(define-ccl-program): Add `doc-string' declaration.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blobad1cb5172f33cf90f5843804b7495c53013c1b91
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "0e52b41c758c56831930100671c58f50")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
185 \(fn)" nil nil)
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil)
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil)
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
202 \(fn X Y)" nil nil)
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
207 \(fn X Y)" nil nil)
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
212 \(fn X)" nil nil)
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil)
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (defalias 'remprop 'cl-remprop)
247 (defalias 'cl-gethash 'gethash)
249 (defalias 'cl-puthash 'puthash)
251 (defalias 'cl-remhash 'remhash)
253 (defalias 'cl-clrhash 'clrhash)
255 (defalias 'cl-maphash 'maphash)
257 (defalias 'cl-make-hash-table 'make-hash-table)
259 (defalias 'cl-hash-table-p 'hash-table-p)
261 (defalias 'cl-hash-table-count 'hash-table-count)
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil)
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
272 \(fn FORM &optional FULL)" nil nil)
274 ;;;***
276 ;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
277 ;;;;;; check-type typep cl-struct-setf-expander defstruct define-modify-macro
278 ;;;;;; callf2 callf letf* letf rotatef shiftf remf cl-do-pop psetf
279 ;;;;;; setf get-setf-method defsetf define-setf-method declare the
280 ;;;;;; locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym cl-compile-time-init) "cl-macs" "cl-macs.el" "cc0d6d8e5b0f777ec88f1098ecb85d59")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'cl-compile-time-init "cl-macs" "\
289 Not documented
291 \(fn)" nil nil)
293 (autoload 'gensym "cl-macs" "\
294 Generate a new uninterned symbol.
295 The name is made by appending a number to PREFIX, default \"G\".
297 \(fn &optional PREFIX)" nil nil)
299 (autoload 'gentemp "cl-macs" "\
300 Generate a new interned symbol with a unique name.
301 The name is made by appending a number to PREFIX, default \"G\".
303 \(fn &optional PREFIX)" nil nil)
305 (autoload 'defun* "cl-macs" "\
306 Define NAME as a function.
307 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
308 and BODY is implicitly surrounded by (block NAME ...).
310 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
312 (autoload 'defmacro* "cl-macs" "\
313 Define NAME as a macro.
314 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
315 and BODY is implicitly surrounded by (block NAME ...).
317 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
319 (autoload 'function* "cl-macs" "\
320 Introduce a function.
321 Like normal `function', except that if argument is a lambda form,
322 its argument list allows full Common Lisp conventions.
324 \(fn FUNC)" nil (quote macro))
326 (autoload 'destructuring-bind "cl-macs" "\
327 Not documented
329 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
331 (autoload 'eval-when "cl-macs" "\
332 Control when BODY is evaluated.
333 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
334 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
335 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
337 \(fn (WHEN...) BODY...)" nil (quote macro))
339 (autoload 'load-time-value "cl-macs" "\
340 Like `progn', but evaluates the body at load time.
341 The result of the body appears to the compiler as a quoted constant.
343 \(fn FORM &optional READ-ONLY)" nil (quote macro))
345 (autoload 'case "cl-macs" "\
346 Eval EXPR and choose among clauses on that value.
347 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
348 against each key in each KEYLIST; the corresponding BODY is evaluated.
349 If no clause succeeds, case returns nil. A single atom may be used in
350 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
351 allowed only in the final clause, and matches if no other keys match.
352 Key values are compared by `eql'.
354 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356 (autoload 'ecase "cl-macs" "\
357 Like `case', but error if no case fits.
358 `otherwise'-clauses are not allowed.
360 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
362 (autoload 'typecase "cl-macs" "\
363 Evals EXPR, chooses among clauses on that value.
364 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
365 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
366 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
367 final clause, and matches if no other keys match.
369 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371 (autoload 'etypecase "cl-macs" "\
372 Like `typecase', but error if no case fits.
373 `otherwise'-clauses are not allowed.
375 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
377 (autoload 'block "cl-macs" "\
378 Define a lexically-scoped block named NAME.
379 NAME may be any symbol. Code inside the BODY forms can call `return-from'
380 to jump prematurely out of the block. This differs from `catch' and `throw'
381 in two respects: First, the NAME is an unevaluated symbol rather than a
382 quoted symbol or other form; and second, NAME is lexically rather than
383 dynamically scoped: Only references to it within BODY will work. These
384 references may appear inside macro expansions, but not inside functions
385 called from BODY.
387 \(fn NAME &rest BODY)" nil (quote macro))
389 (autoload 'return "cl-macs" "\
390 Return from the block named nil.
391 This is equivalent to `(return-from nil RESULT)'.
393 \(fn &optional RESULT)" nil (quote macro))
395 (autoload 'return-from "cl-macs" "\
396 Return from the block named NAME.
397 This jump out to the innermost enclosing `(block NAME ...)' form,
398 returning RESULT from that form (or nil if RESULT is omitted).
399 This is compatible with Common Lisp, but note that `defun' and
400 `defmacro' do not create implicit blocks as they do in Common Lisp.
402 \(fn NAME &optional RESULT)" nil (quote macro))
404 (autoload 'loop "cl-macs" "\
405 The Common Lisp `loop' macro.
406 Valid clauses are:
407 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
408 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
409 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
410 always COND, never COND, thereis COND, collect EXPR into VAR,
411 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
412 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
413 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
415 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
416 finally return EXPR, named NAME.
418 \(fn CLAUSE...)" nil (quote macro))
420 (autoload 'do "cl-macs" "\
421 The Common Lisp `do' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425 (autoload 'do* "cl-macs" "\
426 The Common Lisp `do*' loop.
428 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
430 (autoload 'dolist "cl-macs" "\
431 Loop over a list.
432 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
433 Then evaluate RESULT to get return value, default nil.
435 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
437 (autoload 'dotimes "cl-macs" "\
438 Loop a certain number of times.
439 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
440 to COUNT, exclusive. Then evaluate RESULT to get return value, default
441 nil.
443 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
445 (autoload 'do-symbols "cl-macs" "\
446 Loop over all symbols.
447 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
448 from OBARRAY.
450 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
452 (autoload 'do-all-symbols "cl-macs" "\
453 Not documented
455 \(fn SPEC &rest BODY)" nil (quote macro))
457 (autoload 'psetq "cl-macs" "\
458 Set SYMs to the values VALs in parallel.
459 This is like `setq', except that all VAL forms are evaluated (in order)
460 before assigning any symbols SYM to the corresponding values.
462 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
464 (autoload 'progv "cl-macs" "\
465 Bind SYMBOLS to VALUES dynamically in BODY.
466 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
467 Each symbol in the first list is bound to the corresponding value in the
468 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
469 BODY forms are executed and their result is returned. This is much like
470 a `let' form, except that the list of symbols can be computed at run-time.
472 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
474 (autoload 'flet "cl-macs" "\
475 Make temporary function definitions.
476 This is an analogue of `let' that operates on the function cell of FUNC
477 rather than its value cell. The FORMs are evaluated with the specified
478 function definitions in place, then the definitions are undone (the FUNCs
479 go back to their previous definitions, or lack thereof).
481 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
483 (autoload 'labels "cl-macs" "\
484 Make temporary function bindings.
485 This is like `flet', except the bindings are lexical instead of dynamic.
486 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
488 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490 (autoload 'macrolet "cl-macs" "\
491 Make temporary macro definitions.
492 This is like `flet', but for macros instead of functions.
494 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
496 (autoload 'symbol-macrolet "cl-macs" "\
497 Make symbol macro definitions.
498 Within the body FORMs, references to the variable NAME will be replaced
499 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
501 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
503 (autoload 'lexical-let "cl-macs" "\
504 Like `let', but lexically scoped.
505 The main visible difference is that lambdas inside BODY will create
506 lexical closures as in Common Lisp.
508 \(fn VARLIST BODY)" nil (quote macro))
510 (autoload 'lexical-let* "cl-macs" "\
511 Like `let*', but lexically scoped.
512 The main visible difference is that lambdas inside BODY will create
513 lexical closures as in Common Lisp.
515 \(fn VARLIST BODY)" nil (quote macro))
517 (autoload 'multiple-value-bind "cl-macs" "\
518 Collect multiple return values.
519 FORM must return a list; the BODY is then executed with the first N elements
520 of this list bound (`let'-style) to each of the symbols SYM in turn. This
521 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
522 simulate true multiple return values. For compatibility, (values A B C) is
523 a synonym for (list A B C).
525 \(fn (SYM...) FORM BODY)" nil (quote macro))
527 (autoload 'multiple-value-setq "cl-macs" "\
528 Collect multiple return values.
529 FORM must return a list; the first N elements of this list are stored in
530 each of the symbols SYM in turn. This is analogous to the Common Lisp
531 `multiple-value-setq' macro, using lists to simulate true multiple return
532 values. For compatibility, (values A B C) is a synonym for (list A B C).
534 \(fn (SYM...) FORM)" nil (quote macro))
536 (autoload 'locally "cl-macs" "\
537 Not documented
539 \(fn &rest BODY)" nil (quote macro))
541 (autoload 'the "cl-macs" "\
542 Not documented
544 \(fn TYPE FORM)" nil (quote macro))
546 (autoload 'declare "cl-macs" "\
547 Not documented
549 \(fn &rest SPECS)" nil (quote macro))
551 (autoload 'define-setf-method "cl-macs" "\
552 Define a `setf' method.
553 This method shows how to handle `setf's to places of the form (NAME ARGS...).
554 The argument forms ARGS are bound according to ARGLIST, as if NAME were
555 going to be expanded as a macro, then the BODY forms are executed and must
556 return a list of five elements: a temporary-variables list, a value-forms
557 list, a store-variables list (of length one), a store-form, and an access-
558 form. See `defsetf' for a simpler way to define most setf-methods.
560 \(fn NAME ARGLIST BODY...)" nil (quote macro))
562 (autoload 'defsetf "cl-macs" "\
563 Define a `setf' method.
564 This macro is an easy-to-use substitute for `define-setf-method' that works
565 well for simple place forms. In the simple `defsetf' form, `setf's of
566 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
567 calls of the form (FUNC ARGS... VAL). Example:
569 (defsetf aref aset)
571 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
572 Here, the above `setf' call is expanded by binding the argument forms ARGS
573 according to ARGLIST, binding the value form VAL to STORE, then executing
574 BODY, which must return a Lisp form that does the necessary `setf' operation.
575 Actually, ARGLIST and STORE may be bound to temporary variables which are
576 introduced automatically to preserve proper execution order of the arguments.
577 Example:
579 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
581 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
583 (autoload 'get-setf-method "cl-macs" "\
584 Return a list of five values describing the setf-method for PLACE.
585 PLACE may be any Lisp form which can appear as the PLACE argument to
586 a macro like `setf' or `incf'.
588 \(fn PLACE &optional ENV)" nil nil)
590 (autoload 'setf "cl-macs" "\
591 Set each PLACE to the value of its VAL.
592 This is a generalized version of `setq'; the PLACEs may be symbolic
593 references such as (car x) or (aref x i), as well as plain symbols.
594 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
595 The return value is the last VAL in the list.
597 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
599 (autoload 'psetf "cl-macs" "\
600 Set PLACEs to the values VALs in parallel.
601 This is like `setf', except that all VAL forms are evaluated (in order)
602 before assigning any PLACEs to the corresponding values.
604 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
606 (autoload 'cl-do-pop "cl-macs" "\
607 Not documented
609 \(fn PLACE)" nil nil)
611 (autoload 'remf "cl-macs" "\
612 Remove TAG from property list PLACE.
613 PLACE may be a symbol, or any generalized variable allowed by `setf'.
614 The form returns true if TAG was found and removed, nil otherwise.
616 \(fn PLACE TAG)" nil (quote macro))
618 (autoload 'shiftf "cl-macs" "\
619 Shift left among PLACEs.
620 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
621 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
623 \(fn PLACE... VAL)" nil (quote macro))
625 (autoload 'rotatef "cl-macs" "\
626 Rotate left among PLACEs.
627 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
628 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
630 \(fn PLACE...)" nil (quote macro))
632 (autoload 'letf "cl-macs" "\
633 Temporarily bind to PLACEs.
634 This is the analogue of `let', but with generalized variables (in the
635 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
636 VALUE, then the BODY forms are executed. On exit, either normally or
637 because of a `throw' or error, the PLACEs are set back to their original
638 values. Note that this macro is *not* available in Common Lisp.
639 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
640 the PLACE is not modified before executing BODY.
642 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
644 (autoload 'letf* "cl-macs" "\
645 Temporarily bind to PLACEs.
646 This is the analogue of `let*', but with generalized variables (in the
647 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
648 VALUE, then the BODY forms are executed. On exit, either normally or
649 because of a `throw' or error, the PLACEs are set back to their original
650 values. Note that this macro is *not* available in Common Lisp.
651 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
652 the PLACE is not modified before executing BODY.
654 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
656 (autoload 'callf "cl-macs" "\
657 Set PLACE to (FUNC PLACE ARGS...).
658 FUNC should be an unquoted function name. PLACE may be a symbol,
659 or any generalized variable allowed by `setf'.
661 \(fn FUNC PLACE ARGS...)" nil (quote macro))
663 (autoload 'callf2 "cl-macs" "\
664 Set PLACE to (FUNC ARG1 PLACE ARGS...).
665 Like `callf', but PLACE is the second argument of FUNC, not the first.
667 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
669 (autoload 'define-modify-macro "cl-macs" "\
670 Define a `setf'-like modify macro.
671 If NAME is called, it combines its PLACE argument with the other arguments
672 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
674 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
676 (autoload 'defstruct "cl-macs" "\
677 Define a struct type.
678 This macro defines a new Lisp data type called NAME, which contains data
679 stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
680 copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
682 \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
684 (autoload 'cl-struct-setf-expander "cl-macs" "\
685 Not documented
687 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
689 (autoload 'typep "cl-macs" "\
690 Check that OBJECT is of type TYPE.
691 TYPE is a Common Lisp-style type specifier.
693 \(fn OBJECT TYPE)" nil nil)
695 (autoload 'check-type "cl-macs" "\
696 Verify that FORM is of type TYPE; signal an error if not.
697 STRING is an optional description of the desired type.
699 \(fn FORM TYPE &optional STRING)" nil (quote macro))
701 (autoload 'assert "cl-macs" "\
702 Verify that FORM returns non-nil; signal an error if not.
703 Second arg SHOW-ARGS means to include arguments of FORM in message.
704 Other args STRING and ARGS... are arguments to be passed to `error'.
705 They are not evaluated unless the assertion fails. If STRING is
706 omitted, a default message listing FORM itself is used.
708 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
710 (autoload 'define-compiler-macro "cl-macs" "\
711 Define a compiler-only macro.
712 This is like `defmacro', but macro expansion occurs only if the call to
713 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
714 for optimizing the way calls to FUNC are compiled; the form returned by
715 BODY should do the same thing as a call to the normal function called
716 FUNC, though possibly more efficiently. Note that, like regular macros,
717 compiler macros are expanded repeatedly until no further expansions are
718 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
719 original function call alone by declaring an initial `&whole foo' parameter
720 and then returning foo.
722 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
724 (autoload 'compiler-macroexpand "cl-macs" "\
725 Not documented
727 \(fn FORM)" nil nil)
729 ;;;***
731 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
732 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
733 ;;;;;; nset-difference set-difference nintersection intersection
734 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
735 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
736 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
737 ;;;;;; count position-if-not position-if position find-if-not find-if
738 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
739 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
740 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
741 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "6a0563f6cb397543e7a42bd91372d8c2")
742 ;;; Generated autoloads from cl-seq.el
744 (autoload 'reduce "cl-seq" "\
745 Reduce two-argument FUNCTION across SEQ.
747 Keywords supported: :start :end :from-end :initial-value :key
749 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
751 (autoload 'fill "cl-seq" "\
752 Fill the elements of SEQ with ITEM.
754 Keywords supported: :start :end
756 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
758 (autoload 'replace "cl-seq" "\
759 Replace the elements of SEQ1 with the elements of SEQ2.
760 SEQ1 is destructively modified, then returned.
762 Keywords supported: :start1 :end1 :start2 :end2
764 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
766 (autoload 'remove* "cl-seq" "\
767 Remove all occurrences of ITEM in SEQ.
768 This is a non-destructive function; it makes a copy of SEQ if necessary
769 to avoid corrupting the original SEQ.
771 Keywords supported: :test :test-not :key :count :start :end :from-end
773 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
775 (autoload 'remove-if "cl-seq" "\
776 Remove all items satisfying PREDICATE in SEQ.
777 This is a non-destructive function; it makes a copy of SEQ if necessary
778 to avoid corrupting the original SEQ.
780 Keywords supported: :key :count :start :end :from-end
782 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
784 (autoload 'remove-if-not "cl-seq" "\
785 Remove all items not satisfying PREDICATE in SEQ.
786 This is a non-destructive function; it makes a copy of SEQ if necessary
787 to avoid corrupting the original SEQ.
789 Keywords supported: :key :count :start :end :from-end
791 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
793 (autoload 'delete* "cl-seq" "\
794 Remove all occurrences of ITEM in SEQ.
795 This is a destructive function; it reuses the storage of SEQ whenever possible.
797 Keywords supported: :test :test-not :key :count :start :end :from-end
799 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
801 (autoload 'delete-if "cl-seq" "\
802 Remove all items satisfying PREDICATE in SEQ.
803 This is a destructive function; it reuses the storage of SEQ whenever possible.
805 Keywords supported: :key :count :start :end :from-end
807 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
809 (autoload 'delete-if-not "cl-seq" "\
810 Remove all items not satisfying PREDICATE in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
813 Keywords supported: :key :count :start :end :from-end
815 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
817 (autoload 'remove-duplicates "cl-seq" "\
818 Return a copy of SEQ with all duplicate elements removed.
820 Keywords supported: :test :test-not :key :start :end :from-end
822 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
824 (autoload 'delete-duplicates "cl-seq" "\
825 Remove all duplicate elements from SEQ (destructively).
827 Keywords supported: :test :test-not :key :start :end :from-end
829 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
831 (autoload 'substitute "cl-seq" "\
832 Substitute NEW for OLD in SEQ.
833 This is a non-destructive function; it makes a copy of SEQ if necessary
834 to avoid corrupting the original SEQ.
836 Keywords supported: :test :test-not :key :count :start :end :from-end
838 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
840 (autoload 'substitute-if "cl-seq" "\
841 Substitute NEW for all items satisfying PREDICATE in SEQ.
842 This is a non-destructive function; it makes a copy of SEQ if necessary
843 to avoid corrupting the original SEQ.
845 Keywords supported: :key :count :start :end :from-end
847 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
849 (autoload 'substitute-if-not "cl-seq" "\
850 Substitute NEW for all items not satisfying PREDICATE in SEQ.
851 This is a non-destructive function; it makes a copy of SEQ if necessary
852 to avoid corrupting the original SEQ.
854 Keywords supported: :key :count :start :end :from-end
856 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
858 (autoload 'nsubstitute "cl-seq" "\
859 Substitute NEW for OLD in SEQ.
860 This is a destructive function; it reuses the storage of SEQ whenever possible.
862 Keywords supported: :test :test-not :key :count :start :end :from-end
864 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
866 (autoload 'nsubstitute-if "cl-seq" "\
867 Substitute NEW for all items satisfying PREDICATE in SEQ.
868 This is a destructive function; it reuses the storage of SEQ whenever possible.
870 Keywords supported: :key :count :start :end :from-end
872 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
874 (autoload 'nsubstitute-if-not "cl-seq" "\
875 Substitute NEW for all items not satisfying PREDICATE in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
878 Keywords supported: :key :count :start :end :from-end
880 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
882 (autoload 'find "cl-seq" "\
883 Find the first occurrence of ITEM in SEQ.
884 Return the matching ITEM, or nil if not found.
886 Keywords supported: :test :test-not :key :start :end :from-end
888 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
890 (autoload 'find-if "cl-seq" "\
891 Find the first item satisfying PREDICATE in SEQ.
892 Return the matching item, or nil if not found.
894 Keywords supported: :key :start :end :from-end
896 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
898 (autoload 'find-if-not "cl-seq" "\
899 Find the first item not satisfying PREDICATE in SEQ.
900 Return the matching item, or nil if not found.
902 Keywords supported: :key :start :end :from-end
904 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
906 (autoload 'position "cl-seq" "\
907 Find the first occurrence of ITEM in SEQ.
908 Return the index of the matching item, or nil if not found.
910 Keywords supported: :test :test-not :key :start :end :from-end
912 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'position-if "cl-seq" "\
915 Find the first item satisfying PREDICATE in SEQ.
916 Return the index of the matching item, or nil if not found.
918 Keywords supported: :key :start :end :from-end
920 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
922 (autoload 'position-if-not "cl-seq" "\
923 Find the first item not satisfying PREDICATE in SEQ.
924 Return the index of the matching item, or nil if not found.
926 Keywords supported: :key :start :end :from-end
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
930 (autoload 'count "cl-seq" "\
931 Count the number of occurrences of ITEM in SEQ.
933 Keywords supported: :test :test-not :key :start :end
935 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
937 (autoload 'count-if "cl-seq" "\
938 Count the number of items satisfying PREDICATE in SEQ.
940 Keywords supported: :key :start :end
942 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
944 (autoload 'count-if-not "cl-seq" "\
945 Count the number of items not satisfying PREDICATE in SEQ.
947 Keywords supported: :key :start :end
949 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
951 (autoload 'mismatch "cl-seq" "\
952 Compare SEQ1 with SEQ2, return index of first mismatching element.
953 Return nil if the sequences match. If one sequence is a prefix of the
954 other, the return value indicates the end of the shorter sequence.
956 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
958 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
960 (autoload 'search "cl-seq" "\
961 Search for SEQ1 as a subsequence of SEQ2.
962 Return the index of the leftmost element of the first match found;
963 return nil if there are no matches.
965 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
967 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
969 (autoload 'sort* "cl-seq" "\
970 Sort the argument SEQ according to PREDICATE.
971 This is a destructive function; it reuses the storage of SEQ if possible.
973 Keywords supported: :key
975 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
977 (autoload 'stable-sort "cl-seq" "\
978 Sort the argument SEQ stably according to PREDICATE.
979 This is a destructive function; it reuses the storage of SEQ if possible.
981 Keywords supported: :key
983 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
985 (autoload 'merge "cl-seq" "\
986 Destructively merge the two sequences to produce a new sequence.
987 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
988 sequences, and PREDICATE is a `less-than' predicate on the elements.
990 Keywords supported: :key
992 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
994 (autoload 'member* "cl-seq" "\
995 Find the first occurrence of ITEM in LIST.
996 Return the sublist of LIST whose car is ITEM.
998 Keywords supported: :test :test-not :key
1000 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1002 (autoload 'member-if "cl-seq" "\
1003 Find the first item satisfying PREDICATE in LIST.
1004 Return the sublist of LIST whose car matches.
1006 Keywords supported: :key
1008 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1010 (autoload 'member-if-not "cl-seq" "\
1011 Find the first item not satisfying PREDICATE in LIST.
1012 Return the sublist of LIST whose car matches.
1014 Keywords supported: :key
1016 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1018 (autoload 'cl-adjoin "cl-seq" "\
1019 Not documented
1021 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1023 (autoload 'assoc* "cl-seq" "\
1024 Find the first item whose car matches ITEM in LIST.
1026 Keywords supported: :test :test-not :key
1028 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1030 (autoload 'assoc-if "cl-seq" "\
1031 Find the first item whose car satisfies PREDICATE in LIST.
1033 Keywords supported: :key
1035 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1037 (autoload 'assoc-if-not "cl-seq" "\
1038 Find the first item whose car does not satisfy PREDICATE in LIST.
1040 Keywords supported: :key
1042 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1044 (autoload 'rassoc* "cl-seq" "\
1045 Find the first item whose cdr matches ITEM in LIST.
1047 Keywords supported: :test :test-not :key
1049 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1051 (autoload 'rassoc-if "cl-seq" "\
1052 Find the first item whose cdr satisfies PREDICATE in LIST.
1054 Keywords supported: :key
1056 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1058 (autoload 'rassoc-if-not "cl-seq" "\
1059 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1061 Keywords supported: :key
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1065 (autoload 'union "cl-seq" "\
1066 Combine LIST1 and LIST2 using a set-union operation.
1067 The result list contains all items that appear in either LIST1 or LIST2.
1068 This is a non-destructive function; it makes a copy of the data if necessary
1069 to avoid corrupting the original LIST1 and LIST2.
1071 Keywords supported: :test :test-not :key
1073 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1075 (autoload 'nunion "cl-seq" "\
1076 Combine LIST1 and LIST2 using a set-union operation.
1077 The result list contains all items that appear in either LIST1 or LIST2.
1078 This is a destructive function; it reuses the storage of LIST1 and LIST2
1079 whenever possible.
1081 Keywords supported: :test :test-not :key
1083 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1085 (autoload 'intersection "cl-seq" "\
1086 Combine LIST1 and LIST2 using a set-intersection operation.
1087 The result list contains all items that appear in both LIST1 and LIST2.
1088 This is a non-destructive function; it makes a copy of the data if necessary
1089 to avoid corrupting the original LIST1 and LIST2.
1091 Keywords supported: :test :test-not :key
1093 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1095 (autoload 'nintersection "cl-seq" "\
1096 Combine LIST1 and LIST2 using a set-intersection operation.
1097 The result list contains all items that appear in both LIST1 and LIST2.
1098 This is a destructive function; it reuses the storage of LIST1 and LIST2
1099 whenever possible.
1101 Keywords supported: :test :test-not :key
1103 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1105 (autoload 'set-difference "cl-seq" "\
1106 Combine LIST1 and LIST2 using a set-difference operation.
1107 The result list contains all items that appear in LIST1 but not LIST2.
1108 This is a non-destructive function; it makes a copy of the data if necessary
1109 to avoid corrupting the original LIST1 and LIST2.
1111 Keywords supported: :test :test-not :key
1113 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1115 (autoload 'nset-difference "cl-seq" "\
1116 Combine LIST1 and LIST2 using a set-difference operation.
1117 The result list contains all items that appear in LIST1 but not LIST2.
1118 This is a destructive function; it reuses the storage of LIST1 and LIST2
1119 whenever possible.
1121 Keywords supported: :test :test-not :key
1123 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1125 (autoload 'set-exclusive-or "cl-seq" "\
1126 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1127 The result list contains all items that appear in exactly one of LIST1, LIST2.
1128 This is a non-destructive function; it makes a copy of the data if necessary
1129 to avoid corrupting the original LIST1 and LIST2.
1131 Keywords supported: :test :test-not :key
1133 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1135 (autoload 'nset-exclusive-or "cl-seq" "\
1136 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1137 The result list contains all items that appear in exactly one of LIST1, LIST2.
1138 This is a destructive function; it reuses the storage of LIST1 and LIST2
1139 whenever possible.
1141 Keywords supported: :test :test-not :key
1143 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1145 (autoload 'subsetp "cl-seq" "\
1146 Return true if LIST1 is a subset of LIST2.
1147 I.e., if every element of LIST1 also appears in LIST2.
1149 Keywords supported: :test :test-not :key
1151 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1153 (autoload 'subst-if "cl-seq" "\
1154 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1155 Return a copy of TREE with all matching elements replaced by NEW.
1157 Keywords supported: :key
1159 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1161 (autoload 'subst-if-not "cl-seq" "\
1162 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1163 Return a copy of TREE with all non-matching elements replaced by NEW.
1165 Keywords supported: :key
1167 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1169 (autoload 'nsubst "cl-seq" "\
1170 Substitute NEW for OLD everywhere in TREE (destructively).
1171 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1172 to `setcar').
1174 Keywords supported: :test :test-not :key
1176 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1178 (autoload 'nsubst-if "cl-seq" "\
1179 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1180 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1182 Keywords supported: :key
1184 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1186 (autoload 'nsubst-if-not "cl-seq" "\
1187 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1188 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1190 Keywords supported: :key
1192 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1194 (autoload 'sublis "cl-seq" "\
1195 Perform substitutions indicated by ALIST in TREE (non-destructively).
1196 Return a copy of TREE with all matching elements replaced.
1198 Keywords supported: :test :test-not :key
1200 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1202 (autoload 'nsublis "cl-seq" "\
1203 Perform substitutions indicated by ALIST in TREE (destructively).
1204 Any matching element of TREE is changed via a call to `setcar'.
1206 Keywords supported: :test :test-not :key
1208 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1210 (autoload 'tree-equal "cl-seq" "\
1211 Return t if trees TREE1 and TREE2 have `eql' leaves.
1212 Atoms are compared by `eql'; cons cells are compared recursively.
1214 Keywords supported: :test :test-not :key
1216 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1218 ;;;***
1220 ;; Local Variables:
1221 ;; version-control: never
1222 ;; no-byte-compile: t
1223 ;; no-update-autoloads: t
1224 ;; End:
1226 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1227 ;;; cl-loaddefs.el ends here