1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 In other words, you are welcome to use, share and improve this program.
19 You are forbidden to forbid anyone else to use, share and improve
20 what you give them. Help stamp out software-hoarding! */
24 * unexec.c - Convert a running program into an a.out file.
26 * Author: Spencer W. Thomas
27 * Computer Science Dept.
29 * Date: Tue Mar 2 1982
30 * Modified heavily since then.
33 * unexec (new_name, a_name, data_start, bss_start, entry_address)
34 * char *new_name, *a_name;
35 * unsigned data_start, bss_start, entry_address;
37 * Takes a snapshot of the program and makes an a.out format file in the
38 * file named by the string argument new_name.
39 * If a_name is non-NULL, the symbol table will be taken from the given file.
40 * On some machines, an existing a_name file is required.
42 * The boundaries within the a.out file may be adjusted with the data_start
43 * and bss_start arguments. Either or both may be given as 0 for defaults.
45 * Data_start gives the boundary between the text segment and the data
46 * segment of the program. The text segment can contain shared, read-only
47 * program code and literal data, while the data segment is always unshared
48 * and unprotected. Data_start gives the lowest unprotected address.
49 * The value you specify may be rounded down to a suitable boundary
50 * as required by the machine you are using.
52 * Specifying zero for data_start means the boundary between text and data
53 * should not be the same as when the program was loaded.
54 * If NO_REMAP is defined, the argument data_start is ignored and the
55 * segment boundaries are never changed.
57 * Bss_start indicates how much of the data segment is to be saved in the
58 * a.out file and restored when the program is executed. It gives the lowest
59 * unsaved address, and is rounded up to a page boundary. The default when 0
60 * is given assumes that the entire data segment is to be stored, including
61 * the previous data and bss as well as any additional storage allocated with
64 * The new file is set up to start at entry_address.
66 * If you make improvements I'd like to get them too.
67 * harpo!utah-cs!thomas, thomas@Utah-20
71 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
74 * Basic theory: the data space of the running process needs to be
75 * dumped to the output file. Normally we would just enlarge the size
76 * of .data, scooting everything down. But we can't do that in ELF,
77 * because there is often something between the .data space and the
80 * In the temacs dump below, notice that the Global Offset Table
81 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
82 * .bss. It does not work to overlap .data with these fields.
84 * The solution is to create a new .data segment. This segment is
85 * filled with data from the current process. Since the contents of
86 * various sections refer to sections by index, the new .data segment
87 * is made the last in the table to avoid changing any existing index.
89 * This is an example of how the section headers are changed. "Addr"
90 * is a process virtual address. "Offset" is a file offset.
92 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
96 **** SECTION HEADER TABLE ****
97 [No] Type Flags Addr Offset Size Name
98 Link Info Adralgn Entsize
100 [1] 1 2 0x80480d4 0xd4 0x13 .interp
103 [2] 5 2 0x80480e8 0xe8 0x388 .hash
106 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
109 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
112 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
115 [6] 1 6 0x8049348 0x1348 0x3 .init
118 [7] 1 6 0x804934c 0x134c 0x680 .plt
121 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
124 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
127 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
130 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
133 [12] 1 3 0x8088330 0x3f330 0x20afc .data
136 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
139 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
142 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
145 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
148 [17] 2 0 0 0x608f4 0x9b90 .symtab
151 [18] 3 0 0 0x6a484 0x8526 .strtab
154 [19] 3 0 0 0x729aa 0x93 .shstrtab
157 [20] 1 0 0 0x72a3d 0x68b7 .comment
160 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
164 **** SECTION HEADER TABLE ****
165 [No] Type Flags Addr Offset Size Name
166 Link Info Adralgn Entsize
168 [1] 1 2 0x80480d4 0xd4 0x13 .interp
171 [2] 5 2 0x80480e8 0xe8 0x388 .hash
174 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
177 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
180 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
183 [6] 1 6 0x8049348 0x1348 0x3 .init
186 [7] 1 6 0x804934c 0x134c 0x680 .plt
189 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
192 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
195 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
198 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
201 [12] 1 3 0x8088330 0x3f330 0x20afc .data
204 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
207 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
210 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
213 [16] 8 3 0x80c6800 0x7d800 0 .bss
216 [17] 2 0 0 0x7d800 0x9b90 .symtab
219 [18] 3 0 0 0x87390 0x8526 .strtab
222 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
225 [20] 1 0 0 0x8f949 0x68b7 .comment
228 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
231 * This is an example of how the file header is changed. "Shoff" is
232 * the section header offset within the file. Since that table is
233 * after the new .data section, it is moved. "Shnum" is the number of
234 * sections, which we increment.
236 * "Phoff" is the file offset to the program header. "Phentsize" and
237 * "Shentsz" are the program and section header entries sizes respectively.
238 * These can be larger than the apparent struct sizes.
240 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
245 Class Data Type Machine Version
246 Entry Phoff Shoff Flags Ehsize
247 Phentsize Phnum Shentsz Shnum Shstrndx
250 0x80499cc 0x34 0x792f4 0 0x34
253 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
258 Class Data Type Machine Version
259 Entry Phoff Shoff Flags Ehsize
260 Phentsize Phnum Shentsz Shnum Shstrndx
263 0x80499cc 0x34 0x96200 0 0x34
266 * These are the program headers. "Offset" is the file offset to the
267 * segment. "Vaddr" is the memory load address. "Filesz" is the
268 * segment size as it appears in the file, and "Memsz" is the size in
269 * memory. Below, the third segment is the code and the fourth is the
270 * data: the difference between Filesz and Memsz is .bss
272 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
275 ***** PROGRAM EXECUTION HEADER *****
276 Type Offset Vaddr Paddr
277 Filesz Memsz Flags Align
286 0x3f2f9 0x3f2f9 5 0x1000
288 1 0x3f330 0x8088330 0
289 0x215c4 0x25a60 7 0x1000
291 2 0x60874 0x80a9874 0
294 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
297 ***** PROGRAM EXECUTION HEADER *****
298 Type Offset Vaddr Paddr
299 Filesz Memsz Flags Align
308 0x3f2f9 0x3f2f9 5 0x1000
310 1 0x3f330 0x8088330 0
311 0x3e4d0 0x3e4d0 7 0x1000
313 2 0x60874 0x80a9874 0
319 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
321 * The above mechanism does not work if the unexeced ELF file is being
322 * re-layout by other applications (such as `strip'). All the applications
323 * that re-layout the internal of ELF will layout all sections in ascending
324 * order of their file offsets. After the re-layout, the data2 section will
325 * still be the LAST section in the section header vector, but its file offset
326 * is now being pushed far away down, and causes part of it not to be mapped
327 * in (ie. not covered by the load segment entry in PHDR vector), therefore
328 * causes the new binary to fail.
330 * The solution is to modify the unexec algorithm to insert the new data2
331 * section header right before the new bss section header, so their file
332 * offsets will be in the ascending order. Since some of the section's (all
333 * sections AFTER the bss section) indexes are now changed, we also need to
334 * modify some fields to make them point to the right sections. This is done
335 * by macro PATCH_INDEX. All the fields that need to be patched are:
337 * 1. ELF header e_shstrndx field.
338 * 2. section header sh_link and sh_info field.
339 * 3. symbol table entry st_shndx field.
341 * The above example now should look like:
343 **** SECTION HEADER TABLE ****
344 [No] Type Flags Addr Offset Size Name
345 Link Info Adralgn Entsize
347 [1] 1 2 0x80480d4 0xd4 0x13 .interp
350 [2] 5 2 0x80480e8 0xe8 0x388 .hash
353 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
356 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
359 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
362 [6] 1 6 0x8049348 0x1348 0x3 .init
365 [7] 1 6 0x804934c 0x134c 0x680 .plt
368 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
371 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
374 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
377 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
380 [12] 1 3 0x8088330 0x3f330 0x20afc .data
383 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
386 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
389 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
392 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
395 [17] 8 3 0x80c6800 0x7d800 0 .bss
398 [18] 2 0 0 0x7d800 0x9b90 .symtab
401 [19] 3 0 0 0x87390 0x8526 .strtab
404 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
407 [21] 1 0 0 0x8f949 0x68b7 .comment
412 #include <sys/types.h>
414 #include <sys/stat.h>
421 #include <sys/mman.h>
424 #define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
427 extern void fatal (char *, ...);
430 #ifndef ELF_BSS_SECTION_NAME
431 #define ELF_BSS_SECTION_NAME ".bss"
434 /* Get the address of a particular section or program header entry,
435 * accounting for the size of the entries.
438 #define OLD_SECTION_H(n) \
439 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
440 #define NEW_SECTION_H(n) \
441 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
442 #define OLD_PROGRAM_H(n) \
443 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
444 #define NEW_PROGRAM_H(n) \
445 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
447 #define PATCH_INDEX(n) \
449 if ((int) (n) >= old_bss_index) \
451 typedef unsigned char byte
;
453 /* Round X up to a multiple of Y. */
465 /* ****************************************************************
470 * In ELF, this works by replacing the old .bss section with a new
471 * .data section, and inserting an empty .bss immediately afterwards.
475 unexec (new_name
, old_name
, data_start
, bss_start
, entry_address
)
476 char *new_name
, *old_name
;
477 unsigned data_start
, bss_start
, entry_address
;
479 int new_file
, old_file
, new_file_size
;
481 /* Pointers to the base of the image of the two files. */
482 caddr_t old_base
, new_base
;
484 /* Pointers to the file, program and section headers for the old and new
487 Elf32_Ehdr
*old_file_h
, *new_file_h
;
488 Elf32_Phdr
*old_program_h
, *new_program_h
;
489 Elf32_Shdr
*old_section_h
, *new_section_h
;
491 /* Point to the section name table in the old file */
492 char *old_section_names
;
494 Elf32_Addr old_bss_addr
, new_bss_addr
;
495 Elf32_Word old_bss_size
, new_data2_size
;
496 Elf32_Off new_data2_offset
;
497 Elf32_Addr new_data2_addr
;
499 int n
, nn
, old_bss_index
, old_data_index
, new_data2_index
;
500 struct stat stat_buf
;
502 /* Open the old file & map it into the address space. */
504 old_file
= open (old_name
, O_RDONLY
);
507 fatal ("Can't open %s for reading: errno %d\n", old_name
, errno
);
509 if (fstat (old_file
, &stat_buf
) == -1)
510 fatal ("Can't fstat (%s): errno %d\n", old_name
, errno
);
512 old_base
= mmap (0, stat_buf
.st_size
, PROT_READ
, MAP_SHARED
, old_file
, 0);
514 if (old_base
== (caddr_t
) -1)
515 fatal ("Can't mmap (%s): errno %d\n", old_name
, errno
);
518 fprintf (stderr
, "mmap (%s, %x) -> %x\n", old_name
, stat_buf
.st_size
,
522 /* Get pointers to headers & section names */
524 old_file_h
= (Elf32_Ehdr
*) old_base
;
525 old_program_h
= (Elf32_Phdr
*) ((byte
*) old_base
+ old_file_h
->e_phoff
);
526 old_section_h
= (Elf32_Shdr
*) ((byte
*) old_base
+ old_file_h
->e_shoff
);
527 old_section_names
= (char *) old_base
528 + OLD_SECTION_H (old_file_h
->e_shstrndx
).sh_offset
;
530 /* Find the old .bss section. Figure out parameters of the new
531 * data2 and bss sections.
534 for (old_bss_index
= 1; old_bss_index
< (int) old_file_h
->e_shnum
;
538 fprintf (stderr
, "Looking for .bss - found %s\n",
539 old_section_names
+ OLD_SECTION_H (old_bss_index
).sh_name
);
541 if (!strcmp (old_section_names
+ OLD_SECTION_H (old_bss_index
).sh_name
,
542 ELF_BSS_SECTION_NAME
))
545 if (old_bss_index
== old_file_h
->e_shnum
)
546 fatal ("Can't find .bss in %s.\n", old_name
, 0);
548 old_bss_addr
= OLD_SECTION_H (old_bss_index
).sh_addr
;
549 old_bss_size
= OLD_SECTION_H (old_bss_index
).sh_size
;
550 #if defined(emacs) || !defined(DEBUG)
551 new_bss_addr
= (Elf32_Addr
) sbrk (0);
553 new_bss_addr
= old_bss_addr
+ old_bss_size
+ 0x1234;
555 new_data2_addr
= old_bss_addr
;
556 new_data2_size
= new_bss_addr
- old_bss_addr
;
557 new_data2_offset
= OLD_SECTION_H (old_bss_index
).sh_offset
;
560 fprintf (stderr
, "old_bss_index %d\n", old_bss_index
);
561 fprintf (stderr
, "old_bss_addr %x\n", old_bss_addr
);
562 fprintf (stderr
, "old_bss_size %x\n", old_bss_size
);
563 fprintf (stderr
, "new_bss_addr %x\n", new_bss_addr
);
564 fprintf (stderr
, "new_data2_addr %x\n", new_data2_addr
);
565 fprintf (stderr
, "new_data2_size %x\n", new_data2_size
);
566 fprintf (stderr
, "new_data2_offset %x\n", new_data2_offset
);
569 if ((unsigned) new_bss_addr
< (unsigned) old_bss_addr
+ old_bss_size
)
570 fatal (".bss shrank when undumping???\n", 0, 0);
572 /* Set the output file to the right size and mmap it. Set
573 * pointers to various interesting objects. stat_buf still has
577 new_file
= open (new_name
, O_RDWR
| O_CREAT
, 0666);
579 fatal ("Can't creat (%s): errno %d\n", new_name
, errno
);
581 new_file_size
= stat_buf
.st_size
+ old_file_h
->e_shentsize
+ new_data2_size
;
583 if (ftruncate (new_file
, new_file_size
))
584 fatal ("Can't ftruncate (%s): errno %d\n", new_name
, errno
);
586 new_base
= mmap (0, new_file_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
589 if (new_base
== (caddr_t
) -1)
590 fatal ("Can't mmap (%s): errno %d\n", new_name
, errno
);
592 new_file_h
= (Elf32_Ehdr
*) new_base
;
593 new_program_h
= (Elf32_Phdr
*) ((byte
*) new_base
+ old_file_h
->e_phoff
);
594 new_section_h
= (Elf32_Shdr
*)
595 ((byte
*) new_base
+ old_file_h
->e_shoff
+ new_data2_size
);
597 /* Make our new file, program and section headers as copies of the
601 memcpy (new_file_h
, old_file_h
, old_file_h
->e_ehsize
);
602 memcpy (new_program_h
, old_program_h
,
603 old_file_h
->e_phnum
* old_file_h
->e_phentsize
);
605 /* Modify the e_shstrndx if necessary. */
606 PATCH_INDEX (new_file_h
->e_shstrndx
);
608 /* Fix up file header. We'll add one section. Section header is
612 new_file_h
->e_shoff
+= new_data2_size
;
613 new_file_h
->e_shnum
+= 1;
616 fprintf (stderr
, "Old section offset %x\n", old_file_h
->e_shoff
);
617 fprintf (stderr
, "Old section count %d\n", old_file_h
->e_shnum
);
618 fprintf (stderr
, "New section offset %x\n", new_file_h
->e_shoff
);
619 fprintf (stderr
, "New section count %d\n", new_file_h
->e_shnum
);
622 /* Fix up a new program header. Extend the writable data segment so
623 * that the bss area is covered too. Find that segment by looking
624 * for a segment that ends just before the .bss area. Make sure
625 * that no segments are above the new .data2. Put a loop at the end
626 * to adjust the offset and address of any segment that is above
627 * data2, just in case we decide to allow this later.
630 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
632 /* Compute maximum of all requirements for alignment of section. */
633 int alignment
= (NEW_PROGRAM_H (n
)).p_align
;
634 if ((OLD_SECTION_H (old_bss_index
)).sh_addralign
> alignment
)
635 alignment
= OLD_SECTION_H (old_bss_index
).sh_addralign
;
637 if (NEW_PROGRAM_H (n
).p_vaddr
+ NEW_PROGRAM_H (n
).p_filesz
> old_bss_addr
)
638 fatal ("Program segment above .bss in %s\n", old_name
, 0);
640 if (NEW_PROGRAM_H (n
).p_type
== PT_LOAD
641 && (round_up ((NEW_PROGRAM_H (n
)).p_vaddr
642 + (NEW_PROGRAM_H (n
)).p_filesz
,
644 == round_up (old_bss_addr
, alignment
)))
648 fatal ("Couldn't find segment next to .bss in %s\n", old_name
, 0);
650 NEW_PROGRAM_H (n
).p_filesz
+= new_data2_size
;
651 NEW_PROGRAM_H (n
).p_memsz
= NEW_PROGRAM_H (n
).p_filesz
;
653 #if 0 /* Maybe allow section after data2 - does this ever happen? */
654 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
656 if (NEW_PROGRAM_H (n
).p_vaddr
657 && NEW_PROGRAM_H (n
).p_vaddr
>= new_data2_addr
)
658 NEW_PROGRAM_H (n
).p_vaddr
+= new_data2_size
- old_bss_size
;
660 if (NEW_PROGRAM_H (n
).p_offset
>= new_data2_offset
)
661 NEW_PROGRAM_H (n
).p_offset
+= new_data2_size
;
665 /* Fix up section headers based on new .data2 section. Any section
666 * whose offset or virtual address is after the new .data2 section
667 * gets its value adjusted. .bss size becomes zero and new address
668 * is set. data2 section header gets added by copying the existing
669 * .data header and modifying the offset, address and size.
671 for (old_data_index
= 1; old_data_index
< (int) old_file_h
->e_shnum
;
673 if (!strcmp (old_section_names
+ OLD_SECTION_H (old_data_index
).sh_name
,
676 if (old_data_index
== old_file_h
->e_shnum
)
677 fatal ("Can't find .data in %s.\n", old_name
, 0);
679 /* Walk through all section headers, insert the new data2 section right
680 before the new bss section. */
681 for (n
= 1, nn
= 1; n
< (int) old_file_h
->e_shnum
; n
++, nn
++)
684 /* If it is bss section, insert the new data2 section before it. */
685 if (n
== old_bss_index
)
687 /* Steal the data section header for this data2 section. */
688 memcpy (&NEW_SECTION_H (nn
), &OLD_SECTION_H (old_data_index
),
689 new_file_h
->e_shentsize
);
691 NEW_SECTION_H (nn
).sh_addr
= new_data2_addr
;
692 NEW_SECTION_H (nn
).sh_offset
= new_data2_offset
;
693 NEW_SECTION_H (nn
).sh_size
= new_data2_size
;
694 /* Use the bss section's alignment. This will assure that the
695 new data2 section always be placed in the same spot as the old
696 bss section by any other application. */
697 NEW_SECTION_H (nn
).sh_addralign
= OLD_SECTION_H (n
).sh_addralign
;
699 /* Now copy over what we have in the memory now. */
700 memcpy (NEW_SECTION_H (nn
).sh_offset
+ new_base
,
701 (caddr_t
) OLD_SECTION_H (n
).sh_addr
,
706 memcpy (&NEW_SECTION_H (nn
), &OLD_SECTION_H (n
),
707 old_file_h
->e_shentsize
);
709 /* The new bss section's size is zero, and its file offset and virtual
710 address should be off by NEW_DATA2_SIZE. */
711 if (n
== old_bss_index
)
713 /* NN should be `old_bss_index + 1' at this point. */
714 NEW_SECTION_H (nn
).sh_offset
+= new_data2_size
;
715 NEW_SECTION_H (nn
).sh_addr
+= new_data2_size
;
716 /* Let the new bss section address alignment be the same as the
717 section address alignment followed the old bss section, so
718 this section will be placed in exactly the same place. */
719 NEW_SECTION_H (nn
).sh_addralign
= OLD_SECTION_H (nn
).sh_addralign
;
720 NEW_SECTION_H (nn
).sh_size
= 0;
722 /* Any section that was original placed AFTER the bss section should now
723 be off by NEW_DATA2_SIZE. */
724 else if (NEW_SECTION_H (nn
).sh_offset
>= new_data2_offset
)
725 NEW_SECTION_H (nn
).sh_offset
+= new_data2_size
;
727 /* If any section hdr refers to the section after the new .data
728 section, make it refer to next one because we have inserted
729 a new section in between. */
731 PATCH_INDEX (NEW_SECTION_H (nn
).sh_link
);
732 /* For symbol tables, info is a symbol table index,
733 so don't change it. */
734 if (NEW_SECTION_H (nn
).sh_type
!= SHT_SYMTAB
735 && NEW_SECTION_H (nn
).sh_type
!= SHT_DYNSYM
)
736 PATCH_INDEX (NEW_SECTION_H (nn
).sh_info
);
738 /* Now, start to copy the content of sections. */
739 if (NEW_SECTION_H (nn
).sh_type
== SHT_NULL
740 || NEW_SECTION_H (nn
).sh_type
== SHT_NOBITS
)
743 /* Write out the sections. .data and .data1 (and data2, called
744 ".data" in the strings table) get copied from the current process
745 instead of the old file. */
746 if (!strcmp (old_section_names
+ NEW_SECTION_H (n
).sh_name
, ".data")
747 || !strcmp ((old_section_names
+ NEW_SECTION_H (n
).sh_name
),
749 src
= (caddr_t
) OLD_SECTION_H (n
).sh_addr
;
751 src
= old_base
+ OLD_SECTION_H (n
).sh_offset
;
753 memcpy (NEW_SECTION_H (nn
).sh_offset
+ new_base
, src
,
754 NEW_SECTION_H (nn
).sh_size
);
756 /* If it is the symbol table, its st_shndx field needs to be patched. */
757 if (NEW_SECTION_H (nn
).sh_type
== SHT_SYMTAB
758 || NEW_SECTION_H (nn
).sh_type
== SHT_DYNSYM
)
760 Elf32_Shdr
*spt
= &NEW_SECTION_H (nn
);
761 unsigned int num
= spt
->sh_size
/ spt
->sh_entsize
;
762 Elf32_Sym
* sym
= (Elf32_Sym
*) (NEW_SECTION_H (nn
).sh_offset
+
766 if ((sym
->st_shndx
== SHN_UNDEF
)
767 || (sym
->st_shndx
== SHN_ABS
)
768 || (sym
->st_shndx
== SHN_COMMON
))
771 PATCH_INDEX (sym
->st_shndx
);
776 /* Update the symbol values of _edata and _end. */
777 for (n
= new_file_h
->e_shnum
- 1; n
; n
--)
780 Elf32_Sym
*symp
, *symendp
;
782 if (NEW_SECTION_H (n
).sh_type
!= SHT_DYNSYM
783 && NEW_SECTION_H (n
).sh_type
!= SHT_SYMTAB
)
786 symnames
= NEW_SECTION_H (NEW_SECTION_H (n
).sh_link
).sh_offset
+ new_base
;
787 symp
= (Elf32_Sym
*) (NEW_SECTION_H (n
).sh_offset
+ new_base
);
788 symendp
= (Elf32_Sym
*) ((byte
*)symp
+ NEW_SECTION_H (n
).sh_size
);
790 for (; symp
< symendp
; symp
++)
791 if (strcmp ((char *) (symnames
+ symp
->st_name
), "_end") == 0
792 || strcmp ((char *) (symnames
+ symp
->st_name
), "_edata") == 0)
793 memcpy (&symp
->st_value
, &new_bss_addr
, sizeof (new_bss_addr
));
796 /* Close the files and make the new file executable. */
798 if (close (old_file
))
799 fatal ("Can't close (%s): errno %d\n", old_name
, errno
);
801 if (close (new_file
))
802 fatal ("Can't close (%s): errno %d\n", new_name
, errno
);
804 if (stat (new_name
, &stat_buf
) == -1)
805 fatal ("Can't stat (%s): errno %d\n", new_name
, errno
);
809 stat_buf
.st_mode
|= 0111 & ~n
;
810 if (chmod (new_name
, stat_buf
.st_mode
) == -1)
811 fatal ("Can't chmod (%s): errno %d\n", new_name
, errno
);