Fix Emacs version.
[emacs.git] / doc / lispref / sequences.texi
blobdf4ac951748f7d56f4654cf8f8039568da88753d
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
4 @c   2002, 2003, 2004, 2005, 2006, 2007, 2008  Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../../info/sequences
7 @node Sequences Arrays Vectors, Hash Tables, Lists, Top
8 @chapter Sequences, Arrays, and Vectors
9 @cindex sequence
11   Recall that the @dfn{sequence} type is the union of two other Lisp
12 types: lists and arrays.  In other words, any list is a sequence, and
13 any array is a sequence.  The common property that all sequences have is
14 that each is an ordered collection of elements.
16   An @dfn{array} is a single primitive object that has a slot for each
17 of its elements.  All the elements are accessible in constant time, but
18 the length of an existing array cannot be changed.  Strings, vectors,
19 char-tables and bool-vectors are the four types of arrays.
21   A list is a sequence of elements, but it is not a single primitive
22 object; it is made of cons cells, one cell per element.  Finding the
23 @var{n}th element requires looking through @var{n} cons cells, so
24 elements farther from the beginning of the list take longer to access.
25 But it is possible to add elements to the list, or remove elements.
27   The following diagram shows the relationship between these types:
29 @example
30 @group
31           _____________________________________________
32          |                                             |
33          |          Sequence                           |
34          |  ______   ________________________________  |
35          | |      | |                                | |
36          | | List | |             Array              | |
37          | |      | |    ________       ________     | |
38          | |______| |   |        |     |        |    | |
39          |          |   | Vector |     | String |    | |
40          |          |   |________|     |________|    | |
41          |          |  ____________   _____________  | |
42          |          | |            | |             | | |
43          |          | | Char-table | | Bool-vector | | |
44          |          | |____________| |_____________| | |
45          |          |________________________________| |
46          |_____________________________________________|
47 @end group
48 @end example
50   The elements of vectors and lists may be any Lisp objects.  The
51 elements of strings are all characters.
53 @menu
54 * Sequence Functions::    Functions that accept any kind of sequence.
55 * Arrays::                Characteristics of arrays in Emacs Lisp.
56 * Array Functions::       Functions specifically for arrays.
57 * Vectors::               Special characteristics of Emacs Lisp vectors.
58 * Vector Functions::      Functions specifically for vectors.
59 * Char-Tables::           How to work with char-tables.
60 * Bool-Vectors::          How to work with bool-vectors.
61 @end menu
63 @node Sequence Functions
64 @section Sequences
66   In Emacs Lisp, a @dfn{sequence} is either a list or an array.  The
67 common property of all sequences is that they are ordered collections of
68 elements.  This section describes functions that accept any kind of
69 sequence.
71 @defun sequencep object
72 Returns @code{t} if @var{object} is a list, vector, string,
73 bool-vector, or char-table, @code{nil} otherwise.
74 @end defun
76 @defun length sequence
77 @cindex string length
78 @cindex list length
79 @cindex vector length
80 @cindex sequence length
81 @cindex char-table length
82 This function returns the number of elements in @var{sequence}.  If
83 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
84 signaled.  Circular lists may cause an infinite loop.  For a
85 char-table, the value returned is always one more than the maximum
86 Emacs character code.
88 @xref{Definition of safe-length}, for the related function @code{safe-length}.
90 @example
91 @group
92 (length '(1 2 3))
93     @result{} 3
94 @end group
95 @group
96 (length ())
97     @result{} 0
98 @end group
99 @group
100 (length "foobar")
101     @result{} 6
102 @end group
103 @group
104 (length [1 2 3])
105     @result{} 3
106 @end group
107 @group
108 (length (make-bool-vector 5 nil))
109     @result{} 5
110 @end group
111 @end example
112 @end defun
114 @noindent
115 See also @code{string-bytes}, in @ref{Text Representations}.
117 @defun elt sequence index
118 @cindex elements of sequences
119 This function returns the element of @var{sequence} indexed by
120 @var{index}.  Legitimate values of @var{index} are integers ranging
121 from 0 up to one less than the length of @var{sequence}.  If
122 @var{sequence} is a list, out-of-range values behave as for
123 @code{nth}.  @xref{Definition of nth}.  Otherwise, out-of-range values
124 trigger an @code{args-out-of-range} error.
126 @example
127 @group
128 (elt [1 2 3 4] 2)
129      @result{} 3
130 @end group
131 @group
132 (elt '(1 2 3 4) 2)
133      @result{} 3
134 @end group
135 @group
136 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
137 (string (elt "1234" 2))
138      @result{} "3"
139 @end group
140 @group
141 (elt [1 2 3 4] 4)
142      @error{} Args out of range: [1 2 3 4], 4
143 @end group
144 @group
145 (elt [1 2 3 4] -1)
146      @error{} Args out of range: [1 2 3 4], -1
147 @end group
148 @end example
150 This function generalizes @code{aref} (@pxref{Array Functions}) and
151 @code{nth} (@pxref{Definition of nth}).
152 @end defun
154 @defun copy-sequence sequence
155 @cindex copying sequences
156 Returns a copy of @var{sequence}.  The copy is the same type of object
157 as the original sequence, and it has the same elements in the same order.
159 Storing a new element into the copy does not affect the original
160 @var{sequence}, and vice versa.  However, the elements of the new
161 sequence are not copies; they are identical (@code{eq}) to the elements
162 of the original.  Therefore, changes made within these elements, as
163 found via the copied sequence, are also visible in the original
164 sequence.
166 If the sequence is a string with text properties, the property list in
167 the copy is itself a copy, not shared with the original's property
168 list.  However, the actual values of the properties are shared.
169 @xref{Text Properties}.
171 This function does not work for dotted lists.  Trying to copy a
172 circular list may cause an infinite loop.
174 See also @code{append} in @ref{Building Lists}, @code{concat} in
175 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
176 for other ways to copy sequences.
178 @example
179 @group
180 (setq bar '(1 2))
181      @result{} (1 2)
182 @end group
183 @group
184 (setq x (vector 'foo bar))
185      @result{} [foo (1 2)]
186 @end group
187 @group
188 (setq y (copy-sequence x))
189      @result{} [foo (1 2)]
190 @end group
192 @group
193 (eq x y)
194      @result{} nil
195 @end group
196 @group
197 (equal x y)
198      @result{} t
199 @end group
200 @group
201 (eq (elt x 1) (elt y 1))
202      @result{} t
203 @end group
205 @group
206 ;; @r{Replacing an element of one sequence.}
207 (aset x 0 'quux)
208 x @result{} [quux (1 2)]
209 y @result{} [foo (1 2)]
210 @end group
212 @group
213 ;; @r{Modifying the inside of a shared element.}
214 (setcar (aref x 1) 69)
215 x @result{} [quux (69 2)]
216 y @result{} [foo (69 2)]
217 @end group
218 @end example
219 @end defun
221 @node Arrays
222 @section Arrays
223 @cindex array
225   An @dfn{array} object has slots that hold a number of other Lisp
226 objects, called the elements of the array.  Any element of an array may
227 be accessed in constant time.  In contrast, an element of a list
228 requires access time that is proportional to the position of the element
229 in the list.
231   Emacs defines four types of array, all one-dimensional: @dfn{strings},
232 @dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}.  A vector is a
233 general array; its elements can be any Lisp objects.  A string is a
234 specialized array; its elements must be characters.  Each type of array
235 has its own read syntax.
236 @xref{String Type}, and @ref{Vector Type}.
238   All four kinds of array share these characteristics:
240 @itemize @bullet
241 @item
242 The first element of an array has index zero, the second element has
243 index 1, and so on.  This is called @dfn{zero-origin} indexing.  For
244 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
246 @item
247 The length of the array is fixed once you create it; you cannot
248 change the length of an existing array.
250 @item
251 For purposes of evaluation, the array is a constant---in other words,
252 it evaluates to itself.
254 @item
255 The elements of an array may be referenced or changed with the functions
256 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
257 @end itemize
259     When you create an array, other than a char-table, you must specify
260 its length.  You cannot specify the length of a char-table, because that
261 is determined by the range of character codes.
263   In principle, if you want an array of text characters, you could use
264 either a string or a vector.  In practice, we always choose strings for
265 such applications, for four reasons:
267 @itemize @bullet
268 @item
269 They occupy one-fourth the space of a vector of the same elements.
271 @item
272 Strings are printed in a way that shows the contents more clearly
273 as text.
275 @item
276 Strings can hold text properties.  @xref{Text Properties}.
278 @item
279 Many of the specialized editing and I/O facilities of Emacs accept only
280 strings.  For example, you cannot insert a vector of characters into a
281 buffer the way you can insert a string.  @xref{Strings and Characters}.
282 @end itemize
284   By contrast, for an array of keyboard input characters (such as a key
285 sequence), a vector may be necessary, because many keyboard input
286 characters are outside the range that will fit in a string.  @xref{Key
287 Sequence Input}.
289 @node Array Functions
290 @section Functions that Operate on Arrays
292   In this section, we describe the functions that accept all types of
293 arrays.
295 @defun arrayp object
296 This function returns @code{t} if @var{object} is an array (i.e., a
297 vector, a string, a bool-vector or a char-table).
299 @example
300 @group
301 (arrayp [a])
302      @result{} t
303 (arrayp "asdf")
304      @result{} t
305 (arrayp (syntax-table))    ;; @r{A char-table.}
306      @result{} t
307 @end group
308 @end example
309 @end defun
311 @defun aref array index
312 @cindex array elements
313 This function returns the @var{index}th element of @var{array}.  The
314 first element is at index zero.
316 @example
317 @group
318 (setq primes [2 3 5 7 11 13])
319      @result{} [2 3 5 7 11 13]
320 (aref primes 4)
321      @result{} 11
322 @end group
323 @group
324 (aref "abcdefg" 1)
325      @result{} 98           ; @r{@samp{b} is @acronym{ASCII} code 98.}
326 @end group
327 @end example
329 See also the function @code{elt}, in @ref{Sequence Functions}.
330 @end defun
332 @defun aset array index object
333 This function sets the @var{index}th element of @var{array} to be
334 @var{object}.  It returns @var{object}.
336 @example
337 @group
338 (setq w [foo bar baz])
339      @result{} [foo bar baz]
340 (aset w 0 'fu)
341      @result{} fu
343      @result{} [fu bar baz]
344 @end group
346 @group
347 (setq x "asdfasfd")
348      @result{} "asdfasfd"
349 (aset x 3 ?Z)
350      @result{} 90
352      @result{} "asdZasfd"
353 @end group
354 @end example
356 If @var{array} is a string and @var{object} is not a character, a
357 @code{wrong-type-argument} error results.  The function converts a
358 unibyte string to multibyte if necessary to insert a character.
359 @end defun
361 @defun fillarray array object
362 This function fills the array @var{array} with @var{object}, so that
363 each element of @var{array} is @var{object}.  It returns @var{array}.
365 @example
366 @group
367 (setq a [a b c d e f g])
368      @result{} [a b c d e f g]
369 (fillarray a 0)
370      @result{} [0 0 0 0 0 0 0]
372      @result{} [0 0 0 0 0 0 0]
373 @end group
374 @group
375 (setq s "When in the course")
376      @result{} "When in the course"
377 (fillarray s ?-)
378      @result{} "------------------"
379 @end group
380 @end example
382 If @var{array} is a string and @var{object} is not a character, a
383 @code{wrong-type-argument} error results.
384 @end defun
386 The general sequence functions @code{copy-sequence} and @code{length}
387 are often useful for objects known to be arrays.  @xref{Sequence Functions}.
389 @node Vectors
390 @section Vectors
391 @cindex vector (type)
393   Arrays in Lisp, like arrays in most languages, are blocks of memory
394 whose elements can be accessed in constant time.  A @dfn{vector} is a
395 general-purpose array of specified length; its elements can be any Lisp
396 objects.  (By contrast, a string can hold only characters as elements.)
397 Vectors in Emacs are used for obarrays (vectors of symbols), and as part
398 of keymaps (vectors of commands).  They are also used internally as part
399 of the representation of a byte-compiled function; if you print such a
400 function, you will see a vector in it.
402   In Emacs Lisp, the indices of the elements of a vector start from zero
403 and count up from there.
405   Vectors are printed with square brackets surrounding the elements.
406 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
407 @code{a} is printed as @code{[a b a]}.  You can write vectors in the
408 same way in Lisp input.
410   A vector, like a string or a number, is considered a constant for
411 evaluation: the result of evaluating it is the same vector.  This does
412 not evaluate or even examine the elements of the vector.
413 @xref{Self-Evaluating Forms}.
415   Here are examples illustrating these principles:
417 @example
418 @group
419 (setq avector [1 two '(three) "four" [five]])
420      @result{} [1 two (quote (three)) "four" [five]]
421 (eval avector)
422      @result{} [1 two (quote (three)) "four" [five]]
423 (eq avector (eval avector))
424      @result{} t
425 @end group
426 @end example
428 @node Vector Functions
429 @section Functions for Vectors
431   Here are some functions that relate to vectors:
433 @defun vectorp object
434 This function returns @code{t} if @var{object} is a vector.
436 @example
437 @group
438 (vectorp [a])
439      @result{} t
440 (vectorp "asdf")
441      @result{} nil
442 @end group
443 @end example
444 @end defun
446 @defun vector &rest objects
447 This function creates and returns a vector whose elements are the
448 arguments, @var{objects}.
450 @example
451 @group
452 (vector 'foo 23 [bar baz] "rats")
453      @result{} [foo 23 [bar baz] "rats"]
454 (vector)
455      @result{} []
456 @end group
457 @end example
458 @end defun
460 @defun make-vector length object
461 This function returns a new vector consisting of @var{length} elements,
462 each initialized to @var{object}.
464 @example
465 @group
466 (setq sleepy (make-vector 9 'Z))
467      @result{} [Z Z Z Z Z Z Z Z Z]
468 @end group
469 @end example
470 @end defun
472 @defun vconcat &rest sequences
473 @cindex copying vectors
474 This function returns a new vector containing all the elements of the
475 @var{sequences}.  The arguments @var{sequences} may be true lists,
476 vectors, strings or bool-vectors.  If no @var{sequences} are given, an
477 empty vector is returned.
479 The value is a newly constructed vector that is not @code{eq} to any
480 existing vector.
482 @example
483 @group
484 (setq a (vconcat '(A B C) '(D E F)))
485      @result{} [A B C D E F]
486 (eq a (vconcat a))
487      @result{} nil
488 @end group
489 @group
490 (vconcat)
491      @result{} []
492 (vconcat [A B C] "aa" '(foo (6 7)))
493      @result{} [A B C 97 97 foo (6 7)]
494 @end group
495 @end example
497 The @code{vconcat} function also allows byte-code function objects as
498 arguments.  This is a special feature to make it easy to access the entire
499 contents of a byte-code function object.  @xref{Byte-Code Objects}.
501 In Emacs versions before 21, the @code{vconcat} function allowed
502 integers as arguments, converting them to strings of digits, but that
503 feature has been eliminated.  The proper way to convert an integer to
504 a decimal number in this way is with @code{format} (@pxref{Formatting
505 Strings}) or @code{number-to-string} (@pxref{String Conversion}).
507 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
508 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
509 in @ref{Building Lists}.
510 @end defun
512   The @code{append} function also provides a way to convert a vector into a
513 list with the same elements:
515 @example
516 @group
517 (setq avector [1 two (quote (three)) "four" [five]])
518      @result{} [1 two (quote (three)) "four" [five]]
519 (append avector nil)
520      @result{} (1 two (quote (three)) "four" [five])
521 @end group
522 @end example
524 @node Char-Tables
525 @section Char-Tables
526 @cindex char-tables
527 @cindex extra slots of char-table
529   A char-table is much like a vector, except that it is indexed by
530 character codes.  Any valid character code, without modifiers, can be
531 used as an index in a char-table.  You can access a char-table's
532 elements with @code{aref} and @code{aset}, as with any array.  In
533 addition, a char-table can have @dfn{extra slots} to hold additional
534 data not associated with particular character codes.  Char-tables are
535 constants when evaluated.
537 @cindex subtype of char-table
538   Each char-table has a @dfn{subtype} which is a symbol.  The subtype
539 has two purposes: to distinguish char-tables meant for different uses,
540 and to control the number of extra slots.  For example, display tables
541 are char-tables with @code{display-table} as the subtype, and syntax
542 tables are char-tables with @code{syntax-table} as the subtype.  A valid
543 subtype must have a @code{char-table-extra-slots} property which is an
544 integer between 0 and 10.  This integer specifies the number of
545 @dfn{extra slots} in the char-table.
547 @cindex parent of char-table
548   A char-table can have a @dfn{parent}, which is another char-table.  If
549 it does, then whenever the char-table specifies @code{nil} for a
550 particular character @var{c}, it inherits the value specified in the
551 parent.  In other words, @code{(aref @var{char-table} @var{c})} returns
552 the value from the parent of @var{char-table} if @var{char-table} itself
553 specifies @code{nil}.
555 @cindex default value of char-table
556   A char-table can also have a @dfn{default value}.  If so, then
557 @code{(aref @var{char-table} @var{c})} returns the default value
558 whenever the char-table does not specify any other non-@code{nil} value.
560 @defun make-char-table subtype &optional init
561 Return a newly created char-table, with subtype @var{subtype}.  Each
562 element is initialized to @var{init}, which defaults to @code{nil}.  You
563 cannot alter the subtype of a char-table after the char-table is
564 created.
566 There is no argument to specify the length of the char-table, because
567 all char-tables have room for any valid character code as an index.
568 @end defun
570 @defun char-table-p object
571 This function returns @code{t} if @var{object} is a char-table,
572 otherwise @code{nil}.
573 @end defun
575 @defun char-table-subtype char-table
576 This function returns the subtype symbol of @var{char-table}.
577 @end defun
579 @defun set-char-table-default char-table char new-default
580 This function sets the default value of generic character @var{char}
581 in @var{char-table} to @var{new-default}.
583 There is no special function to access default values in a char-table.
584 To do that, use @code{char-table-range} (see below).
585 @end defun
587 @defun char-table-parent char-table
588 This function returns the parent of @var{char-table}.  The parent is
589 always either @code{nil} or another char-table.
590 @end defun
592 @defun set-char-table-parent char-table new-parent
593 This function sets the parent of @var{char-table} to @var{new-parent}.
594 @end defun
596 @defun char-table-extra-slot char-table n
597 This function returns the contents of extra slot @var{n} of
598 @var{char-table}.  The number of extra slots in a char-table is
599 determined by its subtype.
600 @end defun
602 @defun set-char-table-extra-slot char-table n value
603 This function stores @var{value} in extra slot @var{n} of
604 @var{char-table}.
605 @end defun
607   A char-table can specify an element value for a single character code;
608 it can also specify a value for an entire character set.
610 @defun char-table-range char-table range
611 This returns the value specified in @var{char-table} for a range of
612 characters @var{range}.  Here are the possibilities for @var{range}:
614 @table @asis
615 @item @code{nil}
616 Refers to the default value.
618 @item @var{char}
619 Refers to the element for character @var{char}
620 (supposing @var{char} is a valid character code).
622 @item @var{charset}
623 Refers to the value specified for the whole character set
624 @var{charset} (@pxref{Character Sets}).
626 @item @var{generic-char}
627 A generic character stands for a character set, or a row of a
628 character set; specifying the generic character as argument is
629 equivalent to specifying the character set name.  @xref{Splitting
630 Characters}, for a description of generic characters.
631 @end table
632 @end defun
634 @defun set-char-table-range char-table range value
635 This function sets the value in @var{char-table} for a range of
636 characters @var{range}.  Here are the possibilities for @var{range}:
638 @table @asis
639 @item @code{nil}
640 Refers to the default value.
642 @item @code{t}
643 Refers to the whole range of character codes.
645 @item @var{char}
646 Refers to the element for character @var{char}
647 (supposing @var{char} is a valid character code).
649 @item @var{charset}
650 Refers to the value specified for the whole character set
651 @var{charset} (@pxref{Character Sets}).
653 @item @var{generic-char}
654 A generic character stands for a character set; specifying the generic
655 character as argument is equivalent to specifying the character set
656 name.  @xref{Splitting Characters}, for a description of generic characters.
657 @end table
658 @end defun
660 @defun map-char-table function char-table
661 This function calls @var{function} for each element of @var{char-table}.
662 @var{function} is called with two arguments, a key and a value.  The key
663 is a possible @var{range} argument for @code{char-table-range}---either
664 a valid character or a generic character---and the value is
665 @code{(char-table-range @var{char-table} @var{key})}.
667 Overall, the key-value pairs passed to @var{function} describe all the
668 values stored in @var{char-table}.
670 The return value is always @code{nil}; to make this function useful,
671 @var{function} should have side effects.  For example,
672 here is how to examine each element of the syntax table:
674 @example
675 (let (accumulator)
676   (map-char-table
677    #'(lambda (key value)
678        (setq accumulator
679              (cons (list key value) accumulator)))
680    (syntax-table))
681   accumulator)
682 @result{}
683 ((475008 nil) (474880 nil) (474752 nil) (474624 nil)
684  ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
685 @end example
686 @end defun
688 @node Bool-Vectors
689 @section Bool-vectors
690 @cindex Bool-vectors
692   A bool-vector is much like a vector, except that it stores only the
693 values @code{t} and @code{nil}.  If you try to store any non-@code{nil}
694 value into an element of the bool-vector, the effect is to store
695 @code{t} there.  As with all arrays, bool-vector indices start from 0,
696 and the length cannot be changed once the bool-vector is created.
697 Bool-vectors are constants when evaluated.
699   There are two special functions for working with bool-vectors; aside
700 from that, you manipulate them with same functions used for other kinds
701 of arrays.
703 @defun make-bool-vector length initial
704 Return a new bool-vector of @var{length} elements,
705 each one initialized to @var{initial}.
706 @end defun
708 @defun bool-vector-p object
709 This returns @code{t} if @var{object} is a bool-vector,
710 and @code{nil} otherwise.
711 @end defun
713   Here is an example of creating, examining, and updating a
714 bool-vector.  Note that the printed form represents up to 8 boolean
715 values as a single character.
717 @example
718 (setq bv (make-bool-vector 5 t))
719      @result{} #&5"^_"
720 (aref bv 1)
721      @result{} t
722 (aset bv 3 nil)
723      @result{} nil
725      @result{} #&5"^W"
726 @end example
728 @noindent
729 These results make sense because the binary codes for control-_ and
730 control-W are 11111 and 10111, respectively.
732 @ignore
733    arch-tag: fcf1084a-cd29-4adc-9f16-68586935b386
734 @end ignore