* regex.c (PTR_TO_OFFSET) [!emacs]: Remove.
[emacs.git] / src / regex.c
blob9a56db728e5b5ea59ee53d05269bbf14c4b64733
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch]
27 /* AIX requires this to be the first thing in the file. */
28 #if defined (_AIX) && !defined (REGEX_MALLOC)
29 #pragma alloca
30 #endif
32 #undef _GNU_SOURCE
33 #define _GNU_SOURCE
35 #ifdef emacs
36 /* Converts the pointer to the char to BEG-based offset from the start. */
37 #define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
38 #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
39 #endif
41 #ifdef HAVE_CONFIG_H
42 #include <config.h>
43 #endif
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 #include <sys/types.h>
48 /* This is for other GNU distributions with internationalized messages. */
49 #if HAVE_LIBINTL_H || defined (_LIBC)
50 # include <libintl.h>
51 #else
52 # define gettext(msgid) (msgid)
53 #endif
55 #ifndef gettext_noop
56 /* This define is so xgettext can find the internationalizable
57 strings. */
58 #define gettext_noop(String) String
59 #endif
61 /* The `emacs' switch turns on certain matching commands
62 that make sense only in Emacs. */
63 #ifdef emacs
65 #include "lisp.h"
66 #include "buffer.h"
68 /* Make syntax table lookup grant data in gl_state. */
69 #define SYNTAX_ENTRY_VIA_PROPERTY
71 #include "syntax.h"
72 #include "charset.h"
73 #include "category.h"
75 #define malloc xmalloc
76 #define realloc xrealloc
77 #define free xfree
79 #define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
80 #define RE_STRING_CHAR(p, s) \
81 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
82 #define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
83 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
85 /* Set C a (possibly multibyte) character before P. P points into a
86 string which is the virtual concatenation of STR1 (which ends at
87 END1) or STR2 (which ends at END2). */
88 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
89 do { \
90 if (multibyte) \
91 { \
92 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
93 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
94 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
95 c = STRING_CHAR (dtemp, (p) - dtemp); \
96 } \
97 else \
98 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
99 } while (0)
102 #else /* not emacs */
104 /* If we are not linking with Emacs proper,
105 we can't use the relocating allocator
106 even if config.h says that we can. */
107 #undef REL_ALLOC
109 #if defined (STDC_HEADERS) || defined (_LIBC)
110 #include <stdlib.h>
111 #else
112 char *malloc ();
113 char *realloc ();
114 #endif
116 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
117 If nothing else has been done, use the method below. */
118 #ifdef INHIBIT_STRING_HEADER
119 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
120 #if !defined (bzero) && !defined (bcopy)
121 #undef INHIBIT_STRING_HEADER
122 #endif
123 #endif
124 #endif
126 /* This is the normal way of making sure we have a bcopy and a bzero.
127 This is used in most programs--a few other programs avoid this
128 by defining INHIBIT_STRING_HEADER. */
129 #ifndef INHIBIT_STRING_HEADER
130 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
131 #include <string.h>
132 #ifndef bcmp
133 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
134 #endif
135 #ifndef bcopy
136 #define bcopy(s, d, n) memcpy ((d), (s), (n))
137 #endif
138 #ifndef bzero
139 #define bzero(s, n) memset ((s), 0, (n))
140 #endif
141 #else
142 #include <strings.h>
143 #endif
144 #endif
146 /* Define the syntax stuff for \<, \>, etc. */
148 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
149 enum syntaxcode { Swhitespace = 0, Sword = 1 };
151 #ifdef SWITCH_ENUM_BUG
152 #define SWITCH_ENUM_CAST(x) ((int)(x))
153 #else
154 #define SWITCH_ENUM_CAST(x) (x)
155 #endif
157 #ifdef SYNTAX_TABLE
159 extern char *re_syntax_table;
161 #else /* not SYNTAX_TABLE */
163 /* How many characters in the character set. */
164 #define CHAR_SET_SIZE 256
166 static char re_syntax_table[CHAR_SET_SIZE];
168 static void
169 init_syntax_once ()
171 register int c;
172 static int done = 0;
174 if (done)
175 return;
177 bzero (re_syntax_table, sizeof re_syntax_table);
179 for (c = 'a'; c <= 'z'; c++)
180 re_syntax_table[c] = Sword;
182 for (c = 'A'; c <= 'Z'; c++)
183 re_syntax_table[c] = Sword;
185 for (c = '0'; c <= '9'; c++)
186 re_syntax_table[c] = Sword;
188 re_syntax_table['_'] = Sword;
190 done = 1;
193 #endif /* not SYNTAX_TABLE */
195 #define SYNTAX(c) re_syntax_table[c]
197 /* Dummy macros for non-Emacs environments. */
198 #define BASE_LEADING_CODE_P(c) (0)
199 #define CHAR_CHARSET(c) 0
200 #define CHARSET_LEADING_CODE_BASE(c) 0
201 #define MAX_MULTIBYTE_LENGTH 1
202 #define RE_MULTIBYTE_P(x) 0
203 #define WORD_BOUNDARY_P(c1, c2) (0)
204 #define CHAR_HEAD_P(p) (1)
205 #define SINGLE_BYTE_CHAR_P(c) (1)
206 #define SAME_CHARSET_P(c1, c2) (1)
207 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
208 #define STRING_CHAR(p, s) (*(p))
209 #define RE_STRING_CHAR STRING_CHAR
210 #define CHAR_STRING(c, s) (*(s) = (c), 1)
211 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
212 #define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
213 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
214 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
215 #endif /* not emacs */
217 #ifndef RE_TRANSLATE
218 #define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
219 #define RE_TRANSLATE_P(TBL) (TBL)
220 #endif
222 /* Get the interface, including the syntax bits. */
223 #include "regex.h"
225 /* isalpha etc. are used for the character classes. */
226 #include <ctype.h>
228 #ifdef emacs
230 /* 1 if C is an ASCII character. */
231 #define IS_REAL_ASCII(c) ((c) < 0200)
233 /* 1 if C is a unibyte character. */
234 #define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
236 /* The Emacs definitions should not be directly affected by locales. */
238 /* In Emacs, these are only used for single-byte characters. */
239 #define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
240 #define ISCNTRL(c) ((c) < ' ')
241 #define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
242 || ((c) >= 'a' && (c) <= 'f') \
243 || ((c) >= 'A' && (c) <= 'F'))
245 /* This is only used for single-byte characters. */
246 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
248 /* The rest must handle multibyte characters. */
250 #define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
251 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
252 : 1)
254 #define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
255 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
256 : 1)
258 #define ISALNUM(c) (IS_REAL_ASCII (c) \
259 ? (((c) >= 'a' && (c) <= 'z') \
260 || ((c) >= 'A' && (c) <= 'Z') \
261 || ((c) >= '0' && (c) <= '9')) \
262 : SYNTAX (c) == Sword)
264 #define ISALPHA(c) (IS_REAL_ASCII (c) \
265 ? (((c) >= 'a' && (c) <= 'z') \
266 || ((c) >= 'A' && (c) <= 'Z')) \
267 : SYNTAX (c) == Sword)
269 #define ISLOWER(c) (LOWERCASEP (c))
271 #define ISPUNCT(c) (IS_REAL_ASCII (c) \
272 ? ((c) > ' ' && (c) < 0177 \
273 && !(((c) >= 'a' && (c) <= 'z') \
274 || ((c) >= 'A' && (c) <= 'Z') \
275 || ((c) >= '0' && (c) <= '9'))) \
276 : SYNTAX (c) != Sword)
278 #define ISSPACE(c) (SYNTAX (c) == Swhitespace)
280 #define ISUPPER(c) (UPPERCASEP (c))
282 #define ISWORD(c) (SYNTAX (c) == Sword)
284 #else /* not emacs */
286 /* Jim Meyering writes:
288 "... Some ctype macros are valid only for character codes that
289 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
290 using /bin/cc or gcc but without giving an ansi option). So, all
291 ctype uses should be through macros like ISPRINT... If
292 STDC_HEADERS is defined, then autoconf has verified that the ctype
293 macros don't need to be guarded with references to isascii. ...
294 Defining isascii to 1 should let any compiler worth its salt
295 eliminate the && through constant folding." */
297 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
298 #define ISASCII(c) 1
299 #else
300 #define ISASCII(c) isascii(c)
301 #endif
303 /* 1 if C is an ASCII character. */
304 #define IS_REAL_ASCII(c) ((c) < 0200)
306 /* This distinction is not meaningful, except in Emacs. */
307 #define ISUNIBYTE(c) 1
309 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
310 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
311 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
313 #ifdef isblank
314 #define ISBLANK(c) (ISASCII (c) && isblank (c))
315 #else
316 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
317 #endif
318 #ifdef isgraph
319 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
320 #else
321 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
322 #endif
324 #define ISPRINT(c) (ISASCII (c) && isprint (c))
325 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
326 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
327 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
328 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
329 #define ISLOWER(c) (ISASCII (c) && islower (c))
330 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
331 #define ISSPACE(c) (ISASCII (c) && isspace (c))
332 #define ISUPPER(c) (ISASCII (c) && isupper (c))
333 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
335 #define ISWORD(c) ISALPHA(c)
337 #endif /* not emacs */
339 #ifndef NULL
340 #define NULL (void *)0
341 #endif
343 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
344 since ours (we hope) works properly with all combinations of
345 machines, compilers, `char' and `unsigned char' argument types.
346 (Per Bothner suggested the basic approach.) */
347 #undef SIGN_EXTEND_CHAR
348 #if __STDC__
349 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
350 #else /* not __STDC__ */
351 /* As in Harbison and Steele. */
352 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
353 #endif
355 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
356 use `alloca' instead of `malloc'. This is because using malloc in
357 re_search* or re_match* could cause memory leaks when C-g is used in
358 Emacs; also, malloc is slower and causes storage fragmentation. On
359 the other hand, malloc is more portable, and easier to debug.
361 Because we sometimes use alloca, some routines have to be macros,
362 not functions -- `alloca'-allocated space disappears at the end of the
363 function it is called in. */
365 #ifdef REGEX_MALLOC
367 #define REGEX_ALLOCATE malloc
368 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
369 #define REGEX_FREE free
371 #else /* not REGEX_MALLOC */
373 /* Emacs already defines alloca, sometimes. */
374 #ifndef alloca
376 /* Make alloca work the best possible way. */
377 #ifdef __GNUC__
378 #define alloca __builtin_alloca
379 #else /* not __GNUC__ */
380 #if HAVE_ALLOCA_H
381 #include <alloca.h>
382 #else /* not __GNUC__ or HAVE_ALLOCA_H */
383 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
384 #ifndef _AIX /* Already did AIX, up at the top. */
385 char *alloca ();
386 #endif /* not _AIX */
387 #endif
388 #endif /* not HAVE_ALLOCA_H */
389 #endif /* not __GNUC__ */
391 #endif /* not alloca */
393 #define REGEX_ALLOCATE alloca
395 /* Assumes a `char *destination' variable. */
396 #define REGEX_REALLOCATE(source, osize, nsize) \
397 (destination = (char *) alloca (nsize), \
398 bcopy (source, destination, osize), \
399 destination)
401 /* No need to do anything to free, after alloca. */
402 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
404 #endif /* not REGEX_MALLOC */
406 /* Define how to allocate the failure stack. */
408 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
410 #define REGEX_ALLOCATE_STACK(size) \
411 r_alloc (&failure_stack_ptr, (size))
412 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
413 r_re_alloc (&failure_stack_ptr, (nsize))
414 #define REGEX_FREE_STACK(ptr) \
415 r_alloc_free (&failure_stack_ptr)
417 #else /* not using relocating allocator */
419 #ifdef REGEX_MALLOC
421 #define REGEX_ALLOCATE_STACK malloc
422 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
423 #define REGEX_FREE_STACK free
425 #else /* not REGEX_MALLOC */
427 #define REGEX_ALLOCATE_STACK alloca
429 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
430 REGEX_REALLOCATE (source, osize, nsize)
431 /* No need to explicitly free anything. */
432 #define REGEX_FREE_STACK(arg) ((void)0)
434 #endif /* not REGEX_MALLOC */
435 #endif /* not using relocating allocator */
438 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
439 `string1' or just past its end. This works if PTR is NULL, which is
440 a good thing. */
441 #define FIRST_STRING_P(ptr) \
442 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
444 /* (Re)Allocate N items of type T using malloc, or fail. */
445 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
446 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
447 #define RETALLOC_IF(addr, n, t) \
448 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
449 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
451 #define BYTEWIDTH 8 /* In bits. */
453 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
455 #undef MAX
456 #undef MIN
457 #define MAX(a, b) ((a) > (b) ? (a) : (b))
458 #define MIN(a, b) ((a) < (b) ? (a) : (b))
460 /* Type of source-pattern and string chars. */
461 typedef const unsigned char re_char;
463 typedef char boolean;
464 #define false 0
465 #define true 1
467 static int re_match_2_internal ();
469 /* These are the command codes that appear in compiled regular
470 expressions. Some opcodes are followed by argument bytes. A
471 command code can specify any interpretation whatsoever for its
472 arguments. Zero bytes may appear in the compiled regular expression. */
474 typedef enum
476 no_op = 0,
478 /* Succeed right away--no more backtracking. */
479 succeed,
481 /* Followed by one byte giving n, then by n literal bytes. */
482 exactn,
484 /* Matches any (more or less) character. */
485 anychar,
487 /* Matches any one char belonging to specified set. First
488 following byte is number of bitmap bytes. Then come bytes
489 for a bitmap saying which chars are in. Bits in each byte
490 are ordered low-bit-first. A character is in the set if its
491 bit is 1. A character too large to have a bit in the map is
492 automatically not in the set.
494 If the length byte has the 0x80 bit set, then that stuff
495 is followed by a range table:
496 2 bytes of flags for character sets (low 8 bits, high 8 bits)
497 See RANGE_TABLE_WORK_BITS below.
498 2 bytes, the number of pairs that follow
499 pairs, each 2 multibyte characters,
500 each multibyte character represented as 3 bytes. */
501 charset,
503 /* Same parameters as charset, but match any character that is
504 not one of those specified. */
505 charset_not,
507 /* Start remembering the text that is matched, for storing in a
508 register. Followed by one byte with the register number, in
509 the range 0 to one less than the pattern buffer's re_nsub
510 field. */
511 start_memory,
513 /* Stop remembering the text that is matched and store it in a
514 memory register. Followed by one byte with the register
515 number, in the range 0 to one less than `re_nsub' in the
516 pattern buffer. */
517 stop_memory,
519 /* Match a duplicate of something remembered. Followed by one
520 byte containing the register number. */
521 duplicate,
523 /* Fail unless at beginning of line. */
524 begline,
526 /* Fail unless at end of line. */
527 endline,
529 /* Succeeds if at beginning of buffer (if emacs) or at beginning
530 of string to be matched (if not). */
531 begbuf,
533 /* Analogously, for end of buffer/string. */
534 endbuf,
536 /* Followed by two byte relative address to which to jump. */
537 jump,
539 /* Followed by two-byte relative address of place to resume at
540 in case of failure. */
541 on_failure_jump,
543 /* Like on_failure_jump, but pushes a placeholder instead of the
544 current string position when executed. */
545 on_failure_keep_string_jump,
547 /* Just like `on_failure_jump', except that it checks that we
548 don't get stuck in an infinite loop (matching an empty string
549 indefinitely). */
550 on_failure_jump_loop,
552 /* Just like `on_failure_jump_loop', except that it checks for
553 a different kind of loop (the kind that shows up with non-greedy
554 operators). This operation has to be immediately preceded
555 by a `no_op'. */
556 on_failure_jump_nastyloop,
558 /* A smart `on_failure_jump' used for greedy * and + operators.
559 It analyses the loop before which it is put and if the
560 loop does not require backtracking, it changes itself to
561 `on_failure_keep_string_jump' and short-circuits the loop,
562 else it just defaults to changing itself into `on_failure_jump'.
563 It assumes that it is pointing to just past a `jump'. */
564 on_failure_jump_smart,
566 /* Followed by two-byte relative address and two-byte number n.
567 After matching N times, jump to the address upon failure.
568 Does not work if N starts at 0: use on_failure_jump_loop
569 instead. */
570 succeed_n,
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
574 jump_n,
576 /* Set the following two-byte relative address to the
577 subsequent two-byte number. The address *includes* the two
578 bytes of number. */
579 set_number_at,
581 wordbeg, /* Succeeds if at word beginning. */
582 wordend, /* Succeeds if at word end. */
584 wordbound, /* Succeeds if at a word boundary. */
585 notwordbound, /* Succeeds if not at a word boundary. */
587 /* Matches any character whose syntax is specified. Followed by
588 a byte which contains a syntax code, e.g., Sword. */
589 syntaxspec,
591 /* Matches any character whose syntax is not that specified. */
592 notsyntaxspec
594 #ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
599 /* Matches any character whose category-set contains the specified
600 category. The operator is followed by a byte which contains a
601 category code (mnemonic ASCII character). */
602 categoryspec,
604 /* Matches any character whose category-set does not contain the
605 specified category. The operator is followed by a byte which
606 contains the category code (mnemonic ASCII character). */
607 notcategoryspec
608 #endif /* emacs */
609 } re_opcode_t;
611 /* Common operations on the compiled pattern. */
613 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
615 #define STORE_NUMBER(destination, number) \
616 do { \
617 (destination)[0] = (number) & 0377; \
618 (destination)[1] = (number) >> 8; \
619 } while (0)
621 /* Same as STORE_NUMBER, except increment DESTINATION to
622 the byte after where the number is stored. Therefore, DESTINATION
623 must be an lvalue. */
625 #define STORE_NUMBER_AND_INCR(destination, number) \
626 do { \
627 STORE_NUMBER (destination, number); \
628 (destination) += 2; \
629 } while (0)
631 /* Put into DESTINATION a number stored in two contiguous bytes starting
632 at SOURCE. */
634 #define EXTRACT_NUMBER(destination, source) \
635 do { \
636 (destination) = *(source) & 0377; \
637 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
638 } while (0)
640 #ifdef DEBUG
641 static void
642 extract_number (dest, source)
643 int *dest;
644 unsigned char *source;
646 int temp = SIGN_EXTEND_CHAR (*(source + 1));
647 *dest = *source & 0377;
648 *dest += temp << 8;
651 #ifndef EXTRACT_MACROS /* To debug the macros. */
652 #undef EXTRACT_NUMBER
653 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
654 #endif /* not EXTRACT_MACROS */
656 #endif /* DEBUG */
658 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
659 SOURCE must be an lvalue. */
661 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
662 do { \
663 EXTRACT_NUMBER (destination, source); \
664 (source) += 2; \
665 } while (0)
667 #ifdef DEBUG
668 static void
669 extract_number_and_incr (destination, source)
670 int *destination;
671 unsigned char **source;
673 extract_number (destination, *source);
674 *source += 2;
677 #ifndef EXTRACT_MACROS
678 #undef EXTRACT_NUMBER_AND_INCR
679 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
680 extract_number_and_incr (&dest, &src)
681 #endif /* not EXTRACT_MACROS */
683 #endif /* DEBUG */
685 /* Store a multibyte character in three contiguous bytes starting
686 DESTINATION, and increment DESTINATION to the byte after where the
687 character is stored. Therefore, DESTINATION must be an lvalue. */
689 #define STORE_CHARACTER_AND_INCR(destination, character) \
690 do { \
691 (destination)[0] = (character) & 0377; \
692 (destination)[1] = ((character) >> 8) & 0377; \
693 (destination)[2] = (character) >> 16; \
694 (destination) += 3; \
695 } while (0)
697 /* Put into DESTINATION a character stored in three contiguous bytes
698 starting at SOURCE. */
700 #define EXTRACT_CHARACTER(destination, source) \
701 do { \
702 (destination) = ((source)[0] \
703 | ((source)[1] << 8) \
704 | ((source)[2] << 16)); \
705 } while (0)
708 /* Macros for charset. */
710 /* Size of bitmap of charset P in bytes. P is a start of charset,
711 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
712 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
714 /* Nonzero if charset P has range table. */
715 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
717 /* Return the address of range table of charset P. But not the start
718 of table itself, but the before where the number of ranges is
719 stored. `2 +' means to skip re_opcode_t and size of bitmap,
720 and the 2 bytes of flags at the start of the range table. */
721 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
723 /* Extract the bit flags that start a range table. */
724 #define CHARSET_RANGE_TABLE_BITS(p) \
725 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
726 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
728 /* Test if C is listed in the bitmap of charset P. */
729 #define CHARSET_LOOKUP_BITMAP(p, c) \
730 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
731 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
733 /* Return the address of end of RANGE_TABLE. COUNT is number of
734 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
735 is start of range and end of range. `* 3' is size of each start
736 and end. */
737 #define CHARSET_RANGE_TABLE_END(range_table, count) \
738 ((range_table) + (count) * 2 * 3)
740 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
741 COUNT is number of ranges in RANGE_TABLE. */
742 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
743 do \
745 int range_start, range_end; \
746 unsigned char *p; \
747 unsigned char *range_table_end \
748 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
750 for (p = (range_table); p < range_table_end; p += 2 * 3) \
752 EXTRACT_CHARACTER (range_start, p); \
753 EXTRACT_CHARACTER (range_end, p + 3); \
755 if (range_start <= (c) && (c) <= range_end) \
757 (not) = !(not); \
758 break; \
762 while (0)
764 /* Test if C is in range table of CHARSET. The flag NOT is negated if
765 C is listed in it. */
766 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
767 do \
769 /* Number of ranges in range table. */ \
770 int count; \
771 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
773 EXTRACT_NUMBER_AND_INCR (count, range_table); \
774 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
776 while (0)
778 /* If DEBUG is defined, Regex prints many voluminous messages about what
779 it is doing (if the variable `debug' is nonzero). If linked with the
780 main program in `iregex.c', you can enter patterns and strings
781 interactively. And if linked with the main program in `main.c' and
782 the other test files, you can run the already-written tests. */
784 #ifdef DEBUG
786 /* We use standard I/O for debugging. */
787 #include <stdio.h>
789 /* It is useful to test things that ``must'' be true when debugging. */
790 #include <assert.h>
792 static int debug = -100000;
794 #define DEBUG_STATEMENT(e) e
795 #define DEBUG_PRINT1(x) if (debug > 0) printf (x)
796 #define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
797 #define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
798 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
799 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
800 if (debug > 0) print_partial_compiled_pattern (s, e)
801 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
802 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
805 /* Print the fastmap in human-readable form. */
807 void
808 print_fastmap (fastmap)
809 char *fastmap;
811 unsigned was_a_range = 0;
812 unsigned i = 0;
814 while (i < (1 << BYTEWIDTH))
816 if (fastmap[i++])
818 was_a_range = 0;
819 putchar (i - 1);
820 while (i < (1 << BYTEWIDTH) && fastmap[i])
822 was_a_range = 1;
823 i++;
825 if (was_a_range)
827 printf ("-");
828 putchar (i - 1);
832 putchar ('\n');
836 /* Print a compiled pattern string in human-readable form, starting at
837 the START pointer into it and ending just before the pointer END. */
839 void
840 print_partial_compiled_pattern (start, end)
841 unsigned char *start;
842 unsigned char *end;
844 int mcnt, mcnt2;
845 unsigned char *p = start;
846 unsigned char *pend = end;
848 if (start == NULL)
850 printf ("(null)\n");
851 return;
854 /* Loop over pattern commands. */
855 while (p < pend)
857 printf ("%d:\t", p - start);
859 switch ((re_opcode_t) *p++)
861 case no_op:
862 printf ("/no_op");
863 break;
865 case succeed:
866 printf ("/succeed");
867 break;
869 case exactn:
870 mcnt = *p++;
871 printf ("/exactn/%d", mcnt);
874 putchar ('/');
875 putchar (*p++);
877 while (--mcnt);
878 break;
880 case start_memory:
881 printf ("/start_memory/%d", *p++);
882 break;
884 case stop_memory:
885 printf ("/stop_memory/%d", *p++);
886 break;
888 case duplicate:
889 printf ("/duplicate/%d", *p++);
890 break;
892 case anychar:
893 printf ("/anychar");
894 break;
896 case charset:
897 case charset_not:
899 register int c, last = -100;
900 register int in_range = 0;
901 int length = CHARSET_BITMAP_SIZE (p - 1);
902 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
904 printf ("/charset [%s",
905 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
907 assert (p + *p < pend);
909 for (c = 0; c < 256; c++)
910 if (c / 8 < length
911 && (p[1 + (c/8)] & (1 << (c % 8))))
913 /* Are we starting a range? */
914 if (last + 1 == c && ! in_range)
916 putchar ('-');
917 in_range = 1;
919 /* Have we broken a range? */
920 else if (last + 1 != c && in_range)
922 putchar (last);
923 in_range = 0;
926 if (! in_range)
927 putchar (c);
929 last = c;
932 if (in_range)
933 putchar (last);
935 putchar (']');
937 p += 1 + length;
939 if (has_range_table)
941 int count;
942 printf ("has-range-table");
944 /* ??? Should print the range table; for now, just skip it. */
945 p += 2; /* skip range table bits */
946 EXTRACT_NUMBER_AND_INCR (count, p);
947 p = CHARSET_RANGE_TABLE_END (p, count);
950 break;
952 case begline:
953 printf ("/begline");
954 break;
956 case endline:
957 printf ("/endline");
958 break;
960 case on_failure_jump:
961 extract_number_and_incr (&mcnt, &p);
962 printf ("/on_failure_jump to %d", p + mcnt - start);
963 break;
965 case on_failure_keep_string_jump:
966 extract_number_and_incr (&mcnt, &p);
967 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
968 break;
970 case on_failure_jump_nastyloop:
971 extract_number_and_incr (&mcnt, &p);
972 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
973 break;
975 case on_failure_jump_loop:
976 extract_number_and_incr (&mcnt, &p);
977 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
978 break;
980 case on_failure_jump_smart:
981 extract_number_and_incr (&mcnt, &p);
982 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
983 break;
985 case jump:
986 extract_number_and_incr (&mcnt, &p);
987 printf ("/jump to %d", p + mcnt - start);
988 break;
990 case succeed_n:
991 extract_number_and_incr (&mcnt, &p);
992 extract_number_and_incr (&mcnt2, &p);
993 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
994 break;
996 case jump_n:
997 extract_number_and_incr (&mcnt, &p);
998 extract_number_and_incr (&mcnt2, &p);
999 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1000 break;
1002 case set_number_at:
1003 extract_number_and_incr (&mcnt, &p);
1004 extract_number_and_incr (&mcnt2, &p);
1005 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1006 break;
1008 case wordbound:
1009 printf ("/wordbound");
1010 break;
1012 case notwordbound:
1013 printf ("/notwordbound");
1014 break;
1016 case wordbeg:
1017 printf ("/wordbeg");
1018 break;
1020 case wordend:
1021 printf ("/wordend");
1023 case syntaxspec:
1024 printf ("/syntaxspec");
1025 mcnt = *p++;
1026 printf ("/%d", mcnt);
1027 break;
1029 case notsyntaxspec:
1030 printf ("/notsyntaxspec");
1031 mcnt = *p++;
1032 printf ("/%d", mcnt);
1033 break;
1035 #ifdef emacs
1036 case before_dot:
1037 printf ("/before_dot");
1038 break;
1040 case at_dot:
1041 printf ("/at_dot");
1042 break;
1044 case after_dot:
1045 printf ("/after_dot");
1046 break;
1048 case categoryspec:
1049 printf ("/categoryspec");
1050 mcnt = *p++;
1051 printf ("/%d", mcnt);
1052 break;
1054 case notcategoryspec:
1055 printf ("/notcategoryspec");
1056 mcnt = *p++;
1057 printf ("/%d", mcnt);
1058 break;
1059 #endif /* emacs */
1061 case begbuf:
1062 printf ("/begbuf");
1063 break;
1065 case endbuf:
1066 printf ("/endbuf");
1067 break;
1069 default:
1070 printf ("?%d", *(p-1));
1073 putchar ('\n');
1076 printf ("%d:\tend of pattern.\n", p - start);
1080 void
1081 print_compiled_pattern (bufp)
1082 struct re_pattern_buffer *bufp;
1084 unsigned char *buffer = bufp->buffer;
1086 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1087 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, bufp->allocated);
1089 if (bufp->fastmap_accurate && bufp->fastmap)
1091 printf ("fastmap: ");
1092 print_fastmap (bufp->fastmap);
1095 printf ("re_nsub: %d\t", bufp->re_nsub);
1096 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1097 printf ("can_be_null: %d\t", bufp->can_be_null);
1098 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1099 printf ("no_sub: %d\t", bufp->no_sub);
1100 printf ("not_bol: %d\t", bufp->not_bol);
1101 printf ("not_eol: %d\t", bufp->not_eol);
1102 printf ("syntax: %d\n", bufp->syntax);
1103 fflush (stdout);
1104 /* Perhaps we should print the translate table? */
1108 void
1109 print_double_string (where, string1, size1, string2, size2)
1110 re_char *where;
1111 re_char *string1;
1112 re_char *string2;
1113 int size1;
1114 int size2;
1116 unsigned this_char;
1118 if (where == NULL)
1119 printf ("(null)");
1120 else
1122 if (FIRST_STRING_P (where))
1124 for (this_char = where - string1; this_char < size1; this_char++)
1125 putchar (string1[this_char]);
1127 where = string2;
1130 for (this_char = where - string2; this_char < size2; this_char++)
1131 putchar (string2[this_char]);
1135 #else /* not DEBUG */
1137 #undef assert
1138 #define assert(e)
1140 #define DEBUG_STATEMENT(e)
1141 #define DEBUG_PRINT1(x)
1142 #define DEBUG_PRINT2(x1, x2)
1143 #define DEBUG_PRINT3(x1, x2, x3)
1144 #define DEBUG_PRINT4(x1, x2, x3, x4)
1145 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1146 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1148 #endif /* not DEBUG */
1150 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1151 also be assigned to arbitrarily: each pattern buffer stores its own
1152 syntax, so it can be changed between regex compilations. */
1153 /* This has no initializer because initialized variables in Emacs
1154 become read-only after dumping. */
1155 reg_syntax_t re_syntax_options;
1158 /* Specify the precise syntax of regexps for compilation. This provides
1159 for compatibility for various utilities which historically have
1160 different, incompatible syntaxes.
1162 The argument SYNTAX is a bit mask comprised of the various bits
1163 defined in regex.h. We return the old syntax. */
1165 reg_syntax_t
1166 re_set_syntax (syntax)
1167 reg_syntax_t syntax;
1169 reg_syntax_t ret = re_syntax_options;
1171 re_syntax_options = syntax;
1172 return ret;
1175 /* This table gives an error message for each of the error codes listed
1176 in regex.h. Obviously the order here has to be same as there.
1177 POSIX doesn't require that we do anything for REG_NOERROR,
1178 but why not be nice? */
1180 static const char *re_error_msgid[] =
1182 gettext_noop ("Success"), /* REG_NOERROR */
1183 gettext_noop ("No match"), /* REG_NOMATCH */
1184 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1185 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1186 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1187 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1188 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1189 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1190 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1191 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1192 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1193 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1194 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1195 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1196 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1197 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1198 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1201 /* Avoiding alloca during matching, to placate r_alloc. */
1203 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1204 searching and matching functions should not call alloca. On some
1205 systems, alloca is implemented in terms of malloc, and if we're
1206 using the relocating allocator routines, then malloc could cause a
1207 relocation, which might (if the strings being searched are in the
1208 ralloc heap) shift the data out from underneath the regexp
1209 routines.
1211 Here's another reason to avoid allocation: Emacs
1212 processes input from X in a signal handler; processing X input may
1213 call malloc; if input arrives while a matching routine is calling
1214 malloc, then we're scrod. But Emacs can't just block input while
1215 calling matching routines; then we don't notice interrupts when
1216 they come in. So, Emacs blocks input around all regexp calls
1217 except the matching calls, which it leaves unprotected, in the
1218 faith that they will not malloc. */
1220 /* Normally, this is fine. */
1221 #define MATCH_MAY_ALLOCATE
1223 /* When using GNU C, we are not REALLY using the C alloca, no matter
1224 what config.h may say. So don't take precautions for it. */
1225 #ifdef __GNUC__
1226 #undef C_ALLOCA
1227 #endif
1229 /* The match routines may not allocate if (1) they would do it with malloc
1230 and (2) it's not safe for them to use malloc.
1231 Note that if REL_ALLOC is defined, matching would not use malloc for the
1232 failure stack, but we would still use it for the register vectors;
1233 so REL_ALLOC should not affect this. */
1234 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1235 #undef MATCH_MAY_ALLOCATE
1236 #endif
1239 /* Failure stack declarations and macros; both re_compile_fastmap and
1240 re_match_2 use a failure stack. These have to be macros because of
1241 REGEX_ALLOCATE_STACK. */
1244 /* Approximate number of failure points for which to initially allocate space
1245 when matching. If this number is exceeded, we allocate more
1246 space, so it is not a hard limit. */
1247 #ifndef INIT_FAILURE_ALLOC
1248 #define INIT_FAILURE_ALLOC 20
1249 #endif
1251 /* Roughly the maximum number of failure points on the stack. Would be
1252 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1253 This is a variable only so users of regex can assign to it; we never
1254 change it ourselves. */
1255 #if defined (MATCH_MAY_ALLOCATE)
1256 /* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1257 whose default stack limit is 2mb. In order for a larger
1258 value to work reliably, you have to try to make it accord
1259 with the process stack limit. */
1260 int re_max_failures = 40000;
1261 #else
1262 int re_max_failures = 4000;
1263 #endif
1265 union fail_stack_elt
1267 const unsigned char *pointer;
1268 unsigned int integer;
1271 typedef union fail_stack_elt fail_stack_elt_t;
1273 typedef struct
1275 fail_stack_elt_t *stack;
1276 unsigned size;
1277 unsigned avail; /* Offset of next open position. */
1278 unsigned frame; /* Offset of the cur constructed frame. */
1279 } fail_stack_type;
1281 #define PATTERN_STACK_EMPTY() (fail_stack.avail == 0)
1282 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1283 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1286 /* Define macros to initialize and free the failure stack.
1287 Do `return -2' if the alloc fails. */
1289 #ifdef MATCH_MAY_ALLOCATE
1290 #define INIT_FAIL_STACK() \
1291 do { \
1292 fail_stack.stack = (fail_stack_elt_t *) \
1293 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1294 * sizeof (fail_stack_elt_t)); \
1296 if (fail_stack.stack == NULL) \
1297 return -2; \
1299 fail_stack.size = INIT_FAILURE_ALLOC; \
1300 fail_stack.avail = 0; \
1301 fail_stack.frame = 0; \
1302 } while (0)
1304 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1305 #else
1306 #define INIT_FAIL_STACK() \
1307 do { \
1308 fail_stack.avail = 0; \
1309 fail_stack.frame = 0; \
1310 } while (0)
1312 #define RESET_FAIL_STACK() ((void)0)
1313 #endif
1316 /* Double the size of FAIL_STACK, up to a limit
1317 which allows approximately `re_max_failures' items.
1319 Return 1 if succeeds, and 0 if either ran out of memory
1320 allocating space for it or it was already too large.
1322 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1324 /* Factor to increase the failure stack size by
1325 when we increase it.
1326 This used to be 2, but 2 was too wasteful
1327 because the old discarded stacks added up to as much space
1328 were as ultimate, maximum-size stack. */
1329 #define FAIL_STACK_GROWTH_FACTOR 4
1331 #define GROW_FAIL_STACK(fail_stack) \
1332 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1333 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1334 ? 0 \
1335 : ((fail_stack).stack \
1336 = (fail_stack_elt_t *) \
1337 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1338 (fail_stack).size * sizeof (fail_stack_elt_t), \
1339 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1340 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1341 * FAIL_STACK_GROWTH_FACTOR))), \
1343 (fail_stack).stack == NULL \
1344 ? 0 \
1345 : ((fail_stack).size \
1346 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1347 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1348 * FAIL_STACK_GROWTH_FACTOR)) \
1349 / sizeof (fail_stack_elt_t)), \
1350 1)))
1353 /* Push pointer POINTER on FAIL_STACK.
1354 Return 1 if was able to do so and 0 if ran out of memory allocating
1355 space to do so. */
1356 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1357 ((FAIL_STACK_FULL () \
1358 && !GROW_FAIL_STACK (FAIL_STACK)) \
1359 ? 0 \
1360 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1362 #define POP_PATTERN_OP() POP_FAILURE_POINTER ()
1364 /* Push a pointer value onto the failure stack.
1365 Assumes the variable `fail_stack'. Probably should only
1366 be called from within `PUSH_FAILURE_POINT'. */
1367 #define PUSH_FAILURE_POINTER(item) \
1368 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1370 /* This pushes an integer-valued item onto the failure stack.
1371 Assumes the variable `fail_stack'. Probably should only
1372 be called from within `PUSH_FAILURE_POINT'. */
1373 #define PUSH_FAILURE_INT(item) \
1374 fail_stack.stack[fail_stack.avail++].integer = (item)
1376 /* Push a fail_stack_elt_t value onto the failure stack.
1377 Assumes the variable `fail_stack'. Probably should only
1378 be called from within `PUSH_FAILURE_POINT'. */
1379 #define PUSH_FAILURE_ELT(item) \
1380 fail_stack.stack[fail_stack.avail++] = (item)
1382 /* These three POP... operations complement the three PUSH... operations.
1383 All assume that `fail_stack' is nonempty. */
1384 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1385 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1386 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1388 /* Individual items aside from the registers. */
1389 #define NUM_NONREG_ITEMS 3
1391 /* Used to examine the stack (to detect infinite loops). */
1392 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1393 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1394 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1395 #define TOP_FAILURE_HANDLE() fail_stack.frame
1398 #define ENSURE_FAIL_STACK(space) \
1399 while (REMAINING_AVAIL_SLOTS <= space) { \
1400 if (!GROW_FAIL_STACK (fail_stack)) \
1401 return -2; \
1402 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1403 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1406 /* Push register NUM onto the stack. */
1407 #define PUSH_FAILURE_REG(num) \
1408 do { \
1409 char *destination; \
1410 ENSURE_FAIL_STACK(3); \
1411 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1412 num, regstart[num], regend[num]); \
1413 PUSH_FAILURE_POINTER (regstart[num]); \
1414 PUSH_FAILURE_POINTER (regend[num]); \
1415 PUSH_FAILURE_INT (num); \
1416 } while (0)
1418 /* Pop a saved register off the stack. */
1419 #define POP_FAILURE_REG() \
1420 do { \
1421 int reg = POP_FAILURE_INT (); \
1422 regend[reg] = POP_FAILURE_POINTER (); \
1423 regstart[reg] = POP_FAILURE_POINTER (); \
1424 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1425 reg, regstart[reg], regend[reg]); \
1426 } while (0)
1428 /* Check that we are not stuck in an infinite loop. */
1429 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1430 do { \
1431 int failure = TOP_FAILURE_HANDLE(); \
1432 /* Check for infinite matching loops */ \
1433 while (failure > 0 && \
1434 (FAILURE_STR (failure) == string_place \
1435 || FAILURE_STR (failure) == NULL)) \
1437 assert (FAILURE_PAT (failure) >= bufp->buffer \
1438 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1439 if (FAILURE_PAT (failure) == pat_cur) \
1440 goto fail; \
1441 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1442 failure = NEXT_FAILURE_HANDLE(failure); \
1444 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1445 } while (0)
1447 /* Push the information about the state we will need
1448 if we ever fail back to it.
1450 Requires variables fail_stack, regstart, regend and
1451 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1452 declared.
1454 Does `return FAILURE_CODE' if runs out of memory. */
1456 #define PUSH_FAILURE_POINT(pattern, string_place) \
1457 do { \
1458 char *destination; \
1459 /* Must be int, so when we don't save any registers, the arithmetic \
1460 of 0 + -1 isn't done as unsigned. */ \
1462 DEBUG_STATEMENT (failure_id++); \
1463 DEBUG_STATEMENT (nfailure_points_pushed++); \
1464 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1465 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1466 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1468 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1470 DEBUG_PRINT1 ("\n"); \
1472 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1473 PUSH_FAILURE_INT (fail_stack.frame); \
1475 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1476 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1477 DEBUG_PRINT1 ("'\n"); \
1478 PUSH_FAILURE_POINTER (string_place); \
1480 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1481 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1482 PUSH_FAILURE_POINTER (pattern); \
1484 /* Close the frame by moving the frame pointer past it. */ \
1485 fail_stack.frame = fail_stack.avail; \
1486 } while (0)
1488 /* Estimate the size of data pushed by a typical failure stack entry.
1489 An estimate is all we need, because all we use this for
1490 is to choose a limit for how big to make the failure stack. */
1492 #define TYPICAL_FAILURE_SIZE 20
1494 /* How many items can still be added to the stack without overflowing it. */
1495 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1498 /* Pops what PUSH_FAIL_STACK pushes.
1500 We restore into the parameters, all of which should be lvalues:
1501 STR -- the saved data position.
1502 PAT -- the saved pattern position.
1503 REGSTART, REGEND -- arrays of string positions.
1505 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1506 `pend', `string1', `size1', `string2', and `size2'. */
1508 #define POP_FAILURE_POINT(str, pat) \
1509 do { \
1510 assert (!FAIL_STACK_EMPTY ()); \
1512 /* Remove failure points and point to how many regs pushed. */ \
1513 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1514 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1515 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1517 /* Pop the saved registers. */ \
1518 while (fail_stack.frame < fail_stack.avail) \
1519 POP_FAILURE_REG (); \
1521 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1522 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1523 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1525 /* If the saved string location is NULL, it came from an \
1526 on_failure_keep_string_jump opcode, and we want to throw away the \
1527 saved NULL, thus retaining our current position in the string. */ \
1528 str = (re_char *) POP_FAILURE_POINTER (); \
1529 DEBUG_PRINT2 (" Popping string %p: `", str); \
1530 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1531 DEBUG_PRINT1 ("'\n"); \
1533 fail_stack.frame = POP_FAILURE_INT (); \
1534 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1536 assert (fail_stack.avail >= 0); \
1537 assert (fail_stack.frame <= fail_stack.avail); \
1539 DEBUG_STATEMENT (nfailure_points_popped++); \
1540 } while (0) /* POP_FAILURE_POINT */
1544 /* Registers are set to a sentinel when they haven't yet matched. */
1545 #define REG_UNSET_VALUE NULL
1546 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1548 /* Subroutine declarations and macros for regex_compile. */
1550 static void store_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc, int arg));
1551 static void store_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1552 int arg1, int arg2));
1553 static void insert_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1554 int arg, unsigned char *end));
1555 static void insert_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1556 int arg1, int arg2, unsigned char *end));
1557 static boolean at_begline_loc_p _RE_ARGS((const unsigned char *pattern,
1558 const unsigned char *p,
1559 reg_syntax_t syntax));
1560 static boolean at_endline_loc_p _RE_ARGS((const unsigned char *p,
1561 const unsigned char *pend,
1562 reg_syntax_t syntax));
1563 static unsigned char *skip_one_char _RE_ARGS((unsigned char *p));
1564 static int analyse_first _RE_ARGS((unsigned char *p, unsigned char *pend,
1565 char *fastmap, const int multibyte));
1567 /* Fetch the next character in the uncompiled pattern---translating it
1568 if necessary. Also cast from a signed character in the constant
1569 string passed to us by the user to an unsigned char that we can use
1570 as an array index (in, e.g., `translate'). */
1571 #define PATFETCH(c) \
1572 do { \
1573 PATFETCH_RAW (c); \
1574 c = TRANSLATE (c); \
1575 } while (0)
1577 /* Fetch the next character in the uncompiled pattern, with no
1578 translation. */
1579 #define PATFETCH_RAW(c) \
1580 do { \
1581 int len; \
1582 if (p == pend) return REG_EEND; \
1583 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1584 p += len; \
1585 } while (0)
1588 /* If `translate' is non-null, return translate[D], else just D. We
1589 cast the subscript to translate because some data is declared as
1590 `char *', to avoid warnings when a string constant is passed. But
1591 when we use a character as a subscript we must make it unsigned. */
1592 #ifndef TRANSLATE
1593 #define TRANSLATE(d) \
1594 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1595 #endif
1598 /* Macros for outputting the compiled pattern into `buffer'. */
1600 /* If the buffer isn't allocated when it comes in, use this. */
1601 #define INIT_BUF_SIZE 32
1603 /* Make sure we have at least N more bytes of space in buffer. */
1604 #define GET_BUFFER_SPACE(n) \
1605 while (b - bufp->buffer + (n) > bufp->allocated) \
1606 EXTEND_BUFFER ()
1608 /* Make sure we have one more byte of buffer space and then add C to it. */
1609 #define BUF_PUSH(c) \
1610 do { \
1611 GET_BUFFER_SPACE (1); \
1612 *b++ = (unsigned char) (c); \
1613 } while (0)
1616 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1617 #define BUF_PUSH_2(c1, c2) \
1618 do { \
1619 GET_BUFFER_SPACE (2); \
1620 *b++ = (unsigned char) (c1); \
1621 *b++ = (unsigned char) (c2); \
1622 } while (0)
1625 /* As with BUF_PUSH_2, except for three bytes. */
1626 #define BUF_PUSH_3(c1, c2, c3) \
1627 do { \
1628 GET_BUFFER_SPACE (3); \
1629 *b++ = (unsigned char) (c1); \
1630 *b++ = (unsigned char) (c2); \
1631 *b++ = (unsigned char) (c3); \
1632 } while (0)
1635 /* Store a jump with opcode OP at LOC to location TO. We store a
1636 relative address offset by the three bytes the jump itself occupies. */
1637 #define STORE_JUMP(op, loc, to) \
1638 store_op1 (op, loc, (to) - (loc) - 3)
1640 /* Likewise, for a two-argument jump. */
1641 #define STORE_JUMP2(op, loc, to, arg) \
1642 store_op2 (op, loc, (to) - (loc) - 3, arg)
1644 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1645 #define INSERT_JUMP(op, loc, to) \
1646 insert_op1 (op, loc, (to) - (loc) - 3, b)
1648 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1649 #define INSERT_JUMP2(op, loc, to, arg) \
1650 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1653 /* This is not an arbitrary limit: the arguments which represent offsets
1654 into the pattern are two bytes long. So if 2^16 bytes turns out to
1655 be too small, many things would have to change. */
1656 #define MAX_BUF_SIZE (1L << 16)
1659 /* Extend the buffer by twice its current size via realloc and
1660 reset the pointers that pointed into the old block to point to the
1661 correct places in the new one. If extending the buffer results in it
1662 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1663 #define EXTEND_BUFFER() \
1664 do { \
1665 unsigned char *old_buffer = bufp->buffer; \
1666 if (bufp->allocated == MAX_BUF_SIZE) \
1667 return REG_ESIZE; \
1668 bufp->allocated <<= 1; \
1669 if (bufp->allocated > MAX_BUF_SIZE) \
1670 bufp->allocated = MAX_BUF_SIZE; \
1671 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1672 if (bufp->buffer == NULL) \
1673 return REG_ESPACE; \
1674 /* If the buffer moved, move all the pointers into it. */ \
1675 if (old_buffer != bufp->buffer) \
1677 b = (b - old_buffer) + bufp->buffer; \
1678 begalt = (begalt - old_buffer) + bufp->buffer; \
1679 if (fixup_alt_jump) \
1680 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1681 if (laststart) \
1682 laststart = (laststart - old_buffer) + bufp->buffer; \
1683 if (pending_exact) \
1684 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1686 } while (0)
1689 /* Since we have one byte reserved for the register number argument to
1690 {start,stop}_memory, the maximum number of groups we can report
1691 things about is what fits in that byte. */
1692 #define MAX_REGNUM 255
1694 /* But patterns can have more than `MAX_REGNUM' registers. We just
1695 ignore the excess. */
1696 typedef unsigned regnum_t;
1699 /* Macros for the compile stack. */
1701 /* Since offsets can go either forwards or backwards, this type needs to
1702 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1703 typedef int pattern_offset_t;
1705 typedef struct
1707 pattern_offset_t begalt_offset;
1708 pattern_offset_t fixup_alt_jump;
1709 pattern_offset_t laststart_offset;
1710 regnum_t regnum;
1711 } compile_stack_elt_t;
1714 typedef struct
1716 compile_stack_elt_t *stack;
1717 unsigned size;
1718 unsigned avail; /* Offset of next open position. */
1719 } compile_stack_type;
1722 #define INIT_COMPILE_STACK_SIZE 32
1724 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1725 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1727 /* The next available element. */
1728 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1731 /* Structure to manage work area for range table. */
1732 struct range_table_work_area
1734 int *table; /* actual work area. */
1735 int allocated; /* allocated size for work area in bytes. */
1736 int used; /* actually used size in words. */
1737 int bits; /* flag to record character classes */
1740 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1741 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1742 do { \
1743 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1745 (work_area).allocated += 16 * sizeof (int); \
1746 if ((work_area).table) \
1747 (work_area).table \
1748 = (int *) realloc ((work_area).table, (work_area).allocated); \
1749 else \
1750 (work_area).table \
1751 = (int *) malloc ((work_area).allocated); \
1752 if ((work_area).table == 0) \
1753 FREE_STACK_RETURN (REG_ESPACE); \
1755 } while (0)
1757 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1758 (work_area).bits |= (bit)
1760 /* These bits represent the various character classes such as [:alnum:]
1761 in a charset's range table. */
1762 #define BIT_ALNUM 0x1
1763 #define BIT_ALPHA 0x2
1764 #define BIT_WORD 0x4
1765 #define BIT_ASCII 0x8
1766 #define BIT_NONASCII 0x10
1767 #define BIT_GRAPH 0x20
1768 #define BIT_LOWER 0x40
1769 #define BIT_PRINT 0x80
1770 #define BIT_PUNCT 0x100
1771 #define BIT_SPACE 0x200
1772 #define BIT_UPPER 0x400
1773 #define BIT_UNIBYTE 0x800
1774 #define BIT_MULTIBYTE 0x1000
1776 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1777 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1778 do { \
1779 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1780 (work_area).table[(work_area).used++] = (range_start); \
1781 (work_area).table[(work_area).used++] = (range_end); \
1782 } while (0)
1784 /* Free allocated memory for WORK_AREA. */
1785 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1786 do { \
1787 if ((work_area).table) \
1788 free ((work_area).table); \
1789 } while (0)
1791 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1792 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1793 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1794 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1797 /* Set the bit for character C in a list. */
1798 #define SET_LIST_BIT(c) \
1799 (b[((unsigned char) (c)) / BYTEWIDTH] \
1800 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1803 /* Get the next unsigned number in the uncompiled pattern. */
1804 #define GET_UNSIGNED_NUMBER(num) \
1805 do { if (p != pend) \
1807 PATFETCH (c); \
1808 while (ISDIGIT (c)) \
1810 if (num < 0) \
1811 num = 0; \
1812 num = num * 10 + c - '0'; \
1813 if (p == pend) \
1814 break; \
1815 PATFETCH (c); \
1818 } while (0)
1820 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1822 #define IS_CHAR_CLASS(string) \
1823 (STREQ (string, "alpha") || STREQ (string, "upper") \
1824 || STREQ (string, "lower") || STREQ (string, "digit") \
1825 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1826 || STREQ (string, "space") || STREQ (string, "print") \
1827 || STREQ (string, "punct") || STREQ (string, "graph") \
1828 || STREQ (string, "cntrl") || STREQ (string, "blank") \
1829 || STREQ (string, "word") \
1830 || STREQ (string, "ascii") || STREQ (string, "nonascii") \
1831 || STREQ (string, "unibyte") || STREQ (string, "multibyte"))
1833 /* QUIT is only used on NTemacs. */
1834 #if !defined (WINDOWSNT) || !defined (emacs)
1835 #undef QUIT
1836 #define QUIT
1837 #endif
1839 #ifndef MATCH_MAY_ALLOCATE
1841 /* If we cannot allocate large objects within re_match_2_internal,
1842 we make the fail stack and register vectors global.
1843 The fail stack, we grow to the maximum size when a regexp
1844 is compiled.
1845 The register vectors, we adjust in size each time we
1846 compile a regexp, according to the number of registers it needs. */
1848 static fail_stack_type fail_stack;
1850 /* Size with which the following vectors are currently allocated.
1851 That is so we can make them bigger as needed,
1852 but never make them smaller. */
1853 static int regs_allocated_size;
1855 static re_char ** regstart, ** regend;
1856 static re_char **best_regstart, **best_regend;
1858 /* Make the register vectors big enough for NUM_REGS registers,
1859 but don't make them smaller. */
1861 static
1862 regex_grow_registers (num_regs)
1863 int num_regs;
1865 if (num_regs > regs_allocated_size)
1867 RETALLOC_IF (regstart, num_regs, re_char *);
1868 RETALLOC_IF (regend, num_regs, re_char *);
1869 RETALLOC_IF (best_regstart, num_regs, re_char *);
1870 RETALLOC_IF (best_regend, num_regs, re_char *);
1872 regs_allocated_size = num_regs;
1876 #endif /* not MATCH_MAY_ALLOCATE */
1878 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1879 compile_stack,
1880 regnum_t regnum));
1882 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1883 Returns one of error codes defined in `regex.h', or zero for success.
1885 Assumes the `allocated' (and perhaps `buffer') and `translate'
1886 fields are set in BUFP on entry.
1888 If it succeeds, results are put in BUFP (if it returns an error, the
1889 contents of BUFP are undefined):
1890 `buffer' is the compiled pattern;
1891 `syntax' is set to SYNTAX;
1892 `used' is set to the length of the compiled pattern;
1893 `fastmap_accurate' is zero;
1894 `re_nsub' is the number of subexpressions in PATTERN;
1895 `not_bol' and `not_eol' are zero;
1897 The `fastmap' and `newline_anchor' fields are neither
1898 examined nor set. */
1900 /* Insert the `jump' from the end of last alternative to "here".
1901 The space for the jump has already been allocated. */
1902 #define FIXUP_ALT_JUMP() \
1903 do { \
1904 if (fixup_alt_jump) \
1905 STORE_JUMP (jump, fixup_alt_jump, b); \
1906 } while (0)
1909 /* Return, freeing storage we allocated. */
1910 #define FREE_STACK_RETURN(value) \
1911 do { \
1912 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1913 free (compile_stack.stack); \
1914 return value; \
1915 } while (0)
1917 static reg_errcode_t
1918 regex_compile (pattern, size, syntax, bufp)
1919 re_char *pattern;
1920 int size;
1921 reg_syntax_t syntax;
1922 struct re_pattern_buffer *bufp;
1924 /* We fetch characters from PATTERN here. Even though PATTERN is
1925 `char *' (i.e., signed), we declare these variables as unsigned, so
1926 they can be reliably used as array indices. */
1927 register unsigned int c, c1;
1929 /* A random temporary spot in PATTERN. */
1930 re_char *p1;
1932 /* Points to the end of the buffer, where we should append. */
1933 register unsigned char *b;
1935 /* Keeps track of unclosed groups. */
1936 compile_stack_type compile_stack;
1938 /* Points to the current (ending) position in the pattern. */
1939 #ifdef AIX
1940 /* `const' makes AIX compiler fail. */
1941 unsigned char *p = pattern;
1942 #else
1943 re_char *p = pattern;
1944 #endif
1945 re_char *pend = pattern + size;
1947 /* How to translate the characters in the pattern. */
1948 RE_TRANSLATE_TYPE translate = bufp->translate;
1950 /* Address of the count-byte of the most recently inserted `exactn'
1951 command. This makes it possible to tell if a new exact-match
1952 character can be added to that command or if the character requires
1953 a new `exactn' command. */
1954 unsigned char *pending_exact = 0;
1956 /* Address of start of the most recently finished expression.
1957 This tells, e.g., postfix * where to find the start of its
1958 operand. Reset at the beginning of groups and alternatives. */
1959 unsigned char *laststart = 0;
1961 /* Address of beginning of regexp, or inside of last group. */
1962 unsigned char *begalt;
1964 /* Place in the uncompiled pattern (i.e., the {) to
1965 which to go back if the interval is invalid. */
1966 re_char *beg_interval;
1968 /* Address of the place where a forward jump should go to the end of
1969 the containing expression. Each alternative of an `or' -- except the
1970 last -- ends with a forward jump of this sort. */
1971 unsigned char *fixup_alt_jump = 0;
1973 /* Counts open-groups as they are encountered. Remembered for the
1974 matching close-group on the compile stack, so the same register
1975 number is put in the stop_memory as the start_memory. */
1976 regnum_t regnum = 0;
1978 /* Work area for range table of charset. */
1979 struct range_table_work_area range_table_work;
1981 /* If the object matched can contain multibyte characters. */
1982 const boolean multibyte = RE_MULTIBYTE_P (bufp);
1984 #ifdef DEBUG
1985 debug++;
1986 DEBUG_PRINT1 ("\nCompiling pattern: ");
1987 if (debug > 0)
1989 unsigned debug_count;
1991 for (debug_count = 0; debug_count < size; debug_count++)
1992 putchar (pattern[debug_count]);
1993 putchar ('\n');
1995 #endif /* DEBUG */
1997 /* Initialize the compile stack. */
1998 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1999 if (compile_stack.stack == NULL)
2000 return REG_ESPACE;
2002 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2003 compile_stack.avail = 0;
2005 range_table_work.table = 0;
2006 range_table_work.allocated = 0;
2008 /* Initialize the pattern buffer. */
2009 bufp->syntax = syntax;
2010 bufp->fastmap_accurate = 0;
2011 bufp->not_bol = bufp->not_eol = 0;
2013 /* Set `used' to zero, so that if we return an error, the pattern
2014 printer (for debugging) will think there's no pattern. We reset it
2015 at the end. */
2016 bufp->used = 0;
2018 /* Always count groups, whether or not bufp->no_sub is set. */
2019 bufp->re_nsub = 0;
2021 #if !defined (emacs) && !defined (SYNTAX_TABLE)
2022 /* Initialize the syntax table. */
2023 init_syntax_once ();
2024 #endif
2026 if (bufp->allocated == 0)
2028 if (bufp->buffer)
2029 { /* If zero allocated, but buffer is non-null, try to realloc
2030 enough space. This loses if buffer's address is bogus, but
2031 that is the user's responsibility. */
2032 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2034 else
2035 { /* Caller did not allocate a buffer. Do it for them. */
2036 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2038 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2040 bufp->allocated = INIT_BUF_SIZE;
2043 begalt = b = bufp->buffer;
2045 /* Loop through the uncompiled pattern until we're at the end. */
2046 while (p != pend)
2048 PATFETCH (c);
2050 switch (c)
2052 case '^':
2054 if ( /* If at start of pattern, it's an operator. */
2055 p == pattern + 1
2056 /* If context independent, it's an operator. */
2057 || syntax & RE_CONTEXT_INDEP_ANCHORS
2058 /* Otherwise, depends on what's come before. */
2059 || at_begline_loc_p (pattern, p, syntax))
2060 BUF_PUSH (begline);
2061 else
2062 goto normal_char;
2064 break;
2067 case '$':
2069 if ( /* If at end of pattern, it's an operator. */
2070 p == pend
2071 /* If context independent, it's an operator. */
2072 || syntax & RE_CONTEXT_INDEP_ANCHORS
2073 /* Otherwise, depends on what's next. */
2074 || at_endline_loc_p (p, pend, syntax))
2075 BUF_PUSH (endline);
2076 else
2077 goto normal_char;
2079 break;
2082 case '+':
2083 case '?':
2084 if ((syntax & RE_BK_PLUS_QM)
2085 || (syntax & RE_LIMITED_OPS))
2086 goto normal_char;
2087 handle_plus:
2088 case '*':
2089 /* If there is no previous pattern... */
2090 if (!laststart)
2092 if (syntax & RE_CONTEXT_INVALID_OPS)
2093 FREE_STACK_RETURN (REG_BADRPT);
2094 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2095 goto normal_char;
2099 /* 1 means zero (many) matches is allowed. */
2100 boolean zero_times_ok = 0, many_times_ok = 0;
2101 boolean greedy = 1;
2103 /* If there is a sequence of repetition chars, collapse it
2104 down to just one (the right one). We can't combine
2105 interval operators with these because of, e.g., `a{2}*',
2106 which should only match an even number of `a's. */
2108 for (;;)
2110 if (!(syntax & RE_ALL_GREEDY)
2111 && c == '?' && (zero_times_ok || many_times_ok))
2112 greedy = 0;
2113 else
2115 zero_times_ok |= c != '+';
2116 many_times_ok |= c != '?';
2119 if (p == pend)
2120 break;
2121 else if (*p == '*'
2122 || (!(syntax & RE_BK_PLUS_QM)
2123 && (*p == '+' || *p == '?')))
2125 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2127 if (p+1 == pend)
2128 FREE_STACK_RETURN (REG_EESCAPE);
2129 if (p[1] == '+' || p[1] == '?')
2130 PATFETCH (c); /* Gobble up the backslash. */
2131 else
2132 break;
2134 else
2135 break;
2136 /* If we get here, we found another repeat character. */
2137 PATFETCH (c);
2140 /* Star, etc. applied to an empty pattern is equivalent
2141 to an empty pattern. */
2142 if (!laststart || laststart == b)
2143 break;
2145 /* Now we know whether or not zero matches is allowed
2146 and also whether or not two or more matches is allowed. */
2147 if (greedy)
2149 if (many_times_ok)
2151 boolean simple = skip_one_char (laststart) == b;
2152 unsigned int startoffset = 0;
2153 re_opcode_t ofj =
2154 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2155 on_failure_jump : on_failure_jump_loop;
2156 assert (skip_one_char (laststart) <= b);
2158 if (!zero_times_ok && simple)
2159 { /* Since simple * loops can be made faster by using
2160 on_failure_keep_string_jump, we turn simple P+
2161 into PP* if P is simple. */
2162 unsigned char *p1, *p2;
2163 startoffset = b - laststart;
2164 GET_BUFFER_SPACE (startoffset);
2165 p1 = b; p2 = laststart;
2166 while (p2 < p1)
2167 *b++ = *p2++;
2168 zero_times_ok = 1;
2171 GET_BUFFER_SPACE (6);
2172 if (!zero_times_ok)
2173 /* A + loop. */
2174 STORE_JUMP (ofj, b, b + 6);
2175 else
2176 /* Simple * loops can use on_failure_keep_string_jump
2177 depending on what follows. But since we don't know
2178 that yet, we leave the decision up to
2179 on_failure_jump_smart. */
2180 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2181 laststart + startoffset, b + 6);
2182 b += 3;
2183 STORE_JUMP (jump, b, laststart + startoffset);
2184 b += 3;
2186 else
2188 /* A simple ? pattern. */
2189 assert (zero_times_ok);
2190 GET_BUFFER_SPACE (3);
2191 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2192 b += 3;
2195 else /* not greedy */
2196 { /* I wish the greedy and non-greedy cases could be merged. */
2198 GET_BUFFER_SPACE (7); /* We might use less. */
2199 if (many_times_ok)
2201 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2203 /* The non-greedy multiple match looks like a repeat..until:
2204 we only need a conditional jump at the end of the loop */
2205 if (emptyp) BUF_PUSH (no_op);
2206 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2207 : on_failure_jump, b, laststart);
2208 b += 3;
2209 if (zero_times_ok)
2211 /* The repeat...until naturally matches one or more.
2212 To also match zero times, we need to first jump to
2213 the end of the loop (its conditional jump). */
2214 INSERT_JUMP (jump, laststart, b);
2215 b += 3;
2218 else
2220 /* non-greedy a?? */
2221 INSERT_JUMP (jump, laststart, b + 3);
2222 b += 3;
2223 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2224 b += 3;
2228 pending_exact = 0;
2229 break;
2232 case '.':
2233 laststart = b;
2234 BUF_PUSH (anychar);
2235 break;
2238 case '[':
2240 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2242 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2244 /* Ensure that we have enough space to push a charset: the
2245 opcode, the length count, and the bitset; 34 bytes in all. */
2246 GET_BUFFER_SPACE (34);
2248 laststart = b;
2250 /* We test `*p == '^' twice, instead of using an if
2251 statement, so we only need one BUF_PUSH. */
2252 BUF_PUSH (*p == '^' ? charset_not : charset);
2253 if (*p == '^')
2254 p++;
2256 /* Remember the first position in the bracket expression. */
2257 p1 = p;
2259 /* Push the number of bytes in the bitmap. */
2260 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2262 /* Clear the whole map. */
2263 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2265 /* charset_not matches newline according to a syntax bit. */
2266 if ((re_opcode_t) b[-2] == charset_not
2267 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2268 SET_LIST_BIT ('\n');
2270 /* Read in characters and ranges, setting map bits. */
2271 for (;;)
2273 boolean escaped_char = false;
2274 const unsigned char *p2 = p;
2276 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2278 PATFETCH (c);
2280 /* \ might escape characters inside [...] and [^...]. */
2281 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2283 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2285 PATFETCH (c);
2286 escaped_char = true;
2288 else
2290 /* Could be the end of the bracket expression. If it's
2291 not (i.e., when the bracket expression is `[]' so
2292 far), the ']' character bit gets set way below. */
2293 if (c == ']' && p2 != p1)
2294 break;
2297 /* What should we do for the character which is
2298 greater than 0x7F, but not BASE_LEADING_CODE_P?
2299 XXX */
2301 /* See if we're at the beginning of a possible character
2302 class. */
2304 if (!escaped_char &&
2305 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2307 /* Leave room for the null. */
2308 char str[CHAR_CLASS_MAX_LENGTH + 1];
2309 const unsigned char *class_beg;
2311 PATFETCH (c);
2312 c1 = 0;
2313 class_beg = p;
2315 /* If pattern is `[[:'. */
2316 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2318 for (;;)
2320 PATFETCH (c);
2321 if (c == ':' || c == ']' || p == pend
2322 || c1 == CHAR_CLASS_MAX_LENGTH)
2323 break;
2324 str[c1++] = c;
2326 str[c1] = '\0';
2328 /* If isn't a word bracketed by `[:' and `:]':
2329 undo the ending character, the letters, and
2330 leave the leading `:' and `[' (but set bits for
2331 them). */
2332 if (c == ':' && *p == ']')
2334 int ch;
2335 boolean is_alnum = STREQ (str, "alnum");
2336 boolean is_alpha = STREQ (str, "alpha");
2337 boolean is_ascii = STREQ (str, "ascii");
2338 boolean is_blank = STREQ (str, "blank");
2339 boolean is_cntrl = STREQ (str, "cntrl");
2340 boolean is_digit = STREQ (str, "digit");
2341 boolean is_graph = STREQ (str, "graph");
2342 boolean is_lower = STREQ (str, "lower");
2343 boolean is_multibyte = STREQ (str, "multibyte");
2344 boolean is_nonascii = STREQ (str, "nonascii");
2345 boolean is_print = STREQ (str, "print");
2346 boolean is_punct = STREQ (str, "punct");
2347 boolean is_space = STREQ (str, "space");
2348 boolean is_unibyte = STREQ (str, "unibyte");
2349 boolean is_upper = STREQ (str, "upper");
2350 boolean is_word = STREQ (str, "word");
2351 boolean is_xdigit = STREQ (str, "xdigit");
2353 if (!IS_CHAR_CLASS (str))
2354 FREE_STACK_RETURN (REG_ECTYPE);
2356 /* Throw away the ] at the end of the character
2357 class. */
2358 PATFETCH (c);
2360 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2362 /* Most character classes in a multibyte match
2363 just set a flag. Exceptions are is_blank,
2364 is_digit, is_cntrl, and is_xdigit, since
2365 they can only match ASCII characters. We
2366 don't need to handle them for multibyte. */
2368 if (multibyte)
2370 int bit = 0;
2372 if (is_alnum) bit = BIT_ALNUM;
2373 if (is_alpha) bit = BIT_ALPHA;
2374 if (is_ascii) bit = BIT_ASCII;
2375 if (is_graph) bit = BIT_GRAPH;
2376 if (is_lower) bit = BIT_LOWER;
2377 if (is_multibyte) bit = BIT_MULTIBYTE;
2378 if (is_nonascii) bit = BIT_NONASCII;
2379 if (is_print) bit = BIT_PRINT;
2380 if (is_punct) bit = BIT_PUNCT;
2381 if (is_space) bit = BIT_SPACE;
2382 if (is_unibyte) bit = BIT_UNIBYTE;
2383 if (is_upper) bit = BIT_UPPER;
2384 if (is_word) bit = BIT_WORD;
2385 if (bit)
2386 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2387 bit);
2390 /* Handle character classes for ASCII characters. */
2391 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2393 int translated = TRANSLATE (ch);
2394 /* This was split into 3 if's to
2395 avoid an arbitrary limit in some compiler. */
2396 if ( (is_alnum && ISALNUM (ch))
2397 || (is_alpha && ISALPHA (ch))
2398 || (is_blank && ISBLANK (ch))
2399 || (is_cntrl && ISCNTRL (ch)))
2400 SET_LIST_BIT (translated);
2401 if ( (is_digit && ISDIGIT (ch))
2402 || (is_graph && ISGRAPH (ch))
2403 || (is_lower && ISLOWER (ch))
2404 || (is_print && ISPRINT (ch)))
2405 SET_LIST_BIT (translated);
2406 if ( (is_punct && ISPUNCT (ch))
2407 || (is_space && ISSPACE (ch))
2408 || (is_upper && ISUPPER (ch))
2409 || (is_xdigit && ISXDIGIT (ch)))
2410 SET_LIST_BIT (translated);
2411 if ( (is_ascii && IS_REAL_ASCII (ch))
2412 || (is_nonascii && !IS_REAL_ASCII (ch))
2413 || (is_unibyte && ISUNIBYTE (ch))
2414 || (is_multibyte && !ISUNIBYTE (ch)))
2415 SET_LIST_BIT (translated);
2417 if ( (is_word && ISWORD (ch)))
2418 SET_LIST_BIT (translated);
2421 /* Repeat the loop. */
2422 continue;
2424 else
2426 /* Go back to right after the "[:". */
2427 p = class_beg;
2428 SET_LIST_BIT ('[');
2430 /* Because the `:' may starts the range, we
2431 can't simply set bit and repeat the loop.
2432 Instead, just set it to C and handle below. */
2433 c = ':';
2437 if (p < pend && p[0] == '-' && p[1] != ']')
2440 /* Discard the `-'. */
2441 PATFETCH (c1);
2443 /* Fetch the character which ends the range. */
2444 PATFETCH (c1);
2446 if (SINGLE_BYTE_CHAR_P (c)
2447 && ! SINGLE_BYTE_CHAR_P (c1))
2449 /* Handle a range such as \177-\377 in multibyte mode.
2450 Split that into two ranges,,
2451 the low one ending at 0237, and the high one
2452 starting at ...040. */
2453 /* Unless I'm missing something,
2454 this line is useless. -sm
2455 int c1_base = (c1 & ~0177) | 040; */
2456 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2457 c1 = 0237;
2459 else if (!SAME_CHARSET_P (c, c1))
2460 FREE_STACK_RETURN (REG_ERANGE);
2462 else
2463 /* Range from C to C. */
2464 c1 = c;
2466 /* Set the range ... */
2467 if (SINGLE_BYTE_CHAR_P (c))
2468 /* ... into bitmap. */
2470 unsigned this_char;
2471 int range_start = c, range_end = c1;
2473 /* If the start is after the end, the range is empty. */
2474 if (range_start > range_end)
2476 if (syntax & RE_NO_EMPTY_RANGES)
2477 FREE_STACK_RETURN (REG_ERANGE);
2478 /* Else, repeat the loop. */
2480 else
2482 for (this_char = range_start; this_char <= range_end;
2483 this_char++)
2484 SET_LIST_BIT (TRANSLATE (this_char));
2487 else
2488 /* ... into range table. */
2489 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2492 /* Discard any (non)matching list bytes that are all 0 at the
2493 end of the map. Decrease the map-length byte too. */
2494 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2495 b[-1]--;
2496 b += b[-1];
2498 /* Build real range table from work area. */
2499 if (RANGE_TABLE_WORK_USED (range_table_work)
2500 || RANGE_TABLE_WORK_BITS (range_table_work))
2502 int i;
2503 int used = RANGE_TABLE_WORK_USED (range_table_work);
2505 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2506 bytes for flags, two for COUNT, and three bytes for
2507 each character. */
2508 GET_BUFFER_SPACE (4 + used * 3);
2510 /* Indicate the existence of range table. */
2511 laststart[1] |= 0x80;
2513 /* Store the character class flag bits into the range table.
2514 If not in emacs, these flag bits are always 0. */
2515 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2516 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2518 STORE_NUMBER_AND_INCR (b, used / 2);
2519 for (i = 0; i < used; i++)
2520 STORE_CHARACTER_AND_INCR
2521 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2524 break;
2527 case '(':
2528 if (syntax & RE_NO_BK_PARENS)
2529 goto handle_open;
2530 else
2531 goto normal_char;
2534 case ')':
2535 if (syntax & RE_NO_BK_PARENS)
2536 goto handle_close;
2537 else
2538 goto normal_char;
2541 case '\n':
2542 if (syntax & RE_NEWLINE_ALT)
2543 goto handle_alt;
2544 else
2545 goto normal_char;
2548 case '|':
2549 if (syntax & RE_NO_BK_VBAR)
2550 goto handle_alt;
2551 else
2552 goto normal_char;
2555 case '{':
2556 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2557 goto handle_interval;
2558 else
2559 goto normal_char;
2562 case '\\':
2563 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2565 /* Do not translate the character after the \, so that we can
2566 distinguish, e.g., \B from \b, even if we normally would
2567 translate, e.g., B to b. */
2568 PATFETCH_RAW (c);
2570 switch (c)
2572 case '(':
2573 if (syntax & RE_NO_BK_PARENS)
2574 goto normal_backslash;
2576 handle_open:
2578 int shy = 0;
2579 if (p+1 < pend)
2581 /* Look for a special (?...) construct */
2582 if ((syntax & RE_SHY_GROUPS) && *p == '?')
2584 PATFETCH (c); /* Gobble up the '?'. */
2585 PATFETCH (c);
2586 switch (c)
2588 case ':': shy = 1; break;
2589 default:
2590 /* Only (?:...) is supported right now. */
2591 FREE_STACK_RETURN (REG_BADPAT);
2596 if (!shy)
2598 bufp->re_nsub++;
2599 regnum++;
2602 if (COMPILE_STACK_FULL)
2604 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2605 compile_stack_elt_t);
2606 if (compile_stack.stack == NULL) return REG_ESPACE;
2608 compile_stack.size <<= 1;
2611 /* These are the values to restore when we hit end of this
2612 group. They are all relative offsets, so that if the
2613 whole pattern moves because of realloc, they will still
2614 be valid. */
2615 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2616 COMPILE_STACK_TOP.fixup_alt_jump
2617 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2618 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2619 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2621 /* Do not push a
2622 start_memory for groups beyond the last one we can
2623 represent in the compiled pattern. */
2624 if (regnum <= MAX_REGNUM && !shy)
2625 BUF_PUSH_2 (start_memory, regnum);
2627 compile_stack.avail++;
2629 fixup_alt_jump = 0;
2630 laststart = 0;
2631 begalt = b;
2632 /* If we've reached MAX_REGNUM groups, then this open
2633 won't actually generate any code, so we'll have to
2634 clear pending_exact explicitly. */
2635 pending_exact = 0;
2636 break;
2639 case ')':
2640 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2642 if (COMPILE_STACK_EMPTY)
2644 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2645 goto normal_backslash;
2646 else
2647 FREE_STACK_RETURN (REG_ERPAREN);
2650 handle_close:
2651 FIXUP_ALT_JUMP ();
2653 /* See similar code for backslashed left paren above. */
2654 if (COMPILE_STACK_EMPTY)
2656 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2657 goto normal_char;
2658 else
2659 FREE_STACK_RETURN (REG_ERPAREN);
2662 /* Since we just checked for an empty stack above, this
2663 ``can't happen''. */
2664 assert (compile_stack.avail != 0);
2666 /* We don't just want to restore into `regnum', because
2667 later groups should continue to be numbered higher,
2668 as in `(ab)c(de)' -- the second group is #2. */
2669 regnum_t this_group_regnum;
2671 compile_stack.avail--;
2672 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2673 fixup_alt_jump
2674 = COMPILE_STACK_TOP.fixup_alt_jump
2675 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2676 : 0;
2677 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2678 this_group_regnum = COMPILE_STACK_TOP.regnum;
2679 /* If we've reached MAX_REGNUM groups, then this open
2680 won't actually generate any code, so we'll have to
2681 clear pending_exact explicitly. */
2682 pending_exact = 0;
2684 /* We're at the end of the group, so now we know how many
2685 groups were inside this one. */
2686 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2687 BUF_PUSH_2 (stop_memory, this_group_regnum);
2689 break;
2692 case '|': /* `\|'. */
2693 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2694 goto normal_backslash;
2695 handle_alt:
2696 if (syntax & RE_LIMITED_OPS)
2697 goto normal_char;
2699 /* Insert before the previous alternative a jump which
2700 jumps to this alternative if the former fails. */
2701 GET_BUFFER_SPACE (3);
2702 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2703 pending_exact = 0;
2704 b += 3;
2706 /* The alternative before this one has a jump after it
2707 which gets executed if it gets matched. Adjust that
2708 jump so it will jump to this alternative's analogous
2709 jump (put in below, which in turn will jump to the next
2710 (if any) alternative's such jump, etc.). The last such
2711 jump jumps to the correct final destination. A picture:
2712 _____ _____
2713 | | | |
2714 | v | v
2715 a | b | c
2717 If we are at `b', then fixup_alt_jump right now points to a
2718 three-byte space after `a'. We'll put in the jump, set
2719 fixup_alt_jump to right after `b', and leave behind three
2720 bytes which we'll fill in when we get to after `c'. */
2722 FIXUP_ALT_JUMP ();
2724 /* Mark and leave space for a jump after this alternative,
2725 to be filled in later either by next alternative or
2726 when know we're at the end of a series of alternatives. */
2727 fixup_alt_jump = b;
2728 GET_BUFFER_SPACE (3);
2729 b += 3;
2731 laststart = 0;
2732 begalt = b;
2733 break;
2736 case '{':
2737 /* If \{ is a literal. */
2738 if (!(syntax & RE_INTERVALS)
2739 /* If we're at `\{' and it's not the open-interval
2740 operator. */
2741 || (syntax & RE_NO_BK_BRACES)
2742 /* What is that? -sm */
2743 /* || (p - 2 == pattern && p == pend) */)
2744 goto normal_backslash;
2746 handle_interval:
2748 /* If got here, then the syntax allows intervals. */
2750 /* At least (most) this many matches must be made. */
2751 int lower_bound = 0, upper_bound = -1;
2753 beg_interval = p;
2755 if (p == pend)
2757 if (syntax & RE_NO_BK_BRACES)
2758 goto unfetch_interval;
2759 else
2760 FREE_STACK_RETURN (REG_EBRACE);
2763 GET_UNSIGNED_NUMBER (lower_bound);
2765 if (c == ',')
2766 GET_UNSIGNED_NUMBER (upper_bound);
2767 else
2768 /* Interval such as `{1}' => match exactly once. */
2769 upper_bound = lower_bound;
2771 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2772 || (upper_bound >= 0 && lower_bound > upper_bound))
2774 if (syntax & RE_NO_BK_BRACES)
2775 goto unfetch_interval;
2776 else
2777 FREE_STACK_RETURN (REG_BADBR);
2780 if (!(syntax & RE_NO_BK_BRACES))
2782 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2784 PATFETCH (c);
2787 if (c != '}')
2789 if (syntax & RE_NO_BK_BRACES)
2790 goto unfetch_interval;
2791 else
2792 FREE_STACK_RETURN (REG_BADBR);
2795 /* We just parsed a valid interval. */
2797 /* If it's invalid to have no preceding re. */
2798 if (!laststart)
2800 if (syntax & RE_CONTEXT_INVALID_OPS)
2801 FREE_STACK_RETURN (REG_BADRPT);
2802 else if (syntax & RE_CONTEXT_INDEP_OPS)
2803 laststart = b;
2804 else
2805 goto unfetch_interval;
2808 if (upper_bound == 0)
2809 /* If the upper bound is zero, just drop the sub pattern
2810 altogether. */
2811 b = laststart;
2812 else if (lower_bound == 1 && upper_bound == 1)
2813 /* Just match it once: nothing to do here. */
2816 /* Otherwise, we have a nontrivial interval. When
2817 we're all done, the pattern will look like:
2818 set_number_at <jump count> <upper bound>
2819 set_number_at <succeed_n count> <lower bound>
2820 succeed_n <after jump addr> <succeed_n count>
2821 <body of loop>
2822 jump_n <succeed_n addr> <jump count>
2823 (The upper bound and `jump_n' are omitted if
2824 `upper_bound' is 1, though.) */
2825 else
2826 { /* If the upper bound is > 1, we need to insert
2827 more at the end of the loop. */
2828 unsigned int nbytes = (upper_bound < 0 ? 3
2829 : upper_bound > 1 ? 5 : 0);
2830 unsigned int startoffset = 0;
2832 GET_BUFFER_SPACE (20); /* We might use less. */
2834 if (lower_bound == 0)
2836 /* A succeed_n that starts with 0 is really a
2837 a simple on_failure_jump_loop. */
2838 INSERT_JUMP (on_failure_jump_loop, laststart,
2839 b + 3 + nbytes);
2840 b += 3;
2842 else
2844 /* Initialize lower bound of the `succeed_n', even
2845 though it will be set during matching by its
2846 attendant `set_number_at' (inserted next),
2847 because `re_compile_fastmap' needs to know.
2848 Jump to the `jump_n' we might insert below. */
2849 INSERT_JUMP2 (succeed_n, laststart,
2850 b + 5 + nbytes,
2851 lower_bound);
2852 b += 5;
2854 /* Code to initialize the lower bound. Insert
2855 before the `succeed_n'. The `5' is the last two
2856 bytes of this `set_number_at', plus 3 bytes of
2857 the following `succeed_n'. */
2858 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2859 b += 5;
2860 startoffset += 5;
2863 if (upper_bound < 0)
2865 /* A negative upper bound stands for infinity,
2866 in which case it degenerates to a plain jump. */
2867 STORE_JUMP (jump, b, laststart + startoffset);
2868 b += 3;
2870 else if (upper_bound > 1)
2871 { /* More than one repetition is allowed, so
2872 append a backward jump to the `succeed_n'
2873 that starts this interval.
2875 When we've reached this during matching,
2876 we'll have matched the interval once, so
2877 jump back only `upper_bound - 1' times. */
2878 STORE_JUMP2 (jump_n, b, laststart + startoffset,
2879 upper_bound - 1);
2880 b += 5;
2882 /* The location we want to set is the second
2883 parameter of the `jump_n'; that is `b-2' as
2884 an absolute address. `laststart' will be
2885 the `set_number_at' we're about to insert;
2886 `laststart+3' the number to set, the source
2887 for the relative address. But we are
2888 inserting into the middle of the pattern --
2889 so everything is getting moved up by 5.
2890 Conclusion: (b - 2) - (laststart + 3) + 5,
2891 i.e., b - laststart.
2893 We insert this at the beginning of the loop
2894 so that if we fail during matching, we'll
2895 reinitialize the bounds. */
2896 insert_op2 (set_number_at, laststart, b - laststart,
2897 upper_bound - 1, b);
2898 b += 5;
2901 pending_exact = 0;
2902 beg_interval = NULL;
2904 break;
2906 unfetch_interval:
2907 /* If an invalid interval, match the characters as literals. */
2908 assert (beg_interval);
2909 p = beg_interval;
2910 beg_interval = NULL;
2912 /* normal_char and normal_backslash need `c'. */
2913 c = '{';
2915 if (!(syntax & RE_NO_BK_BRACES))
2917 assert (p > pattern && p[-1] == '\\');
2918 goto normal_backslash;
2920 else
2921 goto normal_char;
2923 #ifdef emacs
2924 /* There is no way to specify the before_dot and after_dot
2925 operators. rms says this is ok. --karl */
2926 case '=':
2927 BUF_PUSH (at_dot);
2928 break;
2930 case 's':
2931 laststart = b;
2932 PATFETCH (c);
2933 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2934 break;
2936 case 'S':
2937 laststart = b;
2938 PATFETCH (c);
2939 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2940 break;
2942 case 'c':
2943 laststart = b;
2944 PATFETCH_RAW (c);
2945 BUF_PUSH_2 (categoryspec, c);
2946 break;
2948 case 'C':
2949 laststart = b;
2950 PATFETCH_RAW (c);
2951 BUF_PUSH_2 (notcategoryspec, c);
2952 break;
2953 #endif /* emacs */
2956 case 'w':
2957 laststart = b;
2958 BUF_PUSH_2 (syntaxspec, Sword);
2959 break;
2962 case 'W':
2963 laststart = b;
2964 BUF_PUSH_2 (notsyntaxspec, Sword);
2965 break;
2968 case '<':
2969 BUF_PUSH (wordbeg);
2970 break;
2972 case '>':
2973 BUF_PUSH (wordend);
2974 break;
2976 case 'b':
2977 BUF_PUSH (wordbound);
2978 break;
2980 case 'B':
2981 BUF_PUSH (notwordbound);
2982 break;
2984 case '`':
2985 BUF_PUSH (begbuf);
2986 break;
2988 case '\'':
2989 BUF_PUSH (endbuf);
2990 break;
2992 case '1': case '2': case '3': case '4': case '5':
2993 case '6': case '7': case '8': case '9':
2994 if (syntax & RE_NO_BK_REFS)
2995 goto normal_char;
2997 c1 = c - '0';
2999 if (c1 > regnum)
3000 FREE_STACK_RETURN (REG_ESUBREG);
3002 /* Can't back reference to a subexpression if inside of it. */
3003 if (group_in_compile_stack (compile_stack, c1))
3004 goto normal_char;
3006 laststart = b;
3007 BUF_PUSH_2 (duplicate, c1);
3008 break;
3011 case '+':
3012 case '?':
3013 if (syntax & RE_BK_PLUS_QM)
3014 goto handle_plus;
3015 else
3016 goto normal_backslash;
3018 default:
3019 normal_backslash:
3020 /* You might think it would be useful for \ to mean
3021 not to translate; but if we don't translate it
3022 it will never match anything. */
3023 c = TRANSLATE (c);
3024 goto normal_char;
3026 break;
3029 default:
3030 /* Expects the character in `c'. */
3031 normal_char:
3032 /* If no exactn currently being built. */
3033 if (!pending_exact
3035 /* If last exactn not at current position. */
3036 || pending_exact + *pending_exact + 1 != b
3038 /* We have only one byte following the exactn for the count. */
3039 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3041 /* If followed by a repetition operator. */
3042 || (p != pend && (*p == '*' || *p == '^'))
3043 || ((syntax & RE_BK_PLUS_QM)
3044 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3045 : p != pend && (*p == '+' || *p == '?'))
3046 || ((syntax & RE_INTERVALS)
3047 && ((syntax & RE_NO_BK_BRACES)
3048 ? p != pend && *p == '{'
3049 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3051 /* Start building a new exactn. */
3053 laststart = b;
3055 BUF_PUSH_2 (exactn, 0);
3056 pending_exact = b - 1;
3059 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3061 int len = CHAR_STRING (c, b);
3062 b += len;
3063 (*pending_exact) += len;
3066 break;
3067 } /* switch (c) */
3068 } /* while p != pend */
3071 /* Through the pattern now. */
3073 FIXUP_ALT_JUMP ();
3075 if (!COMPILE_STACK_EMPTY)
3076 FREE_STACK_RETURN (REG_EPAREN);
3078 /* If we don't want backtracking, force success
3079 the first time we reach the end of the compiled pattern. */
3080 if (syntax & RE_NO_POSIX_BACKTRACKING)
3081 BUF_PUSH (succeed);
3083 free (compile_stack.stack);
3085 /* We have succeeded; set the length of the buffer. */
3086 bufp->used = b - bufp->buffer;
3088 #ifdef DEBUG
3089 if (debug > 0)
3091 re_compile_fastmap (bufp);
3092 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3093 print_compiled_pattern (bufp);
3095 debug--;
3096 #endif /* DEBUG */
3098 #ifndef MATCH_MAY_ALLOCATE
3099 /* Initialize the failure stack to the largest possible stack. This
3100 isn't necessary unless we're trying to avoid calling alloca in
3101 the search and match routines. */
3103 int num_regs = bufp->re_nsub + 1;
3105 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3107 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3109 if (! fail_stack.stack)
3110 fail_stack.stack
3111 = (fail_stack_elt_t *) malloc (fail_stack.size
3112 * sizeof (fail_stack_elt_t));
3113 else
3114 fail_stack.stack
3115 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3116 (fail_stack.size
3117 * sizeof (fail_stack_elt_t)));
3120 regex_grow_registers (num_regs);
3122 #endif /* not MATCH_MAY_ALLOCATE */
3124 return REG_NOERROR;
3125 } /* regex_compile */
3127 /* Subroutines for `regex_compile'. */
3129 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3131 static void
3132 store_op1 (op, loc, arg)
3133 re_opcode_t op;
3134 unsigned char *loc;
3135 int arg;
3137 *loc = (unsigned char) op;
3138 STORE_NUMBER (loc + 1, arg);
3142 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3144 static void
3145 store_op2 (op, loc, arg1, arg2)
3146 re_opcode_t op;
3147 unsigned char *loc;
3148 int arg1, arg2;
3150 *loc = (unsigned char) op;
3151 STORE_NUMBER (loc + 1, arg1);
3152 STORE_NUMBER (loc + 3, arg2);
3156 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3157 for OP followed by two-byte integer parameter ARG. */
3159 static void
3160 insert_op1 (op, loc, arg, end)
3161 re_opcode_t op;
3162 unsigned char *loc;
3163 int arg;
3164 unsigned char *end;
3166 register unsigned char *pfrom = end;
3167 register unsigned char *pto = end + 3;
3169 while (pfrom != loc)
3170 *--pto = *--pfrom;
3172 store_op1 (op, loc, arg);
3176 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3178 static void
3179 insert_op2 (op, loc, arg1, arg2, end)
3180 re_opcode_t op;
3181 unsigned char *loc;
3182 int arg1, arg2;
3183 unsigned char *end;
3185 register unsigned char *pfrom = end;
3186 register unsigned char *pto = end + 5;
3188 while (pfrom != loc)
3189 *--pto = *--pfrom;
3191 store_op2 (op, loc, arg1, arg2);
3195 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3196 after an alternative or a begin-subexpression. We assume there is at
3197 least one character before the ^. */
3199 static boolean
3200 at_begline_loc_p (pattern, p, syntax)
3201 const unsigned char *pattern, *p;
3202 reg_syntax_t syntax;
3204 const unsigned char *prev = p - 2;
3205 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3207 return
3208 /* After a subexpression? */
3209 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3210 /* After an alternative? */
3211 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3215 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3216 at least one character after the $, i.e., `P < PEND'. */
3218 static boolean
3219 at_endline_loc_p (p, pend, syntax)
3220 const unsigned char *p, *pend;
3221 reg_syntax_t syntax;
3223 const unsigned char *next = p;
3224 boolean next_backslash = *next == '\\';
3225 const unsigned char *next_next = p + 1 < pend ? p + 1 : 0;
3227 return
3228 /* Before a subexpression? */
3229 (syntax & RE_NO_BK_PARENS ? *next == ')'
3230 : next_backslash && next_next && *next_next == ')')
3231 /* Before an alternative? */
3232 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3233 : next_backslash && next_next && *next_next == '|');
3237 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3238 false if it's not. */
3240 static boolean
3241 group_in_compile_stack (compile_stack, regnum)
3242 compile_stack_type compile_stack;
3243 regnum_t regnum;
3245 int this_element;
3247 for (this_element = compile_stack.avail - 1;
3248 this_element >= 0;
3249 this_element--)
3250 if (compile_stack.stack[this_element].regnum == regnum)
3251 return true;
3253 return false;
3256 /* analyse_first.
3257 If fastmap is non-NULL, go through the pattern and fill fastmap
3258 with all the possible leading chars. If fastmap is NULL, don't
3259 bother filling it up (obviously) and only return whether the
3260 pattern could potentially match the empty string.
3262 Return 1 if p..pend might match the empty string.
3263 Return 0 if p..pend matches at least one char.
3264 Return -1 if p..pend matches at least one char, but fastmap was not
3265 updated accurately.
3266 Return -2 if an error occurred. */
3268 static int
3269 analyse_first (p, pend, fastmap, multibyte)
3270 unsigned char *p, *pend;
3271 char *fastmap;
3272 const int multibyte;
3274 int j, k;
3275 boolean not;
3276 #ifdef MATCH_MAY_ALLOCATE
3277 fail_stack_type fail_stack;
3278 #endif
3279 #ifndef REGEX_MALLOC
3280 char *destination;
3281 #endif
3283 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
3284 /* This holds the pointer to the failure stack, when
3285 it is allocated relocatably. */
3286 fail_stack_elt_t *failure_stack_ptr;
3287 #endif
3289 /* Assume that each path through the pattern can be null until
3290 proven otherwise. We set this false at the bottom of switch
3291 statement, to which we get only if a particular path doesn't
3292 match the empty string. */
3293 boolean path_can_be_null = true;
3295 /* If all elements for base leading-codes in fastmap is set, this
3296 flag is set true. */
3297 boolean match_any_multibyte_characters = false;
3299 assert (p);
3301 INIT_FAIL_STACK ();
3303 /* The loop below works as follows:
3304 - It has a working-list kept in the PATTERN_STACK and which basically
3305 starts by only containing a pointer to the first operation.
3306 - If the opcode we're looking at is a match against some set of
3307 chars, then we add those chars to the fastmap and go on to the
3308 next work element from the worklist (done via `break').
3309 - If the opcode is a control operator on the other hand, we either
3310 ignore it (if it's meaningless at this point, such as `start_memory')
3311 or execute it (if it's a jump). If the jump has several destinations
3312 (i.e. `on_failure_jump'), then we push the other destination onto the
3313 worklist.
3314 We guarantee termination by ignoring backward jumps (more or less),
3315 so that `p' is monotonically increasing. More to the point, we
3316 never set `p' (or push) anything `<= p1'. */
3318 /* If can_be_null is set, then the fastmap will not be used anyway. */
3319 while (1)
3321 /* `p1' is used as a marker of how far back a `on_failure_jump'
3322 can go without being ignored. It is normally equal to `p'
3323 (which prevents any backward `on_failure_jump') except right
3324 after a plain `jump', to allow patterns such as:
3325 0: jump 10
3326 3..9: <body>
3327 10: on_failure_jump 3
3328 as used for the *? operator. */
3329 unsigned char *p1 = p;
3331 if (p >= pend)
3333 if (path_can_be_null)
3334 return (RESET_FAIL_STACK (), 1);
3336 /* We have reached the (effective) end of pattern. */
3337 if (PATTERN_STACK_EMPTY ())
3338 return (RESET_FAIL_STACK (), 0);
3340 p = (unsigned char*) POP_PATTERN_OP ();
3341 path_can_be_null = true;
3342 continue;
3345 /* We should never be about to go beyond the end of the pattern. */
3346 assert (p < pend);
3348 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3350 case succeed:
3351 p = pend;
3352 continue;
3354 case duplicate:
3355 /* If the first character has to match a backreference, that means
3356 that the group was empty (since it already matched). Since this
3357 is the only case that interests us here, we can assume that the
3358 backreference must match the empty string. */
3359 p++;
3360 continue;
3363 /* Following are the cases which match a character. These end
3364 with `break'. */
3366 case exactn:
3367 if (fastmap) fastmap[p[1]] = 1;
3368 break;
3371 case anychar:
3372 /* We could put all the chars except for \n (and maybe \0)
3373 but we don't bother since it is generally not worth it. */
3374 if (!fastmap) break;
3375 return (RESET_FAIL_STACK (), -1);
3378 case charset_not:
3379 /* Chars beyond end of bitmap are possible matches.
3380 All the single-byte codes can occur in multibyte buffers.
3381 So any that are not listed in the charset
3382 are possible matches, even in multibyte buffers. */
3383 if (!fastmap) break;
3384 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3385 j < (1 << BYTEWIDTH); j++)
3386 fastmap[j] = 1;
3387 /* Fallthrough */
3388 case charset:
3389 if (!fastmap) break;
3390 not = (re_opcode_t) *(p - 1) == charset_not;
3391 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3392 j >= 0; j--)
3393 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3394 fastmap[j] = 1;
3396 if ((not && multibyte)
3397 /* Any character set can possibly contain a character
3398 which doesn't match the specified set of characters. */
3399 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3400 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3401 /* If we can match a character class, we can match
3402 any character set. */
3404 set_fastmap_for_multibyte_characters:
3405 if (match_any_multibyte_characters == false)
3407 for (j = 0x80; j < 0xA0; j++) /* XXX */
3408 if (BASE_LEADING_CODE_P (j))
3409 fastmap[j] = 1;
3410 match_any_multibyte_characters = true;
3414 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3415 && match_any_multibyte_characters == false)
3417 /* Set fastmap[I] 1 where I is a base leading code of each
3418 multibyte character in the range table. */
3419 int c, count;
3421 /* Make P points the range table. `+ 2' is to skip flag
3422 bits for a character class. */
3423 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3425 /* Extract the number of ranges in range table into COUNT. */
3426 EXTRACT_NUMBER_AND_INCR (count, p);
3427 for (; count > 0; count--, p += 2 * 3) /* XXX */
3429 /* Extract the start of each range. */
3430 EXTRACT_CHARACTER (c, p);
3431 j = CHAR_CHARSET (c);
3432 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3435 break;
3437 case syntaxspec:
3438 case notsyntaxspec:
3439 if (!fastmap) break;
3440 #ifndef emacs
3441 not = (re_opcode_t)p[-1] == notsyntaxspec;
3442 k = *p++;
3443 for (j = 0; j < (1 << BYTEWIDTH); j++)
3444 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3445 fastmap[j] = 1;
3446 break;
3447 #else /* emacs */
3448 /* This match depends on text properties. These end with
3449 aborting optimizations. */
3450 return (RESET_FAIL_STACK (), -1);
3452 case categoryspec:
3453 case notcategoryspec:
3454 if (!fastmap) break;
3455 not = (re_opcode_t)p[-1] == notcategoryspec;
3456 k = *p++;
3457 for (j = 0; j < (1 << BYTEWIDTH); j++)
3458 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3459 fastmap[j] = 1;
3461 if (multibyte)
3462 /* Any character set can possibly contain a character
3463 whose category is K (or not). */
3464 goto set_fastmap_for_multibyte_characters;
3465 break;
3467 /* All cases after this match the empty string. These end with
3468 `continue'. */
3470 case before_dot:
3471 case at_dot:
3472 case after_dot:
3473 #endif /* !emacs */
3474 case no_op:
3475 case begline:
3476 case endline:
3477 case begbuf:
3478 case endbuf:
3479 case wordbound:
3480 case notwordbound:
3481 case wordbeg:
3482 case wordend:
3483 continue;
3486 case jump:
3487 EXTRACT_NUMBER_AND_INCR (j, p);
3488 if (j < 0)
3489 /* Backward jumps can only go back to code that we've already
3490 visited. `re_compile' should make sure this is true. */
3491 break;
3492 p += j;
3493 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3495 case on_failure_jump:
3496 case on_failure_keep_string_jump:
3497 case on_failure_jump_loop:
3498 case on_failure_jump_nastyloop:
3499 case on_failure_jump_smart:
3500 p++;
3501 break;
3502 default:
3503 continue;
3505 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3506 to jump back to "just after here". */
3507 /* Fallthrough */
3509 case on_failure_jump:
3510 case on_failure_keep_string_jump:
3511 case on_failure_jump_nastyloop:
3512 case on_failure_jump_loop:
3513 case on_failure_jump_smart:
3514 EXTRACT_NUMBER_AND_INCR (j, p);
3515 if (p + j <= p1)
3516 ; /* Backward jump to be ignored. */
3517 else if (!PUSH_PATTERN_OP (p + j, fail_stack))
3518 return (RESET_FAIL_STACK (), -2);
3519 continue;
3522 case jump_n:
3523 /* This code simply does not properly handle forward jump_n. */
3524 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3525 p += 4;
3526 /* jump_n can either jump or fall through. The (backward) jump
3527 case has already been handled, so we only need to look at the
3528 fallthrough case. */
3529 continue;
3531 case succeed_n:
3532 /* If N == 0, it should be an on_failure_jump_loop instead. */
3533 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3534 p += 4;
3535 /* We only care about one iteration of the loop, so we don't
3536 need to consider the case where this behaves like an
3537 on_failure_jump. */
3538 continue;
3541 case set_number_at:
3542 p += 4;
3543 continue;
3546 case start_memory:
3547 case stop_memory:
3548 p += 1;
3549 continue;
3552 default:
3553 abort (); /* We have listed all the cases. */
3554 } /* switch *p++ */
3556 /* Getting here means we have found the possible starting
3557 characters for one path of the pattern -- and that the empty
3558 string does not match. We need not follow this path further.
3559 Instead, look at the next alternative (remembered on the
3560 stack), or quit if no more. The test at the top of the loop
3561 does these things. */
3562 path_can_be_null = false;
3563 p = pend;
3564 } /* while p */
3566 return (RESET_FAIL_STACK (), 0);
3567 } /* analyse_first */
3569 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3570 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3571 characters can start a string that matches the pattern. This fastmap
3572 is used by re_search to skip quickly over impossible starting points.
3574 Character codes above (1 << BYTEWIDTH) are not represented in the
3575 fastmap, but the leading codes are represented. Thus, the fastmap
3576 indicates which character sets could start a match.
3578 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3579 area as BUFP->fastmap.
3581 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3582 the pattern buffer.
3584 Returns 0 if we succeed, -2 if an internal error. */
3587 re_compile_fastmap (bufp)
3588 struct re_pattern_buffer *bufp;
3590 char *fastmap = bufp->fastmap;
3591 int analysis;
3593 assert (fastmap && bufp->buffer);
3595 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3596 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3598 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
3599 fastmap, RE_MULTIBYTE_P (bufp));
3600 if (analysis < -1)
3601 return analysis;
3602 bufp->can_be_null = (analysis != 0);
3603 return 0;
3604 } /* re_compile_fastmap */
3606 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3607 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3608 this memory for recording register information. STARTS and ENDS
3609 must be allocated using the malloc library routine, and must each
3610 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3612 If NUM_REGS == 0, then subsequent matches should allocate their own
3613 register data.
3615 Unless this function is called, the first search or match using
3616 PATTERN_BUFFER will allocate its own register data, without
3617 freeing the old data. */
3619 void
3620 re_set_registers (bufp, regs, num_regs, starts, ends)
3621 struct re_pattern_buffer *bufp;
3622 struct re_registers *regs;
3623 unsigned num_regs;
3624 regoff_t *starts, *ends;
3626 if (num_regs)
3628 bufp->regs_allocated = REGS_REALLOCATE;
3629 regs->num_regs = num_regs;
3630 regs->start = starts;
3631 regs->end = ends;
3633 else
3635 bufp->regs_allocated = REGS_UNALLOCATED;
3636 regs->num_regs = 0;
3637 regs->start = regs->end = (regoff_t *) 0;
3641 /* Searching routines. */
3643 /* Like re_search_2, below, but only one string is specified, and
3644 doesn't let you say where to stop matching. */
3647 re_search (bufp, string, size, startpos, range, regs)
3648 struct re_pattern_buffer *bufp;
3649 const char *string;
3650 int size, startpos, range;
3651 struct re_registers *regs;
3653 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3654 regs, size);
3657 /* End address of virtual concatenation of string. */
3658 #define STOP_ADDR_VSTRING(P) \
3659 (((P) >= size1 ? string2 + size2 : string1 + size1))
3661 /* Address of POS in the concatenation of virtual string. */
3662 #define POS_ADDR_VSTRING(POS) \
3663 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3665 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3666 virtual concatenation of STRING1 and STRING2, starting first at index
3667 STARTPOS, then at STARTPOS + 1, and so on.
3669 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3671 RANGE is how far to scan while trying to match. RANGE = 0 means try
3672 only at STARTPOS; in general, the last start tried is STARTPOS +
3673 RANGE.
3675 In REGS, return the indices of the virtual concatenation of STRING1
3676 and STRING2 that matched the entire BUFP->buffer and its contained
3677 subexpressions.
3679 Do not consider matching one past the index STOP in the virtual
3680 concatenation of STRING1 and STRING2.
3682 We return either the position in the strings at which the match was
3683 found, -1 if no match, or -2 if error (such as failure
3684 stack overflow). */
3687 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
3688 struct re_pattern_buffer *bufp;
3689 const char *str1, *str2;
3690 int size1, size2;
3691 int startpos;
3692 int range;
3693 struct re_registers *regs;
3694 int stop;
3696 int val;
3697 re_char *string1 = (re_char*) str1;
3698 re_char *string2 = (re_char*) str2;
3699 register char *fastmap = bufp->fastmap;
3700 register RE_TRANSLATE_TYPE translate = bufp->translate;
3701 int total_size = size1 + size2;
3702 int endpos = startpos + range;
3703 int anchored_start = 0;
3705 /* Nonzero if we have to concern multibyte character. */
3706 const boolean multibyte = RE_MULTIBYTE_P (bufp);
3708 /* Check for out-of-range STARTPOS. */
3709 if (startpos < 0 || startpos > total_size)
3710 return -1;
3712 /* Fix up RANGE if it might eventually take us outside
3713 the virtual concatenation of STRING1 and STRING2.
3714 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3715 if (endpos < 0)
3716 range = 0 - startpos;
3717 else if (endpos > total_size)
3718 range = total_size - startpos;
3720 /* If the search isn't to be a backwards one, don't waste time in a
3721 search for a pattern anchored at beginning of buffer. */
3722 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3724 if (startpos > 0)
3725 return -1;
3726 else
3727 range = 0;
3730 #ifdef emacs
3731 /* In a forward search for something that starts with \=.
3732 don't keep searching past point. */
3733 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3735 range = PT_BYTE - BEGV_BYTE - startpos;
3736 if (range < 0)
3737 return -1;
3739 #endif /* emacs */
3741 /* Update the fastmap now if not correct already. */
3742 if (fastmap && !bufp->fastmap_accurate)
3743 if (re_compile_fastmap (bufp) == -2)
3744 return -2;
3746 /* See whether the pattern is anchored. */
3747 if (bufp->buffer[0] == begline)
3748 anchored_start = 1;
3750 #ifdef emacs
3751 gl_state.object = re_match_object;
3753 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
3755 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3757 #endif
3759 /* Loop through the string, looking for a place to start matching. */
3760 for (;;)
3762 /* If the pattern is anchored,
3763 skip quickly past places we cannot match.
3764 We don't bother to treat startpos == 0 specially
3765 because that case doesn't repeat. */
3766 if (anchored_start && startpos > 0)
3768 if (! (bufp->newline_anchor
3769 && ((startpos <= size1 ? string1[startpos - 1]
3770 : string2[startpos - size1 - 1])
3771 == '\n')))
3772 goto advance;
3775 /* If a fastmap is supplied, skip quickly over characters that
3776 cannot be the start of a match. If the pattern can match the
3777 null string, however, we don't need to skip characters; we want
3778 the first null string. */
3779 if (fastmap && startpos < total_size && !bufp->can_be_null)
3781 register re_char *d;
3782 register unsigned int buf_ch;
3784 d = POS_ADDR_VSTRING (startpos);
3786 if (range > 0) /* Searching forwards. */
3788 register int lim = 0;
3789 int irange = range;
3791 if (startpos < size1 && startpos + range >= size1)
3792 lim = range - (size1 - startpos);
3794 /* Written out as an if-else to avoid testing `translate'
3795 inside the loop. */
3796 if (RE_TRANSLATE_P (translate))
3798 if (multibyte)
3799 while (range > lim)
3801 int buf_charlen;
3803 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3804 buf_charlen);
3806 buf_ch = RE_TRANSLATE (translate, buf_ch);
3807 if (buf_ch >= 0400
3808 || fastmap[buf_ch])
3809 break;
3811 range -= buf_charlen;
3812 d += buf_charlen;
3814 else
3815 while (range > lim
3816 && !fastmap[RE_TRANSLATE (translate, *d)])
3818 d++;
3819 range--;
3822 else
3823 while (range > lim && !fastmap[*d])
3825 d++;
3826 range--;
3829 startpos += irange - range;
3831 else /* Searching backwards. */
3833 int room = (startpos >= size1
3834 ? size2 + size1 - startpos
3835 : size1 - startpos);
3836 buf_ch = RE_STRING_CHAR (d, room);
3837 buf_ch = TRANSLATE (buf_ch);
3839 if (! (buf_ch >= 0400
3840 || fastmap[buf_ch]))
3841 goto advance;
3845 /* If can't match the null string, and that's all we have left, fail. */
3846 if (range >= 0 && startpos == total_size && fastmap
3847 && !bufp->can_be_null)
3848 return -1;
3850 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3851 startpos, regs, stop);
3852 #ifndef REGEX_MALLOC
3853 #ifdef C_ALLOCA
3854 alloca (0);
3855 #endif
3856 #endif
3858 if (val >= 0)
3859 return startpos;
3861 if (val == -2)
3862 return -2;
3864 advance:
3865 if (!range)
3866 break;
3867 else if (range > 0)
3869 /* Update STARTPOS to the next character boundary. */
3870 if (multibyte)
3872 re_char *p = POS_ADDR_VSTRING (startpos);
3873 re_char *pend = STOP_ADDR_VSTRING (startpos);
3874 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3876 range -= len;
3877 if (range < 0)
3878 break;
3879 startpos += len;
3881 else
3883 range--;
3884 startpos++;
3887 else
3889 range++;
3890 startpos--;
3892 /* Update STARTPOS to the previous character boundary. */
3893 if (multibyte)
3895 re_char *p = POS_ADDR_VSTRING (startpos);
3896 int len = 0;
3898 /* Find the head of multibyte form. */
3899 while (!CHAR_HEAD_P (*p))
3900 p--, len++;
3902 /* Adjust it. */
3903 #if 0 /* XXX */
3904 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3906 else
3907 #endif
3909 range += len;
3910 if (range > 0)
3911 break;
3913 startpos -= len;
3918 return -1;
3919 } /* re_search_2 */
3921 /* Declarations and macros for re_match_2. */
3923 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
3924 register int len,
3925 RE_TRANSLATE_TYPE translate,
3926 const int multibyte));
3928 /* This converts PTR, a pointer into one of the search strings `string1'
3929 and `string2' into an offset from the beginning of that string. */
3930 #define POINTER_TO_OFFSET(ptr) \
3931 (FIRST_STRING_P (ptr) \
3932 ? ((regoff_t) ((ptr) - string1)) \
3933 : ((regoff_t) ((ptr) - string2 + size1)))
3935 /* Call before fetching a character with *d. This switches over to
3936 string2 if necessary. */
3937 #define PREFETCH() \
3938 while (d == dend) \
3940 /* End of string2 => fail. */ \
3941 if (dend == end_match_2) \
3942 goto fail; \
3943 /* End of string1 => advance to string2. */ \
3944 d = string2; \
3945 dend = end_match_2; \
3949 /* Test if at very beginning or at very end of the virtual concatenation
3950 of `string1' and `string2'. If only one string, it's `string2'. */
3951 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3952 #define AT_STRINGS_END(d) ((d) == end2)
3955 /* Test if D points to a character which is word-constituent. We have
3956 two special cases to check for: if past the end of string1, look at
3957 the first character in string2; and if before the beginning of
3958 string2, look at the last character in string1. */
3959 #define WORDCHAR_P(d) \
3960 (SYNTAX ((d) == end1 ? *string2 \
3961 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3962 == Sword)
3964 /* Disabled due to a compiler bug -- see comment at case wordbound */
3966 /* The comment at case wordbound is following one, but we don't use
3967 AT_WORD_BOUNDARY anymore to support multibyte form.
3969 The DEC Alpha C compiler 3.x generates incorrect code for the
3970 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3971 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
3972 macro and introducing temporary variables works around the bug. */
3974 #if 0
3975 /* Test if the character before D and the one at D differ with respect
3976 to being word-constituent. */
3977 #define AT_WORD_BOUNDARY(d) \
3978 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3979 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3980 #endif
3982 /* Free everything we malloc. */
3983 #ifdef MATCH_MAY_ALLOCATE
3984 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3985 #define FREE_VARIABLES() \
3986 do { \
3987 REGEX_FREE_STACK (fail_stack.stack); \
3988 FREE_VAR (regstart); \
3989 FREE_VAR (regend); \
3990 FREE_VAR (best_regstart); \
3991 FREE_VAR (best_regend); \
3992 } while (0)
3993 #else
3994 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3995 #endif /* not MATCH_MAY_ALLOCATE */
3998 /* Optimization routines. */
4000 /* If the operation is a match against one or more chars,
4001 return a pointer to the next operation, else return NULL. */
4002 static unsigned char *
4003 skip_one_char (p)
4004 unsigned char *p;
4006 switch (SWITCH_ENUM_CAST (*p++))
4008 case anychar:
4009 break;
4011 case exactn:
4012 p += *p + 1;
4013 break;
4015 case charset_not:
4016 case charset:
4017 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4019 int mcnt;
4020 p = CHARSET_RANGE_TABLE (p - 1);
4021 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4022 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4024 else
4025 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4026 break;
4028 case syntaxspec:
4029 case notsyntaxspec:
4030 #ifdef emacs
4031 case categoryspec:
4032 case notcategoryspec:
4033 #endif /* emacs */
4034 p++;
4035 break;
4037 default:
4038 p = NULL;
4040 return p;
4044 /* Jump over non-matching operations. */
4045 static unsigned char *
4046 skip_noops (p, pend)
4047 unsigned char *p, *pend;
4049 int mcnt;
4050 while (p < pend)
4052 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4054 case start_memory:
4055 case stop_memory:
4056 p += 2; break;
4057 case no_op:
4058 p += 1; break;
4059 case jump:
4060 p += 1;
4061 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4062 p += mcnt;
4063 break;
4064 default:
4065 return p;
4068 assert (p == pend);
4069 return p;
4072 /* Non-zero if "p1 matches something" implies "p2 fails". */
4073 static int
4074 mutually_exclusive_p (bufp, p1, p2)
4075 struct re_pattern_buffer *bufp;
4076 unsigned char *p1, *p2;
4078 re_opcode_t op2;
4079 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4080 unsigned char *pend = bufp->buffer + bufp->used;
4082 assert (p1 >= bufp->buffer && p1 < pend
4083 && p2 >= bufp->buffer && p2 <= pend);
4085 /* Skip over open/close-group commands.
4086 If what follows this loop is a ...+ construct,
4087 look at what begins its body, since we will have to
4088 match at least one of that. */
4089 p2 = skip_noops (p2, pend);
4090 /* The same skip can be done for p1, except that this function
4091 is only used in the case where p1 is a simple match operator. */
4092 /* p1 = skip_noops (p1, pend); */
4094 assert (p1 >= bufp->buffer && p1 < pend
4095 && p2 >= bufp->buffer && p2 <= pend);
4097 op2 = p2 == pend ? succeed : *p2;
4099 switch (SWITCH_ENUM_CAST (op2))
4101 case succeed:
4102 case endbuf:
4103 /* If we're at the end of the pattern, we can change. */
4104 if (skip_one_char (p1))
4106 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4107 return 1;
4109 break;
4111 case endline:
4112 if (!bufp->newline_anchor)
4113 break;
4114 /* Fallthrough */
4115 case exactn:
4117 register unsigned int c
4118 = (re_opcode_t) *p2 == endline ? '\n'
4119 : RE_STRING_CHAR(p2 + 2, pend - p2 - 2);
4121 if ((re_opcode_t) *p1 == exactn)
4123 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4125 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4126 return 1;
4130 else if ((re_opcode_t) *p1 == charset
4131 || (re_opcode_t) *p1 == charset_not)
4133 int not = (re_opcode_t) *p1 == charset_not;
4135 /* Test if C is listed in charset (or charset_not)
4136 at `p1'. */
4137 if (SINGLE_BYTE_CHAR_P (c))
4139 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4140 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4141 not = !not;
4143 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4144 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4146 /* `not' is equal to 1 if c would match, which means
4147 that we can't change to pop_failure_jump. */
4148 if (!not)
4150 DEBUG_PRINT1 (" No match => fast loop.\n");
4151 return 1;
4154 else if ((re_opcode_t) *p1 == anychar
4155 && c == '\n')
4157 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4158 return 1;
4161 break;
4163 case charset:
4164 case charset_not:
4166 if ((re_opcode_t) *p1 == exactn)
4167 /* Reuse the code above. */
4168 return mutually_exclusive_p (bufp, p2, p1);
4171 /* It is hard to list up all the character in charset
4172 P2 if it includes multibyte character. Give up in
4173 such case. */
4174 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4176 /* Now, we are sure that P2 has no range table.
4177 So, for the size of bitmap in P2, `p2[1]' is
4178 enough. But P1 may have range table, so the
4179 size of bitmap table of P1 is extracted by
4180 using macro `CHARSET_BITMAP_SIZE'.
4182 Since we know that all the character listed in
4183 P2 is ASCII, it is enough to test only bitmap
4184 table of P1. */
4186 if (*p1 == *p2)
4188 int idx;
4189 /* We win if the charset inside the loop
4190 has no overlap with the one after the loop. */
4191 for (idx = 0;
4192 (idx < (int) p2[1]
4193 && idx < CHARSET_BITMAP_SIZE (p1));
4194 idx++)
4195 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4196 break;
4198 if (idx == p2[1]
4199 || idx == CHARSET_BITMAP_SIZE (p1))
4201 DEBUG_PRINT1 (" No match => fast loop.\n");
4202 return 1;
4205 else if ((re_opcode_t) *p1 == charset
4206 || (re_opcode_t) *p1 == charset_not)
4208 int idx;
4209 /* We win if the charset_not inside the loop lists
4210 every character listed in the charset after. */
4211 for (idx = 0; idx < (int) p2[1]; idx++)
4212 if (! (p2[2 + idx] == 0
4213 || (idx < CHARSET_BITMAP_SIZE (p1)
4214 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4215 break;
4217 if (idx == p2[1])
4219 DEBUG_PRINT1 (" No match => fast loop.\n");
4220 return 1;
4226 case wordend:
4227 case notsyntaxspec:
4228 return ((re_opcode_t) *p1 == syntaxspec
4229 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4231 case wordbeg:
4232 case syntaxspec:
4233 return ((re_opcode_t) *p1 == notsyntaxspec
4234 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4236 case wordbound:
4237 return (((re_opcode_t) *p1 == notsyntaxspec
4238 || (re_opcode_t) *p1 == syntaxspec)
4239 && p1[1] == Sword);
4241 #ifdef emacs
4242 case categoryspec:
4243 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4244 case notcategoryspec:
4245 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4246 #endif /* emacs */
4248 default:
4252 /* Safe default. */
4253 return 0;
4257 /* Matching routines. */
4259 #ifndef emacs /* Emacs never uses this. */
4260 /* re_match is like re_match_2 except it takes only a single string. */
4263 re_match (bufp, string, size, pos, regs)
4264 struct re_pattern_buffer *bufp;
4265 const char *string;
4266 int size, pos;
4267 struct re_registers *regs;
4269 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4270 pos, regs, size);
4271 alloca (0);
4272 return result;
4274 #endif /* not emacs */
4276 #ifdef emacs
4277 /* In Emacs, this is the string or buffer in which we
4278 are matching. It is used for looking up syntax properties. */
4279 Lisp_Object re_match_object;
4280 #endif
4282 /* re_match_2 matches the compiled pattern in BUFP against the
4283 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4284 and SIZE2, respectively). We start matching at POS, and stop
4285 matching at STOP.
4287 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4288 store offsets for the substring each group matched in REGS. See the
4289 documentation for exactly how many groups we fill.
4291 We return -1 if no match, -2 if an internal error (such as the
4292 failure stack overflowing). Otherwise, we return the length of the
4293 matched substring. */
4296 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4297 struct re_pattern_buffer *bufp;
4298 const char *string1, *string2;
4299 int size1, size2;
4300 int pos;
4301 struct re_registers *regs;
4302 int stop;
4304 int result;
4306 #ifdef emacs
4307 int charpos;
4308 gl_state.object = re_match_object;
4309 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4310 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4311 #endif
4313 result = re_match_2_internal (bufp, string1, size1, string2, size2,
4314 pos, regs, stop);
4315 alloca (0);
4316 return result;
4319 /* This is a separate function so that we can force an alloca cleanup
4320 afterwards. */
4321 static int
4322 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4323 struct re_pattern_buffer *bufp;
4324 re_char *string1, *string2;
4325 int size1, size2;
4326 int pos;
4327 struct re_registers *regs;
4328 int stop;
4330 /* General temporaries. */
4331 int mcnt;
4332 boolean not;
4333 unsigned char *p1;
4335 /* Just past the end of the corresponding string. */
4336 re_char *end1, *end2;
4338 /* Pointers into string1 and string2, just past the last characters in
4339 each to consider matching. */
4340 re_char *end_match_1, *end_match_2;
4342 /* Where we are in the data, and the end of the current string. */
4343 re_char *d, *dend;
4345 /* Used sometimes to remember where we were before starting matching
4346 an operator so that we can go back in case of failure. This "atomic"
4347 behavior of matching opcodes is indispensable to the correctness
4348 of the on_failure_keep_string_jump optimization. */
4349 re_char *dfail;
4351 /* Where we are in the pattern, and the end of the pattern. */
4352 unsigned char *p = bufp->buffer;
4353 register unsigned char *pend = p + bufp->used;
4355 /* We use this to map every character in the string. */
4356 RE_TRANSLATE_TYPE translate = bufp->translate;
4358 /* Nonzero if we have to concern multibyte character. */
4359 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4361 /* Failure point stack. Each place that can handle a failure further
4362 down the line pushes a failure point on this stack. It consists of
4363 regstart, and regend for all registers corresponding to
4364 the subexpressions we're currently inside, plus the number of such
4365 registers, and, finally, two char *'s. The first char * is where
4366 to resume scanning the pattern; the second one is where to resume
4367 scanning the strings. */
4368 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4369 fail_stack_type fail_stack;
4370 #endif
4371 #ifdef DEBUG
4372 static unsigned failure_id = 0;
4373 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4374 #endif
4376 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4377 /* This holds the pointer to the failure stack, when
4378 it is allocated relocatably. */
4379 fail_stack_elt_t *failure_stack_ptr;
4380 #endif
4382 /* We fill all the registers internally, independent of what we
4383 return, for use in backreferences. The number here includes
4384 an element for register zero. */
4385 unsigned num_regs = bufp->re_nsub + 1;
4387 /* Information on the contents of registers. These are pointers into
4388 the input strings; they record just what was matched (on this
4389 attempt) by a subexpression part of the pattern, that is, the
4390 regnum-th regstart pointer points to where in the pattern we began
4391 matching and the regnum-th regend points to right after where we
4392 stopped matching the regnum-th subexpression. (The zeroth register
4393 keeps track of what the whole pattern matches.) */
4394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4395 re_char **regstart, **regend;
4396 #endif
4398 /* The following record the register info as found in the above
4399 variables when we find a match better than any we've seen before.
4400 This happens as we backtrack through the failure points, which in
4401 turn happens only if we have not yet matched the entire string. */
4402 unsigned best_regs_set = false;
4403 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4404 re_char **best_regstart, **best_regend;
4405 #endif
4407 /* Logically, this is `best_regend[0]'. But we don't want to have to
4408 allocate space for that if we're not allocating space for anything
4409 else (see below). Also, we never need info about register 0 for
4410 any of the other register vectors, and it seems rather a kludge to
4411 treat `best_regend' differently than the rest. So we keep track of
4412 the end of the best match so far in a separate variable. We
4413 initialize this to NULL so that when we backtrack the first time
4414 and need to test it, it's not garbage. */
4415 re_char *match_end = NULL;
4417 #ifdef DEBUG
4418 /* Counts the total number of registers pushed. */
4419 unsigned num_regs_pushed = 0;
4420 #endif
4422 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4424 INIT_FAIL_STACK ();
4426 #ifdef MATCH_MAY_ALLOCATE
4427 /* Do not bother to initialize all the register variables if there are
4428 no groups in the pattern, as it takes a fair amount of time. If
4429 there are groups, we include space for register 0 (the whole
4430 pattern), even though we never use it, since it simplifies the
4431 array indexing. We should fix this. */
4432 if (bufp->re_nsub)
4434 regstart = REGEX_TALLOC (num_regs, re_char *);
4435 regend = REGEX_TALLOC (num_regs, re_char *);
4436 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4437 best_regend = REGEX_TALLOC (num_regs, re_char *);
4439 if (!(regstart && regend && best_regstart && best_regend))
4441 FREE_VARIABLES ();
4442 return -2;
4445 else
4447 /* We must initialize all our variables to NULL, so that
4448 `FREE_VARIABLES' doesn't try to free them. */
4449 regstart = regend = best_regstart = best_regend = NULL;
4451 #endif /* MATCH_MAY_ALLOCATE */
4453 /* The starting position is bogus. */
4454 if (pos < 0 || pos > size1 + size2)
4456 FREE_VARIABLES ();
4457 return -1;
4460 /* Initialize subexpression text positions to -1 to mark ones that no
4461 start_memory/stop_memory has been seen for. Also initialize the
4462 register information struct. */
4463 for (mcnt = 1; mcnt < num_regs; mcnt++)
4464 regstart[mcnt] = regend[mcnt] = REG_UNSET_VALUE;
4466 /* Shorten strings to `stop'. */
4467 if (stop <= size1)
4469 size1 = stop;
4470 size2 = 0;
4472 else if (stop <= size1 + size2)
4473 size2 = stop - size1;
4475 /* We move `string1' into `string2' if the latter's empty -- but not if
4476 `string1' is null. */
4477 if (size2 == 0 && string1 != NULL)
4479 string2 = string1;
4480 size2 = size1;
4481 string1 = 0;
4482 size1 = 0;
4484 end1 = string1 + size1;
4485 end2 = string2 + size2;
4487 /* Compute where to stop matching, within the two strings. */
4488 end_match_1 = end1;
4489 end_match_2 = end2;
4491 /* `p' scans through the pattern as `d' scans through the data.
4492 `dend' is the end of the input string that `d' points within. `d'
4493 is advanced into the following input string whenever necessary, but
4494 this happens before fetching; therefore, at the beginning of the
4495 loop, `d' can be pointing at the end of a string, but it cannot
4496 equal `string2'. */
4497 if (size1 > 0 && pos <= size1)
4499 d = string1 + pos;
4500 dend = end_match_1;
4502 else
4504 d = string2 + pos - size1;
4505 dend = end_match_2;
4508 DEBUG_PRINT1 ("The compiled pattern is: ");
4509 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4510 DEBUG_PRINT1 ("The string to match is: `");
4511 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4512 DEBUG_PRINT1 ("'\n");
4514 /* This loops over pattern commands. It exits by returning from the
4515 function if the match is complete, or it drops through if the match
4516 fails at this starting point in the input data. */
4517 for (;;)
4519 DEBUG_PRINT2 ("\n%p: ", p);
4521 if (p == pend)
4522 { /* End of pattern means we might have succeeded. */
4523 DEBUG_PRINT1 ("end of pattern ... ");
4525 /* If we haven't matched the entire string, and we want the
4526 longest match, try backtracking. */
4527 if (d != end_match_2)
4529 /* 1 if this match ends in the same string (string1 or string2)
4530 as the best previous match. */
4531 boolean same_str_p = (FIRST_STRING_P (match_end)
4532 == FIRST_STRING_P (d));
4533 /* 1 if this match is the best seen so far. */
4534 boolean best_match_p;
4536 /* AIX compiler got confused when this was combined
4537 with the previous declaration. */
4538 if (same_str_p)
4539 best_match_p = d > match_end;
4540 else
4541 best_match_p = !FIRST_STRING_P (d);
4543 DEBUG_PRINT1 ("backtracking.\n");
4545 if (!FAIL_STACK_EMPTY ())
4546 { /* More failure points to try. */
4548 /* If exceeds best match so far, save it. */
4549 if (!best_regs_set || best_match_p)
4551 best_regs_set = true;
4552 match_end = d;
4554 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4556 for (mcnt = 1; mcnt < num_regs; mcnt++)
4558 best_regstart[mcnt] = regstart[mcnt];
4559 best_regend[mcnt] = regend[mcnt];
4562 goto fail;
4565 /* If no failure points, don't restore garbage. And if
4566 last match is real best match, don't restore second
4567 best one. */
4568 else if (best_regs_set && !best_match_p)
4570 restore_best_regs:
4571 /* Restore best match. It may happen that `dend ==
4572 end_match_1' while the restored d is in string2.
4573 For example, the pattern `x.*y.*z' against the
4574 strings `x-' and `y-z-', if the two strings are
4575 not consecutive in memory. */
4576 DEBUG_PRINT1 ("Restoring best registers.\n");
4578 d = match_end;
4579 dend = ((d >= string1 && d <= end1)
4580 ? end_match_1 : end_match_2);
4582 for (mcnt = 1; mcnt < num_regs; mcnt++)
4584 regstart[mcnt] = best_regstart[mcnt];
4585 regend[mcnt] = best_regend[mcnt];
4588 } /* d != end_match_2 */
4590 succeed_label:
4591 DEBUG_PRINT1 ("Accepting match.\n");
4593 /* If caller wants register contents data back, do it. */
4594 if (regs && !bufp->no_sub)
4596 /* Have the register data arrays been allocated? */
4597 if (bufp->regs_allocated == REGS_UNALLOCATED)
4598 { /* No. So allocate them with malloc. We need one
4599 extra element beyond `num_regs' for the `-1' marker
4600 GNU code uses. */
4601 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4602 regs->start = TALLOC (regs->num_regs, regoff_t);
4603 regs->end = TALLOC (regs->num_regs, regoff_t);
4604 if (regs->start == NULL || regs->end == NULL)
4606 FREE_VARIABLES ();
4607 return -2;
4609 bufp->regs_allocated = REGS_REALLOCATE;
4611 else if (bufp->regs_allocated == REGS_REALLOCATE)
4612 { /* Yes. If we need more elements than were already
4613 allocated, reallocate them. If we need fewer, just
4614 leave it alone. */
4615 if (regs->num_regs < num_regs + 1)
4617 regs->num_regs = num_regs + 1;
4618 RETALLOC (regs->start, regs->num_regs, regoff_t);
4619 RETALLOC (regs->end, regs->num_regs, regoff_t);
4620 if (regs->start == NULL || regs->end == NULL)
4622 FREE_VARIABLES ();
4623 return -2;
4627 else
4629 /* These braces fend off a "empty body in an else-statement"
4630 warning under GCC when assert expands to nothing. */
4631 assert (bufp->regs_allocated == REGS_FIXED);
4634 /* Convert the pointer data in `regstart' and `regend' to
4635 indices. Register zero has to be set differently,
4636 since we haven't kept track of any info for it. */
4637 if (regs->num_regs > 0)
4639 regs->start[0] = pos;
4640 regs->end[0] = POINTER_TO_OFFSET (d);
4643 /* Go through the first `min (num_regs, regs->num_regs)'
4644 registers, since that is all we initialized. */
4645 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4647 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4648 regs->start[mcnt] = regs->end[mcnt] = -1;
4649 else
4651 regs->start[mcnt]
4652 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4653 regs->end[mcnt]
4654 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4658 /* If the regs structure we return has more elements than
4659 were in the pattern, set the extra elements to -1. If
4660 we (re)allocated the registers, this is the case,
4661 because we always allocate enough to have at least one
4662 -1 at the end. */
4663 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4664 regs->start[mcnt] = regs->end[mcnt] = -1;
4665 } /* regs && !bufp->no_sub */
4667 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4668 nfailure_points_pushed, nfailure_points_popped,
4669 nfailure_points_pushed - nfailure_points_popped);
4670 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4672 mcnt = POINTER_TO_OFFSET (d) - pos;
4674 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4676 FREE_VARIABLES ();
4677 return mcnt;
4680 /* Otherwise match next pattern command. */
4681 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4683 /* Ignore these. Used to ignore the n of succeed_n's which
4684 currently have n == 0. */
4685 case no_op:
4686 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4687 break;
4689 case succeed:
4690 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4691 goto succeed_label;
4693 /* Match the next n pattern characters exactly. The following
4694 byte in the pattern defines n, and the n bytes after that
4695 are the characters to match. */
4696 case exactn:
4697 mcnt = *p++;
4698 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4700 /* Remember the start point to rollback upon failure. */
4701 dfail = d;
4703 /* This is written out as an if-else so we don't waste time
4704 testing `translate' inside the loop. */
4705 if (RE_TRANSLATE_P (translate))
4707 if (multibyte)
4710 int pat_charlen, buf_charlen;
4711 unsigned int pat_ch, buf_ch;
4713 PREFETCH ();
4714 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4715 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4717 if (RE_TRANSLATE (translate, buf_ch)
4718 != pat_ch)
4720 d = dfail;
4721 goto fail;
4724 p += pat_charlen;
4725 d += buf_charlen;
4726 mcnt -= pat_charlen;
4728 while (mcnt > 0);
4729 else
4732 PREFETCH ();
4733 if (RE_TRANSLATE (translate, *d) != *p++)
4735 d = dfail;
4736 goto fail;
4738 d++;
4740 while (--mcnt);
4742 else
4746 PREFETCH ();
4747 if (*d++ != *p++)
4749 d = dfail;
4750 goto fail;
4753 while (--mcnt);
4755 break;
4758 /* Match any character except possibly a newline or a null. */
4759 case anychar:
4761 int buf_charlen;
4762 unsigned int buf_ch;
4764 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4766 PREFETCH ();
4767 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4768 buf_ch = TRANSLATE (buf_ch);
4770 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4771 && buf_ch == '\n')
4772 || ((bufp->syntax & RE_DOT_NOT_NULL)
4773 && buf_ch == '\000'))
4774 goto fail;
4776 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4777 d += buf_charlen;
4779 break;
4782 case charset:
4783 case charset_not:
4785 register unsigned int c;
4786 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4787 int len;
4789 /* Start of actual range_table, or end of bitmap if there is no
4790 range table. */
4791 unsigned char *range_table;
4793 /* Nonzero if there is a range table. */
4794 int range_table_exists;
4796 /* Number of ranges of range table. This is not included
4797 in the initial byte-length of the command. */
4798 int count = 0;
4800 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4802 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4804 if (range_table_exists)
4806 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4807 EXTRACT_NUMBER_AND_INCR (count, range_table);
4810 PREFETCH ();
4811 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
4812 c = TRANSLATE (c); /* The character to match. */
4814 if (SINGLE_BYTE_CHAR_P (c))
4815 { /* Lookup bitmap. */
4816 /* Cast to `unsigned' instead of `unsigned char' in
4817 case the bit list is a full 32 bytes long. */
4818 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4819 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4820 not = !not;
4822 #ifdef emacs
4823 else if (range_table_exists)
4825 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
4827 if ( (class_bits & BIT_ALNUM && ISALNUM (c))
4828 | (class_bits & BIT_ALPHA && ISALPHA (c))
4829 | (class_bits & BIT_ASCII && IS_REAL_ASCII (c))
4830 | (class_bits & BIT_GRAPH && ISGRAPH (c))
4831 | (class_bits & BIT_LOWER && ISLOWER (c))
4832 | (class_bits & BIT_MULTIBYTE && !ISUNIBYTE (c))
4833 | (class_bits & BIT_NONASCII && !IS_REAL_ASCII (c))
4834 | (class_bits & BIT_PRINT && ISPRINT (c))
4835 | (class_bits & BIT_PUNCT && ISPUNCT (c))
4836 | (class_bits & BIT_SPACE && ISSPACE (c))
4837 | (class_bits & BIT_UNIBYTE && ISUNIBYTE (c))
4838 | (class_bits & BIT_UPPER && ISUPPER (c))
4839 | (class_bits & BIT_WORD && ISWORD (c)))
4840 not = !not;
4841 else
4842 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4844 #endif /* emacs */
4846 if (range_table_exists)
4847 p = CHARSET_RANGE_TABLE_END (range_table, count);
4848 else
4849 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
4851 if (!not) goto fail;
4853 d += len;
4854 break;
4858 /* The beginning of a group is represented by start_memory.
4859 The argument is the register number. The text
4860 matched within the group is recorded (in the internal
4861 registers data structure) under the register number. */
4862 case start_memory:
4863 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
4865 /* In case we need to undo this operation (via backtracking). */
4866 PUSH_FAILURE_REG ((unsigned int)*p);
4868 regstart[*p] = d;
4869 regend[*p] = REG_UNSET_VALUE; /* probably unnecessary. -sm */
4870 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4872 /* Move past the register number and inner group count. */
4873 p += 1;
4874 break;
4877 /* The stop_memory opcode represents the end of a group. Its
4878 argument is the same as start_memory's: the register number. */
4879 case stop_memory:
4880 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
4882 assert (!REG_UNSET (regstart[*p]));
4883 /* Strictly speaking, there should be code such as:
4885 assert (REG_UNSET (regend[*p]));
4886 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
4888 But the only info to be pushed is regend[*p] and it is known to
4889 be UNSET, so there really isn't anything to push.
4890 Not pushing anything, on the other hand deprives us from the
4891 guarantee that regend[*p] is UNSET since undoing this operation
4892 will not reset its value properly. This is not important since
4893 the value will only be read on the next start_memory or at
4894 the very end and both events can only happen if this stop_memory
4895 is *not* undone. */
4897 regend[*p] = d;
4898 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4900 /* Move past the register number and the inner group count. */
4901 p += 1;
4902 break;
4905 /* \<digit> has been turned into a `duplicate' command which is
4906 followed by the numeric value of <digit> as the register number. */
4907 case duplicate:
4909 register re_char *d2, *dend2;
4910 int regno = *p++; /* Get which register to match against. */
4911 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4913 /* Can't back reference a group which we've never matched. */
4914 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4915 goto fail;
4917 /* Where in input to try to start matching. */
4918 d2 = regstart[regno];
4920 /* Remember the start point to rollback upon failure. */
4921 dfail = d;
4923 /* Where to stop matching; if both the place to start and
4924 the place to stop matching are in the same string, then
4925 set to the place to stop, otherwise, for now have to use
4926 the end of the first string. */
4928 dend2 = ((FIRST_STRING_P (regstart[regno])
4929 == FIRST_STRING_P (regend[regno]))
4930 ? regend[regno] : end_match_1);
4931 for (;;)
4933 /* If necessary, advance to next segment in register
4934 contents. */
4935 while (d2 == dend2)
4937 if (dend2 == end_match_2) break;
4938 if (dend2 == regend[regno]) break;
4940 /* End of string1 => advance to string2. */
4941 d2 = string2;
4942 dend2 = regend[regno];
4944 /* At end of register contents => success */
4945 if (d2 == dend2) break;
4947 /* If necessary, advance to next segment in data. */
4948 PREFETCH ();
4950 /* How many characters left in this segment to match. */
4951 mcnt = dend - d;
4953 /* Want how many consecutive characters we can match in
4954 one shot, so, if necessary, adjust the count. */
4955 if (mcnt > dend2 - d2)
4956 mcnt = dend2 - d2;
4958 /* Compare that many; failure if mismatch, else move
4959 past them. */
4960 if (RE_TRANSLATE_P (translate)
4961 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4962 : bcmp (d, d2, mcnt))
4964 d = dfail;
4965 goto fail;
4967 d += mcnt, d2 += mcnt;
4970 break;
4973 /* begline matches the empty string at the beginning of the string
4974 (unless `not_bol' is set in `bufp'), and, if
4975 `newline_anchor' is set, after newlines. */
4976 case begline:
4977 DEBUG_PRINT1 ("EXECUTING begline.\n");
4979 if (AT_STRINGS_BEG (d))
4981 if (!bufp->not_bol) break;
4983 else if (d[-1] == '\n' && bufp->newline_anchor)
4985 break;
4987 /* In all other cases, we fail. */
4988 goto fail;
4991 /* endline is the dual of begline. */
4992 case endline:
4993 DEBUG_PRINT1 ("EXECUTING endline.\n");
4995 if (AT_STRINGS_END (d))
4997 if (!bufp->not_eol) break;
5000 /* We have to ``prefetch'' the next character. */
5001 else if ((d == end1 ? *string2 : *d) == '\n'
5002 && bufp->newline_anchor)
5004 break;
5006 goto fail;
5009 /* Match at the very beginning of the data. */
5010 case begbuf:
5011 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5012 if (AT_STRINGS_BEG (d))
5013 break;
5014 goto fail;
5017 /* Match at the very end of the data. */
5018 case endbuf:
5019 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5020 if (AT_STRINGS_END (d))
5021 break;
5022 goto fail;
5025 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5026 pushes NULL as the value for the string on the stack. Then
5027 `POP_FAILURE_POINT' will keep the current value for the
5028 string, instead of restoring it. To see why, consider
5029 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5030 then the . fails against the \n. But the next thing we want
5031 to do is match the \n against the \n; if we restored the
5032 string value, we would be back at the foo.
5034 Because this is used only in specific cases, we don't need to
5035 check all the things that `on_failure_jump' does, to make
5036 sure the right things get saved on the stack. Hence we don't
5037 share its code. The only reason to push anything on the
5038 stack at all is that otherwise we would have to change
5039 `anychar's code to do something besides goto fail in this
5040 case; that seems worse than this. */
5041 case on_failure_keep_string_jump:
5042 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5043 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5044 mcnt, p + mcnt);
5046 PUSH_FAILURE_POINT (p - 3, NULL);
5047 break;
5049 /* A nasty loop is introduced by the non-greedy *? and +?.
5050 With such loops, the stack only ever contains one failure point
5051 at a time, so that a plain on_failure_jump_loop kind of
5052 cycle detection cannot work. Worse yet, such a detection
5053 can not only fail to detect a cycle, but it can also wrongly
5054 detect a cycle (between different instantiations of the same
5055 loop.
5056 So the method used for those nasty loops is a little different:
5057 We use a special cycle-detection-stack-frame which is pushed
5058 when the on_failure_jump_nastyloop failure-point is *popped*.
5059 This special frame thus marks the beginning of one iteration
5060 through the loop and we can hence easily check right here
5061 whether something matched between the beginning and the end of
5062 the loop. */
5063 case on_failure_jump_nastyloop:
5064 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5065 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5066 mcnt, p + mcnt);
5068 assert ((re_opcode_t)p[-4] == no_op);
5069 CHECK_INFINITE_LOOP (p - 4, d);
5070 PUSH_FAILURE_POINT (p - 3, d);
5071 break;
5074 /* Simple loop detecting on_failure_jump: just check on the
5075 failure stack if the same spot was already hit earlier. */
5076 case on_failure_jump_loop:
5077 on_failure:
5078 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5079 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5080 mcnt, p + mcnt);
5082 CHECK_INFINITE_LOOP (p - 3, d);
5083 PUSH_FAILURE_POINT (p - 3, d);
5084 break;
5087 /* Uses of on_failure_jump:
5089 Each alternative starts with an on_failure_jump that points
5090 to the beginning of the next alternative. Each alternative
5091 except the last ends with a jump that in effect jumps past
5092 the rest of the alternatives. (They really jump to the
5093 ending jump of the following alternative, because tensioning
5094 these jumps is a hassle.)
5096 Repeats start with an on_failure_jump that points past both
5097 the repetition text and either the following jump or
5098 pop_failure_jump back to this on_failure_jump. */
5099 case on_failure_jump:
5100 QUIT;
5101 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5102 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5103 mcnt, p + mcnt);
5105 PUSH_FAILURE_POINT (p -3, d);
5106 break;
5108 /* This operation is used for greedy *.
5109 Compare the beginning of the repeat with what in the
5110 pattern follows its end. If we can establish that there
5111 is nothing that they would both match, i.e., that we
5112 would have to backtrack because of (as in, e.g., `a*a')
5113 then we can use a non-backtracking loop based on
5114 on_failure_keep_string_jump instead of on_failure_jump. */
5115 case on_failure_jump_smart:
5116 QUIT;
5117 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5118 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5119 mcnt, p + mcnt);
5121 unsigned char *p1 = p; /* Next operation. */
5122 unsigned char *p2 = p + mcnt; /* Destination of the jump. */
5124 p -= 3; /* Reset so that we will re-execute the
5125 instruction once it's been changed. */
5127 EXTRACT_NUMBER (mcnt, p2 - 2);
5129 /* Ensure this is a indeed the trivial kind of loop
5130 we are expecting. */
5131 assert (skip_one_char (p1) == p2 - 3);
5132 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5133 DEBUG_STATEMENT (debug += 2);
5134 if (mutually_exclusive_p (bufp, p1, p2))
5136 /* Use a fast `on_failure_keep_string_jump' loop. */
5137 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5138 *p = (unsigned char) on_failure_keep_string_jump;
5139 STORE_NUMBER (p2 - 2, mcnt + 3);
5141 else
5143 /* Default to a safe `on_failure_jump' loop. */
5144 DEBUG_PRINT1 (" smart default => slow loop.\n");
5145 *p = (unsigned char) on_failure_jump;
5147 DEBUG_STATEMENT (debug -= 2);
5149 break;
5151 /* Unconditionally jump (without popping any failure points). */
5152 case jump:
5153 unconditional_jump:
5154 QUIT;
5155 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5156 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5157 p += mcnt; /* Do the jump. */
5158 DEBUG_PRINT2 ("(to %p).\n", p);
5159 break;
5162 /* Have to succeed matching what follows at least n times.
5163 After that, handle like `on_failure_jump'. */
5164 case succeed_n:
5165 EXTRACT_NUMBER (mcnt, p + 2);
5166 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5168 assert (mcnt >= 0);
5169 /* Originally, this is how many times we HAVE to succeed. */
5170 if (mcnt > 0)
5172 mcnt--;
5173 p += 2;
5174 STORE_NUMBER_AND_INCR (p, mcnt);
5175 DEBUG_PRINT3 (" Setting %p to %d.\n", p, mcnt);
5177 else if (mcnt == 0)
5179 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
5180 p[2] = (unsigned char) no_op;
5181 p[3] = (unsigned char) no_op;
5182 goto on_failure;
5184 break;
5186 case jump_n:
5187 EXTRACT_NUMBER (mcnt, p + 2);
5188 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5190 /* Originally, this is how many times we CAN jump. */
5191 if (mcnt)
5193 mcnt--;
5194 STORE_NUMBER (p + 2, mcnt);
5195 goto unconditional_jump;
5197 /* If don't have to jump any more, skip over the rest of command. */
5198 else
5199 p += 4;
5200 break;
5202 case set_number_at:
5204 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5206 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5207 p1 = p + mcnt;
5208 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5209 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
5210 STORE_NUMBER (p1, mcnt);
5211 break;
5214 case wordbound:
5215 case notwordbound:
5216 not = (re_opcode_t) *(p - 1) == notwordbound;
5217 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5219 /* We SUCCEED (or FAIL) in one of the following cases: */
5221 /* Case 1: D is at the beginning or the end of string. */
5222 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5223 not = !not;
5224 else
5226 /* C1 is the character before D, S1 is the syntax of C1, C2
5227 is the character at D, and S2 is the syntax of C2. */
5228 int c1, c2, s1, s2;
5229 #ifdef emacs
5230 int offset = PTR_TO_OFFSET (d - 1);
5231 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5232 UPDATE_SYNTAX_TABLE (charpos);
5233 #endif
5234 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5235 s1 = SYNTAX (c1);
5236 #ifdef emacs
5237 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5238 #endif
5239 PREFETCH ();
5240 c2 = RE_STRING_CHAR (d, dend - d);
5241 s2 = SYNTAX (c2);
5243 if (/* Case 2: Only one of S1 and S2 is Sword. */
5244 ((s1 == Sword) != (s2 == Sword))
5245 /* Case 3: Both of S1 and S2 are Sword, and macro
5246 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5247 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5248 not = !not;
5250 if (not)
5251 break;
5252 else
5253 goto fail;
5255 case wordbeg:
5256 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5258 /* We FAIL in one of the following cases: */
5260 /* Case 1: D is at the end of string. */
5261 if (AT_STRINGS_END (d))
5262 goto fail;
5263 else
5265 /* C1 is the character before D, S1 is the syntax of C1, C2
5266 is the character at D, and S2 is the syntax of C2. */
5267 int c1, c2, s1, s2;
5268 #ifdef emacs
5269 int offset = PTR_TO_OFFSET (d);
5270 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5271 UPDATE_SYNTAX_TABLE (charpos);
5272 #endif
5273 PREFETCH ();
5274 c2 = RE_STRING_CHAR (d, dend - d);
5275 s2 = SYNTAX (c2);
5277 /* Case 2: S2 is not Sword. */
5278 if (s2 != Sword)
5279 goto fail;
5281 /* Case 3: D is not at the beginning of string ... */
5282 if (!AT_STRINGS_BEG (d))
5284 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5285 #ifdef emacs
5286 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5287 #endif
5288 s1 = SYNTAX (c1);
5290 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5291 returns 0. */
5292 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5293 goto fail;
5296 break;
5298 case wordend:
5299 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5301 /* We FAIL in one of the following cases: */
5303 /* Case 1: D is at the beginning of string. */
5304 if (AT_STRINGS_BEG (d))
5305 goto fail;
5306 else
5308 /* C1 is the character before D, S1 is the syntax of C1, C2
5309 is the character at D, and S2 is the syntax of C2. */
5310 int c1, c2, s1, s2;
5311 #ifdef emacs
5312 int offset = PTR_TO_OFFSET (d) - 1;
5313 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5314 UPDATE_SYNTAX_TABLE (charpos);
5315 #endif
5316 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5317 s1 = SYNTAX (c1);
5319 /* Case 2: S1 is not Sword. */
5320 if (s1 != Sword)
5321 goto fail;
5323 /* Case 3: D is not at the end of string ... */
5324 if (!AT_STRINGS_END (d))
5326 PREFETCH ();
5327 c2 = RE_STRING_CHAR (d, dend - d);
5328 #ifdef emacs
5329 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5330 #endif
5331 s2 = SYNTAX (c2);
5333 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5334 returns 0. */
5335 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5336 goto fail;
5339 break;
5341 case syntaxspec:
5342 case notsyntaxspec:
5343 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5344 mcnt = *p++;
5345 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5346 PREFETCH ();
5347 #ifdef emacs
5349 int offset = PTR_TO_OFFSET (d);
5350 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5351 UPDATE_SYNTAX_TABLE (pos1);
5353 #endif
5355 int c, len;
5357 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5359 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5360 goto fail;
5361 d += len;
5363 break;
5365 #ifdef emacs
5366 case before_dot:
5367 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5368 if (PTR_BYTE_POS (d) >= PT_BYTE)
5369 goto fail;
5370 break;
5372 case at_dot:
5373 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5374 if (PTR_BYTE_POS (d) != PT_BYTE)
5375 goto fail;
5376 break;
5378 case after_dot:
5379 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5380 if (PTR_BYTE_POS (d) <= PT_BYTE)
5381 goto fail;
5382 break;
5384 case categoryspec:
5385 case notcategoryspec:
5386 not = (re_opcode_t) *(p - 1) == notcategoryspec;
5387 mcnt = *p++;
5388 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
5389 PREFETCH ();
5391 int c, len;
5392 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5394 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
5395 goto fail;
5396 d += len;
5398 break;
5400 #endif /* emacs */
5402 default:
5403 abort ();
5405 continue; /* Successfully executed one pattern command; keep going. */
5408 /* We goto here if a matching operation fails. */
5409 fail:
5410 QUIT;
5411 if (!FAIL_STACK_EMPTY ())
5413 re_char *str;
5414 unsigned char *pat;
5415 /* A restart point is known. Restore to that state. */
5416 DEBUG_PRINT1 ("\nFAIL:\n");
5417 POP_FAILURE_POINT (str, pat);
5418 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5420 case on_failure_keep_string_jump:
5421 assert (str == NULL);
5422 goto continue_failure_jump;
5424 case on_failure_jump_nastyloop:
5425 assert ((re_opcode_t)pat[-2] == no_op);
5426 PUSH_FAILURE_POINT (pat - 2, str);
5427 /* Fallthrough */
5429 case on_failure_jump_loop:
5430 case on_failure_jump:
5431 case succeed_n:
5432 d = str;
5433 continue_failure_jump:
5434 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5435 p = pat + mcnt;
5436 break;
5438 case no_op:
5439 /* A special frame used for nastyloops. */
5440 goto fail;
5442 default:
5443 abort();
5446 assert (p >= bufp->buffer && p <= pend);
5448 if (d >= string1 && d <= end1)
5449 dend = end_match_1;
5451 else
5452 break; /* Matching at this starting point really fails. */
5453 } /* for (;;) */
5455 if (best_regs_set)
5456 goto restore_best_regs;
5458 FREE_VARIABLES ();
5460 return -1; /* Failure to match. */
5461 } /* re_match_2 */
5463 /* Subroutine definitions for re_match_2. */
5465 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5466 bytes; nonzero otherwise. */
5468 static int
5469 bcmp_translate (s1, s2, len, translate, multibyte)
5470 re_char *s1, *s2;
5471 register int len;
5472 RE_TRANSLATE_TYPE translate;
5473 const int multibyte;
5475 register re_char *p1 = s1, *p2 = s2;
5476 re_char *p1_end = s1 + len;
5477 re_char *p2_end = s2 + len;
5479 while (p1 != p1_end && p2 != p2_end)
5481 int p1_charlen, p2_charlen;
5482 int p1_ch, p2_ch;
5484 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5485 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5487 if (RE_TRANSLATE (translate, p1_ch)
5488 != RE_TRANSLATE (translate, p2_ch))
5489 return 1;
5491 p1 += p1_charlen, p2 += p2_charlen;
5494 if (p1 != p1_end || p2 != p2_end)
5495 return 1;
5497 return 0;
5500 /* Entry points for GNU code. */
5502 /* re_compile_pattern is the GNU regular expression compiler: it
5503 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5504 Returns 0 if the pattern was valid, otherwise an error string.
5506 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5507 are set in BUFP on entry.
5509 We call regex_compile to do the actual compilation. */
5511 const char *
5512 re_compile_pattern (pattern, length, bufp)
5513 const char *pattern;
5514 int length;
5515 struct re_pattern_buffer *bufp;
5517 reg_errcode_t ret;
5519 /* GNU code is written to assume at least RE_NREGS registers will be set
5520 (and at least one extra will be -1). */
5521 bufp->regs_allocated = REGS_UNALLOCATED;
5523 /* And GNU code determines whether or not to get register information
5524 by passing null for the REGS argument to re_match, etc., not by
5525 setting no_sub. */
5526 bufp->no_sub = 0;
5528 /* Match anchors at newline. */
5529 bufp->newline_anchor = 1;
5531 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5533 if (!ret)
5534 return NULL;
5535 return gettext (re_error_msgid[(int) ret]);
5538 /* Entry points compatible with 4.2 BSD regex library. We don't define
5539 them unless specifically requested. */
5541 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5543 /* BSD has one and only one pattern buffer. */
5544 static struct re_pattern_buffer re_comp_buf;
5546 char *
5547 #ifdef _LIBC
5548 /* Make these definitions weak in libc, so POSIX programs can redefine
5549 these names if they don't use our functions, and still use
5550 regcomp/regexec below without link errors. */
5551 weak_function
5552 #endif
5553 re_comp (s)
5554 const char *s;
5556 reg_errcode_t ret;
5558 if (!s)
5560 if (!re_comp_buf.buffer)
5561 return gettext ("No previous regular expression");
5562 return 0;
5565 if (!re_comp_buf.buffer)
5567 re_comp_buf.buffer = (unsigned char *) malloc (200);
5568 if (re_comp_buf.buffer == NULL)
5569 return gettext (re_error_msgid[(int) REG_ESPACE]);
5570 re_comp_buf.allocated = 200;
5572 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5573 if (re_comp_buf.fastmap == NULL)
5574 return gettext (re_error_msgid[(int) REG_ESPACE]);
5577 /* Since `re_exec' always passes NULL for the `regs' argument, we
5578 don't need to initialize the pattern buffer fields which affect it. */
5580 /* Match anchors at newlines. */
5581 re_comp_buf.newline_anchor = 1;
5583 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5585 if (!ret)
5586 return NULL;
5588 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5589 return (char *) gettext (re_error_msgid[(int) ret]);
5594 #ifdef _LIBC
5595 weak_function
5596 #endif
5597 re_exec (s)
5598 const char *s;
5600 const int len = strlen (s);
5601 return
5602 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5604 #endif /* _REGEX_RE_COMP */
5606 /* POSIX.2 functions. Don't define these for Emacs. */
5608 #ifndef emacs
5610 /* regcomp takes a regular expression as a string and compiles it.
5612 PREG is a regex_t *. We do not expect any fields to be initialized,
5613 since POSIX says we shouldn't. Thus, we set
5615 `buffer' to the compiled pattern;
5616 `used' to the length of the compiled pattern;
5617 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5618 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5619 RE_SYNTAX_POSIX_BASIC;
5620 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5621 `fastmap' and `fastmap_accurate' to zero;
5622 `re_nsub' to the number of subexpressions in PATTERN.
5624 PATTERN is the address of the pattern string.
5626 CFLAGS is a series of bits which affect compilation.
5628 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5629 use POSIX basic syntax.
5631 If REG_NEWLINE is set, then . and [^...] don't match newline.
5632 Also, regexec will try a match beginning after every newline.
5634 If REG_ICASE is set, then we considers upper- and lowercase
5635 versions of letters to be equivalent when matching.
5637 If REG_NOSUB is set, then when PREG is passed to regexec, that
5638 routine will report only success or failure, and nothing about the
5639 registers.
5641 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5642 the return codes and their meanings.) */
5645 regcomp (preg, pattern, cflags)
5646 regex_t *preg;
5647 const char *pattern;
5648 int cflags;
5650 reg_errcode_t ret;
5651 unsigned syntax
5652 = (cflags & REG_EXTENDED) ?
5653 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5655 /* regex_compile will allocate the space for the compiled pattern. */
5656 preg->buffer = 0;
5657 preg->allocated = 0;
5658 preg->used = 0;
5660 /* Don't bother to use a fastmap when searching. This simplifies the
5661 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5662 characters after newlines into the fastmap. This way, we just try
5663 every character. */
5664 preg->fastmap = 0;
5666 if (cflags & REG_ICASE)
5668 unsigned i;
5670 preg->translate
5671 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5672 * sizeof (*(RE_TRANSLATE_TYPE)0));
5673 if (preg->translate == NULL)
5674 return (int) REG_ESPACE;
5676 /* Map uppercase characters to corresponding lowercase ones. */
5677 for (i = 0; i < CHAR_SET_SIZE; i++)
5678 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5680 else
5681 preg->translate = NULL;
5683 /* If REG_NEWLINE is set, newlines are treated differently. */
5684 if (cflags & REG_NEWLINE)
5685 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5686 syntax &= ~RE_DOT_NEWLINE;
5687 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5688 /* It also changes the matching behavior. */
5689 preg->newline_anchor = 1;
5691 else
5692 preg->newline_anchor = 0;
5694 preg->no_sub = !!(cflags & REG_NOSUB);
5696 /* POSIX says a null character in the pattern terminates it, so we
5697 can use strlen here in compiling the pattern. */
5698 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5700 /* POSIX doesn't distinguish between an unmatched open-group and an
5701 unmatched close-group: both are REG_EPAREN. */
5702 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5704 return (int) ret;
5708 /* regexec searches for a given pattern, specified by PREG, in the
5709 string STRING.
5711 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5712 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5713 least NMATCH elements, and we set them to the offsets of the
5714 corresponding matched substrings.
5716 EFLAGS specifies `execution flags' which affect matching: if
5717 REG_NOTBOL is set, then ^ does not match at the beginning of the
5718 string; if REG_NOTEOL is set, then $ does not match at the end.
5720 We return 0 if we find a match and REG_NOMATCH if not. */
5723 regexec (preg, string, nmatch, pmatch, eflags)
5724 const regex_t *preg;
5725 const char *string;
5726 size_t nmatch;
5727 regmatch_t pmatch[];
5728 int eflags;
5730 int ret;
5731 struct re_registers regs;
5732 regex_t private_preg;
5733 int len = strlen (string);
5734 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5736 private_preg = *preg;
5738 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5739 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5741 /* The user has told us exactly how many registers to return
5742 information about, via `nmatch'. We have to pass that on to the
5743 matching routines. */
5744 private_preg.regs_allocated = REGS_FIXED;
5746 if (want_reg_info)
5748 regs.num_regs = nmatch;
5749 regs.start = TALLOC (nmatch, regoff_t);
5750 regs.end = TALLOC (nmatch, regoff_t);
5751 if (regs.start == NULL || regs.end == NULL)
5752 return (int) REG_NOMATCH;
5755 /* Perform the searching operation. */
5756 ret = re_search (&private_preg, string, len,
5757 /* start: */ 0, /* range: */ len,
5758 want_reg_info ? &regs : (struct re_registers *) 0);
5760 /* Copy the register information to the POSIX structure. */
5761 if (want_reg_info)
5763 if (ret >= 0)
5765 unsigned r;
5767 for (r = 0; r < nmatch; r++)
5769 pmatch[r].rm_so = regs.start[r];
5770 pmatch[r].rm_eo = regs.end[r];
5774 /* If we needed the temporary register info, free the space now. */
5775 free (regs.start);
5776 free (regs.end);
5779 /* We want zero return to mean success, unlike `re_search'. */
5780 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5784 /* Returns a message corresponding to an error code, ERRCODE, returned
5785 from either regcomp or regexec. We don't use PREG here. */
5787 size_t
5788 regerror (errcode, preg, errbuf, errbuf_size)
5789 int errcode;
5790 const regex_t *preg;
5791 char *errbuf;
5792 size_t errbuf_size;
5794 const char *msg;
5795 size_t msg_size;
5797 if (errcode < 0
5798 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5799 /* Only error codes returned by the rest of the code should be passed
5800 to this routine. If we are given anything else, or if other regex
5801 code generates an invalid error code, then the program has a bug.
5802 Dump core so we can fix it. */
5803 abort ();
5805 msg = gettext (re_error_msgid[errcode]);
5807 msg_size = strlen (msg) + 1; /* Includes the null. */
5809 if (errbuf_size != 0)
5811 if (msg_size > errbuf_size)
5813 strncpy (errbuf, msg, errbuf_size - 1);
5814 errbuf[errbuf_size - 1] = 0;
5816 else
5817 strcpy (errbuf, msg);
5820 return msg_size;
5824 /* Free dynamically allocated space used by PREG. */
5826 void
5827 regfree (preg)
5828 regex_t *preg;
5830 if (preg->buffer != NULL)
5831 free (preg->buffer);
5832 preg->buffer = NULL;
5834 preg->allocated = 0;
5835 preg->used = 0;
5837 if (preg->fastmap != NULL)
5838 free (preg->fastmap);
5839 preg->fastmap = NULL;
5840 preg->fastmap_accurate = 0;
5842 if (preg->translate != NULL)
5843 free (preg->translate);
5844 preg->translate = NULL;
5847 #endif /* not emacs */