 GET_BUFFER_SPACE (3);
2676 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2680 else /* not greedy */
2681 { /* I wish the greedy and non-greedy cases could be merged. */
2683 GET_BUFFER_SPACE (7); /* We might use less. */
2686 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2688 /* The non-greedy multiple match looks like
2689 a repeat..until: we only need a conditional jump
2690 at the end of the loop. */
2691 if (emptyp
) BUF_PUSH (no_op
);
2692 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2693 : on_failure_jump
, b
, laststart
);
2697 /* The repeat...until naturally matches one or more.
2698 To also match zero times, we need to first jump to
2699 the end of the loop (its conditional jump). */
2700 INSERT_JUMP (jump
, laststart
, b
);
2706 /* non-greedy a?? */
2707 INSERT_JUMP (jump
, laststart
, b
+ 3);
2709 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2726 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2728 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2730 /* Ensure that we have enough space to push a charset: the
2731 opcode, the length count, and the bitset; 34 bytes in all. */
2732 GET_BUFFER_SPACE (34);
2736 /* We test `*p == '^' twice, instead of using an if
2737 statement, so we only need one BUF_PUSH. */
2738 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2742 /* Remember the first position in the bracket expression. */
2745 /* Push the number of bytes in the bitmap. */
2746 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2748 /* Clear the whole map. */
2749 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2751 /* charset_not matches newline according to a syntax bit. */
2752 if ((re_opcode_t
) b
[-2] == charset_not
2753 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2754 SET_LIST_BIT ('\n');
2756 /* Read in characters and ranges, setting map bits. */
2759 boolean escaped_char
= false;
2760 const unsigned char *p2
= p
;
2762 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2764 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2765 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2766 So the translation is done later in a loop. Example:
2767 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2770 /* \ might escape characters inside [...] and [^...]. */
2771 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2773 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2776 escaped_char
= true;
2780 /* Could be the end of the bracket expression. If it's
2781 not (i.e., when the bracket expression is `[]' so
2782 far), the ']' character bit gets set way below. */
2783 if (c
== ']' && p2
!= p1
)
2787 /* What should we do for the character which is
2788 greater than 0x7F, but not BASE_LEADING_CODE_P?
2791 /* See if we're at the beginning of a possible character
2794 if (!escaped_char
&&
2795 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2797 /* Leave room for the null. */
2798 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2799 const unsigned char *class_beg
;
2805 /* If pattern is `[[:'. */
2806 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2811 if ((c
== ':' && *p
== ']') || p
== pend
)
2813 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2816 /* This is in any case an invalid class name. */
2821 /* If isn't a word bracketed by `[:' and `:]':
2822 undo the ending character, the letters, and
2823 leave the leading `:' and `[' (but set bits for
2825 if (c
== ':' && *p
== ']')
2830 cc
= re_wctype (str
);
2833 FREE_STACK_RETURN (REG_ECTYPE
);
2835 /* Throw away the ] at the end of the character
2839 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2841 /* Most character classes in a multibyte match
2842 just set a flag. Exceptions are is_blank,
2843 is_digit, is_cntrl, and is_xdigit, since
2844 they can only match ASCII characters. We
2845 don't need to handle them for multibyte.
2846 They are distinguished by a negative wctype. */
2849 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2850 re_wctype_to_bit (cc
));
2852 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2854 int translated
= TRANSLATE (ch
);
2855 if (re_iswctype (btowc (ch
), cc
))
2856 SET_LIST_BIT (translated
);
2859 /* Repeat the loop. */
2864 /* Go back to right after the "[:". */
2868 /* Because the `:' may starts the range, we
2869 can't simply set bit and repeat the loop.
2870 Instead, just set it to C and handle below. */
2875 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2878 /* Discard the `-'. */
2881 /* Fetch the character which ends the range. */
2884 if (SINGLE_BYTE_CHAR_P (c
))
2886 if (! SINGLE_BYTE_CHAR_P (c1
))
2888 /* Handle a range starting with a
2889 character of less than 256, and ending
2890 with a character of not less than 256.
2891 Split that into two ranges, the low one
2892 ending at 0377, and the high one
2893 starting at the smallest character in
2894 the charset of C1 and ending at C1. */
2895 int charset
= CHAR_CHARSET (c1
);
2896 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2898 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2903 else if (!SAME_CHARSET_P (c
, c1
))
2904 FREE_STACK_RETURN (REG_ERANGE
);
2907 /* Range from C to C. */
2910 /* Set the range ... */
2911 if (SINGLE_BYTE_CHAR_P (c
))
2912 /* ... into bitmap. */
2914 re_wchar_t this_char
;
2915 re_wchar_t range_start
= c
, range_end
= c1
;
2917 /* If the start is after the end, the range is empty. */
2918 if (range_start
> range_end
)
2920 if (syntax
& RE_NO_EMPTY_RANGES
)
2921 FREE_STACK_RETURN (REG_ERANGE
);
2922 /* Else, repeat the loop. */
2926 for (this_char
= range_start
; this_char
<= range_end
;
2928 SET_LIST_BIT (TRANSLATE (this_char
));
2932 /* ... into range table. */
2933 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2936 /* Discard any (non)matching list bytes that are all 0 at the
2937 end of the map. Decrease the map-length byte too. */
2938 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2942 /* Build real range table from work area. */
2943 if (RANGE_TABLE_WORK_USED (range_table_work
)
2944 || RANGE_TABLE_WORK_BITS (range_table_work
))
2947 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2949 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2950 bytes for flags, two for COUNT, and three bytes for
2952 GET_BUFFER_SPACE (4 + used
* 3);
2954 /* Indicate the existence of range table. */
2955 laststart
[1] |= 0x80;
2957 /* Store the character class flag bits into the range table.
2958 If not in emacs, these flag bits are always 0. */
2959 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2960 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2962 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2963 for (i
= 0; i
< used
; i
++)
2964 STORE_CHARACTER_AND_INCR
2965 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2972 if (syntax
& RE_NO_BK_PARENS
)
2979 if (syntax
& RE_NO_BK_PARENS
)
2986 if (syntax
& RE_NEWLINE_ALT
)
2993 if (syntax
& RE_NO_BK_VBAR
)
3000 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3001 goto handle_interval
;
3007 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3009 /* Do not translate the character after the \, so that we can
3010 distinguish, e.g., \B from \b, even if we normally would
3011 translate, e.g., B to b. */
3017 if (syntax
& RE_NO_BK_PARENS
)
3018 goto normal_backslash
;
3025 /* Look for a special (?...) construct */
3026 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3028 PATFETCH (c
); /* Gobble up the '?'. */
3032 case ':': shy
= 1; break;
3034 /* Only (?:...) is supported right now. */
3035 FREE_STACK_RETURN (REG_BADPAT
);
3046 if (COMPILE_STACK_FULL
)
3048 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3049 compile_stack_elt_t
);
3050 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3052 compile_stack
.size
<<= 1;
3055 /* These are the values to restore when we hit end of this
3056 group. They are all relative offsets, so that if the
3057 whole pattern moves because of realloc, they will still
3059 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3060 COMPILE_STACK_TOP
.fixup_alt_jump
3061 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3062 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3063 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
3066 start_memory for groups beyond the last one we can
3067 represent in the compiled pattern. */
3068 if (regnum
<= MAX_REGNUM
&& !shy
)
3069 BUF_PUSH_2 (start_memory
, regnum
);
3071 compile_stack
.avail
++;
3076 /* If we've reached MAX_REGNUM groups, then this open
3077 won't actually generate any code, so we'll have to
3078 clear pending_exact explicitly. */
3084 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3086 if (COMPILE_STACK_EMPTY
)
3088 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3089 goto normal_backslash
;
3091 FREE_STACK_RETURN (REG_ERPAREN
);
3097 /* See similar code for backslashed left paren above. */
3098 if (COMPILE_STACK_EMPTY
)
3100 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3103 FREE_STACK_RETURN (REG_ERPAREN
);
3106 /* Since we just checked for an empty stack above, this
3107 ``can't happen''. */
3108 assert (compile_stack
.avail
!= 0);
3110 /* We don't just want to restore into `regnum', because
3111 later groups should continue to be numbered higher,
3112 as in `(ab)c(de)' -- the second group is #2. */
3113 regnum_t this_group_regnum
;
3115 compile_stack
.avail
--;
3116 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3118 = COMPILE_STACK_TOP
.fixup_alt_jump
3119 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3121 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3122 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3123 /* If we've reached MAX_REGNUM groups, then this open
3124 won't actually generate any code, so we'll have to
3125 clear pending_exact explicitly. */
3128 /* We're at the end of the group, so now we know how many
3129 groups were inside this one. */
3130 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
3131 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
3136 case '|': /* `\|'. */
3137 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3138 goto normal_backslash
;
3140 if (syntax
& RE_LIMITED_OPS
)
3143 /* Insert before the previous alternative a jump which
3144 jumps to this alternative if the former fails. */
3145 GET_BUFFER_SPACE (3);
3146 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3150 /* The alternative before this one has a jump after it
3151 which gets executed if it gets matched. Adjust that
3152 jump so it will jump to this alternative's analogous
3153 jump (put in below, which in turn will jump to the next
3154 (if any) alternative's such jump, etc.). The last such
3155 jump jumps to the correct final destination. A picture:
3161 If we are at `b', then fixup_alt_jump right now points to a
3162 three-byte space after `a'. We'll put in the jump, set
3163 fixup_alt_jump to right after `b', and leave behind three
3164 bytes which we'll fill in when we get to after `c'. */
3168 /* Mark and leave space for a jump after this alternative,
3169 to be filled in later either by next alternative or
3170 when know we're at the end of a series of alternatives. */
3172 GET_BUFFER_SPACE (3);
3181 /* If \{ is a literal. */
3182 if (!(syntax
& RE_INTERVALS
)
3183 /* If we're at `\{' and it's not the open-interval
3185 || (syntax
& RE_NO_BK_BRACES
))
3186 goto normal_backslash
;
3190 /* If got here, then the syntax allows intervals. */
3192 /* At least (most) this many matches must be made. */
3193 int lower_bound
= 0, upper_bound
= -1;
3198 FREE_STACK_RETURN (REG_EBRACE
);
3200 GET_UNSIGNED_NUMBER (lower_bound
);
3203 GET_UNSIGNED_NUMBER (upper_bound
);
3205 /* Interval such as `{1}' => match exactly once. */
3206 upper_bound
= lower_bound
;
3208 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3209 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3210 FREE_STACK_RETURN (REG_BADBR
);
3212 if (!(syntax
& RE_NO_BK_BRACES
))
3215 FREE_STACK_RETURN (REG_BADBR
);
3221 FREE_STACK_RETURN (REG_BADBR
);
3223 /* We just parsed a valid interval. */
3225 /* If it's invalid to have no preceding re. */
3228 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3229 FREE_STACK_RETURN (REG_BADRPT
);
3230 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3233 goto unfetch_interval
;
3236 if (upper_bound
== 0)
3237 /* If the upper bound is zero, just drop the sub pattern
3240 else if (lower_bound
== 1 && upper_bound
== 1)
3241 /* Just match it once: nothing to do here. */
3244 /* Otherwise, we have a nontrivial interval. When
3245 we're all done, the pattern will look like:
3246 set_number_at <jump count> <upper bound>
3247 set_number_at <succeed_n count> <lower bound>
3248 succeed_n <after jump addr> <succeed_n count>
3250 jump_n <succeed_n addr> <jump count>
3251 (The upper bound and `jump_n' are omitted if
3252 `upper_bound' is 1, though.) */
3254 { /* If the upper bound is > 1, we need to insert
3255 more at the end of the loop. */
3256 unsigned int nbytes
= (upper_bound
< 0 ? 3
3257 : upper_bound
> 1 ? 5 : 0);
3258 unsigned int startoffset
= 0;
3260 GET_BUFFER_SPACE (20); /* We might use less. */
3262 if (lower_bound
== 0)
3264 /* A succeed_n that starts with 0 is really a
3265 a simple on_failure_jump_loop. */
3266 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3272 /* Initialize lower bound of the `succeed_n', even
3273 though it will be set during matching by its
3274 attendant `set_number_at' (inserted next),
3275 because `re_compile_fastmap' needs to know.
3276 Jump to the `jump_n' we might insert below. */
3277 INSERT_JUMP2 (succeed_n
, laststart
,
3282 /* Code to initialize the lower bound. Insert
3283 before the `succeed_n'. The `5' is the last two
3284 bytes of this `set_number_at', plus 3 bytes of
3285 the following `succeed_n'. */
3286 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3291 if (upper_bound
< 0)
3293 /* A negative upper bound stands for infinity,
3294 in which case it degenerates to a plain jump. */
3295 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3298 else if (upper_bound
> 1)
3299 { /* More than one repetition is allowed, so
3300 append a backward jump to the `succeed_n'
3301 that starts this interval.
3303 When we've reached this during matching,
3304 we'll have matched the interval once, so
3305 jump back only `upper_bound - 1' times. */
3306 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3310 /* The location we want to set is the second
3311 parameter of the `jump_n'; that is `b-2' as
3312 an absolute address. `laststart' will be
3313 the `set_number_at' we're about to insert;
3314 `laststart+3' the number to set, the source
3315 for the relative address. But we are
3316 inserting into the middle of the pattern --
3317 so everything is getting moved up by 5.
3318 Conclusion: (b - 2) - (laststart + 3) + 5,
3319 i.e., b - laststart.
3321 We insert this at the beginning of the loop
3322 so that if we fail during matching, we'll
3323 reinitialize the bounds. */
3324 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3325 upper_bound
- 1, b
);
3330 beg_interval
= NULL
;
3335 /* If an invalid interval, match the characters as literals. */
3336 assert (beg_interval
);
3338 beg_interval
= NULL
;
3340 /* normal_char and normal_backslash need `c'. */
3343 if (!(syntax
& RE_NO_BK_BRACES
))
3345 assert (p
> pattern
&& p
[-1] == '\\');
3346 goto normal_backslash
;
3352 /* There is no way to specify the before_dot and after_dot
3353 operators. rms says this is ok. --karl */
3361 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3367 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3373 BUF_PUSH_2 (categoryspec
, c
);
3379 BUF_PUSH_2 (notcategoryspec
, c
);
3385 if (syntax
& RE_NO_GNU_OPS
)
3388 BUF_PUSH_2 (syntaxspec
, Sword
);
3393 if (syntax
& RE_NO_GNU_OPS
)
3396 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3401 if (syntax
& RE_NO_GNU_OPS
)
3407 if (syntax
& RE_NO_GNU_OPS
)
3413 if (syntax
& RE_NO_GNU_OPS
)
3422 FREE_STACK_RETURN (REG_BADPAT
);
3426 if (syntax
& RE_NO_GNU_OPS
)
3428 BUF_PUSH (wordbound
);
3432 if (syntax
& RE_NO_GNU_OPS
)
3434 BUF_PUSH (notwordbound
);
3438 if (syntax
& RE_NO_GNU_OPS
)
3444 if (syntax
& RE_NO_GNU_OPS
)
3449 case '1': case '2': case '3': case '4': case '5':
3450 case '6': case '7': case '8': case '9':
3454 if (syntax
& RE_NO_BK_REFS
)
3455 goto normal_backslash
;
3459 /* Can't back reference to a subexpression before its end. */
3460 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3461 FREE_STACK_RETURN (REG_ESUBREG
);
3464 BUF_PUSH_2 (duplicate
, reg
);
3471 if (syntax
& RE_BK_PLUS_QM
)
3474 goto normal_backslash
;
3478 /* You might think it would be useful for \ to mean
3479 not to translate; but if we don't translate it
3480 it will never match anything. */
3487 /* Expects the character in `c'. */
3489 /* If no exactn currently being built. */
3492 /* If last exactn not at current position. */
3493 || pending_exact
+ *pending_exact
+ 1 != b
3495 /* We have only one byte following the exactn for the count. */
3496 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3498 /* If followed by a repetition operator. */
3499 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3500 || ((syntax
& RE_BK_PLUS_QM
)
3501 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3502 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3503 || ((syntax
& RE_INTERVALS
)
3504 && ((syntax
& RE_NO_BK_BRACES
)
3505 ? p
!= pend
&& *p
== '{'
3506 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3508 /* Start building a new exactn. */
3512 BUF_PUSH_2 (exactn
, 0);
3513 pending_exact
= b
- 1;
3516 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3522 len
= CHAR_STRING (c
, b
);
3526 (*pending_exact
) += len
;
3531 } /* while p != pend */
3534 /* Through the pattern now. */
3538 if (!COMPILE_STACK_EMPTY
)
3539 FREE_STACK_RETURN (REG_EPAREN
);
3541 /* If we don't want backtracking, force success
3542 the first time we reach the end of the compiled pattern. */
3543 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3546 /* We have succeeded; set the length of the buffer. */
3547 bufp
->used
= b
- bufp
->buffer
;
3552 re_compile_fastmap (bufp
);
3553 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3554 print_compiled_pattern (bufp
);
3559 #ifndef MATCH_MAY_ALLOCATE
3560 /* Initialize the failure stack to the largest possible stack. This
3561 isn't necessary unless we're trying to avoid calling alloca in
3562 the search and match routines. */
3564 int num_regs
= bufp
->re_nsub
+ 1;
3566 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3568 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3570 if (! fail_stack
.stack
)
3572 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3573 * sizeof (fail_stack_elt_t
));
3576 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3578 * sizeof (fail_stack_elt_t
)));
3581 regex_grow_registers (num_regs
);
3583 #endif /* not MATCH_MAY_ALLOCATE */
3585 FREE_STACK_RETURN (REG_NOERROR
);
3586 } /* regex_compile */
3588 /* Subroutines for `regex_compile'. */
3590 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3593 store_op1 (op
, loc
, arg
)
3598 *loc
= (unsigned char) op
;
3599 STORE_NUMBER (loc
+ 1, arg
);
3603 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3606 store_op2 (op
, loc
, arg1
, arg2
)
3611 *loc
= (unsigned char) op
;
3612 STORE_NUMBER (loc
+ 1, arg1
);
3613 STORE_NUMBER (loc
+ 3, arg2
);
3617 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3618 for OP followed by two-byte integer parameter ARG. */
3621 insert_op1 (op
, loc
, arg
, end
)
3627 register unsigned char *pfrom
= end
;
3628 register unsigned char *pto
= end
+ 3;
3630 while (pfrom
!= loc
)
3633 store_op1 (op
, loc
, arg
);
3637 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3640 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3646 register unsigned char *pfrom
= end
;
3647 register unsigned char *pto
= end
+ 5;
3649 while (pfrom
!= loc
)
3652 store_op2 (op
, loc
, arg1
, arg2
);
3656 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3657 after an alternative or a begin-subexpression. We assume there is at
3658 least one character before the ^. */
3661 at_begline_loc_p (pattern
, p
, syntax
)
3662 re_char
*pattern
, *p
;
3663 reg_syntax_t syntax
;
3665 re_char
*prev
= p
- 2;
3666 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3669 /* After a subexpression? */
3670 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3671 /* After an alternative? */
3672 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3673 /* After a shy subexpression? */
3674 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3675 && prev
[-1] == '?' && prev
[-2] == '('
3676 && (syntax
& RE_NO_BK_PARENS
3677 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3681 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3682 at least one character after the $, i.e., `P < PEND'. */
3685 at_endline_loc_p (p
, pend
, syntax
)
3687 reg_syntax_t syntax
;
3690 boolean next_backslash
= *next
== '\\';
3691 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3694 /* Before a subexpression? */
3695 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3696 : next_backslash
&& next_next
&& *next_next
== ')')
3697 /* Before an alternative? */
3698 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3699 : next_backslash
&& next_next
&& *next_next
== '|');
3703 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3704 false if it's not. */
3707 group_in_compile_stack (compile_stack
, regnum
)
3708 compile_stack_type compile_stack
;
3713 for (this_element
= compile_stack
.avail
- 1;
3716 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3723 If fastmap is non-NULL, go through the pattern and fill fastmap
3724 with all the possible leading chars. If fastmap is NULL, don't
3725 bother filling it up (obviously) and only return whether the
3726 pattern could potentially match the empty string.
3728 Return 1 if p..pend might match the empty string.
3729 Return 0 if p..pend matches at least one char.
3730 Return -1 if fastmap was not updated accurately. */
3733 analyse_first (p
, pend
, fastmap
, multibyte
)
3736 const int multibyte
;
3741 /* If all elements for base leading-codes in fastmap is set, this
3742 flag is set true. */
3743 boolean match_any_multibyte_characters
= false;
3747 /* The loop below works as follows:
3748 - It has a working-list kept in the PATTERN_STACK and which basically
3749 starts by only containing a pointer to the first operation.
3750 - If the opcode we're looking at is a match against some set of
3751 chars, then we add those chars to the fastmap and go on to the
3752 next work element from the worklist (done via `break').
3753 - If the opcode is a control operator on the other hand, we either
3754 ignore it (if it's meaningless at this point, such as `start_memory')
3755 or execute it (if it's a jump). If the jump has several destinations
3756 (i.e. `on_failure_jump'), then we push the other destination onto the
3758 We guarantee termination by ignoring backward jumps (more or less),
3759 so that `p' is monotonically increasing. More to the point, we
3760 never set `p' (or push) anything `<= p1'. */
3764 /* `p1' is used as a marker of how far back a `on_failure_jump'
3765 can go without being ignored. It is normally equal to `p'
3766 (which prevents any backward `on_failure_jump') except right
3767 after a plain `jump', to allow patterns such as:
3770 10: on_failure_jump 3
3771 as used for the *? operator. */
3774 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3781 /* If the first character has to match a backreference, that means
3782 that the group was empty (since it already matched). Since this
3783 is the only case that interests us here, we can assume that the
3784 backreference must match the empty string. */
3789 /* Following are the cases which match a character. These end
3795 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3797 if (SINGLE_BYTE_CHAR_P (c
))
3806 /* We could put all the chars except for \n (and maybe \0)
3807 but we don't bother since it is generally not worth it. */
3808 if (!fastmap
) break;
3813 /* Chars beyond end of bitmap are possible matches.
3814 All the single-byte codes can occur in multibyte buffers.
3815 So any that are not listed in the charset
3816 are possible matches, even in multibyte buffers. */
3817 if (!fastmap
) break;
3818 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3819 j
< (1 << BYTEWIDTH
); j
++)
3823 if (!fastmap
) break;
3824 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3825 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3827 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3830 if ((not && multibyte
)
3831 /* Any character set can possibly contain a character
3832 which doesn't match the specified set of characters. */
3833 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3834 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3835 /* If we can match a character class, we can match
3836 any character set. */
3838 set_fastmap_for_multibyte_characters
:
3839 if (match_any_multibyte_characters
== false)
3841 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3842 if (BASE_LEADING_CODE_P (j
))
3844 match_any_multibyte_characters
= true;
3848 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3849 && match_any_multibyte_characters
== false)
3851 /* Set fastmap[I] 1 where I is a base leading code of each
3852 multibyte character in the range table. */
3855 /* Make P points the range table. `+ 2' is to skip flag
3856 bits for a character class. */
3857 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3859 /* Extract the number of ranges in range table into COUNT. */
3860 EXTRACT_NUMBER_AND_INCR (count
, p
);
3861 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3863 /* Extract the start of each range. */
3864 EXTRACT_CHARACTER (c
, p
);
3865 j
= CHAR_CHARSET (c
);
3866 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3873 if (!fastmap
) break;
3875 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3877 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3878 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3882 /* This match depends on text properties. These end with
3883 aborting optimizations. */
3887 case notcategoryspec
:
3888 if (!fastmap
) break;
3889 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3891 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3892 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3896 /* Any character set can possibly contain a character
3897 whose category is K (or not). */
3898 goto set_fastmap_for_multibyte_characters
;
3901 /* All cases after this match the empty string. These end with
3923 EXTRACT_NUMBER_AND_INCR (j
, p
);
3925 /* Backward jumps can only go back to code that we've already
3926 visited. `re_compile' should make sure this is true. */
3929 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3931 case on_failure_jump
:
3932 case on_failure_keep_string_jump
:
3933 case on_failure_jump_loop
:
3934 case on_failure_jump_nastyloop
:
3935 case on_failure_jump_smart
:
3941 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3942 to jump back to "just after here". */
3945 case on_failure_jump
:
3946 case on_failure_keep_string_jump
:
3947 case on_failure_jump_nastyloop
:
3948 case on_failure_jump_loop
:
3949 case on_failure_jump_smart
:
3950 EXTRACT_NUMBER_AND_INCR (j
, p
);
3952 ; /* Backward jump to be ignored. */
3954 { /* We have to look down both arms.
3955 We first go down the "straight" path so as to minimize
3956 stack usage when going through alternatives. */
3957 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
3965 /* This code simply does not properly handle forward jump_n. */
3966 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3968 /* jump_n can either jump or fall through. The (backward) jump
3969 case has already been handled, so we only need to look at the
3970 fallthrough case. */
3974 /* If N == 0, it should be an on_failure_jump_loop instead. */
3975 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3977 /* We only care about one iteration of the loop, so we don't
3978 need to consider the case where this behaves like an
3995 abort (); /* We have listed all the cases. */
3998 /* Getting here means we have found the possible starting
3999 characters for one path of the pattern -- and that the empty
4000 string does not match. We need not follow this path further. */
4004 /* We reached the end without matching anything. */
4007 } /* analyse_first */
4009 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4010 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4011 characters can start a string that matches the pattern. This fastmap
4012 is used by re_search to skip quickly over impossible starting points.
4014 Character codes above (1 << BYTEWIDTH) are not represented in the
4015 fastmap, but the leading codes are represented. Thus, the fastmap
4016 indicates which character sets could start a match.
4018 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4019 area as BUFP->fastmap.
4021 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4024 Returns 0 if we succeed, -2 if an internal error. */
4027 re_compile_fastmap (bufp
)
4028 struct re_pattern_buffer
*bufp
;
4030 char *fastmap
= bufp
->fastmap
;
4033 assert (fastmap
&& bufp
->buffer
);
4035 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4036 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4038 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4039 fastmap
, RE_MULTIBYTE_P (bufp
));
4040 bufp
->can_be_null
= (analysis
!= 0);
4042 } /* re_compile_fastmap */
4044 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4045 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4046 this memory for recording register information. STARTS and ENDS
4047 must be allocated using the malloc library routine, and must each
4048 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4050 If NUM_REGS == 0, then subsequent matches should allocate their own
4053 Unless this function is called, the first search or match using
4054 PATTERN_BUFFER will allocate its own register data, without
4055 freeing the old data. */
4058 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4059 struct re_pattern_buffer
*bufp
;
4060 struct re_registers
*regs
;
4062 regoff_t
*starts
, *ends
;
4066 bufp
->regs_allocated
= REGS_REALLOCATE
;
4067 regs
->num_regs
= num_regs
;
4068 regs
->start
= starts
;
4073 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4075 regs
->start
= regs
->end
= (regoff_t
*) 0;
4078 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4080 /* Searching routines. */
4082 /* Like re_search_2, below, but only one string is specified, and
4083 doesn't let you say where to stop matching. */
4086 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4087 struct re_pattern_buffer
*bufp
;
4089 int size
, startpos
, range
;
4090 struct re_registers
*regs
;
4092 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4095 WEAK_ALIAS (__re_search
, re_search
)
4097 /* Head address of virtual concatenation of string. */
4098 #define HEAD_ADDR_VSTRING(P) \
4099 (((P) >= size1 ? string2 : string1))
4101 /* End address of virtual concatenation of string. */
4102 #define STOP_ADDR_VSTRING(P) \
4103 (((P) >= size1 ? string2 + size2 : string1 + size1))
4105 /* Address of POS in the concatenation of virtual string. */
4106 #define POS_ADDR_VSTRING(POS) \
4107 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4109 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4110 virtual concatenation of STRING1 and STRING2, starting first at index
4111 STARTPOS, then at STARTPOS + 1, and so on.
4113 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4115 RANGE is how far to scan while trying to match. RANGE = 0 means try
4116 only at STARTPOS; in general, the last start tried is STARTPOS +
4119 In REGS, return the indices of the virtual concatenation of STRING1
4120 and STRING2 that matched the entire BUFP->buffer and its contained
4123 Do not consider matching one past the index STOP in the virtual
4124 concatenation of STRING1 and STRING2.
4126 We return either the position in the strings at which the match was
4127 found, -1 if no match, or -2 if error (such as failure
4131 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4132 struct re_pattern_buffer
*bufp
;
4133 const char *str1
, *str2
;
4137 struct re_registers
*regs
;
4141 re_char
*string1
= (re_char
*) str1
;
4142 re_char
*string2
= (re_char
*) str2
;
4143 register char *fastmap
= bufp
->fastmap
;
4144 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4145 int total_size
= size1
+ size2
;
4146 int endpos
= startpos
+ range
;
4147 boolean anchored_start
;
4149 /* Nonzero if we have to concern multibyte character. */
4150 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4152 /* Check for out-of-range STARTPOS. */
4153 if (startpos
< 0 || startpos
> total_size
)
4156 /* Fix up RANGE if it might eventually take us outside
4157 the virtual concatenation of STRING1 and STRING2.
4158 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4160 range
= 0 - startpos
;
4161 else if (endpos
> total_size
)
4162 range
= total_size
- startpos
;
4164 /* If the search isn't to be a backwards one, don't waste time in a
4165 search for a pattern anchored at beginning of buffer. */
4166 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4175 /* In a forward search for something that starts with \=.
4176 don't keep searching past point. */
4177 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4179 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4185 /* Update the fastmap now if not correct already. */
4186 if (fastmap
&& !bufp
->fastmap_accurate
)
4187 re_compile_fastmap (bufp
);
4189 /* See whether the pattern is anchored. */
4190 anchored_start
= (bufp
->buffer
[0] == begline
);
4193 gl_state
.object
= re_match_object
;
4195 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4197 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4201 /* Loop through the string, looking for a place to start matching. */
4204 /* If the pattern is anchored,
4205 skip quickly past places we cannot match.
4206 We don't bother to treat startpos == 0 specially
4207 because that case doesn't repeat. */
4208 if (anchored_start
&& startpos
> 0)
4210 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4211 : string2
[startpos
- size1
- 1])
4216 /* If a fastmap is supplied, skip quickly over characters that
4217 cannot be the start of a match. If the pattern can match the
4218 null string, however, we don't need to skip characters; we want
4219 the first null string. */
4220 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4222 register re_char
*d
;
4223 register re_wchar_t buf_ch
;
4225 d
= POS_ADDR_VSTRING (startpos
);
4227 if (range
> 0) /* Searching forwards. */
4229 register int lim
= 0;
4232 if (startpos
< size1
&& startpos
+ range
>= size1
)
4233 lim
= range
- (size1
- startpos
);
4235 /* Written out as an if-else to avoid testing `translate'
4237 if (RE_TRANSLATE_P (translate
))
4244 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4247 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4252 range
-= buf_charlen
;
4257 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
4264 while (range
> lim
&& !fastmap
[*d
])
4270 startpos
+= irange
- range
;
4272 else /* Searching backwards. */
4274 int room
= (startpos
>= size1
4275 ? size2
+ size1
- startpos
4276 : size1
- startpos
);
4277 buf_ch
= RE_STRING_CHAR (d
, room
);
4278 buf_ch
= TRANSLATE (buf_ch
);
4280 if (! (buf_ch
>= 0400
4281 || fastmap
[buf_ch
]))
4286 /* If can't match the null string, and that's all we have left, fail. */
4287 if (range
>= 0 && startpos
== total_size
&& fastmap
4288 && !bufp
->can_be_null
)
4291 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4292 startpos
, regs
, stop
);
4293 #ifndef REGEX_MALLOC
4310 /* Update STARTPOS to the next character boundary. */
4313 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4314 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4315 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4333 /* Update STARTPOS to the previous character boundary. */
4336 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4338 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4340 /* Find the head of multibyte form. */
4341 PREV_CHAR_BOUNDARY (p
, phead
);
4342 range
+= p0
- 1 - p
;
4346 startpos
-= p0
- 1 - p
;
4352 WEAK_ALIAS (__re_search_2
, re_search_2
)
4354 /* Declarations and macros for re_match_2. */
4356 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4358 RE_TRANSLATE_TYPE translate
,
4359 const int multibyte
));
4361 /* This converts PTR, a pointer into one of the search strings `string1'
4362 and `string2' into an offset from the beginning of that string. */
4363 #define POINTER_TO_OFFSET(ptr) \
4364 (FIRST_STRING_P (ptr) \
4365 ? ((regoff_t) ((ptr) - string1)) \
4366 : ((regoff_t) ((ptr) - string2 + size1)))
4368 /* Call before fetching a character with *d. This switches over to
4369 string2 if necessary.
4370 Check re_match_2_internal for a discussion of why end_match_2 might
4371 not be within string2 (but be equal to end_match_1 instead). */
4372 #define PREFETCH() \
4375 /* End of string2 => fail. */ \
4376 if (dend == end_match_2) \
4378 /* End of string1 => advance to string2. */ \
4380 dend = end_match_2; \
4383 /* Call before fetching a char with *d if you already checked other limits.
4384 This is meant for use in lookahead operations like wordend, etc..
4385 where we might need to look at parts of the string that might be
4386 outside of the LIMITs (i.e past `stop'). */
4387 #define PREFETCH_NOLIMIT() \
4391 dend = end_match_2; \
4394 /* Test if at very beginning or at very end of the virtual concatenation
4395 of `string1' and `string2'. If only one string, it's `string2'. */
4396 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4397 #define AT_STRINGS_END(d) ((d) == end2)
4400 /* Test if D points to a character which is word-constituent. We have
4401 two special cases to check for: if past the end of string1, look at
4402 the first character in string2; and if before the beginning of
4403 string2, look at the last character in string1. */
4404 #define WORDCHAR_P(d) \
4405 (SYNTAX ((d) == end1 ? *string2 \
4406 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4409 /* Disabled due to a compiler bug -- see comment at case wordbound */
4411 /* The comment at case wordbound is following one, but we don't use
4412 AT_WORD_BOUNDARY anymore to support multibyte form.
4414 The DEC Alpha C compiler 3.x generates incorrect code for the
4415 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4416 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4417 macro and introducing temporary variables works around the bug. */
4420 /* Test if the character before D and the one at D differ with respect
4421 to being word-constituent. */
4422 #define AT_WORD_BOUNDARY(d) \
4423 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4424 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4427 /* Free everything we malloc. */
4428 #ifdef MATCH_MAY_ALLOCATE
4429 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4430 # define FREE_VARIABLES() \
4432 REGEX_FREE_STACK (fail_stack.stack); \
4433 FREE_VAR (regstart); \
4434 FREE_VAR (regend); \
4435 FREE_VAR (best_regstart); \
4436 FREE_VAR (best_regend); \
4439 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4440 #endif /* not MATCH_MAY_ALLOCATE */
4443 /* Optimization routines. */
4445 /* If the operation is a match against one or more chars,
4446 return a pointer to the next operation, else return NULL. */
4451 switch (SWITCH_ENUM_CAST (*p
++))
4462 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4465 p
= CHARSET_RANGE_TABLE (p
- 1);
4466 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4467 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4470 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4477 case notcategoryspec
:
4489 /* Jump over non-matching operations. */
4491 skip_noops (p
, pend
)
4497 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4506 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4517 /* Non-zero if "p1 matches something" implies "p2 fails". */
4519 mutually_exclusive_p (bufp
, p1
, p2
)
4520 struct re_pattern_buffer
*bufp
;
4524 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4525 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4527 assert (p1
>= bufp
->buffer
&& p1
< pend
4528 && p2
>= bufp
->buffer
&& p2
<= pend
);
4530 /* Skip over open/close-group commands.
4531 If what follows this loop is a ...+ construct,
4532 look at what begins its body, since we will have to
4533 match at least one of that. */
4534 p2
= skip_noops (p2
, pend
);
4535 /* The same skip can be done for p1, except that this function
4536 is only used in the case where p1 is a simple match operator. */
4537 /* p1 = skip_noops (p1, pend); */
4539 assert (p1
>= bufp
->buffer
&& p1
< pend
4540 && p2
>= bufp
->buffer
&& p2
<= pend
);
4542 op2
= p2
== pend
? succeed
: *p2
;
4544 switch (SWITCH_ENUM_CAST (op2
))
4548 /* If we're at the end of the pattern, we can change. */
4549 if (skip_one_char (p1
))
4551 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4559 register re_wchar_t c
4560 = (re_opcode_t
) *p2
== endline
? '\n'
4561 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4563 if ((re_opcode_t
) *p1
== exactn
)
4565 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4567 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4572 else if ((re_opcode_t
) *p1
== charset
4573 || (re_opcode_t
) *p1
== charset_not
)
4575 int not = (re_opcode_t
) *p1
== charset_not
;
4577 /* Test if C is listed in charset (or charset_not)
4579 if (SINGLE_BYTE_CHAR_P (c
))
4581 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4582 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4585 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4586 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4588 /* `not' is equal to 1 if c would match, which means
4589 that we can't change to pop_failure_jump. */
4592 DEBUG_PRINT1 (" No match => fast loop.\n");
4596 else if ((re_opcode_t
) *p1
== anychar
4599 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4607 if ((re_opcode_t
) *p1
== exactn
)
4608 /* Reuse the code above. */
4609 return mutually_exclusive_p (bufp
, p2
, p1
);
4611 /* It is hard to list up all the character in charset
4612 P2 if it includes multibyte character. Give up in
4614 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4616 /* Now, we are sure that P2 has no range table.
4617 So, for the size of bitmap in P2, `p2[1]' is
4618 enough. But P1 may have range table, so the
4619 size of bitmap table of P1 is extracted by
4620 using macro `CHARSET_BITMAP_SIZE'.
4622 Since we know that all the character listed in
4623 P2 is ASCII, it is enough to test only bitmap
4626 if ((re_opcode_t
) *p1
== charset
)
4629 /* We win if the charset inside the loop
4630 has no overlap with the one after the loop. */
4633 && idx
< CHARSET_BITMAP_SIZE (p1
));
4635 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4639 || idx
== CHARSET_BITMAP_SIZE (p1
))
4641 DEBUG_PRINT1 (" No match => fast loop.\n");
4645 else if ((re_opcode_t
) *p1
== charset_not
)
4648 /* We win if the charset_not inside the loop lists
4649 every character listed in the charset after. */
4650 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4651 if (! (p2
[2 + idx
] == 0
4652 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4653 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4658 DEBUG_PRINT1 (" No match => fast loop.\n");
4667 switch (SWITCH_ENUM_CAST (*p1
))
4671 /* Reuse the code above. */
4672 return mutually_exclusive_p (bufp
, p2
, p1
);
4674 /* When we have two charset_not, it's very unlikely that
4675 they don't overlap. The union of the two sets of excluded
4676 chars should cover all possible chars, which, as a matter of
4677 fact, is virtually impossible in multibyte buffers. */
4683 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4685 return ((re_opcode_t
) *p1
== syntaxspec
4686 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4688 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4691 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4693 return ((re_opcode_t
) *p1
== notsyntaxspec
4694 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4696 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4699 return (((re_opcode_t
) *p1
== notsyntaxspec
4700 || (re_opcode_t
) *p1
== syntaxspec
)
4705 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4706 case notcategoryspec
:
4707 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4719 /* Matching routines. */
4721 #ifndef emacs /* Emacs never uses this. */
4722 /* re_match is like re_match_2 except it takes only a single string. */
4725 re_match (bufp
, string
, size
, pos
, regs
)
4726 struct re_pattern_buffer
*bufp
;
4729 struct re_registers
*regs
;
4731 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4733 # if defined C_ALLOCA && !defined REGEX_MALLOC
4738 WEAK_ALIAS (__re_match
, re_match
)
4739 #endif /* not emacs */
4742 /* In Emacs, this is the string or buffer in which we
4743 are matching. It is used for looking up syntax properties. */
4744 Lisp_Object re_match_object
;
4747 /* re_match_2 matches the compiled pattern in BUFP against the
4748 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4749 and SIZE2, respectively). We start matching at POS, and stop
4752 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4753 store offsets for the substring each group matched in REGS. See the
4754 documentation for exactly how many groups we fill.
4756 We return -1 if no match, -2 if an internal error (such as the
4757 failure stack overflowing). Otherwise, we return the length of the
4758 matched substring. */
4761 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4762 struct re_pattern_buffer
*bufp
;
4763 const char *string1
, *string2
;
4766 struct re_registers
*regs
;
4773 gl_state
.object
= re_match_object
;
4774 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4775 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4778 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4779 (re_char
*) string2
, size2
,
4781 #if defined C_ALLOCA && !defined REGEX_MALLOC
4786 WEAK_ALIAS (__re_match_2
, re_match_2
)
4788 /* This is a separate function so that we can force an alloca cleanup
4791 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4792 struct re_pattern_buffer
*bufp
;
4793 re_char
*string1
, *string2
;
4796 struct re_registers
*regs
;
4799 /* General temporaries. */
4804 /* Just past the end of the corresponding string. */
4805 re_char
*end1
, *end2
;
4807 /* Pointers into string1 and string2, just past the last characters in
4808 each to consider matching. */
4809 re_char
*end_match_1
, *end_match_2
;
4811 /* Where we are in the data, and the end of the current string. */
4814 /* Used sometimes to remember where we were before starting matching
4815 an operator so that we can go back in case of failure. This "atomic"
4816 behavior of matching opcodes is indispensable to the correctness
4817 of the on_failure_keep_string_jump optimization. */
4820 /* Where we are in the pattern, and the end of the pattern. */
4821 re_char
*p
= bufp
->buffer
;
4822 re_char
*pend
= p
+ bufp
->used
;
4824 /* We use this to map every character in the string. */
4825 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4827 /* Nonzero if we have to concern multibyte character. */
4828 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4830 /* Failure point stack. Each place that can handle a failure further
4831 down the line pushes a failure point on this stack. It consists of
4832 regstart, and regend for all registers corresponding to
4833 the subexpressions we're currently inside, plus the number of such
4834 registers, and, finally, two char *'s. The first char * is where
4835 to resume scanning the pattern; the second one is where to resume
4836 scanning the strings. */
4837 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4838 fail_stack_type fail_stack
;
4841 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4844 #if defined REL_ALLOC && defined REGEX_MALLOC
4845 /* This holds the pointer to the failure stack, when
4846 it is allocated relocatably. */
4847 fail_stack_elt_t
*failure_stack_ptr
;
4850 /* We fill all the registers internally, independent of what we
4851 return, for use in backreferences. The number here includes
4852 an element for register zero. */
4853 size_t num_regs
= bufp
->re_nsub
+ 1;
4855 /* Information on the contents of registers. These are pointers into
4856 the input strings; they record just what was matched (on this
4857 attempt) by a subexpression part of the pattern, that is, the
4858 regnum-th regstart pointer points to where in the pattern we began
4859 matching and the regnum-th regend points to right after where we
4860 stopped matching the regnum-th subexpression. (The zeroth register
4861 keeps track of what the whole pattern matches.) */
4862 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4863 re_char
**regstart
, **regend
;
4866 /* The following record the register info as found in the above
4867 variables when we find a match better than any we've seen before.
4868 This happens as we backtrack through the failure points, which in
4869 turn happens only if we have not yet matched the entire string. */
4870 unsigned best_regs_set
= false;
4871 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4872 re_char
**best_regstart
, **best_regend
;
4875 /* Logically, this is `best_regend[0]'. But we don't want to have to
4876 allocate space for that if we're not allocating space for anything
4877 else (see below). Also, we never need info about register 0 for
4878 any of the other register vectors, and it seems rather a kludge to
4879 treat `best_regend' differently than the rest. So we keep track of
4880 the end of the best match so far in a separate variable. We
4881 initialize this to NULL so that when we backtrack the first time
4882 and need to test it, it's not garbage. */
4883 re_char
*match_end
= NULL
;
4886 /* Counts the total number of registers pushed. */
4887 unsigned num_regs_pushed
= 0;
4890 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4894 #ifdef MATCH_MAY_ALLOCATE
4895 /* Do not bother to initialize all the register variables if there are
4896 no groups in the pattern, as it takes a fair amount of time. If
4897 there are groups, we include space for register 0 (the whole
4898 pattern), even though we never use it, since it simplifies the
4899 array indexing. We should fix this. */
4902 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4903 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4904 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4905 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4907 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4915 /* We must initialize all our variables to NULL, so that
4916 `FREE_VARIABLES' doesn't try to free them. */
4917 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4919 #endif /* MATCH_MAY_ALLOCATE */
4921 /* The starting position is bogus. */
4922 if (pos
< 0 || pos
> size1
+ size2
)
4928 /* Initialize subexpression text positions to -1 to mark ones that no
4929 start_memory/stop_memory has been seen for. Also initialize the
4930 register information struct. */
4931 for (reg
= 1; reg
< num_regs
; reg
++)
4932 regstart
[reg
] = regend
[reg
] = NULL
;
4934 /* We move `string1' into `string2' if the latter's empty -- but not if
4935 `string1' is null. */
4936 if (size2
== 0 && string1
!= NULL
)
4943 end1
= string1
+ size1
;
4944 end2
= string2
+ size2
;
4946 /* `p' scans through the pattern as `d' scans through the data.
4947 `dend' is the end of the input string that `d' points within. `d'
4948 is advanced into the following input string whenever necessary, but
4949 this happens before fetching; therefore, at the beginning of the
4950 loop, `d' can be pointing at the end of a string, but it cannot
4954 /* Only match within string2. */
4955 d
= string2
+ pos
- size1
;
4956 dend
= end_match_2
= string2
+ stop
- size1
;
4957 end_match_1
= end1
; /* Just to give it a value. */
4963 /* Only match within string1. */
4964 end_match_1
= string1
+ stop
;
4966 When we reach end_match_1, PREFETCH normally switches to string2.
4967 But in the present case, this means that just doing a PREFETCH
4968 makes us jump from `stop' to `gap' within the string.
4969 What we really want here is for the search to stop as
4970 soon as we hit end_match_1. That's why we set end_match_2
4971 to end_match_1 (since PREFETCH fails as soon as we hit
4973 end_match_2
= end_match_1
;
4976 { /* It's important to use this code when stop == size so that
4977 moving `d' from end1 to string2 will not prevent the d == dend
4978 check from catching the end of string. */
4980 end_match_2
= string2
+ stop
- size1
;
4986 DEBUG_PRINT1 ("The compiled pattern is: ");
4987 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4988 DEBUG_PRINT1 ("The string to match is: `");
4989 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4990 DEBUG_PRINT1 ("'\n");
4992 /* This loops over pattern commands. It exits by returning from the
4993 function if the match is complete, or it drops through if the match
4994 fails at this starting point in the input data. */
4997 DEBUG_PRINT2 ("\n%p: ", p
);
5000 { /* End of pattern means we might have succeeded. */
5001 DEBUG_PRINT1 ("end of pattern ... ");
5003 /* If we haven't matched the entire string, and we want the
5004 longest match, try backtracking. */
5005 if (d
!= end_match_2
)
5007 /* 1 if this match ends in the same string (string1 or string2)
5008 as the best previous match. */
5009 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5010 == FIRST_STRING_P (d
));
5011 /* 1 if this match is the best seen so far. */
5012 boolean best_match_p
;
5014 /* AIX compiler got confused when this was combined
5015 with the previous declaration. */
5017 best_match_p
= d
> match_end
;
5019 best_match_p
= !FIRST_STRING_P (d
);
5021 DEBUG_PRINT1 ("backtracking.\n");
5023 if (!FAIL_STACK_EMPTY ())
5024 { /* More failure points to try. */
5026 /* If exceeds best match so far, save it. */
5027 if (!best_regs_set
|| best_match_p
)
5029 best_regs_set
= true;
5032 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5034 for (reg
= 1; reg
< num_regs
; reg
++)
5036 best_regstart
[reg
] = regstart
[reg
];
5037 best_regend
[reg
] = regend
[reg
];
5043 /* If no failure points, don't restore garbage. And if
5044 last match is real best match, don't restore second
5046 else if (best_regs_set
&& !best_match_p
)
5049 /* Restore best match. It may happen that `dend ==
5050 end_match_1' while the restored d is in string2.
5051 For example, the pattern `x.*y.*z' against the
5052 strings `x-' and `y-z-', if the two strings are
5053 not consecutive in memory. */
5054 DEBUG_PRINT1 ("Restoring best registers.\n");
5057 dend
= ((d
>= string1
&& d
<= end1
)
5058 ? end_match_1
: end_match_2
);
5060 for (reg
= 1; reg
< num_regs
; reg
++)
5062 regstart
[reg
] = best_regstart
[reg
];
5063 regend
[reg
] = best_regend
[reg
];
5066 } /* d != end_match_2 */
5069 DEBUG_PRINT1 ("Accepting match.\n");
5071 /* If caller wants register contents data back, do it. */
5072 if (regs
&& !bufp
->no_sub
)
5074 /* Have the register data arrays been allocated? */
5075 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5076 { /* No. So allocate them with malloc. We need one
5077 extra element beyond `num_regs' for the `-1' marker
5079 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5080 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5081 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5082 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5087 bufp
->regs_allocated
= REGS_REALLOCATE
;
5089 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5090 { /* Yes. If we need more elements than were already
5091 allocated, reallocate them. If we need fewer, just
5093 if (regs
->num_regs
< num_regs
+ 1)
5095 regs
->num_regs
= num_regs
+ 1;
5096 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5097 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5098 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5107 /* These braces fend off a "empty body in an else-statement"
5108 warning under GCC when assert expands to nothing. */
5109 assert (bufp
->regs_allocated
== REGS_FIXED
);
5112 /* Convert the pointer data in `regstart' and `regend' to
5113 indices. Register zero has to be set differently,
5114 since we haven't kept track of any info for it. */
5115 if (regs
->num_regs
> 0)
5117 regs
->start
[0] = pos
;
5118 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5121 /* Go through the first `min (num_regs, regs->num_regs)'
5122 registers, since that is all we initialized. */
5123 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5125 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5126 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5130 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5132 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5136 /* If the regs structure we return has more elements than
5137 were in the pattern, set the extra elements to -1. If
5138 we (re)allocated the registers, this is the case,
5139 because we always allocate enough to have at least one
5141 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5142 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5143 } /* regs && !bufp->no_sub */
5145 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5146 nfailure_points_pushed
, nfailure_points_popped
,
5147 nfailure_points_pushed
- nfailure_points_popped
);
5148 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5150 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5152 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5158 /* Otherwise match next pattern command. */
5159 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5161 /* Ignore these. Used to ignore the n of succeed_n's which
5162 currently have n == 0. */
5164 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5168 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5171 /* Match the next n pattern characters exactly. The following
5172 byte in the pattern defines n, and the n bytes after that
5173 are the characters to match. */
5176 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5178 /* Remember the start point to rollback upon failure. */
5181 /* This is written out as an if-else so we don't waste time
5182 testing `translate' inside the loop. */
5183 if (RE_TRANSLATE_P (translate
))
5188 int pat_charlen
, buf_charlen
;
5189 unsigned int pat_ch
, buf_ch
;
5192 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5193 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5195 if (RE_TRANSLATE (translate
, buf_ch
)
5204 mcnt
-= pat_charlen
;
5211 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5236 /* Match any character except possibly a newline or a null. */
5242 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5245 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5246 buf_ch
= TRANSLATE (buf_ch
);
5248 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5250 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5251 && buf_ch
== '\000'))
5254 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5263 register unsigned int c
;
5264 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5267 /* Start of actual range_table, or end of bitmap if there is no
5269 re_char
*range_table
;
5271 /* Nonzero if there is a range table. */
5272 int range_table_exists
;
5274 /* Number of ranges of range table. This is not included
5275 in the initial byte-length of the command. */
5278 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5280 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5282 if (range_table_exists
)
5284 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5285 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5289 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5290 c
= TRANSLATE (c
); /* The character to match. */
5292 if (SINGLE_BYTE_CHAR_P (c
))
5293 { /* Lookup bitmap. */
5294 /* Cast to `unsigned' instead of `unsigned char' in
5295 case the bit list is a full 32 bytes long. */
5296 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5297 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5301 else if (range_table_exists
)
5303 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5305 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5306 | (class_bits
& BIT_MULTIBYTE
)
5307 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5308 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5309 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5310 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5313 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5317 if (range_table_exists
)
5318 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5320 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5322 if (!not) goto fail
;
5329 /* The beginning of a group is represented by start_memory.
5330 The argument is the register number. The text
5331 matched within the group is recorded (in the internal
5332 registers data structure) under the register number. */
5334 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5336 /* In case we need to undo this operation (via backtracking). */
5337 PUSH_FAILURE_REG ((unsigned int)*p
);
5340 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5341 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5343 /* Move past the register number and inner group count. */
5348 /* The stop_memory opcode represents the end of a group. Its
5349 argument is the same as start_memory's: the register number. */
5351 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5353 assert (!REG_UNSET (regstart
[*p
]));
5354 /* Strictly speaking, there should be code such as:
5356 assert (REG_UNSET (regend[*p]));
5357 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5359 But the only info to be pushed is regend[*p] and it is known to
5360 be UNSET, so there really isn't anything to push.
5361 Not pushing anything, on the other hand deprives us from the
5362 guarantee that regend[*p] is UNSET since undoing this operation
5363 will not reset its value properly. This is not important since
5364 the value will only be read on the next start_memory or at
5365 the very end and both events can only happen if this stop_memory
5369 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5371 /* Move past the register number and the inner group count. */
5376 /* \<digit> has been turned into a `duplicate' command which is
5377 followed by the numeric value of <digit> as the register number. */
5380 register re_char
*d2
, *dend2
;
5381 int regno
= *p
++; /* Get which register to match against. */
5382 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5384 /* Can't back reference a group which we've never matched. */
5385 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5388 /* Where in input to try to start matching. */
5389 d2
= regstart
[regno
];
5391 /* Remember the start point to rollback upon failure. */
5394 /* Where to stop matching; if both the place to start and
5395 the place to stop matching are in the same string, then
5396 set to the place to stop, otherwise, for now have to use
5397 the end of the first string. */
5399 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5400 == FIRST_STRING_P (regend
[regno
]))
5401 ? regend
[regno
] : end_match_1
);
5404 /* If necessary, advance to next segment in register
5408 if (dend2
== end_match_2
) break;
5409 if (dend2
== regend
[regno
]) break;
5411 /* End of string1 => advance to string2. */
5413 dend2
= regend
[regno
];
5415 /* At end of register contents => success */
5416 if (d2
== dend2
) break;
5418 /* If necessary, advance to next segment in data. */
5421 /* How many characters left in this segment to match. */
5424 /* Want how many consecutive characters we can match in
5425 one shot, so, if necessary, adjust the count. */
5426 if (mcnt
> dend2
- d2
)
5429 /* Compare that many; failure if mismatch, else move
5431 if (RE_TRANSLATE_P (translate
)
5432 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5433 : memcmp (d
, d2
, mcnt
))
5438 d
+= mcnt
, d2
+= mcnt
;
5444 /* begline matches the empty string at the beginning of the string
5445 (unless `not_bol' is set in `bufp'), and after newlines. */
5447 DEBUG_PRINT1 ("EXECUTING begline.\n");
5449 if (AT_STRINGS_BEG (d
))
5451 if (!bufp
->not_bol
) break;
5456 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5460 /* In all other cases, we fail. */
5464 /* endline is the dual of begline. */
5466 DEBUG_PRINT1 ("EXECUTING endline.\n");
5468 if (AT_STRINGS_END (d
))
5470 if (!bufp
->not_eol
) break;
5474 PREFETCH_NOLIMIT ();
5481 /* Match at the very beginning of the data. */
5483 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5484 if (AT_STRINGS_BEG (d
))
5489 /* Match at the very end of the data. */
5491 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5492 if (AT_STRINGS_END (d
))
5497 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5498 pushes NULL as the value for the string on the stack. Then
5499 `POP_FAILURE_POINT' will keep the current value for the
5500 string, instead of restoring it. To see why, consider
5501 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5502 then the . fails against the \n. But the next thing we want
5503 to do is match the \n against the \n; if we restored the
5504 string value, we would be back at the foo.
5506 Because this is used only in specific cases, we don't need to
5507 check all the things that `on_failure_jump' does, to make
5508 sure the right things get saved on the stack. Hence we don't
5509 share its code. The only reason to push anything on the
5510 stack at all is that otherwise we would have to change
5511 `anychar's code to do something besides goto fail in this
5512 case; that seems worse than this. */
5513 case on_failure_keep_string_jump
:
5514 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5515 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5518 PUSH_FAILURE_POINT (p
- 3, NULL
);
5521 /* A nasty loop is introduced by the non-greedy *? and +?.
5522 With such loops, the stack only ever contains one failure point
5523 at a time, so that a plain on_failure_jump_loop kind of
5524 cycle detection cannot work. Worse yet, such a detection
5525 can not only fail to detect a cycle, but it can also wrongly
5526 detect a cycle (between different instantiations of the same
5528 So the method used for those nasty loops is a little different:
5529 We use a special cycle-detection-stack-frame which is pushed
5530 when the on_failure_jump_nastyloop failure-point is *popped*.
5531 This special frame thus marks the beginning of one iteration
5532 through the loop and we can hence easily check right here
5533 whether something matched between the beginning and the end of
5535 case on_failure_jump_nastyloop
:
5536 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5537 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5540 assert ((re_opcode_t
)p
[-4] == no_op
);
5543 CHECK_INFINITE_LOOP (p
- 4, d
);
5545 /* If there's a cycle, just continue without pushing
5546 this failure point. The failure point is the "try again"
5547 option, which shouldn't be tried.
5548 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5549 PUSH_FAILURE_POINT (p
- 3, d
);
5553 /* Simple loop detecting on_failure_jump: just check on the
5554 failure stack if the same spot was already hit earlier. */
5555 case on_failure_jump_loop
:
5557 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5558 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5562 CHECK_INFINITE_LOOP (p
- 3, d
);
5564 /* If there's a cycle, get out of the loop, as if the matching
5565 had failed. We used to just `goto fail' here, but that was
5566 aborting the search a bit too early: we want to keep the
5567 empty-loop-match and keep matching after the loop.
5568 We want (x?)*y\1z to match both xxyz and xxyxz. */
5571 PUSH_FAILURE_POINT (p
- 3, d
);
5576 /* Uses of on_failure_jump:
5578 Each alternative starts with an on_failure_jump that points
5579 to the beginning of the next alternative. Each alternative
5580 except the last ends with a jump that in effect jumps past
5581 the rest of the alternatives. (They really jump to the
5582 ending jump of the following alternative, because tensioning
5583 these jumps is a hassle.)
5585 Repeats start with an on_failure_jump that points past both
5586 the repetition text and either the following jump or
5587 pop_failure_jump back to this on_failure_jump. */
5588 case on_failure_jump
:
5589 IMMEDIATE_QUIT_CHECK
;
5590 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5591 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5594 PUSH_FAILURE_POINT (p
-3, d
);
5597 /* This operation is used for greedy *.
5598 Compare the beginning of the repeat with what in the
5599 pattern follows its end. If we can establish that there
5600 is nothing that they would both match, i.e., that we
5601 would have to backtrack because of (as in, e.g., `a*a')
5602 then we can use a non-backtracking loop based on
5603 on_failure_keep_string_jump instead of on_failure_jump. */
5604 case on_failure_jump_smart
:
5605 IMMEDIATE_QUIT_CHECK
;
5606 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5607 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5610 re_char
*p1
= p
; /* Next operation. */
5611 /* Here, we discard `const', making re_match non-reentrant. */
5612 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5613 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5615 p
-= 3; /* Reset so that we will re-execute the
5616 instruction once it's been changed. */
5618 EXTRACT_NUMBER (mcnt
, p2
- 2);
5620 /* Ensure this is a indeed the trivial kind of loop
5621 we are expecting. */
5622 assert (skip_one_char (p1
) == p2
- 3);
5623 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5624 DEBUG_STATEMENT (debug
+= 2);
5625 if (mutually_exclusive_p (bufp
, p1
, p2
))
5627 /* Use a fast `on_failure_keep_string_jump' loop. */
5628 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5629 *p3
= (unsigned char) on_failure_keep_string_jump
;
5630 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5634 /* Default to a safe `on_failure_jump' loop. */
5635 DEBUG_PRINT1 (" smart default => slow loop.\n");
5636 *p3
= (unsigned char) on_failure_jump
;
5638 DEBUG_STATEMENT (debug
-= 2);
5642 /* Unconditionally jump (without popping any failure points). */
5645 IMMEDIATE_QUIT_CHECK
;
5646 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5647 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5648 p
+= mcnt
; /* Do the jump. */
5649 DEBUG_PRINT2 ("(to %p).\n", p
);
5653 /* Have to succeed matching what follows at least n times.
5654 After that, handle like `on_failure_jump'. */
5656 /* Signedness doesn't matter since we only compare MCNT to 0. */
5657 EXTRACT_NUMBER (mcnt
, p
+ 2);
5658 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5660 /* Originally, mcnt is how many times we HAVE to succeed. */
5663 /* Here, we discard `const', making re_match non-reentrant. */
5664 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5667 PUSH_NUMBER (p2
, mcnt
);
5670 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5675 /* Signedness doesn't matter since we only compare MCNT to 0. */
5676 EXTRACT_NUMBER (mcnt
, p
+ 2);
5677 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5679 /* Originally, this is how many times we CAN jump. */
5682 /* Here, we discard `const', making re_match non-reentrant. */
5683 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5685 PUSH_NUMBER (p2
, mcnt
);
5686 goto unconditional_jump
;
5688 /* If don't have to jump any more, skip over the rest of command. */
5695 unsigned char *p2
; /* Location of the counter. */
5696 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5698 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5699 /* Here, we discard `const', making re_match non-reentrant. */
5700 p2
= (unsigned char*) p
+ mcnt
;
5701 /* Signedness doesn't matter since we only copy MCNT's bits . */
5702 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5703 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5704 PUSH_NUMBER (p2
, mcnt
);
5710 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5711 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5713 /* We SUCCEED (or FAIL) in one of the following cases: */
5715 /* Case 1: D is at the beginning or the end of string. */
5716 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5720 /* C1 is the character before D, S1 is the syntax of C1, C2
5721 is the character at D, and S2 is the syntax of C2. */
5725 int offset
= PTR_TO_OFFSET (d
- 1);
5726 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5727 UPDATE_SYNTAX_TABLE (charpos
);
5729 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5732 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5734 PREFETCH_NOLIMIT ();
5735 c2
= RE_STRING_CHAR (d
, dend
- d
);
5738 if (/* Case 2: Only one of S1 and S2 is Sword. */
5739 ((s1
== Sword
) != (s2
== Sword
))
5740 /* Case 3: Both of S1 and S2 are Sword, and macro
5741 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5742 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5751 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5753 /* We FAIL in one of the following cases: */
5755 /* Case 1: D is at the end of string. */
5756 if (AT_STRINGS_END (d
))
5760 /* C1 is the character before D, S1 is the syntax of C1, C2
5761 is the character at D, and S2 is the syntax of C2. */
5765 int offset
= PTR_TO_OFFSET (d
);
5766 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5767 UPDATE_SYNTAX_TABLE (charpos
);
5770 c2
= RE_STRING_CHAR (d
, dend
- d
);
5773 /* Case 2: S2 is not Sword. */
5777 /* Case 3: D is not at the beginning of string ... */
5778 if (!AT_STRINGS_BEG (d
))
5780 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5782 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5786 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5788 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5795 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5797 /* We FAIL in one of the following cases: */
5799 /* Case 1: D is at the beginning of string. */
5800 if (AT_STRINGS_BEG (d
))
5804 /* C1 is the character before D, S1 is the syntax of C1, C2
5805 is the character at D, and S2 is the syntax of C2. */
5809 int offset
= PTR_TO_OFFSET (d
) - 1;
5810 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5811 UPDATE_SYNTAX_TABLE (charpos
);
5813 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5816 /* Case 2: S1 is not Sword. */
5820 /* Case 3: D is not at the end of string ... */
5821 if (!AT_STRINGS_END (d
))
5823 PREFETCH_NOLIMIT ();
5824 c2
= RE_STRING_CHAR (d
, dend
- d
);
5826 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5830 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5832 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5839 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5841 /* We FAIL in one of the following cases: */
5843 /* Case 1: D is at the end of string. */
5844 if (AT_STRINGS_END (d
))
5848 /* C1 is the character before D, S1 is the syntax of C1, C2
5849 is the character at D, and S2 is the syntax of C2. */
5853 int offset
= PTR_TO_OFFSET (d
);
5854 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5855 UPDATE_SYNTAX_TABLE (charpos
);
5858 c2
= RE_STRING_CHAR (d
, dend
- d
);
5861 /* Case 2: S2 is neither Sword nor Ssymbol. */
5862 if (s2
!= Sword
&& s2
!= Ssymbol
)
5865 /* Case 3: D is not at the beginning of string ... */
5866 if (!AT_STRINGS_BEG (d
))
5868 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5870 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5874 /* ... and S1 is Sword or Ssymbol. */
5875 if (s1
== Sword
|| s1
== Ssymbol
)
5882 DEBUG_PRINT1 ("EXECUTING symend.\n");
5884 /* We FAIL in one of the following cases: */
5886 /* Case 1: D is at the beginning of string. */
5887 if (AT_STRINGS_BEG (d
))
5891 /* C1 is the character before D, S1 is the syntax of C1, C2
5892 is the character at D, and S2 is the syntax of C2. */
5896 int offset
= PTR_TO_OFFSET (d
) - 1;
5897 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5898 UPDATE_SYNTAX_TABLE (charpos
);
5900 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5903 /* Case 2: S1 is neither Ssymbol nor Sword. */
5904 if (s1
!= Sword
&& s1
!= Ssymbol
)
5907 /* Case 3: D is not at the end of string ... */
5908 if (!AT_STRINGS_END (d
))
5910 PREFETCH_NOLIMIT ();
5911 c2
= RE_STRING_CHAR (d
, dend
- d
);
5913 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5917 /* ... and S2 is Sword or Ssymbol. */
5918 if (s2
== Sword
|| s2
== Ssymbol
)
5926 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5928 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5932 int offset
= PTR_TO_OFFSET (d
);
5933 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5934 UPDATE_SYNTAX_TABLE (pos1
);
5941 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5943 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5951 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5952 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5957 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5958 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5963 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5964 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5969 case notcategoryspec
:
5970 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5972 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5978 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5980 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5991 continue; /* Successfully executed one pattern command; keep going. */
5994 /* We goto here if a matching operation fails. */
5996 IMMEDIATE_QUIT_CHECK
;
5997 if (!FAIL_STACK_EMPTY ())
6000 /* A restart point is known. Restore to that state. */
6001 DEBUG_PRINT1 ("\nFAIL:\n");
6002 POP_FAILURE_POINT (str
, pat
);
6003 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6005 case on_failure_keep_string_jump
:
6006 assert (str
== NULL
);
6007 goto continue_failure_jump
;
6009 case on_failure_jump_nastyloop
:
6010 assert ((re_opcode_t
)pat
[-2] == no_op
);
6011 PUSH_FAILURE_POINT (pat
- 2, str
);
6014 case on_failure_jump_loop
:
6015 case on_failure_jump
:
6018 continue_failure_jump
:
6019 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6024 /* A special frame used for nastyloops. */
6031 assert (p
>= bufp
->buffer
&& p
<= pend
);
6033 if (d
>= string1
&& d
<= end1
)
6037 break; /* Matching at this starting point really fails. */
6041 goto restore_best_regs
;
6045 return -1; /* Failure to match. */
6048 /* Subroutine definitions for re_match_2. */
6050 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6051 bytes; nonzero otherwise. */
6054 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
6057 RE_TRANSLATE_TYPE translate
;
6058 const int multibyte
;
6060 register re_char
*p1
= s1
, *p2
= s2
;
6061 re_char
*p1_end
= s1
+ len
;
6062 re_char
*p2_end
= s2
+ len
;
6064 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6065 different lengths, but relying on a single `len' would break this. -sm */
6066 while (p1
< p1_end
&& p2
< p2_end
)
6068 int p1_charlen
, p2_charlen
;
6069 re_wchar_t p1_ch
, p2_ch
;
6071 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
6072 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
6074 if (RE_TRANSLATE (translate
, p1_ch
)
6075 != RE_TRANSLATE (translate
, p2_ch
))
6078 p1
+= p1_charlen
, p2
+= p2_charlen
;
6081 if (p1
!= p1_end
|| p2
!= p2_end
)
6087 /* Entry points for GNU code. */
6089 /* re_compile_pattern is the GNU regular expression compiler: it
6090 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6091 Returns 0 if the pattern was valid, otherwise an error string.
6093 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6094 are set in BUFP on entry.
6096 We call regex_compile to do the actual compilation. */
6099 re_compile_pattern (pattern
, length
, bufp
)
6100 const char *pattern
;
6102 struct re_pattern_buffer
*bufp
;
6106 /* GNU code is written to assume at least RE_NREGS registers will be set
6107 (and at least one extra will be -1). */
6108 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6110 /* And GNU code determines whether or not to get register information
6111 by passing null for the REGS argument to re_match, etc., not by
6115 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6119 return gettext (re_error_msgid
[(int) ret
]);
6121 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6123 /* Entry points compatible with 4.2 BSD regex library. We don't define
6124 them unless specifically requested. */
6126 #if defined _REGEX_RE_COMP || defined _LIBC
6128 /* BSD has one and only one pattern buffer. */
6129 static struct re_pattern_buffer re_comp_buf
;
6133 /* Make these definitions weak in libc, so POSIX programs can redefine
6134 these names if they don't use our functions, and still use
6135 regcomp/regexec below without link errors. */
6145 if (!re_comp_buf
.buffer
)
6146 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6147 return (char *) gettext ("No previous regular expression");
6151 if (!re_comp_buf
.buffer
)
6153 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6154 if (re_comp_buf
.buffer
== NULL
)
6155 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6156 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6157 re_comp_buf
.allocated
= 200;
6159 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6160 if (re_comp_buf
.fastmap
== NULL
)
6161 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6162 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6165 /* Since `re_exec' always passes NULL for the `regs' argument, we
6166 don't need to initialize the pattern buffer fields which affect it. */
6168 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6173 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6174 return (char *) gettext (re_error_msgid
[(int) ret
]);
6185 const int len
= strlen (s
);
6187 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6189 #endif /* _REGEX_RE_COMP */
6191 /* POSIX.2 functions. Don't define these for Emacs. */
6195 /* regcomp takes a regular expression as a string and compiles it.
6197 PREG is a regex_t *. We do not expect any fields to be initialized,
6198 since POSIX says we shouldn't. Thus, we set
6200 `buffer' to the compiled pattern;
6201 `used' to the length of the compiled pattern;
6202 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6203 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6204 RE_SYNTAX_POSIX_BASIC;
6205 `fastmap' to an allocated space for the fastmap;
6206 `fastmap_accurate' to zero;
6207 `re_nsub' to the number of subexpressions in PATTERN.
6209 PATTERN is the address of the pattern string.
6211 CFLAGS is a series of bits which affect compilation.
6213 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6214 use POSIX basic syntax.
6216 If REG_NEWLINE is set, then . and [^...] don't match newline.
6217 Also, regexec will try a match beginning after every newline.
6219 If REG_ICASE is set, then we considers upper- and lowercase
6220 versions of letters to be equivalent when matching.
6222 If REG_NOSUB is set, then when PREG is passed to regexec, that
6223 routine will report only success or failure, and nothing about the
6226 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6227 the return codes and their meanings.) */
6230 regcomp (preg
, pattern
, cflags
)
6231 regex_t
*__restrict preg
;
6232 const char *__restrict pattern
;
6237 = (cflags
& REG_EXTENDED
) ?
6238 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6240 /* regex_compile will allocate the space for the compiled pattern. */
6242 preg
->allocated
= 0;
6245 /* Try to allocate space for the fastmap. */
6246 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6248 if (cflags
& REG_ICASE
)
6253 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6254 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6255 if (preg
->translate
== NULL
)
6256 return (int) REG_ESPACE
;
6258 /* Map uppercase characters to corresponding lowercase ones. */
6259 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6260 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6263 preg
->translate
= NULL
;
6265 /* If REG_NEWLINE is set, newlines are treated differently. */
6266 if (cflags
& REG_NEWLINE
)
6267 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6268 syntax
&= ~RE_DOT_NEWLINE
;
6269 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6272 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6274 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6276 /* POSIX says a null character in the pattern terminates it, so we
6277 can use strlen here in compiling the pattern. */
6278 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6280 /* POSIX doesn't distinguish between an unmatched open-group and an
6281 unmatched close-group: both are REG_EPAREN. */
6282 if (ret
== REG_ERPAREN
)
6285 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6286 { /* Compute the fastmap now, since regexec cannot modify the pattern
6288 re_compile_fastmap (preg
);
6289 if (preg
->can_be_null
)
6290 { /* The fastmap can't be used anyway. */
6291 free (preg
->fastmap
);
6292 preg
->fastmap
= NULL
;
6297 WEAK_ALIAS (__regcomp
, regcomp
)
6300 /* regexec searches for a given pattern, specified by PREG, in the
6303 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6304 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6305 least NMATCH elements, and we set them to the offsets of the
6306 corresponding matched substrings.
6308 EFLAGS specifies `execution flags' which affect matching: if
6309 REG_NOTBOL is set, then ^ does not match at the beginning of the
6310 string; if REG_NOTEOL is set, then $ does not match at the end.
6312 We return 0 if we find a match and REG_NOMATCH if not. */
6315 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6316 const regex_t
*__restrict preg
;
6317 const char *__restrict string
;
6319 regmatch_t pmatch
[__restrict_arr
];
6323 struct re_registers regs
;
6324 regex_t private_preg
;
6325 int len
= strlen (string
);
6326 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6328 private_preg
= *preg
;
6330 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6331 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6333 /* The user has told us exactly how many registers to return
6334 information about, via `nmatch'. We have to pass that on to the
6335 matching routines. */
6336 private_preg
.regs_allocated
= REGS_FIXED
;
6340 regs
.num_regs
= nmatch
;
6341 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6342 if (regs
.start
== NULL
)
6343 return (int) REG_NOMATCH
;
6344 regs
.end
= regs
.start
+ nmatch
;
6347 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6348 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6349 was a little bit longer but still only matching the real part.
6350 This works because the `endline' will check for a '\n' and will find a
6351 '\0', correctly deciding that this is not the end of a line.
6352 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6353 a convenient '\0' there. For all we know, the string could be preceded
6354 by '\n' which would throw things off. */
6356 /* Perform the searching operation. */
6357 ret
= re_search (&private_preg
, string
, len
,
6358 /* start: */ 0, /* range: */ len
,
6359 want_reg_info
? ®s
: (struct re_registers
*) 0);
6361 /* Copy the register information to the POSIX structure. */
6368 for (r
= 0; r
< nmatch
; r
++)
6370 pmatch
[r
].rm_so
= regs
.start
[r
];
6371 pmatch
[r
].rm_eo
= regs
.end
[r
];
6375 /* If we needed the temporary register info, free the space now. */
6379 /* We want zero return to mean success, unlike `re_search'. */
6380 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6382 WEAK_ALIAS (__regexec
, regexec
)
6385 /* Returns a message corresponding to an error code, ERRCODE, returned
6386 from either regcomp or regexec. We don't use PREG here. */
6389 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6391 const regex_t
*preg
;
6399 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6400 /* Only error codes returned by the rest of the code should be passed
6401 to this routine. If we are given anything else, or if other regex
6402 code generates an invalid error code, then the program has a bug.
6403 Dump core so we can fix it. */
6406 msg
= gettext (re_error_msgid
[errcode
]);
6408 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6410 if (errbuf_size
!= 0)
6412 if (msg_size
> errbuf_size
)
6414 strncpy (errbuf
, msg
, errbuf_size
- 1);
6415 errbuf
[errbuf_size
- 1] = 0;
6418 strcpy (errbuf
, msg
);
6423 WEAK_ALIAS (__regerror
, regerror
)
6426 /* Free dynamically allocated space used by PREG. */
6432 if (preg
->buffer
!= NULL
)
6433 free (preg
->buffer
);
6434 preg
->buffer
= NULL
;
6436 preg
->allocated
= 0;
6439 if (preg
->fastmap
!= NULL
)
6440 free (preg
->fastmap
);
6441 preg
->fastmap
= NULL
;
6442 preg
->fastmap_accurate
= 0;
6444 if (preg
->translate
!= NULL
)
6445 free (preg
->translate
);
6446 preg
->translate
= NULL
;
6448 WEAK_ALIAS (__regfree
, regfree
)
6450 #endif /* not emacs */
6452 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6453 (do not change this comment) */