(Fwindow_end): Fix recent change.
[emacs.git] / src / alloc.c
blob2fd50009649a5af131fe3f7f5531a02d02271b8e
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 /* Note that this declares bzero on OSF/1. How dumb. */
36 #include <signal.h>
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
86 #ifdef DOUG_LEA_MALLOC
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
97 #define MMAP_MAX_AREAS 100000000
99 #else /* not DOUG_LEA_MALLOC */
101 /* The following come from gmalloc.c. */
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
107 #endif /* not DOUG_LEA_MALLOC */
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
128 static pthread_mutex_t alloc_mutex;
130 #define BLOCK_INPUT_ALLOC \
131 do \
133 if (pthread_self () == main_thread) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_self () == main_thread) \
143 UNBLOCK_INPUT; \
145 while (0)
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
154 /* Value of _bytes_used, when spare_memory was freed. */
156 static __malloc_size_t bytes_used_when_full;
158 static __malloc_size_t bytes_used_when_reconsidered;
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
179 /* Number of bytes of consing done since the last gc. */
181 int consing_since_gc;
183 /* Count the amount of consing of various sorts of space. */
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
194 /* Minimum number of bytes of consing since GC before next GC. */
196 EMACS_INT gc_cons_threshold;
198 /* Similar minimum, computed from Vgc_cons_percentage. */
200 EMACS_INT gc_relative_threshold;
202 static Lisp_Object Vgc_cons_percentage;
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
207 EMACS_INT memory_full_cons_threshold;
209 /* Nonzero during GC. */
211 int gc_in_progress;
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
217 int abort_on_gc;
219 /* Nonzero means display messages at beginning and end of GC. */
221 int garbage_collection_messages;
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
233 /* Number of live and free conses etc. */
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
243 char *spare_memory[7];
245 /* Amount of spare memory to keep in large reserve block. */
247 #define SPARE_MEMORY (1 << 14)
249 /* Number of extra blocks malloc should get when it needs more core. */
251 static int malloc_hysteresis;
253 /* Non-nil means defun should do purecopy on the function definition. */
255 Lisp_Object Vpurify_flag;
257 /* Non-nil means we are handling a memory-full error. */
259 Lisp_Object Vmemory_full;
261 #ifndef HAVE_SHM
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 #else /* HAVE_SHM */
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
277 #endif /* HAVE_SHM */
279 /* Pointer to the pure area, and its size. */
281 static char *purebeg;
282 static size_t pure_size;
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
287 static size_t pure_bytes_used_before_overflow;
289 /* Value is non-zero if P points into pure space. */
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
297 /* Total number of bytes allocated in pure storage. */
299 EMACS_INT pure_bytes_used;
301 /* Index in pure at which next pure Lisp object will be allocated.. */
303 static EMACS_INT pure_bytes_used_lisp;
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
307 static EMACS_INT pure_bytes_used_non_lisp;
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
312 char *pending_malloc_warning;
314 /* Pre-computed signal argument for use when memory is exhausted. */
316 Lisp_Object Vmemory_signal_data;
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 char *stack_copy;
327 int stack_copy_size;
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
332 int ignore_warnings;
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
336 /* Hook run after GC has finished. */
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
361 extern int message_enable_multibyte;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
400 Lisp_Object Vdead;
402 #ifdef GC_MALLOC_CHECK
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
407 #endif /* GC_MALLOC_CHECK */
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
414 A red-black tree is a balanced binary tree with the following
415 properties:
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
433 struct mem_node
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
442 /* Start and end of allocated region. */
443 void *start, *end;
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
448 /* Memory type. */
449 enum mem_type type;
452 /* Base address of stack. Set in main. */
454 Lisp_Object *stack_base;
456 /* Root of the tree describing allocated Lisp memory. */
458 static struct mem_node *mem_root;
460 /* Lowest and highest known address in the heap. */
462 static void *min_heap_address, *max_heap_address;
464 /* Sentinel node of the tree. */
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498 /* Recording what needs to be marked for gc. */
500 struct gcpro *gcprolist;
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508 /* Index of next unused slot in staticvec. */
510 int staticidx = 0;
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
524 /************************************************************************
525 Malloc
526 ************************************************************************/
528 /* Function malloc calls this if it finds we are near exhausting storage. */
530 void
531 malloc_warning (str)
532 char *str;
534 pending_malloc_warning = str;
538 /* Display an already-pending malloc warning. */
540 void
541 display_malloc_warning ()
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
557 /* Called if we can't allocate relocatable space for a buffer. */
559 void
560 buffer_memory_full ()
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
579 #ifdef XMALLOC_OVERRUN_CHECK
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
606 /* Macros to insert and extract the block size in the header. */
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
633 (time passes).
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
640 static int check_depth;
642 /* Like malloc, but wraps allocated block with header and trailer. */
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 --check_depth;
660 return (POINTER_TYPE *)val;
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693 if (val && check_depth == 1)
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 --check_depth;
701 return (POINTER_TYPE *)val;
704 /* Like free, but checks block for overrun. */
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
710 unsigned char *val = (unsigned char *)block;
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
734 free (val);
735 --check_depth;
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
747 /* Like malloc but check for no memory and block interrupt input.. */
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
753 register POINTER_TYPE *val;
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
759 if (!val && size)
760 memory_full ();
761 return val;
765 /* Like realloc but check for no memory and block interrupt input.. */
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
772 register POINTER_TYPE *val;
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
783 if (!val && size) memory_full ();
784 return val;
788 /* Like free but block interrupt input. */
790 void
791 xfree (block)
792 POINTER_TYPE *block;
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
803 /* Like strdup, but uses xmalloc. */
805 char *
806 xstrdup (s)
807 const char *s;
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
816 /* Unwind for SAFE_ALLOCA */
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
845 register void *val;
847 BLOCK_INPUT;
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
853 val = (void *) malloc (nbytes);
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
870 #endif
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
926 /* Internal data structures and constants. */
928 #define ABLOCKS_SIZE 16
930 /* An aligned block of memory. */
931 struct ablock
933 union
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
958 struct ablock blocks[ABLOCKS_SIZE];
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
991 void *base, *val;
992 struct ablocks *abase;
994 eassert (nbytes <= BLOCK_BYTES);
996 BLOCK_INPUT;
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1002 if (!free_ablock)
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1014 #ifdef USE_POSIX_MEMALIGN
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1026 if (base == 0)
1028 UNBLOCK_INPUT;
1029 memory_full ();
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1058 #endif
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1118 while (*tem)
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1122 i++;
1123 *tem = (*tem)->x.next_free;
1125 else
1126 tem = &(*tem)->x.next_free;
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1135 UNBLOCK_INPUT;
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1141 struct buffer *
1142 allocate_buffer ()
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1151 #ifndef SYSTEM_MALLOC
1153 /* Arranging to disable input signals while we're in malloc.
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1163 #ifndef SYNC_INPUT
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1175 /* This function is used as the hook for free to call. */
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1182 EMACS_INT bytes_used_now;
1184 BLOCK_INPUT_ALLOC;
1186 #ifdef GC_MALLOC_CHECK
1187 if (ptr)
1189 struct mem_node *m;
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1198 else
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1204 #endif /* GC_MALLOC_CHECK */
1206 __free_hook = old_free_hook;
1207 free (ptr);
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
1212 if (! NILP (Vmemory_full)
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
1218 > ((bytes_used_when_reconsidered = BYTES_USED)
1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220 refill_memory_reserve ();
1222 __free_hook = emacs_blocked_free;
1223 UNBLOCK_INPUT_ALLOC;
1227 /* This function is the malloc hook that Emacs uses. */
1229 static void *
1230 emacs_blocked_malloc (size, ptr)
1231 size_t size;
1232 const void *ptr;
1234 void *value;
1236 BLOCK_INPUT_ALLOC;
1237 __malloc_hook = old_malloc_hook;
1238 #ifdef DOUG_LEA_MALLOC
1239 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1240 #else
1241 __malloc_extra_blocks = malloc_hysteresis;
1242 #endif
1244 value = (void *) malloc (size);
1246 #ifdef GC_MALLOC_CHECK
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1259 if (!dont_register_blocks)
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1265 #endif /* GC_MALLOC_CHECK */
1267 __malloc_hook = emacs_blocked_malloc;
1268 UNBLOCK_INPUT_ALLOC;
1270 /* fprintf (stderr, "%p malloc\n", value); */
1271 return value;
1275 /* This function is the realloc hook that Emacs uses. */
1277 static void *
1278 emacs_blocked_realloc (ptr, size, ptr2)
1279 void *ptr;
1280 size_t size;
1281 const void *ptr2;
1283 void *value;
1285 BLOCK_INPUT_ALLOC;
1286 __realloc_hook = old_realloc_hook;
1288 #ifdef GC_MALLOC_CHECK
1289 if (ptr)
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1300 mem_delete (m);
1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307 #endif /* GC_MALLOC_CHECK */
1309 value = (void *) realloc (ptr, size);
1311 #ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327 #endif /* GC_MALLOC_CHECK */
1329 __realloc_hook = emacs_blocked_realloc;
1330 UNBLOCK_INPUT_ALLOC;
1332 return value;
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1342 void
1343 reset_malloc_hooks ()
1345 __free_hook = 0;
1346 __malloc_hook = 0;
1347 __realloc_hook = 0;
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1352 /* Called from main to set up malloc to use our hooks. */
1354 void
1355 uninterrupt_malloc ()
1357 #ifdef HAVE_GTK_AND_PTHREAD
1358 pthread_mutexattr_t attr;
1360 /* GLIBC has a faster way to do this, but lets keep it portable.
1361 This is according to the Single UNIX Specification. */
1362 pthread_mutexattr_init (&attr);
1363 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364 pthread_mutex_init (&alloc_mutex, &attr);
1365 #endif /* HAVE_GTK_AND_PTHREAD */
1367 if (__free_hook != emacs_blocked_free)
1368 old_free_hook = __free_hook;
1369 __free_hook = emacs_blocked_free;
1371 if (__malloc_hook != emacs_blocked_malloc)
1372 old_malloc_hook = __malloc_hook;
1373 __malloc_hook = emacs_blocked_malloc;
1375 if (__realloc_hook != emacs_blocked_realloc)
1376 old_realloc_hook = __realloc_hook;
1377 __realloc_hook = emacs_blocked_realloc;
1380 #endif /* not SYNC_INPUT */
1381 #endif /* not SYSTEM_MALLOC */
1385 /***********************************************************************
1386 Interval Allocation
1387 ***********************************************************************/
1389 /* Number of intervals allocated in an interval_block structure.
1390 The 1020 is 1024 minus malloc overhead. */
1392 #define INTERVAL_BLOCK_SIZE \
1393 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1395 /* Intervals are allocated in chunks in form of an interval_block
1396 structure. */
1398 struct interval_block
1400 /* Place `intervals' first, to preserve alignment. */
1401 struct interval intervals[INTERVAL_BLOCK_SIZE];
1402 struct interval_block *next;
1405 /* Current interval block. Its `next' pointer points to older
1406 blocks. */
1408 struct interval_block *interval_block;
1410 /* Index in interval_block above of the next unused interval
1411 structure. */
1413 static int interval_block_index;
1415 /* Number of free and live intervals. */
1417 static int total_free_intervals, total_intervals;
1419 /* List of free intervals. */
1421 INTERVAL interval_free_list;
1423 /* Total number of interval blocks now in use. */
1425 int n_interval_blocks;
1428 /* Initialize interval allocation. */
1430 static void
1431 init_intervals ()
1433 interval_block = NULL;
1434 interval_block_index = INTERVAL_BLOCK_SIZE;
1435 interval_free_list = 0;
1436 n_interval_blocks = 0;
1440 /* Return a new interval. */
1442 INTERVAL
1443 make_interval ()
1445 INTERVAL val;
1447 /* eassert (!handling_signal); */
1449 #ifndef SYNC_INPUT
1450 BLOCK_INPUT;
1451 #endif
1453 if (interval_free_list)
1455 val = interval_free_list;
1456 interval_free_list = INTERVAL_PARENT (interval_free_list);
1458 else
1460 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1462 register struct interval_block *newi;
1464 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465 MEM_TYPE_NON_LISP);
1467 newi->next = interval_block;
1468 interval_block = newi;
1469 interval_block_index = 0;
1470 n_interval_blocks++;
1472 val = &interval_block->intervals[interval_block_index++];
1475 #ifndef SYNC_INPUT
1476 UNBLOCK_INPUT;
1477 #endif
1479 consing_since_gc += sizeof (struct interval);
1480 intervals_consed++;
1481 RESET_INTERVAL (val);
1482 val->gcmarkbit = 0;
1483 return val;
1487 /* Mark Lisp objects in interval I. */
1489 static void
1490 mark_interval (i, dummy)
1491 register INTERVAL i;
1492 Lisp_Object dummy;
1494 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1495 i->gcmarkbit = 1;
1496 mark_object (i->plist);
1500 /* Mark the interval tree rooted in TREE. Don't call this directly;
1501 use the macro MARK_INTERVAL_TREE instead. */
1503 static void
1504 mark_interval_tree (tree)
1505 register INTERVAL tree;
1507 /* No need to test if this tree has been marked already; this
1508 function is always called through the MARK_INTERVAL_TREE macro,
1509 which takes care of that. */
1511 traverse_intervals_noorder (tree, mark_interval, Qnil);
1515 /* Mark the interval tree rooted in I. */
1517 #define MARK_INTERVAL_TREE(i) \
1518 do { \
1519 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1520 mark_interval_tree (i); \
1521 } while (0)
1524 #define UNMARK_BALANCE_INTERVALS(i) \
1525 do { \
1526 if (! NULL_INTERVAL_P (i)) \
1527 (i) = balance_intervals (i); \
1528 } while (0)
1531 /* Number support. If NO_UNION_TYPE isn't in effect, we
1532 can't create number objects in macros. */
1533 #ifndef make_number
1534 Lisp_Object
1535 make_number (n)
1536 EMACS_INT n;
1538 Lisp_Object obj;
1539 obj.s.val = n;
1540 obj.s.type = Lisp_Int;
1541 return obj;
1543 #endif
1545 /***********************************************************************
1546 String Allocation
1547 ***********************************************************************/
1549 /* Lisp_Strings are allocated in string_block structures. When a new
1550 string_block is allocated, all the Lisp_Strings it contains are
1551 added to a free-list string_free_list. When a new Lisp_String is
1552 needed, it is taken from that list. During the sweep phase of GC,
1553 string_blocks that are entirely free are freed, except two which
1554 we keep.
1556 String data is allocated from sblock structures. Strings larger
1557 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1560 Sblocks consist internally of sdata structures, one for each
1561 Lisp_String. The sdata structure points to the Lisp_String it
1562 belongs to. The Lisp_String points back to the `u.data' member of
1563 its sdata structure.
1565 When a Lisp_String is freed during GC, it is put back on
1566 string_free_list, and its `data' member and its sdata's `string'
1567 pointer is set to null. The size of the string is recorded in the
1568 `u.nbytes' member of the sdata. So, sdata structures that are no
1569 longer used, can be easily recognized, and it's easy to compact the
1570 sblocks of small strings which we do in compact_small_strings. */
1572 /* Size in bytes of an sblock structure used for small strings. This
1573 is 8192 minus malloc overhead. */
1575 #define SBLOCK_SIZE 8188
1577 /* Strings larger than this are considered large strings. String data
1578 for large strings is allocated from individual sblocks. */
1580 #define LARGE_STRING_BYTES 1024
1582 /* Structure describing string memory sub-allocated from an sblock.
1583 This is where the contents of Lisp strings are stored. */
1585 struct sdata
1587 /* Back-pointer to the string this sdata belongs to. If null, this
1588 structure is free, and the NBYTES member of the union below
1589 contains the string's byte size (the same value that STRING_BYTES
1590 would return if STRING were non-null). If non-null, STRING_BYTES
1591 (STRING) is the size of the data, and DATA contains the string's
1592 contents. */
1593 struct Lisp_String *string;
1595 #ifdef GC_CHECK_STRING_BYTES
1597 EMACS_INT nbytes;
1598 unsigned char data[1];
1600 #define SDATA_NBYTES(S) (S)->nbytes
1601 #define SDATA_DATA(S) (S)->data
1603 #else /* not GC_CHECK_STRING_BYTES */
1605 union
1607 /* When STRING in non-null. */
1608 unsigned char data[1];
1610 /* When STRING is null. */
1611 EMACS_INT nbytes;
1612 } u;
1615 #define SDATA_NBYTES(S) (S)->u.nbytes
1616 #define SDATA_DATA(S) (S)->u.data
1618 #endif /* not GC_CHECK_STRING_BYTES */
1622 /* Structure describing a block of memory which is sub-allocated to
1623 obtain string data memory for strings. Blocks for small strings
1624 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1625 as large as needed. */
1627 struct sblock
1629 /* Next in list. */
1630 struct sblock *next;
1632 /* Pointer to the next free sdata block. This points past the end
1633 of the sblock if there isn't any space left in this block. */
1634 struct sdata *next_free;
1636 /* Start of data. */
1637 struct sdata first_data;
1640 /* Number of Lisp strings in a string_block structure. The 1020 is
1641 1024 minus malloc overhead. */
1643 #define STRING_BLOCK_SIZE \
1644 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1646 /* Structure describing a block from which Lisp_String structures
1647 are allocated. */
1649 struct string_block
1651 /* Place `strings' first, to preserve alignment. */
1652 struct Lisp_String strings[STRING_BLOCK_SIZE];
1653 struct string_block *next;
1656 /* Head and tail of the list of sblock structures holding Lisp string
1657 data. We always allocate from current_sblock. The NEXT pointers
1658 in the sblock structures go from oldest_sblock to current_sblock. */
1660 static struct sblock *oldest_sblock, *current_sblock;
1662 /* List of sblocks for large strings. */
1664 static struct sblock *large_sblocks;
1666 /* List of string_block structures, and how many there are. */
1668 static struct string_block *string_blocks;
1669 static int n_string_blocks;
1671 /* Free-list of Lisp_Strings. */
1673 static struct Lisp_String *string_free_list;
1675 /* Number of live and free Lisp_Strings. */
1677 static int total_strings, total_free_strings;
1679 /* Number of bytes used by live strings. */
1681 static int total_string_size;
1683 /* Given a pointer to a Lisp_String S which is on the free-list
1684 string_free_list, return a pointer to its successor in the
1685 free-list. */
1687 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1689 /* Return a pointer to the sdata structure belonging to Lisp string S.
1690 S must be live, i.e. S->data must not be null. S->data is actually
1691 a pointer to the `u.data' member of its sdata structure; the
1692 structure starts at a constant offset in front of that. */
1694 #ifdef GC_CHECK_STRING_BYTES
1696 #define SDATA_OF_STRING(S) \
1697 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698 - sizeof (EMACS_INT)))
1700 #else /* not GC_CHECK_STRING_BYTES */
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1705 #endif /* not GC_CHECK_STRING_BYTES */
1708 #ifdef GC_CHECK_STRING_OVERRUN
1710 /* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
1712 presence of this cookie during GC. */
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { 0xde, 0xad, 0xbe, 0xef };
1718 #else
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720 #endif
1722 /* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1726 #ifdef GC_CHECK_STRING_BYTES
1728 #define SDATA_SIZE(NBYTES) \
1729 ((sizeof (struct Lisp_String *) \
1730 + (NBYTES) + 1 \
1731 + sizeof (EMACS_INT) \
1732 + sizeof (EMACS_INT) - 1) \
1733 & ~(sizeof (EMACS_INT) - 1))
1735 #else /* not GC_CHECK_STRING_BYTES */
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1743 #endif /* not GC_CHECK_STRING_BYTES */
1745 /* Extra bytes to allocate for each string. */
1747 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1749 /* Initialize string allocation. Called from init_alloc_once. */
1751 void
1752 init_strings ()
1754 total_strings = total_free_strings = total_string_size = 0;
1755 oldest_sblock = current_sblock = large_sblocks = NULL;
1756 string_blocks = NULL;
1757 n_string_blocks = 0;
1758 string_free_list = NULL;
1762 #ifdef GC_CHECK_STRING_BYTES
1764 static int check_string_bytes_count;
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1775 string_bytes (s)
1776 struct Lisp_String *s;
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1792 struct sdata *from, *end, *from_end;
1794 end = b->next_free;
1796 for (from = &b->first_data; from < end; from = from_end)
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1826 if (all_p)
1828 struct sblock *b;
1830 for (b = large_sblocks; b; b = b->next)
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1840 else
1841 check_sblock (current_sblock);
1844 #endif /* GC_CHECK_STRING_BYTES */
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1851 static void
1852 check_string_free_list ()
1854 struct Lisp_String *s;
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1865 #else
1866 #define check_string_free_list()
1867 #endif
1869 /* Return a new Lisp_String. */
1871 static struct Lisp_String *
1872 allocate_string ()
1874 struct Lisp_String *s;
1876 /* eassert (!handling_signal); */
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1886 struct string_block *b;
1887 int i;
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1902 total_free_strings += STRING_BLOCK_SIZE;
1905 check_string_free_list ();
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1930 if (++check_string_bytes_count == 200)
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1935 else
1936 check_string_bytes (0);
1938 #endif /* GC_CHECK_STRING_BYTES */
1940 return s;
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1969 if (nbytes > LARGE_STRING_BYTES)
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2019 else
2020 b = current_sblock;
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2051 consing_since_gc += needed;
2055 /* Sweep and compact strings. */
2057 static void
2058 sweep_strings ()
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2073 next = b->next;
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2077 struct Lisp_String *s = b->strings + i;
2079 if (s->data)
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2093 else
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2119 else
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2137 else
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2145 check_string_free_list ();
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2151 check_string_free_list ();
2155 /* Free dead large strings. */
2157 static void
2158 free_large_strings ()
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2163 for (b = large_sblocks; b; b = next)
2165 next = b->next;
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2171 b->next = live_blocks;
2172 live_blocks = b;
2176 large_sblocks = live_blocks;
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2183 static void
2184 compact_small_strings ()
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2204 for (from = &b->first_data; from < end; from = from_end)
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2268 next = b->next;
2269 lisp_free (b);
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2292 c = XINT (init);
2293 if (SINGLE_BYTE_CHAR_P (c))
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2302 else
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2313 bcopy (str, p, len);
2314 p += len;
2318 *p = 0;
2319 return val;
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2334 CHECK_NATNUM (length);
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2361 return val;
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2446 register Lisp_Object val;
2448 if (nchars < 0)
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2470 return make_string (str, strlen (str));
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2481 Lisp_Object val;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2498 if (nchars < 0)
2499 abort ();
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2510 /***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2514 /* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
2517 any new float cells from the latest float_block. */
2519 #define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2525 #define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2530 #define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2534 #define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2538 #define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2541 #define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2544 struct float_block
2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2552 #define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2555 #define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2558 #define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2561 /* Current float_block. */
2563 struct float_block *float_block;
2565 /* Index of first unused Lisp_Float in the current float_block. */
2567 int float_block_index;
2569 /* Total number of float blocks now in use. */
2571 int n_float_blocks;
2573 /* Free-list of Lisp_Floats. */
2575 struct Lisp_Float *float_free_list;
2578 /* Initialize float allocation. */
2580 void
2581 init_float ()
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2585 float_free_list = 0;
2586 n_float_blocks = 0;
2590 /* Explicitly free a float cell by putting it on the free-list. */
2592 void
2593 free_float (ptr)
2594 struct Lisp_Float *ptr;
2596 ptr->u.chain = float_free_list;
2597 float_free_list = ptr;
2601 /* Return a new float object with value FLOAT_VALUE. */
2603 Lisp_Object
2604 make_float (float_value)
2605 double float_value;
2607 register Lisp_Object val;
2609 /* eassert (!handling_signal); */
2611 #ifndef SYNC_INPUT
2612 BLOCK_INPUT;
2613 #endif
2615 if (float_free_list)
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2622 else
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2626 register struct float_block *new;
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2640 #ifndef SYNC_INPUT
2641 UNBLOCK_INPUT;
2642 #endif
2644 XFLOAT_DATA (val) = float_value;
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672 struct cons_block
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689 /* Current cons_block. */
2691 struct cons_block *cons_block;
2693 /* Index of first unused Lisp_Cons in the current block. */
2695 int cons_block_index;
2697 /* Free-list of Lisp_Cons structures. */
2699 struct Lisp_Cons *cons_free_list;
2701 /* Total number of cons blocks now in use. */
2703 int n_cons_blocks;
2706 /* Initialize cons allocation. */
2708 void
2709 init_cons ()
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2736 register Lisp_Object val;
2738 /* eassert (!handling_signal); */
2740 #ifndef SYNC_INPUT
2741 BLOCK_INPUT;
2742 #endif
2744 if (cons_free_list)
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2751 else
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2768 #ifndef SYNC_INPUT
2769 UNBLOCK_INPUT;
2770 #endif
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2780 /* Get an error now if there's any junk in the cons free list. */
2781 void
2782 check_cons_list ()
2784 #ifdef GC_CHECK_CONS_LIST
2785 struct Lisp_Cons *tail = cons_free_list;
2787 while (tail)
2788 tail = tail->u.chain;
2789 #endif
2792 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2794 Lisp_Object
2795 list1 (arg1)
2796 Lisp_Object arg1;
2798 return Fcons (arg1, Qnil);
2801 Lisp_Object
2802 list2 (arg1, arg2)
2803 Lisp_Object arg1, arg2;
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2809 Lisp_Object
2810 list3 (arg1, arg2, arg3)
2811 Lisp_Object arg1, arg2, arg3;
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2817 Lisp_Object
2818 list4 (arg1, arg2, arg3, arg4)
2819 Lisp_Object arg1, arg2, arg3, arg4;
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2825 Lisp_Object
2826 list5 (arg1, arg2, arg3, arg4, arg5)
2827 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2829 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830 Fcons (arg5, Qnil)))));
2834 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2835 doc: /* Return a newly created list with specified arguments as elements.
2836 Any number of arguments, even zero arguments, are allowed.
2837 usage: (list &rest OBJECTS) */)
2838 (nargs, args)
2839 int nargs;
2840 register Lisp_Object *args;
2842 register Lisp_Object val;
2843 val = Qnil;
2845 while (nargs > 0)
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2850 return val;
2854 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (length, init)
2857 register Lisp_Object length, init;
2859 register Lisp_Object val;
2860 register int size;
2862 CHECK_NATNUM (length);
2863 size = XFASTINT (length);
2865 val = Qnil;
2866 while (size > 0)
2868 val = Fcons (init, val);
2869 --size;
2871 if (size > 0)
2873 val = Fcons (init, val);
2874 --size;
2876 if (size > 0)
2878 val = Fcons (init, val);
2879 --size;
2881 if (size > 0)
2883 val = Fcons (init, val);
2884 --size;
2886 if (size > 0)
2888 val = Fcons (init, val);
2889 --size;
2895 QUIT;
2898 return val;
2903 /***********************************************************************
2904 Vector Allocation
2905 ***********************************************************************/
2907 /* Singly-linked list of all vectors. */
2909 struct Lisp_Vector *all_vectors;
2911 /* Total number of vector-like objects now in use. */
2913 int n_vectors;
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2919 static struct Lisp_Vector *
2920 allocate_vectorlike (len, type)
2921 EMACS_INT len;
2922 enum mem_type type;
2924 struct Lisp_Vector *p;
2925 size_t nbytes;
2927 #ifdef DOUG_LEA_MALLOC
2928 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2929 because mapped region contents are not preserved in
2930 a dumped Emacs. */
2931 BLOCK_INPUT;
2932 mallopt (M_MMAP_MAX, 0);
2933 UNBLOCK_INPUT;
2934 #endif
2936 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2937 /* eassert (!handling_signal); */
2939 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2940 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Back to a reasonable maximum of mmap'ed areas. */
2944 BLOCK_INPUT;
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 UNBLOCK_INPUT;
2947 #endif
2949 consing_since_gc += nbytes;
2950 vector_cells_consed += len;
2952 #ifndef SYNC_INPUT
2953 BLOCK_INPUT;
2954 #endif
2956 p->next = all_vectors;
2957 all_vectors = p;
2959 #ifndef SYNC_INPUT
2960 UNBLOCK_INPUT;
2961 #endif
2963 ++n_vectors;
2964 return p;
2968 /* Allocate a vector with NSLOTS slots. */
2970 struct Lisp_Vector *
2971 allocate_vector (nslots)
2972 EMACS_INT nslots;
2974 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975 v->size = nslots;
2976 return v;
2980 /* Allocate other vector-like structures. */
2982 struct Lisp_Hash_Table *
2983 allocate_hash_table ()
2985 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987 EMACS_INT i;
2989 v->size = len;
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = Qnil;
2993 return (struct Lisp_Hash_Table *) v;
2997 struct window *
2998 allocate_window ()
3000 EMACS_INT len = VECSIZE (struct window);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002 EMACS_INT i;
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
3008 return (struct window *) v;
3012 struct frame *
3013 allocate_frame ()
3015 EMACS_INT len = VECSIZE (struct frame);
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017 EMACS_INT i;
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = make_number (0);
3021 v->size = len;
3022 return (struct frame *) v;
3026 struct Lisp_Process *
3027 allocate_process ()
3029 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3030 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031 /* Size if we only count the actual Lisp_Object fields (which need to be
3032 traced by the GC). */
3033 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3035 EMACS_INT i;
3037 for (i = 0; i < lisplen; ++i)
3038 v->contents[i] = Qnil;
3039 v->size = lisplen;
3041 return (struct Lisp_Process *) v;
3045 struct Lisp_Vector *
3046 allocate_other_vector (len)
3047 EMACS_INT len;
3049 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050 EMACS_INT i;
3052 for (i = 0; i < len; ++i)
3053 v->contents[i] = Qnil;
3054 v->size = len;
3056 return v;
3060 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3061 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3062 See also the function `vector'. */)
3063 (length, init)
3064 register Lisp_Object length, init;
3066 Lisp_Object vector;
3067 register EMACS_INT sizei;
3068 register int index;
3069 register struct Lisp_Vector *p;
3071 CHECK_NATNUM (length);
3072 sizei = XFASTINT (length);
3074 p = allocate_vector (sizei);
3075 for (index = 0; index < sizei; index++)
3076 p->contents[index] = init;
3078 XSETVECTOR (vector, p);
3079 return vector;
3083 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3084 doc: /* Return a newly created char-table, with purpose PURPOSE.
3085 Each element is initialized to INIT, which defaults to nil.
3086 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3087 The property's value should be an integer between 0 and 10. */)
3088 (purpose, init)
3089 register Lisp_Object purpose, init;
3091 Lisp_Object vector;
3092 Lisp_Object n;
3093 CHECK_SYMBOL (purpose);
3094 n = Fget (purpose, Qchar_table_extra_slots);
3095 CHECK_NUMBER (n);
3096 if (XINT (n) < 0 || XINT (n) > 10)
3097 args_out_of_range (n, Qnil);
3098 /* Add 2 to the size for the defalt and parent slots. */
3099 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3100 init);
3101 XCHAR_TABLE (vector)->top = Qt;
3102 XCHAR_TABLE (vector)->parent = Qnil;
3103 XCHAR_TABLE (vector)->purpose = purpose;
3104 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3105 return vector;
3109 /* Return a newly created sub char table with slots initialized by INIT.
3110 Since a sub char table does not appear as a top level Emacs Lisp
3111 object, we don't need a Lisp interface to make it. */
3113 Lisp_Object
3114 make_sub_char_table (init)
3115 Lisp_Object init;
3117 Lisp_Object vector
3118 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3119 XCHAR_TABLE (vector)->top = Qnil;
3120 XCHAR_TABLE (vector)->defalt = Qnil;
3121 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3122 return vector;
3126 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3127 doc: /* Return a newly created vector with specified arguments as elements.
3128 Any number of arguments, even zero arguments, are allowed.
3129 usage: (vector &rest OBJECTS) */)
3130 (nargs, args)
3131 register int nargs;
3132 Lisp_Object *args;
3134 register Lisp_Object len, val;
3135 register int index;
3136 register struct Lisp_Vector *p;
3138 XSETFASTINT (len, nargs);
3139 val = Fmake_vector (len, Qnil);
3140 p = XVECTOR (val);
3141 for (index = 0; index < nargs; index++)
3142 p->contents[index] = args[index];
3143 return val;
3147 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3148 doc: /* Create a byte-code object with specified arguments as elements.
3149 The arguments should be the arglist, bytecode-string, constant vector,
3150 stack size, (optional) doc string, and (optional) interactive spec.
3151 The first four arguments are required; at most six have any
3152 significance.
3153 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3154 (nargs, args)
3155 register int nargs;
3156 Lisp_Object *args;
3158 register Lisp_Object len, val;
3159 register int index;
3160 register struct Lisp_Vector *p;
3162 XSETFASTINT (len, nargs);
3163 if (!NILP (Vpurify_flag))
3164 val = make_pure_vector ((EMACS_INT) nargs);
3165 else
3166 val = Fmake_vector (len, Qnil);
3168 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3169 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3170 earlier because they produced a raw 8-bit string for byte-code
3171 and now such a byte-code string is loaded as multibyte while
3172 raw 8-bit characters converted to multibyte form. Thus, now we
3173 must convert them back to the original unibyte form. */
3174 args[1] = Fstring_as_unibyte (args[1]);
3176 p = XVECTOR (val);
3177 for (index = 0; index < nargs; index++)
3179 if (!NILP (Vpurify_flag))
3180 args[index] = Fpurecopy (args[index]);
3181 p->contents[index] = args[index];
3183 XSETCOMPILED (val, p);
3184 return val;
3189 /***********************************************************************
3190 Symbol Allocation
3191 ***********************************************************************/
3193 /* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3195 own overhead. */
3197 #define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3200 struct symbol_block
3202 /* Place `symbols' first, to preserve alignment. */
3203 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3204 struct symbol_block *next;
3207 /* Current symbol block and index of first unused Lisp_Symbol
3208 structure in it. */
3210 struct symbol_block *symbol_block;
3211 int symbol_block_index;
3213 /* List of free symbols. */
3215 struct Lisp_Symbol *symbol_free_list;
3217 /* Total number of symbol blocks now in use. */
3219 int n_symbol_blocks;
3222 /* Initialize symbol allocation. */
3224 void
3225 init_symbol ()
3227 symbol_block = NULL;
3228 symbol_block_index = SYMBOL_BLOCK_SIZE;
3229 symbol_free_list = 0;
3230 n_symbol_blocks = 0;
3234 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3235 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3236 Its value and function definition are void, and its property list is nil. */)
3237 (name)
3238 Lisp_Object name;
3240 register Lisp_Object val;
3241 register struct Lisp_Symbol *p;
3243 CHECK_STRING (name);
3245 /* eassert (!handling_signal); */
3247 #ifndef SYNC_INPUT
3248 BLOCK_INPUT;
3249 #endif
3251 if (symbol_free_list)
3253 XSETSYMBOL (val, symbol_free_list);
3254 symbol_free_list = symbol_free_list->next;
3256 else
3258 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3260 struct symbol_block *new;
3261 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3262 MEM_TYPE_SYMBOL);
3263 new->next = symbol_block;
3264 symbol_block = new;
3265 symbol_block_index = 0;
3266 n_symbol_blocks++;
3268 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3269 symbol_block_index++;
3272 #ifndef SYNC_INPUT
3273 UNBLOCK_INPUT;
3274 #endif
3276 p = XSYMBOL (val);
3277 p->xname = name;
3278 p->plist = Qnil;
3279 p->value = Qunbound;
3280 p->function = Qunbound;
3281 p->next = NULL;
3282 p->gcmarkbit = 0;
3283 p->interned = SYMBOL_UNINTERNED;
3284 p->constant = 0;
3285 p->indirect_variable = 0;
3286 consing_since_gc += sizeof (struct Lisp_Symbol);
3287 symbols_consed++;
3288 return val;
3293 /***********************************************************************
3294 Marker (Misc) Allocation
3295 ***********************************************************************/
3297 /* Allocation of markers and other objects that share that structure.
3298 Works like allocation of conses. */
3300 #define MARKER_BLOCK_SIZE \
3301 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3303 struct marker_block
3305 /* Place `markers' first, to preserve alignment. */
3306 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3307 struct marker_block *next;
3310 struct marker_block *marker_block;
3311 int marker_block_index;
3313 union Lisp_Misc *marker_free_list;
3315 /* Total number of marker blocks now in use. */
3317 int n_marker_blocks;
3319 void
3320 init_marker ()
3322 marker_block = NULL;
3323 marker_block_index = MARKER_BLOCK_SIZE;
3324 marker_free_list = 0;
3325 n_marker_blocks = 0;
3328 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3330 Lisp_Object
3331 allocate_misc ()
3333 Lisp_Object val;
3335 /* eassert (!handling_signal); */
3337 #ifndef SYNC_INPUT
3338 BLOCK_INPUT;
3339 #endif
3341 if (marker_free_list)
3343 XSETMISC (val, marker_free_list);
3344 marker_free_list = marker_free_list->u_free.chain;
3346 else
3348 if (marker_block_index == MARKER_BLOCK_SIZE)
3350 struct marker_block *new;
3351 new = (struct marker_block *) lisp_malloc (sizeof *new,
3352 MEM_TYPE_MISC);
3353 new->next = marker_block;
3354 marker_block = new;
3355 marker_block_index = 0;
3356 n_marker_blocks++;
3357 total_free_markers += MARKER_BLOCK_SIZE;
3359 XSETMISC (val, &marker_block->markers[marker_block_index]);
3360 marker_block_index++;
3363 #ifndef SYNC_INPUT
3364 UNBLOCK_INPUT;
3365 #endif
3367 --total_free_markers;
3368 consing_since_gc += sizeof (union Lisp_Misc);
3369 misc_objects_consed++;
3370 XMARKER (val)->gcmarkbit = 0;
3371 return val;
3374 /* Free a Lisp_Misc object */
3376 void
3377 free_misc (misc)
3378 Lisp_Object misc;
3380 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3381 XMISC (misc)->u_free.chain = marker_free_list;
3382 marker_free_list = XMISC (misc);
3384 total_free_markers++;
3387 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3388 INTEGER. This is used to package C values to call record_unwind_protect.
3389 The unwind function can get the C values back using XSAVE_VALUE. */
3391 Lisp_Object
3392 make_save_value (pointer, integer)
3393 void *pointer;
3394 int integer;
3396 register Lisp_Object val;
3397 register struct Lisp_Save_Value *p;
3399 val = allocate_misc ();
3400 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3401 p = XSAVE_VALUE (val);
3402 p->pointer = pointer;
3403 p->integer = integer;
3404 p->dogc = 0;
3405 return val;
3408 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3409 doc: /* Return a newly allocated marker which does not point at any place. */)
3412 register Lisp_Object val;
3413 register struct Lisp_Marker *p;
3415 val = allocate_misc ();
3416 XMISCTYPE (val) = Lisp_Misc_Marker;
3417 p = XMARKER (val);
3418 p->buffer = 0;
3419 p->bytepos = 0;
3420 p->charpos = 0;
3421 p->next = NULL;
3422 p->insertion_type = 0;
3423 return val;
3426 /* Put MARKER back on the free list after using it temporarily. */
3428 void
3429 free_marker (marker)
3430 Lisp_Object marker;
3432 unchain_marker (XMARKER (marker));
3433 free_misc (marker);
3437 /* Return a newly created vector or string with specified arguments as
3438 elements. If all the arguments are characters that can fit
3439 in a string of events, make a string; otherwise, make a vector.
3441 Any number of arguments, even zero arguments, are allowed. */
3443 Lisp_Object
3444 make_event_array (nargs, args)
3445 register int nargs;
3446 Lisp_Object *args;
3448 int i;
3450 for (i = 0; i < nargs; i++)
3451 /* The things that fit in a string
3452 are characters that are in 0...127,
3453 after discarding the meta bit and all the bits above it. */
3454 if (!INTEGERP (args[i])
3455 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3456 return Fvector (nargs, args);
3458 /* Since the loop exited, we know that all the things in it are
3459 characters, so we can make a string. */
3461 Lisp_Object result;
3463 result = Fmake_string (make_number (nargs), make_number (0));
3464 for (i = 0; i < nargs; i++)
3466 SSET (result, i, XINT (args[i]));
3467 /* Move the meta bit to the right place for a string char. */
3468 if (XINT (args[i]) & CHAR_META)
3469 SSET (result, i, SREF (result, i) | 0x80);
3472 return result;
3478 /************************************************************************
3479 Memory Full Handling
3480 ************************************************************************/
3483 /* Called if malloc returns zero. */
3485 void
3486 memory_full ()
3488 int i;
3490 Vmemory_full = Qt;
3492 memory_full_cons_threshold = sizeof (struct cons_block);
3494 /* The first time we get here, free the spare memory. */
3495 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3496 if (spare_memory[i])
3498 if (i == 0)
3499 free (spare_memory[i]);
3500 else if (i >= 1 && i <= 4)
3501 lisp_align_free (spare_memory[i]);
3502 else
3503 lisp_free (spare_memory[i]);
3504 spare_memory[i] = 0;
3507 /* Record the space now used. When it decreases substantially,
3508 we can refill the memory reserve. */
3509 #ifndef SYSTEM_MALLOC
3510 bytes_used_when_full = BYTES_USED;
3511 #endif
3513 /* This used to call error, but if we've run out of memory, we could
3514 get infinite recursion trying to build the string. */
3515 xsignal (Qnil, Vmemory_signal_data);
3518 /* If we released our reserve (due to running out of memory),
3519 and we have a fair amount free once again,
3520 try to set aside another reserve in case we run out once more.
3522 This is called when a relocatable block is freed in ralloc.c,
3523 and also directly from this file, in case we're not using ralloc.c. */
3525 void
3526 refill_memory_reserve ()
3528 #ifndef SYSTEM_MALLOC
3529 if (spare_memory[0] == 0)
3530 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3531 if (spare_memory[1] == 0)
3532 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3533 MEM_TYPE_CONS);
3534 if (spare_memory[2] == 0)
3535 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3536 MEM_TYPE_CONS);
3537 if (spare_memory[3] == 0)
3538 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3539 MEM_TYPE_CONS);
3540 if (spare_memory[4] == 0)
3541 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3542 MEM_TYPE_CONS);
3543 if (spare_memory[5] == 0)
3544 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3545 MEM_TYPE_STRING);
3546 if (spare_memory[6] == 0)
3547 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3548 MEM_TYPE_STRING);
3549 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3550 Vmemory_full = Qnil;
3551 #endif
3554 /************************************************************************
3555 C Stack Marking
3556 ************************************************************************/
3558 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3560 /* Conservative C stack marking requires a method to identify possibly
3561 live Lisp objects given a pointer value. We do this by keeping
3562 track of blocks of Lisp data that are allocated in a red-black tree
3563 (see also the comment of mem_node which is the type of nodes in
3564 that tree). Function lisp_malloc adds information for an allocated
3565 block to the red-black tree with calls to mem_insert, and function
3566 lisp_free removes it with mem_delete. Functions live_string_p etc
3567 call mem_find to lookup information about a given pointer in the
3568 tree, and use that to determine if the pointer points to a Lisp
3569 object or not. */
3571 /* Initialize this part of alloc.c. */
3573 static void
3574 mem_init ()
3576 mem_z.left = mem_z.right = MEM_NIL;
3577 mem_z.parent = NULL;
3578 mem_z.color = MEM_BLACK;
3579 mem_z.start = mem_z.end = NULL;
3580 mem_root = MEM_NIL;
3584 /* Value is a pointer to the mem_node containing START. Value is
3585 MEM_NIL if there is no node in the tree containing START. */
3587 static INLINE struct mem_node *
3588 mem_find (start)
3589 void *start;
3591 struct mem_node *p;
3593 if (start < min_heap_address || start > max_heap_address)
3594 return MEM_NIL;
3596 /* Make the search always successful to speed up the loop below. */
3597 mem_z.start = start;
3598 mem_z.end = (char *) start + 1;
3600 p = mem_root;
3601 while (start < p->start || start >= p->end)
3602 p = start < p->start ? p->left : p->right;
3603 return p;
3607 /* Insert a new node into the tree for a block of memory with start
3608 address START, end address END, and type TYPE. Value is a
3609 pointer to the node that was inserted. */
3611 static struct mem_node *
3612 mem_insert (start, end, type)
3613 void *start, *end;
3614 enum mem_type type;
3616 struct mem_node *c, *parent, *x;
3618 if (start < min_heap_address)
3619 min_heap_address = start;
3620 if (end > max_heap_address)
3621 max_heap_address = end;
3623 /* See where in the tree a node for START belongs. In this
3624 particular application, it shouldn't happen that a node is already
3625 present. For debugging purposes, let's check that. */
3626 c = mem_root;
3627 parent = NULL;
3629 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3631 while (c != MEM_NIL)
3633 if (start >= c->start && start < c->end)
3634 abort ();
3635 parent = c;
3636 c = start < c->start ? c->left : c->right;
3639 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3641 while (c != MEM_NIL)
3643 parent = c;
3644 c = start < c->start ? c->left : c->right;
3647 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3649 /* Create a new node. */
3650 #ifdef GC_MALLOC_CHECK
3651 x = (struct mem_node *) _malloc_internal (sizeof *x);
3652 if (x == NULL)
3653 abort ();
3654 #else
3655 x = (struct mem_node *) xmalloc (sizeof *x);
3656 #endif
3657 x->start = start;
3658 x->end = end;
3659 x->type = type;
3660 x->parent = parent;
3661 x->left = x->right = MEM_NIL;
3662 x->color = MEM_RED;
3664 /* Insert it as child of PARENT or install it as root. */
3665 if (parent)
3667 if (start < parent->start)
3668 parent->left = x;
3669 else
3670 parent->right = x;
3672 else
3673 mem_root = x;
3675 /* Re-establish red-black tree properties. */
3676 mem_insert_fixup (x);
3678 return x;
3682 /* Re-establish the red-black properties of the tree, and thereby
3683 balance the tree, after node X has been inserted; X is always red. */
3685 static void
3686 mem_insert_fixup (x)
3687 struct mem_node *x;
3689 while (x != mem_root && x->parent->color == MEM_RED)
3691 /* X is red and its parent is red. This is a violation of
3692 red-black tree property #3. */
3694 if (x->parent == x->parent->parent->left)
3696 /* We're on the left side of our grandparent, and Y is our
3697 "uncle". */
3698 struct mem_node *y = x->parent->parent->right;
3700 if (y->color == MEM_RED)
3702 /* Uncle and parent are red but should be black because
3703 X is red. Change the colors accordingly and proceed
3704 with the grandparent. */
3705 x->parent->color = MEM_BLACK;
3706 y->color = MEM_BLACK;
3707 x->parent->parent->color = MEM_RED;
3708 x = x->parent->parent;
3710 else
3712 /* Parent and uncle have different colors; parent is
3713 red, uncle is black. */
3714 if (x == x->parent->right)
3716 x = x->parent;
3717 mem_rotate_left (x);
3720 x->parent->color = MEM_BLACK;
3721 x->parent->parent->color = MEM_RED;
3722 mem_rotate_right (x->parent->parent);
3725 else
3727 /* This is the symmetrical case of above. */
3728 struct mem_node *y = x->parent->parent->left;
3730 if (y->color == MEM_RED)
3732 x->parent->color = MEM_BLACK;
3733 y->color = MEM_BLACK;
3734 x->parent->parent->color = MEM_RED;
3735 x = x->parent->parent;
3737 else
3739 if (x == x->parent->left)
3741 x = x->parent;
3742 mem_rotate_right (x);
3745 x->parent->color = MEM_BLACK;
3746 x->parent->parent->color = MEM_RED;
3747 mem_rotate_left (x->parent->parent);
3752 /* The root may have been changed to red due to the algorithm. Set
3753 it to black so that property #5 is satisfied. */
3754 mem_root->color = MEM_BLACK;
3758 /* (x) (y)
3759 / \ / \
3760 a (y) ===> (x) c
3761 / \ / \
3762 b c a b */
3764 static void
3765 mem_rotate_left (x)
3766 struct mem_node *x;
3768 struct mem_node *y;
3770 /* Turn y's left sub-tree into x's right sub-tree. */
3771 y = x->right;
3772 x->right = y->left;
3773 if (y->left != MEM_NIL)
3774 y->left->parent = x;
3776 /* Y's parent was x's parent. */
3777 if (y != MEM_NIL)
3778 y->parent = x->parent;
3780 /* Get the parent to point to y instead of x. */
3781 if (x->parent)
3783 if (x == x->parent->left)
3784 x->parent->left = y;
3785 else
3786 x->parent->right = y;
3788 else
3789 mem_root = y;
3791 /* Put x on y's left. */
3792 y->left = x;
3793 if (x != MEM_NIL)
3794 x->parent = y;
3798 /* (x) (Y)
3799 / \ / \
3800 (y) c ===> a (x)
3801 / \ / \
3802 a b b c */
3804 static void
3805 mem_rotate_right (x)
3806 struct mem_node *x;
3808 struct mem_node *y = x->left;
3810 x->left = y->right;
3811 if (y->right != MEM_NIL)
3812 y->right->parent = x;
3814 if (y != MEM_NIL)
3815 y->parent = x->parent;
3816 if (x->parent)
3818 if (x == x->parent->right)
3819 x->parent->right = y;
3820 else
3821 x->parent->left = y;
3823 else
3824 mem_root = y;
3826 y->right = x;
3827 if (x != MEM_NIL)
3828 x->parent = y;
3832 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3834 static void
3835 mem_delete (z)
3836 struct mem_node *z;
3838 struct mem_node *x, *y;
3840 if (!z || z == MEM_NIL)
3841 return;
3843 if (z->left == MEM_NIL || z->right == MEM_NIL)
3844 y = z;
3845 else
3847 y = z->right;
3848 while (y->left != MEM_NIL)
3849 y = y->left;
3852 if (y->left != MEM_NIL)
3853 x = y->left;
3854 else
3855 x = y->right;
3857 x->parent = y->parent;
3858 if (y->parent)
3860 if (y == y->parent->left)
3861 y->parent->left = x;
3862 else
3863 y->parent->right = x;
3865 else
3866 mem_root = x;
3868 if (y != z)
3870 z->start = y->start;
3871 z->end = y->end;
3872 z->type = y->type;
3875 if (y->color == MEM_BLACK)
3876 mem_delete_fixup (x);
3878 #ifdef GC_MALLOC_CHECK
3879 _free_internal (y);
3880 #else
3881 xfree (y);
3882 #endif
3886 /* Re-establish the red-black properties of the tree, after a
3887 deletion. */
3889 static void
3890 mem_delete_fixup (x)
3891 struct mem_node *x;
3893 while (x != mem_root && x->color == MEM_BLACK)
3895 if (x == x->parent->left)
3897 struct mem_node *w = x->parent->right;
3899 if (w->color == MEM_RED)
3901 w->color = MEM_BLACK;
3902 x->parent->color = MEM_RED;
3903 mem_rotate_left (x->parent);
3904 w = x->parent->right;
3907 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3909 w->color = MEM_RED;
3910 x = x->parent;
3912 else
3914 if (w->right->color == MEM_BLACK)
3916 w->left->color = MEM_BLACK;
3917 w->color = MEM_RED;
3918 mem_rotate_right (w);
3919 w = x->parent->right;
3921 w->color = x->parent->color;
3922 x->parent->color = MEM_BLACK;
3923 w->right->color = MEM_BLACK;
3924 mem_rotate_left (x->parent);
3925 x = mem_root;
3928 else
3930 struct mem_node *w = x->parent->left;
3932 if (w->color == MEM_RED)
3934 w->color = MEM_BLACK;
3935 x->parent->color = MEM_RED;
3936 mem_rotate_right (x->parent);
3937 w = x->parent->left;
3940 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3942 w->color = MEM_RED;
3943 x = x->parent;
3945 else
3947 if (w->left->color == MEM_BLACK)
3949 w->right->color = MEM_BLACK;
3950 w->color = MEM_RED;
3951 mem_rotate_left (w);
3952 w = x->parent->left;
3955 w->color = x->parent->color;
3956 x->parent->color = MEM_BLACK;
3957 w->left->color = MEM_BLACK;
3958 mem_rotate_right (x->parent);
3959 x = mem_root;
3964 x->color = MEM_BLACK;
3968 /* Value is non-zero if P is a pointer to a live Lisp string on
3969 the heap. M is a pointer to the mem_block for P. */
3971 static INLINE int
3972 live_string_p (m, p)
3973 struct mem_node *m;
3974 void *p;
3976 if (m->type == MEM_TYPE_STRING)
3978 struct string_block *b = (struct string_block *) m->start;
3979 int offset = (char *) p - (char *) &b->strings[0];
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986 && ((struct Lisp_String *) p)->data != NULL);
3988 else
3989 return 0;
3993 /* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3996 static INLINE int
3997 live_cons_p (m, p)
3998 struct mem_node *m;
3999 void *p;
4001 if (m->type == MEM_TYPE_CONS)
4003 struct cons_block *b = (struct cons_block *) m->start;
4004 int offset = (char *) p - (char *) &b->conses[0];
4006 /* P must point to the start of a Lisp_Cons, not be
4007 one of the unused cells in the current cons block,
4008 and not be on the free-list. */
4009 return (offset >= 0
4010 && offset % sizeof b->conses[0] == 0
4011 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4012 && (b != cons_block
4013 || offset / sizeof b->conses[0] < cons_block_index)
4014 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4016 else
4017 return 0;
4021 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4022 the heap. M is a pointer to the mem_block for P. */
4024 static INLINE int
4025 live_symbol_p (m, p)
4026 struct mem_node *m;
4027 void *p;
4029 if (m->type == MEM_TYPE_SYMBOL)
4031 struct symbol_block *b = (struct symbol_block *) m->start;
4032 int offset = (char *) p - (char *) &b->symbols[0];
4034 /* P must point to the start of a Lisp_Symbol, not be
4035 one of the unused cells in the current symbol block,
4036 and not be on the free-list. */
4037 return (offset >= 0
4038 && offset % sizeof b->symbols[0] == 0
4039 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4040 && (b != symbol_block
4041 || offset / sizeof b->symbols[0] < symbol_block_index)
4042 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4044 else
4045 return 0;
4049 /* Value is non-zero if P is a pointer to a live Lisp float on
4050 the heap. M is a pointer to the mem_block for P. */
4052 static INLINE int
4053 live_float_p (m, p)
4054 struct mem_node *m;
4055 void *p;
4057 if (m->type == MEM_TYPE_FLOAT)
4059 struct float_block *b = (struct float_block *) m->start;
4060 int offset = (char *) p - (char *) &b->floats[0];
4062 /* P must point to the start of a Lisp_Float and not be
4063 one of the unused cells in the current float block. */
4064 return (offset >= 0
4065 && offset % sizeof b->floats[0] == 0
4066 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4067 && (b != float_block
4068 || offset / sizeof b->floats[0] < float_block_index));
4070 else
4071 return 0;
4075 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4076 the heap. M is a pointer to the mem_block for P. */
4078 static INLINE int
4079 live_misc_p (m, p)
4080 struct mem_node *m;
4081 void *p;
4083 if (m->type == MEM_TYPE_MISC)
4085 struct marker_block *b = (struct marker_block *) m->start;
4086 int offset = (char *) p - (char *) &b->markers[0];
4088 /* P must point to the start of a Lisp_Misc, not be
4089 one of the unused cells in the current misc block,
4090 and not be on the free-list. */
4091 return (offset >= 0
4092 && offset % sizeof b->markers[0] == 0
4093 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4094 && (b != marker_block
4095 || offset / sizeof b->markers[0] < marker_block_index)
4096 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4098 else
4099 return 0;
4103 /* Value is non-zero if P is a pointer to a live vector-like object.
4104 M is a pointer to the mem_block for P. */
4106 static INLINE int
4107 live_vector_p (m, p)
4108 struct mem_node *m;
4109 void *p;
4111 return (p == m->start
4112 && m->type >= MEM_TYPE_VECTOR
4113 && m->type <= MEM_TYPE_WINDOW);
4117 /* Value is non-zero if P is a pointer to a live buffer. M is a
4118 pointer to the mem_block for P. */
4120 static INLINE int
4121 live_buffer_p (m, p)
4122 struct mem_node *m;
4123 void *p;
4125 /* P must point to the start of the block, and the buffer
4126 must not have been killed. */
4127 return (m->type == MEM_TYPE_BUFFER
4128 && p == m->start
4129 && !NILP (((struct buffer *) p)->name));
4132 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4134 #if GC_MARK_STACK
4136 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4138 /* Array of objects that are kept alive because the C stack contains
4139 a pattern that looks like a reference to them . */
4141 #define MAX_ZOMBIES 10
4142 static Lisp_Object zombies[MAX_ZOMBIES];
4144 /* Number of zombie objects. */
4146 static int nzombies;
4148 /* Number of garbage collections. */
4150 static int ngcs;
4152 /* Average percentage of zombies per collection. */
4154 static double avg_zombies;
4156 /* Max. number of live and zombie objects. */
4158 static int max_live, max_zombies;
4160 /* Average number of live objects per GC. */
4162 static double avg_live;
4164 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4165 doc: /* Show information about live and zombie objects. */)
4168 Lisp_Object args[8], zombie_list = Qnil;
4169 int i;
4170 for (i = 0; i < nzombies; i++)
4171 zombie_list = Fcons (zombies[i], zombie_list);
4172 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4173 args[1] = make_number (ngcs);
4174 args[2] = make_float (avg_live);
4175 args[3] = make_float (avg_zombies);
4176 args[4] = make_float (avg_zombies / avg_live / 100);
4177 args[5] = make_number (max_live);
4178 args[6] = make_number (max_zombies);
4179 args[7] = zombie_list;
4180 return Fmessage (8, args);
4183 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4186 /* Mark OBJ if we can prove it's a Lisp_Object. */
4188 static INLINE void
4189 mark_maybe_object (obj)
4190 Lisp_Object obj;
4192 void *po = (void *) XPNTR (obj);
4193 struct mem_node *m = mem_find (po);
4195 if (m != MEM_NIL)
4197 int mark_p = 0;
4199 switch (XGCTYPE (obj))
4201 case Lisp_String:
4202 mark_p = (live_string_p (m, po)
4203 && !STRING_MARKED_P ((struct Lisp_String *) po));
4204 break;
4206 case Lisp_Cons:
4207 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4208 break;
4210 case Lisp_Symbol:
4211 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4212 break;
4214 case Lisp_Float:
4215 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4216 break;
4218 case Lisp_Vectorlike:
4219 /* Note: can't check GC_BUFFERP before we know it's a
4220 buffer because checking that dereferences the pointer
4221 PO which might point anywhere. */
4222 if (live_vector_p (m, po))
4223 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4224 else if (live_buffer_p (m, po))
4225 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4226 break;
4228 case Lisp_Misc:
4229 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4230 break;
4232 case Lisp_Int:
4233 case Lisp_Type_Limit:
4234 break;
4237 if (mark_p)
4239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240 if (nzombies < MAX_ZOMBIES)
4241 zombies[nzombies] = obj;
4242 ++nzombies;
4243 #endif
4244 mark_object (obj);
4250 /* If P points to Lisp data, mark that as live if it isn't already
4251 marked. */
4253 static INLINE void
4254 mark_maybe_pointer (p)
4255 void *p;
4257 struct mem_node *m;
4259 /* Quickly rule out some values which can't point to Lisp data. We
4260 assume that Lisp data is aligned on even addresses. */
4261 if ((EMACS_INT) p & 1)
4262 return;
4264 m = mem_find (p);
4265 if (m != MEM_NIL)
4267 Lisp_Object obj = Qnil;
4269 switch (m->type)
4271 case MEM_TYPE_NON_LISP:
4272 /* Nothing to do; not a pointer to Lisp memory. */
4273 break;
4275 case MEM_TYPE_BUFFER:
4276 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4277 XSETVECTOR (obj, p);
4278 break;
4280 case MEM_TYPE_CONS:
4281 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4282 XSETCONS (obj, p);
4283 break;
4285 case MEM_TYPE_STRING:
4286 if (live_string_p (m, p)
4287 && !STRING_MARKED_P ((struct Lisp_String *) p))
4288 XSETSTRING (obj, p);
4289 break;
4291 case MEM_TYPE_MISC:
4292 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4293 XSETMISC (obj, p);
4294 break;
4296 case MEM_TYPE_SYMBOL:
4297 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4298 XSETSYMBOL (obj, p);
4299 break;
4301 case MEM_TYPE_FLOAT:
4302 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4303 XSETFLOAT (obj, p);
4304 break;
4306 case MEM_TYPE_VECTOR:
4307 case MEM_TYPE_PROCESS:
4308 case MEM_TYPE_HASH_TABLE:
4309 case MEM_TYPE_FRAME:
4310 case MEM_TYPE_WINDOW:
4311 if (live_vector_p (m, p))
4313 Lisp_Object tem;
4314 XSETVECTOR (tem, p);
4315 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4316 obj = tem;
4318 break;
4320 default:
4321 abort ();
4324 if (!GC_NILP (obj))
4325 mark_object (obj);
4330 /* Mark Lisp objects referenced from the address range START..END. */
4332 static void
4333 mark_memory (start, end)
4334 void *start, *end;
4336 Lisp_Object *p;
4337 void **pp;
4339 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4340 nzombies = 0;
4341 #endif
4343 /* Make START the pointer to the start of the memory region,
4344 if it isn't already. */
4345 if (end < start)
4347 void *tem = start;
4348 start = end;
4349 end = tem;
4352 /* Mark Lisp_Objects. */
4353 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4354 mark_maybe_object (*p);
4356 /* Mark Lisp data pointed to. This is necessary because, in some
4357 situations, the C compiler optimizes Lisp objects away, so that
4358 only a pointer to them remains. Example:
4360 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4363 Lisp_Object obj = build_string ("test");
4364 struct Lisp_String *s = XSTRING (obj);
4365 Fgarbage_collect ();
4366 fprintf (stderr, "test `%s'\n", s->data);
4367 return Qnil;
4370 Here, `obj' isn't really used, and the compiler optimizes it
4371 away. The only reference to the life string is through the
4372 pointer `s'. */
4374 for (pp = (void **) start; (void *) pp < end; ++pp)
4375 mark_maybe_pointer (*pp);
4378 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4379 the GCC system configuration. In gcc 3.2, the only systems for
4380 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4381 by others?) and ns32k-pc532-min. */
4383 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4385 static int setjmp_tested_p, longjmps_done;
4387 #define SETJMP_WILL_LIKELY_WORK "\
4389 Emacs garbage collector has been changed to use conservative stack\n\
4390 marking. Emacs has determined that the method it uses to do the\n\
4391 marking will likely work on your system, but this isn't sure.\n\
4393 If you are a system-programmer, or can get the help of a local wizard\n\
4394 who is, please take a look at the function mark_stack in alloc.c, and\n\
4395 verify that the methods used are appropriate for your system.\n\
4397 Please mail the result to <emacs-devel@gnu.org>.\n\
4400 #define SETJMP_WILL_NOT_WORK "\
4402 Emacs garbage collector has been changed to use conservative stack\n\
4403 marking. Emacs has determined that the default method it uses to do the\n\
4404 marking will not work on your system. We will need a system-dependent\n\
4405 solution for your system.\n\
4407 Please take a look at the function mark_stack in alloc.c, and\n\
4408 try to find a way to make it work on your system.\n\
4410 Note that you may get false negatives, depending on the compiler.\n\
4411 In particular, you need to use -O with GCC for this test.\n\
4413 Please mail the result to <emacs-devel@gnu.org>.\n\
4417 /* Perform a quick check if it looks like setjmp saves registers in a
4418 jmp_buf. Print a message to stderr saying so. When this test
4419 succeeds, this is _not_ a proof that setjmp is sufficient for
4420 conservative stack marking. Only the sources or a disassembly
4421 can prove that. */
4423 static void
4424 test_setjmp ()
4426 char buf[10];
4427 register int x;
4428 jmp_buf jbuf;
4429 int result = 0;
4431 /* Arrange for X to be put in a register. */
4432 sprintf (buf, "1");
4433 x = strlen (buf);
4434 x = 2 * x - 1;
4436 setjmp (jbuf);
4437 if (longjmps_done == 1)
4439 /* Came here after the longjmp at the end of the function.
4441 If x == 1, the longjmp has restored the register to its
4442 value before the setjmp, and we can hope that setjmp
4443 saves all such registers in the jmp_buf, although that
4444 isn't sure.
4446 For other values of X, either something really strange is
4447 taking place, or the setjmp just didn't save the register. */
4449 if (x == 1)
4450 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4451 else
4453 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4454 exit (1);
4458 ++longjmps_done;
4459 x = 2;
4460 if (longjmps_done == 1)
4461 longjmp (jbuf, 1);
4464 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4467 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4469 /* Abort if anything GCPRO'd doesn't survive the GC. */
4471 static void
4472 check_gcpros ()
4474 struct gcpro *p;
4475 int i;
4477 for (p = gcprolist; p; p = p->next)
4478 for (i = 0; i < p->nvars; ++i)
4479 if (!survives_gc_p (p->var[i]))
4480 /* FIXME: It's not necessarily a bug. It might just be that the
4481 GCPRO is unnecessary or should release the object sooner. */
4482 abort ();
4485 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4487 static void
4488 dump_zombies ()
4490 int i;
4492 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4493 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4495 fprintf (stderr, " %d = ", i);
4496 debug_print (zombies[i]);
4500 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4503 /* Mark live Lisp objects on the C stack.
4505 There are several system-dependent problems to consider when
4506 porting this to new architectures:
4508 Processor Registers
4510 We have to mark Lisp objects in CPU registers that can hold local
4511 variables or are used to pass parameters.
4513 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4514 something that either saves relevant registers on the stack, or
4515 calls mark_maybe_object passing it each register's contents.
4517 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4518 implementation assumes that calling setjmp saves registers we need
4519 to see in a jmp_buf which itself lies on the stack. This doesn't
4520 have to be true! It must be verified for each system, possibly
4521 by taking a look at the source code of setjmp.
4523 Stack Layout
4525 Architectures differ in the way their processor stack is organized.
4526 For example, the stack might look like this
4528 +----------------+
4529 | Lisp_Object | size = 4
4530 +----------------+
4531 | something else | size = 2
4532 +----------------+
4533 | Lisp_Object | size = 4
4534 +----------------+
4535 | ... |
4537 In such a case, not every Lisp_Object will be aligned equally. To
4538 find all Lisp_Object on the stack it won't be sufficient to walk
4539 the stack in steps of 4 bytes. Instead, two passes will be
4540 necessary, one starting at the start of the stack, and a second
4541 pass starting at the start of the stack + 2. Likewise, if the
4542 minimal alignment of Lisp_Objects on the stack is 1, four passes
4543 would be necessary, each one starting with one byte more offset
4544 from the stack start.
4546 The current code assumes by default that Lisp_Objects are aligned
4547 equally on the stack. */
4549 static void
4550 mark_stack ()
4552 int i;
4553 jmp_buf j;
4554 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4555 void *end;
4557 /* This trick flushes the register windows so that all the state of
4558 the process is contained in the stack. */
4559 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4560 needed on ia64 too. See mach_dep.c, where it also says inline
4561 assembler doesn't work with relevant proprietary compilers. */
4562 #ifdef sparc
4563 asm ("ta 3");
4564 #endif
4566 /* Save registers that we need to see on the stack. We need to see
4567 registers used to hold register variables and registers used to
4568 pass parameters. */
4569 #ifdef GC_SAVE_REGISTERS_ON_STACK
4570 GC_SAVE_REGISTERS_ON_STACK (end);
4571 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4573 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4574 setjmp will definitely work, test it
4575 and print a message with the result
4576 of the test. */
4577 if (!setjmp_tested_p)
4579 setjmp_tested_p = 1;
4580 test_setjmp ();
4582 #endif /* GC_SETJMP_WORKS */
4584 setjmp (j);
4585 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4586 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4588 /* This assumes that the stack is a contiguous region in memory. If
4589 that's not the case, something has to be done here to iterate
4590 over the stack segments. */
4591 #ifndef GC_LISP_OBJECT_ALIGNMENT
4592 #ifdef __GNUC__
4593 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4594 #else
4595 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4596 #endif
4597 #endif
4598 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4599 mark_memory ((char *) stack_base + i, end);
4600 /* Allow for marking a secondary stack, like the register stack on the
4601 ia64. */
4602 #ifdef GC_MARK_SECONDARY_STACK
4603 GC_MARK_SECONDARY_STACK ();
4604 #endif
4606 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4607 check_gcpros ();
4608 #endif
4611 #endif /* GC_MARK_STACK != 0 */
4614 /* Determine whether it is safe to access memory at address P. */
4616 valid_pointer_p (p)
4617 void *p;
4619 #ifdef WINDOWSNT
4620 return w32_valid_pointer_p (p, 16);
4621 #else
4622 int fd;
4624 /* Obviously, we cannot just access it (we would SEGV trying), so we
4625 trick the o/s to tell us whether p is a valid pointer.
4626 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4627 not validate p in that case. */
4629 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4631 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4632 emacs_close (fd);
4633 unlink ("__Valid__Lisp__Object__");
4634 return valid;
4637 return -1;
4638 #endif
4641 /* Return 1 if OBJ is a valid lisp object.
4642 Return 0 if OBJ is NOT a valid lisp object.
4643 Return -1 if we cannot validate OBJ.
4644 This function can be quite slow,
4645 so it should only be used in code for manual debugging. */
4648 valid_lisp_object_p (obj)
4649 Lisp_Object obj;
4651 void *p;
4652 #if GC_MARK_STACK
4653 struct mem_node *m;
4654 #endif
4656 if (INTEGERP (obj))
4657 return 1;
4659 p = (void *) XPNTR (obj);
4660 if (PURE_POINTER_P (p))
4661 return 1;
4663 #if !GC_MARK_STACK
4664 return valid_pointer_p (p);
4665 #else
4667 m = mem_find (p);
4669 if (m == MEM_NIL)
4671 int valid = valid_pointer_p (p);
4672 if (valid <= 0)
4673 return valid;
4675 if (SUBRP (obj))
4676 return 1;
4678 return 0;
4681 switch (m->type)
4683 case MEM_TYPE_NON_LISP:
4684 return 0;
4686 case MEM_TYPE_BUFFER:
4687 return live_buffer_p (m, p);
4689 case MEM_TYPE_CONS:
4690 return live_cons_p (m, p);
4692 case MEM_TYPE_STRING:
4693 return live_string_p (m, p);
4695 case MEM_TYPE_MISC:
4696 return live_misc_p (m, p);
4698 case MEM_TYPE_SYMBOL:
4699 return live_symbol_p (m, p);
4701 case MEM_TYPE_FLOAT:
4702 return live_float_p (m, p);
4704 case MEM_TYPE_VECTOR:
4705 case MEM_TYPE_PROCESS:
4706 case MEM_TYPE_HASH_TABLE:
4707 case MEM_TYPE_FRAME:
4708 case MEM_TYPE_WINDOW:
4709 return live_vector_p (m, p);
4711 default:
4712 break;
4715 return 0;
4716 #endif
4722 /***********************************************************************
4723 Pure Storage Management
4724 ***********************************************************************/
4726 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4727 pointer to it. TYPE is the Lisp type for which the memory is
4728 allocated. TYPE < 0 means it's not used for a Lisp object. */
4730 static POINTER_TYPE *
4731 pure_alloc (size, type)
4732 size_t size;
4733 int type;
4735 POINTER_TYPE *result;
4736 #ifdef USE_LSB_TAG
4737 size_t alignment = (1 << GCTYPEBITS);
4738 #else
4739 size_t alignment = sizeof (EMACS_INT);
4741 /* Give Lisp_Floats an extra alignment. */
4742 if (type == Lisp_Float)
4744 #if defined __GNUC__ && __GNUC__ >= 2
4745 alignment = __alignof (struct Lisp_Float);
4746 #else
4747 alignment = sizeof (struct Lisp_Float);
4748 #endif
4750 #endif
4752 again:
4753 if (type >= 0)
4755 /* Allocate space for a Lisp object from the beginning of the free
4756 space with taking account of alignment. */
4757 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4758 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4760 else
4762 /* Allocate space for a non-Lisp object from the end of the free
4763 space. */
4764 pure_bytes_used_non_lisp += size;
4765 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4767 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4769 if (pure_bytes_used <= pure_size)
4770 return result;
4772 /* Don't allocate a large amount here,
4773 because it might get mmap'd and then its address
4774 might not be usable. */
4775 purebeg = (char *) xmalloc (10000);
4776 pure_size = 10000;
4777 pure_bytes_used_before_overflow += pure_bytes_used - size;
4778 pure_bytes_used = 0;
4779 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4780 goto again;
4784 /* Print a warning if PURESIZE is too small. */
4786 void
4787 check_pure_size ()
4789 if (pure_bytes_used_before_overflow)
4790 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4791 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4795 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4796 the non-Lisp data pool of the pure storage, and return its start
4797 address. Return NULL if not found. */
4799 static char *
4800 find_string_data_in_pure (data, nbytes)
4801 char *data;
4802 int nbytes;
4804 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4805 unsigned char *p;
4806 char *non_lisp_beg;
4808 if (pure_bytes_used_non_lisp < nbytes + 1)
4809 return NULL;
4811 /* Set up the Boyer-Moore table. */
4812 skip = nbytes + 1;
4813 for (i = 0; i < 256; i++)
4814 bm_skip[i] = skip;
4816 p = (unsigned char *) data;
4817 while (--skip > 0)
4818 bm_skip[*p++] = skip;
4820 last_char_skip = bm_skip['\0'];
4822 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4823 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4825 /* See the comments in the function `boyer_moore' (search.c) for the
4826 use of `infinity'. */
4827 infinity = pure_bytes_used_non_lisp + 1;
4828 bm_skip['\0'] = infinity;
4830 p = (unsigned char *) non_lisp_beg + nbytes;
4831 start = 0;
4834 /* Check the last character (== '\0'). */
4837 start += bm_skip[*(p + start)];
4839 while (start <= start_max);
4841 if (start < infinity)
4842 /* Couldn't find the last character. */
4843 return NULL;
4845 /* No less than `infinity' means we could find the last
4846 character at `p[start - infinity]'. */
4847 start -= infinity;
4849 /* Check the remaining characters. */
4850 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4851 /* Found. */
4852 return non_lisp_beg + start;
4854 start += last_char_skip;
4856 while (start <= start_max);
4858 return NULL;
4862 /* Return a string allocated in pure space. DATA is a buffer holding
4863 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4864 non-zero means make the result string multibyte.
4866 Must get an error if pure storage is full, since if it cannot hold
4867 a large string it may be able to hold conses that point to that
4868 string; then the string is not protected from gc. */
4870 Lisp_Object
4871 make_pure_string (data, nchars, nbytes, multibyte)
4872 char *data;
4873 int nchars, nbytes;
4874 int multibyte;
4876 Lisp_Object string;
4877 struct Lisp_String *s;
4879 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4880 s->data = find_string_data_in_pure (data, nbytes);
4881 if (s->data == NULL)
4883 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4884 bcopy (data, s->data, nbytes);
4885 s->data[nbytes] = '\0';
4887 s->size = nchars;
4888 s->size_byte = multibyte ? nbytes : -1;
4889 s->intervals = NULL_INTERVAL;
4890 XSETSTRING (string, s);
4891 return string;
4895 /* Return a cons allocated from pure space. Give it pure copies
4896 of CAR as car and CDR as cdr. */
4898 Lisp_Object
4899 pure_cons (car, cdr)
4900 Lisp_Object car, cdr;
4902 register Lisp_Object new;
4903 struct Lisp_Cons *p;
4905 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4906 XSETCONS (new, p);
4907 XSETCAR (new, Fpurecopy (car));
4908 XSETCDR (new, Fpurecopy (cdr));
4909 return new;
4913 /* Value is a float object with value NUM allocated from pure space. */
4915 Lisp_Object
4916 make_pure_float (num)
4917 double num;
4919 register Lisp_Object new;
4920 struct Lisp_Float *p;
4922 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4923 XSETFLOAT (new, p);
4924 XFLOAT_DATA (new) = num;
4925 return new;
4929 /* Return a vector with room for LEN Lisp_Objects allocated from
4930 pure space. */
4932 Lisp_Object
4933 make_pure_vector (len)
4934 EMACS_INT len;
4936 Lisp_Object new;
4937 struct Lisp_Vector *p;
4938 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4940 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4941 XSETVECTOR (new, p);
4942 XVECTOR (new)->size = len;
4943 return new;
4947 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4948 doc: /* Make a copy of object OBJ in pure storage.
4949 Recursively copies contents of vectors and cons cells.
4950 Does not copy symbols. Copies strings without text properties. */)
4951 (obj)
4952 register Lisp_Object obj;
4954 if (NILP (Vpurify_flag))
4955 return obj;
4957 if (PURE_POINTER_P (XPNTR (obj)))
4958 return obj;
4960 if (CONSP (obj))
4961 return pure_cons (XCAR (obj), XCDR (obj));
4962 else if (FLOATP (obj))
4963 return make_pure_float (XFLOAT_DATA (obj));
4964 else if (STRINGP (obj))
4965 return make_pure_string (SDATA (obj), SCHARS (obj),
4966 SBYTES (obj),
4967 STRING_MULTIBYTE (obj));
4968 else if (COMPILEDP (obj) || VECTORP (obj))
4970 register struct Lisp_Vector *vec;
4971 register int i;
4972 EMACS_INT size;
4974 size = XVECTOR (obj)->size;
4975 if (size & PSEUDOVECTOR_FLAG)
4976 size &= PSEUDOVECTOR_SIZE_MASK;
4977 vec = XVECTOR (make_pure_vector (size));
4978 for (i = 0; i < size; i++)
4979 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4980 if (COMPILEDP (obj))
4981 XSETCOMPILED (obj, vec);
4982 else
4983 XSETVECTOR (obj, vec);
4984 return obj;
4986 else if (MARKERP (obj))
4987 error ("Attempt to copy a marker to pure storage");
4989 return obj;
4994 /***********************************************************************
4995 Protection from GC
4996 ***********************************************************************/
4998 /* Put an entry in staticvec, pointing at the variable with address
4999 VARADDRESS. */
5001 void
5002 staticpro (varaddress)
5003 Lisp_Object *varaddress;
5005 staticvec[staticidx++] = varaddress;
5006 if (staticidx >= NSTATICS)
5007 abort ();
5010 struct catchtag
5012 Lisp_Object tag;
5013 Lisp_Object val;
5014 struct catchtag *next;
5018 /***********************************************************************
5019 Protection from GC
5020 ***********************************************************************/
5022 /* Temporarily prevent garbage collection. */
5025 inhibit_garbage_collection ()
5027 int count = SPECPDL_INDEX ();
5028 int nbits = min (VALBITS, BITS_PER_INT);
5030 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5031 return count;
5035 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5036 doc: /* Reclaim storage for Lisp objects no longer needed.
5037 Garbage collection happens automatically if you cons more than
5038 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5039 `garbage-collect' normally returns a list with info on amount of space in use:
5040 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5041 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5042 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5043 (USED-STRINGS . FREE-STRINGS))
5044 However, if there was overflow in pure space, `garbage-collect'
5045 returns nil, because real GC can't be done. */)
5048 register struct specbinding *bind;
5049 struct catchtag *catch;
5050 struct handler *handler;
5051 char stack_top_variable;
5052 register int i;
5053 int message_p;
5054 Lisp_Object total[8];
5055 int count = SPECPDL_INDEX ();
5056 EMACS_TIME t1, t2, t3;
5058 if (abort_on_gc)
5059 abort ();
5061 /* Can't GC if pure storage overflowed because we can't determine
5062 if something is a pure object or not. */
5063 if (pure_bytes_used_before_overflow)
5064 return Qnil;
5066 CHECK_CONS_LIST ();
5068 /* Don't keep undo information around forever.
5069 Do this early on, so it is no problem if the user quits. */
5071 register struct buffer *nextb = all_buffers;
5073 while (nextb)
5075 /* If a buffer's undo list is Qt, that means that undo is
5076 turned off in that buffer. Calling truncate_undo_list on
5077 Qt tends to return NULL, which effectively turns undo back on.
5078 So don't call truncate_undo_list if undo_list is Qt. */
5079 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5080 truncate_undo_list (nextb);
5082 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5083 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5085 /* If a buffer's gap size is more than 10% of the buffer
5086 size, or larger than 2000 bytes, then shrink it
5087 accordingly. Keep a minimum size of 20 bytes. */
5088 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5090 if (nextb->text->gap_size > size)
5092 struct buffer *save_current = current_buffer;
5093 current_buffer = nextb;
5094 make_gap (-(nextb->text->gap_size - size));
5095 current_buffer = save_current;
5099 nextb = nextb->next;
5103 EMACS_GET_TIME (t1);
5105 /* In case user calls debug_print during GC,
5106 don't let that cause a recursive GC. */
5107 consing_since_gc = 0;
5109 /* Save what's currently displayed in the echo area. */
5110 message_p = push_message ();
5111 record_unwind_protect (pop_message_unwind, Qnil);
5113 /* Save a copy of the contents of the stack, for debugging. */
5114 #if MAX_SAVE_STACK > 0
5115 if (NILP (Vpurify_flag))
5117 i = &stack_top_variable - stack_bottom;
5118 if (i < 0) i = -i;
5119 if (i < MAX_SAVE_STACK)
5121 if (stack_copy == 0)
5122 stack_copy = (char *) xmalloc (stack_copy_size = i);
5123 else if (stack_copy_size < i)
5124 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5125 if (stack_copy)
5127 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5128 bcopy (stack_bottom, stack_copy, i);
5129 else
5130 bcopy (&stack_top_variable, stack_copy, i);
5134 #endif /* MAX_SAVE_STACK > 0 */
5136 if (garbage_collection_messages)
5137 message1_nolog ("Garbage collecting...");
5139 BLOCK_INPUT;
5141 shrink_regexp_cache ();
5143 gc_in_progress = 1;
5145 /* clear_marks (); */
5147 /* Mark all the special slots that serve as the roots of accessibility. */
5149 for (i = 0; i < staticidx; i++)
5150 mark_object (*staticvec[i]);
5152 for (bind = specpdl; bind != specpdl_ptr; bind++)
5154 mark_object (bind->symbol);
5155 mark_object (bind->old_value);
5157 mark_kboards ();
5159 #ifdef USE_GTK
5161 extern void xg_mark_data ();
5162 xg_mark_data ();
5164 #endif
5166 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5167 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5168 mark_stack ();
5169 #else
5171 register struct gcpro *tail;
5172 for (tail = gcprolist; tail; tail = tail->next)
5173 for (i = 0; i < tail->nvars; i++)
5174 mark_object (tail->var[i]);
5176 #endif
5178 mark_byte_stack ();
5179 for (catch = catchlist; catch; catch = catch->next)
5181 mark_object (catch->tag);
5182 mark_object (catch->val);
5184 for (handler = handlerlist; handler; handler = handler->next)
5186 mark_object (handler->handler);
5187 mark_object (handler->var);
5189 mark_backtrace ();
5191 #ifdef HAVE_WINDOW_SYSTEM
5192 mark_fringe_data ();
5193 #endif
5195 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5196 mark_stack ();
5197 #endif
5199 /* Everything is now marked, except for the things that require special
5200 finalization, i.e. the undo_list.
5201 Look thru every buffer's undo list
5202 for elements that update markers that were not marked,
5203 and delete them. */
5205 register struct buffer *nextb = all_buffers;
5207 while (nextb)
5209 /* If a buffer's undo list is Qt, that means that undo is
5210 turned off in that buffer. Calling truncate_undo_list on
5211 Qt tends to return NULL, which effectively turns undo back on.
5212 So don't call truncate_undo_list if undo_list is Qt. */
5213 if (! EQ (nextb->undo_list, Qt))
5215 Lisp_Object tail, prev;
5216 tail = nextb->undo_list;
5217 prev = Qnil;
5218 while (CONSP (tail))
5220 if (GC_CONSP (XCAR (tail))
5221 && GC_MARKERP (XCAR (XCAR (tail)))
5222 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5224 if (NILP (prev))
5225 nextb->undo_list = tail = XCDR (tail);
5226 else
5228 tail = XCDR (tail);
5229 XSETCDR (prev, tail);
5232 else
5234 prev = tail;
5235 tail = XCDR (tail);
5239 /* Now that we have stripped the elements that need not be in the
5240 undo_list any more, we can finally mark the list. */
5241 mark_object (nextb->undo_list);
5243 nextb = nextb->next;
5247 gc_sweep ();
5249 /* Clear the mark bits that we set in certain root slots. */
5251 unmark_byte_stack ();
5252 VECTOR_UNMARK (&buffer_defaults);
5253 VECTOR_UNMARK (&buffer_local_symbols);
5255 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5256 dump_zombies ();
5257 #endif
5259 UNBLOCK_INPUT;
5261 CHECK_CONS_LIST ();
5263 /* clear_marks (); */
5264 gc_in_progress = 0;
5266 consing_since_gc = 0;
5267 if (gc_cons_threshold < 10000)
5268 gc_cons_threshold = 10000;
5270 if (FLOATP (Vgc_cons_percentage))
5271 { /* Set gc_cons_combined_threshold. */
5272 EMACS_INT total = 0;
5274 total += total_conses * sizeof (struct Lisp_Cons);
5275 total += total_symbols * sizeof (struct Lisp_Symbol);
5276 total += total_markers * sizeof (union Lisp_Misc);
5277 total += total_string_size;
5278 total += total_vector_size * sizeof (Lisp_Object);
5279 total += total_floats * sizeof (struct Lisp_Float);
5280 total += total_intervals * sizeof (struct interval);
5281 total += total_strings * sizeof (struct Lisp_String);
5283 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5285 else
5286 gc_relative_threshold = 0;
5288 if (garbage_collection_messages)
5290 if (message_p || minibuf_level > 0)
5291 restore_message ();
5292 else
5293 message1_nolog ("Garbage collecting...done");
5296 unbind_to (count, Qnil);
5298 total[0] = Fcons (make_number (total_conses),
5299 make_number (total_free_conses));
5300 total[1] = Fcons (make_number (total_symbols),
5301 make_number (total_free_symbols));
5302 total[2] = Fcons (make_number (total_markers),
5303 make_number (total_free_markers));
5304 total[3] = make_number (total_string_size);
5305 total[4] = make_number (total_vector_size);
5306 total[5] = Fcons (make_number (total_floats),
5307 make_number (total_free_floats));
5308 total[6] = Fcons (make_number (total_intervals),
5309 make_number (total_free_intervals));
5310 total[7] = Fcons (make_number (total_strings),
5311 make_number (total_free_strings));
5313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5315 /* Compute average percentage of zombies. */
5316 double nlive = 0;
5318 for (i = 0; i < 7; ++i)
5319 if (CONSP (total[i]))
5320 nlive += XFASTINT (XCAR (total[i]));
5322 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5323 max_live = max (nlive, max_live);
5324 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5325 max_zombies = max (nzombies, max_zombies);
5326 ++ngcs;
5328 #endif
5330 if (!NILP (Vpost_gc_hook))
5332 int count = inhibit_garbage_collection ();
5333 safe_run_hooks (Qpost_gc_hook);
5334 unbind_to (count, Qnil);
5337 /* Accumulate statistics. */
5338 EMACS_GET_TIME (t2);
5339 EMACS_SUB_TIME (t3, t2, t1);
5340 if (FLOATP (Vgc_elapsed))
5341 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5342 EMACS_SECS (t3) +
5343 EMACS_USECS (t3) * 1.0e-6);
5344 gcs_done++;
5346 return Flist (sizeof total / sizeof *total, total);
5350 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5351 only interesting objects referenced from glyphs are strings. */
5353 static void
5354 mark_glyph_matrix (matrix)
5355 struct glyph_matrix *matrix;
5357 struct glyph_row *row = matrix->rows;
5358 struct glyph_row *end = row + matrix->nrows;
5360 for (; row < end; ++row)
5361 if (row->enabled_p)
5363 int area;
5364 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5366 struct glyph *glyph = row->glyphs[area];
5367 struct glyph *end_glyph = glyph + row->used[area];
5369 for (; glyph < end_glyph; ++glyph)
5370 if (GC_STRINGP (glyph->object)
5371 && !STRING_MARKED_P (XSTRING (glyph->object)))
5372 mark_object (glyph->object);
5378 /* Mark Lisp faces in the face cache C. */
5380 static void
5381 mark_face_cache (c)
5382 struct face_cache *c;
5384 if (c)
5386 int i, j;
5387 for (i = 0; i < c->used; ++i)
5389 struct face *face = FACE_FROM_ID (c->f, i);
5391 if (face)
5393 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5394 mark_object (face->lface[j]);
5401 #ifdef HAVE_WINDOW_SYSTEM
5403 /* Mark Lisp objects in image IMG. */
5405 static void
5406 mark_image (img)
5407 struct image *img;
5409 mark_object (img->spec);
5411 if (!NILP (img->data.lisp_val))
5412 mark_object (img->data.lisp_val);
5416 /* Mark Lisp objects in image cache of frame F. It's done this way so
5417 that we don't have to include xterm.h here. */
5419 static void
5420 mark_image_cache (f)
5421 struct frame *f;
5423 forall_images_in_image_cache (f, mark_image);
5426 #endif /* HAVE_X_WINDOWS */
5430 /* Mark reference to a Lisp_Object.
5431 If the object referred to has not been seen yet, recursively mark
5432 all the references contained in it. */
5434 #define LAST_MARKED_SIZE 500
5435 Lisp_Object last_marked[LAST_MARKED_SIZE];
5436 int last_marked_index;
5438 /* For debugging--call abort when we cdr down this many
5439 links of a list, in mark_object. In debugging,
5440 the call to abort will hit a breakpoint.
5441 Normally this is zero and the check never goes off. */
5442 int mark_object_loop_halt;
5444 void
5445 mark_object (arg)
5446 Lisp_Object arg;
5448 register Lisp_Object obj = arg;
5449 #ifdef GC_CHECK_MARKED_OBJECTS
5450 void *po;
5451 struct mem_node *m;
5452 #endif
5453 int cdr_count = 0;
5455 loop:
5457 if (PURE_POINTER_P (XPNTR (obj)))
5458 return;
5460 last_marked[last_marked_index++] = obj;
5461 if (last_marked_index == LAST_MARKED_SIZE)
5462 last_marked_index = 0;
5464 /* Perform some sanity checks on the objects marked here. Abort if
5465 we encounter an object we know is bogus. This increases GC time
5466 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5467 #ifdef GC_CHECK_MARKED_OBJECTS
5469 po = (void *) XPNTR (obj);
5471 /* Check that the object pointed to by PO is known to be a Lisp
5472 structure allocated from the heap. */
5473 #define CHECK_ALLOCATED() \
5474 do { \
5475 m = mem_find (po); \
5476 if (m == MEM_NIL) \
5477 abort (); \
5478 } while (0)
5480 /* Check that the object pointed to by PO is live, using predicate
5481 function LIVEP. */
5482 #define CHECK_LIVE(LIVEP) \
5483 do { \
5484 if (!LIVEP (m, po)) \
5485 abort (); \
5486 } while (0)
5488 /* Check both of the above conditions. */
5489 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5490 do { \
5491 CHECK_ALLOCATED (); \
5492 CHECK_LIVE (LIVEP); \
5493 } while (0) \
5495 #else /* not GC_CHECK_MARKED_OBJECTS */
5497 #define CHECK_ALLOCATED() (void) 0
5498 #define CHECK_LIVE(LIVEP) (void) 0
5499 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5501 #endif /* not GC_CHECK_MARKED_OBJECTS */
5503 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5505 case Lisp_String:
5507 register struct Lisp_String *ptr = XSTRING (obj);
5508 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5509 MARK_INTERVAL_TREE (ptr->intervals);
5510 MARK_STRING (ptr);
5511 #ifdef GC_CHECK_STRING_BYTES
5512 /* Check that the string size recorded in the string is the
5513 same as the one recorded in the sdata structure. */
5514 CHECK_STRING_BYTES (ptr);
5515 #endif /* GC_CHECK_STRING_BYTES */
5517 break;
5519 case Lisp_Vectorlike:
5520 #ifdef GC_CHECK_MARKED_OBJECTS
5521 m = mem_find (po);
5522 if (m == MEM_NIL && !GC_SUBRP (obj)
5523 && po != &buffer_defaults
5524 && po != &buffer_local_symbols)
5525 abort ();
5526 #endif /* GC_CHECK_MARKED_OBJECTS */
5528 if (GC_BUFFERP (obj))
5530 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5532 #ifdef GC_CHECK_MARKED_OBJECTS
5533 if (po != &buffer_defaults && po != &buffer_local_symbols)
5535 struct buffer *b;
5536 for (b = all_buffers; b && b != po; b = b->next)
5538 if (b == NULL)
5539 abort ();
5541 #endif /* GC_CHECK_MARKED_OBJECTS */
5542 mark_buffer (obj);
5545 else if (GC_SUBRP (obj))
5546 break;
5547 else if (GC_COMPILEDP (obj))
5548 /* We could treat this just like a vector, but it is better to
5549 save the COMPILED_CONSTANTS element for last and avoid
5550 recursion there. */
5552 register struct Lisp_Vector *ptr = XVECTOR (obj);
5553 register EMACS_INT size = ptr->size;
5554 register int i;
5556 if (VECTOR_MARKED_P (ptr))
5557 break; /* Already marked */
5559 CHECK_LIVE (live_vector_p);
5560 VECTOR_MARK (ptr); /* Else mark it */
5561 size &= PSEUDOVECTOR_SIZE_MASK;
5562 for (i = 0; i < size; i++) /* and then mark its elements */
5564 if (i != COMPILED_CONSTANTS)
5565 mark_object (ptr->contents[i]);
5567 obj = ptr->contents[COMPILED_CONSTANTS];
5568 goto loop;
5570 else if (GC_FRAMEP (obj))
5572 register struct frame *ptr = XFRAME (obj);
5574 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5575 VECTOR_MARK (ptr); /* Else mark it */
5577 CHECK_LIVE (live_vector_p);
5578 mark_object (ptr->name);
5579 mark_object (ptr->icon_name);
5580 mark_object (ptr->title);
5581 mark_object (ptr->focus_frame);
5582 mark_object (ptr->selected_window);
5583 mark_object (ptr->minibuffer_window);
5584 mark_object (ptr->param_alist);
5585 mark_object (ptr->scroll_bars);
5586 mark_object (ptr->condemned_scroll_bars);
5587 mark_object (ptr->menu_bar_items);
5588 mark_object (ptr->face_alist);
5589 mark_object (ptr->menu_bar_vector);
5590 mark_object (ptr->buffer_predicate);
5591 mark_object (ptr->buffer_list);
5592 mark_object (ptr->menu_bar_window);
5593 mark_object (ptr->tool_bar_window);
5594 mark_face_cache (ptr->face_cache);
5595 #ifdef HAVE_WINDOW_SYSTEM
5596 mark_image_cache (ptr);
5597 mark_object (ptr->tool_bar_items);
5598 mark_object (ptr->desired_tool_bar_string);
5599 mark_object (ptr->current_tool_bar_string);
5600 #endif /* HAVE_WINDOW_SYSTEM */
5602 else if (GC_BOOL_VECTOR_P (obj))
5604 register struct Lisp_Vector *ptr = XVECTOR (obj);
5606 if (VECTOR_MARKED_P (ptr))
5607 break; /* Already marked */
5608 CHECK_LIVE (live_vector_p);
5609 VECTOR_MARK (ptr); /* Else mark it */
5611 else if (GC_WINDOWP (obj))
5613 register struct Lisp_Vector *ptr = XVECTOR (obj);
5614 struct window *w = XWINDOW (obj);
5615 register int i;
5617 /* Stop if already marked. */
5618 if (VECTOR_MARKED_P (ptr))
5619 break;
5621 /* Mark it. */
5622 CHECK_LIVE (live_vector_p);
5623 VECTOR_MARK (ptr);
5625 /* There is no Lisp data above The member CURRENT_MATRIX in
5626 struct WINDOW. Stop marking when that slot is reached. */
5627 for (i = 0;
5628 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5629 i++)
5630 mark_object (ptr->contents[i]);
5632 /* Mark glyphs for leaf windows. Marking window matrices is
5633 sufficient because frame matrices use the same glyph
5634 memory. */
5635 if (NILP (w->hchild)
5636 && NILP (w->vchild)
5637 && w->current_matrix)
5639 mark_glyph_matrix (w->current_matrix);
5640 mark_glyph_matrix (w->desired_matrix);
5643 else if (GC_HASH_TABLE_P (obj))
5645 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5647 /* Stop if already marked. */
5648 if (VECTOR_MARKED_P (h))
5649 break;
5651 /* Mark it. */
5652 CHECK_LIVE (live_vector_p);
5653 VECTOR_MARK (h);
5655 /* Mark contents. */
5656 /* Do not mark next_free or next_weak.
5657 Being in the next_weak chain
5658 should not keep the hash table alive.
5659 No need to mark `count' since it is an integer. */
5660 mark_object (h->test);
5661 mark_object (h->weak);
5662 mark_object (h->rehash_size);
5663 mark_object (h->rehash_threshold);
5664 mark_object (h->hash);
5665 mark_object (h->next);
5666 mark_object (h->index);
5667 mark_object (h->user_hash_function);
5668 mark_object (h->user_cmp_function);
5670 /* If hash table is not weak, mark all keys and values.
5671 For weak tables, mark only the vector. */
5672 if (GC_NILP (h->weak))
5673 mark_object (h->key_and_value);
5674 else
5675 VECTOR_MARK (XVECTOR (h->key_and_value));
5677 else
5679 register struct Lisp_Vector *ptr = XVECTOR (obj);
5680 register EMACS_INT size = ptr->size;
5681 register int i;
5683 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5684 CHECK_LIVE (live_vector_p);
5685 VECTOR_MARK (ptr); /* Else mark it */
5686 if (size & PSEUDOVECTOR_FLAG)
5687 size &= PSEUDOVECTOR_SIZE_MASK;
5689 /* Note that this size is not the memory-footprint size, but only
5690 the number of Lisp_Object fields that we should trace.
5691 The distinction is used e.g. by Lisp_Process which places extra
5692 non-Lisp_Object fields at the end of the structure. */
5693 for (i = 0; i < size; i++) /* and then mark its elements */
5694 mark_object (ptr->contents[i]);
5696 break;
5698 case Lisp_Symbol:
5700 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5701 struct Lisp_Symbol *ptrx;
5703 if (ptr->gcmarkbit) break;
5704 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5705 ptr->gcmarkbit = 1;
5706 mark_object (ptr->value);
5707 mark_object (ptr->function);
5708 mark_object (ptr->plist);
5710 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5711 MARK_STRING (XSTRING (ptr->xname));
5712 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5714 /* Note that we do not mark the obarray of the symbol.
5715 It is safe not to do so because nothing accesses that
5716 slot except to check whether it is nil. */
5717 ptr = ptr->next;
5718 if (ptr)
5720 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5721 XSETSYMBOL (obj, ptrx);
5722 goto loop;
5725 break;
5727 case Lisp_Misc:
5728 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5729 if (XMARKER (obj)->gcmarkbit)
5730 break;
5731 XMARKER (obj)->gcmarkbit = 1;
5733 switch (XMISCTYPE (obj))
5735 case Lisp_Misc_Buffer_Local_Value:
5736 case Lisp_Misc_Some_Buffer_Local_Value:
5738 register struct Lisp_Buffer_Local_Value *ptr
5739 = XBUFFER_LOCAL_VALUE (obj);
5740 /* If the cdr is nil, avoid recursion for the car. */
5741 if (EQ (ptr->cdr, Qnil))
5743 obj = ptr->realvalue;
5744 goto loop;
5746 mark_object (ptr->realvalue);
5747 mark_object (ptr->buffer);
5748 mark_object (ptr->frame);
5749 obj = ptr->cdr;
5750 goto loop;
5753 case Lisp_Misc_Marker:
5754 /* DO NOT mark thru the marker's chain.
5755 The buffer's markers chain does not preserve markers from gc;
5756 instead, markers are removed from the chain when freed by gc. */
5757 break;
5759 case Lisp_Misc_Intfwd:
5760 case Lisp_Misc_Boolfwd:
5761 case Lisp_Misc_Objfwd:
5762 case Lisp_Misc_Buffer_Objfwd:
5763 case Lisp_Misc_Kboard_Objfwd:
5764 /* Don't bother with Lisp_Buffer_Objfwd,
5765 since all markable slots in current buffer marked anyway. */
5766 /* Don't need to do Lisp_Objfwd, since the places they point
5767 are protected with staticpro. */
5768 break;
5770 case Lisp_Misc_Save_Value:
5771 #if GC_MARK_STACK
5773 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5774 /* If DOGC is set, POINTER is the address of a memory
5775 area containing INTEGER potential Lisp_Objects. */
5776 if (ptr->dogc)
5778 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5779 int nelt;
5780 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5781 mark_maybe_object (*p);
5784 #endif
5785 break;
5787 case Lisp_Misc_Overlay:
5789 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5790 mark_object (ptr->start);
5791 mark_object (ptr->end);
5792 mark_object (ptr->plist);
5793 if (ptr->next)
5795 XSETMISC (obj, ptr->next);
5796 goto loop;
5799 break;
5801 default:
5802 abort ();
5804 break;
5806 case Lisp_Cons:
5808 register struct Lisp_Cons *ptr = XCONS (obj);
5809 if (CONS_MARKED_P (ptr)) break;
5810 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5811 CONS_MARK (ptr);
5812 /* If the cdr is nil, avoid recursion for the car. */
5813 if (EQ (ptr->u.cdr, Qnil))
5815 obj = ptr->car;
5816 cdr_count = 0;
5817 goto loop;
5819 mark_object (ptr->car);
5820 obj = ptr->u.cdr;
5821 cdr_count++;
5822 if (cdr_count == mark_object_loop_halt)
5823 abort ();
5824 goto loop;
5827 case Lisp_Float:
5828 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5829 FLOAT_MARK (XFLOAT (obj));
5830 break;
5832 case Lisp_Int:
5833 break;
5835 default:
5836 abort ();
5839 #undef CHECK_LIVE
5840 #undef CHECK_ALLOCATED
5841 #undef CHECK_ALLOCATED_AND_LIVE
5844 /* Mark the pointers in a buffer structure. */
5846 static void
5847 mark_buffer (buf)
5848 Lisp_Object buf;
5850 register struct buffer *buffer = XBUFFER (buf);
5851 register Lisp_Object *ptr, tmp;
5852 Lisp_Object base_buffer;
5854 VECTOR_MARK (buffer);
5856 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5858 /* For now, we just don't mark the undo_list. It's done later in
5859 a special way just before the sweep phase, and after stripping
5860 some of its elements that are not needed any more. */
5862 if (buffer->overlays_before)
5864 XSETMISC (tmp, buffer->overlays_before);
5865 mark_object (tmp);
5867 if (buffer->overlays_after)
5869 XSETMISC (tmp, buffer->overlays_after);
5870 mark_object (tmp);
5873 for (ptr = &buffer->name;
5874 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5875 ptr++)
5876 mark_object (*ptr);
5878 /* If this is an indirect buffer, mark its base buffer. */
5879 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5881 XSETBUFFER (base_buffer, buffer->base_buffer);
5882 mark_buffer (base_buffer);
5887 /* Value is non-zero if OBJ will survive the current GC because it's
5888 either marked or does not need to be marked to survive. */
5891 survives_gc_p (obj)
5892 Lisp_Object obj;
5894 int survives_p;
5896 switch (XGCTYPE (obj))
5898 case Lisp_Int:
5899 survives_p = 1;
5900 break;
5902 case Lisp_Symbol:
5903 survives_p = XSYMBOL (obj)->gcmarkbit;
5904 break;
5906 case Lisp_Misc:
5907 survives_p = XMARKER (obj)->gcmarkbit;
5908 break;
5910 case Lisp_String:
5911 survives_p = STRING_MARKED_P (XSTRING (obj));
5912 break;
5914 case Lisp_Vectorlike:
5915 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5916 break;
5918 case Lisp_Cons:
5919 survives_p = CONS_MARKED_P (XCONS (obj));
5920 break;
5922 case Lisp_Float:
5923 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5924 break;
5926 default:
5927 abort ();
5930 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5935 /* Sweep: find all structures not marked, and free them. */
5937 static void
5938 gc_sweep ()
5940 /* Remove or mark entries in weak hash tables.
5941 This must be done before any object is unmarked. */
5942 sweep_weak_hash_tables ();
5944 sweep_strings ();
5945 #ifdef GC_CHECK_STRING_BYTES
5946 if (!noninteractive)
5947 check_string_bytes (1);
5948 #endif
5950 /* Put all unmarked conses on free list */
5952 register struct cons_block *cblk;
5953 struct cons_block **cprev = &cons_block;
5954 register int lim = cons_block_index;
5955 register int num_free = 0, num_used = 0;
5957 cons_free_list = 0;
5959 for (cblk = cons_block; cblk; cblk = *cprev)
5961 register int i;
5962 int this_free = 0;
5963 for (i = 0; i < lim; i++)
5964 if (!CONS_MARKED_P (&cblk->conses[i]))
5966 this_free++;
5967 cblk->conses[i].u.chain = cons_free_list;
5968 cons_free_list = &cblk->conses[i];
5969 #if GC_MARK_STACK
5970 cons_free_list->car = Vdead;
5971 #endif
5973 else
5975 num_used++;
5976 CONS_UNMARK (&cblk->conses[i]);
5978 lim = CONS_BLOCK_SIZE;
5979 /* If this block contains only free conses and we have already
5980 seen more than two blocks worth of free conses then deallocate
5981 this block. */
5982 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5984 *cprev = cblk->next;
5985 /* Unhook from the free list. */
5986 cons_free_list = cblk->conses[0].u.chain;
5987 lisp_align_free (cblk);
5988 n_cons_blocks--;
5990 else
5992 num_free += this_free;
5993 cprev = &cblk->next;
5996 total_conses = num_used;
5997 total_free_conses = num_free;
6000 /* Put all unmarked floats on free list */
6002 register struct float_block *fblk;
6003 struct float_block **fprev = &float_block;
6004 register int lim = float_block_index;
6005 register int num_free = 0, num_used = 0;
6007 float_free_list = 0;
6009 for (fblk = float_block; fblk; fblk = *fprev)
6011 register int i;
6012 int this_free = 0;
6013 for (i = 0; i < lim; i++)
6014 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6016 this_free++;
6017 fblk->floats[i].u.chain = float_free_list;
6018 float_free_list = &fblk->floats[i];
6020 else
6022 num_used++;
6023 FLOAT_UNMARK (&fblk->floats[i]);
6025 lim = FLOAT_BLOCK_SIZE;
6026 /* If this block contains only free floats and we have already
6027 seen more than two blocks worth of free floats then deallocate
6028 this block. */
6029 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6031 *fprev = fblk->next;
6032 /* Unhook from the free list. */
6033 float_free_list = fblk->floats[0].u.chain;
6034 lisp_align_free (fblk);
6035 n_float_blocks--;
6037 else
6039 num_free += this_free;
6040 fprev = &fblk->next;
6043 total_floats = num_used;
6044 total_free_floats = num_free;
6047 /* Put all unmarked intervals on free list */
6049 register struct interval_block *iblk;
6050 struct interval_block **iprev = &interval_block;
6051 register int lim = interval_block_index;
6052 register int num_free = 0, num_used = 0;
6054 interval_free_list = 0;
6056 for (iblk = interval_block; iblk; iblk = *iprev)
6058 register int i;
6059 int this_free = 0;
6061 for (i = 0; i < lim; i++)
6063 if (!iblk->intervals[i].gcmarkbit)
6065 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6066 interval_free_list = &iblk->intervals[i];
6067 this_free++;
6069 else
6071 num_used++;
6072 iblk->intervals[i].gcmarkbit = 0;
6075 lim = INTERVAL_BLOCK_SIZE;
6076 /* If this block contains only free intervals and we have already
6077 seen more than two blocks worth of free intervals then
6078 deallocate this block. */
6079 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6081 *iprev = iblk->next;
6082 /* Unhook from the free list. */
6083 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6084 lisp_free (iblk);
6085 n_interval_blocks--;
6087 else
6089 num_free += this_free;
6090 iprev = &iblk->next;
6093 total_intervals = num_used;
6094 total_free_intervals = num_free;
6097 /* Put all unmarked symbols on free list */
6099 register struct symbol_block *sblk;
6100 struct symbol_block **sprev = &symbol_block;
6101 register int lim = symbol_block_index;
6102 register int num_free = 0, num_used = 0;
6104 symbol_free_list = NULL;
6106 for (sblk = symbol_block; sblk; sblk = *sprev)
6108 int this_free = 0;
6109 struct Lisp_Symbol *sym = sblk->symbols;
6110 struct Lisp_Symbol *end = sym + lim;
6112 for (; sym < end; ++sym)
6114 /* Check if the symbol was created during loadup. In such a case
6115 it might be pointed to by pure bytecode which we don't trace,
6116 so we conservatively assume that it is live. */
6117 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6119 if (!sym->gcmarkbit && !pure_p)
6121 sym->next = symbol_free_list;
6122 symbol_free_list = sym;
6123 #if GC_MARK_STACK
6124 symbol_free_list->function = Vdead;
6125 #endif
6126 ++this_free;
6128 else
6130 ++num_used;
6131 if (!pure_p)
6132 UNMARK_STRING (XSTRING (sym->xname));
6133 sym->gcmarkbit = 0;
6137 lim = SYMBOL_BLOCK_SIZE;
6138 /* If this block contains only free symbols and we have already
6139 seen more than two blocks worth of free symbols then deallocate
6140 this block. */
6141 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6143 *sprev = sblk->next;
6144 /* Unhook from the free list. */
6145 symbol_free_list = sblk->symbols[0].next;
6146 lisp_free (sblk);
6147 n_symbol_blocks--;
6149 else
6151 num_free += this_free;
6152 sprev = &sblk->next;
6155 total_symbols = num_used;
6156 total_free_symbols = num_free;
6159 /* Put all unmarked misc's on free list.
6160 For a marker, first unchain it from the buffer it points into. */
6162 register struct marker_block *mblk;
6163 struct marker_block **mprev = &marker_block;
6164 register int lim = marker_block_index;
6165 register int num_free = 0, num_used = 0;
6167 marker_free_list = 0;
6169 for (mblk = marker_block; mblk; mblk = *mprev)
6171 register int i;
6172 int this_free = 0;
6174 for (i = 0; i < lim; i++)
6176 if (!mblk->markers[i].u_marker.gcmarkbit)
6178 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6179 unchain_marker (&mblk->markers[i].u_marker);
6180 /* Set the type of the freed object to Lisp_Misc_Free.
6181 We could leave the type alone, since nobody checks it,
6182 but this might catch bugs faster. */
6183 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6184 mblk->markers[i].u_free.chain = marker_free_list;
6185 marker_free_list = &mblk->markers[i];
6186 this_free++;
6188 else
6190 num_used++;
6191 mblk->markers[i].u_marker.gcmarkbit = 0;
6194 lim = MARKER_BLOCK_SIZE;
6195 /* If this block contains only free markers and we have already
6196 seen more than two blocks worth of free markers then deallocate
6197 this block. */
6198 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6200 *mprev = mblk->next;
6201 /* Unhook from the free list. */
6202 marker_free_list = mblk->markers[0].u_free.chain;
6203 lisp_free (mblk);
6204 n_marker_blocks--;
6206 else
6208 num_free += this_free;
6209 mprev = &mblk->next;
6213 total_markers = num_used;
6214 total_free_markers = num_free;
6217 /* Free all unmarked buffers */
6219 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6221 while (buffer)
6222 if (!VECTOR_MARKED_P (buffer))
6224 if (prev)
6225 prev->next = buffer->next;
6226 else
6227 all_buffers = buffer->next;
6228 next = buffer->next;
6229 lisp_free (buffer);
6230 buffer = next;
6232 else
6234 VECTOR_UNMARK (buffer);
6235 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6236 prev = buffer, buffer = buffer->next;
6240 /* Free all unmarked vectors */
6242 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6243 total_vector_size = 0;
6245 while (vector)
6246 if (!VECTOR_MARKED_P (vector))
6248 if (prev)
6249 prev->next = vector->next;
6250 else
6251 all_vectors = vector->next;
6252 next = vector->next;
6253 lisp_free (vector);
6254 n_vectors--;
6255 vector = next;
6258 else
6260 VECTOR_UNMARK (vector);
6261 if (vector->size & PSEUDOVECTOR_FLAG)
6262 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6263 else
6264 total_vector_size += vector->size;
6265 prev = vector, vector = vector->next;
6269 #ifdef GC_CHECK_STRING_BYTES
6270 if (!noninteractive)
6271 check_string_bytes (1);
6272 #endif
6278 /* Debugging aids. */
6280 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6281 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6282 This may be helpful in debugging Emacs's memory usage.
6283 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6286 Lisp_Object end;
6288 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6290 return end;
6293 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6294 doc: /* Return a list of counters that measure how much consing there has been.
6295 Each of these counters increments for a certain kind of object.
6296 The counters wrap around from the largest positive integer to zero.
6297 Garbage collection does not decrease them.
6298 The elements of the value are as follows:
6299 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6300 All are in units of 1 = one object consed
6301 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6302 objects consed.
6303 MISCS include overlays, markers, and some internal types.
6304 Frames, windows, buffers, and subprocesses count as vectors
6305 (but the contents of a buffer's text do not count here). */)
6308 Lisp_Object consed[8];
6310 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6311 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6312 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6313 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6314 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6315 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6316 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6317 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6319 return Flist (8, consed);
6322 int suppress_checking;
6323 void
6324 die (msg, file, line)
6325 const char *msg;
6326 const char *file;
6327 int line;
6329 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6330 file, line, msg);
6331 abort ();
6334 /* Initialization */
6336 void
6337 init_alloc_once ()
6339 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6340 purebeg = PUREBEG;
6341 pure_size = PURESIZE;
6342 pure_bytes_used = 0;
6343 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6344 pure_bytes_used_before_overflow = 0;
6346 /* Initialize the list of free aligned blocks. */
6347 free_ablock = NULL;
6349 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6350 mem_init ();
6351 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6352 #endif
6354 all_vectors = 0;
6355 ignore_warnings = 1;
6356 #ifdef DOUG_LEA_MALLOC
6357 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6358 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6359 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6360 #endif
6361 init_strings ();
6362 init_cons ();
6363 init_symbol ();
6364 init_marker ();
6365 init_float ();
6366 init_intervals ();
6368 #ifdef REL_ALLOC
6369 malloc_hysteresis = 32;
6370 #else
6371 malloc_hysteresis = 0;
6372 #endif
6374 refill_memory_reserve ();
6376 ignore_warnings = 0;
6377 gcprolist = 0;
6378 byte_stack_list = 0;
6379 staticidx = 0;
6380 consing_since_gc = 0;
6381 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6382 gc_relative_threshold = 0;
6384 #ifdef VIRT_ADDR_VARIES
6385 malloc_sbrk_unused = 1<<22; /* A large number */
6386 malloc_sbrk_used = 100000; /* as reasonable as any number */
6387 #endif /* VIRT_ADDR_VARIES */
6390 void
6391 init_alloc ()
6393 gcprolist = 0;
6394 byte_stack_list = 0;
6395 #if GC_MARK_STACK
6396 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6397 setjmp_tested_p = longjmps_done = 0;
6398 #endif
6399 #endif
6400 Vgc_elapsed = make_float (0.0);
6401 gcs_done = 0;
6404 void
6405 syms_of_alloc ()
6407 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6408 doc: /* *Number of bytes of consing between garbage collections.
6409 Garbage collection can happen automatically once this many bytes have been
6410 allocated since the last garbage collection. All data types count.
6412 Garbage collection happens automatically only when `eval' is called.
6414 By binding this temporarily to a large number, you can effectively
6415 prevent garbage collection during a part of the program.
6416 See also `gc-cons-percentage'. */);
6418 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6419 doc: /* *Portion of the heap used for allocation.
6420 Garbage collection can happen automatically once this portion of the heap
6421 has been allocated since the last garbage collection.
6422 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6423 Vgc_cons_percentage = make_float (0.1);
6425 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6426 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6428 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6429 doc: /* Number of cons cells that have been consed so far. */);
6431 DEFVAR_INT ("floats-consed", &floats_consed,
6432 doc: /* Number of floats that have been consed so far. */);
6434 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6435 doc: /* Number of vector cells that have been consed so far. */);
6437 DEFVAR_INT ("symbols-consed", &symbols_consed,
6438 doc: /* Number of symbols that have been consed so far. */);
6440 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6441 doc: /* Number of string characters that have been consed so far. */);
6443 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6444 doc: /* Number of miscellaneous objects that have been consed so far. */);
6446 DEFVAR_INT ("intervals-consed", &intervals_consed,
6447 doc: /* Number of intervals that have been consed so far. */);
6449 DEFVAR_INT ("strings-consed", &strings_consed,
6450 doc: /* Number of strings that have been consed so far. */);
6452 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6453 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6454 This means that certain objects should be allocated in shared (pure) space. */);
6456 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6457 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6458 garbage_collection_messages = 0;
6460 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6461 doc: /* Hook run after garbage collection has finished. */);
6462 Vpost_gc_hook = Qnil;
6463 Qpost_gc_hook = intern ("post-gc-hook");
6464 staticpro (&Qpost_gc_hook);
6466 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6467 doc: /* Precomputed `signal' argument for memory-full error. */);
6468 /* We build this in advance because if we wait until we need it, we might
6469 not be able to allocate the memory to hold it. */
6470 Vmemory_signal_data
6471 = list2 (Qerror,
6472 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6474 DEFVAR_LISP ("memory-full", &Vmemory_full,
6475 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6476 Vmemory_full = Qnil;
6478 staticpro (&Qgc_cons_threshold);
6479 Qgc_cons_threshold = intern ("gc-cons-threshold");
6481 staticpro (&Qchar_table_extra_slots);
6482 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6484 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6485 doc: /* Accumulated time elapsed in garbage collections.
6486 The time is in seconds as a floating point value. */);
6487 DEFVAR_INT ("gcs-done", &gcs_done,
6488 doc: /* Accumulated number of garbage collections done. */);
6490 defsubr (&Scons);
6491 defsubr (&Slist);
6492 defsubr (&Svector);
6493 defsubr (&Smake_byte_code);
6494 defsubr (&Smake_list);
6495 defsubr (&Smake_vector);
6496 defsubr (&Smake_char_table);
6497 defsubr (&Smake_string);
6498 defsubr (&Smake_bool_vector);
6499 defsubr (&Smake_symbol);
6500 defsubr (&Smake_marker);
6501 defsubr (&Spurecopy);
6502 defsubr (&Sgarbage_collect);
6503 defsubr (&Smemory_limit);
6504 defsubr (&Smemory_use_counts);
6506 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6507 defsubr (&Sgc_status);
6508 #endif
6511 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6512 (do not change this comment) */