1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch]
27 /* AIX requires this to be the first thing in the file. */
28 #if defined (_AIX) && !defined (REGEX_MALLOC)
36 /* Converts the pointer to the char to BEG-based offset from the start. */
37 #define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
38 #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 #include <sys/types.h>
48 /* This is for other GNU distributions with internationalized messages. */
49 #if HAVE_LIBINTL_H || defined (_LIBC)
52 # define gettext(msgid) (msgid)
56 /* This define is so xgettext can find the internationalizable
58 #define gettext_noop(String) String
61 /* The `emacs' switch turns on certain matching commands
62 that make sense only in Emacs. */
68 /* Make syntax table lookup grant data in gl_state. */
69 #define SYNTAX_ENTRY_VIA_PROPERTY
75 #define malloc xmalloc
76 #define realloc xrealloc
79 #define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
80 #define RE_STRING_CHAR(p, s) \
81 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
82 #define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
83 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
85 /* Set C a (possibly multibyte) character before P. P points into a
86 string which is the virtual concatenation of STR1 (which ends at
87 END1) or STR2 (which ends at END2). */
88 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
92 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
93 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
94 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
95 c = STRING_CHAR (dtemp, (p) - dtemp); \
98 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
102 #else /* not emacs */
104 /* If we are not linking with Emacs proper,
105 we can't use the relocating allocator
106 even if config.h says that we can. */
109 #if defined (STDC_HEADERS) || defined (_LIBC)
116 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
117 If nothing else has been done, use the method below. */
118 #ifdef INHIBIT_STRING_HEADER
119 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
120 #if !defined (bzero) && !defined (bcopy)
121 #undef INHIBIT_STRING_HEADER
126 /* This is the normal way of making sure we have a bcopy and a bzero.
127 This is used in most programs--a few other programs avoid this
128 by defining INHIBIT_STRING_HEADER. */
129 #ifndef INHIBIT_STRING_HEADER
130 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
133 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
136 #define bcopy(s, d, n) memcpy ((d), (s), (n))
139 #define bzero(s, n) memset ((s), 0, (n))
146 /* Define the syntax stuff for \<, \>, etc. */
148 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
149 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
151 #ifdef SWITCH_ENUM_BUG
152 #define SWITCH_ENUM_CAST(x) ((int)(x))
154 #define SWITCH_ENUM_CAST(x) (x)
159 extern char *re_syntax_table
;
161 #else /* not SYNTAX_TABLE */
163 /* How many characters in the character set. */
164 #define CHAR_SET_SIZE 256
166 static char re_syntax_table
[CHAR_SET_SIZE
];
177 bzero (re_syntax_table
, sizeof re_syntax_table
);
179 for (c
= 'a'; c
<= 'z'; c
++)
180 re_syntax_table
[c
] = Sword
;
182 for (c
= 'A'; c
<= 'Z'; c
++)
183 re_syntax_table
[c
] = Sword
;
185 for (c
= '0'; c
<= '9'; c
++)
186 re_syntax_table
[c
] = Sword
;
188 re_syntax_table
['_'] = Sword
;
193 #endif /* not SYNTAX_TABLE */
195 #define SYNTAX(c) re_syntax_table[c]
197 /* Dummy macros for non-Emacs environments. */
198 #define BASE_LEADING_CODE_P(c) (0)
199 #define CHAR_CHARSET(c) 0
200 #define CHARSET_LEADING_CODE_BASE(c) 0
201 #define MAX_MULTIBYTE_LENGTH 1
202 #define RE_MULTIBYTE_P(x) 0
203 #define WORD_BOUNDARY_P(c1, c2) (0)
204 #define CHAR_HEAD_P(p) (1)
205 #define SINGLE_BYTE_CHAR_P(c) (1)
206 #define SAME_CHARSET_P(c1, c2) (1)
207 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
208 #define STRING_CHAR(p, s) (*(p))
209 #define RE_STRING_CHAR STRING_CHAR
210 #define CHAR_STRING(c, s) (*(s) = (c), 1)
211 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
212 #define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
213 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
214 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
215 #endif /* not emacs */
218 #define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
219 #define RE_TRANSLATE_P(TBL) (TBL)
222 /* Get the interface, including the syntax bits. */
225 /* isalpha etc. are used for the character classes. */
230 /* 1 if C is an ASCII character. */
231 #define IS_REAL_ASCII(c) ((c) < 0200)
233 /* 1 if C is a unibyte character. */
234 #define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
236 /* The Emacs definitions should not be directly affected by locales. */
238 /* In Emacs, these are only used for single-byte characters. */
239 #define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
240 #define ISCNTRL(c) ((c) < ' ')
241 #define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
242 || ((c) >= 'a' && (c) <= 'f') \
243 || ((c) >= 'A' && (c) <= 'F'))
245 /* This is only used for single-byte characters. */
246 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
248 /* The rest must handle multibyte characters. */
250 #define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
251 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
254 #define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
255 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
258 #define ISALNUM(c) (IS_REAL_ASCII (c) \
259 ? (((c) >= 'a' && (c) <= 'z') \
260 || ((c) >= 'A' && (c) <= 'Z') \
261 || ((c) >= '0' && (c) <= '9')) \
262 : SYNTAX (c) == Sword)
264 #define ISALPHA(c) (IS_REAL_ASCII (c) \
265 ? (((c) >= 'a' && (c) <= 'z') \
266 || ((c) >= 'A' && (c) <= 'Z')) \
267 : SYNTAX (c) == Sword)
269 #define ISLOWER(c) (LOWERCASEP (c))
271 #define ISPUNCT(c) (IS_REAL_ASCII (c) \
272 ? ((c) > ' ' && (c) < 0177 \
273 && !(((c) >= 'a' && (c) <= 'z') \
274 || ((c) >= 'A' && (c) <= 'Z') \
275 || ((c) >= '0' && (c) <= '9'))) \
276 : SYNTAX (c) != Sword)
278 #define ISSPACE(c) (SYNTAX (c) == Swhitespace)
280 #define ISUPPER(c) (UPPERCASEP (c))
282 #define ISWORD(c) (SYNTAX (c) == Sword)
284 #else /* not emacs */
286 /* Jim Meyering writes:
288 "... Some ctype macros are valid only for character codes that
289 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
290 using /bin/cc or gcc but without giving an ansi option). So, all
291 ctype uses should be through macros like ISPRINT... If
292 STDC_HEADERS is defined, then autoconf has verified that the ctype
293 macros don't need to be guarded with references to isascii. ...
294 Defining isascii to 1 should let any compiler worth its salt
295 eliminate the && through constant folding." */
297 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
300 #define ISASCII(c) isascii(c)
303 /* 1 if C is an ASCII character. */
304 #define IS_REAL_ASCII(c) ((c) < 0200)
306 /* This distinction is not meaningful, except in Emacs. */
307 #define ISUNIBYTE(c) 1
309 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
310 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
311 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
314 #define ISBLANK(c) (ISASCII (c) && isblank (c))
316 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
319 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
321 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
324 #define ISPRINT(c) (ISASCII (c) && isprint (c))
325 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
326 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
327 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
328 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
329 #define ISLOWER(c) (ISASCII (c) && islower (c))
330 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
331 #define ISSPACE(c) (ISASCII (c) && isspace (c))
332 #define ISUPPER(c) (ISASCII (c) && isupper (c))
333 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
335 #define ISWORD(c) ISALPHA(c)
337 #endif /* not emacs */
340 #define NULL (void *)0
343 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
344 since ours (we hope) works properly with all combinations of
345 machines, compilers, `char' and `unsigned char' argument types.
346 (Per Bothner suggested the basic approach.) */
347 #undef SIGN_EXTEND_CHAR
349 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
350 #else /* not __STDC__ */
351 /* As in Harbison and Steele. */
352 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
355 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
356 use `alloca' instead of `malloc'. This is because using malloc in
357 re_search* or re_match* could cause memory leaks when C-g is used in
358 Emacs; also, malloc is slower and causes storage fragmentation. On
359 the other hand, malloc is more portable, and easier to debug.
361 Because we sometimes use alloca, some routines have to be macros,
362 not functions -- `alloca'-allocated space disappears at the end of the
363 function it is called in. */
367 #define REGEX_ALLOCATE malloc
368 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
369 #define REGEX_FREE free
371 #else /* not REGEX_MALLOC */
373 /* Emacs already defines alloca, sometimes. */
376 /* Make alloca work the best possible way. */
378 #define alloca __builtin_alloca
379 #else /* not __GNUC__ */
382 #else /* not __GNUC__ or HAVE_ALLOCA_H */
383 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
384 #ifndef _AIX /* Already did AIX, up at the top. */
386 #endif /* not _AIX */
388 #endif /* not HAVE_ALLOCA_H */
389 #endif /* not __GNUC__ */
391 #endif /* not alloca */
393 #define REGEX_ALLOCATE alloca
395 /* Assumes a `char *destination' variable. */
396 #define REGEX_REALLOCATE(source, osize, nsize) \
397 (destination = (char *) alloca (nsize), \
398 bcopy (source, destination, osize), \
401 /* No need to do anything to free, after alloca. */
402 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
404 #endif /* not REGEX_MALLOC */
406 /* Define how to allocate the failure stack. */
408 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
410 #define REGEX_ALLOCATE_STACK(size) \
411 r_alloc (&failure_stack_ptr, (size))
412 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
413 r_re_alloc (&failure_stack_ptr, (nsize))
414 #define REGEX_FREE_STACK(ptr) \
415 r_alloc_free (&failure_stack_ptr)
417 #else /* not using relocating allocator */
421 #define REGEX_ALLOCATE_STACK malloc
422 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
423 #define REGEX_FREE_STACK free
425 #else /* not REGEX_MALLOC */
427 #define REGEX_ALLOCATE_STACK alloca
429 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
430 REGEX_REALLOCATE (source, osize, nsize)
431 /* No need to explicitly free anything. */
432 #define REGEX_FREE_STACK(arg) ((void)0)
434 #endif /* not REGEX_MALLOC */
435 #endif /* not using relocating allocator */
438 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
439 `string1' or just past its end. This works if PTR is NULL, which is
441 #define FIRST_STRING_P(ptr) \
442 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
444 /* (Re)Allocate N items of type T using malloc, or fail. */
445 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
446 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
447 #define RETALLOC_IF(addr, n, t) \
448 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
449 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
451 #define BYTEWIDTH 8 /* In bits. */
453 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
457 #define MAX(a, b) ((a) > (b) ? (a) : (b))
458 #define MIN(a, b) ((a) < (b) ? (a) : (b))
460 /* Type of source-pattern and string chars. */
461 typedef const unsigned char re_char
;
463 typedef char boolean
;
467 static int re_match_2_internal ();
469 /* These are the command codes that appear in compiled regular
470 expressions. Some opcodes are followed by argument bytes. A
471 command code can specify any interpretation whatsoever for its
472 arguments. Zero bytes may appear in the compiled regular expression. */
478 /* Succeed right away--no more backtracking. */
481 /* Followed by one byte giving n, then by n literal bytes. */
484 /* Matches any (more or less) character. */
487 /* Matches any one char belonging to specified set. First
488 following byte is number of bitmap bytes. Then come bytes
489 for a bitmap saying which chars are in. Bits in each byte
490 are ordered low-bit-first. A character is in the set if its
491 bit is 1. A character too large to have a bit in the map is
492 automatically not in the set.
494 If the length byte has the 0x80 bit set, then that stuff
495 is followed by a range table:
496 2 bytes of flags for character sets (low 8 bits, high 8 bits)
497 See RANGE_TABLE_WORK_BITS below.
498 2 bytes, the number of pairs that follow
499 pairs, each 2 multibyte characters,
500 each multibyte character represented as 3 bytes. */
503 /* Same parameters as charset, but match any character that is
504 not one of those specified. */
507 /* Start remembering the text that is matched, for storing in a
508 register. Followed by one byte with the register number, in
509 the range 0 to one less than the pattern buffer's re_nsub
513 /* Stop remembering the text that is matched and store it in a
514 memory register. Followed by one byte with the register
515 number, in the range 0 to one less than `re_nsub' in the
519 /* Match a duplicate of something remembered. Followed by one
520 byte containing the register number. */
523 /* Fail unless at beginning of line. */
526 /* Fail unless at end of line. */
529 /* Succeeds if at beginning of buffer (if emacs) or at beginning
530 of string to be matched (if not). */
533 /* Analogously, for end of buffer/string. */
536 /* Followed by two byte relative address to which to jump. */
539 /* Followed by two-byte relative address of place to resume at
540 in case of failure. */
543 /* Like on_failure_jump, but pushes a placeholder instead of the
544 current string position when executed. */
545 on_failure_keep_string_jump
,
547 /* Just like `on_failure_jump', except that it checks that we
548 don't get stuck in an infinite loop (matching an empty string
550 on_failure_jump_loop
,
552 /* Just like `on_failure_jump_loop', except that it checks for
553 a different kind of loop (the kind that shows up with non-greedy
554 operators). This operation has to be immediately preceded
556 on_failure_jump_nastyloop
,
558 /* A smart `on_failure_jump' used for greedy * and + operators.
559 It analyses the loop before which it is put and if the
560 loop does not require backtracking, it changes itself to
561 `on_failure_keep_string_jump' and short-circuits the loop,
562 else it just defaults to changing itself into `on_failure_jump'.
563 It assumes that it is pointing to just past a `jump'. */
564 on_failure_jump_smart
,
566 /* Followed by two-byte relative address and two-byte number n.
567 After matching N times, jump to the address upon failure.
568 Does not work if N starts at 0: use on_failure_jump_loop
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
576 /* Set the following two-byte relative address to the
577 subsequent two-byte number. The address *includes* the two
581 wordbeg
, /* Succeeds if at word beginning. */
582 wordend
, /* Succeeds if at word end. */
584 wordbound
, /* Succeeds if at a word boundary. */
585 notwordbound
, /* Succeeds if not at a word boundary. */
587 /* Matches any character whose syntax is specified. Followed by
588 a byte which contains a syntax code, e.g., Sword. */
591 /* Matches any character whose syntax is not that specified. */
595 ,before_dot
, /* Succeeds if before point. */
596 at_dot
, /* Succeeds if at point. */
597 after_dot
, /* Succeeds if after point. */
599 /* Matches any character whose category-set contains the specified
600 category. The operator is followed by a byte which contains a
601 category code (mnemonic ASCII character). */
604 /* Matches any character whose category-set does not contain the
605 specified category. The operator is followed by a byte which
606 contains the category code (mnemonic ASCII character). */
611 /* Common operations on the compiled pattern. */
613 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
615 #define STORE_NUMBER(destination, number) \
617 (destination)[0] = (number) & 0377; \
618 (destination)[1] = (number) >> 8; \
621 /* Same as STORE_NUMBER, except increment DESTINATION to
622 the byte after where the number is stored. Therefore, DESTINATION
623 must be an lvalue. */
625 #define STORE_NUMBER_AND_INCR(destination, number) \
627 STORE_NUMBER (destination, number); \
628 (destination) += 2; \
631 /* Put into DESTINATION a number stored in two contiguous bytes starting
634 #define EXTRACT_NUMBER(destination, source) \
636 (destination) = *(source) & 0377; \
637 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
642 extract_number (dest
, source
)
644 unsigned char *source
;
646 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
647 *dest
= *source
& 0377;
651 #ifndef EXTRACT_MACROS /* To debug the macros. */
652 #undef EXTRACT_NUMBER
653 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
654 #endif /* not EXTRACT_MACROS */
658 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
659 SOURCE must be an lvalue. */
661 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
663 EXTRACT_NUMBER (destination, source); \
669 extract_number_and_incr (destination
, source
)
671 unsigned char **source
;
673 extract_number (destination
, *source
);
677 #ifndef EXTRACT_MACROS
678 #undef EXTRACT_NUMBER_AND_INCR
679 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
680 extract_number_and_incr (&dest, &src)
681 #endif /* not EXTRACT_MACROS */
685 /* Store a multibyte character in three contiguous bytes starting
686 DESTINATION, and increment DESTINATION to the byte after where the
687 character is stored. Therefore, DESTINATION must be an lvalue. */
689 #define STORE_CHARACTER_AND_INCR(destination, character) \
691 (destination)[0] = (character) & 0377; \
692 (destination)[1] = ((character) >> 8) & 0377; \
693 (destination)[2] = (character) >> 16; \
694 (destination) += 3; \
697 /* Put into DESTINATION a character stored in three contiguous bytes
698 starting at SOURCE. */
700 #define EXTRACT_CHARACTER(destination, source) \
702 (destination) = ((source)[0] \
703 | ((source)[1] << 8) \
704 | ((source)[2] << 16)); \
708 /* Macros for charset. */
710 /* Size of bitmap of charset P in bytes. P is a start of charset,
711 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
712 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
714 /* Nonzero if charset P has range table. */
715 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
717 /* Return the address of range table of charset P. But not the start
718 of table itself, but the before where the number of ranges is
719 stored. `2 +' means to skip re_opcode_t and size of bitmap,
720 and the 2 bytes of flags at the start of the range table. */
721 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
723 /* Extract the bit flags that start a range table. */
724 #define CHARSET_RANGE_TABLE_BITS(p) \
725 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
726 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
728 /* Test if C is listed in the bitmap of charset P. */
729 #define CHARSET_LOOKUP_BITMAP(p, c) \
730 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
731 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
733 /* Return the address of end of RANGE_TABLE. COUNT is number of
734 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
735 is start of range and end of range. `* 3' is size of each start
737 #define CHARSET_RANGE_TABLE_END(range_table, count) \
738 ((range_table) + (count) * 2 * 3)
740 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
741 COUNT is number of ranges in RANGE_TABLE. */
742 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
745 int range_start, range_end; \
747 unsigned char *range_table_end \
748 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
750 for (p = (range_table); p < range_table_end; p += 2 * 3) \
752 EXTRACT_CHARACTER (range_start, p); \
753 EXTRACT_CHARACTER (range_end, p + 3); \
755 if (range_start <= (c) && (c) <= range_end) \
764 /* Test if C is in range table of CHARSET. The flag NOT is negated if
765 C is listed in it. */
766 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
769 /* Number of ranges in range table. */ \
771 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
773 EXTRACT_NUMBER_AND_INCR (count, range_table); \
774 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
778 /* If DEBUG is defined, Regex prints many voluminous messages about what
779 it is doing (if the variable `debug' is nonzero). If linked with the
780 main program in `iregex.c', you can enter patterns and strings
781 interactively. And if linked with the main program in `main.c' and
782 the other test files, you can run the already-written tests. */
786 /* We use standard I/O for debugging. */
789 /* It is useful to test things that ``must'' be true when debugging. */
792 static int debug
= -100000;
794 #define DEBUG_STATEMENT(e) e
795 #define DEBUG_PRINT1(x) if (debug > 0) printf (x)
796 #define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
797 #define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
798 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
799 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
800 if (debug > 0) print_partial_compiled_pattern (s, e)
801 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
802 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
805 /* Print the fastmap in human-readable form. */
808 print_fastmap (fastmap
)
811 unsigned was_a_range
= 0;
814 while (i
< (1 << BYTEWIDTH
))
820 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
836 /* Print a compiled pattern string in human-readable form, starting at
837 the START pointer into it and ending just before the pointer END. */
840 print_partial_compiled_pattern (start
, end
)
841 unsigned char *start
;
845 unsigned char *p
= start
;
846 unsigned char *pend
= end
;
854 /* Loop over pattern commands. */
857 printf ("%d:\t", p
- start
);
859 switch ((re_opcode_t
) *p
++)
871 printf ("/exactn/%d", mcnt
);
881 printf ("/start_memory/%d", *p
++);
885 printf ("/stop_memory/%d", *p
++);
889 printf ("/duplicate/%d", *p
++);
899 register int c
, last
= -100;
900 register int in_range
= 0;
901 int length
= CHARSET_BITMAP_SIZE (p
- 1);
902 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
904 printf ("/charset [%s",
905 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
907 assert (p
+ *p
< pend
);
909 for (c
= 0; c
< 256; c
++)
911 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
913 /* Are we starting a range? */
914 if (last
+ 1 == c
&& ! in_range
)
919 /* Have we broken a range? */
920 else if (last
+ 1 != c
&& in_range
)
942 printf ("has-range-table");
944 /* ??? Should print the range table; for now, just skip it. */
945 p
+= 2; /* skip range table bits */
946 EXTRACT_NUMBER_AND_INCR (count
, p
);
947 p
= CHARSET_RANGE_TABLE_END (p
, count
);
960 case on_failure_jump
:
961 extract_number_and_incr (&mcnt
, &p
);
962 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
965 case on_failure_keep_string_jump
:
966 extract_number_and_incr (&mcnt
, &p
);
967 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
970 case on_failure_jump_nastyloop
:
971 extract_number_and_incr (&mcnt
, &p
);
972 printf ("/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
975 case on_failure_jump_loop
:
976 extract_number_and_incr (&mcnt
, &p
);
977 printf ("/on_failure_jump_loop to %d", p
+ mcnt
- start
);
980 case on_failure_jump_smart
:
981 extract_number_and_incr (&mcnt
, &p
);
982 printf ("/on_failure_jump_smart to %d", p
+ mcnt
- start
);
986 extract_number_and_incr (&mcnt
, &p
);
987 printf ("/jump to %d", p
+ mcnt
- start
);
991 extract_number_and_incr (&mcnt
, &p
);
992 extract_number_and_incr (&mcnt2
, &p
);
993 printf ("/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
997 extract_number_and_incr (&mcnt
, &p
);
998 extract_number_and_incr (&mcnt2
, &p
);
999 printf ("/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1003 extract_number_and_incr (&mcnt
, &p
);
1004 extract_number_and_incr (&mcnt2
, &p
);
1005 printf ("/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1009 printf ("/wordbound");
1013 printf ("/notwordbound");
1017 printf ("/wordbeg");
1021 printf ("/wordend");
1024 printf ("/syntaxspec");
1026 printf ("/%d", mcnt
);
1030 printf ("/notsyntaxspec");
1032 printf ("/%d", mcnt
);
1037 printf ("/before_dot");
1045 printf ("/after_dot");
1049 printf ("/categoryspec");
1051 printf ("/%d", mcnt
);
1054 case notcategoryspec
:
1055 printf ("/notcategoryspec");
1057 printf ("/%d", mcnt
);
1070 printf ("?%d", *(p
-1));
1076 printf ("%d:\tend of pattern.\n", p
- start
);
1081 print_compiled_pattern (bufp
)
1082 struct re_pattern_buffer
*bufp
;
1084 unsigned char *buffer
= bufp
->buffer
;
1086 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1087 printf ("%ld bytes used/%ld bytes allocated.\n", bufp
->used
, bufp
->allocated
);
1089 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1091 printf ("fastmap: ");
1092 print_fastmap (bufp
->fastmap
);
1095 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1096 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1097 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1098 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1099 printf ("no_sub: %d\t", bufp
->no_sub
);
1100 printf ("not_bol: %d\t", bufp
->not_bol
);
1101 printf ("not_eol: %d\t", bufp
->not_eol
);
1102 printf ("syntax: %d\n", bufp
->syntax
);
1104 /* Perhaps we should print the translate table? */
1109 print_double_string (where
, string1
, size1
, string2
, size2
)
1122 if (FIRST_STRING_P (where
))
1124 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1125 putchar (string1
[this_char
]);
1130 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1131 putchar (string2
[this_char
]);
1135 #else /* not DEBUG */
1140 #define DEBUG_STATEMENT(e)
1141 #define DEBUG_PRINT1(x)
1142 #define DEBUG_PRINT2(x1, x2)
1143 #define DEBUG_PRINT3(x1, x2, x3)
1144 #define DEBUG_PRINT4(x1, x2, x3, x4)
1145 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1146 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1148 #endif /* not DEBUG */
1150 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1151 also be assigned to arbitrarily: each pattern buffer stores its own
1152 syntax, so it can be changed between regex compilations. */
1153 /* This has no initializer because initialized variables in Emacs
1154 become read-only after dumping. */
1155 reg_syntax_t re_syntax_options
;
1158 /* Specify the precise syntax of regexps for compilation. This provides
1159 for compatibility for various utilities which historically have
1160 different, incompatible syntaxes.
1162 The argument SYNTAX is a bit mask comprised of the various bits
1163 defined in regex.h. We return the old syntax. */
1166 re_set_syntax (syntax
)
1167 reg_syntax_t syntax
;
1169 reg_syntax_t ret
= re_syntax_options
;
1171 re_syntax_options
= syntax
;
1175 /* This table gives an error message for each of the error codes listed
1176 in regex.h. Obviously the order here has to be same as there.
1177 POSIX doesn't require that we do anything for REG_NOERROR,
1178 but why not be nice? */
1180 static const char *re_error_msgid
[] =
1182 gettext_noop ("Success"), /* REG_NOERROR */
1183 gettext_noop ("No match"), /* REG_NOMATCH */
1184 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1185 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1186 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1187 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1188 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1189 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1190 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1191 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1192 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1193 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1194 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1195 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1196 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1197 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1198 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1201 /* Avoiding alloca during matching, to placate r_alloc. */
1203 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1204 searching and matching functions should not call alloca. On some
1205 systems, alloca is implemented in terms of malloc, and if we're
1206 using the relocating allocator routines, then malloc could cause a
1207 relocation, which might (if the strings being searched are in the
1208 ralloc heap) shift the data out from underneath the regexp
1211 Here's another reason to avoid allocation: Emacs
1212 processes input from X in a signal handler; processing X input may
1213 call malloc; if input arrives while a matching routine is calling
1214 malloc, then we're scrod. But Emacs can't just block input while
1215 calling matching routines; then we don't notice interrupts when
1216 they come in. So, Emacs blocks input around all regexp calls
1217 except the matching calls, which it leaves unprotected, in the
1218 faith that they will not malloc. */
1220 /* Normally, this is fine. */
1221 #define MATCH_MAY_ALLOCATE
1223 /* When using GNU C, we are not REALLY using the C alloca, no matter
1224 what config.h may say. So don't take precautions for it. */
1229 /* The match routines may not allocate if (1) they would do it with malloc
1230 and (2) it's not safe for them to use malloc.
1231 Note that if REL_ALLOC is defined, matching would not use malloc for the
1232 failure stack, but we would still use it for the register vectors;
1233 so REL_ALLOC should not affect this. */
1234 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1235 #undef MATCH_MAY_ALLOCATE
1239 /* Failure stack declarations and macros; both re_compile_fastmap and
1240 re_match_2 use a failure stack. These have to be macros because of
1241 REGEX_ALLOCATE_STACK. */
1244 /* Approximate number of failure points for which to initially allocate space
1245 when matching. If this number is exceeded, we allocate more
1246 space, so it is not a hard limit. */
1247 #ifndef INIT_FAILURE_ALLOC
1248 #define INIT_FAILURE_ALLOC 20
1251 /* Roughly the maximum number of failure points on the stack. Would be
1252 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1253 This is a variable only so users of regex can assign to it; we never
1254 change it ourselves. */
1255 #if defined (MATCH_MAY_ALLOCATE)
1256 /* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1257 whose default stack limit is 2mb. In order for a larger
1258 value to work reliably, you have to try to make it accord
1259 with the process stack limit. */
1260 int re_max_failures
= 40000;
1262 int re_max_failures
= 4000;
1265 union fail_stack_elt
1267 const unsigned char *pointer
;
1268 unsigned int integer
;
1271 typedef union fail_stack_elt fail_stack_elt_t
;
1275 fail_stack_elt_t
*stack
;
1277 unsigned avail
; /* Offset of next open position. */
1278 unsigned frame
; /* Offset of the cur constructed frame. */
1281 #define PATTERN_STACK_EMPTY() (fail_stack.avail == 0)
1282 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1283 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1286 /* Define macros to initialize and free the failure stack.
1287 Do `return -2' if the alloc fails. */
1289 #ifdef MATCH_MAY_ALLOCATE
1290 #define INIT_FAIL_STACK() \
1292 fail_stack.stack = (fail_stack_elt_t *) \
1293 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1294 * sizeof (fail_stack_elt_t)); \
1296 if (fail_stack.stack == NULL) \
1299 fail_stack.size = INIT_FAILURE_ALLOC; \
1300 fail_stack.avail = 0; \
1301 fail_stack.frame = 0; \
1304 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1306 #define INIT_FAIL_STACK() \
1308 fail_stack.avail = 0; \
1309 fail_stack.frame = 0; \
1312 #define RESET_FAIL_STACK() ((void)0)
1316 /* Double the size of FAIL_STACK, up to a limit
1317 which allows approximately `re_max_failures' items.
1319 Return 1 if succeeds, and 0 if either ran out of memory
1320 allocating space for it or it was already too large.
1322 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1324 /* Factor to increase the failure stack size by
1325 when we increase it.
1326 This used to be 2, but 2 was too wasteful
1327 because the old discarded stacks added up to as much space
1328 were as ultimate, maximum-size stack. */
1329 #define FAIL_STACK_GROWTH_FACTOR 4
1331 #define GROW_FAIL_STACK(fail_stack) \
1332 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1333 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1335 : ((fail_stack).stack \
1336 = (fail_stack_elt_t *) \
1337 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1338 (fail_stack).size * sizeof (fail_stack_elt_t), \
1339 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1340 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1341 * FAIL_STACK_GROWTH_FACTOR))), \
1343 (fail_stack).stack == NULL \
1345 : ((fail_stack).size \
1346 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1347 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1348 * FAIL_STACK_GROWTH_FACTOR)) \
1349 / sizeof (fail_stack_elt_t)), \
1353 /* Push pointer POINTER on FAIL_STACK.
1354 Return 1 if was able to do so and 0 if ran out of memory allocating
1356 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1357 ((FAIL_STACK_FULL () \
1358 && !GROW_FAIL_STACK (FAIL_STACK)) \
1360 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1362 #define POP_PATTERN_OP() POP_FAILURE_POINTER ()
1364 /* Push a pointer value onto the failure stack.
1365 Assumes the variable `fail_stack'. Probably should only
1366 be called from within `PUSH_FAILURE_POINT'. */
1367 #define PUSH_FAILURE_POINTER(item) \
1368 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1370 /* This pushes an integer-valued item onto the failure stack.
1371 Assumes the variable `fail_stack'. Probably should only
1372 be called from within `PUSH_FAILURE_POINT'. */
1373 #define PUSH_FAILURE_INT(item) \
1374 fail_stack.stack[fail_stack.avail++].integer = (item)
1376 /* Push a fail_stack_elt_t value onto the failure stack.
1377 Assumes the variable `fail_stack'. Probably should only
1378 be called from within `PUSH_FAILURE_POINT'. */
1379 #define PUSH_FAILURE_ELT(item) \
1380 fail_stack.stack[fail_stack.avail++] = (item)
1382 /* These three POP... operations complement the three PUSH... operations.
1383 All assume that `fail_stack' is nonempty. */
1384 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1385 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1386 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1388 /* Individual items aside from the registers. */
1389 #define NUM_NONREG_ITEMS 3
1391 /* Used to examine the stack (to detect infinite loops). */
1392 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1393 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1394 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1395 #define TOP_FAILURE_HANDLE() fail_stack.frame
1398 #define ENSURE_FAIL_STACK(space) \
1399 while (REMAINING_AVAIL_SLOTS <= space) { \
1400 if (!GROW_FAIL_STACK (fail_stack)) \
1402 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1403 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1406 /* Push register NUM onto the stack. */
1407 #define PUSH_FAILURE_REG(num) \
1409 char *destination; \
1410 ENSURE_FAIL_STACK(3); \
1411 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1412 num, regstart[num], regend[num]); \
1413 PUSH_FAILURE_POINTER (regstart[num]); \
1414 PUSH_FAILURE_POINTER (regend[num]); \
1415 PUSH_FAILURE_INT (num); \
1418 /* Pop a saved register off the stack. */
1419 #define POP_FAILURE_REG() \
1421 int reg = POP_FAILURE_INT (); \
1422 regend[reg] = POP_FAILURE_POINTER (); \
1423 regstart[reg] = POP_FAILURE_POINTER (); \
1424 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1425 reg, regstart[reg], regend[reg]); \
1428 /* Check that we are not stuck in an infinite loop. */
1429 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1431 int failure = TOP_FAILURE_HANDLE(); \
1432 /* Check for infinite matching loops */ \
1433 while (failure > 0 && \
1434 (FAILURE_STR (failure) == string_place \
1435 || FAILURE_STR (failure) == NULL)) \
1437 assert (FAILURE_PAT (failure) >= bufp->buffer \
1438 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1439 if (FAILURE_PAT (failure) == pat_cur) \
1441 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1442 failure = NEXT_FAILURE_HANDLE(failure); \
1444 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1447 /* Push the information about the state we will need
1448 if we ever fail back to it.
1450 Requires variables fail_stack, regstart, regend and
1451 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1454 Does `return FAILURE_CODE' if runs out of memory. */
1456 #define PUSH_FAILURE_POINT(pattern, string_place) \
1458 char *destination; \
1459 /* Must be int, so when we don't save any registers, the arithmetic \
1460 of 0 + -1 isn't done as unsigned. */ \
1462 DEBUG_STATEMENT (failure_id++); \
1463 DEBUG_STATEMENT (nfailure_points_pushed++); \
1464 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1465 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1466 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1468 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1470 DEBUG_PRINT1 ("\n"); \
1472 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1473 PUSH_FAILURE_INT (fail_stack.frame); \
1475 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1476 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1477 DEBUG_PRINT1 ("'\n"); \
1478 PUSH_FAILURE_POINTER (string_place); \
1480 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1481 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1482 PUSH_FAILURE_POINTER (pattern); \
1484 /* Close the frame by moving the frame pointer past it. */ \
1485 fail_stack.frame = fail_stack.avail; \
1488 /* Estimate the size of data pushed by a typical failure stack entry.
1489 An estimate is all we need, because all we use this for
1490 is to choose a limit for how big to make the failure stack. */
1492 #define TYPICAL_FAILURE_SIZE 20
1494 /* How many items can still be added to the stack without overflowing it. */
1495 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1498 /* Pops what PUSH_FAIL_STACK pushes.
1500 We restore into the parameters, all of which should be lvalues:
1501 STR -- the saved data position.
1502 PAT -- the saved pattern position.
1503 REGSTART, REGEND -- arrays of string positions.
1505 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1506 `pend', `string1', `size1', `string2', and `size2'. */
1508 #define POP_FAILURE_POINT(str, pat) \
1510 assert (!FAIL_STACK_EMPTY ()); \
1512 /* Remove failure points and point to how many regs pushed. */ \
1513 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1514 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1515 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1517 /* Pop the saved registers. */ \
1518 while (fail_stack.frame < fail_stack.avail) \
1519 POP_FAILURE_REG (); \
1521 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1522 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1523 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1525 /* If the saved string location is NULL, it came from an \
1526 on_failure_keep_string_jump opcode, and we want to throw away the \
1527 saved NULL, thus retaining our current position in the string. */ \
1528 str = (re_char *) POP_FAILURE_POINTER (); \
1529 DEBUG_PRINT2 (" Popping string %p: `", str); \
1530 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1531 DEBUG_PRINT1 ("'\n"); \
1533 fail_stack.frame = POP_FAILURE_INT (); \
1534 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1536 assert (fail_stack.avail >= 0); \
1537 assert (fail_stack.frame <= fail_stack.avail); \
1539 DEBUG_STATEMENT (nfailure_points_popped++); \
1540 } while (0) /* POP_FAILURE_POINT */
1544 /* Registers are set to a sentinel when they haven't yet matched. */
1545 #define REG_UNSET_VALUE NULL
1546 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1548 /* Subroutine declarations and macros for regex_compile. */
1550 static void store_op1
_RE_ARGS((re_opcode_t op
, unsigned char *loc
, int arg
));
1551 static void store_op2
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
1552 int arg1
, int arg2
));
1553 static void insert_op1
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
1554 int arg
, unsigned char *end
));
1555 static void insert_op2
_RE_ARGS((re_opcode_t op
, unsigned char *loc
,
1556 int arg1
, int arg2
, unsigned char *end
));
1557 static boolean at_begline_loc_p
_RE_ARGS((const unsigned char *pattern
,
1558 const unsigned char *p
,
1559 reg_syntax_t syntax
));
1560 static boolean at_endline_loc_p
_RE_ARGS((const unsigned char *p
,
1561 const unsigned char *pend
,
1562 reg_syntax_t syntax
));
1563 static unsigned char *skip_one_char
_RE_ARGS((unsigned char *p
));
1564 static int analyse_first
_RE_ARGS((unsigned char *p
, unsigned char *pend
,
1565 char *fastmap
, const int multibyte
));
1567 /* Fetch the next character in the uncompiled pattern---translating it
1568 if necessary. Also cast from a signed character in the constant
1569 string passed to us by the user to an unsigned char that we can use
1570 as an array index (in, e.g., `translate'). */
1571 #define PATFETCH(c) \
1574 c = TRANSLATE (c); \
1577 /* Fetch the next character in the uncompiled pattern, with no
1579 #define PATFETCH_RAW(c) \
1582 if (p == pend) return REG_EEND; \
1583 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1588 /* If `translate' is non-null, return translate[D], else just D. We
1589 cast the subscript to translate because some data is declared as
1590 `char *', to avoid warnings when a string constant is passed. But
1591 when we use a character as a subscript we must make it unsigned. */
1593 #define TRANSLATE(d) \
1594 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1598 /* Macros for outputting the compiled pattern into `buffer'. */
1600 /* If the buffer isn't allocated when it comes in, use this. */
1601 #define INIT_BUF_SIZE 32
1603 /* Make sure we have at least N more bytes of space in buffer. */
1604 #define GET_BUFFER_SPACE(n) \
1605 while (b - bufp->buffer + (n) > bufp->allocated) \
1608 /* Make sure we have one more byte of buffer space and then add C to it. */
1609 #define BUF_PUSH(c) \
1611 GET_BUFFER_SPACE (1); \
1612 *b++ = (unsigned char) (c); \
1616 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1617 #define BUF_PUSH_2(c1, c2) \
1619 GET_BUFFER_SPACE (2); \
1620 *b++ = (unsigned char) (c1); \
1621 *b++ = (unsigned char) (c2); \
1625 /* As with BUF_PUSH_2, except for three bytes. */
1626 #define BUF_PUSH_3(c1, c2, c3) \
1628 GET_BUFFER_SPACE (3); \
1629 *b++ = (unsigned char) (c1); \
1630 *b++ = (unsigned char) (c2); \
1631 *b++ = (unsigned char) (c3); \
1635 /* Store a jump with opcode OP at LOC to location TO. We store a
1636 relative address offset by the three bytes the jump itself occupies. */
1637 #define STORE_JUMP(op, loc, to) \
1638 store_op1 (op, loc, (to) - (loc) - 3)
1640 /* Likewise, for a two-argument jump. */
1641 #define STORE_JUMP2(op, loc, to, arg) \
1642 store_op2 (op, loc, (to) - (loc) - 3, arg)
1644 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1645 #define INSERT_JUMP(op, loc, to) \
1646 insert_op1 (op, loc, (to) - (loc) - 3, b)
1648 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1649 #define INSERT_JUMP2(op, loc, to, arg) \
1650 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1653 /* This is not an arbitrary limit: the arguments which represent offsets
1654 into the pattern are two bytes long. So if 2^16 bytes turns out to
1655 be too small, many things would have to change. */
1656 #define MAX_BUF_SIZE (1L << 16)
1659 /* Extend the buffer by twice its current size via realloc and
1660 reset the pointers that pointed into the old block to point to the
1661 correct places in the new one. If extending the buffer results in it
1662 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1663 #define EXTEND_BUFFER() \
1665 unsigned char *old_buffer = bufp->buffer; \
1666 if (bufp->allocated == MAX_BUF_SIZE) \
1668 bufp->allocated <<= 1; \
1669 if (bufp->allocated > MAX_BUF_SIZE) \
1670 bufp->allocated = MAX_BUF_SIZE; \
1671 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1672 if (bufp->buffer == NULL) \
1673 return REG_ESPACE; \
1674 /* If the buffer moved, move all the pointers into it. */ \
1675 if (old_buffer != bufp->buffer) \
1677 b = (b - old_buffer) + bufp->buffer; \
1678 begalt = (begalt - old_buffer) + bufp->buffer; \
1679 if (fixup_alt_jump) \
1680 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1682 laststart = (laststart - old_buffer) + bufp->buffer; \
1683 if (pending_exact) \
1684 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1689 /* Since we have one byte reserved for the register number argument to
1690 {start,stop}_memory, the maximum number of groups we can report
1691 things about is what fits in that byte. */
1692 #define MAX_REGNUM 255
1694 /* But patterns can have more than `MAX_REGNUM' registers. We just
1695 ignore the excess. */
1696 typedef unsigned regnum_t
;
1699 /* Macros for the compile stack. */
1701 /* Since offsets can go either forwards or backwards, this type needs to
1702 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1703 typedef int pattern_offset_t
;
1707 pattern_offset_t begalt_offset
;
1708 pattern_offset_t fixup_alt_jump
;
1709 pattern_offset_t laststart_offset
;
1711 } compile_stack_elt_t
;
1716 compile_stack_elt_t
*stack
;
1718 unsigned avail
; /* Offset of next open position. */
1719 } compile_stack_type
;
1722 #define INIT_COMPILE_STACK_SIZE 32
1724 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1725 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1727 /* The next available element. */
1728 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1731 /* Structure to manage work area for range table. */
1732 struct range_table_work_area
1734 int *table
; /* actual work area. */
1735 int allocated
; /* allocated size for work area in bytes. */
1736 int used
; /* actually used size in words. */
1737 int bits
; /* flag to record character classes */
1740 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1741 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1743 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1745 (work_area).allocated += 16 * sizeof (int); \
1746 if ((work_area).table) \
1748 = (int *) realloc ((work_area).table, (work_area).allocated); \
1751 = (int *) malloc ((work_area).allocated); \
1752 if ((work_area).table == 0) \
1753 FREE_STACK_RETURN (REG_ESPACE); \
1757 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1758 (work_area).bits |= (bit)
1760 /* These bits represent the various character classes such as [:alnum:]
1761 in a charset's range table. */
1762 #define BIT_ALNUM 0x1
1763 #define BIT_ALPHA 0x2
1764 #define BIT_WORD 0x4
1765 #define BIT_ASCII 0x8
1766 #define BIT_NONASCII 0x10
1767 #define BIT_GRAPH 0x20
1768 #define BIT_LOWER 0x40
1769 #define BIT_PRINT 0x80
1770 #define BIT_PUNCT 0x100
1771 #define BIT_SPACE 0x200
1772 #define BIT_UPPER 0x400
1773 #define BIT_UNIBYTE 0x800
1774 #define BIT_MULTIBYTE 0x1000
1776 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1777 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1779 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1780 (work_area).table[(work_area).used++] = (range_start); \
1781 (work_area).table[(work_area).used++] = (range_end); \
1784 /* Free allocated memory for WORK_AREA. */
1785 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1787 if ((work_area).table) \
1788 free ((work_area).table); \
1791 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1792 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1793 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1794 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1797 /* Set the bit for character C in a list. */
1798 #define SET_LIST_BIT(c) \
1799 (b[((unsigned char) (c)) / BYTEWIDTH] \
1800 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1803 /* Get the next unsigned number in the uncompiled pattern. */
1804 #define GET_UNSIGNED_NUMBER(num) \
1805 do { if (p != pend) \
1808 while (ISDIGIT (c)) \
1812 num = num * 10 + c - '0'; \
1820 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1822 #define IS_CHAR_CLASS(string) \
1823 (STREQ (string, "alpha") || STREQ (string, "upper") \
1824 || STREQ (string, "lower") || STREQ (string, "digit") \
1825 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1826 || STREQ (string, "space") || STREQ (string, "print") \
1827 || STREQ (string, "punct") || STREQ (string, "graph") \
1828 || STREQ (string, "cntrl") || STREQ (string, "blank") \
1829 || STREQ (string, "word") \
1830 || STREQ (string, "ascii") || STREQ (string, "nonascii") \
1831 || STREQ (string, "unibyte") || STREQ (string, "multibyte"))
1833 /* QUIT is only used on NTemacs. */
1834 #if !defined (WINDOWSNT) || !defined (emacs)
1839 #ifndef MATCH_MAY_ALLOCATE
1841 /* If we cannot allocate large objects within re_match_2_internal,
1842 we make the fail stack and register vectors global.
1843 The fail stack, we grow to the maximum size when a regexp
1845 The register vectors, we adjust in size each time we
1846 compile a regexp, according to the number of registers it needs. */
1848 static fail_stack_type fail_stack
;
1850 /* Size with which the following vectors are currently allocated.
1851 That is so we can make them bigger as needed,
1852 but never make them smaller. */
1853 static int regs_allocated_size
;
1855 static re_char
** regstart
, ** regend
;
1856 static re_char
**best_regstart
, **best_regend
;
1858 /* Make the register vectors big enough for NUM_REGS registers,
1859 but don't make them smaller. */
1862 regex_grow_registers (num_regs
)
1865 if (num_regs
> regs_allocated_size
)
1867 RETALLOC_IF (regstart
, num_regs
, re_char
*);
1868 RETALLOC_IF (regend
, num_regs
, re_char
*);
1869 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
1870 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
1872 regs_allocated_size
= num_regs
;
1876 #endif /* not MATCH_MAY_ALLOCATE */
1878 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1882 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1883 Returns one of error codes defined in `regex.h', or zero for success.
1885 Assumes the `allocated' (and perhaps `buffer') and `translate'
1886 fields are set in BUFP on entry.
1888 If it succeeds, results are put in BUFP (if it returns an error, the
1889 contents of BUFP are undefined):
1890 `buffer' is the compiled pattern;
1891 `syntax' is set to SYNTAX;
1892 `used' is set to the length of the compiled pattern;
1893 `fastmap_accurate' is zero;
1894 `re_nsub' is the number of subexpressions in PATTERN;
1895 `not_bol' and `not_eol' are zero;
1897 The `fastmap' and `newline_anchor' fields are neither
1898 examined nor set. */
1900 /* Insert the `jump' from the end of last alternative to "here".
1901 The space for the jump has already been allocated. */
1902 #define FIXUP_ALT_JUMP() \
1904 if (fixup_alt_jump) \
1905 STORE_JUMP (jump, fixup_alt_jump, b); \
1909 /* Return, freeing storage we allocated. */
1910 #define FREE_STACK_RETURN(value) \
1912 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1913 free (compile_stack.stack); \
1917 static reg_errcode_t
1918 regex_compile (pattern
, size
, syntax
, bufp
)
1921 reg_syntax_t syntax
;
1922 struct re_pattern_buffer
*bufp
;
1924 /* We fetch characters from PATTERN here. Even though PATTERN is
1925 `char *' (i.e., signed), we declare these variables as unsigned, so
1926 they can be reliably used as array indices. */
1927 register unsigned int c
, c1
;
1929 /* A random temporary spot in PATTERN. */
1932 /* Points to the end of the buffer, where we should append. */
1933 register unsigned char *b
;
1935 /* Keeps track of unclosed groups. */
1936 compile_stack_type compile_stack
;
1938 /* Points to the current (ending) position in the pattern. */
1940 /* `const' makes AIX compiler fail. */
1941 unsigned char *p
= pattern
;
1943 re_char
*p
= pattern
;
1945 re_char
*pend
= pattern
+ size
;
1947 /* How to translate the characters in the pattern. */
1948 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1950 /* Address of the count-byte of the most recently inserted `exactn'
1951 command. This makes it possible to tell if a new exact-match
1952 character can be added to that command or if the character requires
1953 a new `exactn' command. */
1954 unsigned char *pending_exact
= 0;
1956 /* Address of start of the most recently finished expression.
1957 This tells, e.g., postfix * where to find the start of its
1958 operand. Reset at the beginning of groups and alternatives. */
1959 unsigned char *laststart
= 0;
1961 /* Address of beginning of regexp, or inside of last group. */
1962 unsigned char *begalt
;
1964 /* Place in the uncompiled pattern (i.e., the {) to
1965 which to go back if the interval is invalid. */
1966 re_char
*beg_interval
;
1968 /* Address of the place where a forward jump should go to the end of
1969 the containing expression. Each alternative of an `or' -- except the
1970 last -- ends with a forward jump of this sort. */
1971 unsigned char *fixup_alt_jump
= 0;
1973 /* Counts open-groups as they are encountered. Remembered for the
1974 matching close-group on the compile stack, so the same register
1975 number is put in the stop_memory as the start_memory. */
1976 regnum_t regnum
= 0;
1978 /* Work area for range table of charset. */
1979 struct range_table_work_area range_table_work
;
1981 /* If the object matched can contain multibyte characters. */
1982 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
1986 DEBUG_PRINT1 ("\nCompiling pattern: ");
1989 unsigned debug_count
;
1991 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1992 putchar (pattern
[debug_count
]);
1997 /* Initialize the compile stack. */
1998 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1999 if (compile_stack
.stack
== NULL
)
2002 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2003 compile_stack
.avail
= 0;
2005 range_table_work
.table
= 0;
2006 range_table_work
.allocated
= 0;
2008 /* Initialize the pattern buffer. */
2009 bufp
->syntax
= syntax
;
2010 bufp
->fastmap_accurate
= 0;
2011 bufp
->not_bol
= bufp
->not_eol
= 0;
2013 /* Set `used' to zero, so that if we return an error, the pattern
2014 printer (for debugging) will think there's no pattern. We reset it
2018 /* Always count groups, whether or not bufp->no_sub is set. */
2021 #if !defined (emacs) && !defined (SYNTAX_TABLE)
2022 /* Initialize the syntax table. */
2023 init_syntax_once ();
2026 if (bufp
->allocated
== 0)
2029 { /* If zero allocated, but buffer is non-null, try to realloc
2030 enough space. This loses if buffer's address is bogus, but
2031 that is the user's responsibility. */
2032 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2035 { /* Caller did not allocate a buffer. Do it for them. */
2036 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2038 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2040 bufp
->allocated
= INIT_BUF_SIZE
;
2043 begalt
= b
= bufp
->buffer
;
2045 /* Loop through the uncompiled pattern until we're at the end. */
2054 if ( /* If at start of pattern, it's an operator. */
2056 /* If context independent, it's an operator. */
2057 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2058 /* Otherwise, depends on what's come before. */
2059 || at_begline_loc_p (pattern
, p
, syntax
))
2069 if ( /* If at end of pattern, it's an operator. */
2071 /* If context independent, it's an operator. */
2072 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2073 /* Otherwise, depends on what's next. */
2074 || at_endline_loc_p (p
, pend
, syntax
))
2084 if ((syntax
& RE_BK_PLUS_QM
)
2085 || (syntax
& RE_LIMITED_OPS
))
2089 /* If there is no previous pattern... */
2092 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2093 FREE_STACK_RETURN (REG_BADRPT
);
2094 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2099 /* 1 means zero (many) matches is allowed. */
2100 boolean zero_times_ok
= 0, many_times_ok
= 0;
2103 /* If there is a sequence of repetition chars, collapse it
2104 down to just one (the right one). We can't combine
2105 interval operators with these because of, e.g., `a{2}*',
2106 which should only match an even number of `a's. */
2110 if (!(syntax
& RE_ALL_GREEDY
)
2111 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2115 zero_times_ok
|= c
!= '+';
2116 many_times_ok
|= c
!= '?';
2122 || (!(syntax
& RE_BK_PLUS_QM
)
2123 && (*p
== '+' || *p
== '?')))
2125 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2128 FREE_STACK_RETURN (REG_EESCAPE
);
2129 if (p
[1] == '+' || p
[1] == '?')
2130 PATFETCH (c
); /* Gobble up the backslash. */
2136 /* If we get here, we found another repeat character. */
2140 /* Star, etc. applied to an empty pattern is equivalent
2141 to an empty pattern. */
2142 if (!laststart
|| laststart
== b
)
2145 /* Now we know whether or not zero matches is allowed
2146 and also whether or not two or more matches is allowed. */
2151 boolean simple
= skip_one_char (laststart
) == b
;
2152 unsigned int startoffset
= 0;
2154 (simple
|| !analyse_first (laststart
, b
, NULL
, 0)) ?
2155 on_failure_jump
: on_failure_jump_loop
;
2156 assert (skip_one_char (laststart
) <= b
);
2158 if (!zero_times_ok
&& simple
)
2159 { /* Since simple * loops can be made faster by using
2160 on_failure_keep_string_jump, we turn simple P+
2161 into PP* if P is simple. */
2162 unsigned char *p1
, *p2
;
2163 startoffset
= b
- laststart
;
2164 GET_BUFFER_SPACE (startoffset
);
2165 p1
= b
; p2
= laststart
;
2171 GET_BUFFER_SPACE (6);
2174 STORE_JUMP (ofj
, b
, b
+ 6);
2176 /* Simple * loops can use on_failure_keep_string_jump
2177 depending on what follows. But since we don't know
2178 that yet, we leave the decision up to
2179 on_failure_jump_smart. */
2180 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2181 laststart
+ startoffset
, b
+ 6);
2183 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2188 /* A simple ? pattern. */
2189 assert (zero_times_ok
);
2190 GET_BUFFER_SPACE (3);
2191 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2195 else /* not greedy */
2196 { /* I wish the greedy and non-greedy cases could be merged. */
2198 GET_BUFFER_SPACE (7); /* We might use less. */
2201 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2203 /* The non-greedy multiple match looks like a repeat..until:
2204 we only need a conditional jump at the end of the loop */
2205 if (emptyp
) BUF_PUSH (no_op
);
2206 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2207 : on_failure_jump
, b
, laststart
);
2211 /* The repeat...until naturally matches one or more.
2212 To also match zero times, we need to first jump to
2213 the end of the loop (its conditional jump). */
2214 INSERT_JUMP (jump
, laststart
, b
);
2220 /* non-greedy a?? */
2221 INSERT_JUMP (jump
, laststart
, b
+ 3);
2223 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2240 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2242 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2244 /* Ensure that we have enough space to push a charset: the
2245 opcode, the length count, and the bitset; 34 bytes in all. */
2246 GET_BUFFER_SPACE (34);
2250 /* We test `*p == '^' twice, instead of using an if
2251 statement, so we only need one BUF_PUSH. */
2252 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2256 /* Remember the first position in the bracket expression. */
2259 /* Push the number of bytes in the bitmap. */
2260 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2262 /* Clear the whole map. */
2263 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2265 /* charset_not matches newline according to a syntax bit. */
2266 if ((re_opcode_t
) b
[-2] == charset_not
2267 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2268 SET_LIST_BIT ('\n');
2270 /* Read in characters and ranges, setting map bits. */
2273 boolean escaped_char
= false;
2274 const unsigned char *p2
= p
;
2276 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2280 /* \ might escape characters inside [...] and [^...]. */
2281 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2283 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2286 escaped_char
= true;
2290 /* Could be the end of the bracket expression. If it's
2291 not (i.e., when the bracket expression is `[]' so
2292 far), the ']' character bit gets set way below. */
2293 if (c
== ']' && p2
!= p1
)
2297 /* What should we do for the character which is
2298 greater than 0x7F, but not BASE_LEADING_CODE_P?
2301 /* See if we're at the beginning of a possible character
2304 if (!escaped_char
&&
2305 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2307 /* Leave room for the null. */
2308 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2309 const unsigned char *class_beg
;
2315 /* If pattern is `[[:'. */
2316 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2321 if (c
== ':' || c
== ']' || p
== pend
2322 || c1
== CHAR_CLASS_MAX_LENGTH
)
2328 /* If isn't a word bracketed by `[:' and `:]':
2329 undo the ending character, the letters, and
2330 leave the leading `:' and `[' (but set bits for
2332 if (c
== ':' && *p
== ']')
2335 boolean is_alnum
= STREQ (str
, "alnum");
2336 boolean is_alpha
= STREQ (str
, "alpha");
2337 boolean is_ascii
= STREQ (str
, "ascii");
2338 boolean is_blank
= STREQ (str
, "blank");
2339 boolean is_cntrl
= STREQ (str
, "cntrl");
2340 boolean is_digit
= STREQ (str
, "digit");
2341 boolean is_graph
= STREQ (str
, "graph");
2342 boolean is_lower
= STREQ (str
, "lower");
2343 boolean is_multibyte
= STREQ (str
, "multibyte");
2344 boolean is_nonascii
= STREQ (str
, "nonascii");
2345 boolean is_print
= STREQ (str
, "print");
2346 boolean is_punct
= STREQ (str
, "punct");
2347 boolean is_space
= STREQ (str
, "space");
2348 boolean is_unibyte
= STREQ (str
, "unibyte");
2349 boolean is_upper
= STREQ (str
, "upper");
2350 boolean is_word
= STREQ (str
, "word");
2351 boolean is_xdigit
= STREQ (str
, "xdigit");
2353 if (!IS_CHAR_CLASS (str
))
2354 FREE_STACK_RETURN (REG_ECTYPE
);
2356 /* Throw away the ] at the end of the character
2360 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2362 /* Most character classes in a multibyte match
2363 just set a flag. Exceptions are is_blank,
2364 is_digit, is_cntrl, and is_xdigit, since
2365 they can only match ASCII characters. We
2366 don't need to handle them for multibyte. */
2372 if (is_alnum
) bit
= BIT_ALNUM
;
2373 if (is_alpha
) bit
= BIT_ALPHA
;
2374 if (is_ascii
) bit
= BIT_ASCII
;
2375 if (is_graph
) bit
= BIT_GRAPH
;
2376 if (is_lower
) bit
= BIT_LOWER
;
2377 if (is_multibyte
) bit
= BIT_MULTIBYTE
;
2378 if (is_nonascii
) bit
= BIT_NONASCII
;
2379 if (is_print
) bit
= BIT_PRINT
;
2380 if (is_punct
) bit
= BIT_PUNCT
;
2381 if (is_space
) bit
= BIT_SPACE
;
2382 if (is_unibyte
) bit
= BIT_UNIBYTE
;
2383 if (is_upper
) bit
= BIT_UPPER
;
2384 if (is_word
) bit
= BIT_WORD
;
2386 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2390 /* Handle character classes for ASCII characters. */
2391 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2393 int translated
= TRANSLATE (ch
);
2394 /* This was split into 3 if's to
2395 avoid an arbitrary limit in some compiler. */
2396 if ( (is_alnum
&& ISALNUM (ch
))
2397 || (is_alpha
&& ISALPHA (ch
))
2398 || (is_blank
&& ISBLANK (ch
))
2399 || (is_cntrl
&& ISCNTRL (ch
)))
2400 SET_LIST_BIT (translated
);
2401 if ( (is_digit
&& ISDIGIT (ch
))
2402 || (is_graph
&& ISGRAPH (ch
))
2403 || (is_lower
&& ISLOWER (ch
))
2404 || (is_print
&& ISPRINT (ch
)))
2405 SET_LIST_BIT (translated
);
2406 if ( (is_punct
&& ISPUNCT (ch
))
2407 || (is_space
&& ISSPACE (ch
))
2408 || (is_upper
&& ISUPPER (ch
))
2409 || (is_xdigit
&& ISXDIGIT (ch
)))
2410 SET_LIST_BIT (translated
);
2411 if ( (is_ascii
&& IS_REAL_ASCII (ch
))
2412 || (is_nonascii
&& !IS_REAL_ASCII (ch
))
2413 || (is_unibyte
&& ISUNIBYTE (ch
))
2414 || (is_multibyte
&& !ISUNIBYTE (ch
)))
2415 SET_LIST_BIT (translated
);
2417 if ( (is_word
&& ISWORD (ch
)))
2418 SET_LIST_BIT (translated
);
2421 /* Repeat the loop. */
2426 /* Go back to right after the "[:". */
2430 /* Because the `:' may starts the range, we
2431 can't simply set bit and repeat the loop.
2432 Instead, just set it to C and handle below. */
2437 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2440 /* Discard the `-'. */
2443 /* Fetch the character which ends the range. */
2446 if (SINGLE_BYTE_CHAR_P (c
)
2447 && ! SINGLE_BYTE_CHAR_P (c1
))
2449 /* Handle a range such as \177-\377 in multibyte mode.
2450 Split that into two ranges,,
2451 the low one ending at 0237, and the high one
2452 starting at ...040. */
2453 /* Unless I'm missing something,
2454 this line is useless. -sm
2455 int c1_base = (c1 & ~0177) | 040; */
2456 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2459 else if (!SAME_CHARSET_P (c
, c1
))
2460 FREE_STACK_RETURN (REG_ERANGE
);
2463 /* Range from C to C. */
2466 /* Set the range ... */
2467 if (SINGLE_BYTE_CHAR_P (c
))
2468 /* ... into bitmap. */
2471 int range_start
= c
, range_end
= c1
;
2473 /* If the start is after the end, the range is empty. */
2474 if (range_start
> range_end
)
2476 if (syntax
& RE_NO_EMPTY_RANGES
)
2477 FREE_STACK_RETURN (REG_ERANGE
);
2478 /* Else, repeat the loop. */
2482 for (this_char
= range_start
; this_char
<= range_end
;
2484 SET_LIST_BIT (TRANSLATE (this_char
));
2488 /* ... into range table. */
2489 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2492 /* Discard any (non)matching list bytes that are all 0 at the
2493 end of the map. Decrease the map-length byte too. */
2494 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2498 /* Build real range table from work area. */
2499 if (RANGE_TABLE_WORK_USED (range_table_work
)
2500 || RANGE_TABLE_WORK_BITS (range_table_work
))
2503 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2505 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2506 bytes for flags, two for COUNT, and three bytes for
2508 GET_BUFFER_SPACE (4 + used
* 3);
2510 /* Indicate the existence of range table. */
2511 laststart
[1] |= 0x80;
2513 /* Store the character class flag bits into the range table.
2514 If not in emacs, these flag bits are always 0. */
2515 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2516 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2518 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2519 for (i
= 0; i
< used
; i
++)
2520 STORE_CHARACTER_AND_INCR
2521 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2528 if (syntax
& RE_NO_BK_PARENS
)
2535 if (syntax
& RE_NO_BK_PARENS
)
2542 if (syntax
& RE_NEWLINE_ALT
)
2549 if (syntax
& RE_NO_BK_VBAR
)
2556 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2557 goto handle_interval
;
2563 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2565 /* Do not translate the character after the \, so that we can
2566 distinguish, e.g., \B from \b, even if we normally would
2567 translate, e.g., B to b. */
2573 if (syntax
& RE_NO_BK_PARENS
)
2574 goto normal_backslash
;
2581 /* Look for a special (?...) construct */
2582 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
2584 PATFETCH (c
); /* Gobble up the '?'. */
2588 case ':': shy
= 1; break;
2590 /* Only (?:...) is supported right now. */
2591 FREE_STACK_RETURN (REG_BADPAT
);
2602 if (COMPILE_STACK_FULL
)
2604 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2605 compile_stack_elt_t
);
2606 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2608 compile_stack
.size
<<= 1;
2611 /* These are the values to restore when we hit end of this
2612 group. They are all relative offsets, so that if the
2613 whole pattern moves because of realloc, they will still
2615 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2616 COMPILE_STACK_TOP
.fixup_alt_jump
2617 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2618 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2619 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
2622 start_memory for groups beyond the last one we can
2623 represent in the compiled pattern. */
2624 if (regnum
<= MAX_REGNUM
&& !shy
)
2625 BUF_PUSH_2 (start_memory
, regnum
);
2627 compile_stack
.avail
++;
2632 /* If we've reached MAX_REGNUM groups, then this open
2633 won't actually generate any code, so we'll have to
2634 clear pending_exact explicitly. */
2640 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2642 if (COMPILE_STACK_EMPTY
)
2644 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2645 goto normal_backslash
;
2647 FREE_STACK_RETURN (REG_ERPAREN
);
2653 /* See similar code for backslashed left paren above. */
2654 if (COMPILE_STACK_EMPTY
)
2656 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2659 FREE_STACK_RETURN (REG_ERPAREN
);
2662 /* Since we just checked for an empty stack above, this
2663 ``can't happen''. */
2664 assert (compile_stack
.avail
!= 0);
2666 /* We don't just want to restore into `regnum', because
2667 later groups should continue to be numbered higher,
2668 as in `(ab)c(de)' -- the second group is #2. */
2669 regnum_t this_group_regnum
;
2671 compile_stack
.avail
--;
2672 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2674 = COMPILE_STACK_TOP
.fixup_alt_jump
2675 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2677 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2678 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2679 /* If we've reached MAX_REGNUM groups, then this open
2680 won't actually generate any code, so we'll have to
2681 clear pending_exact explicitly. */
2684 /* We're at the end of the group, so now we know how many
2685 groups were inside this one. */
2686 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
2687 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
2692 case '|': /* `\|'. */
2693 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2694 goto normal_backslash
;
2696 if (syntax
& RE_LIMITED_OPS
)
2699 /* Insert before the previous alternative a jump which
2700 jumps to this alternative if the former fails. */
2701 GET_BUFFER_SPACE (3);
2702 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2706 /* The alternative before this one has a jump after it
2707 which gets executed if it gets matched. Adjust that
2708 jump so it will jump to this alternative's analogous
2709 jump (put in below, which in turn will jump to the next
2710 (if any) alternative's such jump, etc.). The last such
2711 jump jumps to the correct final destination. A picture:
2717 If we are at `b', then fixup_alt_jump right now points to a
2718 three-byte space after `a'. We'll put in the jump, set
2719 fixup_alt_jump to right after `b', and leave behind three
2720 bytes which we'll fill in when we get to after `c'. */
2724 /* Mark and leave space for a jump after this alternative,
2725 to be filled in later either by next alternative or
2726 when know we're at the end of a series of alternatives. */
2728 GET_BUFFER_SPACE (3);
2737 /* If \{ is a literal. */
2738 if (!(syntax
& RE_INTERVALS
)
2739 /* If we're at `\{' and it's not the open-interval
2741 || (syntax
& RE_NO_BK_BRACES
)
2742 /* What is that? -sm */
2743 /* || (p - 2 == pattern && p == pend) */)
2744 goto normal_backslash
;
2748 /* If got here, then the syntax allows intervals. */
2750 /* At least (most) this many matches must be made. */
2751 int lower_bound
= 0, upper_bound
= -1;
2757 if (syntax
& RE_NO_BK_BRACES
)
2758 goto unfetch_interval
;
2760 FREE_STACK_RETURN (REG_EBRACE
);
2763 GET_UNSIGNED_NUMBER (lower_bound
);
2766 GET_UNSIGNED_NUMBER (upper_bound
);
2768 /* Interval such as `{1}' => match exactly once. */
2769 upper_bound
= lower_bound
;
2771 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2772 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
2774 if (syntax
& RE_NO_BK_BRACES
)
2775 goto unfetch_interval
;
2777 FREE_STACK_RETURN (REG_BADBR
);
2780 if (!(syntax
& RE_NO_BK_BRACES
))
2782 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2789 if (syntax
& RE_NO_BK_BRACES
)
2790 goto unfetch_interval
;
2792 FREE_STACK_RETURN (REG_BADBR
);
2795 /* We just parsed a valid interval. */
2797 /* If it's invalid to have no preceding re. */
2800 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2801 FREE_STACK_RETURN (REG_BADRPT
);
2802 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2805 goto unfetch_interval
;
2808 if (upper_bound
== 0)
2809 /* If the upper bound is zero, just drop the sub pattern
2812 else if (lower_bound
== 1 && upper_bound
== 1)
2813 /* Just match it once: nothing to do here. */
2816 /* Otherwise, we have a nontrivial interval. When
2817 we're all done, the pattern will look like:
2818 set_number_at <jump count> <upper bound>
2819 set_number_at <succeed_n count> <lower bound>
2820 succeed_n <after jump addr> <succeed_n count>
2822 jump_n <succeed_n addr> <jump count>
2823 (The upper bound and `jump_n' are omitted if
2824 `upper_bound' is 1, though.) */
2826 { /* If the upper bound is > 1, we need to insert
2827 more at the end of the loop. */
2828 unsigned int nbytes
= (upper_bound
< 0 ? 3
2829 : upper_bound
> 1 ? 5 : 0);
2830 unsigned int startoffset
= 0;
2832 GET_BUFFER_SPACE (20); /* We might use less. */
2834 if (lower_bound
== 0)
2836 /* A succeed_n that starts with 0 is really a
2837 a simple on_failure_jump_loop. */
2838 INSERT_JUMP (on_failure_jump_loop
, laststart
,
2844 /* Initialize lower bound of the `succeed_n', even
2845 though it will be set during matching by its
2846 attendant `set_number_at' (inserted next),
2847 because `re_compile_fastmap' needs to know.
2848 Jump to the `jump_n' we might insert below. */
2849 INSERT_JUMP2 (succeed_n
, laststart
,
2854 /* Code to initialize the lower bound. Insert
2855 before the `succeed_n'. The `5' is the last two
2856 bytes of this `set_number_at', plus 3 bytes of
2857 the following `succeed_n'. */
2858 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2863 if (upper_bound
< 0)
2865 /* A negative upper bound stands for infinity,
2866 in which case it degenerates to a plain jump. */
2867 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2870 else if (upper_bound
> 1)
2871 { /* More than one repetition is allowed, so
2872 append a backward jump to the `succeed_n'
2873 that starts this interval.
2875 When we've reached this during matching,
2876 we'll have matched the interval once, so
2877 jump back only `upper_bound - 1' times. */
2878 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
2882 /* The location we want to set is the second
2883 parameter of the `jump_n'; that is `b-2' as
2884 an absolute address. `laststart' will be
2885 the `set_number_at' we're about to insert;
2886 `laststart+3' the number to set, the source
2887 for the relative address. But we are
2888 inserting into the middle of the pattern --
2889 so everything is getting moved up by 5.
2890 Conclusion: (b - 2) - (laststart + 3) + 5,
2891 i.e., b - laststart.
2893 We insert this at the beginning of the loop
2894 so that if we fail during matching, we'll
2895 reinitialize the bounds. */
2896 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2897 upper_bound
- 1, b
);
2902 beg_interval
= NULL
;
2907 /* If an invalid interval, match the characters as literals. */
2908 assert (beg_interval
);
2910 beg_interval
= NULL
;
2912 /* normal_char and normal_backslash need `c'. */
2915 if (!(syntax
& RE_NO_BK_BRACES
))
2917 assert (p
> pattern
&& p
[-1] == '\\');
2918 goto normal_backslash
;
2924 /* There is no way to specify the before_dot and after_dot
2925 operators. rms says this is ok. --karl */
2933 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2939 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2945 BUF_PUSH_2 (categoryspec
, c
);
2951 BUF_PUSH_2 (notcategoryspec
, c
);
2958 BUF_PUSH_2 (syntaxspec
, Sword
);
2964 BUF_PUSH_2 (notsyntaxspec
, Sword
);
2977 BUF_PUSH (wordbound
);
2981 BUF_PUSH (notwordbound
);
2992 case '1': case '2': case '3': case '4': case '5':
2993 case '6': case '7': case '8': case '9':
2994 if (syntax
& RE_NO_BK_REFS
)
3000 FREE_STACK_RETURN (REG_ESUBREG
);
3002 /* Can't back reference to a subexpression if inside of it. */
3003 if (group_in_compile_stack (compile_stack
, c1
))
3007 BUF_PUSH_2 (duplicate
, c1
);
3013 if (syntax
& RE_BK_PLUS_QM
)
3016 goto normal_backslash
;
3020 /* You might think it would be useful for \ to mean
3021 not to translate; but if we don't translate it
3022 it will never match anything. */
3030 /* Expects the character in `c'. */
3032 /* If no exactn currently being built. */
3035 /* If last exactn not at current position. */
3036 || pending_exact
+ *pending_exact
+ 1 != b
3038 /* We have only one byte following the exactn for the count. */
3039 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3041 /* If followed by a repetition operator. */
3042 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3043 || ((syntax
& RE_BK_PLUS_QM
)
3044 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3045 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3046 || ((syntax
& RE_INTERVALS
)
3047 && ((syntax
& RE_NO_BK_BRACES
)
3048 ? p
!= pend
&& *p
== '{'
3049 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3051 /* Start building a new exactn. */
3055 BUF_PUSH_2 (exactn
, 0);
3056 pending_exact
= b
- 1;
3059 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3061 int len
= CHAR_STRING (c
, b
);
3063 (*pending_exact
) += len
;
3068 } /* while p != pend */
3071 /* Through the pattern now. */
3075 if (!COMPILE_STACK_EMPTY
)
3076 FREE_STACK_RETURN (REG_EPAREN
);
3078 /* If we don't want backtracking, force success
3079 the first time we reach the end of the compiled pattern. */
3080 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3083 free (compile_stack
.stack
);
3085 /* We have succeeded; set the length of the buffer. */
3086 bufp
->used
= b
- bufp
->buffer
;
3091 re_compile_fastmap (bufp
);
3092 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3093 print_compiled_pattern (bufp
);
3098 #ifndef MATCH_MAY_ALLOCATE
3099 /* Initialize the failure stack to the largest possible stack. This
3100 isn't necessary unless we're trying to avoid calling alloca in
3101 the search and match routines. */
3103 int num_regs
= bufp
->re_nsub
+ 1;
3105 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3107 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3109 if (! fail_stack
.stack
)
3111 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3112 * sizeof (fail_stack_elt_t
));
3115 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3117 * sizeof (fail_stack_elt_t
)));
3120 regex_grow_registers (num_regs
);
3122 #endif /* not MATCH_MAY_ALLOCATE */
3125 } /* regex_compile */
3127 /* Subroutines for `regex_compile'. */
3129 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3132 store_op1 (op
, loc
, arg
)
3137 *loc
= (unsigned char) op
;
3138 STORE_NUMBER (loc
+ 1, arg
);
3142 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3145 store_op2 (op
, loc
, arg1
, arg2
)
3150 *loc
= (unsigned char) op
;
3151 STORE_NUMBER (loc
+ 1, arg1
);
3152 STORE_NUMBER (loc
+ 3, arg2
);
3156 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3157 for OP followed by two-byte integer parameter ARG. */
3160 insert_op1 (op
, loc
, arg
, end
)
3166 register unsigned char *pfrom
= end
;
3167 register unsigned char *pto
= end
+ 3;
3169 while (pfrom
!= loc
)
3172 store_op1 (op
, loc
, arg
);
3176 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3179 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3185 register unsigned char *pfrom
= end
;
3186 register unsigned char *pto
= end
+ 5;
3188 while (pfrom
!= loc
)
3191 store_op2 (op
, loc
, arg1
, arg2
);
3195 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3196 after an alternative or a begin-subexpression. We assume there is at
3197 least one character before the ^. */
3200 at_begline_loc_p (pattern
, p
, syntax
)
3201 const unsigned char *pattern
, *p
;
3202 reg_syntax_t syntax
;
3204 const unsigned char *prev
= p
- 2;
3205 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3208 /* After a subexpression? */
3209 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3210 /* After an alternative? */
3211 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3215 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3216 at least one character after the $, i.e., `P < PEND'. */
3219 at_endline_loc_p (p
, pend
, syntax
)
3220 const unsigned char *p
, *pend
;
3221 reg_syntax_t syntax
;
3223 const unsigned char *next
= p
;
3224 boolean next_backslash
= *next
== '\\';
3225 const unsigned char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3228 /* Before a subexpression? */
3229 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3230 : next_backslash
&& next_next
&& *next_next
== ')')
3231 /* Before an alternative? */
3232 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3233 : next_backslash
&& next_next
&& *next_next
== '|');
3237 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3238 false if it's not. */
3241 group_in_compile_stack (compile_stack
, regnum
)
3242 compile_stack_type compile_stack
;
3247 for (this_element
= compile_stack
.avail
- 1;
3250 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3257 If fastmap is non-NULL, go through the pattern and fill fastmap
3258 with all the possible leading chars. If fastmap is NULL, don't
3259 bother filling it up (obviously) and only return whether the
3260 pattern could potentially match the empty string.
3262 Return 1 if p..pend might match the empty string.
3263 Return 0 if p..pend matches at least one char.
3264 Return -1 if p..pend matches at least one char, but fastmap was not
3266 Return -2 if an error occurred. */
3269 analyse_first (p
, pend
, fastmap
, multibyte
)
3270 unsigned char *p
, *pend
;
3272 const int multibyte
;
3276 #ifdef MATCH_MAY_ALLOCATE
3277 fail_stack_type fail_stack
;
3279 #ifndef REGEX_MALLOC
3283 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
3284 /* This holds the pointer to the failure stack, when
3285 it is allocated relocatably. */
3286 fail_stack_elt_t
*failure_stack_ptr
;
3289 /* Assume that each path through the pattern can be null until
3290 proven otherwise. We set this false at the bottom of switch
3291 statement, to which we get only if a particular path doesn't
3292 match the empty string. */
3293 boolean path_can_be_null
= true;
3295 /* If all elements for base leading-codes in fastmap is set, this
3296 flag is set true. */
3297 boolean match_any_multibyte_characters
= false;
3303 /* The loop below works as follows:
3304 - It has a working-list kept in the PATTERN_STACK and which basically
3305 starts by only containing a pointer to the first operation.
3306 - If the opcode we're looking at is a match against some set of
3307 chars, then we add those chars to the fastmap and go on to the
3308 next work element from the worklist (done via `break').
3309 - If the opcode is a control operator on the other hand, we either
3310 ignore it (if it's meaningless at this point, such as `start_memory')
3311 or execute it (if it's a jump). If the jump has several destinations
3312 (i.e. `on_failure_jump'), then we push the other destination onto the
3314 We guarantee termination by ignoring backward jumps (more or less),
3315 so that `p' is monotonically increasing. More to the point, we
3316 never set `p' (or push) anything `<= p1'. */
3318 /* If can_be_null is set, then the fastmap will not be used anyway. */
3321 /* `p1' is used as a marker of how far back a `on_failure_jump'
3322 can go without being ignored. It is normally equal to `p'
3323 (which prevents any backward `on_failure_jump') except right
3324 after a plain `jump', to allow patterns such as:
3327 10: on_failure_jump 3
3328 as used for the *? operator. */
3329 unsigned char *p1
= p
;
3333 if (path_can_be_null
)
3334 return (RESET_FAIL_STACK (), 1);
3336 /* We have reached the (effective) end of pattern. */
3337 if (PATTERN_STACK_EMPTY ())
3338 return (RESET_FAIL_STACK (), 0);
3340 p
= (unsigned char*) POP_PATTERN_OP ();
3341 path_can_be_null
= true;
3345 /* We should never be about to go beyond the end of the pattern. */
3348 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3355 /* If the first character has to match a backreference, that means
3356 that the group was empty (since it already matched). Since this
3357 is the only case that interests us here, we can assume that the
3358 backreference must match the empty string. */
3363 /* Following are the cases which match a character. These end
3367 if (fastmap
) fastmap
[p
[1]] = 1;
3372 /* We could put all the chars except for \n (and maybe \0)
3373 but we don't bother since it is generally not worth it. */
3374 if (!fastmap
) break;
3375 return (RESET_FAIL_STACK (), -1);
3379 /* Chars beyond end of bitmap are possible matches.
3380 All the single-byte codes can occur in multibyte buffers.
3381 So any that are not listed in the charset
3382 are possible matches, even in multibyte buffers. */
3383 if (!fastmap
) break;
3384 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3385 j
< (1 << BYTEWIDTH
); j
++)
3389 if (!fastmap
) break;
3390 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3391 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3393 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3396 if ((not && multibyte
)
3397 /* Any character set can possibly contain a character
3398 which doesn't match the specified set of characters. */
3399 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3400 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3401 /* If we can match a character class, we can match
3402 any character set. */
3404 set_fastmap_for_multibyte_characters
:
3405 if (match_any_multibyte_characters
== false)
3407 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3408 if (BASE_LEADING_CODE_P (j
))
3410 match_any_multibyte_characters
= true;
3414 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3415 && match_any_multibyte_characters
== false)
3417 /* Set fastmap[I] 1 where I is a base leading code of each
3418 multibyte character in the range table. */
3421 /* Make P points the range table. `+ 2' is to skip flag
3422 bits for a character class. */
3423 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3425 /* Extract the number of ranges in range table into COUNT. */
3426 EXTRACT_NUMBER_AND_INCR (count
, p
);
3427 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3429 /* Extract the start of each range. */
3430 EXTRACT_CHARACTER (c
, p
);
3431 j
= CHAR_CHARSET (c
);
3432 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3439 if (!fastmap
) break;
3441 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3443 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3444 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3448 /* This match depends on text properties. These end with
3449 aborting optimizations. */
3450 return (RESET_FAIL_STACK (), -1);
3453 case notcategoryspec
:
3454 if (!fastmap
) break;
3455 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3457 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3458 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3462 /* Any character set can possibly contain a character
3463 whose category is K (or not). */
3464 goto set_fastmap_for_multibyte_characters
;
3467 /* All cases after this match the empty string. These end with
3487 EXTRACT_NUMBER_AND_INCR (j
, p
);
3489 /* Backward jumps can only go back to code that we've already
3490 visited. `re_compile' should make sure this is true. */
3493 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3495 case on_failure_jump
:
3496 case on_failure_keep_string_jump
:
3497 case on_failure_jump_loop
:
3498 case on_failure_jump_nastyloop
:
3499 case on_failure_jump_smart
:
3505 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3506 to jump back to "just after here". */
3509 case on_failure_jump
:
3510 case on_failure_keep_string_jump
:
3511 case on_failure_jump_nastyloop
:
3512 case on_failure_jump_loop
:
3513 case on_failure_jump_smart
:
3514 EXTRACT_NUMBER_AND_INCR (j
, p
);
3516 ; /* Backward jump to be ignored. */
3517 else if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3518 return (RESET_FAIL_STACK (), -2);
3523 /* This code simply does not properly handle forward jump_n. */
3524 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3526 /* jump_n can either jump or fall through. The (backward) jump
3527 case has already been handled, so we only need to look at the
3528 fallthrough case. */
3532 /* If N == 0, it should be an on_failure_jump_loop instead. */
3533 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3535 /* We only care about one iteration of the loop, so we don't
3536 need to consider the case where this behaves like an
3553 abort (); /* We have listed all the cases. */
3556 /* Getting here means we have found the possible starting
3557 characters for one path of the pattern -- and that the empty
3558 string does not match. We need not follow this path further.
3559 Instead, look at the next alternative (remembered on the
3560 stack), or quit if no more. The test at the top of the loop
3561 does these things. */
3562 path_can_be_null
= false;
3566 return (RESET_FAIL_STACK (), 0);
3567 } /* analyse_first */
3569 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3570 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3571 characters can start a string that matches the pattern. This fastmap
3572 is used by re_search to skip quickly over impossible starting points.
3574 Character codes above (1 << BYTEWIDTH) are not represented in the
3575 fastmap, but the leading codes are represented. Thus, the fastmap
3576 indicates which character sets could start a match.
3578 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3579 area as BUFP->fastmap.
3581 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3584 Returns 0 if we succeed, -2 if an internal error. */
3587 re_compile_fastmap (bufp
)
3588 struct re_pattern_buffer
*bufp
;
3590 char *fastmap
= bufp
->fastmap
;
3593 assert (fastmap
&& bufp
->buffer
);
3595 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3596 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3598 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
3599 fastmap
, RE_MULTIBYTE_P (bufp
));
3602 bufp
->can_be_null
= (analysis
!= 0);
3604 } /* re_compile_fastmap */
3606 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3607 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3608 this memory for recording register information. STARTS and ENDS
3609 must be allocated using the malloc library routine, and must each
3610 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3612 If NUM_REGS == 0, then subsequent matches should allocate their own
3615 Unless this function is called, the first search or match using
3616 PATTERN_BUFFER will allocate its own register data, without
3617 freeing the old data. */
3620 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3621 struct re_pattern_buffer
*bufp
;
3622 struct re_registers
*regs
;
3624 regoff_t
*starts
, *ends
;
3628 bufp
->regs_allocated
= REGS_REALLOCATE
;
3629 regs
->num_regs
= num_regs
;
3630 regs
->start
= starts
;
3635 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3637 regs
->start
= regs
->end
= (regoff_t
*) 0;
3641 /* Searching routines. */
3643 /* Like re_search_2, below, but only one string is specified, and
3644 doesn't let you say where to stop matching. */
3647 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3648 struct re_pattern_buffer
*bufp
;
3650 int size
, startpos
, range
;
3651 struct re_registers
*regs
;
3653 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3657 /* End address of virtual concatenation of string. */
3658 #define STOP_ADDR_VSTRING(P) \
3659 (((P) >= size1 ? string2 + size2 : string1 + size1))
3661 /* Address of POS in the concatenation of virtual string. */
3662 #define POS_ADDR_VSTRING(POS) \
3663 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3665 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3666 virtual concatenation of STRING1 and STRING2, starting first at index
3667 STARTPOS, then at STARTPOS + 1, and so on.
3669 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3671 RANGE is how far to scan while trying to match. RANGE = 0 means try
3672 only at STARTPOS; in general, the last start tried is STARTPOS +
3675 In REGS, return the indices of the virtual concatenation of STRING1
3676 and STRING2 that matched the entire BUFP->buffer and its contained
3679 Do not consider matching one past the index STOP in the virtual
3680 concatenation of STRING1 and STRING2.
3682 We return either the position in the strings at which the match was
3683 found, -1 if no match, or -2 if error (such as failure
3687 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
3688 struct re_pattern_buffer
*bufp
;
3689 const char *str1
, *str2
;
3693 struct re_registers
*regs
;
3697 re_char
*string1
= (re_char
*) str1
;
3698 re_char
*string2
= (re_char
*) str2
;
3699 register char *fastmap
= bufp
->fastmap
;
3700 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3701 int total_size
= size1
+ size2
;
3702 int endpos
= startpos
+ range
;
3703 int anchored_start
= 0;
3705 /* Nonzero if we have to concern multibyte character. */
3706 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
3708 /* Check for out-of-range STARTPOS. */
3709 if (startpos
< 0 || startpos
> total_size
)
3712 /* Fix up RANGE if it might eventually take us outside
3713 the virtual concatenation of STRING1 and STRING2.
3714 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3716 range
= 0 - startpos
;
3717 else if (endpos
> total_size
)
3718 range
= total_size
- startpos
;
3720 /* If the search isn't to be a backwards one, don't waste time in a
3721 search for a pattern anchored at beginning of buffer. */
3722 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3731 /* In a forward search for something that starts with \=.
3732 don't keep searching past point. */
3733 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3735 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
3741 /* Update the fastmap now if not correct already. */
3742 if (fastmap
&& !bufp
->fastmap_accurate
)
3743 if (re_compile_fastmap (bufp
) == -2)
3746 /* See whether the pattern is anchored. */
3747 if (bufp
->buffer
[0] == begline
)
3751 gl_state
.object
= re_match_object
;
3753 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
3755 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
3759 /* Loop through the string, looking for a place to start matching. */
3762 /* If the pattern is anchored,
3763 skip quickly past places we cannot match.
3764 We don't bother to treat startpos == 0 specially
3765 because that case doesn't repeat. */
3766 if (anchored_start
&& startpos
> 0)
3768 if (! (bufp
->newline_anchor
3769 && ((startpos
<= size1
? string1
[startpos
- 1]
3770 : string2
[startpos
- size1
- 1])
3775 /* If a fastmap is supplied, skip quickly over characters that
3776 cannot be the start of a match. If the pattern can match the
3777 null string, however, we don't need to skip characters; we want
3778 the first null string. */
3779 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3781 register re_char
*d
;
3782 register unsigned int buf_ch
;
3784 d
= POS_ADDR_VSTRING (startpos
);
3786 if (range
> 0) /* Searching forwards. */
3788 register int lim
= 0;
3791 if (startpos
< size1
&& startpos
+ range
>= size1
)
3792 lim
= range
- (size1
- startpos
);
3794 /* Written out as an if-else to avoid testing `translate'
3796 if (RE_TRANSLATE_P (translate
))
3803 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
3806 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
3811 range
-= buf_charlen
;
3816 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
3823 while (range
> lim
&& !fastmap
[*d
])
3829 startpos
+= irange
- range
;
3831 else /* Searching backwards. */
3833 int room
= (startpos
>= size1
3834 ? size2
+ size1
- startpos
3835 : size1
- startpos
);
3836 buf_ch
= RE_STRING_CHAR (d
, room
);
3837 buf_ch
= TRANSLATE (buf_ch
);
3839 if (! (buf_ch
>= 0400
3840 || fastmap
[buf_ch
]))
3845 /* If can't match the null string, and that's all we have left, fail. */
3846 if (range
>= 0 && startpos
== total_size
&& fastmap
3847 && !bufp
->can_be_null
)
3850 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3851 startpos
, regs
, stop
);
3852 #ifndef REGEX_MALLOC
3869 /* Update STARTPOS to the next character boundary. */
3872 re_char
*p
= POS_ADDR_VSTRING (startpos
);
3873 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
3874 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
3892 /* Update STARTPOS to the previous character boundary. */
3895 re_char
*p
= POS_ADDR_VSTRING (startpos
);
3898 /* Find the head of multibyte form. */
3899 while (!CHAR_HEAD_P (*p
))
3904 if (MULTIBYTE_FORM_LENGTH (p
, len
+ 1) != (len
+ 1))
3921 /* Declarations and macros for re_match_2. */
3923 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
3925 RE_TRANSLATE_TYPE translate
,
3926 const int multibyte
));
3928 /* This converts PTR, a pointer into one of the search strings `string1'
3929 and `string2' into an offset from the beginning of that string. */
3930 #define POINTER_TO_OFFSET(ptr) \
3931 (FIRST_STRING_P (ptr) \
3932 ? ((regoff_t) ((ptr) - string1)) \
3933 : ((regoff_t) ((ptr) - string2 + size1)))
3935 /* Call before fetching a character with *d. This switches over to
3936 string2 if necessary. */
3937 #define PREFETCH() \
3940 /* End of string2 => fail. */ \
3941 if (dend == end_match_2) \
3943 /* End of string1 => advance to string2. */ \
3945 dend = end_match_2; \
3949 /* Test if at very beginning or at very end of the virtual concatenation
3950 of `string1' and `string2'. If only one string, it's `string2'. */
3951 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3952 #define AT_STRINGS_END(d) ((d) == end2)
3955 /* Test if D points to a character which is word-constituent. We have
3956 two special cases to check for: if past the end of string1, look at
3957 the first character in string2; and if before the beginning of
3958 string2, look at the last character in string1. */
3959 #define WORDCHAR_P(d) \
3960 (SYNTAX ((d) == end1 ? *string2 \
3961 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3964 /* Disabled due to a compiler bug -- see comment at case wordbound */
3966 /* The comment at case wordbound is following one, but we don't use
3967 AT_WORD_BOUNDARY anymore to support multibyte form.
3969 The DEC Alpha C compiler 3.x generates incorrect code for the
3970 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3971 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
3972 macro and introducing temporary variables works around the bug. */
3975 /* Test if the character before D and the one at D differ with respect
3976 to being word-constituent. */
3977 #define AT_WORD_BOUNDARY(d) \
3978 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3979 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3982 /* Free everything we malloc. */
3983 #ifdef MATCH_MAY_ALLOCATE
3984 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3985 #define FREE_VARIABLES() \
3987 REGEX_FREE_STACK (fail_stack.stack); \
3988 FREE_VAR (regstart); \
3989 FREE_VAR (regend); \
3990 FREE_VAR (best_regstart); \
3991 FREE_VAR (best_regend); \
3994 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3995 #endif /* not MATCH_MAY_ALLOCATE */
3998 /* Optimization routines. */
4000 /* If the operation is a match against one or more chars,
4001 return a pointer to the next operation, else return NULL. */
4002 static unsigned char *
4006 switch (SWITCH_ENUM_CAST (*p
++))
4017 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4020 p
= CHARSET_RANGE_TABLE (p
- 1);
4021 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4022 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4025 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4032 case notcategoryspec
:
4044 /* Jump over non-matching operations. */
4045 static unsigned char *
4046 skip_noops (p
, pend
)
4047 unsigned char *p
, *pend
;
4052 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4061 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4072 /* Non-zero if "p1 matches something" implies "p2 fails". */
4074 mutually_exclusive_p (bufp
, p1
, p2
)
4075 struct re_pattern_buffer
*bufp
;
4076 unsigned char *p1
, *p2
;
4079 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4080 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4082 assert (p1
>= bufp
->buffer
&& p1
< pend
4083 && p2
>= bufp
->buffer
&& p2
<= pend
);
4085 /* Skip over open/close-group commands.
4086 If what follows this loop is a ...+ construct,
4087 look at what begins its body, since we will have to
4088 match at least one of that. */
4089 p2
= skip_noops (p2
, pend
);
4090 /* The same skip can be done for p1, except that this function
4091 is only used in the case where p1 is a simple match operator. */
4092 /* p1 = skip_noops (p1, pend); */
4094 assert (p1
>= bufp
->buffer
&& p1
< pend
4095 && p2
>= bufp
->buffer
&& p2
<= pend
);
4097 op2
= p2
== pend
? succeed
: *p2
;
4099 switch (SWITCH_ENUM_CAST (op2
))
4103 /* If we're at the end of the pattern, we can change. */
4104 if (skip_one_char (p1
))
4106 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4112 if (!bufp
->newline_anchor
)
4117 register unsigned int c
4118 = (re_opcode_t
) *p2
== endline
? '\n'
4119 : RE_STRING_CHAR(p2
+ 2, pend
- p2
- 2);
4121 if ((re_opcode_t
) *p1
== exactn
)
4123 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4125 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4130 else if ((re_opcode_t
) *p1
== charset
4131 || (re_opcode_t
) *p1
== charset_not
)
4133 int not = (re_opcode_t
) *p1
== charset_not
;
4135 /* Test if C is listed in charset (or charset_not)
4137 if (SINGLE_BYTE_CHAR_P (c
))
4139 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4140 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4143 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4144 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4146 /* `not' is equal to 1 if c would match, which means
4147 that we can't change to pop_failure_jump. */
4150 DEBUG_PRINT1 (" No match => fast loop.\n");
4154 else if ((re_opcode_t
) *p1
== anychar
4157 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4166 if ((re_opcode_t
) *p1
== exactn
)
4167 /* Reuse the code above. */
4168 return mutually_exclusive_p (bufp
, p2
, p1
);
4171 /* It is hard to list up all the character in charset
4172 P2 if it includes multibyte character. Give up in
4174 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4176 /* Now, we are sure that P2 has no range table.
4177 So, for the size of bitmap in P2, `p2[1]' is
4178 enough. But P1 may have range table, so the
4179 size of bitmap table of P1 is extracted by
4180 using macro `CHARSET_BITMAP_SIZE'.
4182 Since we know that all the character listed in
4183 P2 is ASCII, it is enough to test only bitmap
4189 /* We win if the charset inside the loop
4190 has no overlap with the one after the loop. */
4193 && idx
< CHARSET_BITMAP_SIZE (p1
));
4195 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4199 || idx
== CHARSET_BITMAP_SIZE (p1
))
4201 DEBUG_PRINT1 (" No match => fast loop.\n");
4205 else if ((re_opcode_t
) *p1
== charset
4206 || (re_opcode_t
) *p1
== charset_not
)
4209 /* We win if the charset_not inside the loop lists
4210 every character listed in the charset after. */
4211 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4212 if (! (p2
[2 + idx
] == 0
4213 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4214 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4219 DEBUG_PRINT1 (" No match => fast loop.\n");
4228 return ((re_opcode_t
) *p1
== syntaxspec
4229 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4233 return ((re_opcode_t
) *p1
== notsyntaxspec
4234 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4237 return (((re_opcode_t
) *p1
== notsyntaxspec
4238 || (re_opcode_t
) *p1
== syntaxspec
)
4243 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4244 case notcategoryspec
:
4245 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4257 /* Matching routines. */
4259 #ifndef emacs /* Emacs never uses this. */
4260 /* re_match is like re_match_2 except it takes only a single string. */
4263 re_match (bufp
, string
, size
, pos
, regs
)
4264 struct re_pattern_buffer
*bufp
;
4267 struct re_registers
*regs
;
4269 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
4274 #endif /* not emacs */
4277 /* In Emacs, this is the string or buffer in which we
4278 are matching. It is used for looking up syntax properties. */
4279 Lisp_Object re_match_object
;
4282 /* re_match_2 matches the compiled pattern in BUFP against the
4283 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4284 and SIZE2, respectively). We start matching at POS, and stop
4287 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4288 store offsets for the substring each group matched in REGS. See the
4289 documentation for exactly how many groups we fill.
4291 We return -1 if no match, -2 if an internal error (such as the
4292 failure stack overflowing). Otherwise, we return the length of the
4293 matched substring. */
4296 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4297 struct re_pattern_buffer
*bufp
;
4298 const char *string1
, *string2
;
4301 struct re_registers
*regs
;
4308 gl_state
.object
= re_match_object
;
4309 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4310 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4313 result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4319 /* This is a separate function so that we can force an alloca cleanup
4322 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4323 struct re_pattern_buffer
*bufp
;
4324 re_char
*string1
, *string2
;
4327 struct re_registers
*regs
;
4330 /* General temporaries. */
4335 /* Just past the end of the corresponding string. */
4336 re_char
*end1
, *end2
;
4338 /* Pointers into string1 and string2, just past the last characters in
4339 each to consider matching. */
4340 re_char
*end_match_1
, *end_match_2
;
4342 /* Where we are in the data, and the end of the current string. */
4345 /* Used sometimes to remember where we were before starting matching
4346 an operator so that we can go back in case of failure. This "atomic"
4347 behavior of matching opcodes is indispensable to the correctness
4348 of the on_failure_keep_string_jump optimization. */
4351 /* Where we are in the pattern, and the end of the pattern. */
4352 unsigned char *p
= bufp
->buffer
;
4353 register unsigned char *pend
= p
+ bufp
->used
;
4355 /* We use this to map every character in the string. */
4356 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4358 /* Nonzero if we have to concern multibyte character. */
4359 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4361 /* Failure point stack. Each place that can handle a failure further
4362 down the line pushes a failure point on this stack. It consists of
4363 regstart, and regend for all registers corresponding to
4364 the subexpressions we're currently inside, plus the number of such
4365 registers, and, finally, two char *'s. The first char * is where
4366 to resume scanning the pattern; the second one is where to resume
4367 scanning the strings. */
4368 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4369 fail_stack_type fail_stack
;
4372 static unsigned failure_id
= 0;
4373 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4376 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4377 /* This holds the pointer to the failure stack, when
4378 it is allocated relocatably. */
4379 fail_stack_elt_t
*failure_stack_ptr
;
4382 /* We fill all the registers internally, independent of what we
4383 return, for use in backreferences. The number here includes
4384 an element for register zero. */
4385 unsigned num_regs
= bufp
->re_nsub
+ 1;
4387 /* Information on the contents of registers. These are pointers into
4388 the input strings; they record just what was matched (on this
4389 attempt) by a subexpression part of the pattern, that is, the
4390 regnum-th regstart pointer points to where in the pattern we began
4391 matching and the regnum-th regend points to right after where we
4392 stopped matching the regnum-th subexpression. (The zeroth register
4393 keeps track of what the whole pattern matches.) */
4394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4395 re_char
**regstart
, **regend
;
4398 /* The following record the register info as found in the above
4399 variables when we find a match better than any we've seen before.
4400 This happens as we backtrack through the failure points, which in
4401 turn happens only if we have not yet matched the entire string. */
4402 unsigned best_regs_set
= false;
4403 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4404 re_char
**best_regstart
, **best_regend
;
4407 /* Logically, this is `best_regend[0]'. But we don't want to have to
4408 allocate space for that if we're not allocating space for anything
4409 else (see below). Also, we never need info about register 0 for
4410 any of the other register vectors, and it seems rather a kludge to
4411 treat `best_regend' differently than the rest. So we keep track of
4412 the end of the best match so far in a separate variable. We
4413 initialize this to NULL so that when we backtrack the first time
4414 and need to test it, it's not garbage. */
4415 re_char
*match_end
= NULL
;
4418 /* Counts the total number of registers pushed. */
4419 unsigned num_regs_pushed
= 0;
4422 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4426 #ifdef MATCH_MAY_ALLOCATE
4427 /* Do not bother to initialize all the register variables if there are
4428 no groups in the pattern, as it takes a fair amount of time. If
4429 there are groups, we include space for register 0 (the whole
4430 pattern), even though we never use it, since it simplifies the
4431 array indexing. We should fix this. */
4434 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4435 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4436 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4437 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4439 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4447 /* We must initialize all our variables to NULL, so that
4448 `FREE_VARIABLES' doesn't try to free them. */
4449 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4451 #endif /* MATCH_MAY_ALLOCATE */
4453 /* The starting position is bogus. */
4454 if (pos
< 0 || pos
> size1
+ size2
)
4460 /* Initialize subexpression text positions to -1 to mark ones that no
4461 start_memory/stop_memory has been seen for. Also initialize the
4462 register information struct. */
4463 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4464 regstart
[mcnt
] = regend
[mcnt
] = REG_UNSET_VALUE
;
4466 /* Shorten strings to `stop'. */
4472 else if (stop
<= size1
+ size2
)
4473 size2
= stop
- size1
;
4475 /* We move `string1' into `string2' if the latter's empty -- but not if
4476 `string1' is null. */
4477 if (size2
== 0 && string1
!= NULL
)
4484 end1
= string1
+ size1
;
4485 end2
= string2
+ size2
;
4487 /* Compute where to stop matching, within the two strings. */
4491 /* `p' scans through the pattern as `d' scans through the data.
4492 `dend' is the end of the input string that `d' points within. `d'
4493 is advanced into the following input string whenever necessary, but
4494 this happens before fetching; therefore, at the beginning of the
4495 loop, `d' can be pointing at the end of a string, but it cannot
4497 if (size1
> 0 && pos
<= size1
)
4504 d
= string2
+ pos
- size1
;
4508 DEBUG_PRINT1 ("The compiled pattern is: ");
4509 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4510 DEBUG_PRINT1 ("The string to match is: `");
4511 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4512 DEBUG_PRINT1 ("'\n");
4514 /* This loops over pattern commands. It exits by returning from the
4515 function if the match is complete, or it drops through if the match
4516 fails at this starting point in the input data. */
4519 DEBUG_PRINT2 ("\n%p: ", p
);
4522 { /* End of pattern means we might have succeeded. */
4523 DEBUG_PRINT1 ("end of pattern ... ");
4525 /* If we haven't matched the entire string, and we want the
4526 longest match, try backtracking. */
4527 if (d
!= end_match_2
)
4529 /* 1 if this match ends in the same string (string1 or string2)
4530 as the best previous match. */
4531 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4532 == FIRST_STRING_P (d
));
4533 /* 1 if this match is the best seen so far. */
4534 boolean best_match_p
;
4536 /* AIX compiler got confused when this was combined
4537 with the previous declaration. */
4539 best_match_p
= d
> match_end
;
4541 best_match_p
= !FIRST_STRING_P (d
);
4543 DEBUG_PRINT1 ("backtracking.\n");
4545 if (!FAIL_STACK_EMPTY ())
4546 { /* More failure points to try. */
4548 /* If exceeds best match so far, save it. */
4549 if (!best_regs_set
|| best_match_p
)
4551 best_regs_set
= true;
4554 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4556 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4558 best_regstart
[mcnt
] = regstart
[mcnt
];
4559 best_regend
[mcnt
] = regend
[mcnt
];
4565 /* If no failure points, don't restore garbage. And if
4566 last match is real best match, don't restore second
4568 else if (best_regs_set
&& !best_match_p
)
4571 /* Restore best match. It may happen that `dend ==
4572 end_match_1' while the restored d is in string2.
4573 For example, the pattern `x.*y.*z' against the
4574 strings `x-' and `y-z-', if the two strings are
4575 not consecutive in memory. */
4576 DEBUG_PRINT1 ("Restoring best registers.\n");
4579 dend
= ((d
>= string1
&& d
<= end1
)
4580 ? end_match_1
: end_match_2
);
4582 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
4584 regstart
[mcnt
] = best_regstart
[mcnt
];
4585 regend
[mcnt
] = best_regend
[mcnt
];
4588 } /* d != end_match_2 */
4591 DEBUG_PRINT1 ("Accepting match.\n");
4593 /* If caller wants register contents data back, do it. */
4594 if (regs
&& !bufp
->no_sub
)
4596 /* Have the register data arrays been allocated? */
4597 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4598 { /* No. So allocate them with malloc. We need one
4599 extra element beyond `num_regs' for the `-1' marker
4601 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4602 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4603 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4604 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4609 bufp
->regs_allocated
= REGS_REALLOCATE
;
4611 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4612 { /* Yes. If we need more elements than were already
4613 allocated, reallocate them. If we need fewer, just
4615 if (regs
->num_regs
< num_regs
+ 1)
4617 regs
->num_regs
= num_regs
+ 1;
4618 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4619 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4620 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4629 /* These braces fend off a "empty body in an else-statement"
4630 warning under GCC when assert expands to nothing. */
4631 assert (bufp
->regs_allocated
== REGS_FIXED
);
4634 /* Convert the pointer data in `regstart' and `regend' to
4635 indices. Register zero has to be set differently,
4636 since we haven't kept track of any info for it. */
4637 if (regs
->num_regs
> 0)
4639 regs
->start
[0] = pos
;
4640 regs
->end
[0] = POINTER_TO_OFFSET (d
);
4643 /* Go through the first `min (num_regs, regs->num_regs)'
4644 registers, since that is all we initialized. */
4645 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
4647 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4648 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4652 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4654 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4658 /* If the regs structure we return has more elements than
4659 were in the pattern, set the extra elements to -1. If
4660 we (re)allocated the registers, this is the case,
4661 because we always allocate enough to have at least one
4663 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
4664 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4665 } /* regs && !bufp->no_sub */
4667 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4668 nfailure_points_pushed
, nfailure_points_popped
,
4669 nfailure_points_pushed
- nfailure_points_popped
);
4670 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4672 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
4674 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4680 /* Otherwise match next pattern command. */
4681 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4683 /* Ignore these. Used to ignore the n of succeed_n's which
4684 currently have n == 0. */
4686 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4690 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4693 /* Match the next n pattern characters exactly. The following
4694 byte in the pattern defines n, and the n bytes after that
4695 are the characters to match. */
4698 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4700 /* Remember the start point to rollback upon failure. */
4703 /* This is written out as an if-else so we don't waste time
4704 testing `translate' inside the loop. */
4705 if (RE_TRANSLATE_P (translate
))
4710 int pat_charlen
, buf_charlen
;
4711 unsigned int pat_ch
, buf_ch
;
4714 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
4715 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4717 if (RE_TRANSLATE (translate
, buf_ch
)
4726 mcnt
-= pat_charlen
;
4733 if (RE_TRANSLATE (translate
, *d
) != *p
++)
4758 /* Match any character except possibly a newline or a null. */
4762 unsigned int buf_ch
;
4764 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4767 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4768 buf_ch
= TRANSLATE (buf_ch
);
4770 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
4772 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
4773 && buf_ch
== '\000'))
4776 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4785 register unsigned int c
;
4786 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4789 /* Start of actual range_table, or end of bitmap if there is no
4791 unsigned char *range_table
;
4793 /* Nonzero if there is a range table. */
4794 int range_table_exists
;
4796 /* Number of ranges of range table. This is not included
4797 in the initial byte-length of the command. */
4800 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4802 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
4804 if (range_table_exists
)
4806 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
4807 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
4811 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
4812 c
= TRANSLATE (c
); /* The character to match. */
4814 if (SINGLE_BYTE_CHAR_P (c
))
4815 { /* Lookup bitmap. */
4816 /* Cast to `unsigned' instead of `unsigned char' in
4817 case the bit list is a full 32 bytes long. */
4818 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
4819 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4823 else if (range_table_exists
)
4825 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
4827 if ( (class_bits
& BIT_ALNUM
&& ISALNUM (c
))
4828 | (class_bits
& BIT_ALPHA
&& ISALPHA (c
))
4829 | (class_bits
& BIT_ASCII
&& IS_REAL_ASCII (c
))
4830 | (class_bits
& BIT_GRAPH
&& ISGRAPH (c
))
4831 | (class_bits
& BIT_LOWER
&& ISLOWER (c
))
4832 | (class_bits
& BIT_MULTIBYTE
&& !ISUNIBYTE (c
))
4833 | (class_bits
& BIT_NONASCII
&& !IS_REAL_ASCII (c
))
4834 | (class_bits
& BIT_PRINT
&& ISPRINT (c
))
4835 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
4836 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
4837 | (class_bits
& BIT_UNIBYTE
&& ISUNIBYTE (c
))
4838 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
4839 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
4842 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
4846 if (range_table_exists
)
4847 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
4849 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
4851 if (!not) goto fail
;
4858 /* The beginning of a group is represented by start_memory.
4859 The argument is the register number. The text
4860 matched within the group is recorded (in the internal
4861 registers data structure) under the register number. */
4863 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
4865 /* In case we need to undo this operation (via backtracking). */
4866 PUSH_FAILURE_REG ((unsigned int)*p
);
4869 regend
[*p
] = REG_UNSET_VALUE
; /* probably unnecessary. -sm */
4870 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4872 /* Move past the register number and inner group count. */
4877 /* The stop_memory opcode represents the end of a group. Its
4878 argument is the same as start_memory's: the register number. */
4880 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
4882 assert (!REG_UNSET (regstart
[*p
]));
4883 /* Strictly speaking, there should be code such as:
4885 assert (REG_UNSET (regend[*p]));
4886 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
4888 But the only info to be pushed is regend[*p] and it is known to
4889 be UNSET, so there really isn't anything to push.
4890 Not pushing anything, on the other hand deprives us from the
4891 guarantee that regend[*p] is UNSET since undoing this operation
4892 will not reset its value properly. This is not important since
4893 the value will only be read on the next start_memory or at
4894 the very end and both events can only happen if this stop_memory
4898 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4900 /* Move past the register number and the inner group count. */
4905 /* \<digit> has been turned into a `duplicate' command which is
4906 followed by the numeric value of <digit> as the register number. */
4909 register re_char
*d2
, *dend2
;
4910 int regno
= *p
++; /* Get which register to match against. */
4911 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4913 /* Can't back reference a group which we've never matched. */
4914 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4917 /* Where in input to try to start matching. */
4918 d2
= regstart
[regno
];
4920 /* Remember the start point to rollback upon failure. */
4923 /* Where to stop matching; if both the place to start and
4924 the place to stop matching are in the same string, then
4925 set to the place to stop, otherwise, for now have to use
4926 the end of the first string. */
4928 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4929 == FIRST_STRING_P (regend
[regno
]))
4930 ? regend
[regno
] : end_match_1
);
4933 /* If necessary, advance to next segment in register
4937 if (dend2
== end_match_2
) break;
4938 if (dend2
== regend
[regno
]) break;
4940 /* End of string1 => advance to string2. */
4942 dend2
= regend
[regno
];
4944 /* At end of register contents => success */
4945 if (d2
== dend2
) break;
4947 /* If necessary, advance to next segment in data. */
4950 /* How many characters left in this segment to match. */
4953 /* Want how many consecutive characters we can match in
4954 one shot, so, if necessary, adjust the count. */
4955 if (mcnt
> dend2
- d2
)
4958 /* Compare that many; failure if mismatch, else move
4960 if (RE_TRANSLATE_P (translate
)
4961 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
4962 : bcmp (d
, d2
, mcnt
))
4967 d
+= mcnt
, d2
+= mcnt
;
4973 /* begline matches the empty string at the beginning of the string
4974 (unless `not_bol' is set in `bufp'), and, if
4975 `newline_anchor' is set, after newlines. */
4977 DEBUG_PRINT1 ("EXECUTING begline.\n");
4979 if (AT_STRINGS_BEG (d
))
4981 if (!bufp
->not_bol
) break;
4983 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4987 /* In all other cases, we fail. */
4991 /* endline is the dual of begline. */
4993 DEBUG_PRINT1 ("EXECUTING endline.\n");
4995 if (AT_STRINGS_END (d
))
4997 if (!bufp
->not_eol
) break;
5000 /* We have to ``prefetch'' the next character. */
5001 else if ((d
== end1
? *string2
: *d
) == '\n'
5002 && bufp
->newline_anchor
)
5009 /* Match at the very beginning of the data. */
5011 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5012 if (AT_STRINGS_BEG (d
))
5017 /* Match at the very end of the data. */
5019 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5020 if (AT_STRINGS_END (d
))
5025 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5026 pushes NULL as the value for the string on the stack. Then
5027 `POP_FAILURE_POINT' will keep the current value for the
5028 string, instead of restoring it. To see why, consider
5029 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5030 then the . fails against the \n. But the next thing we want
5031 to do is match the \n against the \n; if we restored the
5032 string value, we would be back at the foo.
5034 Because this is used only in specific cases, we don't need to
5035 check all the things that `on_failure_jump' does, to make
5036 sure the right things get saved on the stack. Hence we don't
5037 share its code. The only reason to push anything on the
5038 stack at all is that otherwise we would have to change
5039 `anychar's code to do something besides goto fail in this
5040 case; that seems worse than this. */
5041 case on_failure_keep_string_jump
:
5042 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5043 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5046 PUSH_FAILURE_POINT (p
- 3, NULL
);
5049 /* A nasty loop is introduced by the non-greedy *? and +?.
5050 With such loops, the stack only ever contains one failure point
5051 at a time, so that a plain on_failure_jump_loop kind of
5052 cycle detection cannot work. Worse yet, such a detection
5053 can not only fail to detect a cycle, but it can also wrongly
5054 detect a cycle (between different instantiations of the same
5056 So the method used for those nasty loops is a little different:
5057 We use a special cycle-detection-stack-frame which is pushed
5058 when the on_failure_jump_nastyloop failure-point is *popped*.
5059 This special frame thus marks the beginning of one iteration
5060 through the loop and we can hence easily check right here
5061 whether something matched between the beginning and the end of
5063 case on_failure_jump_nastyloop
:
5064 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5065 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5068 assert ((re_opcode_t
)p
[-4] == no_op
);
5069 CHECK_INFINITE_LOOP (p
- 4, d
);
5070 PUSH_FAILURE_POINT (p
- 3, d
);
5074 /* Simple loop detecting on_failure_jump: just check on the
5075 failure stack if the same spot was already hit earlier. */
5076 case on_failure_jump_loop
:
5078 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5079 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5082 CHECK_INFINITE_LOOP (p
- 3, d
);
5083 PUSH_FAILURE_POINT (p
- 3, d
);
5087 /* Uses of on_failure_jump:
5089 Each alternative starts with an on_failure_jump that points
5090 to the beginning of the next alternative. Each alternative
5091 except the last ends with a jump that in effect jumps past
5092 the rest of the alternatives. (They really jump to the
5093 ending jump of the following alternative, because tensioning
5094 these jumps is a hassle.)
5096 Repeats start with an on_failure_jump that points past both
5097 the repetition text and either the following jump or
5098 pop_failure_jump back to this on_failure_jump. */
5099 case on_failure_jump
:
5101 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5102 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5105 PUSH_FAILURE_POINT (p
-3, d
);
5108 /* This operation is used for greedy *.
5109 Compare the beginning of the repeat with what in the
5110 pattern follows its end. If we can establish that there
5111 is nothing that they would both match, i.e., that we
5112 would have to backtrack because of (as in, e.g., `a*a')
5113 then we can use a non-backtracking loop based on
5114 on_failure_keep_string_jump instead of on_failure_jump. */
5115 case on_failure_jump_smart
:
5117 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5118 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5121 unsigned char *p1
= p
; /* Next operation. */
5122 unsigned char *p2
= p
+ mcnt
; /* Destination of the jump. */
5124 p
-= 3; /* Reset so that we will re-execute the
5125 instruction once it's been changed. */
5127 EXTRACT_NUMBER (mcnt
, p2
- 2);
5129 /* Ensure this is a indeed the trivial kind of loop
5130 we are expecting. */
5131 assert (skip_one_char (p1
) == p2
- 3);
5132 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5133 DEBUG_STATEMENT (debug
+= 2);
5134 if (mutually_exclusive_p (bufp
, p1
, p2
))
5136 /* Use a fast `on_failure_keep_string_jump' loop. */
5137 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5138 *p
= (unsigned char) on_failure_keep_string_jump
;
5139 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5143 /* Default to a safe `on_failure_jump' loop. */
5144 DEBUG_PRINT1 (" smart default => slow loop.\n");
5145 *p
= (unsigned char) on_failure_jump
;
5147 DEBUG_STATEMENT (debug
-= 2);
5151 /* Unconditionally jump (without popping any failure points). */
5155 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5156 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5157 p
+= mcnt
; /* Do the jump. */
5158 DEBUG_PRINT2 ("(to %p).\n", p
);
5162 /* Have to succeed matching what follows at least n times.
5163 After that, handle like `on_failure_jump'. */
5165 EXTRACT_NUMBER (mcnt
, p
+ 2);
5166 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5169 /* Originally, this is how many times we HAVE to succeed. */
5174 STORE_NUMBER_AND_INCR (p
, mcnt
);
5175 DEBUG_PRINT3 (" Setting %p to %d.\n", p
, mcnt
);
5179 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
5180 p
[2] = (unsigned char) no_op
;
5181 p
[3] = (unsigned char) no_op
;
5187 EXTRACT_NUMBER (mcnt
, p
+ 2);
5188 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5190 /* Originally, this is how many times we CAN jump. */
5194 STORE_NUMBER (p
+ 2, mcnt
);
5195 goto unconditional_jump
;
5197 /* If don't have to jump any more, skip over the rest of command. */
5204 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5206 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5208 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5209 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
5210 STORE_NUMBER (p1
, mcnt
);
5216 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5217 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5219 /* We SUCCEED (or FAIL) in one of the following cases: */
5221 /* Case 1: D is at the beginning or the end of string. */
5222 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5226 /* C1 is the character before D, S1 is the syntax of C1, C2
5227 is the character at D, and S2 is the syntax of C2. */
5230 int offset
= PTR_TO_OFFSET (d
- 1);
5231 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5232 UPDATE_SYNTAX_TABLE (charpos
);
5234 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5237 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5240 c2
= RE_STRING_CHAR (d
, dend
- d
);
5243 if (/* Case 2: Only one of S1 and S2 is Sword. */
5244 ((s1
== Sword
) != (s2
== Sword
))
5245 /* Case 3: Both of S1 and S2 are Sword, and macro
5246 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5247 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5256 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5258 /* We FAIL in one of the following cases: */
5260 /* Case 1: D is at the end of string. */
5261 if (AT_STRINGS_END (d
))
5265 /* C1 is the character before D, S1 is the syntax of C1, C2
5266 is the character at D, and S2 is the syntax of C2. */
5269 int offset
= PTR_TO_OFFSET (d
);
5270 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5271 UPDATE_SYNTAX_TABLE (charpos
);
5274 c2
= RE_STRING_CHAR (d
, dend
- d
);
5277 /* Case 2: S2 is not Sword. */
5281 /* Case 3: D is not at the beginning of string ... */
5282 if (!AT_STRINGS_BEG (d
))
5284 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5286 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5290 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5292 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5299 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5301 /* We FAIL in one of the following cases: */
5303 /* Case 1: D is at the beginning of string. */
5304 if (AT_STRINGS_BEG (d
))
5308 /* C1 is the character before D, S1 is the syntax of C1, C2
5309 is the character at D, and S2 is the syntax of C2. */
5312 int offset
= PTR_TO_OFFSET (d
) - 1;
5313 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5314 UPDATE_SYNTAX_TABLE (charpos
);
5316 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5319 /* Case 2: S1 is not Sword. */
5323 /* Case 3: D is not at the end of string ... */
5324 if (!AT_STRINGS_END (d
))
5327 c2
= RE_STRING_CHAR (d
, dend
- d
);
5329 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5333 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5335 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5343 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5345 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5349 int offset
= PTR_TO_OFFSET (d
);
5350 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5351 UPDATE_SYNTAX_TABLE (pos1
);
5357 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5359 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5367 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5368 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5373 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5374 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5379 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5380 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5385 case notcategoryspec
:
5386 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5388 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5392 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5394 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5405 continue; /* Successfully executed one pattern command; keep going. */
5408 /* We goto here if a matching operation fails. */
5411 if (!FAIL_STACK_EMPTY ())
5415 /* A restart point is known. Restore to that state. */
5416 DEBUG_PRINT1 ("\nFAIL:\n");
5417 POP_FAILURE_POINT (str
, pat
);
5418 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5420 case on_failure_keep_string_jump
:
5421 assert (str
== NULL
);
5422 goto continue_failure_jump
;
5424 case on_failure_jump_nastyloop
:
5425 assert ((re_opcode_t
)pat
[-2] == no_op
);
5426 PUSH_FAILURE_POINT (pat
- 2, str
);
5429 case on_failure_jump_loop
:
5430 case on_failure_jump
:
5433 continue_failure_jump
:
5434 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5439 /* A special frame used for nastyloops. */
5446 assert (p
>= bufp
->buffer
&& p
<= pend
);
5448 if (d
>= string1
&& d
<= end1
)
5452 break; /* Matching at this starting point really fails. */
5456 goto restore_best_regs
;
5460 return -1; /* Failure to match. */
5463 /* Subroutine definitions for re_match_2. */
5465 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5466 bytes; nonzero otherwise. */
5469 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5472 RE_TRANSLATE_TYPE translate
;
5473 const int multibyte
;
5475 register re_char
*p1
= s1
, *p2
= s2
;
5476 re_char
*p1_end
= s1
+ len
;
5477 re_char
*p2_end
= s2
+ len
;
5479 while (p1
!= p1_end
&& p2
!= p2_end
)
5481 int p1_charlen
, p2_charlen
;
5484 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5485 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5487 if (RE_TRANSLATE (translate
, p1_ch
)
5488 != RE_TRANSLATE (translate
, p2_ch
))
5491 p1
+= p1_charlen
, p2
+= p2_charlen
;
5494 if (p1
!= p1_end
|| p2
!= p2_end
)
5500 /* Entry points for GNU code. */
5502 /* re_compile_pattern is the GNU regular expression compiler: it
5503 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5504 Returns 0 if the pattern was valid, otherwise an error string.
5506 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5507 are set in BUFP on entry.
5509 We call regex_compile to do the actual compilation. */
5512 re_compile_pattern (pattern
, length
, bufp
)
5513 const char *pattern
;
5515 struct re_pattern_buffer
*bufp
;
5519 /* GNU code is written to assume at least RE_NREGS registers will be set
5520 (and at least one extra will be -1). */
5521 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5523 /* And GNU code determines whether or not to get register information
5524 by passing null for the REGS argument to re_match, etc., not by
5528 /* Match anchors at newline. */
5529 bufp
->newline_anchor
= 1;
5531 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5535 return gettext (re_error_msgid
[(int) ret
]);
5538 /* Entry points compatible with 4.2 BSD regex library. We don't define
5539 them unless specifically requested. */
5541 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5543 /* BSD has one and only one pattern buffer. */
5544 static struct re_pattern_buffer re_comp_buf
;
5548 /* Make these definitions weak in libc, so POSIX programs can redefine
5549 these names if they don't use our functions, and still use
5550 regcomp/regexec below without link errors. */
5560 if (!re_comp_buf
.buffer
)
5561 return gettext ("No previous regular expression");
5565 if (!re_comp_buf
.buffer
)
5567 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5568 if (re_comp_buf
.buffer
== NULL
)
5569 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5570 re_comp_buf
.allocated
= 200;
5572 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5573 if (re_comp_buf
.fastmap
== NULL
)
5574 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5577 /* Since `re_exec' always passes NULL for the `regs' argument, we
5578 don't need to initialize the pattern buffer fields which affect it. */
5580 /* Match anchors at newlines. */
5581 re_comp_buf
.newline_anchor
= 1;
5583 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5588 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5589 return (char *) gettext (re_error_msgid
[(int) ret
]);
5600 const int len
= strlen (s
);
5602 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5604 #endif /* _REGEX_RE_COMP */
5606 /* POSIX.2 functions. Don't define these for Emacs. */
5610 /* regcomp takes a regular expression as a string and compiles it.
5612 PREG is a regex_t *. We do not expect any fields to be initialized,
5613 since POSIX says we shouldn't. Thus, we set
5615 `buffer' to the compiled pattern;
5616 `used' to the length of the compiled pattern;
5617 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5618 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5619 RE_SYNTAX_POSIX_BASIC;
5620 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5621 `fastmap' and `fastmap_accurate' to zero;
5622 `re_nsub' to the number of subexpressions in PATTERN.
5624 PATTERN is the address of the pattern string.
5626 CFLAGS is a series of bits which affect compilation.
5628 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5629 use POSIX basic syntax.
5631 If REG_NEWLINE is set, then . and [^...] don't match newline.
5632 Also, regexec will try a match beginning after every newline.
5634 If REG_ICASE is set, then we considers upper- and lowercase
5635 versions of letters to be equivalent when matching.
5637 If REG_NOSUB is set, then when PREG is passed to regexec, that
5638 routine will report only success or failure, and nothing about the
5641 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5642 the return codes and their meanings.) */
5645 regcomp (preg
, pattern
, cflags
)
5647 const char *pattern
;
5652 = (cflags
& REG_EXTENDED
) ?
5653 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5655 /* regex_compile will allocate the space for the compiled pattern. */
5657 preg
->allocated
= 0;
5660 /* Don't bother to use a fastmap when searching. This simplifies the
5661 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5662 characters after newlines into the fastmap. This way, we just try
5666 if (cflags
& REG_ICASE
)
5671 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5672 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5673 if (preg
->translate
== NULL
)
5674 return (int) REG_ESPACE
;
5676 /* Map uppercase characters to corresponding lowercase ones. */
5677 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5678 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5681 preg
->translate
= NULL
;
5683 /* If REG_NEWLINE is set, newlines are treated differently. */
5684 if (cflags
& REG_NEWLINE
)
5685 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5686 syntax
&= ~RE_DOT_NEWLINE
;
5687 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5688 /* It also changes the matching behavior. */
5689 preg
->newline_anchor
= 1;
5692 preg
->newline_anchor
= 0;
5694 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5696 /* POSIX says a null character in the pattern terminates it, so we
5697 can use strlen here in compiling the pattern. */
5698 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5700 /* POSIX doesn't distinguish between an unmatched open-group and an
5701 unmatched close-group: both are REG_EPAREN. */
5702 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5708 /* regexec searches for a given pattern, specified by PREG, in the
5711 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5712 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5713 least NMATCH elements, and we set them to the offsets of the
5714 corresponding matched substrings.
5716 EFLAGS specifies `execution flags' which affect matching: if
5717 REG_NOTBOL is set, then ^ does not match at the beginning of the
5718 string; if REG_NOTEOL is set, then $ does not match at the end.
5720 We return 0 if we find a match and REG_NOMATCH if not. */
5723 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5724 const regex_t
*preg
;
5727 regmatch_t pmatch
[];
5731 struct re_registers regs
;
5732 regex_t private_preg
;
5733 int len
= strlen (string
);
5734 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5736 private_preg
= *preg
;
5738 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5739 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5741 /* The user has told us exactly how many registers to return
5742 information about, via `nmatch'. We have to pass that on to the
5743 matching routines. */
5744 private_preg
.regs_allocated
= REGS_FIXED
;
5748 regs
.num_regs
= nmatch
;
5749 regs
.start
= TALLOC (nmatch
, regoff_t
);
5750 regs
.end
= TALLOC (nmatch
, regoff_t
);
5751 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5752 return (int) REG_NOMATCH
;
5755 /* Perform the searching operation. */
5756 ret
= re_search (&private_preg
, string
, len
,
5757 /* start: */ 0, /* range: */ len
,
5758 want_reg_info
? ®s
: (struct re_registers
*) 0);
5760 /* Copy the register information to the POSIX structure. */
5767 for (r
= 0; r
< nmatch
; r
++)
5769 pmatch
[r
].rm_so
= regs
.start
[r
];
5770 pmatch
[r
].rm_eo
= regs
.end
[r
];
5774 /* If we needed the temporary register info, free the space now. */
5779 /* We want zero return to mean success, unlike `re_search'. */
5780 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5784 /* Returns a message corresponding to an error code, ERRCODE, returned
5785 from either regcomp or regexec. We don't use PREG here. */
5788 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5790 const regex_t
*preg
;
5798 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
5799 /* Only error codes returned by the rest of the code should be passed
5800 to this routine. If we are given anything else, or if other regex
5801 code generates an invalid error code, then the program has a bug.
5802 Dump core so we can fix it. */
5805 msg
= gettext (re_error_msgid
[errcode
]);
5807 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5809 if (errbuf_size
!= 0)
5811 if (msg_size
> errbuf_size
)
5813 strncpy (errbuf
, msg
, errbuf_size
- 1);
5814 errbuf
[errbuf_size
- 1] = 0;
5817 strcpy (errbuf
, msg
);
5824 /* Free dynamically allocated space used by PREG. */
5830 if (preg
->buffer
!= NULL
)
5831 free (preg
->buffer
);
5832 preg
->buffer
= NULL
;
5834 preg
->allocated
= 0;
5837 if (preg
->fastmap
!= NULL
)
5838 free (preg
->fastmap
);
5839 preg
->fastmap
= NULL
;
5840 preg
->fastmap_accurate
= 0;
5842 if (preg
->translate
!= NULL
)
5843 free (preg
->translate
);
5844 preg
->translate
= NULL
;
5847 #endif /* not emacs */