1 /* Low-level bidirectional buffer/string-scanning functions for GNU Emacs.
2 Copyright (C) 2000-2001, 2004-2005, 2009-2014 Free Software
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* Written by Eli Zaretskii <eliz@gnu.org>.
22 A sequential implementation of the Unicode Bidirectional algorithm,
23 (UBA) as per UAX#9, a part of the Unicode Standard.
25 Unlike the Reference Implementation and most other implementations,
26 this one is designed to be called once for every character in the
27 buffer or string. That way, we can leave intact the design of the
28 Emacs display engine, whereby an iterator object is used to
29 traverse buffer or string text character by character, and generate
30 the necessary data for displaying each character in 'struct glyph'
31 objects. (See xdisp.c for the details of that iteration.) The
32 functions on this file replace the original linear iteration in the
33 logical order of the text with a non-linear iteration in the visual
34 order, i.e. in the order characters should be shown on display.
36 The main entry point is bidi_move_to_visually_next. Each time it
37 is called, it finds the next character in the visual order, and
38 returns its information in a special structure. The caller is then
39 expected to process this character for display or any other
40 purposes, and call bidi_move_to_visually_next for the next
41 character. See the comments in bidi_move_to_visually_next for more
42 details about its algorithm that finds the next visual-order
43 character by resolving their levels on the fly.
45 Two other entry points are bidi_paragraph_init and
46 bidi_mirror_char. The first determines the base direction of a
47 paragraph, while the second returns the mirrored version of its
50 A few auxiliary entry points are used to initialize the bidi
51 iterator for iterating an object (buffer or string), push and pop
52 the bidi iterator state, and save and restore the state of the bidi
55 If you want to understand the code, you will have to read it
56 together with the relevant portions of UAX#9. The comments include
57 references to UAX#9 rules, for that very reason.
59 A note about references to UAX#9 rules: if the reference says
60 something like "X9/Retaining", it means that you need to refer to
61 rule X9 and to its modifications described in the "Implementation
62 Notes" section of UAX#9, under "Retaining Format Codes".
64 Here's the overview of the design of the reordering engine
65 implemented by this file.
67 Basic implementation structure
68 ------------------------------
70 The sequential processing steps described by UAX#9 are implemented
71 as recursive levels of processing, all of which examine the next
72 character in the logical order. This hierarchy of processing looks
73 as follows, from the innermost (deepest) to the outermost level,
74 omitting some subroutines used by each level:
76 bidi_fetch_char -- fetch next character
77 bidi_resolve_explicit -- resolve explicit levels and directions
78 bidi_resolve_weak -- resolve weak types
79 bidi_resolve_neutral -- resolve neutral types
80 bidi_level_of_next_char -- resolve implicit levels
82 Each level calls the level below it, and works on the result
83 returned by the lower level, including all of its sub-levels.
85 Unlike all the levels below it, bidi_level_of_next_char can return
86 the information about either the next or previous character in the
87 logical order, depending on the current direction of scanning the
88 buffer or string. For the next character, it calls all the levels
89 below it; for the previous character, it uses the cache, described
92 Thus, the result of calling bidi_level_of_next_char is the resolved
93 level of the next or the previous character in the logical order.
94 Based on this information, the function bidi_move_to_visually_next
95 finds the next character in the visual order and updates the
96 direction in which the buffer is scanned, either forward or
97 backward, to find the next character to be displayed. (Text is
98 scanned backwards when it needs to be reversed for display, i.e. if
99 the visual order is the inverse of the logical order.) This
100 implements the last, reordering steps of the UBA, by successively
101 calling bidi_level_of_next_char until the character of the required
102 embedding level is found; the scan direction is dynamically updated
103 as a side effect. See the commentary before the 'while' loop in
104 bidi_move_to_visually_next, for the details.
109 In a nutshell, fetching the next character boils down to calling
110 STRING_CHAR_AND_LENGTH, passing it the address of a buffer or
111 string position. See bidi_fetch_char. However, if the next
112 character is "covered" by a display property of some kind,
113 bidi_fetch_char returns the u+FFFC "object replacement character"
114 that represents the entire run of text covered by the display
115 property. (The ch_len and nchars members of 'struct bidi_it'
116 reflect the length in bytes and characters of that text.) This is
117 so we reorder text on both sides of the display property as
118 appropriate for an image or embedded string. Similarly, text
119 covered by a display spec of the form '(space ...)', is replaced
120 with the u+2029 paragraph separator character, so such display
121 specs produce the same effect as a TAB under UBA. Both these
122 special characters are not actually displayed -- the display
123 property is displayed instead -- but just used to compute the
124 embedding level of the surrounding text so as to produce the
130 The UBA is highly context dependent in some of its parts,
131 i.e. results of processing a character can generally depend on
132 characters very far away. The UAX#9 description of the UBA
133 prescribes a stateful processing of each character, whereby the
134 results of this processing depend on various state variables, such
135 as the current embedding level, level stack, and directional
136 override status. In addition, the UAX#9 description includes many
137 passages like this (from rule W2 in this case):
139 Search backward from each instance of a European number until the
140 first strong type (R, L, AL, or sos) is found. If an AL is found,
141 change the type of the European number to Arabic number.
143 To support this, we use a bidi iterator object, 'struct bidi_it',
144 which is a sub-structure of 'struct it' used by xdisp.c (see
145 dispextern.h for the definition of both of these structures). The
146 bidi iterator holds the entire state of the iteration required by
147 the UBA, and is updated as the text is traversed. In particular,
148 the embedding level of the current character being resolved is
149 recorded in the iterator state. To avoid costly searches backward
150 in support of rules like W2 above, the necessary character types
151 are also recorded in the iterator state as they are found during
152 the forward scan, and then used when such rules need to be applied.
153 (Forward scans cannot be avoided in this way; they need to be
154 performed at least once, and the results recorded in the iterator
155 state, to be reused until the forward scan oversteps the recorded
158 In this manner, the iterator state acts as a mini-cache of
159 contextual information required for resolving the level of the
160 current character by various UBA rules.
162 Caching of bidi iterator states
163 -------------------------------
165 As described above, the reordering engine uses the information
166 recorded in the bidi iterator state in order to resolve the
167 embedding level of the current character. When the reordering
168 engine needs to process the next character in the logical order, it
169 fetches it and applies to it all the UBA levels, updating the
170 iterator state as it goes. But when the buffer or string is
171 scanned backwards, i.e. in the reverse order of buffer/string
172 positions, the scanned characters were already processed during the
173 preceding forward scan (see bidi_find_other_level_edge). To avoid
174 costly re-processing of characters that were already processed
175 during the forward scan, the iterator states computed while
176 scanning forward are cached.
178 The cache is just a linear array of 'struct bidi_it' objects, which
179 is dynamically allocated and reallocated as needed, since the size
180 of the cache depends on the text being processed. We only need the
181 cache while processing embedded levels higher than the base
182 paragraph embedding level, because these higher levels require
183 changes in scan direction. Therefore, as soon as we are back to
184 the base embedding level, we can free the cache; see the calls to
185 bidi_cache_reset and bidi_cache_shrink, for the conditions to do
188 The cache maintains the index of the next unused cache slot -- this
189 is where the next iterator state will be cached. The function
190 bidi_cache_iterator_state saves an instance of the state in the
191 cache and increments the unused slot index. The companion function
192 bidi_cache_find looks up a cached state that corresponds to a given
193 buffer/string position. All of the cached states must correspond
194 1:1 to the buffer or string region whose processing they reflect;
195 bidi.c will abort if it finds cache slots that violate this 1:1
198 When the parent iterator 'struct it' is pushed (see push_it in
199 xdisp.c) to pause the current iteration and start iterating over a
200 different object (e.g., a 'display' string that covers some buffer
201 text), the bidi iterator cache needs to be "pushed" as well, so
202 that a new empty cache could be used while iterating over the new
203 object. Later, when the new object is exhausted, and xdisp.c calls
204 pop_it, we need to "pop" the bidi cache as well and return to the
205 original cache. See bidi_push_it and bidi_pop_it for how this is
208 Some functions of the display engine save copies of 'struct it' in
209 local variables, and restore them later. For examples, see
210 pos_visible_p and move_it_in_display_line_to in xdisp.c, and
211 window_scroll_pixel_based in window.c. When this happens, we need
212 to save and restore the bidi cache as well, because conceptually
213 the cache is part of the 'struct it' state, and needs to be in
214 perfect sync with the portion of the buffer/string that is being
215 processed. This saving and restoring of the cache state is handled
216 by bidi_shelve_cache and bidi_unshelve_cache, and the helper macros
217 SAVE_IT and RESTORE_IT defined on xdisp.c.
219 Note that, because reordering is implemented below the level in
220 xdisp.c that breaks glyphs into screen lines, we are violating
221 paragraph 3.4 of UAX#9. which mandates that line breaking shall be
222 done before reordering each screen line separately. However,
223 following UAX#9 to the letter in this matter goes against the basic
224 design of the Emacs display engine, and so we choose here this
225 minor deviation from the UBA letter in preference to redesign of
226 the display engine. The effect of this is only seen in continued
227 lines that are broken into screen lines in the middle of a run
228 whose direction is opposite to the paragraph's base direction.
230 Important design and implementation note: when the code needs to
231 scan far ahead, be sure to avoid such scans as much as possible
232 when the buffer/string doesn't contain any RTL characters. Users
233 of left-to-right scripts will never forgive you if you introduce
234 some slow-down due to bidi in situations that don't involve any
235 bidirectional text. See the large comment near the beginning of
236 bidi_resolve_neutral, for one situation where such shortcut was
243 #include "character.h"
245 #include "dispextern.h"
246 #include "region-cache.h"
248 static bool bidi_initialized
= 0;
250 static Lisp_Object bidi_type_table
, bidi_mirror_table
;
252 #define BIDI_EOB (-1)
254 /* Data type for describing the bidirectional character categories. */
263 /* UAX#9 says to search only for L, AL, or R types of characters, and
264 ignore RLE, RLO, LRE, and LRO, when determining the base paragraph
265 level. Yudit indeed ignores them. This variable is therefore set
266 by default to ignore them, but clearing it will take them into
268 extern bool bidi_ignore_explicit_marks_for_paragraph_level EXTERNALLY_VISIBLE
;
269 bool bidi_ignore_explicit_marks_for_paragraph_level
= 1;
271 static Lisp_Object paragraph_start_re
, paragraph_separate_re
;
272 static Lisp_Object Qparagraph_start
, Qparagraph_separate
;
275 /***********************************************************************
277 ***********************************************************************/
279 /* Return the bidi type of a character CH, subject to the current
280 directional OVERRIDE. */
282 bidi_get_type (int ch
, bidi_dir_t override
)
284 bidi_type_t default_type
;
288 if (ch
< 0 || ch
> MAX_CHAR
)
291 default_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
292 /* Every valid character code, even those that are unassigned by the
293 UCD, have some bidi-class property, according to
294 DerivedBidiClass.txt file. Therefore, if we ever get UNKNOWN_BT
295 (= zero) code from CHAR_TABLE_REF, that's a bug. */
296 if (default_type
== UNKNOWN_BT
)
299 switch (default_type
)
309 /* FIXME: The isolate controls are treated as BN until we add
310 support for UBA v6.3. */
319 else if (override
== R2L
)
327 bidi_check_type (bidi_type_t type
)
329 eassert (UNKNOWN_BT
<= type
&& type
<= NEUTRAL_ON
);
332 /* Given a bidi TYPE of a character, return its category. */
333 static bidi_category_t
334 bidi_get_category (bidi_type_t type
)
368 /* FIXME: This awaits implementation of isolate support. */
374 return EXPLICIT_FORMATTING
;
380 /* Return the mirrored character of C, if it has one. If C has no
381 mirrored counterpart, return C.
382 Note: The conditions in UAX#9 clause L4 regarding the surrounding
383 context must be tested by the caller. */
385 bidi_mirror_char (int c
)
391 if (c
< 0 || c
> MAX_CHAR
)
394 val
= CHAR_TABLE_REF (bidi_mirror_table
, c
);
399 /* When debugging, check before assigning to V, so that the check
400 isn't broken by undefined behavior due to int overflow. */
401 eassert (CHAR_VALID_P (XINT (val
)));
405 /* Minimal test we must do in optimized builds, to prevent weird
406 crashes further down the road. */
407 if (v
< 0 || v
> MAX_CHAR
)
416 /* Determine the start-of-run (sor) directional type given the two
417 embedding levels on either side of the run boundary. Also, update
418 the saved info about previously seen characters, since that info is
419 generally valid for a single level run. */
421 bidi_set_sor_type (struct bidi_it
*bidi_it
, int level_before
, int level_after
)
423 int higher_level
= (level_before
> level_after
? level_before
: level_after
);
425 /* The prev_was_pdf gork is required for when we have several PDFs
426 in a row. In that case, we want to compute the sor type for the
427 next level run only once: when we see the first PDF. That's
428 because the sor type depends only on the higher of the two levels
429 that we find on the two sides of the level boundary (see UAX#9,
430 clause X10), and so we don't need to know the final embedding
431 level to which we descend after processing all the PDFs. */
432 if (!bidi_it
->prev_was_pdf
|| level_before
< level_after
)
433 /* FIXME: should the default sor direction be user selectable? */
434 bidi_it
->sor
= ((higher_level
& 1) != 0 ? R2L
: L2R
);
435 if (level_before
> level_after
)
436 bidi_it
->prev_was_pdf
= 1;
438 bidi_it
->prev
.type
= UNKNOWN_BT
;
439 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
440 = bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
441 bidi_it
->prev_for_neutral
.type
= (bidi_it
->sor
== R2L
? STRONG_R
: STRONG_L
);
442 bidi_it
->prev_for_neutral
.charpos
= bidi_it
->charpos
;
443 bidi_it
->prev_for_neutral
.bytepos
= bidi_it
->bytepos
;
444 bidi_it
->next_for_neutral
.type
= bidi_it
->next_for_neutral
.type_after_w1
445 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
446 bidi_it
->ignore_bn_limit
= -1; /* meaning it's unknown */
449 /* Push the current embedding level and override status; reset the
450 current level to LEVEL and the current override status to OVERRIDE. */
452 bidi_push_embedding_level (struct bidi_it
*bidi_it
,
453 int level
, bidi_dir_t override
)
455 bidi_it
->stack_idx
++;
456 eassert (bidi_it
->stack_idx
< BIDI_MAXLEVEL
);
457 bidi_it
->level_stack
[bidi_it
->stack_idx
].level
= level
;
458 bidi_it
->level_stack
[bidi_it
->stack_idx
].override
= override
;
461 /* Pop the embedding level and directional override status from the
462 stack, and return the new level. */
464 bidi_pop_embedding_level (struct bidi_it
*bidi_it
)
466 /* UAX#9 says to ignore invalid PDFs. */
467 if (bidi_it
->stack_idx
> 0)
468 bidi_it
->stack_idx
--;
469 return bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
472 /* Record in SAVED_INFO the information about the current character. */
474 bidi_remember_char (struct bidi_saved_info
*saved_info
,
475 struct bidi_it
*bidi_it
)
477 saved_info
->charpos
= bidi_it
->charpos
;
478 saved_info
->bytepos
= bidi_it
->bytepos
;
479 saved_info
->type
= bidi_it
->type
;
480 bidi_check_type (bidi_it
->type
);
481 saved_info
->type_after_w1
= bidi_it
->type_after_w1
;
482 bidi_check_type (bidi_it
->type_after_w1
);
483 saved_info
->orig_type
= bidi_it
->orig_type
;
484 bidi_check_type (bidi_it
->orig_type
);
487 /* Copy the bidi iterator from FROM to TO. To save cycles, this only
488 copies the part of the level stack that is actually in use. */
490 bidi_copy_it (struct bidi_it
*to
, struct bidi_it
*from
)
492 /* Copy everything from the start through the active part of
495 (offsetof (struct bidi_it
, level_stack
[1])
496 + from
->stack_idx
* sizeof from
->level_stack
[0]));
500 /***********************************************************************
501 Caching the bidi iterator states
502 ***********************************************************************/
504 #define BIDI_CACHE_CHUNK 200
505 static struct bidi_it
*bidi_cache
;
506 static ptrdiff_t bidi_cache_size
= 0;
507 enum { elsz
= sizeof (struct bidi_it
) };
508 static ptrdiff_t bidi_cache_idx
; /* next unused cache slot */
509 static ptrdiff_t bidi_cache_last_idx
; /* slot of last cache hit */
510 static ptrdiff_t bidi_cache_start
= 0; /* start of cache for this
513 /* 5-slot stack for saving the start of the previous level of the
514 cache. xdisp.c maintains a 5-slot stack for its iterator state,
515 and we need the same size of our stack. */
516 static ptrdiff_t bidi_cache_start_stack
[IT_STACK_SIZE
];
517 static int bidi_cache_sp
;
519 /* Size of header used by bidi_shelve_cache. */
522 bidi_shelve_header_size
523 = (sizeof (bidi_cache_idx
) + sizeof (bidi_cache_start_stack
)
524 + sizeof (bidi_cache_sp
) + sizeof (bidi_cache_start
)
525 + sizeof (bidi_cache_last_idx
))
528 /* Reset the cache state to the empty state. We only reset the part
529 of the cache relevant to iteration of the current object. Previous
530 objects, which are pushed on the display iterator's stack, are left
531 intact. This is called when the cached information is no more
532 useful for the current iteration, e.g. when we were reseated to a
533 new position on the same object. */
535 bidi_cache_reset (void)
537 bidi_cache_idx
= bidi_cache_start
;
538 bidi_cache_last_idx
= -1;
541 /* Shrink the cache to its minimal size. Called when we init the bidi
542 iterator for reordering a buffer or a string that does not come
543 from display properties, because that means all the previously
544 cached info is of no further use. */
546 bidi_cache_shrink (void)
548 if (bidi_cache_size
> BIDI_CACHE_CHUNK
)
550 bidi_cache
= xrealloc (bidi_cache
, BIDI_CACHE_CHUNK
* elsz
);
551 bidi_cache_size
= BIDI_CACHE_CHUNK
;
557 bidi_cache_fetch_state (ptrdiff_t idx
, struct bidi_it
*bidi_it
)
559 int current_scan_dir
= bidi_it
->scan_dir
;
561 if (idx
< bidi_cache_start
|| idx
>= bidi_cache_idx
)
564 bidi_copy_it (bidi_it
, &bidi_cache
[idx
]);
565 bidi_it
->scan_dir
= current_scan_dir
;
566 bidi_cache_last_idx
= idx
;
569 /* Find a cached state with a given CHARPOS and resolved embedding
570 level less or equal to LEVEL. if LEVEL is -1, disregard the
571 resolved levels in cached states. DIR, if non-zero, means search
572 in that direction from the last cache hit. */
574 bidi_cache_search (ptrdiff_t charpos
, int level
, int dir
)
576 ptrdiff_t i
, i_start
;
578 if (bidi_cache_idx
> bidi_cache_start
)
580 if (bidi_cache_last_idx
== -1)
581 bidi_cache_last_idx
= bidi_cache_idx
- 1;
582 if (charpos
< bidi_cache
[bidi_cache_last_idx
].charpos
)
585 i_start
= bidi_cache_last_idx
- 1;
587 else if (charpos
> (bidi_cache
[bidi_cache_last_idx
].charpos
588 + bidi_cache
[bidi_cache_last_idx
].nchars
- 1))
591 i_start
= bidi_cache_last_idx
+ 1;
594 i_start
= bidi_cache_last_idx
;
598 i_start
= bidi_cache_idx
- 1;
603 /* Linear search for now; FIXME! */
604 for (i
= i_start
; i
>= bidi_cache_start
; i
--)
605 if (bidi_cache
[i
].charpos
<= charpos
606 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
607 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
612 for (i
= i_start
; i
< bidi_cache_idx
; i
++)
613 if (bidi_cache
[i
].charpos
<= charpos
614 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
615 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
623 /* Find a cached state where the resolved level changes to a value
624 that is lower than LEVEL, and return its cache slot index. DIR is
625 the direction to search, starting with the last used cache slot.
626 If DIR is zero, we search backwards from the last occupied cache
627 slot. BEFORE means return the index of the slot that
628 is ``before'' the level change in the search direction. That is,
629 given the cached levels like this:
634 and assuming we are at the position cached at the slot marked with
635 C, searching backwards (DIR = -1) for LEVEL = 2 will return the
636 index of slot B or A, depending whether BEFORE is, respectively,
639 bidi_cache_find_level_change (int level
, int dir
, bool before
)
643 ptrdiff_t i
= dir
? bidi_cache_last_idx
: bidi_cache_idx
- 1;
644 int incr
= before
? 1 : 0;
646 eassert (!dir
|| bidi_cache_last_idx
>= 0);
655 while (i
>= bidi_cache_start
+ incr
)
657 if (bidi_cache
[i
- incr
].resolved_level
>= 0
658 && bidi_cache
[i
- incr
].resolved_level
< level
)
665 while (i
< bidi_cache_idx
- incr
)
667 if (bidi_cache
[i
+ incr
].resolved_level
>= 0
668 && bidi_cache
[i
+ incr
].resolved_level
< level
)
679 bidi_cache_ensure_space (ptrdiff_t idx
)
681 /* Enlarge the cache as needed. */
682 if (idx
>= bidi_cache_size
)
684 /* The bidi cache cannot be larger than the largest Lisp string
686 ptrdiff_t string_or_buffer_bound
687 = max (BUF_BYTES_MAX
, STRING_BYTES_BOUND
);
689 /* Also, it cannot be larger than what C can represent. */
691 = (min (PTRDIFF_MAX
, SIZE_MAX
) - bidi_shelve_header_size
) / elsz
;
694 = xpalloc (bidi_cache
, &bidi_cache_size
,
695 max (BIDI_CACHE_CHUNK
, idx
- bidi_cache_size
+ 1),
696 min (string_or_buffer_bound
, c_bound
), elsz
);
701 bidi_cache_iterator_state (struct bidi_it
*bidi_it
, bool resolved
)
705 /* We should never cache on backward scans. */
706 if (bidi_it
->scan_dir
== -1)
708 idx
= bidi_cache_search (bidi_it
->charpos
, -1, 1);
712 idx
= bidi_cache_idx
;
713 bidi_cache_ensure_space (idx
);
714 /* Character positions should correspond to cache positions 1:1.
715 If we are outside the range of cached positions, the cache is
716 useless and must be reset. */
717 if (idx
> bidi_cache_start
&&
718 (bidi_it
->charpos
> (bidi_cache
[idx
- 1].charpos
719 + bidi_cache
[idx
- 1].nchars
)
720 || bidi_it
->charpos
< bidi_cache
[bidi_cache_start
].charpos
))
723 idx
= bidi_cache_start
;
725 if (bidi_it
->nchars
<= 0)
727 bidi_copy_it (&bidi_cache
[idx
], bidi_it
);
729 bidi_cache
[idx
].resolved_level
= -1;
733 /* Copy only the members which could have changed, to avoid
734 costly copying of the entire struct. */
735 bidi_cache
[idx
].type
= bidi_it
->type
;
736 bidi_check_type (bidi_it
->type
);
737 bidi_cache
[idx
].type_after_w1
= bidi_it
->type_after_w1
;
738 bidi_check_type (bidi_it
->type_after_w1
);
740 bidi_cache
[idx
].resolved_level
= bidi_it
->resolved_level
;
742 bidi_cache
[idx
].resolved_level
= -1;
743 bidi_cache
[idx
].invalid_levels
= bidi_it
->invalid_levels
;
744 bidi_cache
[idx
].invalid_rl_levels
= bidi_it
->invalid_rl_levels
;
745 bidi_cache
[idx
].next_for_neutral
= bidi_it
->next_for_neutral
;
746 bidi_cache
[idx
].next_for_ws
= bidi_it
->next_for_ws
;
747 bidi_cache
[idx
].ignore_bn_limit
= bidi_it
->ignore_bn_limit
;
748 bidi_cache
[idx
].disp_pos
= bidi_it
->disp_pos
;
749 bidi_cache
[idx
].disp_prop
= bidi_it
->disp_prop
;
752 bidi_cache_last_idx
= idx
;
753 if (idx
>= bidi_cache_idx
)
754 bidi_cache_idx
= idx
+ 1;
758 bidi_cache_find (ptrdiff_t charpos
, int level
, struct bidi_it
*bidi_it
)
760 ptrdiff_t i
= bidi_cache_search (charpos
, level
, bidi_it
->scan_dir
);
762 if (i
>= bidi_cache_start
)
764 bidi_dir_t current_scan_dir
= bidi_it
->scan_dir
;
766 bidi_copy_it (bidi_it
, &bidi_cache
[i
]);
767 bidi_cache_last_idx
= i
;
768 /* Don't let scan direction from the cached state override
769 the current scan direction. */
770 bidi_it
->scan_dir
= current_scan_dir
;
771 return bidi_it
->type
;
778 bidi_peek_at_next_level (struct bidi_it
*bidi_it
)
780 if (bidi_cache_idx
== bidi_cache_start
|| bidi_cache_last_idx
== -1)
782 return bidi_cache
[bidi_cache_last_idx
+ bidi_it
->scan_dir
].resolved_level
;
786 /***********************************************************************
787 Pushing and popping the bidi iterator state
788 ***********************************************************************/
790 /* Push the bidi iterator state in preparation for reordering a
791 different object, e.g. display string found at certain buffer
792 position. Pushing the bidi iterator boils down to saving its
793 entire state on the cache and starting a new cache "stacked" on top
794 of the current cache. */
796 bidi_push_it (struct bidi_it
*bidi_it
)
798 /* Save the current iterator state in its entirety after the last
800 bidi_cache_ensure_space (bidi_cache_idx
);
801 bidi_cache
[bidi_cache_idx
++] = *bidi_it
;
803 /* Push the current cache start onto the stack. */
804 eassert (bidi_cache_sp
< IT_STACK_SIZE
);
805 bidi_cache_start_stack
[bidi_cache_sp
++] = bidi_cache_start
;
807 /* Start a new level of cache, and make it empty. */
808 bidi_cache_start
= bidi_cache_idx
;
809 bidi_cache_last_idx
= -1;
812 /* Restore the iterator state saved by bidi_push_it and return the
813 cache to the corresponding state. */
815 bidi_pop_it (struct bidi_it
*bidi_it
)
817 if (bidi_cache_start
<= 0)
820 /* Reset the next free cache slot index to what it was before the
821 call to bidi_push_it. */
822 bidi_cache_idx
= bidi_cache_start
- 1;
824 /* Restore the bidi iterator state saved in the cache. */
825 *bidi_it
= bidi_cache
[bidi_cache_idx
];
827 /* Pop the previous cache start from the stack. */
828 if (bidi_cache_sp
<= 0)
830 bidi_cache_start
= bidi_cache_start_stack
[--bidi_cache_sp
];
832 /* Invalidate the last-used cache slot data. */
833 bidi_cache_last_idx
= -1;
836 static ptrdiff_t bidi_cache_total_alloc
;
838 /* Stash away a copy of the cache and its control variables. */
840 bidi_shelve_cache (void)
842 unsigned char *databuf
;
846 if (bidi_cache_idx
== 0)
849 alloc
= (bidi_shelve_header_size
850 + bidi_cache_idx
* sizeof (struct bidi_it
));
851 databuf
= xmalloc (alloc
);
852 bidi_cache_total_alloc
+= alloc
;
854 memcpy (databuf
, &bidi_cache_idx
, sizeof (bidi_cache_idx
));
855 memcpy (databuf
+ sizeof (bidi_cache_idx
),
856 bidi_cache
, bidi_cache_idx
* sizeof (struct bidi_it
));
857 memcpy (databuf
+ sizeof (bidi_cache_idx
)
858 + bidi_cache_idx
* sizeof (struct bidi_it
),
859 bidi_cache_start_stack
, sizeof (bidi_cache_start_stack
));
860 memcpy (databuf
+ sizeof (bidi_cache_idx
)
861 + bidi_cache_idx
* sizeof (struct bidi_it
)
862 + sizeof (bidi_cache_start_stack
),
863 &bidi_cache_sp
, sizeof (bidi_cache_sp
));
864 memcpy (databuf
+ sizeof (bidi_cache_idx
)
865 + bidi_cache_idx
* sizeof (struct bidi_it
)
866 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
867 &bidi_cache_start
, sizeof (bidi_cache_start
));
868 memcpy (databuf
+ sizeof (bidi_cache_idx
)
869 + bidi_cache_idx
* sizeof (struct bidi_it
)
870 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
871 + sizeof (bidi_cache_start
),
872 &bidi_cache_last_idx
, sizeof (bidi_cache_last_idx
));
877 /* Restore the cache state from a copy stashed away by
878 bidi_shelve_cache, and free the buffer used to stash that copy.
879 JUST_FREE means free the buffer, but don't restore the
880 cache; used when the corresponding iterator is discarded instead of
883 bidi_unshelve_cache (void *databuf
, bool just_free
)
885 unsigned char *p
= databuf
;
891 /* A NULL pointer means an empty cache. */
892 bidi_cache_start
= 0;
903 memcpy (&idx
, p
, sizeof (bidi_cache_idx
));
904 bidi_cache_total_alloc
905 -= bidi_shelve_header_size
+ idx
* sizeof (struct bidi_it
);
909 memcpy (&bidi_cache_idx
, p
, sizeof (bidi_cache_idx
));
910 bidi_cache_ensure_space (bidi_cache_idx
);
911 memcpy (bidi_cache
, p
+ sizeof (bidi_cache_idx
),
912 bidi_cache_idx
* sizeof (struct bidi_it
));
913 memcpy (bidi_cache_start_stack
,
914 p
+ sizeof (bidi_cache_idx
)
915 + bidi_cache_idx
* sizeof (struct bidi_it
),
916 sizeof (bidi_cache_start_stack
));
917 memcpy (&bidi_cache_sp
,
918 p
+ sizeof (bidi_cache_idx
)
919 + bidi_cache_idx
* sizeof (struct bidi_it
)
920 + sizeof (bidi_cache_start_stack
),
921 sizeof (bidi_cache_sp
));
922 memcpy (&bidi_cache_start
,
923 p
+ sizeof (bidi_cache_idx
)
924 + bidi_cache_idx
* sizeof (struct bidi_it
)
925 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
926 sizeof (bidi_cache_start
));
927 memcpy (&bidi_cache_last_idx
,
928 p
+ sizeof (bidi_cache_idx
)
929 + bidi_cache_idx
* sizeof (struct bidi_it
)
930 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
931 + sizeof (bidi_cache_start
),
932 sizeof (bidi_cache_last_idx
));
933 bidi_cache_total_alloc
934 -= (bidi_shelve_header_size
935 + bidi_cache_idx
* sizeof (struct bidi_it
));
943 /***********************************************************************
945 ***********************************************************************/
947 bidi_initialize (void)
949 bidi_type_table
= uniprop_table (intern ("bidi-class"));
950 if (NILP (bidi_type_table
))
952 staticpro (&bidi_type_table
);
954 bidi_mirror_table
= uniprop_table (intern ("mirroring"));
955 if (NILP (bidi_mirror_table
))
957 staticpro (&bidi_mirror_table
);
959 Qparagraph_start
= intern ("paragraph-start");
960 staticpro (&Qparagraph_start
);
961 paragraph_start_re
= Fsymbol_value (Qparagraph_start
);
962 if (!STRINGP (paragraph_start_re
))
963 paragraph_start_re
= build_string ("\f\\|[ \t]*$");
964 staticpro (¶graph_start_re
);
965 Qparagraph_separate
= intern ("paragraph-separate");
966 staticpro (&Qparagraph_separate
);
967 paragraph_separate_re
= Fsymbol_value (Qparagraph_separate
);
968 if (!STRINGP (paragraph_separate_re
))
969 paragraph_separate_re
= build_string ("[ \t\f]*$");
970 staticpro (¶graph_separate_re
);
973 bidi_cache_total_alloc
= 0;
975 bidi_initialized
= 1;
978 /* Do whatever UAX#9 clause X8 says should be done at paragraph's
981 bidi_set_paragraph_end (struct bidi_it
*bidi_it
)
983 bidi_it
->invalid_levels
= 0;
984 bidi_it
->invalid_rl_levels
= -1;
985 bidi_it
->stack_idx
= 0;
986 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
989 /* Initialize the bidi iterator from buffer/string position CHARPOS. */
991 bidi_init_it (ptrdiff_t charpos
, ptrdiff_t bytepos
, bool frame_window_p
,
992 struct bidi_it
*bidi_it
)
994 if (! bidi_initialized
)
997 bidi_it
->charpos
= charpos
;
999 bidi_it
->bytepos
= bytepos
;
1000 bidi_it
->frame_window_p
= frame_window_p
;
1001 bidi_it
->nchars
= -1; /* to be computed in bidi_resolve_explicit_1 */
1002 bidi_it
->first_elt
= 1;
1003 bidi_set_paragraph_end (bidi_it
);
1004 bidi_it
->new_paragraph
= 1;
1005 bidi_it
->separator_limit
= -1;
1006 bidi_it
->type
= NEUTRAL_B
;
1007 bidi_it
->type_after_w1
= NEUTRAL_B
;
1008 bidi_it
->orig_type
= NEUTRAL_B
;
1009 bidi_it
->prev_was_pdf
= 0;
1010 bidi_it
->prev
.type
= bidi_it
->prev
.type_after_w1
1011 = bidi_it
->prev
.orig_type
= UNKNOWN_BT
;
1012 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.type_after_w1
1013 = bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
1014 bidi_it
->next_for_neutral
.charpos
= -1;
1015 bidi_it
->next_for_neutral
.type
1016 = bidi_it
->next_for_neutral
.type_after_w1
1017 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
1018 bidi_it
->prev_for_neutral
.charpos
= -1;
1019 bidi_it
->prev_for_neutral
.type
1020 = bidi_it
->prev_for_neutral
.type_after_w1
1021 = bidi_it
->prev_for_neutral
.orig_type
= UNKNOWN_BT
;
1022 bidi_it
->sor
= L2R
; /* FIXME: should it be user-selectable? */
1023 bidi_it
->disp_pos
= -1; /* invalid/unknown */
1024 bidi_it
->disp_prop
= 0;
1025 /* We can only shrink the cache if we are at the bottom level of its
1027 if (bidi_cache_start
== 0)
1028 bidi_cache_shrink ();
1030 bidi_cache_reset ();
1033 /* Perform initializations for reordering a new line of bidi text. */
1035 bidi_line_init (struct bidi_it
*bidi_it
)
1037 bidi_it
->scan_dir
= 1; /* FIXME: do we need to have control on this? */
1038 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
1039 bidi_it
->level_stack
[0].override
= NEUTRAL_DIR
; /* X1 */
1040 bidi_it
->invalid_levels
= 0;
1041 bidi_it
->invalid_rl_levels
= -1;
1042 /* Setting this to zero will force its recomputation the first time
1043 we need it for W5. */
1044 bidi_it
->next_en_pos
= 0;
1045 bidi_it
->next_en_type
= UNKNOWN_BT
;
1046 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
1047 bidi_set_sor_type (bidi_it
,
1048 (bidi_it
->paragraph_dir
== R2L
? 1 : 0),
1049 bidi_it
->level_stack
[0].level
); /* X10 */
1051 bidi_cache_reset ();
1055 /***********************************************************************
1057 ***********************************************************************/
1059 /* Count bytes in string S between BEG/BEGBYTE and END. BEG and END
1060 are zero-based character positions in S, BEGBYTE is byte position
1061 corresponding to BEG. UNIBYTE means S is a unibyte string. */
1063 bidi_count_bytes (const unsigned char *s
, ptrdiff_t beg
,
1064 ptrdiff_t begbyte
, ptrdiff_t end
, bool unibyte
)
1066 ptrdiff_t pos
= beg
;
1067 const unsigned char *p
= s
+ begbyte
, *start
= p
;
1073 if (!CHAR_HEAD_P (*p
))
1078 p
+= BYTES_BY_CHAR_HEAD (*p
);
1086 /* Fetch and return the character at byte position BYTEPOS. If S is
1087 non-NULL, fetch the character from string S; otherwise fetch the
1088 character from the current buffer. UNIBYTE means S is a
1091 bidi_char_at_pos (ptrdiff_t bytepos
, const unsigned char *s
, bool unibyte
)
1100 s
= BYTE_POS_ADDR (bytepos
);
1101 return STRING_CHAR (s
);
1104 /* Fetch and return the character at CHARPOS/BYTEPOS. If that
1105 character is covered by a display string, treat the entire run of
1106 covered characters as a single character, either u+2029 or u+FFFC,
1107 and return their combined length in CH_LEN and NCHARS. DISP_POS
1108 specifies the character position of the next display string, or -1
1109 if not yet computed. When the next character is at or beyond that
1110 position, the function updates DISP_POS with the position of the
1111 next display string. *DISP_PROP non-zero means that there's really
1112 a display string at DISP_POS, as opposed to when we searched till
1113 DISP_POS without finding one. If *DISP_PROP is 2, it means the
1114 display spec is of the form `(space ...)', which is replaced with
1115 u+2029 to handle it as a paragraph separator. STRING->s is the C
1116 string to iterate, or NULL if iterating over a buffer or a Lisp
1117 string; in the latter case, STRING->lstring is the Lisp string. */
1119 bidi_fetch_char (ptrdiff_t charpos
, ptrdiff_t bytepos
, ptrdiff_t *disp_pos
,
1120 int *disp_prop
, struct bidi_string_data
*string
,
1122 bool frame_window_p
, ptrdiff_t *ch_len
, ptrdiff_t *nchars
)
1126 = (string
->s
|| STRINGP (string
->lstring
)) ? string
->schars
: ZV
;
1127 struct text_pos pos
;
1130 /* If we got past the last known position of display string, compute
1131 the position of the next one. That position could be at CHARPOS. */
1132 if (charpos
< endpos
&& charpos
> *disp_pos
)
1134 SET_TEXT_POS (pos
, charpos
, bytepos
);
1135 *disp_pos
= compute_display_string_pos (&pos
, string
, w
, frame_window_p
,
1139 /* Fetch the character at BYTEPOS. */
1140 if (charpos
>= endpos
)
1148 else if (charpos
>= *disp_pos
&& *disp_prop
)
1150 ptrdiff_t disp_end_pos
;
1152 /* We don't expect to find ourselves in the middle of a display
1153 property. Hopefully, it will never be needed. */
1154 if (charpos
> *disp_pos
)
1156 /* Text covered by `display' properties and overlays with
1157 display properties or display strings is handled as a single
1158 character that represents the entire run of characters
1159 covered by the display property. */
1160 if (*disp_prop
== 2)
1162 /* `(space ...)' display specs are handled as paragraph
1163 separators for the purposes of the reordering; see UAX#9
1164 section 3 and clause HL1 in section 4.3 there. */
1169 /* All other display specs are handled as the Unicode Object
1170 Replacement Character. */
1173 disp_end_pos
= compute_display_string_end (*disp_pos
, string
);
1174 if (disp_end_pos
< 0)
1176 /* Somebody removed the display string from the buffer
1177 behind our back. Recover by processing this buffer
1178 position as if no display property were present there to
1183 *nchars
= disp_end_pos
- *disp_pos
;
1187 *ch_len
= bidi_count_bytes (string
->s
, *disp_pos
, bytepos
,
1188 disp_end_pos
, string
->unibyte
);
1189 else if (STRINGP (string
->lstring
))
1190 *ch_len
= bidi_count_bytes (SDATA (string
->lstring
), *disp_pos
,
1191 bytepos
, disp_end_pos
, string
->unibyte
);
1193 *ch_len
= CHAR_TO_BYTE (disp_end_pos
) - bytepos
;
1201 if (!string
->unibyte
)
1203 ch
= STRING_CHAR_AND_LENGTH (string
->s
+ bytepos
, len
);
1208 ch
= UNIBYTE_TO_CHAR (string
->s
[bytepos
]);
1212 else if (STRINGP (string
->lstring
))
1214 if (!string
->unibyte
)
1216 ch
= STRING_CHAR_AND_LENGTH (SDATA (string
->lstring
) + bytepos
,
1222 ch
= UNIBYTE_TO_CHAR (SREF (string
->lstring
, bytepos
));
1228 ch
= STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (bytepos
), len
);
1234 /* If we just entered a run of characters covered by a display
1235 string, compute the position of the next display string. */
1236 if (charpos
+ *nchars
<= endpos
&& charpos
+ *nchars
> *disp_pos
1239 SET_TEXT_POS (pos
, charpos
+ *nchars
, bytepos
+ *ch_len
);
1240 *disp_pos
= compute_display_string_pos (&pos
, string
, w
, frame_window_p
,
1248 /***********************************************************************
1249 Determining paragraph direction
1250 ***********************************************************************/
1252 /* Check if buffer position CHARPOS/BYTEPOS is the end of a paragraph.
1253 Value is the non-negative length of the paragraph separator
1254 following the buffer position, -1 if position is at the beginning
1255 of a new paragraph, or -2 if position is neither at beginning nor
1256 at end of a paragraph. */
1258 bidi_at_paragraph_end (ptrdiff_t charpos
, ptrdiff_t bytepos
)
1261 Lisp_Object start_re
;
1264 sep_re
= paragraph_separate_re
;
1265 start_re
= paragraph_start_re
;
1267 val
= fast_looking_at (sep_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
);
1270 if (fast_looking_at (start_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
) >= 0)
1279 /* If the user has requested the long scans caching, make sure that
1280 BIDI cache is enabled. Otherwise, make sure it's disabled. */
1282 static struct region_cache
*
1283 bidi_paragraph_cache_on_off (void)
1285 struct buffer
*cache_buffer
= current_buffer
;
1286 bool indirect_p
= false;
1288 /* For indirect buffers, make sure to use the cache of their base
1290 if (cache_buffer
->base_buffer
)
1292 cache_buffer
= cache_buffer
->base_buffer
;
1296 /* Don't turn on or off the cache in the base buffer, if the value
1297 of cache-long-scans of the base buffer is inconsistent with that.
1298 This is because doing so will just make the cache pure overhead,
1299 since if we turn it on via indirect buffer, it will be
1300 immediately turned off by its base buffer. */
1301 if (NILP (BVAR (current_buffer
, cache_long_scans
)))
1304 || NILP (BVAR (cache_buffer
, cache_long_scans
)))
1306 if (cache_buffer
->bidi_paragraph_cache
)
1308 free_region_cache (cache_buffer
->bidi_paragraph_cache
);
1309 cache_buffer
->bidi_paragraph_cache
= 0;
1317 || !NILP (BVAR (cache_buffer
, cache_long_scans
)))
1319 if (!cache_buffer
->bidi_paragraph_cache
)
1320 cache_buffer
->bidi_paragraph_cache
= new_region_cache ();
1322 return cache_buffer
->bidi_paragraph_cache
;
1326 /* On my 2005-vintage machine, searching back for paragraph start
1327 takes ~1 ms per line. And bidi_paragraph_init is called 4 times
1328 when user types C-p. The number below limits each call to
1329 bidi_paragraph_init to about 10 ms. */
1330 #define MAX_PARAGRAPH_SEARCH 7500
1332 /* Find the beginning of this paragraph by looking back in the buffer.
1333 Value is the byte position of the paragraph's beginning, or
1334 BEGV_BYTE if paragraph_start_re is still not found after looking
1335 back MAX_PARAGRAPH_SEARCH lines in the buffer. */
1337 bidi_find_paragraph_start (ptrdiff_t pos
, ptrdiff_t pos_byte
)
1339 Lisp_Object re
= paragraph_start_re
;
1340 ptrdiff_t limit
= ZV
, limit_byte
= ZV_BYTE
;
1341 struct region_cache
*bpc
= bidi_paragraph_cache_on_off ();
1342 ptrdiff_t n
= 0, oldpos
= pos
, next
;
1343 struct buffer
*cache_buffer
= current_buffer
;
1345 if (cache_buffer
->base_buffer
)
1346 cache_buffer
= cache_buffer
->base_buffer
;
1348 while (pos_byte
> BEGV_BYTE
1349 && n
++ < MAX_PARAGRAPH_SEARCH
1350 && fast_looking_at (re
, pos
, pos_byte
, limit
, limit_byte
, Qnil
) < 0)
1352 /* FIXME: What if the paragraph beginning is covered by a
1353 display string? And what if a display string covering some
1354 of the text over which we scan back includes
1355 paragraph_start_re? */
1356 DEC_BOTH (pos
, pos_byte
);
1357 if (bpc
&& region_cache_backward (cache_buffer
, bpc
, pos
, &next
))
1359 pos
= next
, pos_byte
= CHAR_TO_BYTE (pos
);
1363 pos
= find_newline_no_quit (pos
, pos_byte
, -1, &pos_byte
);
1365 if (n
>= MAX_PARAGRAPH_SEARCH
)
1366 pos
= BEGV
, pos_byte
= BEGV_BYTE
;
1368 know_region_cache (cache_buffer
, bpc
, pos
, oldpos
);
1369 /* Positions returned by the region cache are not limited to
1370 BEGV..ZV range, so we limit them here. */
1371 pos_byte
= clip_to_bounds (BEGV_BYTE
, pos_byte
, ZV_BYTE
);
1375 /* On a 3.4 GHz machine, searching forward for a strong directional
1376 character in a long paragraph full of weaks or neutrals takes about
1377 1 ms for each 20K characters. The number below limits each call to
1378 bidi_paragraph_init to less than 10 ms even on slow machines. */
1379 #define MAX_STRONG_CHAR_SEARCH 100000
1381 /* Determine the base direction, a.k.a. base embedding level, of the
1382 paragraph we are about to iterate through. If DIR is either L2R or
1383 R2L, just use that. Otherwise, determine the paragraph direction
1384 from the first strong directional character of the paragraph.
1386 NO_DEFAULT_P means don't default to L2R if the paragraph
1387 has no strong directional characters and both DIR and
1388 bidi_it->paragraph_dir are NEUTRAL_DIR. In that case, search back
1389 in the buffer until a paragraph is found with a strong character,
1390 or until hitting BEGV. In the latter case, fall back to L2R. This
1391 flag is used in current-bidi-paragraph-direction.
1393 Note that this function gives the paragraph separator the same
1394 direction as the preceding paragraph, even though Emacs generally
1395 views the separator as not belonging to any paragraph. */
1397 bidi_paragraph_init (bidi_dir_t dir
, struct bidi_it
*bidi_it
, bool no_default_p
)
1399 ptrdiff_t bytepos
= bidi_it
->bytepos
;
1400 bool string_p
= bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
);
1401 ptrdiff_t pstartbyte
;
1402 /* Note that begbyte is a byte position, while end is a character
1403 position. Yes, this is ugly, but we are trying to avoid costly
1404 calls to BYTE_TO_CHAR and its ilk. */
1405 ptrdiff_t begbyte
= string_p
? 0 : BEGV_BYTE
;
1406 ptrdiff_t end
= string_p
? bidi_it
->string
.schars
: ZV
;
1408 /* Special case for an empty buffer. */
1409 if (bytepos
== begbyte
&& bidi_it
->charpos
== end
)
1411 /* We should never be called at EOB or before BEGV. */
1412 else if (bidi_it
->charpos
>= end
|| bytepos
< begbyte
)
1417 bidi_it
->paragraph_dir
= L2R
;
1418 bidi_it
->new_paragraph
= 0;
1420 else if (dir
== R2L
)
1422 bidi_it
->paragraph_dir
= R2L
;
1423 bidi_it
->new_paragraph
= 0;
1425 else if (dir
== NEUTRAL_DIR
) /* P2 */
1428 ptrdiff_t ch_len
, nchars
;
1429 ptrdiff_t pos
, disp_pos
= -1;
1432 const unsigned char *s
;
1434 if (!bidi_initialized
)
1437 /* If we are inside a paragraph separator, we are just waiting
1438 for the separator to be exhausted; use the previous paragraph
1439 direction. But don't do that if we have been just reseated,
1440 because we need to reinitialize below in that case. */
1441 if (!bidi_it
->first_elt
1442 && bidi_it
->charpos
< bidi_it
->separator_limit
)
1445 /* If we are on a newline, get past it to where the next
1446 paragraph might start. But don't do that at BEGV since then
1447 we are potentially in a new paragraph that doesn't yet
1449 pos
= bidi_it
->charpos
;
1450 s
= (STRINGP (bidi_it
->string
.lstring
)
1451 ? SDATA (bidi_it
->string
.lstring
)
1452 : bidi_it
->string
.s
);
1453 if (bytepos
> begbyte
1454 && bidi_char_at_pos (bytepos
, s
, bidi_it
->string
.unibyte
) == '\n')
1460 /* We are either at the beginning of a paragraph or in the
1461 middle of it. Find where this paragraph starts. */
1464 /* We don't support changes of paragraph direction inside a
1465 string. It is treated as a single paragraph. */
1469 pstartbyte
= bidi_find_paragraph_start (pos
, bytepos
);
1470 bidi_it
->separator_limit
= -1;
1471 bidi_it
->new_paragraph
= 0;
1473 /* The following loop is run more than once only if NO_DEFAULT_P,
1474 and only if we are iterating on a buffer. */
1478 bytepos
= pstartbyte
;
1480 pos
= BYTE_TO_CHAR (bytepos
);
1481 ch
= bidi_fetch_char (pos
, bytepos
, &disp_pos
, &disp_prop
,
1482 &bidi_it
->string
, bidi_it
->w
,
1483 bidi_it
->frame_window_p
, &ch_len
, &nchars
);
1484 type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1487 for (pos
+= nchars
, bytepos
+= ch_len
;
1488 ((bidi_get_category (type
) != STRONG
)
1489 || (bidi_ignore_explicit_marks_for_paragraph_level
1490 && (type
== RLE
|| type
== RLO
1491 || type
== LRE
|| type
== LRO
)))
1492 /* Stop when searched too far into an abnormally large
1493 paragraph full of weak or neutral characters. */
1494 && pos
- pos1
< MAX_STRONG_CHAR_SEARCH
;
1495 type
= bidi_get_type (ch
, NEUTRAL_DIR
))
1499 /* Pretend there's a paragraph separator at end of
1505 && type
== NEUTRAL_B
1506 && bidi_at_paragraph_end (pos
, bytepos
) >= -1)
1508 /* Fetch next character and advance to get past it. */
1509 ch
= bidi_fetch_char (pos
, bytepos
, &disp_pos
,
1510 &disp_prop
, &bidi_it
->string
, bidi_it
->w
,
1511 bidi_it
->frame_window_p
, &ch_len
, &nchars
);
1515 if ((type
== STRONG_R
|| type
== STRONG_AL
) /* P3 */
1516 || (!bidi_ignore_explicit_marks_for_paragraph_level
1517 && (type
== RLO
|| type
== RLE
)))
1518 bidi_it
->paragraph_dir
= R2L
;
1519 else if (type
== STRONG_L
1520 || (!bidi_ignore_explicit_marks_for_paragraph_level
1521 && (type
== LRO
|| type
== LRE
)))
1522 bidi_it
->paragraph_dir
= L2R
;
1524 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
)
1526 /* If this paragraph is at BEGV, default to L2R. */
1527 if (pstartbyte
== BEGV_BYTE
)
1528 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 */
1531 ptrdiff_t prevpbyte
= pstartbyte
;
1532 ptrdiff_t p
= BYTE_TO_CHAR (pstartbyte
), pbyte
= pstartbyte
;
1534 /* Find the beginning of the previous paragraph, if any. */
1535 while (pbyte
> BEGV_BYTE
&& prevpbyte
>= pstartbyte
)
1537 /* FXIME: What if p is covered by a display
1538 string? See also a FIXME inside
1539 bidi_find_paragraph_start. */
1540 DEC_BOTH (p
, pbyte
);
1541 prevpbyte
= bidi_find_paragraph_start (p
, pbyte
);
1543 pstartbyte
= prevpbyte
;
1547 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
);
1552 /* Contrary to UAX#9 clause P3, we only default the paragraph
1553 direction to L2R if we have no previous usable paragraph
1554 direction. This is allowed by the HL1 clause. */
1555 if (bidi_it
->paragraph_dir
!= L2R
&& bidi_it
->paragraph_dir
!= R2L
)
1556 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 ``higher-level protocols'' */
1557 if (bidi_it
->paragraph_dir
== R2L
)
1558 bidi_it
->level_stack
[0].level
= 1;
1560 bidi_it
->level_stack
[0].level
= 0;
1562 bidi_line_init (bidi_it
);
1566 /***********************************************************************
1567 Resolving explicit and implicit levels.
1568 The rest of this file constitutes the core of the UBA implementation.
1569 ***********************************************************************/
1572 bidi_explicit_dir_char (int ch
)
1574 bidi_type_t ch_type
;
1576 if (!bidi_initialized
)
1578 ch_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
1579 return (ch_type
== LRE
|| ch_type
== LRO
1580 || ch_type
== RLE
|| ch_type
== RLO
1584 /* A helper function for bidi_resolve_explicit. It advances to the
1585 next character in logical order and determines the new embedding
1586 level and directional override, but does not take into account
1587 empty embeddings. */
1589 bidi_resolve_explicit_1 (struct bidi_it
*bidi_it
)
1595 bidi_dir_t override
;
1596 bool string_p
= bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
);
1598 /* If reseat()'ed, don't advance, so as to start iteration from the
1599 position where we were reseated. bidi_it->bytepos can be less
1600 than BEGV_BYTE after reseat to BEGV. */
1601 if (bidi_it
->bytepos
< (string_p
? 0 : BEGV_BYTE
)
1602 || bidi_it
->first_elt
)
1604 bidi_it
->first_elt
= 0;
1607 const unsigned char *p
1608 = (STRINGP (bidi_it
->string
.lstring
)
1609 ? SDATA (bidi_it
->string
.lstring
)
1610 : bidi_it
->string
.s
);
1612 if (bidi_it
->charpos
< 0)
1613 bidi_it
->charpos
= bidi_it
->bytepos
= 0;
1614 eassert (bidi_it
->bytepos
== bidi_count_bytes (p
, 0, 0,
1616 bidi_it
->string
.unibyte
));
1620 if (bidi_it
->charpos
< BEGV
)
1622 bidi_it
->charpos
= BEGV
;
1623 bidi_it
->bytepos
= BEGV_BYTE
;
1625 eassert (bidi_it
->bytepos
== CHAR_TO_BYTE (bidi_it
->charpos
));
1628 /* Don't move at end of buffer/string. */
1629 else if (bidi_it
->charpos
< (string_p
? bidi_it
->string
.schars
: ZV
))
1631 /* Advance to the next character, skipping characters covered by
1632 display strings (nchars > 1). */
1633 if (bidi_it
->nchars
<= 0)
1635 bidi_it
->charpos
+= bidi_it
->nchars
;
1636 if (bidi_it
->ch_len
== 0)
1638 bidi_it
->bytepos
+= bidi_it
->ch_len
;
1641 current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
; /* X1 */
1642 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1643 new_level
= current_level
;
1645 if (bidi_it
->charpos
>= (string_p
? bidi_it
->string
.schars
: ZV
))
1648 bidi_it
->ch_len
= 1;
1649 bidi_it
->nchars
= 1;
1650 bidi_it
->disp_pos
= (string_p
? bidi_it
->string
.schars
: ZV
);
1651 bidi_it
->disp_prop
= 0;
1655 /* Fetch the character at BYTEPOS. If it is covered by a
1656 display string, treat the entire run of covered characters as
1657 a single character u+FFFC. */
1658 curchar
= bidi_fetch_char (bidi_it
->charpos
, bidi_it
->bytepos
,
1659 &bidi_it
->disp_pos
, &bidi_it
->disp_prop
,
1660 &bidi_it
->string
, bidi_it
->w
,
1661 bidi_it
->frame_window_p
,
1662 &bidi_it
->ch_len
, &bidi_it
->nchars
);
1664 bidi_it
->ch
= curchar
;
1666 /* Don't apply directional override here, as all the types we handle
1667 below will not be affected by the override anyway, and we need
1668 the original type unaltered. The override will be applied in
1669 bidi_resolve_weak. */
1670 type
= bidi_get_type (curchar
, NEUTRAL_DIR
);
1671 bidi_it
->orig_type
= type
;
1672 bidi_check_type (bidi_it
->orig_type
);
1675 bidi_it
->prev_was_pdf
= 0;
1677 bidi_it
->type_after_w1
= UNKNOWN_BT
;
1683 bidi_it
->type_after_w1
= type
;
1684 bidi_check_type (bidi_it
->type_after_w1
);
1685 type
= WEAK_BN
; /* X9/Retaining */
1686 if (bidi_it
->ignore_bn_limit
<= -1)
1688 if (current_level
<= BIDI_MAXLEVEL
- 4)
1690 /* Compute the least odd embedding level greater than
1691 the current level. */
1692 new_level
= ((current_level
+ 1) & ~1) + 1;
1693 if (bidi_it
->type_after_w1
== RLE
)
1694 override
= NEUTRAL_DIR
;
1697 if (current_level
== BIDI_MAXLEVEL
- 4)
1698 bidi_it
->invalid_rl_levels
= 0;
1699 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1703 bidi_it
->invalid_levels
++;
1704 /* See the commentary about invalid_rl_levels below. */
1705 if (bidi_it
->invalid_rl_levels
< 0)
1706 bidi_it
->invalid_rl_levels
= 0;
1707 bidi_it
->invalid_rl_levels
++;
1710 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1711 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1712 && bidi_it
->next_en_type
== WEAK_EN
))
1717 bidi_it
->type_after_w1
= type
;
1718 bidi_check_type (bidi_it
->type_after_w1
);
1719 type
= WEAK_BN
; /* X9/Retaining */
1720 if (bidi_it
->ignore_bn_limit
<= -1)
1722 if (current_level
<= BIDI_MAXLEVEL
- 5)
1724 /* Compute the least even embedding level greater than
1725 the current level. */
1726 new_level
= ((current_level
+ 2) & ~1);
1727 if (bidi_it
->type_after_w1
== LRE
)
1728 override
= NEUTRAL_DIR
;
1731 bidi_push_embedding_level (bidi_it
, new_level
, override
);
1735 bidi_it
->invalid_levels
++;
1736 /* invalid_rl_levels counts invalid levels encountered
1737 while the embedding level was already too high for
1738 LRE/LRO, but not for RLE/RLO. That is because
1739 there may be exactly one PDF which we should not
1740 ignore even though invalid_levels is non-zero.
1741 invalid_rl_levels helps to know what PDF is
1743 if (bidi_it
->invalid_rl_levels
>= 0)
1744 bidi_it
->invalid_rl_levels
++;
1747 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1748 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1749 && bidi_it
->next_en_type
== WEAK_EN
))
1753 bidi_it
->type_after_w1
= type
;
1754 bidi_check_type (bidi_it
->type_after_w1
);
1755 type
= WEAK_BN
; /* X9/Retaining */
1756 if (bidi_it
->ignore_bn_limit
<= -1)
1758 if (!bidi_it
->invalid_rl_levels
)
1760 new_level
= bidi_pop_embedding_level (bidi_it
);
1761 bidi_it
->invalid_rl_levels
= -1;
1762 if (bidi_it
->invalid_levels
)
1763 bidi_it
->invalid_levels
--;
1764 /* else nothing: UAX#9 says to ignore invalid PDFs */
1766 if (!bidi_it
->invalid_levels
)
1767 new_level
= bidi_pop_embedding_level (bidi_it
);
1770 bidi_it
->invalid_levels
--;
1771 bidi_it
->invalid_rl_levels
--;
1774 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
/* W5/Retaining */
1775 || (bidi_it
->next_en_pos
> bidi_it
->charpos
1776 && bidi_it
->next_en_type
== WEAK_EN
))
1784 bidi_it
->type
= type
;
1785 bidi_check_type (bidi_it
->type
);
1790 /* Given an iterator state in BIDI_IT, advance one character position
1791 in the buffer/string to the next character (in the logical order),
1792 resolve any explicit embeddings and directional overrides, and
1793 return the embedding level of the character after resolving
1794 explicit directives and ignoring empty embeddings. */
1796 bidi_resolve_explicit (struct bidi_it
*bidi_it
)
1798 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1799 int new_level
= bidi_resolve_explicit_1 (bidi_it
);
1800 ptrdiff_t eob
= bidi_it
->string
.s
? bidi_it
->string
.schars
: ZV
;
1801 const unsigned char *s
1802 = (STRINGP (bidi_it
->string
.lstring
)
1803 ? SDATA (bidi_it
->string
.lstring
)
1804 : bidi_it
->string
.s
);
1806 if (prev_level
< new_level
1807 && bidi_it
->type
== WEAK_BN
1808 && bidi_it
->ignore_bn_limit
== -1 /* only if not already known */
1809 && bidi_it
->charpos
< eob
/* not already at EOB */
1810 && bidi_explicit_dir_char (bidi_char_at_pos (bidi_it
->bytepos
1811 + bidi_it
->ch_len
, s
,
1812 bidi_it
->string
.unibyte
)))
1814 /* Avoid pushing and popping embedding levels if the level run
1815 is empty, as this breaks level runs where it shouldn't.
1816 UAX#9 removes all the explicit embedding and override codes,
1817 so empty embeddings disappear without a trace. We need to
1818 behave as if we did the same. */
1819 struct bidi_it saved_it
;
1820 int level
= prev_level
;
1822 bidi_copy_it (&saved_it
, bidi_it
);
1824 while (bidi_explicit_dir_char (bidi_char_at_pos (bidi_it
->bytepos
1825 + bidi_it
->ch_len
, s
,
1826 bidi_it
->string
.unibyte
)))
1828 /* This advances to the next character, skipping any
1829 characters covered by display strings. */
1830 level
= bidi_resolve_explicit_1 (bidi_it
);
1831 /* If string.lstring was relocated inside bidi_resolve_explicit_1,
1832 a pointer to its data is no longer valid. */
1833 if (STRINGP (bidi_it
->string
.lstring
))
1834 s
= SDATA (bidi_it
->string
.lstring
);
1837 if (bidi_it
->nchars
<= 0)
1839 if (level
== prev_level
) /* empty embedding */
1840 saved_it
.ignore_bn_limit
= bidi_it
->charpos
+ bidi_it
->nchars
;
1841 else /* this embedding is non-empty */
1842 saved_it
.ignore_bn_limit
= -2;
1844 bidi_copy_it (bidi_it
, &saved_it
);
1845 if (bidi_it
->ignore_bn_limit
> -1)
1847 /* We pushed a level, but we shouldn't have. Undo that. */
1848 if (!bidi_it
->invalid_rl_levels
)
1850 new_level
= bidi_pop_embedding_level (bidi_it
);
1851 bidi_it
->invalid_rl_levels
= -1;
1852 if (bidi_it
->invalid_levels
)
1853 bidi_it
->invalid_levels
--;
1855 if (!bidi_it
->invalid_levels
)
1856 new_level
= bidi_pop_embedding_level (bidi_it
);
1859 bidi_it
->invalid_levels
--;
1860 bidi_it
->invalid_rl_levels
--;
1865 if (bidi_it
->type
== NEUTRAL_B
) /* X8 */
1867 bidi_set_paragraph_end (bidi_it
);
1868 /* This is needed by bidi_resolve_weak below, and in L1. */
1869 bidi_it
->type_after_w1
= bidi_it
->type
;
1870 bidi_check_type (bidi_it
->type_after_w1
);
1876 /* Advance in the buffer/string, resolve weak types and return the
1877 type of the next character after weak type resolution. */
1879 bidi_resolve_weak (struct bidi_it
*bidi_it
)
1882 bidi_dir_t override
;
1883 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
1884 int new_level
= bidi_resolve_explicit (bidi_it
);
1886 bidi_type_t type_of_next
;
1887 struct bidi_it saved_it
;
1889 = ((STRINGP (bidi_it
->string
.lstring
) || bidi_it
->string
.s
)
1890 ? bidi_it
->string
.schars
: ZV
);
1892 type
= bidi_it
->type
;
1893 override
= bidi_it
->level_stack
[bidi_it
->stack_idx
].override
;
1895 if (type
== UNKNOWN_BT
1903 if (new_level
!= prev_level
1904 || bidi_it
->type
== NEUTRAL_B
)
1906 /* We've got a new embedding level run, compute the directional
1907 type of sor and initialize per-run variables (UAX#9, clause
1909 bidi_set_sor_type (bidi_it
, prev_level
, new_level
);
1911 else if (type
== NEUTRAL_S
|| type
== NEUTRAL_WS
1912 || type
== WEAK_BN
|| type
== STRONG_AL
)
1913 bidi_it
->type_after_w1
= type
; /* needed in L1 */
1914 bidi_check_type (bidi_it
->type_after_w1
);
1916 /* Level and directional override status are already recorded in
1917 bidi_it, and do not need any change; see X6. */
1918 if (override
== R2L
) /* X6 */
1920 else if (override
== L2R
)
1924 if (type
== WEAK_NSM
) /* W1 */
1926 /* Note that we don't need to consider the case where the
1927 prev character has its type overridden by an RLO or LRO,
1928 because then either the type of this NSM would have been
1929 also overridden, or the previous character is outside the
1930 current level run, and thus not relevant to this NSM.
1931 This is why NSM gets the type_after_w1 of the previous
1933 if (bidi_it
->prev
.type_after_w1
!= UNKNOWN_BT
1934 /* if type_after_w1 is NEUTRAL_B, this NSM is at sor */
1935 && bidi_it
->prev
.type_after_w1
!= NEUTRAL_B
)
1936 type
= bidi_it
->prev
.type_after_w1
;
1937 else if (bidi_it
->sor
== R2L
)
1939 else if (bidi_it
->sor
== L2R
)
1941 else /* shouldn't happen! */
1944 if (type
== WEAK_EN
/* W2 */
1945 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)
1947 else if (type
== STRONG_AL
) /* W3 */
1949 else if ((type
== WEAK_ES
/* W4 */
1950 && bidi_it
->prev
.type_after_w1
== WEAK_EN
1951 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1953 && ((bidi_it
->prev
.type_after_w1
== WEAK_EN
1954 && bidi_it
->prev
.orig_type
== WEAK_EN
)
1955 || bidi_it
->prev
.type_after_w1
== WEAK_AN
)))
1957 const unsigned char *s
1958 = (STRINGP (bidi_it
->string
.lstring
)
1959 ? SDATA (bidi_it
->string
.lstring
)
1960 : bidi_it
->string
.s
);
1962 next_char
= (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
1964 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
,
1965 s
, bidi_it
->string
.unibyte
));
1966 type_of_next
= bidi_get_type (next_char
, override
);
1968 if (type_of_next
== WEAK_BN
1969 || bidi_explicit_dir_char (next_char
))
1971 bidi_copy_it (&saved_it
, bidi_it
);
1972 while (bidi_resolve_explicit (bidi_it
) == new_level
1973 && bidi_it
->type
== WEAK_BN
)
1975 type_of_next
= bidi_it
->type
;
1976 bidi_copy_it (bidi_it
, &saved_it
);
1979 /* If the next character is EN, but the last strong-type
1980 character is AL, that next EN will be changed to AN when
1981 we process it in W2 above. So in that case, this ES
1982 should not be changed into EN. */
1984 && type_of_next
== WEAK_EN
1985 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
1987 else if (type
== WEAK_CS
)
1989 if (bidi_it
->prev
.type_after_w1
== WEAK_AN
1990 && (type_of_next
== WEAK_AN
1991 /* If the next character is EN, but the last
1992 strong-type character is AL, EN will be later
1993 changed to AN when we process it in W2 above.
1994 So in that case, this ES should not be
1996 || (type_of_next
== WEAK_EN
1997 && bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)))
1999 else if (bidi_it
->prev
.type_after_w1
== WEAK_EN
2000 && type_of_next
== WEAK_EN
2001 && bidi_it
->last_strong
.type_after_w1
!= STRONG_AL
)
2005 else if (type
== WEAK_ET
/* W5: ET with EN before or after it */
2006 || type
== WEAK_BN
) /* W5/Retaining */
2008 if (bidi_it
->prev
.type_after_w1
== WEAK_EN
) /* ET/BN w/EN before it */
2010 else if (bidi_it
->next_en_pos
> bidi_it
->charpos
2011 && bidi_it
->next_en_type
!= WEAK_BN
)
2013 if (bidi_it
->next_en_type
== WEAK_EN
) /* ET/BN with EN after it */
2016 else if (bidi_it
->next_en_pos
>=0)
2018 ptrdiff_t en_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
2019 const unsigned char *s
= (STRINGP (bidi_it
->string
.lstring
)
2020 ? SDATA (bidi_it
->string
.lstring
)
2021 : bidi_it
->string
.s
);
2023 if (bidi_it
->nchars
<= 0)
2026 = (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
2028 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
, s
,
2029 bidi_it
->string
.unibyte
));
2030 type_of_next
= bidi_get_type (next_char
, override
);
2032 if (type_of_next
== WEAK_ET
2033 || type_of_next
== WEAK_BN
2034 || bidi_explicit_dir_char (next_char
))
2036 bidi_copy_it (&saved_it
, bidi_it
);
2037 while (bidi_resolve_explicit (bidi_it
) == new_level
2038 && (bidi_it
->type
== WEAK_BN
2039 || bidi_it
->type
== WEAK_ET
))
2041 type_of_next
= bidi_it
->type
;
2042 en_pos
= bidi_it
->charpos
;
2043 bidi_copy_it (bidi_it
, &saved_it
);
2045 /* Remember this position, to speed up processing of the
2047 bidi_it
->next_en_pos
= en_pos
;
2048 if (type_of_next
== WEAK_EN
)
2050 /* If the last strong character is AL, the EN we've
2051 found will become AN when we get to it (W2). */
2052 if (bidi_it
->last_strong
.type_after_w1
== STRONG_AL
)
2053 type_of_next
= WEAK_AN
;
2054 else if (type
== WEAK_BN
)
2055 type
= NEUTRAL_ON
; /* W6/Retaining */
2059 else if (type_of_next
== NEUTRAL_B
)
2060 /* Record the fact that there are no more ENs from
2061 here to the end of paragraph, to avoid entering the
2062 loop above ever again in this paragraph. */
2063 bidi_it
->next_en_pos
= -1;
2064 /* Record the type of the character where we ended our search. */
2065 bidi_it
->next_en_type
= type_of_next
;
2070 if (type
== WEAK_ES
|| type
== WEAK_ET
|| type
== WEAK_CS
/* W6 */
2072 && (bidi_it
->prev
.type_after_w1
== WEAK_CS
/* W6/Retaining */
2073 || bidi_it
->prev
.type_after_w1
== WEAK_ES
2074 || bidi_it
->prev
.type_after_w1
== WEAK_ET
)))
2077 /* Store the type we've got so far, before we clobber it with strong
2078 types in W7 and while resolving neutral types. But leave alone
2079 the original types that were recorded above, because we will need
2080 them for the L1 clause. */
2081 if (bidi_it
->type_after_w1
== UNKNOWN_BT
)
2082 bidi_it
->type_after_w1
= type
;
2083 bidi_check_type (bidi_it
->type_after_w1
);
2085 if (type
== WEAK_EN
) /* W7 */
2087 if ((bidi_it
->last_strong
.type_after_w1
== STRONG_L
)
2088 || (bidi_it
->last_strong
.type
== UNKNOWN_BT
&& bidi_it
->sor
== L2R
))
2092 bidi_it
->type
= type
;
2093 bidi_check_type (bidi_it
->type
);
2097 /* Resolve the type of a neutral character according to the type of
2098 surrounding strong text and the current embedding level. */
2100 bidi_resolve_neutral_1 (bidi_type_t prev_type
, bidi_type_t next_type
, int lev
)
2102 /* N1: European and Arabic numbers are treated as though they were R. */
2103 if (next_type
== WEAK_EN
|| next_type
== WEAK_AN
)
2104 next_type
= STRONG_R
;
2105 if (prev_type
== WEAK_EN
|| prev_type
== WEAK_AN
)
2106 prev_type
= STRONG_R
;
2108 if (next_type
== prev_type
) /* N1 */
2110 else if ((lev
& 1) == 0) /* N2 */
2117 bidi_resolve_neutral (struct bidi_it
*bidi_it
)
2119 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2120 bidi_type_t type
= bidi_resolve_weak (bidi_it
);
2121 int current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2123 if (!(type
== STRONG_R
2128 || type
== NEUTRAL_B
2129 || type
== NEUTRAL_S
2130 || type
== NEUTRAL_WS
2131 || type
== NEUTRAL_ON
))
2134 if ((type
!= NEUTRAL_B
/* Don't risk entering the long loop below if
2135 we are already at paragraph end. */
2136 && bidi_get_category (type
) == NEUTRAL
)
2137 || (type
== WEAK_BN
&& prev_level
== current_level
))
2139 if (bidi_it
->next_for_neutral
.type
!= UNKNOWN_BT
)
2140 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2141 bidi_it
->next_for_neutral
.type
,
2143 /* The next two "else if" clauses are shortcuts for the
2144 important special case when we have a long sequence of
2145 neutral or WEAK_BN characters, such as whitespace or nulls or
2146 other control characters, on the base embedding level of the
2147 paragraph, and that sequence goes all the way to the end of
2148 the paragraph and follows a character whose resolved
2149 directionality is identical to the base embedding level.
2150 (This is what happens in a buffer with plain L2R text that
2151 happens to include long sequences of control characters.) By
2152 virtue of N1, the result of examining this long sequence will
2153 always be either STRONG_L or STRONG_R, depending on the base
2154 embedding level. So we use this fact directly instead of
2155 entering the expensive loop in the "else" clause. */
2156 else if (current_level
== 0
2157 && bidi_it
->prev_for_neutral
.type
== STRONG_L
2158 && !bidi_explicit_dir_char (bidi_it
->ch
))
2159 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2160 STRONG_L
, current_level
);
2161 else if (/* current level is 1 */
2163 /* base embedding level is also 1 */
2164 && bidi_it
->level_stack
[0].level
== 1
2165 /* previous character is one of those considered R for
2166 the purposes of W5 */
2167 && (bidi_it
->prev_for_neutral
.type
== STRONG_R
2168 || bidi_it
->prev_for_neutral
.type
== WEAK_EN
2169 || bidi_it
->prev_for_neutral
.type
== WEAK_AN
)
2170 && !bidi_explicit_dir_char (bidi_it
->ch
))
2171 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2172 STRONG_R
, current_level
);
2175 /* Arrrgh!! The UAX#9 algorithm is too deeply entrenched in
2176 the assumption of batch-style processing; see clauses W4,
2177 W5, and especially N1, which require to look far forward
2178 (as well as back) in the buffer/string. May the fleas of
2179 a thousand camels infest the armpits of those who design
2180 supposedly general-purpose algorithms by looking at their
2181 own implementations, and fail to consider other possible
2183 struct bidi_it saved_it
;
2184 bidi_type_t next_type
;
2186 if (bidi_it
->scan_dir
== -1)
2189 bidi_copy_it (&saved_it
, bidi_it
);
2190 /* Scan the text forward until we find the first non-neutral
2191 character, and then use that to resolve the neutral we
2192 are dealing with now. We also cache the scanned iterator
2193 states, to salvage some of the effort later. */
2194 bidi_cache_iterator_state (bidi_it
, 0);
2196 /* Record the info about the previous character, so that
2197 it will be cached below with this state. */
2198 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
2199 && bidi_it
->type
!= WEAK_BN
)
2200 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
2201 type
= bidi_resolve_weak (bidi_it
);
2202 /* Paragraph separators have their levels fully resolved
2203 at this point, so cache them as resolved. */
2204 bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
);
2205 /* FIXME: implement L1 here, by testing for a newline and
2206 resetting the level for any sequence of whitespace
2207 characters adjacent to it. */
2208 } while (!(type
== NEUTRAL_B
2210 && bidi_get_category (type
) != NEUTRAL
)
2211 /* This is all per level run, so stop when we
2212 reach the end of this level run. */
2213 || (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
2214 != current_level
)));
2216 bidi_remember_char (&saved_it
.next_for_neutral
, bidi_it
);
2223 /* Actually, STRONG_AL cannot happen here, because
2224 bidi_resolve_weak converts it to STRONG_R, per W3. */
2225 eassert (type
!= STRONG_AL
);
2230 /* N1: ``European and Arabic numbers are treated as
2231 though they were R.'' */
2232 next_type
= STRONG_R
;
2235 case NEUTRAL_ON
: /* W6/Retaining */
2236 if (!bidi_explicit_dir_char (bidi_it
->ch
))
2237 emacs_abort (); /* can't happen: BNs are skipped */
2240 /* Marched all the way to the end of this level run.
2241 We need to use the eor type, whose information is
2242 stored by bidi_set_sor_type in the prev_for_neutral
2244 if (saved_it
.type
!= WEAK_BN
2245 || bidi_get_category (bidi_it
->prev
.type_after_w1
) == NEUTRAL
)
2246 next_type
= bidi_it
->prev_for_neutral
.type
;
2249 /* This is a BN which does not adjoin neutrals.
2250 Leave its type alone. */
2251 bidi_copy_it (bidi_it
, &saved_it
);
2252 return bidi_it
->type
;
2258 type
= bidi_resolve_neutral_1 (saved_it
.prev_for_neutral
.type
,
2259 next_type
, current_level
);
2260 saved_it
.next_for_neutral
.type
= next_type
;
2261 saved_it
.type
= type
;
2262 bidi_check_type (next_type
);
2263 bidi_check_type (type
);
2264 bidi_copy_it (bidi_it
, &saved_it
);
2270 /* Given an iterator state in BIDI_IT, advance one character position
2271 in the buffer/string to the next character (in the logical order),
2272 resolve the bidi type of that next character, and return that
2275 bidi_type_of_next_char (struct bidi_it
*bidi_it
)
2279 /* This should always be called during a forward scan. */
2280 if (bidi_it
->scan_dir
!= 1)
2283 /* Reset the limit until which to ignore BNs if we step out of the
2284 area where we found only empty levels. */
2285 if ((bidi_it
->ignore_bn_limit
> -1
2286 && bidi_it
->ignore_bn_limit
<= bidi_it
->charpos
)
2287 || (bidi_it
->ignore_bn_limit
== -2
2288 && !bidi_explicit_dir_char (bidi_it
->ch
)))
2289 bidi_it
->ignore_bn_limit
= -1;
2291 type
= bidi_resolve_neutral (bidi_it
);
2296 /* Given an iterator state BIDI_IT, advance one character position in
2297 the buffer/string to the next character (in the current scan
2298 direction), resolve the embedding and implicit levels of that next
2299 character, and return the resulting level. */
2301 bidi_level_of_next_char (struct bidi_it
*bidi_it
)
2304 int level
, prev_level
= -1;
2305 struct bidi_saved_info next_for_neutral
;
2306 ptrdiff_t next_char_pos
= -2;
2308 if (bidi_it
->scan_dir
== 1)
2311 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2312 ? bidi_it
->string
.schars
: ZV
);
2314 /* There's no sense in trying to advance if we hit end of text. */
2315 if (bidi_it
->charpos
>= eob
)
2316 return bidi_it
->resolved_level
;
2318 /* Record the info about the previous character. */
2319 if (bidi_it
->type_after_w1
!= WEAK_BN
/* W1/Retaining */
2320 && bidi_it
->type
!= WEAK_BN
)
2321 bidi_remember_char (&bidi_it
->prev
, bidi_it
);
2322 if (bidi_it
->type_after_w1
== STRONG_R
2323 || bidi_it
->type_after_w1
== STRONG_L
2324 || bidi_it
->type_after_w1
== STRONG_AL
)
2325 bidi_remember_char (&bidi_it
->last_strong
, bidi_it
);
2326 /* FIXME: it sounds like we don't need both prev and
2327 prev_for_neutral members, but I'm leaving them both for now. */
2328 if (bidi_it
->type
== STRONG_R
|| bidi_it
->type
== STRONG_L
2329 || bidi_it
->type
== WEAK_EN
|| bidi_it
->type
== WEAK_AN
)
2330 bidi_remember_char (&bidi_it
->prev_for_neutral
, bidi_it
);
2332 /* If we overstepped the characters used for resolving neutrals
2333 and whitespace, invalidate their info in the iterator. */
2334 if (bidi_it
->charpos
>= bidi_it
->next_for_neutral
.charpos
)
2335 bidi_it
->next_for_neutral
.type
= UNKNOWN_BT
;
2336 if (bidi_it
->next_en_pos
>= 0
2337 && bidi_it
->charpos
>= bidi_it
->next_en_pos
)
2339 bidi_it
->next_en_pos
= 0;
2340 bidi_it
->next_en_type
= UNKNOWN_BT
;
2342 if (bidi_it
->next_for_ws
.type
!= UNKNOWN_BT
2343 && bidi_it
->charpos
>= bidi_it
->next_for_ws
.charpos
)
2344 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
2346 /* This must be taken before we fill the iterator with the info
2347 about the next char. If we scan backwards, the iterator
2348 state must be already cached, so there's no need to know the
2349 embedding level of the previous character, since we will be
2350 returning to our caller shortly. */
2351 prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2353 next_for_neutral
= bidi_it
->next_for_neutral
;
2355 /* Perhaps the character we want is already cached. If it is, the
2356 call to bidi_cache_find below will return a type other than
2358 if (bidi_cache_idx
> bidi_cache_start
&& !bidi_it
->first_elt
)
2360 int bob
= ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2362 if (bidi_it
->scan_dir
> 0)
2364 if (bidi_it
->nchars
<= 0)
2366 next_char_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
2368 else if (bidi_it
->charpos
>= bob
)
2369 /* Implementation note: we allow next_char_pos to be as low as
2370 0 for buffers or -1 for strings, and that is okay because
2371 that's the "position" of the sentinel iterator state we
2372 cached at the beginning of the iteration. */
2373 next_char_pos
= bidi_it
->charpos
- 1;
2374 if (next_char_pos
>= bob
- 1)
2375 type
= bidi_cache_find (next_char_pos
, -1, bidi_it
);
2381 if (type
!= UNKNOWN_BT
)
2383 /* Don't lose the information for resolving neutrals! The
2384 cached states could have been cached before their
2385 next_for_neutral member was computed. If we are on our way
2386 forward, we can simply take the info from the previous
2388 if (bidi_it
->scan_dir
== 1
2389 && bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
2390 bidi_it
->next_for_neutral
= next_for_neutral
;
2392 /* If resolved_level is -1, it means this state was cached
2393 before it was completely resolved, so we cannot return
2395 if (bidi_it
->resolved_level
!= -1)
2396 return bidi_it
->resolved_level
;
2398 if (bidi_it
->scan_dir
== -1)
2399 /* If we are going backwards, the iterator state is already cached
2400 from previous scans, and should be fully resolved. */
2403 if (type
== UNKNOWN_BT
)
2404 type
= bidi_type_of_next_char (bidi_it
);
2406 if (type
== NEUTRAL_B
)
2407 return bidi_it
->resolved_level
;
2409 level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2410 if ((bidi_get_category (type
) == NEUTRAL
/* && type != NEUTRAL_B */)
2411 || (type
== WEAK_BN
&& prev_level
== level
))
2413 if (bidi_it
->next_for_neutral
.type
== UNKNOWN_BT
)
2416 /* If the cached state shows a neutral character, it was not
2417 resolved by bidi_resolve_neutral, so do it now. */
2418 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2419 bidi_it
->next_for_neutral
.type
,
2423 if (!(type
== STRONG_R
2427 || type
== WEAK_AN
))
2429 bidi_it
->type
= type
;
2430 bidi_check_type (bidi_it
->type
);
2432 /* For L1 below, we need to know, for each WS character, whether
2433 it belongs to a sequence of WS characters preceding a newline
2434 or a TAB or a paragraph separator. */
2435 if (bidi_it
->orig_type
== NEUTRAL_WS
2436 && bidi_it
->next_for_ws
.type
== UNKNOWN_BT
)
2439 ptrdiff_t clen
= bidi_it
->ch_len
;
2440 ptrdiff_t bpos
= bidi_it
->bytepos
;
2441 ptrdiff_t cpos
= bidi_it
->charpos
;
2442 ptrdiff_t disp_pos
= bidi_it
->disp_pos
;
2443 ptrdiff_t nc
= bidi_it
->nchars
;
2444 struct bidi_string_data bs
= bidi_it
->string
;
2446 bool fwp
= bidi_it
->frame_window_p
;
2447 int dpp
= bidi_it
->disp_prop
;
2449 if (bidi_it
->nchars
<= 0)
2452 ch
= bidi_fetch_char (cpos
+= nc
, bpos
+= clen
, &disp_pos
, &dpp
, &bs
,
2453 bidi_it
->w
, fwp
, &clen
, &nc
);
2454 if (ch
== '\n' || ch
== BIDI_EOB
)
2457 chtype
= bidi_get_type (ch
, NEUTRAL_DIR
);
2458 } while (chtype
== NEUTRAL_WS
|| chtype
== WEAK_BN
2459 || bidi_explicit_dir_char (ch
)); /* L1/Retaining */
2460 bidi_it
->next_for_ws
.type
= chtype
;
2461 bidi_check_type (bidi_it
->next_for_ws
.type
);
2462 bidi_it
->next_for_ws
.charpos
= cpos
;
2463 bidi_it
->next_for_ws
.bytepos
= bpos
;
2466 /* Resolve implicit levels, with a twist: PDFs get the embedding
2467 level of the embedding they terminate. See below for the
2469 if (bidi_it
->orig_type
== PDF
2470 /* Don't do this if this formatting code didn't change the
2471 embedding level due to invalid or empty embeddings. */
2472 && prev_level
!= level
)
2474 /* Don't look in UAX#9 for the reason for this: it's our own
2475 private quirk. The reason is that we want the formatting
2476 codes to be delivered so that they bracket the text of their
2477 embedding. For example, given the text
2481 we want it to be displayed as
2489 which will result because we bump up the embedding level as
2490 soon as we see the RLO and pop it as soon as we see the PDF,
2491 so RLO itself has the same embedding level as "teST", and
2492 thus would be normally delivered last, just before the PDF.
2493 The switch below fiddles with the level of PDF so that this
2494 ugly side effect does not happen.
2496 (This is, of course, only important if the formatting codes
2497 are actually displayed, but Emacs does need to display them
2498 if the user wants to.) */
2501 else if (bidi_it
->orig_type
== NEUTRAL_B
/* L1 */
2502 || bidi_it
->orig_type
== NEUTRAL_S
2503 || bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
2504 || (bidi_it
->orig_type
== NEUTRAL_WS
2505 && (bidi_it
->next_for_ws
.type
== NEUTRAL_B
2506 || bidi_it
->next_for_ws
.type
== NEUTRAL_S
)))
2507 level
= bidi_it
->level_stack
[0].level
;
2508 else if ((level
& 1) == 0) /* I1 */
2510 if (type
== STRONG_R
)
2512 else if (type
== WEAK_EN
|| type
== WEAK_AN
)
2517 if (type
== STRONG_L
|| type
== WEAK_EN
|| type
== WEAK_AN
)
2521 bidi_it
->resolved_level
= level
;
2525 /* Move to the other edge of a level given by LEVEL. If END_FLAG,
2526 we are at the end of a level, and we need to prepare to
2527 resume the scan of the lower level.
2529 If this level's other edge is cached, we simply jump to it, filling
2530 the iterator structure with the iterator state on the other edge.
2531 Otherwise, we walk the buffer or string until we come back to the
2532 same level as LEVEL.
2534 Note: we are not talking here about a ``level run'' in the UAX#9
2535 sense of the term, but rather about a ``level'' which includes
2536 all the levels higher than it. In other words, given the levels
2539 11111112222222333333334443343222222111111112223322111
2542 and assuming we are at point A scanning left to right, this
2543 function moves to point C, whereas the UAX#9 ``level 2 run'' ends
2546 bidi_find_other_level_edge (struct bidi_it
*bidi_it
, int level
, bool end_flag
)
2548 int dir
= end_flag
? -bidi_it
->scan_dir
: bidi_it
->scan_dir
;
2551 /* Try the cache first. */
2552 if ((idx
= bidi_cache_find_level_change (level
, dir
, end_flag
))
2553 >= bidi_cache_start
)
2554 bidi_cache_fetch_state (idx
, bidi_it
);
2559 /* If we are at end of level, its edges must be cached. */
2563 bidi_cache_iterator_state (bidi_it
, 1);
2565 new_level
= bidi_level_of_next_char (bidi_it
);
2566 bidi_cache_iterator_state (bidi_it
, 1);
2567 } while (new_level
>= level
);
2572 bidi_move_to_visually_next (struct bidi_it
*bidi_it
)
2574 int old_level
, new_level
, next_level
;
2575 struct bidi_it sentinel
;
2576 struct gcpro gcpro1
;
2578 if (bidi_it
->charpos
< 0 || bidi_it
->bytepos
< 0)
2581 if (bidi_it
->scan_dir
== 0)
2583 bidi_it
->scan_dir
= 1; /* default to logical order */
2586 /* The code below can call eval, and thus cause GC. If we are
2587 iterating a Lisp string, make sure it won't be GCed. */
2588 if (STRINGP (bidi_it
->string
.lstring
))
2589 GCPRO1 (bidi_it
->string
.lstring
);
2591 /* If we just passed a newline, initialize for the next line. */
2592 if (!bidi_it
->first_elt
2593 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
2594 bidi_line_init (bidi_it
);
2596 /* Prepare the sentinel iterator state, and cache it. When we bump
2597 into it, scanning backwards, we'll know that the last non-base
2598 level is exhausted. */
2599 if (bidi_cache_idx
== bidi_cache_start
)
2601 bidi_copy_it (&sentinel
, bidi_it
);
2602 if (bidi_it
->first_elt
)
2604 sentinel
.charpos
--; /* cached charpos needs to be monotonic */
2606 sentinel
.ch
= '\n'; /* doesn't matter, but why not? */
2607 sentinel
.ch_len
= 1;
2608 sentinel
.nchars
= 1;
2610 bidi_cache_iterator_state (&sentinel
, 1);
2613 old_level
= bidi_it
->resolved_level
;
2614 new_level
= bidi_level_of_next_char (bidi_it
);
2616 /* Reordering of resolved levels (clause L2) is implemented by
2617 jumping to the other edge of the level and flipping direction of
2618 scanning the text whenever we find a level change. */
2619 if (new_level
!= old_level
)
2621 bool ascending
= new_level
> old_level
;
2622 int level_to_search
= ascending
? old_level
+ 1 : old_level
;
2623 int incr
= ascending
? 1 : -1;
2624 int expected_next_level
= old_level
+ incr
;
2626 /* Jump (or walk) to the other edge of this level. */
2627 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
2628 /* Switch scan direction and peek at the next character in the
2630 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
2632 /* The following loop handles the case where the resolved level
2633 jumps by more than one. This is typical for numbers inside a
2634 run of text with left-to-right embedding direction, but can
2635 also happen in other situations. In those cases the decision
2636 where to continue after a level change, and in what direction,
2637 is tricky. For example, given a text like below:
2642 (where the numbers below the text show the resolved levels),
2643 the result of reordering according to UAX#9 should be this:
2647 This is implemented by the loop below which flips direction
2648 and jumps to the other edge of the level each time it finds
2649 the new level not to be the expected one. The expected level
2650 is always one more or one less than the previous one. */
2651 next_level
= bidi_peek_at_next_level (bidi_it
);
2652 while (next_level
!= expected_next_level
)
2654 /* If next_level is -1, it means we have an unresolved level
2655 in the cache, which at this point should not happen. If
2656 it does, we will infloop. */
2657 eassert (next_level
>= 0);
2658 expected_next_level
+= incr
;
2659 level_to_search
+= incr
;
2660 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
2661 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
2662 next_level
= bidi_peek_at_next_level (bidi_it
);
2665 /* Finally, deliver the next character in the new direction. */
2666 next_level
= bidi_level_of_next_char (bidi_it
);
2669 /* Take note when we have just processed the newline that precedes
2670 the end of the paragraph. The next time we are about to be
2671 called, set_iterator_to_next will automatically reinit the
2672 paragraph direction, if needed. We do this at the newline before
2673 the paragraph separator, because the next character might not be
2674 the first character of the next paragraph, due to the bidi
2675 reordering, whereas we _must_ know the paragraph base direction
2676 _before_ we process the paragraph's text, since the base
2677 direction affects the reordering. */
2678 if (bidi_it
->scan_dir
== 1
2679 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
2681 /* The paragraph direction of the entire string, once
2682 determined, is in effect for the entire string. Setting the
2683 separator limit to the end of the string prevents
2684 bidi_paragraph_init from being called automatically on this
2686 if (bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2687 bidi_it
->separator_limit
= bidi_it
->string
.schars
;
2688 else if (bidi_it
->bytepos
< ZV_BYTE
)
2691 = bidi_at_paragraph_end (bidi_it
->charpos
+ bidi_it
->nchars
,
2692 bidi_it
->bytepos
+ bidi_it
->ch_len
);
2693 if (bidi_it
->nchars
<= 0)
2697 bidi_it
->new_paragraph
= 1;
2698 /* Record the buffer position of the last character of the
2699 paragraph separator. */
2700 bidi_it
->separator_limit
2701 = bidi_it
->charpos
+ bidi_it
->nchars
+ sep_len
;
2706 if (bidi_it
->scan_dir
== 1 && bidi_cache_idx
> bidi_cache_start
)
2708 /* If we are at paragraph's base embedding level and beyond the
2709 last cached position, the cache's job is done and we can
2711 if (bidi_it
->resolved_level
== bidi_it
->level_stack
[0].level
2712 && bidi_it
->charpos
> (bidi_cache
[bidi_cache_idx
- 1].charpos
2713 + bidi_cache
[bidi_cache_idx
- 1].nchars
- 1))
2714 bidi_cache_reset ();
2715 /* But as long as we are caching during forward scan, we must
2716 cache each state, or else the cache integrity will be
2717 compromised: it assumes cached states correspond to buffer
2720 bidi_cache_iterator_state (bidi_it
, 1);
2723 if (STRINGP (bidi_it
->string
.lstring
))
2727 /* This is meant to be called from within the debugger, whenever you
2728 wish to examine the cache contents. */
2729 void bidi_dump_cached_states (void) EXTERNALLY_VISIBLE
;
2731 bidi_dump_cached_states (void)
2736 if (bidi_cache_idx
== 0)
2738 fprintf (stderr
, "The cache is empty.\n");
2741 fprintf (stderr
, "Total of %"pD
"d state%s in cache:\n",
2742 bidi_cache_idx
, bidi_cache_idx
== 1 ? "" : "s");
2744 for (i
= bidi_cache
[bidi_cache_idx
- 1].charpos
; i
> 0; i
/= 10)
2746 fputs ("ch ", stderr
);
2747 for (i
= 0; i
< bidi_cache_idx
; i
++)
2748 fprintf (stderr
, "%*c", ndigits
, bidi_cache
[i
].ch
);
2749 fputs ("\n", stderr
);
2750 fputs ("lvl ", stderr
);
2751 for (i
= 0; i
< bidi_cache_idx
; i
++)
2752 fprintf (stderr
, "%*d", ndigits
, bidi_cache
[i
].resolved_level
);
2753 fputs ("\n", stderr
);
2754 fputs ("pos ", stderr
);
2755 for (i
= 0; i
< bidi_cache_idx
; i
++)
2756 fprintf (stderr
, "%*"pD
"d", ndigits
, bidi_cache
[i
].charpos
);
2757 fputs ("\n", stderr
);