(make_lispy_event): Distinguish S-SPC from SPC.
[emacs.git] / src / regex.c
blob4924eba3130e1180e690ba7556a0e0ab7fc3bcfb
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
30 /* Converts the pointer to the char to BEG-based offset from the start. */
31 #define PTR_TO_OFFSET(d) \
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34 #define POS_AS_IN_BUFFER(p) ((p) + 1)
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
43 /* This is for other GNU distributions with internationalized messages. */
44 #if HAVE_LIBINTL_H || defined (_LIBC)
45 # include <libintl.h>
46 #else
47 # define gettext(msgid) (msgid)
48 #endif
50 #ifndef gettext_noop
51 /* This define is so xgettext can find the internationalizable
52 strings. */
53 #define gettext_noop(String) String
54 #endif
56 /* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58 #ifdef emacs
60 #include "lisp.h"
61 #include "buffer.h"
63 /* Make syntax table lookup grant data in gl_state. */
64 #define SYNTAX_ENTRY_VIA_PROPERTY
66 #include "syntax.h"
67 #include "charset.h"
68 #include "category.h"
70 #define malloc xmalloc
71 #define free xfree
73 #else /* not emacs */
75 /* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78 #undef REL_ALLOC
80 #if defined (STDC_HEADERS) || defined (_LIBC)
81 #include <stdlib.h>
82 #else
83 char *malloc ();
84 char *realloc ();
85 #endif
87 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
88 If nothing else has been done, use the method below. */
89 #ifdef INHIBIT_STRING_HEADER
90 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91 #if !defined (bzero) && !defined (bcopy)
92 #undef INHIBIT_STRING_HEADER
93 #endif
94 #endif
95 #endif
97 /* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
100 #ifndef INHIBIT_STRING_HEADER
101 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
102 #include <string.h>
103 #ifndef bcmp
104 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105 #endif
106 #ifndef bcopy
107 #define bcopy(s, d, n) memcpy ((d), (s), (n))
108 #endif
109 #ifndef bzero
110 #define bzero(s, n) memset ((s), 0, (n))
111 #endif
112 #else
113 #include <strings.h>
114 #endif
115 #endif
117 /* Define the syntax stuff for \<, \>, etc. */
119 /* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
121 #ifndef Sword
122 #define Sword 1
123 #endif
125 #ifdef SWITCH_ENUM_BUG
126 #define SWITCH_ENUM_CAST(x) ((int)(x))
127 #else
128 #define SWITCH_ENUM_CAST(x) (x)
129 #endif
131 #ifdef SYNTAX_TABLE
133 extern char *re_syntax_table;
135 #else /* not SYNTAX_TABLE */
137 /* How many characters in the character set. */
138 #define CHAR_SET_SIZE 256
140 static char re_syntax_table[CHAR_SET_SIZE];
142 static void
143 init_syntax_once ()
145 register int c;
146 static int done = 0;
148 if (done)
149 return;
151 bzero (re_syntax_table, sizeof re_syntax_table);
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
162 re_syntax_table['_'] = Sword;
164 done = 1;
167 #endif /* not SYNTAX_TABLE */
169 #define SYNTAX(c) re_syntax_table[c]
171 /* Dummy macro for non emacs environments. */
172 #define BASE_LEADING_CODE_P(c) (0)
173 #define WORD_BOUNDARY_P(c1, c2) (0)
174 #define CHAR_HEAD_P(p) (1)
175 #define SINGLE_BYTE_CHAR_P(c) (1)
176 #define SAME_CHARSET_P(c1, c2) (1)
177 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
178 #define STRING_CHAR(p, s) (*(p))
179 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
184 #endif /* not emacs */
186 /* Get the interface, including the syntax bits. */
187 #include "regex.h"
189 /* isalpha etc. are used for the character classes. */
190 #include <ctype.h>
192 /* Jim Meyering writes:
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
197 ctype uses should be through macros like ISPRINT... If
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
201 eliminate the && through constant folding." */
203 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204 #define ISASCII(c) 1
205 #else
206 #define ISASCII(c) isascii(c)
207 #endif
209 #ifdef isblank
210 #define ISBLANK(c) (ISASCII (c) && isblank (c))
211 #else
212 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213 #endif
214 #ifdef isgraph
215 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216 #else
217 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218 #endif
220 #define ISPRINT(c) (ISASCII (c) && isprint (c))
221 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
223 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
224 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225 #define ISLOWER(c) (ISASCII (c) && islower (c))
226 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227 #define ISSPACE(c) (ISASCII (c) && isspace (c))
228 #define ISUPPER(c) (ISASCII (c) && isupper (c))
229 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
231 #ifndef NULL
232 #define NULL (void *)0
233 #endif
235 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
238 (Per Bothner suggested the basic approach.) */
239 #undef SIGN_EXTEND_CHAR
240 #if __STDC__
241 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242 #else /* not __STDC__ */
243 /* As in Harbison and Steele. */
244 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245 #endif
247 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
251 the other hand, malloc is more portable, and easier to debug.
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
257 #ifdef REGEX_MALLOC
259 #define REGEX_ALLOCATE malloc
260 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261 #define REGEX_FREE free
263 #else /* not REGEX_MALLOC */
265 /* Emacs already defines alloca, sometimes. */
266 #ifndef alloca
268 /* Make alloca work the best possible way. */
269 #ifdef __GNUC__
270 #define alloca __builtin_alloca
271 #else /* not __GNUC__ */
272 #if HAVE_ALLOCA_H
273 #include <alloca.h>
274 #else /* not __GNUC__ or HAVE_ALLOCA_H */
275 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
276 #ifndef _AIX /* Already did AIX, up at the top. */
277 char *alloca ();
278 #endif /* not _AIX */
279 #endif
280 #endif /* not HAVE_ALLOCA_H */
281 #endif /* not __GNUC__ */
283 #endif /* not alloca */
285 #define REGEX_ALLOCATE alloca
287 /* Assumes a `char *destination' variable. */
288 #define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
293 /* No need to do anything to free, after alloca. */
294 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
296 #endif /* not REGEX_MALLOC */
298 /* Define how to allocate the failure stack. */
300 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
302 #define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306 #define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
309 #else /* not using relocating allocator */
311 #ifdef REGEX_MALLOC
313 #define REGEX_ALLOCATE_STACK malloc
314 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315 #define REGEX_FREE_STACK free
317 #else /* not REGEX_MALLOC */
319 #define REGEX_ALLOCATE_STACK alloca
321 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
323 /* No need to explicitly free anything. */
324 #define REGEX_FREE_STACK(arg)
326 #endif /* not REGEX_MALLOC */
327 #endif /* not using relocating allocator */
330 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
333 #define FIRST_STRING_P(ptr) \
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
336 /* (Re)Allocate N items of type T using malloc, or fail. */
337 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339 #define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
343 #define BYTEWIDTH 8 /* In bits. */
345 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
347 #undef MAX
348 #undef MIN
349 #define MAX(a, b) ((a) > (b) ? (a) : (b))
350 #define MIN(a, b) ((a) < (b) ? (a) : (b))
352 typedef char boolean;
353 #define false 0
354 #define true 1
356 static int re_match_2_internal ();
358 /* These are the command codes that appear in compiled regular
359 expressions. Some opcodes are followed by argument bytes. A
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
363 typedef enum
365 no_op = 0,
367 /* Succeed right away--no more backtracking. */
368 succeed,
370 /* Followed by one byte giving n, then by n literal bytes. */
371 exactn,
373 /* Matches any (more or less) character. */
374 anychar,
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
382 charset,
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
386 charset_not,
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
395 start_memory,
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
404 stop_memory,
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
408 duplicate,
410 /* Fail unless at beginning of line. */
411 begline,
413 /* Fail unless at end of line. */
414 endline,
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
418 begbuf,
420 /* Analogously, for end of buffer/string. */
421 endbuf,
423 /* Followed by two byte relative address to which to jump. */
424 jump,
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
431 on_failure_jump,
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
435 on_failure_keep_string_jump,
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
439 pop_failure_jump,
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
448 maybe_pop_jump,
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
455 dummy_failure_jump,
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
463 succeed_n,
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
467 jump_n,
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
472 set_number_at,
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
480 wordbound, /* Succeeds if at a word boundary. */
481 notwordbound /* Succeeds if not at a word boundary. */
483 #ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
488 /* Matches any character whose syntax is specified. Followed by
489 a byte which contains a syntax code, e.g., Sword. */
490 syntaxspec,
492 /* Matches any character whose syntax is not that specified. */
493 notsyntaxspec,
495 /* Matches any character whose category-set contains the specified
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
498 categoryspec,
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
504 #endif /* emacs */
505 } re_opcode_t;
507 /* Common operations on the compiled pattern. */
509 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
511 #define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
517 /* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
521 #define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
527 /* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
530 #define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
536 #ifdef DEBUG
537 static void
538 extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
543 *dest = *source & 0377;
544 *dest += temp << 8;
547 #ifndef EXTRACT_MACROS /* To debug the macros. */
548 #undef EXTRACT_NUMBER
549 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550 #endif /* not EXTRACT_MACROS */
552 #endif /* DEBUG */
554 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
557 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
560 (source) += 2; \
561 } while (0)
563 #ifdef DEBUG
564 static void
565 extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
569 extract_number (destination, *source);
570 *source += 2;
573 #ifndef EXTRACT_MACROS
574 #undef EXTRACT_NUMBER_AND_INCR
575 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577 #endif /* not EXTRACT_MACROS */
579 #endif /* DEBUG */
581 /* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
583 character is stored. Therefore, DESTINATION must be an lvalue. */
585 #define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
593 /* Put into DESTINATION a character stored in three contiguous bytes
594 starting at SOURCE. */
596 #define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
604 /* Macros for charset. */
606 /* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
610 /* Nonzero if charset P has range table. */
611 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
613 /* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
616 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
618 /* Test if C is listed in the bitmap of charset P. */
619 #define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
623 /* Return the address of end of RANGE_TABLE. COUNT is number of
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
626 and end. */
627 #define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
630 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
631 COUNT is number of ranges in RANGE_TABLE. */
632 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
645 if (range_start <= (c) && (c) <= range_end) \
647 (not) = !(not); \
648 break; \
652 while (0)
654 /* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
666 while (0)
668 /* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
672 the other test files, you can run the already-written tests. */
674 #ifdef DEBUG
676 /* We use standard I/O for debugging. */
677 #include <stdio.h>
679 /* It is useful to test things that ``must'' be true when debugging. */
680 #include <assert.h>
682 static int debug = 0;
684 #define DEBUG_STATEMENT(e) e
685 #define DEBUG_PRINT1(x) if (debug) printf (x)
686 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
689 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
690 if (debug) print_partial_compiled_pattern (s, e)
691 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
695 /* Print the fastmap in human-readable form. */
697 void
698 print_fastmap (fastmap)
699 char *fastmap;
701 unsigned was_a_range = 0;
702 unsigned i = 0;
704 while (i < (1 << BYTEWIDTH))
706 if (fastmap[i++])
708 was_a_range = 0;
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
712 was_a_range = 1;
713 i++;
715 if (was_a_range)
717 printf ("-");
718 putchar (i - 1);
722 putchar ('\n');
726 /* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
729 void
730 print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
738 if (start == NULL)
740 printf ("(null)\n");
741 return;
744 /* Loop over pattern commands. */
745 while (p < pend)
747 printf ("%d:\t", p - start);
749 switch ((re_opcode_t) *p++)
751 case no_op:
752 printf ("/no_op");
753 break;
755 case exactn:
756 mcnt = *p++;
757 printf ("/exactn/%d", mcnt);
760 putchar ('/');
761 putchar (*p++);
763 while (--mcnt);
764 break;
766 case start_memory:
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
771 case stop_memory:
772 mcnt = *p++;
773 printf ("/stop_memory/%d/%d", mcnt, *p++);
774 break;
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
780 case anychar:
781 printf ("/anychar");
782 break;
784 case charset:
785 case charset_not:
787 register int c, last = -100;
788 register int in_range = 0;
790 printf ("/charset [%s",
791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
793 assert (p + *p < pend);
795 for (c = 0; c < 256; c++)
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
802 putchar ('-');
803 in_range = 1;
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
808 putchar (last);
809 in_range = 0;
812 if (! in_range)
813 putchar (c);
815 last = c;
818 if (in_range)
819 putchar (last);
821 putchar (']');
823 p += 1 + *p;
825 break;
827 case begline:
828 printf ("/begline");
829 break;
831 case endline:
832 printf ("/endline");
833 break;
835 case on_failure_jump:
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
840 case on_failure_keep_string_jump:
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
845 case dummy_failure_jump:
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
850 case push_dummy_failure:
851 printf ("/push_dummy_failure");
852 break;
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
857 break;
859 case pop_failure_jump:
860 extract_number_and_incr (&mcnt, &p);
861 printf ("/pop_failure_jump to %d", p + mcnt - start);
862 break;
864 case jump_past_alt:
865 extract_number_and_incr (&mcnt, &p);
866 printf ("/jump_past_alt to %d", p + mcnt - start);
867 break;
869 case jump:
870 extract_number_and_incr (&mcnt, &p);
871 printf ("/jump to %d", p + mcnt - start);
872 break;
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
878 break;
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
884 break;
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
890 break;
892 case wordbound:
893 printf ("/wordbound");
894 break;
896 case notwordbound:
897 printf ("/notwordbound");
898 break;
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
904 case wordend:
905 printf ("/wordend");
907 #ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
910 break;
912 case at_dot:
913 printf ("/at_dot");
914 break;
916 case after_dot:
917 printf ("/after_dot");
918 break;
920 case syntaxspec:
921 printf ("/syntaxspec");
922 mcnt = *p++;
923 printf ("/%d", mcnt);
924 break;
926 case notsyntaxspec:
927 printf ("/notsyntaxspec");
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931 #endif /* emacs */
933 case wordchar:
934 printf ("/wordchar");
935 break;
937 case notwordchar:
938 printf ("/notwordchar");
939 break;
941 case begbuf:
942 printf ("/begbuf");
943 break;
945 case endbuf:
946 printf ("/endbuf");
947 break;
949 default:
950 printf ("?%d", *(p-1));
953 putchar ('\n');
956 printf ("%d:\tend of pattern.\n", p - start);
960 void
961 print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
964 unsigned char *buffer = bufp->buffer;
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
969 if (bufp->fastmap_accurate && bufp->fastmap)
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
987 void
988 print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
995 unsigned this_char;
997 if (where == NULL)
998 printf ("(null)");
999 else
1001 if (FIRST_STRING_P (where))
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
1006 where = string2;
1009 for (this_char = where - string2; this_char < size2; this_char++)
1010 putchar (string2[this_char]);
1014 #else /* not DEBUG */
1016 #undef assert
1017 #define assert(e)
1019 #define DEBUG_STATEMENT(e)
1020 #define DEBUG_PRINT1(x)
1021 #define DEBUG_PRINT2(x1, x2)
1022 #define DEBUG_PRINT3(x1, x2, x3)
1023 #define DEBUG_PRINT4(x1, x2, x3, x4)
1024 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1027 #endif /* not DEBUG */
1029 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032 /* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034 reg_syntax_t re_syntax_options;
1037 /* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1041 The argument SYNTAX is a bit mask comprised of the various bits
1042 defined in regex.h. We return the old syntax. */
1044 reg_syntax_t
1045 re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1048 reg_syntax_t ret = re_syntax_options;
1050 re_syntax_options = syntax;
1051 return ret;
1054 /* This table gives an error message for each of the error codes listed
1055 in regex.h. Obviously the order here has to be same as there.
1056 POSIX doesn't require that we do anything for REG_NOERROR,
1057 but why not be nice? */
1059 static const char *re_error_msgid[] =
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1080 /* Avoiding alloca during matching, to placate r_alloc. */
1082 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1090 Here's another reason to avoid allocation: Emacs
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1099 /* Normally, this is fine. */
1100 #define MATCH_MAY_ALLOCATE
1102 /* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104 #ifdef __GNUC__
1105 #undef C_ALLOCA
1106 #endif
1108 /* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
1112 so REL_ALLOC should not affect this. */
1113 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114 #undef MATCH_MAY_ALLOCATE
1115 #endif
1118 /* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
1123 /* Number of failure points for which to initially allocate space
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126 #ifndef INIT_FAILURE_ALLOC
1127 #define INIT_FAILURE_ALLOC 5
1128 #endif
1130 /* Roughly the maximum number of failure points on the stack. Would be
1131 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1132 This is a variable only so users of regex can assign to it; we never
1133 change it ourselves. */
1134 #if defined (MATCH_MAY_ALLOCATE)
1135 /* 4400 was enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. */
1137 int re_max_failures = 20000;
1138 #else
1139 int re_max_failures = 2000;
1140 #endif
1142 union fail_stack_elt
1144 unsigned char *pointer;
1145 int integer;
1148 typedef union fail_stack_elt fail_stack_elt_t;
1150 typedef struct
1152 fail_stack_elt_t *stack;
1153 unsigned size;
1154 unsigned avail; /* Offset of next open position. */
1155 } fail_stack_type;
1157 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1158 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1159 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1162 /* Define macros to initialize and free the failure stack.
1163 Do `return -2' if the alloc fails. */
1165 #ifdef MATCH_MAY_ALLOCATE
1166 #define INIT_FAIL_STACK() \
1167 do { \
1168 fail_stack.stack = (fail_stack_elt_t *) \
1169 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1171 if (fail_stack.stack == NULL) \
1172 return -2; \
1174 fail_stack.size = INIT_FAILURE_ALLOC; \
1175 fail_stack.avail = 0; \
1176 } while (0)
1178 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1179 #else
1180 #define INIT_FAIL_STACK() \
1181 do { \
1182 fail_stack.avail = 0; \
1183 } while (0)
1185 #define RESET_FAIL_STACK()
1186 #endif
1189 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1191 Return 1 if succeeds, and 0 if either ran out of memory
1192 allocating space for it or it was already too large.
1194 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1196 #define DOUBLE_FAIL_STACK(fail_stack) \
1197 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1198 ? 0 \
1199 : ((fail_stack).stack = (fail_stack_elt_t *) \
1200 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1201 (fail_stack).size * sizeof (fail_stack_elt_t), \
1202 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1204 (fail_stack).stack == NULL \
1205 ? 0 \
1206 : ((fail_stack).size <<= 1, \
1207 1)))
1210 /* Push pointer POINTER on FAIL_STACK.
1211 Return 1 if was able to do so and 0 if ran out of memory allocating
1212 space to do so. */
1213 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1214 ((FAIL_STACK_FULL () \
1215 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1216 ? 0 \
1217 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1220 /* Push a pointer value onto the failure stack.
1221 Assumes the variable `fail_stack'. Probably should only
1222 be called from within `PUSH_FAILURE_POINT'. */
1223 #define PUSH_FAILURE_POINTER(item) \
1224 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1226 /* This pushes an integer-valued item onto the failure stack.
1227 Assumes the variable `fail_stack'. Probably should only
1228 be called from within `PUSH_FAILURE_POINT'. */
1229 #define PUSH_FAILURE_INT(item) \
1230 fail_stack.stack[fail_stack.avail++].integer = (item)
1232 /* Push a fail_stack_elt_t value onto the failure stack.
1233 Assumes the variable `fail_stack'. Probably should only
1234 be called from within `PUSH_FAILURE_POINT'. */
1235 #define PUSH_FAILURE_ELT(item) \
1236 fail_stack.stack[fail_stack.avail++] = (item)
1238 /* These three POP... operations complement the three PUSH... operations.
1239 All assume that `fail_stack' is nonempty. */
1240 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1241 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1242 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1244 /* Used to omit pushing failure point id's when we're not debugging. */
1245 #ifdef DEBUG
1246 #define DEBUG_PUSH PUSH_FAILURE_INT
1247 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1248 #else
1249 #define DEBUG_PUSH(item)
1250 #define DEBUG_POP(item_addr)
1251 #endif
1254 /* Push the information about the state we will need
1255 if we ever fail back to it.
1257 Requires variables fail_stack, regstart, regend, reg_info, and
1258 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1259 declared.
1261 Does `return FAILURE_CODE' if runs out of memory. */
1263 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1264 do { \
1265 char *destination; \
1266 /* Must be int, so when we don't save any registers, the arithmetic \
1267 of 0 + -1 isn't done as unsigned. */ \
1268 int this_reg; \
1270 DEBUG_STATEMENT (failure_id++); \
1271 DEBUG_STATEMENT (nfailure_points_pushed++); \
1272 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1273 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1274 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1276 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1277 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1279 /* Ensure we have enough space allocated for what we will push. */ \
1280 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1282 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1283 return failure_code; \
1285 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1286 (fail_stack).size); \
1287 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1290 /* Push the info, starting with the registers. */ \
1291 DEBUG_PRINT1 ("\n"); \
1293 if (1) \
1294 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1295 this_reg++) \
1297 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1298 DEBUG_STATEMENT (num_regs_pushed++); \
1300 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1301 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1303 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1304 PUSH_FAILURE_POINTER (regend[this_reg]); \
1306 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1307 DEBUG_PRINT2 (" match_null=%d", \
1308 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1309 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1310 DEBUG_PRINT2 (" matched_something=%d", \
1311 MATCHED_SOMETHING (reg_info[this_reg])); \
1312 DEBUG_PRINT2 (" ever_matched=%d", \
1313 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1314 DEBUG_PRINT1 ("\n"); \
1315 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1318 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1319 PUSH_FAILURE_INT (lowest_active_reg); \
1321 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1322 PUSH_FAILURE_INT (highest_active_reg); \
1324 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1325 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1326 PUSH_FAILURE_POINTER (pattern_place); \
1328 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1329 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1330 size2); \
1331 DEBUG_PRINT1 ("'\n"); \
1332 PUSH_FAILURE_POINTER (string_place); \
1334 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1335 DEBUG_PUSH (failure_id); \
1336 } while (0)
1338 /* This is the number of items that are pushed and popped on the stack
1339 for each register. */
1340 #define NUM_REG_ITEMS 3
1342 /* Individual items aside from the registers. */
1343 #ifdef DEBUG
1344 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1345 #else
1346 #define NUM_NONREG_ITEMS 4
1347 #endif
1349 /* We push at most this many items on the stack. */
1350 /* We used to use (num_regs - 1), which is the number of registers
1351 this regexp will save; but that was changed to 5
1352 to avoid stack overflow for a regexp with lots of parens. */
1353 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1355 /* We actually push this many items. */
1356 #define NUM_FAILURE_ITEMS \
1357 (((0 \
1358 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1359 * NUM_REG_ITEMS) \
1360 + NUM_NONREG_ITEMS)
1362 /* How many items can still be added to the stack without overflowing it. */
1363 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1366 /* Pops what PUSH_FAIL_STACK pushes.
1368 We restore into the parameters, all of which should be lvalues:
1369 STR -- the saved data position.
1370 PAT -- the saved pattern position.
1371 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1372 REGSTART, REGEND -- arrays of string positions.
1373 REG_INFO -- array of information about each subexpression.
1375 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1376 `pend', `string1', `size1', `string2', and `size2'. */
1378 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1380 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1381 int this_reg; \
1382 const unsigned char *string_temp; \
1384 assert (!FAIL_STACK_EMPTY ()); \
1386 /* Remove failure points and point to how many regs pushed. */ \
1387 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1388 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1389 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1391 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1393 DEBUG_POP (&failure_id); \
1394 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1396 /* If the saved string location is NULL, it came from an \
1397 on_failure_keep_string_jump opcode, and we want to throw away the \
1398 saved NULL, thus retaining our current position in the string. */ \
1399 string_temp = POP_FAILURE_POINTER (); \
1400 if (string_temp != NULL) \
1401 str = (const char *) string_temp; \
1403 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1404 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1405 DEBUG_PRINT1 ("'\n"); \
1407 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1408 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1409 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1411 /* Restore register info. */ \
1412 high_reg = (unsigned) POP_FAILURE_INT (); \
1413 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1415 low_reg = (unsigned) POP_FAILURE_INT (); \
1416 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1418 if (1) \
1419 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1421 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1423 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1424 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1426 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1427 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1429 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1430 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1432 else \
1434 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1436 reg_info[this_reg].word.integer = 0; \
1437 regend[this_reg] = 0; \
1438 regstart[this_reg] = 0; \
1440 highest_active_reg = high_reg; \
1443 set_regs_matched_done = 0; \
1444 DEBUG_STATEMENT (nfailure_points_popped++); \
1445 } /* POP_FAILURE_POINT */
1449 /* Structure for per-register (a.k.a. per-group) information.
1450 Other register information, such as the
1451 starting and ending positions (which are addresses), and the list of
1452 inner groups (which is a bits list) are maintained in separate
1453 variables.
1455 We are making a (strictly speaking) nonportable assumption here: that
1456 the compiler will pack our bit fields into something that fits into
1457 the type of `word', i.e., is something that fits into one item on the
1458 failure stack. */
1460 typedef union
1462 fail_stack_elt_t word;
1463 struct
1465 /* This field is one if this group can match the empty string,
1466 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1467 #define MATCH_NULL_UNSET_VALUE 3
1468 unsigned match_null_string_p : 2;
1469 unsigned is_active : 1;
1470 unsigned matched_something : 1;
1471 unsigned ever_matched_something : 1;
1472 } bits;
1473 } register_info_type;
1475 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1476 #define IS_ACTIVE(R) ((R).bits.is_active)
1477 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1478 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1481 /* Call this when have matched a real character; it sets `matched' flags
1482 for the subexpressions which we are currently inside. Also records
1483 that those subexprs have matched. */
1484 #define SET_REGS_MATCHED() \
1485 do \
1487 if (!set_regs_matched_done) \
1489 unsigned r; \
1490 set_regs_matched_done = 1; \
1491 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1493 MATCHED_SOMETHING (reg_info[r]) \
1494 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1495 = 1; \
1499 while (0)
1501 /* Registers are set to a sentinel when they haven't yet matched. */
1502 static char reg_unset_dummy;
1503 #define REG_UNSET_VALUE (&reg_unset_dummy)
1504 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1506 /* Subroutine declarations and macros for regex_compile. */
1508 static void store_op1 (), store_op2 ();
1509 static void insert_op1 (), insert_op2 ();
1510 static boolean at_begline_loc_p (), at_endline_loc_p ();
1511 static boolean group_in_compile_stack ();
1512 static reg_errcode_t compile_range ();
1514 /* Fetch the next character in the uncompiled pattern---translating it
1515 if necessary. Also cast from a signed character in the constant
1516 string passed to us by the user to an unsigned char that we can use
1517 as an array index (in, e.g., `translate'). */
1518 #ifndef PATFETCH
1519 #define PATFETCH(c) \
1520 do {if (p == pend) return REG_EEND; \
1521 c = (unsigned char) *p++; \
1522 if (translate) c = (unsigned char) translate[c]; \
1523 } while (0)
1524 #endif
1526 /* Fetch the next character in the uncompiled pattern, with no
1527 translation. */
1528 #define PATFETCH_RAW(c) \
1529 do {if (p == pend) return REG_EEND; \
1530 c = (unsigned char) *p++; \
1531 } while (0)
1533 /* Go backwards one character in the pattern. */
1534 #define PATUNFETCH p--
1537 /* If `translate' is non-null, return translate[D], else just D. We
1538 cast the subscript to translate because some data is declared as
1539 `char *', to avoid warnings when a string constant is passed. But
1540 when we use a character as a subscript we must make it unsigned. */
1541 #ifndef TRANSLATE
1542 #define TRANSLATE(d) \
1543 (translate ? (unsigned char) RE_TRANSLATE (translate, (unsigned char) (d)) : (d))
1544 #endif
1547 /* Macros for outputting the compiled pattern into `buffer'. */
1549 /* If the buffer isn't allocated when it comes in, use this. */
1550 #define INIT_BUF_SIZE 32
1552 /* Make sure we have at least N more bytes of space in buffer. */
1553 #define GET_BUFFER_SPACE(n) \
1554 while (b - bufp->buffer + (n) > bufp->allocated) \
1555 EXTEND_BUFFER ()
1557 /* Make sure we have one more byte of buffer space and then add C to it. */
1558 #define BUF_PUSH(c) \
1559 do { \
1560 GET_BUFFER_SPACE (1); \
1561 *b++ = (unsigned char) (c); \
1562 } while (0)
1565 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1566 #define BUF_PUSH_2(c1, c2) \
1567 do { \
1568 GET_BUFFER_SPACE (2); \
1569 *b++ = (unsigned char) (c1); \
1570 *b++ = (unsigned char) (c2); \
1571 } while (0)
1574 /* As with BUF_PUSH_2, except for three bytes. */
1575 #define BUF_PUSH_3(c1, c2, c3) \
1576 do { \
1577 GET_BUFFER_SPACE (3); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1580 *b++ = (unsigned char) (c3); \
1581 } while (0)
1584 /* Store a jump with opcode OP at LOC to location TO. We store a
1585 relative address offset by the three bytes the jump itself occupies. */
1586 #define STORE_JUMP(op, loc, to) \
1587 store_op1 (op, loc, (to) - (loc) - 3)
1589 /* Likewise, for a two-argument jump. */
1590 #define STORE_JUMP2(op, loc, to, arg) \
1591 store_op2 (op, loc, (to) - (loc) - 3, arg)
1593 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1594 #define INSERT_JUMP(op, loc, to) \
1595 insert_op1 (op, loc, (to) - (loc) - 3, b)
1597 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1598 #define INSERT_JUMP2(op, loc, to, arg) \
1599 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1602 /* This is not an arbitrary limit: the arguments which represent offsets
1603 into the pattern are two bytes long. So if 2^16 bytes turns out to
1604 be too small, many things would have to change. */
1605 #define MAX_BUF_SIZE (1L << 16)
1608 /* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1612 #define EXTEND_BUFFER() \
1613 do { \
1614 unsigned char *old_buffer = bufp->buffer; \
1615 if (bufp->allocated == MAX_BUF_SIZE) \
1616 return REG_ESIZE; \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
1619 bufp->allocated = MAX_BUF_SIZE; \
1620 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1630 if (laststart) \
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1635 } while (0)
1638 /* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641 #define MAX_REGNUM 255
1643 /* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645 typedef unsigned regnum_t;
1648 /* Macros for the compile stack. */
1650 /* Since offsets can go either forwards or backwards, this type needs to
1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1652 typedef int pattern_offset_t;
1654 typedef struct
1656 pattern_offset_t begalt_offset;
1657 pattern_offset_t fixup_alt_jump;
1658 pattern_offset_t inner_group_offset;
1659 pattern_offset_t laststart_offset;
1660 regnum_t regnum;
1661 } compile_stack_elt_t;
1664 typedef struct
1666 compile_stack_elt_t *stack;
1667 unsigned size;
1668 unsigned avail; /* Offset of next open position. */
1669 } compile_stack_type;
1672 #define INIT_COMPILE_STACK_SIZE 32
1674 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1675 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1677 /* The next available element. */
1678 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1681 /* Structure to manage work area for range table. */
1682 struct range_table_work_area
1684 int *table; /* actual work area. */
1685 int allocated; /* allocated size for work area in bytes. */
1686 int used; /* actually used size in words. */
1689 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1690 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1691 do { \
1692 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1694 (work_area).allocated += 16 * sizeof (int); \
1695 if ((work_area).table) \
1696 (work_area).table \
1697 = (int *) realloc ((work_area).table, (work_area).allocated); \
1698 else \
1699 (work_area).table \
1700 = (int *) malloc ((work_area).allocated); \
1701 if ((work_area).table == 0) \
1702 FREE_STACK_RETURN (REG_ESPACE); \
1704 } while (0)
1706 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1707 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1708 do { \
1709 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1710 (work_area).table[(work_area).used++] = (range_start); \
1711 (work_area).table[(work_area).used++] = (range_end); \
1712 } while (0)
1714 /* Free allocated memory for WORK_AREA. */
1715 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1716 do { \
1717 if ((work_area).table) \
1718 free ((work_area).table); \
1719 } while (0)
1721 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1722 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1723 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1726 /* Set the bit for character C in a list. */
1727 #define SET_LIST_BIT(c) \
1728 (b[((unsigned char) (c)) / BYTEWIDTH] \
1729 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1732 /* Get the next unsigned number in the uncompiled pattern. */
1733 #define GET_UNSIGNED_NUMBER(num) \
1734 { if (p != pend) \
1736 PATFETCH (c); \
1737 while (ISDIGIT (c)) \
1739 if (num < 0) \
1740 num = 0; \
1741 num = num * 10 + c - '0'; \
1742 if (p == pend) \
1743 break; \
1744 PATFETCH (c); \
1749 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1751 #define IS_CHAR_CLASS(string) \
1752 (STREQ (string, "alpha") || STREQ (string, "upper") \
1753 || STREQ (string, "lower") || STREQ (string, "digit") \
1754 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1755 || STREQ (string, "space") || STREQ (string, "print") \
1756 || STREQ (string, "punct") || STREQ (string, "graph") \
1757 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1759 #ifndef MATCH_MAY_ALLOCATE
1761 /* If we cannot allocate large objects within re_match_2_internal,
1762 we make the fail stack and register vectors global.
1763 The fail stack, we grow to the maximum size when a regexp
1764 is compiled.
1765 The register vectors, we adjust in size each time we
1766 compile a regexp, according to the number of registers it needs. */
1768 static fail_stack_type fail_stack;
1770 /* Size with which the following vectors are currently allocated.
1771 That is so we can make them bigger as needed,
1772 but never make them smaller. */
1773 static int regs_allocated_size;
1775 static const char ** regstart, ** regend;
1776 static const char ** old_regstart, ** old_regend;
1777 static const char **best_regstart, **best_regend;
1778 static register_info_type *reg_info;
1779 static const char **reg_dummy;
1780 static register_info_type *reg_info_dummy;
1782 /* Make the register vectors big enough for NUM_REGS registers,
1783 but don't make them smaller. */
1785 static
1786 regex_grow_registers (num_regs)
1787 int num_regs;
1789 if (num_regs > regs_allocated_size)
1791 RETALLOC_IF (regstart, num_regs, const char *);
1792 RETALLOC_IF (regend, num_regs, const char *);
1793 RETALLOC_IF (old_regstart, num_regs, const char *);
1794 RETALLOC_IF (old_regend, num_regs, const char *);
1795 RETALLOC_IF (best_regstart, num_regs, const char *);
1796 RETALLOC_IF (best_regend, num_regs, const char *);
1797 RETALLOC_IF (reg_info, num_regs, register_info_type);
1798 RETALLOC_IF (reg_dummy, num_regs, const char *);
1799 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1801 regs_allocated_size = num_regs;
1805 #endif /* not MATCH_MAY_ALLOCATE */
1807 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1808 Returns one of error codes defined in `regex.h', or zero for success.
1810 Assumes the `allocated' (and perhaps `buffer') and `translate'
1811 fields are set in BUFP on entry.
1813 If it succeeds, results are put in BUFP (if it returns an error, the
1814 contents of BUFP are undefined):
1815 `buffer' is the compiled pattern;
1816 `syntax' is set to SYNTAX;
1817 `used' is set to the length of the compiled pattern;
1818 `fastmap_accurate' is zero;
1819 `re_nsub' is the number of subexpressions in PATTERN;
1820 `not_bol' and `not_eol' are zero;
1822 The `fastmap' and `newline_anchor' fields are neither
1823 examined nor set. */
1825 /* Return, freeing storage we allocated. */
1826 #define FREE_STACK_RETURN(value) \
1827 do { \
1828 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1829 free (compile_stack.stack); \
1830 return value; \
1831 } while (0)
1833 static reg_errcode_t
1834 regex_compile (pattern, size, syntax, bufp)
1835 const char *pattern;
1836 int size;
1837 reg_syntax_t syntax;
1838 struct re_pattern_buffer *bufp;
1840 /* We fetch characters from PATTERN here. Even though PATTERN is
1841 `char *' (i.e., signed), we declare these variables as unsigned, so
1842 they can be reliably used as array indices. */
1843 register unsigned int c, c1;
1845 /* A random temporary spot in PATTERN. */
1846 const char *p1;
1848 /* Points to the end of the buffer, where we should append. */
1849 register unsigned char *b;
1851 /* Keeps track of unclosed groups. */
1852 compile_stack_type compile_stack;
1854 /* Points to the current (ending) position in the pattern. */
1855 const char *p = pattern;
1856 const char *pend = pattern + size;
1858 /* How to translate the characters in the pattern. */
1859 RE_TRANSLATE_TYPE translate = bufp->translate;
1861 /* Address of the count-byte of the most recently inserted `exactn'
1862 command. This makes it possible to tell if a new exact-match
1863 character can be added to that command or if the character requires
1864 a new `exactn' command. */
1865 unsigned char *pending_exact = 0;
1867 /* Address of start of the most recently finished expression.
1868 This tells, e.g., postfix * where to find the start of its
1869 operand. Reset at the beginning of groups and alternatives. */
1870 unsigned char *laststart = 0;
1872 /* Address of beginning of regexp, or inside of last group. */
1873 unsigned char *begalt;
1875 /* Place in the uncompiled pattern (i.e., the {) to
1876 which to go back if the interval is invalid. */
1877 const char *beg_interval;
1879 /* Address of the place where a forward jump should go to the end of
1880 the containing expression. Each alternative of an `or' -- except the
1881 last -- ends with a forward jump of this sort. */
1882 unsigned char *fixup_alt_jump = 0;
1884 /* Counts open-groups as they are encountered. Remembered for the
1885 matching close-group on the compile stack, so the same register
1886 number is put in the stop_memory as the start_memory. */
1887 regnum_t regnum = 0;
1889 /* Work area for range table of charset. */
1890 struct range_table_work_area range_table_work;
1892 #ifdef DEBUG
1893 DEBUG_PRINT1 ("\nCompiling pattern: ");
1894 if (debug)
1896 unsigned debug_count;
1898 for (debug_count = 0; debug_count < size; debug_count++)
1899 putchar (pattern[debug_count]);
1900 putchar ('\n');
1902 #endif /* DEBUG */
1904 /* Initialize the compile stack. */
1905 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1906 if (compile_stack.stack == NULL)
1907 return REG_ESPACE;
1909 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1910 compile_stack.avail = 0;
1912 range_table_work.table = 0;
1913 range_table_work.allocated = 0;
1915 /* Initialize the pattern buffer. */
1916 bufp->syntax = syntax;
1917 bufp->fastmap_accurate = 0;
1918 bufp->not_bol = bufp->not_eol = 0;
1920 /* Set `used' to zero, so that if we return an error, the pattern
1921 printer (for debugging) will think there's no pattern. We reset it
1922 at the end. */
1923 bufp->used = 0;
1925 /* Always count groups, whether or not bufp->no_sub is set. */
1926 bufp->re_nsub = 0;
1928 #ifdef emacs
1929 /* bufp->multibyte is set before regex_compile is called, so don't alter
1930 it. */
1931 #else /* not emacs */
1932 /* Nothing is recognized as a multibyte character. */
1933 bufp->multibyte = 0;
1934 #endif
1936 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1937 /* Initialize the syntax table. */
1938 init_syntax_once ();
1939 #endif
1941 if (bufp->allocated == 0)
1943 if (bufp->buffer)
1944 { /* If zero allocated, but buffer is non-null, try to realloc
1945 enough space. This loses if buffer's address is bogus, but
1946 that is the user's responsibility. */
1947 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1949 else
1950 { /* Caller did not allocate a buffer. Do it for them. */
1951 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1953 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1955 bufp->allocated = INIT_BUF_SIZE;
1958 begalt = b = bufp->buffer;
1960 /* Loop through the uncompiled pattern until we're at the end. */
1961 while (p != pend)
1963 PATFETCH (c);
1965 switch (c)
1967 case '^':
1969 if ( /* If at start of pattern, it's an operator. */
1970 p == pattern + 1
1971 /* If context independent, it's an operator. */
1972 || syntax & RE_CONTEXT_INDEP_ANCHORS
1973 /* Otherwise, depends on what's come before. */
1974 || at_begline_loc_p (pattern, p, syntax))
1975 BUF_PUSH (begline);
1976 else
1977 goto normal_char;
1979 break;
1982 case '$':
1984 if ( /* If at end of pattern, it's an operator. */
1985 p == pend
1986 /* If context independent, it's an operator. */
1987 || syntax & RE_CONTEXT_INDEP_ANCHORS
1988 /* Otherwise, depends on what's next. */
1989 || at_endline_loc_p (p, pend, syntax))
1990 BUF_PUSH (endline);
1991 else
1992 goto normal_char;
1994 break;
1997 case '+':
1998 case '?':
1999 if ((syntax & RE_BK_PLUS_QM)
2000 || (syntax & RE_LIMITED_OPS))
2001 goto normal_char;
2002 handle_plus:
2003 case '*':
2004 /* If there is no previous pattern... */
2005 if (!laststart)
2007 if (syntax & RE_CONTEXT_INVALID_OPS)
2008 FREE_STACK_RETURN (REG_BADRPT);
2009 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2010 goto normal_char;
2014 /* Are we optimizing this jump? */
2015 boolean keep_string_p = false;
2017 /* 1 means zero (many) matches is allowed. */
2018 char zero_times_ok = 0, many_times_ok = 0;
2020 /* If there is a sequence of repetition chars, collapse it
2021 down to just one (the right one). We can't combine
2022 interval operators with these because of, e.g., `a{2}*',
2023 which should only match an even number of `a's. */
2025 for (;;)
2027 zero_times_ok |= c != '+';
2028 many_times_ok |= c != '?';
2030 if (p == pend)
2031 break;
2033 PATFETCH (c);
2035 if (c == '*'
2036 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2039 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2041 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2043 PATFETCH (c1);
2044 if (!(c1 == '+' || c1 == '?'))
2046 PATUNFETCH;
2047 PATUNFETCH;
2048 break;
2051 c = c1;
2053 else
2055 PATUNFETCH;
2056 break;
2059 /* If we get here, we found another repeat character. */
2062 /* Star, etc. applied to an empty pattern is equivalent
2063 to an empty pattern. */
2064 if (!laststart)
2065 break;
2067 /* Now we know whether or not zero matches is allowed
2068 and also whether or not two or more matches is allowed. */
2069 if (many_times_ok)
2070 { /* More than one repetition is allowed, so put in at the
2071 end a backward relative jump from `b' to before the next
2072 jump we're going to put in below (which jumps from
2073 laststart to after this jump).
2075 But if we are at the `*' in the exact sequence `.*\n',
2076 insert an unconditional jump backwards to the .,
2077 instead of the beginning of the loop. This way we only
2078 push a failure point once, instead of every time
2079 through the loop. */
2080 assert (p - 1 > pattern);
2082 /* Allocate the space for the jump. */
2083 GET_BUFFER_SPACE (3);
2085 /* We know we are not at the first character of the pattern,
2086 because laststart was nonzero. And we've already
2087 incremented `p', by the way, to be the character after
2088 the `*'. Do we have to do something analogous here
2089 for null bytes, because of RE_DOT_NOT_NULL? */
2090 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2091 && zero_times_ok
2092 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2093 && !(syntax & RE_DOT_NEWLINE))
2094 { /* We have .*\n. */
2095 STORE_JUMP (jump, b, laststart);
2096 keep_string_p = true;
2098 else
2099 /* Anything else. */
2100 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2102 /* We've added more stuff to the buffer. */
2103 b += 3;
2106 /* On failure, jump from laststart to b + 3, which will be the
2107 end of the buffer after this jump is inserted. */
2108 GET_BUFFER_SPACE (3);
2109 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2110 : on_failure_jump,
2111 laststart, b + 3);
2112 pending_exact = 0;
2113 b += 3;
2115 if (!zero_times_ok)
2117 /* At least one repetition is required, so insert a
2118 `dummy_failure_jump' before the initial
2119 `on_failure_jump' instruction of the loop. This
2120 effects a skip over that instruction the first time
2121 we hit that loop. */
2122 GET_BUFFER_SPACE (3);
2123 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2124 b += 3;
2127 break;
2130 case '.':
2131 laststart = b;
2132 BUF_PUSH (anychar);
2133 break;
2136 case '[':
2138 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2140 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2142 /* Ensure that we have enough space to push a charset: the
2143 opcode, the length count, and the bitset; 34 bytes in all. */
2144 GET_BUFFER_SPACE (34);
2146 laststart = b;
2148 /* We test `*p == '^' twice, instead of using an if
2149 statement, so we only need one BUF_PUSH. */
2150 BUF_PUSH (*p == '^' ? charset_not : charset);
2151 if (*p == '^')
2152 p++;
2154 /* Remember the first position in the bracket expression. */
2155 p1 = p;
2157 /* Push the number of bytes in the bitmap. */
2158 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2160 /* Clear the whole map. */
2161 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2163 /* charset_not matches newline according to a syntax bit. */
2164 if ((re_opcode_t) b[-2] == charset_not
2165 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2166 SET_LIST_BIT ('\n');
2168 /* Read in characters and ranges, setting map bits. */
2169 for (;;)
2171 int len;
2172 boolean escaped_char = false;
2174 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2176 PATFETCH (c);
2178 /* \ might escape characters inside [...] and [^...]. */
2179 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2181 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2183 PATFETCH (c);
2184 escaped_char = true;
2186 else
2188 /* Could be the end of the bracket expression. If it's
2189 not (i.e., when the bracket expression is `[]' so
2190 far), the ']' character bit gets set way below. */
2191 if (c == ']' && p != p1 + 1)
2192 break;
2195 /* If C indicates start of multibyte char, get the
2196 actual character code in C, and set the pattern
2197 pointer P to the next character boundary. */
2198 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2200 PATUNFETCH;
2201 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2202 p += len;
2204 /* What should we do for the character which is
2205 greater than 0x7F, but not BASE_LEADING_CODE_P?
2206 XXX */
2208 /* See if we're at the beginning of a possible character
2209 class. */
2211 else if (!escaped_char &&
2212 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2213 { /* Leave room for the null. */
2214 char str[CHAR_CLASS_MAX_LENGTH + 1];
2216 PATFETCH (c);
2217 c1 = 0;
2219 /* If pattern is `[[:'. */
2220 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2222 for (;;)
2224 PATFETCH (c);
2225 if (c == ':' || c == ']' || p == pend
2226 || c1 == CHAR_CLASS_MAX_LENGTH)
2227 break;
2228 str[c1++] = c;
2230 str[c1] = '\0';
2232 /* If isn't a word bracketed by `[:' and `:]':
2233 undo the ending character, the letters, and
2234 leave the leading `:' and `[' (but set bits for
2235 them). */
2236 if (c == ':' && *p == ']')
2238 int ch;
2239 boolean is_alnum = STREQ (str, "alnum");
2240 boolean is_alpha = STREQ (str, "alpha");
2241 boolean is_blank = STREQ (str, "blank");
2242 boolean is_cntrl = STREQ (str, "cntrl");
2243 boolean is_digit = STREQ (str, "digit");
2244 boolean is_graph = STREQ (str, "graph");
2245 boolean is_lower = STREQ (str, "lower");
2246 boolean is_print = STREQ (str, "print");
2247 boolean is_punct = STREQ (str, "punct");
2248 boolean is_space = STREQ (str, "space");
2249 boolean is_upper = STREQ (str, "upper");
2250 boolean is_xdigit = STREQ (str, "xdigit");
2252 if (!IS_CHAR_CLASS (str))
2253 FREE_STACK_RETURN (REG_ECTYPE);
2255 /* Throw away the ] at the end of the character
2256 class. */
2257 PATFETCH (c);
2259 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2261 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2263 int translated = TRANSLATE (ch);
2264 /* This was split into 3 if's to
2265 avoid an arbitrary limit in some compiler. */
2266 if ( (is_alnum && ISALNUM (ch))
2267 || (is_alpha && ISALPHA (ch))
2268 || (is_blank && ISBLANK (ch))
2269 || (is_cntrl && ISCNTRL (ch)))
2270 SET_LIST_BIT (translated);
2271 if ( (is_digit && ISDIGIT (ch))
2272 || (is_graph && ISGRAPH (ch))
2273 || (is_lower && ISLOWER (ch))
2274 || (is_print && ISPRINT (ch)))
2275 SET_LIST_BIT (translated);
2276 if ( (is_punct && ISPUNCT (ch))
2277 || (is_space && ISSPACE (ch))
2278 || (is_upper && ISUPPER (ch))
2279 || (is_xdigit && ISXDIGIT (ch)))
2280 SET_LIST_BIT (translated);
2283 /* Repeat the loop. */
2284 continue;
2286 else
2288 c1++;
2289 while (c1--)
2290 PATUNFETCH;
2291 SET_LIST_BIT ('[');
2293 /* Because the `:' may starts the range, we
2294 can't simply set bit and repeat the loop.
2295 Instead, just set it to C and handle below. */
2296 c = ':';
2300 if (p < pend && p[0] == '-' && p[1] != ']')
2303 /* Discard the `-'. */
2304 PATFETCH (c1);
2306 /* Fetch the character which ends the range. */
2307 PATFETCH (c1);
2308 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2310 PATUNFETCH;
2311 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2312 p += len;
2315 if (!SAME_CHARSET_P (c, c1))
2316 FREE_STACK_RETURN (REG_ERANGE);
2318 else
2319 /* Range from C to C. */
2320 c1 = c;
2322 /* Set the range ... */
2323 if (SINGLE_BYTE_CHAR_P (c))
2324 /* ... into bitmap. */
2326 unsigned this_char;
2327 int range_start = c, range_end = c1;
2329 /* If the start is after the end, the range is empty. */
2330 if (range_start > range_end)
2332 if (syntax & RE_NO_EMPTY_RANGES)
2333 FREE_STACK_RETURN (REG_ERANGE);
2334 /* Else, repeat the loop. */
2336 else
2338 for (this_char = range_start; this_char <= range_end;
2339 this_char++)
2340 SET_LIST_BIT (TRANSLATE (this_char));
2343 else
2344 /* ... into range table. */
2345 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2348 /* Discard any (non)matching list bytes that are all 0 at the
2349 end of the map. Decrease the map-length byte too. */
2350 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2351 b[-1]--;
2352 b += b[-1];
2354 /* Build real range table from work area. */
2355 if (RANGE_TABLE_WORK_USED (range_table_work))
2357 int i;
2358 int used = RANGE_TABLE_WORK_USED (range_table_work);
2360 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2361 bytes for COUNT and three bytes for each character. */
2362 GET_BUFFER_SPACE (2 + used * 3);
2364 /* Indicate the existence of range table. */
2365 laststart[1] |= 0x80;
2367 STORE_NUMBER_AND_INCR (b, used / 2);
2368 for (i = 0; i < used; i++)
2369 STORE_CHARACTER_AND_INCR
2370 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2373 break;
2376 case '(':
2377 if (syntax & RE_NO_BK_PARENS)
2378 goto handle_open;
2379 else
2380 goto normal_char;
2383 case ')':
2384 if (syntax & RE_NO_BK_PARENS)
2385 goto handle_close;
2386 else
2387 goto normal_char;
2390 case '\n':
2391 if (syntax & RE_NEWLINE_ALT)
2392 goto handle_alt;
2393 else
2394 goto normal_char;
2397 case '|':
2398 if (syntax & RE_NO_BK_VBAR)
2399 goto handle_alt;
2400 else
2401 goto normal_char;
2404 case '{':
2405 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2406 goto handle_interval;
2407 else
2408 goto normal_char;
2411 case '\\':
2412 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2414 /* Do not translate the character after the \, so that we can
2415 distinguish, e.g., \B from \b, even if we normally would
2416 translate, e.g., B to b. */
2417 PATFETCH_RAW (c);
2419 switch (c)
2421 case '(':
2422 if (syntax & RE_NO_BK_PARENS)
2423 goto normal_backslash;
2425 handle_open:
2426 bufp->re_nsub++;
2427 regnum++;
2429 if (COMPILE_STACK_FULL)
2431 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2432 compile_stack_elt_t);
2433 if (compile_stack.stack == NULL) return REG_ESPACE;
2435 compile_stack.size <<= 1;
2438 /* These are the values to restore when we hit end of this
2439 group. They are all relative offsets, so that if the
2440 whole pattern moves because of realloc, they will still
2441 be valid. */
2442 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2443 COMPILE_STACK_TOP.fixup_alt_jump
2444 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2445 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2446 COMPILE_STACK_TOP.regnum = regnum;
2448 /* We will eventually replace the 0 with the number of
2449 groups inner to this one. But do not push a
2450 start_memory for groups beyond the last one we can
2451 represent in the compiled pattern. */
2452 if (regnum <= MAX_REGNUM)
2454 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2455 BUF_PUSH_3 (start_memory, regnum, 0);
2458 compile_stack.avail++;
2460 fixup_alt_jump = 0;
2461 laststart = 0;
2462 begalt = b;
2463 /* If we've reached MAX_REGNUM groups, then this open
2464 won't actually generate any code, so we'll have to
2465 clear pending_exact explicitly. */
2466 pending_exact = 0;
2467 break;
2470 case ')':
2471 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2473 if (COMPILE_STACK_EMPTY)
2474 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2475 goto normal_backslash;
2476 else
2477 FREE_STACK_RETURN (REG_ERPAREN);
2479 handle_close:
2480 if (fixup_alt_jump)
2481 { /* Push a dummy failure point at the end of the
2482 alternative for a possible future
2483 `pop_failure_jump' to pop. See comments at
2484 `push_dummy_failure' in `re_match_2'. */
2485 BUF_PUSH (push_dummy_failure);
2487 /* We allocated space for this jump when we assigned
2488 to `fixup_alt_jump', in the `handle_alt' case below. */
2489 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2492 /* See similar code for backslashed left paren above. */
2493 if (COMPILE_STACK_EMPTY)
2494 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2495 goto normal_char;
2496 else
2497 FREE_STACK_RETURN (REG_ERPAREN);
2499 /* Since we just checked for an empty stack above, this
2500 ``can't happen''. */
2501 assert (compile_stack.avail != 0);
2503 /* We don't just want to restore into `regnum', because
2504 later groups should continue to be numbered higher,
2505 as in `(ab)c(de)' -- the second group is #2. */
2506 regnum_t this_group_regnum;
2508 compile_stack.avail--;
2509 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2510 fixup_alt_jump
2511 = COMPILE_STACK_TOP.fixup_alt_jump
2512 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2513 : 0;
2514 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2515 this_group_regnum = COMPILE_STACK_TOP.regnum;
2516 /* If we've reached MAX_REGNUM groups, then this open
2517 won't actually generate any code, so we'll have to
2518 clear pending_exact explicitly. */
2519 pending_exact = 0;
2521 /* We're at the end of the group, so now we know how many
2522 groups were inside this one. */
2523 if (this_group_regnum <= MAX_REGNUM)
2525 unsigned char *inner_group_loc
2526 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2528 *inner_group_loc = regnum - this_group_regnum;
2529 BUF_PUSH_3 (stop_memory, this_group_regnum,
2530 regnum - this_group_regnum);
2533 break;
2536 case '|': /* `\|'. */
2537 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2538 goto normal_backslash;
2539 handle_alt:
2540 if (syntax & RE_LIMITED_OPS)
2541 goto normal_char;
2543 /* Insert before the previous alternative a jump which
2544 jumps to this alternative if the former fails. */
2545 GET_BUFFER_SPACE (3);
2546 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2547 pending_exact = 0;
2548 b += 3;
2550 /* The alternative before this one has a jump after it
2551 which gets executed if it gets matched. Adjust that
2552 jump so it will jump to this alternative's analogous
2553 jump (put in below, which in turn will jump to the next
2554 (if any) alternative's such jump, etc.). The last such
2555 jump jumps to the correct final destination. A picture:
2556 _____ _____
2557 | | | |
2558 | v | v
2559 a | b | c
2561 If we are at `b', then fixup_alt_jump right now points to a
2562 three-byte space after `a'. We'll put in the jump, set
2563 fixup_alt_jump to right after `b', and leave behind three
2564 bytes which we'll fill in when we get to after `c'. */
2566 if (fixup_alt_jump)
2567 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2569 /* Mark and leave space for a jump after this alternative,
2570 to be filled in later either by next alternative or
2571 when know we're at the end of a series of alternatives. */
2572 fixup_alt_jump = b;
2573 GET_BUFFER_SPACE (3);
2574 b += 3;
2576 laststart = 0;
2577 begalt = b;
2578 break;
2581 case '{':
2582 /* If \{ is a literal. */
2583 if (!(syntax & RE_INTERVALS)
2584 /* If we're at `\{' and it's not the open-interval
2585 operator. */
2586 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2587 || (p - 2 == pattern && p == pend))
2588 goto normal_backslash;
2590 handle_interval:
2592 /* If got here, then the syntax allows intervals. */
2594 /* At least (most) this many matches must be made. */
2595 int lower_bound = -1, upper_bound = -1;
2597 beg_interval = p - 1;
2599 if (p == pend)
2601 if (syntax & RE_NO_BK_BRACES)
2602 goto unfetch_interval;
2603 else
2604 FREE_STACK_RETURN (REG_EBRACE);
2607 GET_UNSIGNED_NUMBER (lower_bound);
2609 if (c == ',')
2611 GET_UNSIGNED_NUMBER (upper_bound);
2612 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2614 else
2615 /* Interval such as `{1}' => match exactly once. */
2616 upper_bound = lower_bound;
2618 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2619 || lower_bound > upper_bound)
2621 if (syntax & RE_NO_BK_BRACES)
2622 goto unfetch_interval;
2623 else
2624 FREE_STACK_RETURN (REG_BADBR);
2627 if (!(syntax & RE_NO_BK_BRACES))
2629 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2631 PATFETCH (c);
2634 if (c != '}')
2636 if (syntax & RE_NO_BK_BRACES)
2637 goto unfetch_interval;
2638 else
2639 FREE_STACK_RETURN (REG_BADBR);
2642 /* We just parsed a valid interval. */
2644 /* If it's invalid to have no preceding re. */
2645 if (!laststart)
2647 if (syntax & RE_CONTEXT_INVALID_OPS)
2648 FREE_STACK_RETURN (REG_BADRPT);
2649 else if (syntax & RE_CONTEXT_INDEP_OPS)
2650 laststart = b;
2651 else
2652 goto unfetch_interval;
2655 /* If the upper bound is zero, don't want to succeed at
2656 all; jump from `laststart' to `b + 3', which will be
2657 the end of the buffer after we insert the jump. */
2658 if (upper_bound == 0)
2660 GET_BUFFER_SPACE (3);
2661 INSERT_JUMP (jump, laststart, b + 3);
2662 b += 3;
2665 /* Otherwise, we have a nontrivial interval. When
2666 we're all done, the pattern will look like:
2667 set_number_at <jump count> <upper bound>
2668 set_number_at <succeed_n count> <lower bound>
2669 succeed_n <after jump addr> <succeed_n count>
2670 <body of loop>
2671 jump_n <succeed_n addr> <jump count>
2672 (The upper bound and `jump_n' are omitted if
2673 `upper_bound' is 1, though.) */
2674 else
2675 { /* If the upper bound is > 1, we need to insert
2676 more at the end of the loop. */
2677 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2679 GET_BUFFER_SPACE (nbytes);
2681 /* Initialize lower bound of the `succeed_n', even
2682 though it will be set during matching by its
2683 attendant `set_number_at' (inserted next),
2684 because `re_compile_fastmap' needs to know.
2685 Jump to the `jump_n' we might insert below. */
2686 INSERT_JUMP2 (succeed_n, laststart,
2687 b + 5 + (upper_bound > 1) * 5,
2688 lower_bound);
2689 b += 5;
2691 /* Code to initialize the lower bound. Insert
2692 before the `succeed_n'. The `5' is the last two
2693 bytes of this `set_number_at', plus 3 bytes of
2694 the following `succeed_n'. */
2695 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2696 b += 5;
2698 if (upper_bound > 1)
2699 { /* More than one repetition is allowed, so
2700 append a backward jump to the `succeed_n'
2701 that starts this interval.
2703 When we've reached this during matching,
2704 we'll have matched the interval once, so
2705 jump back only `upper_bound - 1' times. */
2706 STORE_JUMP2 (jump_n, b, laststart + 5,
2707 upper_bound - 1);
2708 b += 5;
2710 /* The location we want to set is the second
2711 parameter of the `jump_n'; that is `b-2' as
2712 an absolute address. `laststart' will be
2713 the `set_number_at' we're about to insert;
2714 `laststart+3' the number to set, the source
2715 for the relative address. But we are
2716 inserting into the middle of the pattern --
2717 so everything is getting moved up by 5.
2718 Conclusion: (b - 2) - (laststart + 3) + 5,
2719 i.e., b - laststart.
2721 We insert this at the beginning of the loop
2722 so that if we fail during matching, we'll
2723 reinitialize the bounds. */
2724 insert_op2 (set_number_at, laststart, b - laststart,
2725 upper_bound - 1, b);
2726 b += 5;
2729 pending_exact = 0;
2730 beg_interval = NULL;
2732 break;
2734 unfetch_interval:
2735 /* If an invalid interval, match the characters as literals. */
2736 assert (beg_interval);
2737 p = beg_interval;
2738 beg_interval = NULL;
2740 /* normal_char and normal_backslash need `c'. */
2741 PATFETCH (c);
2743 if (!(syntax & RE_NO_BK_BRACES))
2745 if (p > pattern && p[-1] == '\\')
2746 goto normal_backslash;
2748 goto normal_char;
2750 #ifdef emacs
2751 /* There is no way to specify the before_dot and after_dot
2752 operators. rms says this is ok. --karl */
2753 case '=':
2754 BUF_PUSH (at_dot);
2755 break;
2757 case 's':
2758 laststart = b;
2759 PATFETCH (c);
2760 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2761 break;
2763 case 'S':
2764 laststart = b;
2765 PATFETCH (c);
2766 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2767 break;
2769 case 'c':
2770 laststart = b;
2771 PATFETCH_RAW (c);
2772 BUF_PUSH_2 (categoryspec, c);
2773 break;
2775 case 'C':
2776 laststart = b;
2777 PATFETCH_RAW (c);
2778 BUF_PUSH_2 (notcategoryspec, c);
2779 break;
2780 #endif /* emacs */
2783 case 'w':
2784 laststart = b;
2785 BUF_PUSH (wordchar);
2786 break;
2789 case 'W':
2790 laststart = b;
2791 BUF_PUSH (notwordchar);
2792 break;
2795 case '<':
2796 BUF_PUSH (wordbeg);
2797 break;
2799 case '>':
2800 BUF_PUSH (wordend);
2801 break;
2803 case 'b':
2804 BUF_PUSH (wordbound);
2805 break;
2807 case 'B':
2808 BUF_PUSH (notwordbound);
2809 break;
2811 case '`':
2812 BUF_PUSH (begbuf);
2813 break;
2815 case '\'':
2816 BUF_PUSH (endbuf);
2817 break;
2819 case '1': case '2': case '3': case '4': case '5':
2820 case '6': case '7': case '8': case '9':
2821 if (syntax & RE_NO_BK_REFS)
2822 goto normal_char;
2824 c1 = c - '0';
2826 if (c1 > regnum)
2827 FREE_STACK_RETURN (REG_ESUBREG);
2829 /* Can't back reference to a subexpression if inside of it. */
2830 if (group_in_compile_stack (compile_stack, c1))
2831 goto normal_char;
2833 laststart = b;
2834 BUF_PUSH_2 (duplicate, c1);
2835 break;
2838 case '+':
2839 case '?':
2840 if (syntax & RE_BK_PLUS_QM)
2841 goto handle_plus;
2842 else
2843 goto normal_backslash;
2845 default:
2846 normal_backslash:
2847 /* You might think it would be useful for \ to mean
2848 not to translate; but if we don't translate it
2849 it will never match anything. */
2850 c = TRANSLATE (c);
2851 goto normal_char;
2853 break;
2856 default:
2857 /* Expects the character in `c'. */
2858 normal_char:
2859 p1 = p - 1; /* P1 points the head of C. */
2860 #ifdef emacs
2861 if (bufp->multibyte)
2862 /* Set P to the next character boundary. */
2863 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2864 #endif
2865 /* If no exactn currently being built. */
2866 if (!pending_exact
2868 /* If last exactn not at current position. */
2869 || pending_exact + *pending_exact + 1 != b
2871 /* We have only one byte following the exactn for the count. */
2872 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2874 /* If followed by a repetition operator. */
2875 || *p == '*' || *p == '^'
2876 || ((syntax & RE_BK_PLUS_QM)
2877 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2878 : (*p == '+' || *p == '?'))
2879 || ((syntax & RE_INTERVALS)
2880 && ((syntax & RE_NO_BK_BRACES)
2881 ? *p == '{'
2882 : (p[0] == '\\' && p[1] == '{'))))
2884 /* Start building a new exactn. */
2886 laststart = b;
2888 BUF_PUSH_2 (exactn, 0);
2889 pending_exact = b - 1;
2892 /* Here, C may translated, therefore C may not equal to *P1. */
2893 while (1)
2895 BUF_PUSH (c);
2896 (*pending_exact)++;
2897 if (++p1 == p)
2898 break;
2900 /* Rest of multibyte form should be copied literally. */
2901 c = *(unsigned char *)p1;
2903 break;
2904 } /* switch (c) */
2905 } /* while p != pend */
2908 /* Through the pattern now. */
2910 if (fixup_alt_jump)
2911 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2913 if (!COMPILE_STACK_EMPTY)
2914 FREE_STACK_RETURN (REG_EPAREN);
2916 /* If we don't want backtracking, force success
2917 the first time we reach the end of the compiled pattern. */
2918 if (syntax & RE_NO_POSIX_BACKTRACKING)
2919 BUF_PUSH (succeed);
2921 free (compile_stack.stack);
2923 /* We have succeeded; set the length of the buffer. */
2924 bufp->used = b - bufp->buffer;
2926 #ifdef DEBUG
2927 if (debug)
2929 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2930 print_compiled_pattern (bufp);
2932 #endif /* DEBUG */
2934 #ifndef MATCH_MAY_ALLOCATE
2935 /* Initialize the failure stack to the largest possible stack. This
2936 isn't necessary unless we're trying to avoid calling alloca in
2937 the search and match routines. */
2939 int num_regs = bufp->re_nsub + 1;
2941 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2942 is strictly greater than re_max_failures, the largest possible stack
2943 is 2 * re_max_failures failure points. */
2944 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2946 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2948 #ifdef emacs
2949 if (! fail_stack.stack)
2950 fail_stack.stack
2951 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2952 * sizeof (fail_stack_elt_t));
2953 else
2954 fail_stack.stack
2955 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2956 (fail_stack.size
2957 * sizeof (fail_stack_elt_t)));
2958 #else /* not emacs */
2959 if (! fail_stack.stack)
2960 fail_stack.stack
2961 = (fail_stack_elt_t *) malloc (fail_stack.size
2962 * sizeof (fail_stack_elt_t));
2963 else
2964 fail_stack.stack
2965 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2966 (fail_stack.size
2967 * sizeof (fail_stack_elt_t)));
2968 #endif /* not emacs */
2971 regex_grow_registers (num_regs);
2973 #endif /* not MATCH_MAY_ALLOCATE */
2975 return REG_NOERROR;
2976 } /* regex_compile */
2978 /* Subroutines for `regex_compile'. */
2980 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2982 static void
2983 store_op1 (op, loc, arg)
2984 re_opcode_t op;
2985 unsigned char *loc;
2986 int arg;
2988 *loc = (unsigned char) op;
2989 STORE_NUMBER (loc + 1, arg);
2993 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2995 static void
2996 store_op2 (op, loc, arg1, arg2)
2997 re_opcode_t op;
2998 unsigned char *loc;
2999 int arg1, arg2;
3001 *loc = (unsigned char) op;
3002 STORE_NUMBER (loc + 1, arg1);
3003 STORE_NUMBER (loc + 3, arg2);
3007 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3008 for OP followed by two-byte integer parameter ARG. */
3010 static void
3011 insert_op1 (op, loc, arg, end)
3012 re_opcode_t op;
3013 unsigned char *loc;
3014 int arg;
3015 unsigned char *end;
3017 register unsigned char *pfrom = end;
3018 register unsigned char *pto = end + 3;
3020 while (pfrom != loc)
3021 *--pto = *--pfrom;
3023 store_op1 (op, loc, arg);
3027 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3029 static void
3030 insert_op2 (op, loc, arg1, arg2, end)
3031 re_opcode_t op;
3032 unsigned char *loc;
3033 int arg1, arg2;
3034 unsigned char *end;
3036 register unsigned char *pfrom = end;
3037 register unsigned char *pto = end + 5;
3039 while (pfrom != loc)
3040 *--pto = *--pfrom;
3042 store_op2 (op, loc, arg1, arg2);
3046 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3047 after an alternative or a begin-subexpression. We assume there is at
3048 least one character before the ^. */
3050 static boolean
3051 at_begline_loc_p (pattern, p, syntax)
3052 const char *pattern, *p;
3053 reg_syntax_t syntax;
3055 const char *prev = p - 2;
3056 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3058 return
3059 /* After a subexpression? */
3060 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3061 /* After an alternative? */
3062 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3066 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3067 at least one character after the $, i.e., `P < PEND'. */
3069 static boolean
3070 at_endline_loc_p (p, pend, syntax)
3071 const char *p, *pend;
3072 int syntax;
3074 const char *next = p;
3075 boolean next_backslash = *next == '\\';
3076 const char *next_next = p + 1 < pend ? p + 1 : 0;
3078 return
3079 /* Before a subexpression? */
3080 (syntax & RE_NO_BK_PARENS ? *next == ')'
3081 : next_backslash && next_next && *next_next == ')')
3082 /* Before an alternative? */
3083 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3084 : next_backslash && next_next && *next_next == '|');
3088 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3089 false if it's not. */
3091 static boolean
3092 group_in_compile_stack (compile_stack, regnum)
3093 compile_stack_type compile_stack;
3094 regnum_t regnum;
3096 int this_element;
3098 for (this_element = compile_stack.avail - 1;
3099 this_element >= 0;
3100 this_element--)
3101 if (compile_stack.stack[this_element].regnum == regnum)
3102 return true;
3104 return false;
3108 /* Read the ending character of a range (in a bracket expression) from the
3109 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3110 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3111 Then we set the translation of all bits between the starting and
3112 ending characters (inclusive) in the compiled pattern B.
3114 Return an error code.
3116 We use these short variable names so we can use the same macros as
3117 `regex_compile' itself. */
3119 static reg_errcode_t
3120 compile_range (p_ptr, pend, translate, syntax, b)
3121 const char **p_ptr, *pend;
3122 RE_TRANSLATE_TYPE translate;
3123 reg_syntax_t syntax;
3124 unsigned char *b;
3126 unsigned this_char;
3128 const char *p = *p_ptr;
3129 int range_start, range_end;
3131 if (p == pend)
3132 return REG_ERANGE;
3134 /* Even though the pattern is a signed `char *', we need to fetch
3135 with unsigned char *'s; if the high bit of the pattern character
3136 is set, the range endpoints will be negative if we fetch using a
3137 signed char *.
3139 We also want to fetch the endpoints without translating them; the
3140 appropriate translation is done in the bit-setting loop below. */
3141 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3142 range_start = ((const unsigned char *) p)[-2];
3143 range_end = ((const unsigned char *) p)[0];
3145 /* Have to increment the pointer into the pattern string, so the
3146 caller isn't still at the ending character. */
3147 (*p_ptr)++;
3149 /* If the start is after the end, the range is empty. */
3150 if (range_start > range_end)
3151 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3153 /* Here we see why `this_char' has to be larger than an `unsigned
3154 char' -- the range is inclusive, so if `range_end' == 0xff
3155 (assuming 8-bit characters), we would otherwise go into an infinite
3156 loop, since all characters <= 0xff. */
3157 for (this_char = range_start; this_char <= range_end; this_char++)
3159 SET_LIST_BIT (TRANSLATE (this_char));
3162 return REG_NOERROR;
3165 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3166 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3167 characters can start a string that matches the pattern. This fastmap
3168 is used by re_search to skip quickly over impossible starting points.
3170 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3171 area as BUFP->fastmap.
3173 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3174 the pattern buffer.
3176 Returns 0 if we succeed, -2 if an internal error. */
3179 re_compile_fastmap (bufp)
3180 struct re_pattern_buffer *bufp;
3182 int i, j, k;
3183 #ifdef MATCH_MAY_ALLOCATE
3184 fail_stack_type fail_stack;
3185 #endif
3186 #ifndef REGEX_MALLOC
3187 char *destination;
3188 #endif
3189 /* We don't push any register information onto the failure stack. */
3190 unsigned num_regs = 0;
3192 register char *fastmap = bufp->fastmap;
3193 unsigned char *pattern = bufp->buffer;
3194 unsigned long size = bufp->used;
3195 unsigned char *p = pattern;
3196 register unsigned char *pend = pattern + size;
3198 /* This holds the pointer to the failure stack, when
3199 it is allocated relocatably. */
3200 fail_stack_elt_t *failure_stack_ptr;
3202 /* Assume that each path through the pattern can be null until
3203 proven otherwise. We set this false at the bottom of switch
3204 statement, to which we get only if a particular path doesn't
3205 match the empty string. */
3206 boolean path_can_be_null = true;
3208 /* We aren't doing a `succeed_n' to begin with. */
3209 boolean succeed_n_p = false;
3211 /* If all elements for base leading-codes in fastmap is set, this
3212 flag is set true. */
3213 boolean match_any_multibyte_characters = false;
3215 /* Maximum code of simple (single byte) character. */
3216 int simple_char_max;
3218 assert (fastmap != NULL && p != NULL);
3220 INIT_FAIL_STACK ();
3221 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3222 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3223 bufp->can_be_null = 0;
3225 while (1)
3227 if (p == pend || *p == succeed)
3229 /* We have reached the (effective) end of pattern. */
3230 if (!FAIL_STACK_EMPTY ())
3232 bufp->can_be_null |= path_can_be_null;
3234 /* Reset for next path. */
3235 path_can_be_null = true;
3237 p = fail_stack.stack[--fail_stack.avail].pointer;
3239 continue;
3241 else
3242 break;
3245 /* We should never be about to go beyond the end of the pattern. */
3246 assert (p < pend);
3248 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3251 /* I guess the idea here is to simply not bother with a fastmap
3252 if a backreference is used, since it's too hard to figure out
3253 the fastmap for the corresponding group. Setting
3254 `can_be_null' stops `re_search_2' from using the fastmap, so
3255 that is all we do. */
3256 case duplicate:
3257 bufp->can_be_null = 1;
3258 goto done;
3261 /* Following are the cases which match a character. These end
3262 with `break'. */
3264 case exactn:
3265 fastmap[p[1]] = 1;
3266 break;
3269 #ifndef emacs
3270 case charset:
3271 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3272 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3273 fastmap[j] = 1;
3274 break;
3277 case charset_not:
3278 /* Chars beyond end of map must be allowed. */
3279 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3280 fastmap[j] = 1;
3282 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3283 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3284 fastmap[j] = 1;
3285 break;
3288 case wordchar:
3289 for (j = 0; j < (1 << BYTEWIDTH); j++)
3290 if (SYNTAX (j) == Sword)
3291 fastmap[j] = 1;
3292 break;
3295 case notwordchar:
3296 for (j = 0; j < (1 << BYTEWIDTH); j++)
3297 if (SYNTAX (j) != Sword)
3298 fastmap[j] = 1;
3299 break;
3300 #else /* emacs */
3301 case charset:
3302 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3303 j >= 0; j--)
3304 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3305 fastmap[j] = 1;
3307 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3308 && match_any_multibyte_characters == false)
3310 /* Set fastmap[I] 1 where I is a base leading code of each
3311 multibyte character in the range table. */
3312 int c, count;
3314 /* Make P points the range table. */
3315 p += CHARSET_BITMAP_SIZE (&p[-2]);
3317 /* Extract the number of ranges in range table into
3318 COUNT. */
3319 EXTRACT_NUMBER_AND_INCR (count, p);
3320 for (; count > 0; count--, p += 2 * 3) /* XXX */
3322 /* Extract the start of each range. */
3323 EXTRACT_CHARACTER (c, p);
3324 j = CHAR_CHARSET (c);
3325 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3328 break;
3331 case charset_not:
3332 /* Chars beyond end of map must be allowed. End of map is
3333 `127' if bufp->multibyte is nonzero. */
3334 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3335 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3336 j < simple_char_max; j++)
3337 fastmap[j] = 1;
3339 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3340 j >= 0; j--)
3341 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3342 fastmap[j] = 1;
3344 if (bufp->multibyte)
3345 /* Any character set can possibly contain a character
3346 which doesn't match the specified set of characters. */
3348 set_fastmap_for_multibyte_characters:
3349 if (match_any_multibyte_characters == false)
3351 for (j = 0x80; j < 0xA0; j++) /* XXX */
3352 if (BASE_LEADING_CODE_P (j))
3353 fastmap[j] = 1;
3354 match_any_multibyte_characters = true;
3357 break;
3360 case wordchar:
3361 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3362 for (j = 0; j < simple_char_max; j++)
3363 if (SYNTAX (j) == Sword)
3364 fastmap[j] = 1;
3366 if (bufp->multibyte)
3367 /* Any character set can possibly contain a character
3368 whose syntax is `Sword'. */
3369 goto set_fastmap_for_multibyte_characters;
3370 break;
3373 case notwordchar:
3374 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3375 for (j = 0; j < simple_char_max; j++)
3376 if (SYNTAX (j) != Sword)
3377 fastmap[j] = 1;
3379 if (bufp->multibyte)
3380 /* Any character set can possibly contain a character
3381 whose syntax is not `Sword'. */
3382 goto set_fastmap_for_multibyte_characters;
3383 break;
3384 #endif
3386 case anychar:
3388 int fastmap_newline = fastmap['\n'];
3390 /* `.' matches anything (but if bufp->multibyte is
3391 nonzero, matches `\000' .. `\127' and possible multibyte
3392 character) ... */
3393 if (bufp->multibyte)
3395 simple_char_max = 0x80;
3397 for (j = 0x80; j < 0xA0; j++)
3398 if (BASE_LEADING_CODE_P (j))
3399 fastmap[j] = 1;
3400 match_any_multibyte_characters = true;
3402 else
3403 simple_char_max = (1 << BYTEWIDTH);
3405 for (j = 0; j < simple_char_max; j++)
3406 fastmap[j] = 1;
3408 /* ... except perhaps newline. */
3409 if (!(bufp->syntax & RE_DOT_NEWLINE))
3410 fastmap['\n'] = fastmap_newline;
3412 /* Return if we have already set `can_be_null'; if we have,
3413 then the fastmap is irrelevant. Something's wrong here. */
3414 else if (bufp->can_be_null)
3415 goto done;
3417 /* Otherwise, have to check alternative paths. */
3418 break;
3421 #ifdef emacs
3422 case wordbound:
3423 case notwordbound:
3424 case wordbeg:
3425 case wordend:
3426 case notsyntaxspec:
3427 case syntaxspec:
3428 /* This match depends on text properties. These end with
3429 aborting optimizations. */
3430 bufp->can_be_null = 1;
3431 goto done;
3432 #if 0
3433 k = *p++;
3434 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3435 for (j = 0; j < simple_char_max; j++)
3436 if (SYNTAX (j) == (enum syntaxcode) k)
3437 fastmap[j] = 1;
3439 if (bufp->multibyte)
3440 /* Any character set can possibly contain a character
3441 whose syntax is K. */
3442 goto set_fastmap_for_multibyte_characters;
3443 break;
3445 case notsyntaxspec:
3446 k = *p++;
3447 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3448 for (j = 0; j < simple_char_max; j++)
3449 if (SYNTAX (j) != (enum syntaxcode) k)
3450 fastmap[j] = 1;
3452 if (bufp->multibyte)
3453 /* Any character set can possibly contain a character
3454 whose syntax is not K. */
3455 goto set_fastmap_for_multibyte_characters;
3456 break;
3457 #endif
3460 case categoryspec:
3461 k = *p++;
3462 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3463 for (j = 0; j < simple_char_max; j++)
3464 if (CHAR_HAS_CATEGORY (j, k))
3465 fastmap[j] = 1;
3467 if (bufp->multibyte)
3468 /* Any character set can possibly contain a character
3469 whose category is K. */
3470 goto set_fastmap_for_multibyte_characters;
3471 break;
3474 case notcategoryspec:
3475 k = *p++;
3476 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3477 for (j = 0; j < simple_char_max; j++)
3478 if (!CHAR_HAS_CATEGORY (j, k))
3479 fastmap[j] = 1;
3481 if (bufp->multibyte)
3482 /* Any character set can possibly contain a character
3483 whose category is not K. */
3484 goto set_fastmap_for_multibyte_characters;
3485 break;
3487 /* All cases after this match the empty string. These end with
3488 `continue'. */
3491 case before_dot:
3492 case at_dot:
3493 case after_dot:
3494 continue;
3495 #endif /* emacs */
3498 case no_op:
3499 case begline:
3500 case endline:
3501 case begbuf:
3502 case endbuf:
3503 #ifndef emacs
3504 case wordbound:
3505 case notwordbound:
3506 case wordbeg:
3507 case wordend:
3508 #endif
3509 case push_dummy_failure:
3510 continue;
3513 case jump_n:
3514 case pop_failure_jump:
3515 case maybe_pop_jump:
3516 case jump:
3517 case jump_past_alt:
3518 case dummy_failure_jump:
3519 EXTRACT_NUMBER_AND_INCR (j, p);
3520 p += j;
3521 if (j > 0)
3522 continue;
3524 /* Jump backward implies we just went through the body of a
3525 loop and matched nothing. Opcode jumped to should be
3526 `on_failure_jump' or `succeed_n'. Just treat it like an
3527 ordinary jump. For a * loop, it has pushed its failure
3528 point already; if so, discard that as redundant. */
3529 if ((re_opcode_t) *p != on_failure_jump
3530 && (re_opcode_t) *p != succeed_n)
3531 continue;
3533 p++;
3534 EXTRACT_NUMBER_AND_INCR (j, p);
3535 p += j;
3537 /* If what's on the stack is where we are now, pop it. */
3538 if (!FAIL_STACK_EMPTY ()
3539 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3540 fail_stack.avail--;
3542 continue;
3545 case on_failure_jump:
3546 case on_failure_keep_string_jump:
3547 handle_on_failure_jump:
3548 EXTRACT_NUMBER_AND_INCR (j, p);
3550 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3551 end of the pattern. We don't want to push such a point,
3552 since when we restore it above, entering the switch will
3553 increment `p' past the end of the pattern. We don't need
3554 to push such a point since we obviously won't find any more
3555 fastmap entries beyond `pend'. Such a pattern can match
3556 the null string, though. */
3557 if (p + j < pend)
3559 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3561 RESET_FAIL_STACK ();
3562 return -2;
3565 else
3566 bufp->can_be_null = 1;
3568 if (succeed_n_p)
3570 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3571 succeed_n_p = false;
3574 continue;
3577 case succeed_n:
3578 /* Get to the number of times to succeed. */
3579 p += 2;
3581 /* Increment p past the n for when k != 0. */
3582 EXTRACT_NUMBER_AND_INCR (k, p);
3583 if (k == 0)
3585 p -= 4;
3586 succeed_n_p = true; /* Spaghetti code alert. */
3587 goto handle_on_failure_jump;
3589 continue;
3592 case set_number_at:
3593 p += 4;
3594 continue;
3597 case start_memory:
3598 case stop_memory:
3599 p += 2;
3600 continue;
3603 default:
3604 abort (); /* We have listed all the cases. */
3605 } /* switch *p++ */
3607 /* Getting here means we have found the possible starting
3608 characters for one path of the pattern -- and that the empty
3609 string does not match. We need not follow this path further.
3610 Instead, look at the next alternative (remembered on the
3611 stack), or quit if no more. The test at the top of the loop
3612 does these things. */
3613 path_can_be_null = false;
3614 p = pend;
3615 } /* while p */
3617 /* Set `can_be_null' for the last path (also the first path, if the
3618 pattern is empty). */
3619 bufp->can_be_null |= path_can_be_null;
3621 done:
3622 RESET_FAIL_STACK ();
3623 return 0;
3624 } /* re_compile_fastmap */
3626 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3627 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3628 this memory for recording register information. STARTS and ENDS
3629 must be allocated using the malloc library routine, and must each
3630 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3632 If NUM_REGS == 0, then subsequent matches should allocate their own
3633 register data.
3635 Unless this function is called, the first search or match using
3636 PATTERN_BUFFER will allocate its own register data, without
3637 freeing the old data. */
3639 void
3640 re_set_registers (bufp, regs, num_regs, starts, ends)
3641 struct re_pattern_buffer *bufp;
3642 struct re_registers *regs;
3643 unsigned num_regs;
3644 regoff_t *starts, *ends;
3646 if (num_regs)
3648 bufp->regs_allocated = REGS_REALLOCATE;
3649 regs->num_regs = num_regs;
3650 regs->start = starts;
3651 regs->end = ends;
3653 else
3655 bufp->regs_allocated = REGS_UNALLOCATED;
3656 regs->num_regs = 0;
3657 regs->start = regs->end = (regoff_t *) 0;
3661 /* Searching routines. */
3663 /* Like re_search_2, below, but only one string is specified, and
3664 doesn't let you say where to stop matching. */
3667 re_search (bufp, string, size, startpos, range, regs)
3668 struct re_pattern_buffer *bufp;
3669 const char *string;
3670 int size, startpos, range;
3671 struct re_registers *regs;
3673 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3674 regs, size);
3677 /* End address of virtual concatenation of string. */
3678 #define STOP_ADDR_VSTRING(P) \
3679 (((P) >= size1 ? string2 + size2 : string1 + size1))
3681 /* Address of POS in the concatenation of virtual string. */
3682 #define POS_ADDR_VSTRING(POS) \
3683 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3685 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3686 virtual concatenation of STRING1 and STRING2, starting first at index
3687 STARTPOS, then at STARTPOS + 1, and so on.
3689 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3691 RANGE is how far to scan while trying to match. RANGE = 0 means try
3692 only at STARTPOS; in general, the last start tried is STARTPOS +
3693 RANGE.
3695 In REGS, return the indices of the virtual concatenation of STRING1
3696 and STRING2 that matched the entire BUFP->buffer and its contained
3697 subexpressions.
3699 Do not consider matching one past the index STOP in the virtual
3700 concatenation of STRING1 and STRING2.
3702 We return either the position in the strings at which the match was
3703 found, -1 if no match, or -2 if error (such as failure
3704 stack overflow). */
3707 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3708 struct re_pattern_buffer *bufp;
3709 const char *string1, *string2;
3710 int size1, size2;
3711 int startpos;
3712 int range;
3713 struct re_registers *regs;
3714 int stop;
3716 int val;
3717 register char *fastmap = bufp->fastmap;
3718 register RE_TRANSLATE_TYPE translate = bufp->translate;
3719 int total_size = size1 + size2;
3720 int endpos = startpos + range;
3721 int anchored_start = 0;
3723 /* Nonzero if we have to concern multibyte character. */
3724 int multibyte = bufp->multibyte;
3726 /* Check for out-of-range STARTPOS. */
3727 if (startpos < 0 || startpos > total_size)
3728 return -1;
3730 /* Fix up RANGE if it might eventually take us outside
3731 the virtual concatenation of STRING1 and STRING2.
3732 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3733 if (endpos < 0)
3734 range = 0 - startpos;
3735 else if (endpos > total_size)
3736 range = total_size - startpos;
3738 /* If the search isn't to be a backwards one, don't waste time in a
3739 search for a pattern that must be anchored. */
3740 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3742 if (startpos > 0)
3743 return -1;
3744 else
3745 range = 1;
3748 #ifdef emacs
3749 /* In a forward search for something that starts with \=.
3750 don't keep searching past point. */
3751 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3753 range = PT - startpos;
3754 if (range <= 0)
3755 return -1;
3757 #endif /* emacs */
3759 /* Update the fastmap now if not correct already. */
3760 if (fastmap && !bufp->fastmap_accurate)
3761 if (re_compile_fastmap (bufp) == -2)
3762 return -2;
3764 /* See whether the pattern is anchored. */
3765 if (bufp->buffer[0] == begline)
3766 anchored_start = 1;
3768 #ifdef emacs
3769 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
3770 POS_AS_IN_BUFFER (startpos > 0
3771 ? startpos - 1 : startpos),
3773 #endif
3775 /* Loop through the string, looking for a place to start matching. */
3776 for (;;)
3778 /* If the pattern is anchored,
3779 skip quickly past places we cannot match.
3780 We don't bother to treat startpos == 0 specially
3781 because that case doesn't repeat. */
3782 if (anchored_start && startpos > 0)
3784 if (! (bufp->newline_anchor
3785 && ((startpos <= size1 ? string1[startpos - 1]
3786 : string2[startpos - size1 - 1])
3787 == '\n')))
3788 goto advance;
3791 /* If a fastmap is supplied, skip quickly over characters that
3792 cannot be the start of a match. If the pattern can match the
3793 null string, however, we don't need to skip characters; we want
3794 the first null string. */
3795 if (fastmap && startpos < total_size && !bufp->can_be_null)
3797 if (range > 0) /* Searching forwards. */
3799 register const char *d;
3800 register int lim = 0;
3801 int irange = range;
3803 if (startpos < size1 && startpos + range >= size1)
3804 lim = range - (size1 - startpos);
3806 d = POS_ADDR_VSTRING (startpos);
3808 /* Written out as an if-else to avoid testing `translate'
3809 inside the loop. */
3810 if (translate)
3811 while (range > lim
3812 && !fastmap[(unsigned char)
3813 RE_TRANSLATE (translate, (unsigned char) *d++)])
3814 range--;
3815 else
3816 while (range > lim && !fastmap[(unsigned char) *d++])
3817 range--;
3819 startpos += irange - range;
3821 else /* Searching backwards. */
3823 register char c = (size1 == 0 || startpos >= size1
3824 ? string2[startpos - size1]
3825 : string1[startpos]);
3827 if (!fastmap[(unsigned char) TRANSLATE (c)])
3828 goto advance;
3832 /* If can't match the null string, and that's all we have left, fail. */
3833 if (range >= 0 && startpos == total_size && fastmap
3834 && !bufp->can_be_null)
3835 return -1;
3837 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3838 startpos, regs, stop);
3839 #ifndef REGEX_MALLOC
3840 #ifdef C_ALLOCA
3841 alloca (0);
3842 #endif
3843 #endif
3845 if (val >= 0)
3846 return startpos;
3848 if (val == -2)
3849 return -2;
3851 advance:
3852 if (!range)
3853 break;
3854 else if (range > 0)
3856 /* Update STARTPOS to the next character boundary. */
3857 if (multibyte)
3859 const unsigned char *p
3860 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3861 const unsigned char *pend
3862 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3863 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3865 range -= len;
3866 if (range < 0)
3867 break;
3868 startpos += len;
3870 else
3872 range--;
3873 startpos++;
3876 else
3878 range++;
3879 startpos--;
3881 /* Update STARTPOS to the previous character boundary. */
3882 if (multibyte)
3884 const unsigned char *p
3885 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3886 int len = 0;
3888 /* Find the head of multibyte form. */
3889 while (!CHAR_HEAD_P (p))
3890 p--, len++;
3892 /* Adjust it. */
3893 #if 0 /* XXX */
3894 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3896 else
3897 #endif
3899 range += len;
3900 if (range > 0)
3901 break;
3903 startpos -= len;
3908 return -1;
3909 } /* re_search_2 */
3911 /* Declarations and macros for re_match_2. */
3913 static int bcmp_translate ();
3914 static boolean alt_match_null_string_p (),
3915 common_op_match_null_string_p (),
3916 group_match_null_string_p ();
3918 /* This converts PTR, a pointer into one of the search strings `string1'
3919 and `string2' into an offset from the beginning of that string. */
3920 #define POINTER_TO_OFFSET(ptr) \
3921 (FIRST_STRING_P (ptr) \
3922 ? ((regoff_t) ((ptr) - string1)) \
3923 : ((regoff_t) ((ptr) - string2 + size1)))
3925 /* Macros for dealing with the split strings in re_match_2. */
3927 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3929 /* Call before fetching a character with *d. This switches over to
3930 string2 if necessary. */
3931 #define PREFETCH() \
3932 while (d == dend) \
3934 /* End of string2 => fail. */ \
3935 if (dend == end_match_2) \
3936 goto fail; \
3937 /* End of string1 => advance to string2. */ \
3938 d = string2; \
3939 dend = end_match_2; \
3943 /* Test if at very beginning or at very end of the virtual concatenation
3944 of `string1' and `string2'. If only one string, it's `string2'. */
3945 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3946 #define AT_STRINGS_END(d) ((d) == end2)
3949 /* Test if D points to a character which is word-constituent. We have
3950 two special cases to check for: if past the end of string1, look at
3951 the first character in string2; and if before the beginning of
3952 string2, look at the last character in string1. */
3953 #define WORDCHAR_P(d) \
3954 (SYNTAX ((d) == end1 ? *string2 \
3955 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3956 == Sword)
3958 /* Disabled due to a compiler bug -- see comment at case wordbound */
3960 /* The comment at case wordbound is following one, but we don't use
3961 AT_WORD_BOUNDARY anymore to support multibyte form.
3963 The DEC Alpha C compiler 3.x generates incorrect code for the
3964 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3965 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
3966 macro and introducing temporary variables works around the bug. */
3968 #if 0
3969 /* Test if the character before D and the one at D differ with respect
3970 to being word-constituent. */
3971 #define AT_WORD_BOUNDARY(d) \
3972 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3973 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3974 #endif
3976 /* Free everything we malloc. */
3977 #ifdef MATCH_MAY_ALLOCATE
3978 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3979 #define FREE_VARIABLES() \
3980 do { \
3981 REGEX_FREE_STACK (fail_stack.stack); \
3982 FREE_VAR (regstart); \
3983 FREE_VAR (regend); \
3984 FREE_VAR (old_regstart); \
3985 FREE_VAR (old_regend); \
3986 FREE_VAR (best_regstart); \
3987 FREE_VAR (best_regend); \
3988 FREE_VAR (reg_info); \
3989 FREE_VAR (reg_dummy); \
3990 FREE_VAR (reg_info_dummy); \
3991 } while (0)
3992 #else
3993 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3994 #endif /* not MATCH_MAY_ALLOCATE */
3996 /* These values must meet several constraints. They must not be valid
3997 register values; since we have a limit of 255 registers (because
3998 we use only one byte in the pattern for the register number), we can
3999 use numbers larger than 255. They must differ by 1, because of
4000 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4001 be larger than the value for the highest register, so we do not try
4002 to actually save any registers when none are active. */
4003 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4004 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4006 /* Matching routines. */
4008 #ifndef emacs /* Emacs never uses this. */
4009 /* re_match is like re_match_2 except it takes only a single string. */
4012 re_match (bufp, string, size, pos, regs)
4013 struct re_pattern_buffer *bufp;
4014 const char *string;
4015 int size, pos;
4016 struct re_registers *regs;
4018 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4019 pos, regs, size);
4020 alloca (0);
4021 return result;
4023 #endif /* not emacs */
4025 #ifdef emacs
4026 /* In Emacs, this is the string or buffer in which we
4027 are matching. It is used for looking up syntax properties. */
4028 Lisp_Object re_match_object;
4029 #endif
4031 /* re_match_2 matches the compiled pattern in BUFP against the
4032 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4033 and SIZE2, respectively). We start matching at POS, and stop
4034 matching at STOP.
4036 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4037 store offsets for the substring each group matched in REGS. See the
4038 documentation for exactly how many groups we fill.
4040 We return -1 if no match, -2 if an internal error (such as the
4041 failure stack overflowing). Otherwise, we return the length of the
4042 matched substring. */
4045 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4046 struct re_pattern_buffer *bufp;
4047 const char *string1, *string2;
4048 int size1, size2;
4049 int pos;
4050 struct re_registers *regs;
4051 int stop;
4053 int result;
4055 #ifdef emacs
4056 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4057 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
4059 #endif
4061 result = re_match_2_internal (bufp, string1, size1, string2, size2,
4062 pos, regs, stop);
4063 alloca (0);
4064 return result;
4067 /* This is a separate function so that we can force an alloca cleanup
4068 afterwards. */
4069 static int
4070 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4071 struct re_pattern_buffer *bufp;
4072 const char *string1, *string2;
4073 int size1, size2;
4074 int pos;
4075 struct re_registers *regs;
4076 int stop;
4078 /* General temporaries. */
4079 int mcnt;
4080 unsigned char *p1;
4082 /* Just past the end of the corresponding string. */
4083 const char *end1, *end2;
4085 /* Pointers into string1 and string2, just past the last characters in
4086 each to consider matching. */
4087 const char *end_match_1, *end_match_2;
4089 /* Where we are in the data, and the end of the current string. */
4090 const char *d, *dend;
4092 /* Where we are in the pattern, and the end of the pattern. */
4093 unsigned char *p = bufp->buffer;
4094 register unsigned char *pend = p + bufp->used;
4096 /* Mark the opcode just after a start_memory, so we can test for an
4097 empty subpattern when we get to the stop_memory. */
4098 unsigned char *just_past_start_mem = 0;
4100 /* We use this to map every character in the string. */
4101 RE_TRANSLATE_TYPE translate = bufp->translate;
4103 /* Nonzero if we have to concern multibyte character. */
4104 int multibyte = bufp->multibyte;
4106 /* Failure point stack. Each place that can handle a failure further
4107 down the line pushes a failure point on this stack. It consists of
4108 restart, regend, and reg_info for all registers corresponding to
4109 the subexpressions we're currently inside, plus the number of such
4110 registers, and, finally, two char *'s. The first char * is where
4111 to resume scanning the pattern; the second one is where to resume
4112 scanning the strings. If the latter is zero, the failure point is
4113 a ``dummy''; if a failure happens and the failure point is a dummy,
4114 it gets discarded and the next next one is tried. */
4115 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4116 fail_stack_type fail_stack;
4117 #endif
4118 #ifdef DEBUG
4119 static unsigned failure_id = 0;
4120 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4121 #endif
4123 /* This holds the pointer to the failure stack, when
4124 it is allocated relocatably. */
4125 fail_stack_elt_t *failure_stack_ptr;
4127 /* We fill all the registers internally, independent of what we
4128 return, for use in backreferences. The number here includes
4129 an element for register zero. */
4130 unsigned num_regs = bufp->re_nsub + 1;
4132 /* The currently active registers. */
4133 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4134 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4136 /* Information on the contents of registers. These are pointers into
4137 the input strings; they record just what was matched (on this
4138 attempt) by a subexpression part of the pattern, that is, the
4139 regnum-th regstart pointer points to where in the pattern we began
4140 matching and the regnum-th regend points to right after where we
4141 stopped matching the regnum-th subexpression. (The zeroth register
4142 keeps track of what the whole pattern matches.) */
4143 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4144 const char **regstart, **regend;
4145 #endif
4147 /* If a group that's operated upon by a repetition operator fails to
4148 match anything, then the register for its start will need to be
4149 restored because it will have been set to wherever in the string we
4150 are when we last see its open-group operator. Similarly for a
4151 register's end. */
4152 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4153 const char **old_regstart, **old_regend;
4154 #endif
4156 /* The is_active field of reg_info helps us keep track of which (possibly
4157 nested) subexpressions we are currently in. The matched_something
4158 field of reg_info[reg_num] helps us tell whether or not we have
4159 matched any of the pattern so far this time through the reg_num-th
4160 subexpression. These two fields get reset each time through any
4161 loop their register is in. */
4162 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4163 register_info_type *reg_info;
4164 #endif
4166 /* The following record the register info as found in the above
4167 variables when we find a match better than any we've seen before.
4168 This happens as we backtrack through the failure points, which in
4169 turn happens only if we have not yet matched the entire string. */
4170 unsigned best_regs_set = false;
4171 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4172 const char **best_regstart, **best_regend;
4173 #endif
4175 /* Logically, this is `best_regend[0]'. But we don't want to have to
4176 allocate space for that if we're not allocating space for anything
4177 else (see below). Also, we never need info about register 0 for
4178 any of the other register vectors, and it seems rather a kludge to
4179 treat `best_regend' differently than the rest. So we keep track of
4180 the end of the best match so far in a separate variable. We
4181 initialize this to NULL so that when we backtrack the first time
4182 and need to test it, it's not garbage. */
4183 const char *match_end = NULL;
4185 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4186 int set_regs_matched_done = 0;
4188 /* Used when we pop values we don't care about. */
4189 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4190 const char **reg_dummy;
4191 register_info_type *reg_info_dummy;
4192 #endif
4194 #ifdef DEBUG
4195 /* Counts the total number of registers pushed. */
4196 unsigned num_regs_pushed = 0;
4197 #endif
4199 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4201 INIT_FAIL_STACK ();
4203 #ifdef MATCH_MAY_ALLOCATE
4204 /* Do not bother to initialize all the register variables if there are
4205 no groups in the pattern, as it takes a fair amount of time. If
4206 there are groups, we include space for register 0 (the whole
4207 pattern), even though we never use it, since it simplifies the
4208 array indexing. We should fix this. */
4209 if (bufp->re_nsub)
4211 regstart = REGEX_TALLOC (num_regs, const char *);
4212 regend = REGEX_TALLOC (num_regs, const char *);
4213 old_regstart = REGEX_TALLOC (num_regs, const char *);
4214 old_regend = REGEX_TALLOC (num_regs, const char *);
4215 best_regstart = REGEX_TALLOC (num_regs, const char *);
4216 best_regend = REGEX_TALLOC (num_regs, const char *);
4217 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4218 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4219 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4221 if (!(regstart && regend && old_regstart && old_regend && reg_info
4222 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4224 FREE_VARIABLES ();
4225 return -2;
4228 else
4230 /* We must initialize all our variables to NULL, so that
4231 `FREE_VARIABLES' doesn't try to free them. */
4232 regstart = regend = old_regstart = old_regend = best_regstart
4233 = best_regend = reg_dummy = NULL;
4234 reg_info = reg_info_dummy = (register_info_type *) NULL;
4236 #endif /* MATCH_MAY_ALLOCATE */
4238 /* The starting position is bogus. */
4239 if (pos < 0 || pos > size1 + size2)
4241 FREE_VARIABLES ();
4242 return -1;
4245 /* Initialize subexpression text positions to -1 to mark ones that no
4246 start_memory/stop_memory has been seen for. Also initialize the
4247 register information struct. */
4248 for (mcnt = 1; mcnt < num_regs; mcnt++)
4250 regstart[mcnt] = regend[mcnt]
4251 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4253 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4254 IS_ACTIVE (reg_info[mcnt]) = 0;
4255 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4256 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4259 /* We move `string1' into `string2' if the latter's empty -- but not if
4260 `string1' is null. */
4261 if (size2 == 0 && string1 != NULL)
4263 string2 = string1;
4264 size2 = size1;
4265 string1 = 0;
4266 size1 = 0;
4268 end1 = string1 + size1;
4269 end2 = string2 + size2;
4271 /* Compute where to stop matching, within the two strings. */
4272 if (stop <= size1)
4274 end_match_1 = string1 + stop;
4275 end_match_2 = string2;
4277 else
4279 end_match_1 = end1;
4280 end_match_2 = string2 + stop - size1;
4283 /* `p' scans through the pattern as `d' scans through the data.
4284 `dend' is the end of the input string that `d' points within. `d'
4285 is advanced into the following input string whenever necessary, but
4286 this happens before fetching; therefore, at the beginning of the
4287 loop, `d' can be pointing at the end of a string, but it cannot
4288 equal `string2'. */
4289 if (size1 > 0 && pos <= size1)
4291 d = string1 + pos;
4292 dend = end_match_1;
4294 else
4296 d = string2 + pos - size1;
4297 dend = end_match_2;
4300 DEBUG_PRINT1 ("The compiled pattern is: ");
4301 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4302 DEBUG_PRINT1 ("The string to match is: `");
4303 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4304 DEBUG_PRINT1 ("'\n");
4306 /* This loops over pattern commands. It exits by returning from the
4307 function if the match is complete, or it drops through if the match
4308 fails at this starting point in the input data. */
4309 for (;;)
4311 DEBUG_PRINT2 ("\n0x%x: ", p);
4313 if (p == pend)
4314 { /* End of pattern means we might have succeeded. */
4315 DEBUG_PRINT1 ("end of pattern ... ");
4317 /* If we haven't matched the entire string, and we want the
4318 longest match, try backtracking. */
4319 if (d != end_match_2)
4321 /* 1 if this match ends in the same string (string1 or string2)
4322 as the best previous match. */
4323 boolean same_str_p = (FIRST_STRING_P (match_end)
4324 == MATCHING_IN_FIRST_STRING);
4325 /* 1 if this match is the best seen so far. */
4326 boolean best_match_p;
4328 /* AIX compiler got confused when this was combined
4329 with the previous declaration. */
4330 if (same_str_p)
4331 best_match_p = d > match_end;
4332 else
4333 best_match_p = !MATCHING_IN_FIRST_STRING;
4335 DEBUG_PRINT1 ("backtracking.\n");
4337 if (!FAIL_STACK_EMPTY ())
4338 { /* More failure points to try. */
4340 /* If exceeds best match so far, save it. */
4341 if (!best_regs_set || best_match_p)
4343 best_regs_set = true;
4344 match_end = d;
4346 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4348 for (mcnt = 1; mcnt < num_regs; mcnt++)
4350 best_regstart[mcnt] = regstart[mcnt];
4351 best_regend[mcnt] = regend[mcnt];
4354 goto fail;
4357 /* If no failure points, don't restore garbage. And if
4358 last match is real best match, don't restore second
4359 best one. */
4360 else if (best_regs_set && !best_match_p)
4362 restore_best_regs:
4363 /* Restore best match. It may happen that `dend ==
4364 end_match_1' while the restored d is in string2.
4365 For example, the pattern `x.*y.*z' against the
4366 strings `x-' and `y-z-', if the two strings are
4367 not consecutive in memory. */
4368 DEBUG_PRINT1 ("Restoring best registers.\n");
4370 d = match_end;
4371 dend = ((d >= string1 && d <= end1)
4372 ? end_match_1 : end_match_2);
4374 for (mcnt = 1; mcnt < num_regs; mcnt++)
4376 regstart[mcnt] = best_regstart[mcnt];
4377 regend[mcnt] = best_regend[mcnt];
4380 } /* d != end_match_2 */
4382 succeed_label:
4383 DEBUG_PRINT1 ("Accepting match.\n");
4385 /* If caller wants register contents data back, do it. */
4386 if (regs && !bufp->no_sub)
4388 /* Have the register data arrays been allocated? */
4389 if (bufp->regs_allocated == REGS_UNALLOCATED)
4390 { /* No. So allocate them with malloc. We need one
4391 extra element beyond `num_regs' for the `-1' marker
4392 GNU code uses. */
4393 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4394 regs->start = TALLOC (regs->num_regs, regoff_t);
4395 regs->end = TALLOC (regs->num_regs, regoff_t);
4396 if (regs->start == NULL || regs->end == NULL)
4398 FREE_VARIABLES ();
4399 return -2;
4401 bufp->regs_allocated = REGS_REALLOCATE;
4403 else if (bufp->regs_allocated == REGS_REALLOCATE)
4404 { /* Yes. If we need more elements than were already
4405 allocated, reallocate them. If we need fewer, just
4406 leave it alone. */
4407 if (regs->num_regs < num_regs + 1)
4409 regs->num_regs = num_regs + 1;
4410 RETALLOC (regs->start, regs->num_regs, regoff_t);
4411 RETALLOC (regs->end, regs->num_regs, regoff_t);
4412 if (regs->start == NULL || regs->end == NULL)
4414 FREE_VARIABLES ();
4415 return -2;
4419 else
4421 /* These braces fend off a "empty body in an else-statement"
4422 warning under GCC when assert expands to nothing. */
4423 assert (bufp->regs_allocated == REGS_FIXED);
4426 /* Convert the pointer data in `regstart' and `regend' to
4427 indices. Register zero has to be set differently,
4428 since we haven't kept track of any info for it. */
4429 if (regs->num_regs > 0)
4431 regs->start[0] = pos;
4432 regs->end[0] = (MATCHING_IN_FIRST_STRING
4433 ? ((regoff_t) (d - string1))
4434 : ((regoff_t) (d - string2 + size1)));
4437 /* Go through the first `min (num_regs, regs->num_regs)'
4438 registers, since that is all we initialized. */
4439 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4441 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4442 regs->start[mcnt] = regs->end[mcnt] = -1;
4443 else
4445 regs->start[mcnt]
4446 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4447 regs->end[mcnt]
4448 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4452 /* If the regs structure we return has more elements than
4453 were in the pattern, set the extra elements to -1. If
4454 we (re)allocated the registers, this is the case,
4455 because we always allocate enough to have at least one
4456 -1 at the end. */
4457 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4458 regs->start[mcnt] = regs->end[mcnt] = -1;
4459 } /* regs && !bufp->no_sub */
4461 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4462 nfailure_points_pushed, nfailure_points_popped,
4463 nfailure_points_pushed - nfailure_points_popped);
4464 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4466 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4467 ? string1
4468 : string2 - size1);
4470 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4472 FREE_VARIABLES ();
4473 return mcnt;
4476 /* Otherwise match next pattern command. */
4477 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4479 /* Ignore these. Used to ignore the n of succeed_n's which
4480 currently have n == 0. */
4481 case no_op:
4482 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4483 break;
4485 case succeed:
4486 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4487 goto succeed_label;
4489 /* Match the next n pattern characters exactly. The following
4490 byte in the pattern defines n, and the n bytes after that
4491 are the characters to match. */
4492 case exactn:
4493 mcnt = *p++;
4494 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4496 /* This is written out as an if-else so we don't waste time
4497 testing `translate' inside the loop. */
4498 if (translate)
4502 PREFETCH ();
4503 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
4504 != (unsigned char) *p++)
4505 goto fail;
4507 while (--mcnt);
4509 else
4513 PREFETCH ();
4514 if (*d++ != (char) *p++) goto fail;
4516 while (--mcnt);
4518 SET_REGS_MATCHED ();
4519 break;
4522 /* Match any character except possibly a newline or a null. */
4523 case anychar:
4524 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4526 PREFETCH ();
4528 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4529 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4530 goto fail;
4532 SET_REGS_MATCHED ();
4533 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4534 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
4535 break;
4538 case charset:
4539 case charset_not:
4541 register unsigned int c;
4542 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4543 int len;
4545 /* Start of actual range_table, or end of bitmap if there is no
4546 range table. */
4547 unsigned char *range_table;
4549 /* Nonzero if there is range table. */
4550 int range_table_exists;
4552 /* Number of ranges of range table. Not in bytes. */
4553 int count;
4555 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4557 PREFETCH ();
4558 c = (unsigned char) *d;
4560 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4561 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4562 if (range_table_exists)
4563 EXTRACT_NUMBER_AND_INCR (count, range_table);
4564 else
4565 count = 0;
4567 if (multibyte && BASE_LEADING_CODE_P (c))
4568 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4570 if (SINGLE_BYTE_CHAR_P (c))
4571 { /* Lookup bitmap. */
4572 c = TRANSLATE (c); /* The character to match. */
4573 len = 1;
4575 /* Cast to `unsigned' instead of `unsigned char' in
4576 case the bit list is a full 32 bytes long. */
4577 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4578 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4579 not = !not;
4581 else if (range_table_exists)
4582 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4584 p = CHARSET_RANGE_TABLE_END (range_table, count);
4586 if (!not) goto fail;
4588 SET_REGS_MATCHED ();
4589 d += len;
4590 break;
4594 /* The beginning of a group is represented by start_memory.
4595 The arguments are the register number in the next byte, and the
4596 number of groups inner to this one in the next. The text
4597 matched within the group is recorded (in the internal
4598 registers data structure) under the register number. */
4599 case start_memory:
4600 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4602 /* Find out if this group can match the empty string. */
4603 p1 = p; /* To send to group_match_null_string_p. */
4605 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4606 REG_MATCH_NULL_STRING_P (reg_info[*p])
4607 = group_match_null_string_p (&p1, pend, reg_info);
4609 /* Save the position in the string where we were the last time
4610 we were at this open-group operator in case the group is
4611 operated upon by a repetition operator, e.g., with `(a*)*b'
4612 against `ab'; then we want to ignore where we are now in
4613 the string in case this attempt to match fails. */
4614 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4615 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4616 : regstart[*p];
4617 DEBUG_PRINT2 (" old_regstart: %d\n",
4618 POINTER_TO_OFFSET (old_regstart[*p]));
4620 regstart[*p] = d;
4621 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4623 IS_ACTIVE (reg_info[*p]) = 1;
4624 MATCHED_SOMETHING (reg_info[*p]) = 0;
4626 /* Clear this whenever we change the register activity status. */
4627 set_regs_matched_done = 0;
4629 /* This is the new highest active register. */
4630 highest_active_reg = *p;
4632 /* If nothing was active before, this is the new lowest active
4633 register. */
4634 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4635 lowest_active_reg = *p;
4637 /* Move past the register number and inner group count. */
4638 p += 2;
4639 just_past_start_mem = p;
4641 break;
4644 /* The stop_memory opcode represents the end of a group. Its
4645 arguments are the same as start_memory's: the register
4646 number, and the number of inner groups. */
4647 case stop_memory:
4648 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4650 /* We need to save the string position the last time we were at
4651 this close-group operator in case the group is operated
4652 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4653 against `aba'; then we want to ignore where we are now in
4654 the string in case this attempt to match fails. */
4655 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4656 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4657 : regend[*p];
4658 DEBUG_PRINT2 (" old_regend: %d\n",
4659 POINTER_TO_OFFSET (old_regend[*p]));
4661 regend[*p] = d;
4662 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4664 /* This register isn't active anymore. */
4665 IS_ACTIVE (reg_info[*p]) = 0;
4667 /* Clear this whenever we change the register activity status. */
4668 set_regs_matched_done = 0;
4670 /* If this was the only register active, nothing is active
4671 anymore. */
4672 if (lowest_active_reg == highest_active_reg)
4674 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4675 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4677 else
4678 { /* We must scan for the new highest active register, since
4679 it isn't necessarily one less than now: consider
4680 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4681 new highest active register is 1. */
4682 unsigned char r = *p - 1;
4683 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4684 r--;
4686 /* If we end up at register zero, that means that we saved
4687 the registers as the result of an `on_failure_jump', not
4688 a `start_memory', and we jumped to past the innermost
4689 `stop_memory'. For example, in ((.)*) we save
4690 registers 1 and 2 as a result of the *, but when we pop
4691 back to the second ), we are at the stop_memory 1.
4692 Thus, nothing is active. */
4693 if (r == 0)
4695 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4696 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4698 else
4699 highest_active_reg = r;
4702 /* If just failed to match something this time around with a
4703 group that's operated on by a repetition operator, try to
4704 force exit from the ``loop'', and restore the register
4705 information for this group that we had before trying this
4706 last match. */
4707 if ((!MATCHED_SOMETHING (reg_info[*p])
4708 || just_past_start_mem == p - 1)
4709 && (p + 2) < pend)
4711 boolean is_a_jump_n = false;
4713 p1 = p + 2;
4714 mcnt = 0;
4715 switch ((re_opcode_t) *p1++)
4717 case jump_n:
4718 is_a_jump_n = true;
4719 case pop_failure_jump:
4720 case maybe_pop_jump:
4721 case jump:
4722 case dummy_failure_jump:
4723 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4724 if (is_a_jump_n)
4725 p1 += 2;
4726 break;
4728 default:
4729 /* do nothing */ ;
4731 p1 += mcnt;
4733 /* If the next operation is a jump backwards in the pattern
4734 to an on_failure_jump right before the start_memory
4735 corresponding to this stop_memory, exit from the loop
4736 by forcing a failure after pushing on the stack the
4737 on_failure_jump's jump in the pattern, and d. */
4738 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4739 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4741 /* If this group ever matched anything, then restore
4742 what its registers were before trying this last
4743 failed match, e.g., with `(a*)*b' against `ab' for
4744 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4745 against `aba' for regend[3].
4747 Also restore the registers for inner groups for,
4748 e.g., `((a*)(b*))*' against `aba' (register 3 would
4749 otherwise get trashed). */
4751 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4753 unsigned r;
4755 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4757 /* Restore this and inner groups' (if any) registers. */
4758 for (r = *p; r < *p + *(p + 1); r++)
4760 regstart[r] = old_regstart[r];
4762 /* xx why this test? */
4763 if (old_regend[r] >= regstart[r])
4764 regend[r] = old_regend[r];
4767 p1++;
4768 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4769 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4771 goto fail;
4775 /* Move past the register number and the inner group count. */
4776 p += 2;
4777 break;
4780 /* \<digit> has been turned into a `duplicate' command which is
4781 followed by the numeric value of <digit> as the register number. */
4782 case duplicate:
4784 register const char *d2, *dend2;
4785 int regno = *p++; /* Get which register to match against. */
4786 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4788 /* Can't back reference a group which we've never matched. */
4789 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4790 goto fail;
4792 /* Where in input to try to start matching. */
4793 d2 = regstart[regno];
4795 /* Where to stop matching; if both the place to start and
4796 the place to stop matching are in the same string, then
4797 set to the place to stop, otherwise, for now have to use
4798 the end of the first string. */
4800 dend2 = ((FIRST_STRING_P (regstart[regno])
4801 == FIRST_STRING_P (regend[regno]))
4802 ? regend[regno] : end_match_1);
4803 for (;;)
4805 /* If necessary, advance to next segment in register
4806 contents. */
4807 while (d2 == dend2)
4809 if (dend2 == end_match_2) break;
4810 if (dend2 == regend[regno]) break;
4812 /* End of string1 => advance to string2. */
4813 d2 = string2;
4814 dend2 = regend[regno];
4816 /* At end of register contents => success */
4817 if (d2 == dend2) break;
4819 /* If necessary, advance to next segment in data. */
4820 PREFETCH ();
4822 /* How many characters left in this segment to match. */
4823 mcnt = dend - d;
4825 /* Want how many consecutive characters we can match in
4826 one shot, so, if necessary, adjust the count. */
4827 if (mcnt > dend2 - d2)
4828 mcnt = dend2 - d2;
4830 /* Compare that many; failure if mismatch, else move
4831 past them. */
4832 if (translate
4833 ? bcmp_translate (d, d2, mcnt, translate)
4834 : bcmp (d, d2, mcnt))
4835 goto fail;
4836 d += mcnt, d2 += mcnt;
4838 /* Do this because we've match some characters. */
4839 SET_REGS_MATCHED ();
4842 break;
4845 /* begline matches the empty string at the beginning of the string
4846 (unless `not_bol' is set in `bufp'), and, if
4847 `newline_anchor' is set, after newlines. */
4848 case begline:
4849 DEBUG_PRINT1 ("EXECUTING begline.\n");
4851 if (AT_STRINGS_BEG (d))
4853 if (!bufp->not_bol) break;
4855 else if (d[-1] == '\n' && bufp->newline_anchor)
4857 break;
4859 /* In all other cases, we fail. */
4860 goto fail;
4863 /* endline is the dual of begline. */
4864 case endline:
4865 DEBUG_PRINT1 ("EXECUTING endline.\n");
4867 if (AT_STRINGS_END (d))
4869 if (!bufp->not_eol) break;
4872 /* We have to ``prefetch'' the next character. */
4873 else if ((d == end1 ? *string2 : *d) == '\n'
4874 && bufp->newline_anchor)
4876 break;
4878 goto fail;
4881 /* Match at the very beginning of the data. */
4882 case begbuf:
4883 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4884 if (AT_STRINGS_BEG (d))
4885 break;
4886 goto fail;
4889 /* Match at the very end of the data. */
4890 case endbuf:
4891 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4892 if (AT_STRINGS_END (d))
4893 break;
4894 goto fail;
4897 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4898 pushes NULL as the value for the string on the stack. Then
4899 `pop_failure_point' will keep the current value for the
4900 string, instead of restoring it. To see why, consider
4901 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4902 then the . fails against the \n. But the next thing we want
4903 to do is match the \n against the \n; if we restored the
4904 string value, we would be back at the foo.
4906 Because this is used only in specific cases, we don't need to
4907 check all the things that `on_failure_jump' does, to make
4908 sure the right things get saved on the stack. Hence we don't
4909 share its code. The only reason to push anything on the
4910 stack at all is that otherwise we would have to change
4911 `anychar's code to do something besides goto fail in this
4912 case; that seems worse than this. */
4913 case on_failure_keep_string_jump:
4914 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4916 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4917 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4919 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4920 break;
4923 /* Uses of on_failure_jump:
4925 Each alternative starts with an on_failure_jump that points
4926 to the beginning of the next alternative. Each alternative
4927 except the last ends with a jump that in effect jumps past
4928 the rest of the alternatives. (They really jump to the
4929 ending jump of the following alternative, because tensioning
4930 these jumps is a hassle.)
4932 Repeats start with an on_failure_jump that points past both
4933 the repetition text and either the following jump or
4934 pop_failure_jump back to this on_failure_jump. */
4935 case on_failure_jump:
4936 on_failure:
4937 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4939 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4940 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4942 /* If this on_failure_jump comes right before a group (i.e.,
4943 the original * applied to a group), save the information
4944 for that group and all inner ones, so that if we fail back
4945 to this point, the group's information will be correct.
4946 For example, in \(a*\)*\1, we need the preceding group,
4947 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4949 /* We can't use `p' to check ahead because we push
4950 a failure point to `p + mcnt' after we do this. */
4951 p1 = p;
4953 /* We need to skip no_op's before we look for the
4954 start_memory in case this on_failure_jump is happening as
4955 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4956 against aba. */
4957 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4958 p1++;
4960 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4962 /* We have a new highest active register now. This will
4963 get reset at the start_memory we are about to get to,
4964 but we will have saved all the registers relevant to
4965 this repetition op, as described above. */
4966 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4967 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4968 lowest_active_reg = *(p1 + 1);
4971 DEBUG_PRINT1 (":\n");
4972 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4973 break;
4976 /* A smart repeat ends with `maybe_pop_jump'.
4977 We change it to either `pop_failure_jump' or `jump'. */
4978 case maybe_pop_jump:
4979 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4980 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4982 register unsigned char *p2 = p;
4984 /* Compare the beginning of the repeat with what in the
4985 pattern follows its end. If we can establish that there
4986 is nothing that they would both match, i.e., that we
4987 would have to backtrack because of (as in, e.g., `a*a')
4988 then we can change to pop_failure_jump, because we'll
4989 never have to backtrack.
4991 This is not true in the case of alternatives: in
4992 `(a|ab)*' we do need to backtrack to the `ab' alternative
4993 (e.g., if the string was `ab'). But instead of trying to
4994 detect that here, the alternative has put on a dummy
4995 failure point which is what we will end up popping. */
4997 /* Skip over open/close-group commands.
4998 If what follows this loop is a ...+ construct,
4999 look at what begins its body, since we will have to
5000 match at least one of that. */
5001 while (1)
5003 if (p2 + 2 < pend
5004 && ((re_opcode_t) *p2 == stop_memory
5005 || (re_opcode_t) *p2 == start_memory))
5006 p2 += 3;
5007 else if (p2 + 6 < pend
5008 && (re_opcode_t) *p2 == dummy_failure_jump)
5009 p2 += 6;
5010 else
5011 break;
5014 p1 = p + mcnt;
5015 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5016 to the `maybe_finalize_jump' of this case. Examine what
5017 follows. */
5019 /* If we're at the end of the pattern, we can change. */
5020 if (p2 == pend)
5022 /* Consider what happens when matching ":\(.*\)"
5023 against ":/". I don't really understand this code
5024 yet. */
5025 p[-3] = (unsigned char) pop_failure_jump;
5026 DEBUG_PRINT1
5027 (" End of pattern: change to `pop_failure_jump'.\n");
5030 else if ((re_opcode_t) *p2 == exactn
5031 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5033 register unsigned int c
5034 = *p2 == (unsigned char) endline ? '\n' : p2[2];
5036 if ((re_opcode_t) p1[3] == exactn)
5038 if (!(multibyte /* && (c != '\n') */
5039 && BASE_LEADING_CODE_P (c))
5040 ? c != p1[5]
5041 : (STRING_CHAR (&p2[2], pend - &p2[2])
5042 != STRING_CHAR (&p1[5], pend - &p1[5])))
5044 p[-3] = (unsigned char) pop_failure_jump;
5045 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5046 c, p1[5]);
5050 else if ((re_opcode_t) p1[3] == charset
5051 || (re_opcode_t) p1[3] == charset_not)
5053 int not = (re_opcode_t) p1[3] == charset_not;
5055 if (multibyte /* && (c != '\n') */
5056 && BASE_LEADING_CODE_P (c))
5057 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5059 /* Test if C is listed in charset (or charset_not)
5060 at `&p1[3]'. */
5061 if (SINGLE_BYTE_CHAR_P (c))
5063 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5064 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5065 not = !not;
5067 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5068 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5070 /* `not' is equal to 1 if c would match, which means
5071 that we can't change to pop_failure_jump. */
5072 if (!not)
5074 p[-3] = (unsigned char) pop_failure_jump;
5075 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5079 else if ((re_opcode_t) *p2 == charset)
5081 if ((re_opcode_t) p1[3] == exactn)
5083 register unsigned int c = p1[5];
5084 int not = 0;
5086 if (multibyte && BASE_LEADING_CODE_P (c))
5087 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5089 /* Test if C is listed in charset at `p2'. */
5090 if (SINGLE_BYTE_CHAR_P (c))
5092 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5093 && (p2[2 + c / BYTEWIDTH]
5094 & (1 << (c % BYTEWIDTH))))
5095 not = !not;
5097 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5098 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5100 if (!not)
5102 p[-3] = (unsigned char) pop_failure_jump;
5103 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5107 /* It is hard to list up all the character in charset
5108 P2 if it includes multibyte character. Give up in
5109 such case. */
5110 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5112 /* Now, we are sure that P2 has no range table.
5113 So, for the size of bitmap in P2, `p2[1]' is
5114 enough. But P1 may have range table, so the
5115 size of bitmap table of P1 is extracted by
5116 using macro `CHARSET_BITMAP_SIZE'.
5118 Since we know that all the character listed in
5119 P2 is ASCII, it is enough to test only bitmap
5120 table of P1. */
5122 if ((re_opcode_t) p1[3] == charset_not)
5124 int idx;
5125 /* We win if the charset_not inside the loop lists
5126 every character listed in the charset after. */
5127 for (idx = 0; idx < (int) p2[1]; idx++)
5128 if (! (p2[2 + idx] == 0
5129 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5130 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5131 break;
5133 if (idx == p2[1])
5135 p[-3] = (unsigned char) pop_failure_jump;
5136 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5139 else if ((re_opcode_t) p1[3] == charset)
5141 int idx;
5142 /* We win if the charset inside the loop
5143 has no overlap with the one after the loop. */
5144 for (idx = 0;
5145 (idx < (int) p2[1]
5146 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5147 idx++)
5148 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5149 break;
5151 if (idx == p2[1]
5152 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5154 p[-3] = (unsigned char) pop_failure_jump;
5155 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5161 p -= 2; /* Point at relative address again. */
5162 if ((re_opcode_t) p[-1] != pop_failure_jump)
5164 p[-1] = (unsigned char) jump;
5165 DEBUG_PRINT1 (" Match => jump.\n");
5166 goto unconditional_jump;
5168 /* Note fall through. */
5171 /* The end of a simple repeat has a pop_failure_jump back to
5172 its matching on_failure_jump, where the latter will push a
5173 failure point. The pop_failure_jump takes off failure
5174 points put on by this pop_failure_jump's matching
5175 on_failure_jump; we got through the pattern to here from the
5176 matching on_failure_jump, so didn't fail. */
5177 case pop_failure_jump:
5179 /* We need to pass separate storage for the lowest and
5180 highest registers, even though we don't care about the
5181 actual values. Otherwise, we will restore only one
5182 register from the stack, since lowest will == highest in
5183 `pop_failure_point'. */
5184 unsigned dummy_low_reg, dummy_high_reg;
5185 unsigned char *pdummy;
5186 const char *sdummy;
5188 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5189 POP_FAILURE_POINT (sdummy, pdummy,
5190 dummy_low_reg, dummy_high_reg,
5191 reg_dummy, reg_dummy, reg_info_dummy);
5193 /* Note fall through. */
5196 /* Unconditionally jump (without popping any failure points). */
5197 case jump:
5198 unconditional_jump:
5199 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5200 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5201 p += mcnt; /* Do the jump. */
5202 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5203 break;
5206 /* We need this opcode so we can detect where alternatives end
5207 in `group_match_null_string_p' et al. */
5208 case jump_past_alt:
5209 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5210 goto unconditional_jump;
5213 /* Normally, the on_failure_jump pushes a failure point, which
5214 then gets popped at pop_failure_jump. We will end up at
5215 pop_failure_jump, also, and with a pattern of, say, `a+', we
5216 are skipping over the on_failure_jump, so we have to push
5217 something meaningless for pop_failure_jump to pop. */
5218 case dummy_failure_jump:
5219 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5220 /* It doesn't matter what we push for the string here. What
5221 the code at `fail' tests is the value for the pattern. */
5222 PUSH_FAILURE_POINT (0, 0, -2);
5223 goto unconditional_jump;
5226 /* At the end of an alternative, we need to push a dummy failure
5227 point in case we are followed by a `pop_failure_jump', because
5228 we don't want the failure point for the alternative to be
5229 popped. For example, matching `(a|ab)*' against `aab'
5230 requires that we match the `ab' alternative. */
5231 case push_dummy_failure:
5232 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5233 /* See comments just above at `dummy_failure_jump' about the
5234 two zeroes. */
5235 PUSH_FAILURE_POINT (0, 0, -2);
5236 break;
5238 /* Have to succeed matching what follows at least n times.
5239 After that, handle like `on_failure_jump'. */
5240 case succeed_n:
5241 EXTRACT_NUMBER (mcnt, p + 2);
5242 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5244 assert (mcnt >= 0);
5245 /* Originally, this is how many times we HAVE to succeed. */
5246 if (mcnt > 0)
5248 mcnt--;
5249 p += 2;
5250 STORE_NUMBER_AND_INCR (p, mcnt);
5251 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5253 else if (mcnt == 0)
5255 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
5256 p[2] = (unsigned char) no_op;
5257 p[3] = (unsigned char) no_op;
5258 goto on_failure;
5260 break;
5262 case jump_n:
5263 EXTRACT_NUMBER (mcnt, p + 2);
5264 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5266 /* Originally, this is how many times we CAN jump. */
5267 if (mcnt)
5269 mcnt--;
5270 STORE_NUMBER (p + 2, mcnt);
5271 goto unconditional_jump;
5273 /* If don't have to jump any more, skip over the rest of command. */
5274 else
5275 p += 4;
5276 break;
5278 case set_number_at:
5280 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5282 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5283 p1 = p + mcnt;
5284 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5285 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5286 STORE_NUMBER (p1, mcnt);
5287 break;
5290 case wordbound:
5291 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5293 /* We SUCCEED in one of the following cases: */
5295 /* Case 1: D is at the beginning or the end of string. */
5296 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5297 break;
5298 else
5300 /* C1 is the character before D, S1 is the syntax of C1, C2
5301 is the character at D, and S2 is the syntax of C2. */
5302 int c1, c2, s1, s2;
5303 int pos1 = PTR_TO_OFFSET (d - 1);
5305 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5306 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5307 #ifdef emacs
5308 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
5309 #endif
5310 s1 = SYNTAX (c1);
5311 #ifdef emacs
5312 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
5313 #endif
5314 s2 = SYNTAX (c2);
5316 if (/* Case 2: Only one of S1 and S2 is Sword. */
5317 ((s1 == Sword) != (s2 == Sword))
5318 /* Case 3: Both of S1 and S2 are Sword, and macro
5319 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5320 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5321 break;
5323 goto fail;
5325 case notwordbound:
5326 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5328 /* We FAIL in one of the following cases: */
5330 /* Case 1: D is at the beginning or the end of string. */
5331 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5332 goto fail;
5333 else
5335 /* C1 is the character before D, S1 is the syntax of C1, C2
5336 is the character at D, and S2 is the syntax of C2. */
5337 int c1, c2, s1, s2;
5338 int pos1 = PTR_TO_OFFSET (d - 1);
5340 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5341 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5342 #ifdef emacs
5343 UPDATE_SYNTAX_TABLE (pos1);
5344 #endif
5345 s1 = SYNTAX (c1);
5346 #ifdef emacs
5347 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
5348 #endif
5349 s2 = SYNTAX (c2);
5351 if (/* Case 2: Only one of S1 and S2 is Sword. */
5352 ((s1 == Sword) != (s2 == Sword))
5353 /* Case 3: Both of S1 and S2 are Sword, and macro
5354 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5355 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5356 goto fail;
5358 break;
5360 case wordbeg:
5361 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5363 /* We FAIL in one of the following cases: */
5365 /* Case 1: D is at the end of string. */
5366 if (AT_STRINGS_END (d))
5367 goto fail;
5368 else
5370 /* C1 is the character before D, S1 is the syntax of C1, C2
5371 is the character at D, and S2 is the syntax of C2. */
5372 int c1, c2, s1, s2;
5373 int pos1 = PTR_TO_OFFSET (d);
5375 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5376 #ifdef emacs
5377 UPDATE_SYNTAX_TABLE (pos1);
5378 #endif
5379 s2 = SYNTAX (c2);
5381 /* Case 2: S2 is not Sword. */
5382 if (s2 != Sword)
5383 goto fail;
5385 /* Case 3: D is not at the beginning of string ... */
5386 if (!AT_STRINGS_BEG (d))
5388 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5389 #ifdef emacs
5390 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
5391 #endif
5392 s1 = SYNTAX (c1);
5394 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5395 returns 0. */
5396 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5397 goto fail;
5400 break;
5402 case wordend:
5403 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5405 /* We FAIL in one of the following cases: */
5407 /* Case 1: D is at the beginning of string. */
5408 if (AT_STRINGS_BEG (d))
5409 goto fail;
5410 else
5412 /* C1 is the character before D, S1 is the syntax of C1, C2
5413 is the character at D, and S2 is the syntax of C2. */
5414 int c1, c2, s1, s2;
5416 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5417 s1 = SYNTAX (c1);
5419 /* Case 2: S1 is not Sword. */
5420 if (s1 != Sword)
5421 goto fail;
5423 /* Case 3: D is not at the end of string ... */
5424 if (!AT_STRINGS_END (d))
5426 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5427 s2 = SYNTAX (c2);
5429 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5430 returns 0. */
5431 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5432 goto fail;
5435 break;
5437 #ifdef emacs
5438 case before_dot:
5439 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5440 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
5441 goto fail;
5442 break;
5444 case at_dot:
5445 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5446 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
5447 goto fail;
5448 break;
5450 case after_dot:
5451 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5452 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
5453 goto fail;
5454 break;
5456 case syntaxspec:
5457 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5458 mcnt = *p++;
5459 goto matchsyntax;
5461 case wordchar:
5462 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5463 mcnt = (int) Sword;
5464 matchsyntax:
5465 PREFETCH ();
5466 #ifdef emacs
5468 int pos1 = PTR_TO_OFFSET (d);
5469 UPDATE_SYNTAX_TABLE (pos1);
5471 #endif
5473 int c, len;
5475 if (multibyte)
5476 /* we must concern about multibyte form, ... */
5477 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5478 else
5479 /* everything should be handled as ASCII, even though it
5480 looks like multibyte form. */
5481 c = *d, len = 1;
5483 if (SYNTAX (c) != (enum syntaxcode) mcnt)
5484 goto fail;
5485 d += len;
5487 SET_REGS_MATCHED ();
5488 break;
5490 case notsyntaxspec:
5491 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5492 mcnt = *p++;
5493 goto matchnotsyntax;
5495 case notwordchar:
5496 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5497 mcnt = (int) Sword;
5498 matchnotsyntax:
5499 PREFETCH ();
5500 #ifdef emacs
5502 int pos1 = PTR_TO_OFFSET (d);
5503 UPDATE_SYNTAX_TABLE (pos1);
5505 #endif
5507 int c, len;
5509 if (multibyte)
5510 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5511 else
5512 c = *d, len = 1;
5514 if (SYNTAX (c) == (enum syntaxcode) mcnt)
5515 goto fail;
5516 d += len;
5518 SET_REGS_MATCHED ();
5519 break;
5521 case categoryspec:
5522 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5523 mcnt = *p++;
5524 PREFETCH ();
5526 int c, len;
5528 if (multibyte)
5529 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5530 else
5531 c = *d, len = 1;
5533 if (!CHAR_HAS_CATEGORY (c, mcnt))
5534 goto fail;
5535 d += len;
5537 SET_REGS_MATCHED ();
5538 break;
5540 case notcategoryspec:
5541 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5542 mcnt = *p++;
5543 PREFETCH ();
5545 int c, len;
5547 if (multibyte)
5548 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5549 else
5550 c = *d, len = 1;
5552 if (CHAR_HAS_CATEGORY (c, mcnt))
5553 goto fail;
5554 d += len;
5556 SET_REGS_MATCHED ();
5557 break;
5559 #else /* not emacs */
5560 case wordchar:
5561 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5562 PREFETCH ();
5563 if (!WORDCHAR_P (d))
5564 goto fail;
5565 SET_REGS_MATCHED ();
5566 d++;
5567 break;
5569 case notwordchar:
5570 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5571 PREFETCH ();
5572 if (WORDCHAR_P (d))
5573 goto fail;
5574 SET_REGS_MATCHED ();
5575 d++;
5576 break;
5577 #endif /* not emacs */
5579 default:
5580 abort ();
5582 continue; /* Successfully executed one pattern command; keep going. */
5585 /* We goto here if a matching operation fails. */
5586 fail:
5587 if (!FAIL_STACK_EMPTY ())
5588 { /* A restart point is known. Restore to that state. */
5589 DEBUG_PRINT1 ("\nFAIL:\n");
5590 POP_FAILURE_POINT (d, p,
5591 lowest_active_reg, highest_active_reg,
5592 regstart, regend, reg_info);
5594 /* If this failure point is a dummy, try the next one. */
5595 if (!p)
5596 goto fail;
5598 /* If we failed to the end of the pattern, don't examine *p. */
5599 assert (p <= pend);
5600 if (p < pend)
5602 boolean is_a_jump_n = false;
5604 /* If failed to a backwards jump that's part of a repetition
5605 loop, need to pop this failure point and use the next one. */
5606 switch ((re_opcode_t) *p)
5608 case jump_n:
5609 is_a_jump_n = true;
5610 case maybe_pop_jump:
5611 case pop_failure_jump:
5612 case jump:
5613 p1 = p + 1;
5614 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5615 p1 += mcnt;
5617 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5618 || (!is_a_jump_n
5619 && (re_opcode_t) *p1 == on_failure_jump))
5620 goto fail;
5621 break;
5622 default:
5623 /* do nothing */ ;
5627 if (d >= string1 && d <= end1)
5628 dend = end_match_1;
5630 else
5631 break; /* Matching at this starting point really fails. */
5632 } /* for (;;) */
5634 if (best_regs_set)
5635 goto restore_best_regs;
5637 FREE_VARIABLES ();
5639 return -1; /* Failure to match. */
5640 } /* re_match_2 */
5642 /* Subroutine definitions for re_match_2. */
5645 /* We are passed P pointing to a register number after a start_memory.
5647 Return true if the pattern up to the corresponding stop_memory can
5648 match the empty string, and false otherwise.
5650 If we find the matching stop_memory, sets P to point to one past its number.
5651 Otherwise, sets P to an undefined byte less than or equal to END.
5653 We don't handle duplicates properly (yet). */
5655 static boolean
5656 group_match_null_string_p (p, end, reg_info)
5657 unsigned char **p, *end;
5658 register_info_type *reg_info;
5660 int mcnt;
5661 /* Point to after the args to the start_memory. */
5662 unsigned char *p1 = *p + 2;
5664 while (p1 < end)
5666 /* Skip over opcodes that can match nothing, and return true or
5667 false, as appropriate, when we get to one that can't, or to the
5668 matching stop_memory. */
5670 switch ((re_opcode_t) *p1)
5672 /* Could be either a loop or a series of alternatives. */
5673 case on_failure_jump:
5674 p1++;
5675 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5677 /* If the next operation is not a jump backwards in the
5678 pattern. */
5680 if (mcnt >= 0)
5682 /* Go through the on_failure_jumps of the alternatives,
5683 seeing if any of the alternatives cannot match nothing.
5684 The last alternative starts with only a jump,
5685 whereas the rest start with on_failure_jump and end
5686 with a jump, e.g., here is the pattern for `a|b|c':
5688 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5689 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5690 /exactn/1/c
5692 So, we have to first go through the first (n-1)
5693 alternatives and then deal with the last one separately. */
5696 /* Deal with the first (n-1) alternatives, which start
5697 with an on_failure_jump (see above) that jumps to right
5698 past a jump_past_alt. */
5700 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5702 /* `mcnt' holds how many bytes long the alternative
5703 is, including the ending `jump_past_alt' and
5704 its number. */
5706 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5707 reg_info))
5708 return false;
5710 /* Move to right after this alternative, including the
5711 jump_past_alt. */
5712 p1 += mcnt;
5714 /* Break if it's the beginning of an n-th alternative
5715 that doesn't begin with an on_failure_jump. */
5716 if ((re_opcode_t) *p1 != on_failure_jump)
5717 break;
5719 /* Still have to check that it's not an n-th
5720 alternative that starts with an on_failure_jump. */
5721 p1++;
5722 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5723 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5725 /* Get to the beginning of the n-th alternative. */
5726 p1 -= 3;
5727 break;
5731 /* Deal with the last alternative: go back and get number
5732 of the `jump_past_alt' just before it. `mcnt' contains
5733 the length of the alternative. */
5734 EXTRACT_NUMBER (mcnt, p1 - 2);
5736 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5737 return false;
5739 p1 += mcnt; /* Get past the n-th alternative. */
5740 } /* if mcnt > 0 */
5741 break;
5744 case stop_memory:
5745 assert (p1[1] == **p);
5746 *p = p1 + 2;
5747 return true;
5750 default:
5751 if (!common_op_match_null_string_p (&p1, end, reg_info))
5752 return false;
5754 } /* while p1 < end */
5756 return false;
5757 } /* group_match_null_string_p */
5760 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5761 It expects P to be the first byte of a single alternative and END one
5762 byte past the last. The alternative can contain groups. */
5764 static boolean
5765 alt_match_null_string_p (p, end, reg_info)
5766 unsigned char *p, *end;
5767 register_info_type *reg_info;
5769 int mcnt;
5770 unsigned char *p1 = p;
5772 while (p1 < end)
5774 /* Skip over opcodes that can match nothing, and break when we get
5775 to one that can't. */
5777 switch ((re_opcode_t) *p1)
5779 /* It's a loop. */
5780 case on_failure_jump:
5781 p1++;
5782 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5783 p1 += mcnt;
5784 break;
5786 default:
5787 if (!common_op_match_null_string_p (&p1, end, reg_info))
5788 return false;
5790 } /* while p1 < end */
5792 return true;
5793 } /* alt_match_null_string_p */
5796 /* Deals with the ops common to group_match_null_string_p and
5797 alt_match_null_string_p.
5799 Sets P to one after the op and its arguments, if any. */
5801 static boolean
5802 common_op_match_null_string_p (p, end, reg_info)
5803 unsigned char **p, *end;
5804 register_info_type *reg_info;
5806 int mcnt;
5807 boolean ret;
5808 int reg_no;
5809 unsigned char *p1 = *p;
5811 switch ((re_opcode_t) *p1++)
5813 case no_op:
5814 case begline:
5815 case endline:
5816 case begbuf:
5817 case endbuf:
5818 case wordbeg:
5819 case wordend:
5820 case wordbound:
5821 case notwordbound:
5822 #ifdef emacs
5823 case before_dot:
5824 case at_dot:
5825 case after_dot:
5826 #endif
5827 break;
5829 case start_memory:
5830 reg_no = *p1;
5831 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5832 ret = group_match_null_string_p (&p1, end, reg_info);
5834 /* Have to set this here in case we're checking a group which
5835 contains a group and a back reference to it. */
5837 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5838 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5840 if (!ret)
5841 return false;
5842 break;
5844 /* If this is an optimized succeed_n for zero times, make the jump. */
5845 case jump:
5846 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5847 if (mcnt >= 0)
5848 p1 += mcnt;
5849 else
5850 return false;
5851 break;
5853 case succeed_n:
5854 /* Get to the number of times to succeed. */
5855 p1 += 2;
5856 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5858 if (mcnt == 0)
5860 p1 -= 4;
5861 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5862 p1 += mcnt;
5864 else
5865 return false;
5866 break;
5868 case duplicate:
5869 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5870 return false;
5871 break;
5873 case set_number_at:
5874 p1 += 4;
5876 default:
5877 /* All other opcodes mean we cannot match the empty string. */
5878 return false;
5881 *p = p1;
5882 return true;
5883 } /* common_op_match_null_string_p */
5886 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5887 bytes; nonzero otherwise. */
5889 static int
5890 bcmp_translate (s1, s2, len, translate)
5891 unsigned char *s1, *s2;
5892 register int len;
5893 RE_TRANSLATE_TYPE translate;
5895 register unsigned char *p1 = s1, *p2 = s2;
5896 while (len)
5898 if (RE_TRANSLATE (translate, *p1++) != RE_TRANSLATE (translate, *p2++))
5899 return 1;
5900 len--;
5902 return 0;
5905 /* Entry points for GNU code. */
5907 /* re_compile_pattern is the GNU regular expression compiler: it
5908 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5909 Returns 0 if the pattern was valid, otherwise an error string.
5911 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5912 are set in BUFP on entry.
5914 We call regex_compile to do the actual compilation. */
5916 const char *
5917 re_compile_pattern (pattern, length, bufp)
5918 const char *pattern;
5919 int length;
5920 struct re_pattern_buffer *bufp;
5922 reg_errcode_t ret;
5924 /* GNU code is written to assume at least RE_NREGS registers will be set
5925 (and at least one extra will be -1). */
5926 bufp->regs_allocated = REGS_UNALLOCATED;
5928 /* And GNU code determines whether or not to get register information
5929 by passing null for the REGS argument to re_match, etc., not by
5930 setting no_sub. */
5931 bufp->no_sub = 0;
5933 /* Match anchors at newline. */
5934 bufp->newline_anchor = 1;
5936 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5938 if (!ret)
5939 return NULL;
5940 return gettext (re_error_msgid[(int) ret]);
5943 /* Entry points compatible with 4.2 BSD regex library. We don't define
5944 them unless specifically requested. */
5946 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5948 /* BSD has one and only one pattern buffer. */
5949 static struct re_pattern_buffer re_comp_buf;
5951 char *
5952 #ifdef _LIBC
5953 /* Make these definitions weak in libc, so POSIX programs can redefine
5954 these names if they don't use our functions, and still use
5955 regcomp/regexec below without link errors. */
5956 weak_function
5957 #endif
5958 re_comp (s)
5959 const char *s;
5961 reg_errcode_t ret;
5963 if (!s)
5965 if (!re_comp_buf.buffer)
5966 return gettext ("No previous regular expression");
5967 return 0;
5970 if (!re_comp_buf.buffer)
5972 re_comp_buf.buffer = (unsigned char *) malloc (200);
5973 if (re_comp_buf.buffer == NULL)
5974 return gettext (re_error_msgid[(int) REG_ESPACE]);
5975 re_comp_buf.allocated = 200;
5977 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5978 if (re_comp_buf.fastmap == NULL)
5979 return gettext (re_error_msgid[(int) REG_ESPACE]);
5982 /* Since `re_exec' always passes NULL for the `regs' argument, we
5983 don't need to initialize the pattern buffer fields which affect it. */
5985 /* Match anchors at newlines. */
5986 re_comp_buf.newline_anchor = 1;
5988 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5990 if (!ret)
5991 return NULL;
5993 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5994 return (char *) gettext (re_error_msgid[(int) ret]);
5999 #ifdef _LIBC
6000 weak_function
6001 #endif
6002 re_exec (s)
6003 const char *s;
6005 const int len = strlen (s);
6006 return
6007 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6009 #endif /* _REGEX_RE_COMP */
6011 /* POSIX.2 functions. Don't define these for Emacs. */
6013 #ifndef emacs
6015 /* regcomp takes a regular expression as a string and compiles it.
6017 PREG is a regex_t *. We do not expect any fields to be initialized,
6018 since POSIX says we shouldn't. Thus, we set
6020 `buffer' to the compiled pattern;
6021 `used' to the length of the compiled pattern;
6022 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6023 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6024 RE_SYNTAX_POSIX_BASIC;
6025 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6026 `fastmap' and `fastmap_accurate' to zero;
6027 `re_nsub' to the number of subexpressions in PATTERN.
6029 PATTERN is the address of the pattern string.
6031 CFLAGS is a series of bits which affect compilation.
6033 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6034 use POSIX basic syntax.
6036 If REG_NEWLINE is set, then . and [^...] don't match newline.
6037 Also, regexec will try a match beginning after every newline.
6039 If REG_ICASE is set, then we considers upper- and lowercase
6040 versions of letters to be equivalent when matching.
6042 If REG_NOSUB is set, then when PREG is passed to regexec, that
6043 routine will report only success or failure, and nothing about the
6044 registers.
6046 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6047 the return codes and their meanings.) */
6050 regcomp (preg, pattern, cflags)
6051 regex_t *preg;
6052 const char *pattern;
6053 int cflags;
6055 reg_errcode_t ret;
6056 unsigned syntax
6057 = (cflags & REG_EXTENDED) ?
6058 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6060 /* regex_compile will allocate the space for the compiled pattern. */
6061 preg->buffer = 0;
6062 preg->allocated = 0;
6063 preg->used = 0;
6065 /* Don't bother to use a fastmap when searching. This simplifies the
6066 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6067 characters after newlines into the fastmap. This way, we just try
6068 every character. */
6069 preg->fastmap = 0;
6071 if (cflags & REG_ICASE)
6073 unsigned i;
6075 preg->translate
6076 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6077 * sizeof (*(RE_TRANSLATE_TYPE)0));
6078 if (preg->translate == NULL)
6079 return (int) REG_ESPACE;
6081 /* Map uppercase characters to corresponding lowercase ones. */
6082 for (i = 0; i < CHAR_SET_SIZE; i++)
6083 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6085 else
6086 preg->translate = NULL;
6088 /* If REG_NEWLINE is set, newlines are treated differently. */
6089 if (cflags & REG_NEWLINE)
6090 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6091 syntax &= ~RE_DOT_NEWLINE;
6092 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6093 /* It also changes the matching behavior. */
6094 preg->newline_anchor = 1;
6096 else
6097 preg->newline_anchor = 0;
6099 preg->no_sub = !!(cflags & REG_NOSUB);
6101 /* POSIX says a null character in the pattern terminates it, so we
6102 can use strlen here in compiling the pattern. */
6103 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6105 /* POSIX doesn't distinguish between an unmatched open-group and an
6106 unmatched close-group: both are REG_EPAREN. */
6107 if (ret == REG_ERPAREN) ret = REG_EPAREN;
6109 return (int) ret;
6113 /* regexec searches for a given pattern, specified by PREG, in the
6114 string STRING.
6116 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6117 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6118 least NMATCH elements, and we set them to the offsets of the
6119 corresponding matched substrings.
6121 EFLAGS specifies `execution flags' which affect matching: if
6122 REG_NOTBOL is set, then ^ does not match at the beginning of the
6123 string; if REG_NOTEOL is set, then $ does not match at the end.
6125 We return 0 if we find a match and REG_NOMATCH if not. */
6128 regexec (preg, string, nmatch, pmatch, eflags)
6129 const regex_t *preg;
6130 const char *string;
6131 size_t nmatch;
6132 regmatch_t pmatch[];
6133 int eflags;
6135 int ret;
6136 struct re_registers regs;
6137 regex_t private_preg;
6138 int len = strlen (string);
6139 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6141 private_preg = *preg;
6143 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6144 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6146 /* The user has told us exactly how many registers to return
6147 information about, via `nmatch'. We have to pass that on to the
6148 matching routines. */
6149 private_preg.regs_allocated = REGS_FIXED;
6151 if (want_reg_info)
6153 regs.num_regs = nmatch;
6154 regs.start = TALLOC (nmatch, regoff_t);
6155 regs.end = TALLOC (nmatch, regoff_t);
6156 if (regs.start == NULL || regs.end == NULL)
6157 return (int) REG_NOMATCH;
6160 /* Perform the searching operation. */
6161 ret = re_search (&private_preg, string, len,
6162 /* start: */ 0, /* range: */ len,
6163 want_reg_info ? &regs : (struct re_registers *) 0);
6165 /* Copy the register information to the POSIX structure. */
6166 if (want_reg_info)
6168 if (ret >= 0)
6170 unsigned r;
6172 for (r = 0; r < nmatch; r++)
6174 pmatch[r].rm_so = regs.start[r];
6175 pmatch[r].rm_eo = regs.end[r];
6179 /* If we needed the temporary register info, free the space now. */
6180 free (regs.start);
6181 free (regs.end);
6184 /* We want zero return to mean success, unlike `re_search'. */
6185 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6189 /* Returns a message corresponding to an error code, ERRCODE, returned
6190 from either regcomp or regexec. We don't use PREG here. */
6192 size_t
6193 regerror (errcode, preg, errbuf, errbuf_size)
6194 int errcode;
6195 const regex_t *preg;
6196 char *errbuf;
6197 size_t errbuf_size;
6199 const char *msg;
6200 size_t msg_size;
6202 if (errcode < 0
6203 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6204 /* Only error codes returned by the rest of the code should be passed
6205 to this routine. If we are given anything else, or if other regex
6206 code generates an invalid error code, then the program has a bug.
6207 Dump core so we can fix it. */
6208 abort ();
6210 msg = gettext (re_error_msgid[errcode]);
6212 msg_size = strlen (msg) + 1; /* Includes the null. */
6214 if (errbuf_size != 0)
6216 if (msg_size > errbuf_size)
6218 strncpy (errbuf, msg, errbuf_size - 1);
6219 errbuf[errbuf_size - 1] = 0;
6221 else
6222 strcpy (errbuf, msg);
6225 return msg_size;
6229 /* Free dynamically allocated space used by PREG. */
6231 void
6232 regfree (preg)
6233 regex_t *preg;
6235 if (preg->buffer != NULL)
6236 free (preg->buffer);
6237 preg->buffer = NULL;
6239 preg->allocated = 0;
6240 preg->used = 0;
6242 if (preg->fastmap != NULL)
6243 free (preg->fastmap);
6244 preg->fastmap = NULL;
6245 preg->fastmap_accurate = 0;
6247 if (preg->translate != NULL)
6248 free (preg->translate);
6249 preg->translate = NULL;
6252 #endif /* not emacs */